Correction du Contrôle continu 2

Exercice 1 (5 points+ Bonus 1 point) Soient

$$A = \{(x,y): x^4 + y^6 \leq 4\}, \quad B = \{(x,y): x^2 + 2y^2 + 3xy = 1\}, \\ g(x,y) = \inf\{|x - X| + 2|y - Y| + |x|, (X,Y) \in A\}.$$

- 1. $A = f^{-1}([0,4])$ est l'image réciproque du fermé [0,4] par l'application f définie par $f(x,y) = x^4 + y^6$, f est continue car polynomiale, donc A est fermé. De plus si $(x,y) \in A$, $|x|^4 \le 4$ donc $|x| \le \sqrt{2} \le 2$ et de même $|y| \le 2^{1/3} \le 2$ donc $A \subset [-2,2]^2 = B_{||.||_{\infty}}(0,2)$ donc A est borné. Comme \mathbb{R}^2 est de dimension fini, A fermé borné est donc compact.
 - Montrons que B n'est pas borné donc pas compact. $x^2 + 2y^2 + 3xy = (x+y)(x+2y) = 1$, donc on cherche (par exemple) une solution de x+y=n, (x+2y)=1/n soit y=1/n-n x=n-y=2n-1/n donc $(x_n,y_n)=(1/n-n,2n-1/n)\in B$ et $|x_n|\to\infty$ donc B n'est en effet par borné.
- 2. Bonus Il existe bien $(X,Y) \in A$ (dépendant de (x,y)) tel que g(x,y) = |x-X| + 2|y-Y| + |x| car h(X,Y) = |x-X| + 2|y-Y| + |x| est une fonction continue (par composition de normes et d'applications linéaires) sur le compact A donc atteint sa borne inférieure (par définition g(x,y)) d'après le théorème du cours.
- 3. Montrons que g est lipschitzienne (disons pour $||.||_1$ puisqu'on peut choisir la norme par équivalence des normes en dimension finie) donc uniformément continue. Notons que $N(x,y) = |x|+2|y| = ||(x,2y)||_1$ est une norme (par composée d'une norme et d'une application linéaire), on n'aura en fait besoin seulement de l'inégalité triangulaire de laquelle on déduit si h(x,y) = N(x-X,y-Y) + |x|:

$$h(x,y) = N(x-x'+x'-X, y-y'+y'-Y) + |x| < N(x-x', y-y') + N(x'-X, y'-Y) + |x-x'| + |x'|$$

En passant à l'infémum sur A on déduit :

$$g(x,y) \le N(x-x',y-y') + |x-x'| + g(x',y')$$

Par symétrie on déduit que g est 2-lipschitzienne :

$$|g(x,y) - g(x',y')| \le N(x - x', y - y') + |x - x'| = 2||(x - x', y - y')||_{1}.$$

Exercice 2 (6 points) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par : $f(x,y) = \frac{x^3(y-2)}{x^2+(y-2)^2}$ si $x \neq 0$, f(0,y) = 0.

- 1. Montrons que f est continue sur \mathbb{R}^2 , en dehors de (0,2) on a $f(x,y) = \frac{x^3(y-2)}{x^2+(y-2)^2}$ donc f est quotient de 2 polynômes à dénominateur non nul, donc f est C^{∞} comme quotient à dénominateur non nulle de fonctions C^{∞} .
 - Il reste à voir la continuité en (0,2) mais en effet on a $|f(x,y)-f(0,2)|=|f(x,y)|\leq \frac{(x^2+(y-2)^2)^2}{x^2+(y-2)^2}=(x^2+(y-2)^2)\to 0$ en (0,2) (on a utilisé $|x|\leq \sqrt{x^2+(y-2)^2},|y-2|\leq \sqrt{x^2+(y-2)^2}$.)

2. On a vu que les dérivées partielles existent en dehors de (0,2) et par opérations usuelles on calcule

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x^2(y-2)}{x^2 + (y-2)^2} - \frac{2x^4(y-2)}{(x^2 + (y-2)^2)^2}, \\ \frac{\partial f}{\partial y}(x,y) = \frac{x^3}{x^2 + (y-2)^2} - \frac{2x^3(y-2)^2}{(x^2 + (y-2)^2)^2}.$$

En (0,2) on regarde les fonctions partielles f(x,2)=0, f(0,y)=0 dont les dérivées en 0 et 2 donnent : $\frac{\partial f}{\partial x}(0,2)=\frac{\partial f}{\partial y}(0,2)=0$.

3. On a vue que f est elle de classe \mathcal{C}^1 en dehors de (0,2) il reste à voir la continuité des dérivées partielles en (0,2)

$$\left| \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial x}(0,2) \right| \le \frac{3x^2|y-2|}{x^2 + (y-2)^2} + \frac{2x^4|y-2|}{(x^2 + (y-2)^2)^2} \le 5\sqrt{x^2 + (y-2)^2} \to_{(x,y)\to(0,2)} 0,$$

en utilisant les mêmes bornes qu'au 1. De même

$$\left| \frac{\partial f}{\partial y}(x,y) - \frac{\partial f}{\partial y}(0,2) \right| \le \frac{|x|^3}{x^2 + (y-2)^2} + \frac{2|x|^3(y-2)^2}{(x^2 + (y-2)^2)^2} \le 3\sqrt{x^2 + (y-2)^2} \to_{(x,y)\to(0,2)} 0.$$

Donc f est bien C^1 sur \mathbb{R}^2 .

4. Calculons $\frac{\partial^2 f}{\partial x \partial y}(0,2)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,2)$. On regarde les fonctions partielles $l(x) := \frac{\partial f}{\partial x}(0,y) = \frac{30^2(y-2)}{0^2+(y-2)^2} - \frac{20^4(y-2)}{(0^2+(y-2)^2)^2} = 0$ donc on déduit en dérivant en 2 que $\frac{\partial^2 f}{\partial y \partial x}(0,2) = l'(2) = 0$.

De même, on a : $k(x) := \frac{\partial f}{\partial y}(x,2) = \frac{x^3}{x^2 + (2-2)^2} - \frac{2x^3(2-2)^2}{(x^2 + (2-2)^2)^2} = x$ donc en dérivant en x = 0 on déduit : $\frac{\partial^2 f}{\partial x \partial y}(0,2) = k'(0) = 1$. Donc par le théorème de Schwarz f n'est pas de classe \mathcal{C}^2 car $\frac{\partial^2 f}{\partial x \partial y}(0,2) \neq \frac{\partial^2 f}{\partial y \partial x}(0,2)$.

Exercice 3 (5 points+ Bonus 2 points) Soient $\Phi: \mathbb{R}^2 \to]0, +\infty[^2$ définie par $\Phi(u, v) = (e^{u+v}, e^{u-v})$.

1. Φ est \mathcal{C}^{∞} car ces coordonnées sont des composées de fonctions \mathcal{C}^{∞} : les applications linéaires $(u,v)\mapsto u+v, (u,v)\mapsto u-v,$ et a fonction \mathcal{C}^{∞} exponentielle. On résoud $(t,x)=\Phi(u,v)$ pour t>0, x>0 qui donne une unique solution $u=\frac{\ln(x)+\ln(t)}{2}, u=\frac{\ln(t)-\ln(x)}{2}$ donc

$$\Phi^{-1}(x,t) = (\frac{\ln(t) + \ln(x)}{2}, \frac{\ln(t) - \ln(x)}{2}).$$

Or Φ^{-1} est continue car ces coordonnées sont des composées de fonctions continues (ln et des applications linéaires) donc Φ et Φ^{-1} sont continues donc Φ est un homéomorphisque.

2. Soit f de classe \mathcal{C}^1 sur $]0, +\infty[^2$ et $F = f \circ \Phi$, F est de classe \mathcal{C}^1 par composée de fonctions \mathcal{C}^1 car on a vu que Φ est \mathcal{C}^{∞} Par le théorème des fonctions composées , on a :

$$\frac{\partial F}{\partial u} = e^{u+v} \frac{\partial f}{\partial t}(e^{u+v}, e^{u-v}) + e^{u-v} \frac{\partial f}{\partial x}(e^{u+v}, e^{u-v}) \ , \\ \frac{\partial F}{\partial v} = e^{u+v} \frac{\partial f}{\partial t}(e^{u+v}, e^{u-v}) - e^{u-v} \frac{\partial f}{\partial x}(e^{u+v}, e^{u-v}).$$

3. Si f C^1 sur $]0, +\infty[^2$ vérifie $t\frac{\partial f}{\partial t}(t,x) = x\frac{\partial f}{\partial x}(t,x)$ on déduit que $\frac{\partial F}{\partial v}(u,v) = 0$, Donc F(u,v) = F(u,0) = g(u) soit $f(t,x) = g \circ \Phi_1^{-1}(t,x) = g(\frac{\ln(t) + \ln(x)}{2})$ avec g de classe C^1 qui donnent toutes les solutions.

4. Bonus Si f C^2 (avec $t^2 \frac{\partial^2 f}{\partial t^2}(t,x) = x^2 \frac{\partial^2 f}{\partial x^2}(t,x)$) sur $]0,+\infty[^2$ par composition F est C^2 et

$$\frac{\partial^2 F}{\partial v \partial u}(u,v) = (t\frac{\partial f}{\partial t} - x\frac{\partial f}{\partial x} + t^2\frac{\partial^2 f}{\partial t^2} - x^2\frac{\partial^2 f}{\partial x^2})(e^{u+v},e^{u-v}) = \frac{\partial F}{\partial v}(u,v)$$

en appliquant l'équation et le 3. Donc $\frac{\partial}{\partial v}(\frac{\partial F}{\partial u} - F) = 0$ donc la fonction est constante en v soit $\frac{\partial F}{\partial u}(u,v) - F(u,v) = \frac{\partial F}{\partial u}(u,0) - F(u,0)$ Soit g(u) = F(u,v) - F(u,0) on vient de déduire g'(u) = g(u) donc $g(u) = g(0)e^u$ soit finalement

$$F(u,v) - F(u,0) = e^{u}(F(0,v) - F(0,0)),$$

et en recomposant par $\Phi^{-1} f(t,x) = F(\frac{\ln(t) + \ln(x)}{2}, 0) + \sqrt{xt} (F(0, \frac{\ln(t) - \ln(x)}{2}) - F(0, 0)) = f(\sqrt{tx}, \sqrt{tx}) + \sqrt{xt} (f(\sqrt{\frac{t}{x}}, \sqrt{\frac{x}{t}}) - f(1, 1))$ Donc si on pose $f_1(x) = f(x, x), f_2(x) = f(x, x^{-1}) - f(1, 1)$ 2 fonctions \mathcal{C}^2 dont la deuxième s'annule en 1, la solution générale est de la forme

$$f(t,x) = f_1(\sqrt{tx}) + \sqrt{xt}f_2(\sqrt{\frac{t}{x}}).$$