Contrôle Continu Final MASS 31

Jeudi 17 Janvier 2013

Durée: 2 heures.

Les documents et les calculatrices sont interdits.

On prendra soin de justifier les réponses.

Exercice 1 (6 points+Bonus 1 point))

Soient $F = \{(x, y) \in \mathbb{R}^2 \mid xy \ge 1, y > 0\}$ et $G = \{(z, t) \in \mathbb{R}^2 \mid 4t \le z^2, t > 0\}$. Soit $f : \mathbb{R} \times]0, \infty[\to \mathbb{R}^2$ la fonction définie par :

$$f(x,y) = (\frac{1}{y} + x, \frac{x}{y}).$$

- 1. Montrer que F est un fermé et calculer son intérieur U = Int(F).
- 2. **Bonus** : Montrer que la restriction $f_1: F \to G$ définie par $f_1(x,y) = f(x,y)$ est un homéomorphisme.
- 3. Calculer la matrice jacobienne de f en tout point de $\mathbb{R} \times]0, \infty[$.
- 4. Montrer que f et f_1 (la restriction définie à la question 2) ne sont pas des difféomorphismes.
- 5. Montrer qu'il existe un ouvert V de \mathbb{R}^2 tel que la restriction $f_2: U \to V$ définie par $f_2(x,y) = f(x,y)$ soit un difféomorphisme.
- 6. Calculer la différentielle de f_2^{-1} en (3,2).

Exercice 2 (4 points)

On définit la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ par :

$$g(x,y) = exp(x^2y) + x + y.$$

1. Montrer que la relation g(x,y)=0 définit au voisinage de (0,-1) une fonction implicite φ de classe \mathcal{C}^{∞} telle que $g(x,\varphi(x))=0$ et $\varphi(0)=-1$.

1

- 2. Calculer $\varphi'(x)$ en fonction de $\varphi(x)$.
- 3. Donner un développement limité (Taylor Young) de g à l'ordre 2 en (0,-1).
- 4. Donner un développement limité de φ à l'ordre 2 en 0.

Exercice 3 (5 points) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par :

$$f(x,y) = \sqrt{x^2 + y^2} + 2y.$$

- 1. Rappeler le théorème des multiplicateurs de Lagrange et démontrer qu'il existe 4 points en lesquels f peut avoir un extremum local sous la contrainte $\frac{x^2}{9} + y^2 = 1$.
- 2. Montrer que $C = \{(x,y) \mid \frac{x^2}{9} + y^2 = 1\}$ est un compact de \mathbb{R}^2 . En déduire 3 points où f atteint un extremum global sous la contrainte $\frac{x^2}{9} + y^2 = 1$.
- 3. En utilisant les conditions du second ordre, montrer que (0,1) est un minimum local strict non global de f sur C.

Exercice 4 (5 points)

On rappelle la définition du produit scalaire sur \mathbb{R}^n . Pour $X=(x_1,...,x_n)\in\mathbb{R}^n,Y=(y_1,...,y_n)\in\mathbb{R}^n$:

$$\langle X, Y \rangle = \sum_{i=1}^{n} x_i y_i.$$

On fixe $A, B \in \mathbb{R}^n$.

On définit les fonctions $F:]0, \infty[\to \mathbb{R}, H: \mathbb{R}^n \to \mathbb{R} \text{ et } h: \mathbb{R}^{n+1} \to \mathbb{R} \text{ par } :$

$$F(x) = \int_0^\infty \frac{e^{-xt}}{\sqrt{t}} dt,$$
$$h(X,t) = \langle A, X \rangle e^{t^4 \langle B, X \rangle},$$
$$H(X) = \int_0^1 h(X,t) dt.$$

- 1. Montrer que h est différentiable et calculer sa différentielle.
- 2. Montrer que F est continue et H est de classe C^1 .

Exercice 5 (Bonus 1 point)

Trouver les extrema locaux de $K: \mathbb{R}^3 \to \mathbb{R}$ définie par

$$K(x, y, z) = x^2 + y^2 + yz + xyz.$$