Contrôle continu Mercredi 25 mars 2015

Durée: 1H30

Les documents et les calculatrices sont interdits.

On prendra soin de justifier les réponses aux exercices.

Questions de Cours (7 points):

- 1. (1 point) Énoncer le théorème d'inversion de Fourier (avec la formule d'inversion)
- 2. (0,5 points) Énoncer le loi forte des Grands nombres
- 3. (1 point) Énoncer le lemme de Borel-Cantelli
- 4. (1,5 points) Énoncer le Théorème de Paul Lévy (version forte avec transformée de Fourier et Laplace)
- 5. (1 point) Énoncer le Théorème central limite dans \mathbb{R}^d avec une caractérisation de la loi limite qui intervient.
- 6. (2 points) Énoncer et PROUVER la loi du 0-1 de Kolmogorov.

Toutes les variables aléatoires sont définies sur le même espace de probabilité (Ω, Σ, P) .

Exercice 1 (5 points) Soient $X, Y: \Omega \to \mathbb{R}$ des variables aléatoires indépendantes de loi exponentielle

$$P_X = a \mathbb{1}_{[0,\infty[}(x)e^{-ax}dx$$

$$P_Y = b\mathbb{1}_{[0,\infty[}(y)e^{-by}dy,$$

avec a, b > 0.

- 1. Trouver a et b tel que $\mathbf{E}(X) = 1$ et $\mathbf{E}(Y) = 2$.
- 2. Montrer que $\{\omega \in \Omega : X(\omega) > Y(\omega)\}$ est mesurable (pour la tribu Σ) et calculer P(X > Y).
- 3. Calculer $\mathbf{E}[(X+Y)^2]$.
- 4. Calculer $\mathbf{E}(\min(X, Y))$.
- 5. Soit $f(x) = x^2 e^{-x}$. Déterminer la limite

$$\lim_{n \to \infty} \int_{\mathbb{R}^n_+} f(\frac{x_1 + \dots + x_n}{n}) e^{-x_1} dx_1 \dots e^{-x_n} dx_n.$$

Exercice 2 (5 points)

Soit $(U_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de loi uniforme sur [0,1]. On rappelle que $\mathbb{1}_A$ est la fonction indicatrice de A. On pose pour $n\geq 3$.

$$X_n = 2.1_{\{U_n \le 1/n\}} - 1_{\{(1-U_n) \le 1/n\}},$$

1. Donner les lois P_{X_n} de X_n .

2. Calculer $\mathbf{E}(X_n^4)$.

 (X_n) converge-t-elle dans L^4 ?

3. Appliquer le lemme de Borel-Cantelli à

$$A_n = \{\omega : |X_n(\omega)| \ge 1\}.$$

4. Soit

$$Y = \lim_{n \to \infty} \sup_{k \ge n} |X_k|.$$

Montrer que $P(Y \ge 1) = 1$.

Que conclut-on sur la convergence presque sûre de X_n ?

5. La sous-suite $(X_{n^2})_{n\geq 1}$ converge-t-elle presque sûrement?

Exercice 3 (3 points)

Soit $(Z_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribués de loi

$$P_{Z_n}(dz) = \frac{1}{2}e^{-|z|}dz.$$

On pose

$$S_n = Z_1 + \dots + Z_n.$$

- 1. Montrer que $P(\lim_{n\to\infty}S_n=+\infty)\in\{0,1\}.$ (On pourra utiliser la loi du 0-1)
- 2. Montrer que $P(\lim_{n\to\infty} S_n = +\infty) = P(\lim_{n\to\infty} S_n = -\infty)$.
- 3. Que vaut $P(\lim_{n\to\infty} S_n = +\infty)$?