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TD6 Distribution 

Exercice 1. Déterminer les dérivées première 𝑇′ et seconde 𝑇′′ 

1.  𝑇𝜒[−1,1]
 

2. 𝑇𝑓𝜒[−1,1]
 avec 𝑓 de classe 𝐶∞ 

3. 𝑇𝐸(𝑥) 

4. 𝑇|𝑥| 

5. 𝑇𝐻(𝑥) sin(𝑥) 

6. 𝑇𝐻(𝑥) cos(𝑥) 

Correction exercice 1   

1. Première méthode :𝑇𝜒[−1,1]
′ (𝜑) = −𝑇𝜒[−1,1]

(𝜑′) = − ∫ 𝜒[−1,1](𝑥)𝜑′(𝑥)𝑑𝑥
ℝ

= − ∫ 𝜑′(𝑥)𝑑𝑥
1

−1
=

−[𝜑(𝑥)]−1
1 = −𝜑(1) + 𝜑(−1) = 𝛿−1(𝜑) − 𝛿1(𝜑) 

Donc 𝑇𝜒[−1,1]
′ = 𝛿−1 − 𝛿1 

Seconde méthode si 𝑓 est 𝐶1 par morceaux avec des sauts en −1 et 1, ce qui est le cas de 𝑓(𝑥) =

𝜒[−1,1] 

𝑇𝜒[−1,1]
′ = 𝑇𝑓

′ = 𝑇𝑓′ + Δ𝑓(−1)𝛿−1 + Δ𝑓(1)𝛿1 = 0 + (1 − 0)𝛿−1 + (0 − 1)𝛿1 = 𝛿−1 − 𝛿1 

Donc 𝑇𝜒[−1,1]
′′ = 𝛿−1

′ − 𝛿1
′   

2. Première méthode  

𝑇𝑓𝜒[−1,1]

′ (𝜑) = −𝑇𝑓𝜒[−1,1]
(𝜑′) = − ∫ 𝜒[−1,1](𝑥)𝑓(𝑥)𝜑′(𝑥)𝑑𝑥

ℝ

= − ∫ 𝑓(𝑥)𝜑′(𝑥)𝑑𝑥
1

−1

= − ([𝑓(𝑥)𝜑(𝑥)]−1
1 − ∫ 𝑓′(𝑥)𝜑(𝑥)𝑑𝑥

1

−1

)

= −𝑓(1)𝜑(1) + 𝑓(−1)𝜑(−1) + 𝑇𝑓′𝜒[−1,1]
(𝜑)

= −𝑓(1)𝛿1(𝜑) + 𝑓(−1)𝛿−1(𝜑) + 𝑇𝑓′𝜒[−1,1]
(𝜑) 

Donc 𝑇𝑓𝜒[−1,1]

′ = −𝑓(1)𝛿1 + 𝑓(−1)𝛿−1 + 𝑇𝑓′𝜒[−1,1]
 

Seconde méthode  

𝑇𝑓𝜒[−1,1]

′ = 𝑇
(𝑓𝜒[−1,1])

′ + (𝑓(−1+)𝜒[−1,1](−1+) − 𝑓(−1−)𝜒[−1,1](−1−)) 𝛿−1

+ (𝑓(1+)𝜒[−1,1](1+) − 𝑓(1−)𝜒[−1,1](1−)) 𝛿1 = 𝑇𝑓′𝜒[−1,1]
+ 𝑓(−1)𝛿−1 − 𝑓(1)𝛿1 

 

𝑇𝑓𝜒[−1,1]

′′ = −𝑓(1)𝛿1
′ + 𝑓(−1)𝛿−1

′ + 𝑇𝑓′𝜒[−1,1]

′  

D’après la première partie de la question, appliquée à 𝑓′ au lieu de 𝑓 

𝑇𝑓′𝜒[−1,1]

′ = −𝑓′(1)𝛿1 + 𝑓′(−1)𝛿−1 + 𝑇𝑓′′𝜒[−1,1]
 

Alors 

𝑇𝑓𝜒[−1,1]

′′ = −𝑓(1)𝛿1
′ + 𝑓(−1)𝛿−1

′ − 𝑓′(1)𝛿1 + 𝑓′(−1)𝛿−1 + 𝑇𝑓′′𝜒[−1,1]
 

 

3. Première méthode 

𝑇𝐸(𝑥)
′ (𝜑) = −𝑇𝐸(𝑥)(𝜑′) = − ∫ 𝐸(𝑥)𝜑′(𝑥)𝑑𝑥

ℝ

= − ∑ ∫ 𝐸(𝑥)𝜑′(𝑥)𝑑𝑥
𝑛+1

𝑛𝑛∈ℤ

= − ∑ ∫ 𝑛𝜑′(𝑥)𝑑𝑥
𝑛+1

𝑛𝑛∈ℤ

= − ∑ 𝑛 ∫ 𝜑′(𝑥)𝑑𝑥
𝑛+1

𝑛𝑛∈ℤ

= − ∑ 𝑛(𝜑(𝑛 + 1) − 𝜑(𝑛))

𝑛∈ℤ

= − ∑ 𝑛𝜑(𝑛 + 1)

𝑛∈ℤ

+ ∑ 𝑛𝜑(𝑛)

𝑛∈ℤ
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Dans la première somme on fait le changement d’indice 𝑛′ = 𝑛 + 1 donc 

∑ 𝑛𝜑(𝑛 + 1)

𝑛∈ℤ

= ∑ (𝑛′ − 1)𝜑(𝑛′)

𝑛′∈ℤ

= ∑(𝑛 − 1)𝜑(𝑛)

𝑛∈ℤ

 

Par conséquent 

𝑇[𝑥]
′ (𝜑) = − ∑(𝑛 − 1)𝜑(𝑛)

𝑛∈ℤ

+ ∑ 𝑛𝜑(𝑛)

𝑛∈ℤ

= ∑(−(𝑛 − 1) + 𝑛)𝜑(𝑛)

𝑛∈ℤ

= ∑ 𝜑(𝑛)

𝑛∈ℤ

= ∑ 𝛿𝑛(𝜑)

𝑛∈ℤ

 

D’où 

𝑇[𝑥]
′ = ∑ 𝛿𝑛

𝑛∈ℤ

 

Seconde méthode 

𝑇𝐸(𝑥)
′ = 𝑇𝐸(𝑥)

′ + ∑ (𝐸(𝑛+) − 𝐸(𝑛−))𝛿𝑛

+∞

𝑛=−∞

= 0 + ∑ (𝑛 + 1 − 𝑛)𝛿𝑛

+∞

𝑛=−∞

= ∑ 𝛿𝑛

𝑛∈ℤ

 

Et alors 

𝑇[𝑥]
′′ = ∑ 𝛿𝑛

′

𝑛∈ℤ

 

4. Première méthode 

𝑇|𝑥|
′ (𝜑) = −𝑇|𝑥|(𝜑′) = − ∫ |𝑥|𝜑′(𝑥)𝑑𝑥

ℝ

= − ∫ |𝑥|𝜑′(𝑥)𝑑𝑥
0

−∞

− ∫ |𝑥|𝜑′(𝑥)𝑑𝑥
+∞

0

= − ∫ −𝑥𝜑′(𝑥)𝑑𝑥
0

−∞

− ∫ 𝑥𝜑′(𝑥)𝑑𝑥
+∞

0

= ∫ 𝑥𝜑′(𝑥)𝑑𝑥
0

−∞

− ∫ 𝑥𝜑′(𝑥)𝑑𝑥
+∞

0

= [𝑥𝜑(𝑥)]−∞
0 − ∫ 𝜑(𝑥)𝑑𝑥

0

−∞

− [𝑥𝜑(𝑥)]0
+∞ + ∫ 𝜑(𝑥)𝑑𝑥

+∞

0

= − ∫ 𝜑(𝑥)𝑑𝑥
0

−∞

+ ∫ 𝜑(𝑥)𝑑𝑥
+∞

0

= − ∫ 𝐻(−𝑥)𝜑(𝑥)𝑑𝑥
0

−∞

+ ∫ 𝐻(𝑥)𝜑(𝑥)𝑑𝑥
+∞

0

= − ∫ 𝐻(−𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

+ ∫ 𝐻(𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

= −𝑇𝐻(−𝑥)(𝜑) + 𝑇𝐻(𝑥)(𝜑) 

Par conséquent 𝑇|𝑥|
′ = −𝑇𝐻(−𝑥) + 𝑇𝐻(𝑥) = 𝑇𝐻(𝑥)−𝐻(−𝑥) 

Seconde méthode, on pose 𝑓(𝑥) = |𝑥|, 𝑇|𝑥|
′ = 𝑇𝑓′ + (𝑓(0+) − 𝑓(0−))𝛿0 = 𝑇𝑓′ 

Si 𝑥 ≤ 0 alors 𝑓′(𝑥) = −1 = −𝐻(−𝑥) et si 𝑥 ≥ 0 alors 𝑓′(𝑥) = 1 = 𝐻(𝑥) 

Donc 𝑓′(𝑥) = 𝐻(𝑥) − 𝐻(−𝑥) et alors 𝑇|𝑥|
′ = −𝑇𝐻(−𝑥) + 𝑇𝐻(𝑥) = 𝑇𝐻(𝑥)−𝐻(−𝑥) 

Puis  

𝑇|𝑥|
′′ (𝜑) = 𝑇𝐻(−𝑥)(𝜑′) − 𝑇𝐻(𝑥)(𝜑′) = ∫ 𝜑′(𝑥)𝑑𝑥

0

−∞

− ∫ 𝜑′(𝑥)𝑑𝑥
+∞

0

= 𝜑(0) − (−𝜑(0)) = 2𝜑(0)

= 2𝛿0(𝜑) 

Par conséquent 𝑇|𝑥|
′′ = 2𝛿0 

Seconde méthode  𝑇𝐻
′ = 𝛿0 

Donc 𝑇𝐻
′ (𝜑) = 𝑇𝐻′(𝜑) = 𝛿0(𝜑) si on pose 𝐻−(𝑥) = 𝐻(−𝑥) 

𝑇𝐻−
′ (𝜑) = 𝑇𝐻−′(𝜑) = ∫ (𝐻(−𝑥))

′
𝜑(𝑥)𝑑𝑥

+∞

−∞

= ∫ −𝐻(−𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

= ∫ −𝛿0(−𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

= −𝜑(0) = −𝛿0(𝜑) 

Ce qui entraine que  

𝑇𝐻−
′ = −𝛿0 

Puis que 𝑇|𝑥|
′′ = 𝑇𝐻−

′ − 𝑇𝐻
′ = 2𝛿0 

5.  et  6. Première méthode 
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𝑇𝐻(𝑥) sin(𝑥)
′ (𝜑) = −𝑇𝐻(𝑥) sin(𝑥)(𝜑′) = − ∫ 𝐻(𝑥) sin(𝑥) 𝜑′(𝑥)𝑑𝑥

ℝ

= − ∫ sin(𝑥) 𝜑′(𝑥)𝑑𝑥
+∞

0

= − ([sin(𝑥) 𝜑(𝑥)]0
+∞ − ∫ cos(𝑥) 𝜑(𝑥)𝑑𝑥

+∞

0 

) = ∫ cos(𝑥) 𝜑(𝑥)𝑑𝑥
+∞

0

= ∫ 𝐻(𝑥) cos(𝑥) 𝜑(𝑥)𝑑𝑥
+∞

−∞

= 𝑇𝐻(𝑥) cos(𝑥)(𝜑) 

Donc 𝑇𝐻(𝑥) sin(𝑥)
′ = 𝑇𝐻(𝑥) cos(𝑥) 

Avant de calculer la dérivée seconde de 𝑇𝐻(𝑥)sin (𝑥) on va calculer 𝑇𝐻(𝑥) cos(𝑥)
′  

𝑇𝐻(𝑥) cos(𝑥)
′ (𝜑) = −𝑇𝐻(𝑥) cos(𝑥)(𝜑′) = − ∫ 𝐻(𝑥) cos(𝑥) 𝜑′(𝑥)𝑑𝑥

ℝ

= − ∫ cos(𝑥) 𝜑′(𝑥)𝑑𝑥
+∞

0

= − ([cos(𝑥) 𝜑(𝑥)]0
+∞ − ∫ − sin(𝑥) 𝜑(𝑥)𝑑𝑥

+∞

0 

) = 𝜑(0) − ∫ sin(𝑥) 𝜑(𝑥)𝑑𝑥
+∞

0

= 𝛿0(𝜑) − ∫ 𝐻(𝑥) sin(𝑥) 𝜑(𝑥)𝑑𝑥
+∞

−∞

= 𝛿0(𝜑) − 𝑇𝐻(𝑥) sin(𝑥)(𝜑) 

Donc 𝑇𝐻(𝑥) cos(𝑥)
′ = 𝛿0 − 𝑇𝐻(𝑥) sin(𝑥) 

On en déduit que 𝑇𝐻(𝑥) sin(𝑥)
′′ = (𝑇𝐻(𝑥) sin(𝑥)

′ )
′

= (𝑇𝐻(𝑥) cos(𝑥))
′

= 𝑇𝐻(𝑥) cos(𝑥)
′ = 𝛿0 − 𝑇𝐻(𝑥) sin(𝑥). 

Et que 𝑇𝐻(𝑥) cos(𝑥)
′′ = (𝑇𝐻(𝑥) cos(𝑥)

′ )
′

= (𝛿0 − 𝑇𝐻(𝑥) sin(𝑥))
′

= 𝛿0
′ − 𝑇𝐻(𝑥) sin(𝑥)

′ = 𝛿0
′ − 𝑇𝐻(𝑥) cos(𝑥) 

Seconde méthode, on pose 𝑓(𝑥) = 𝐻(𝑥) sin(𝑥) et 𝑔(𝑥) = 𝐻(𝑥) cos(𝑥) 

𝑇𝑓
′ = 𝑇𝑓′ + (𝑓(0+) − 𝑓(0−)𝛿0 = 𝑇𝑓′ = 𝑇𝑔 

Autrement dit  

𝑇𝐻(𝑥) sin(𝑥)
′ = 𝑇𝐻(𝑥) cos(𝑥) 

𝑇𝑔
′ = 𝑇𝑔′ + (𝑔(0+) − 𝑔(0−)𝛿0 = 𝑇𝑔′ + (𝐻(0+) cos(0+) − 𝐻(0−) cos(0−))𝛿0 = 𝑇−𝑓 + 𝛿0 = −𝑇𝑓 + 𝛿0 

Autrement dit  

𝑇𝐻(𝑥) cos(𝑥) = 𝛿0 − 𝑇𝐻(𝑥) sin(𝑥) 

Et que 𝑇𝐻(𝑥) cos(𝑥)
′′ = 𝛿0

′ − 𝑇𝐻(𝑥) sin(𝑥)
′ = 𝛿0

′ − 𝑇𝐻(𝑥) cos(𝑥) 

Donc 𝑇𝐻(𝑥) cos(𝑥)
′′ (𝜑) = −𝜑′(0) − 𝑇𝐻(𝑥) cos(𝑥)(𝜑) = 𝛿0

′ (𝜑) − 𝑇𝐻(𝑥) cos(𝑥)(𝜑) et  

𝑇𝐻(𝑥) cos(𝑥)
′′ = 𝛿0

′ − 𝑇𝐻(𝑥) cos(𝑥) 

Exercice 2. Calculer les primitives des distributions suivantes  

1. 𝛿0
′  

2. 𝑇𝑠𝑔𝑛(𝑥) avec 𝑠𝑔𝑛(𝑥), le signe de 𝑥. 

3. (1 + 𝑥)𝛿𝑎, 𝑎 ∈ ℝ. 

4. (1 + 𝑥)2𝛿0
′ . 

5. Le peine de Dirac= ∑ 𝛿(𝑥 − 𝑘𝑇)+∞
𝑘=−∞ . 

6. 𝑇1/√|𝑥|. 

7. (1 + 𝑥)𝛿0
′′. 

Correction exercice 2   

1.   

𝛿0
′ (𝜑) = 𝑇𝛿0

′ (𝜑) = −𝑇𝛿0
(𝜑′) = − ∫ 𝜑′(𝑥)𝛿0(𝑥)𝑑𝑥

+∞

−∞

= −𝜑′(0) 

On cherche une primitive 𝑇𝑓 telle que : 

𝑇𝑓
′(𝜑) = −𝑇𝑓(𝜑′) = − ∫ 𝜑′(𝑥)𝑓(𝑥)𝑑𝑥

+∞

−∞

= − ∫ 𝜑′(𝑥)𝛿0(𝑥)𝑑𝑥
+∞

−∞

 

𝑓 = 𝛿0 + 𝑐, 𝑐 ∈ ℝ convient évidemment. 
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2. Première méthode 

𝑇𝑠𝑔𝑛(𝑥)(𝜑) = ∫ 𝜑(𝑥)𝑠𝑔𝑛(𝑥)𝑑𝑥
+∞

−∞

= − ∫ 𝜑(𝑥)𝑑𝑥
0

−∞

+ ∫ 𝜑(𝑥)𝑑𝑥
+∞

0

= −[𝑥𝜑(𝑥)]0
+∞ + ∫ 𝑥𝜑′(𝑥)𝑑𝑥

0

−∞

+ [𝑥𝜑(𝑥)]0
+∞ − ∫ 𝑥𝜑′(𝑥)𝑑𝑥

+∞

0

= + ∫ 𝑥𝜑′(𝑥)𝑑𝑥
0

−∞

− ∫ 𝑥𝜑′(𝑥)𝑑𝑥
+∞

0

= ∫ 𝑥𝐻(−𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

− ∫ 𝑥𝐻(𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

= − ∫ 𝜑′(𝑥)(−𝑥𝐻(−𝑥) + 𝑥𝐻(𝑥))𝑑𝑥
+∞

−∞

= − ∫ 𝜑′(𝑥)|𝑥|𝑑𝑥
+∞

−∞

 

On cherche une primitive 𝑇𝑓 telle que : 

𝑇𝑓
′(𝜑) = −𝑇𝑓(𝜑′) = − ∫ 𝜑′(𝑥)𝑓(𝑥)𝑑𝑥

+∞

−∞

 

𝑓(𝑥) = −𝑥𝐻(−𝑥) + 𝑥𝐻(𝑥) + 𝑐 = |𝑥| + 𝑐, 𝑐 ∈ ℝ convient. 

Seconde méthode d’après l’exercice 1. 

𝑇|𝑥|
′ = −𝑇𝐻(−𝑥) + 𝑇𝐻(𝑥) = 𝑇𝐻(𝑥)−𝐻(−𝑥) 

Or 

𝑇𝑠𝑔𝑛(𝑥) = 𝑇𝐻(𝑥)−𝐻(−𝑥) 

Donc 

𝑇|𝑥|+𝑐, 𝑐 ∈ ℝ convient. 

3.   

(1 + 𝑥)𝛿𝑎(𝜑) = ∫ (1 + 𝑥)𝛿𝑎(𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞

= (1 + 𝑎)𝜑(𝑎) = (1 + 𝑎)𝛿𝑎(𝜑) = (1 + 𝑎)𝑇𝐻(𝑥−𝑎)
′ (𝜑)

= 𝑇(1+𝑎)𝐻(𝑥−𝑎)
′ (𝜑)   

Car 𝑓𝑇(𝜑) = 𝑇(𝑓𝜑) est appliqué à 𝑓(𝑥) = 1 + 𝑥 et 𝑇 = 𝛿𝑎 

et 𝑇𝐻(𝑥−𝑎)
′ (𝜑) = −𝑇𝐻(𝑥−𝑎)(𝜑′) = − ∫ 𝜑′(𝑥)𝑑𝑥

+∞

𝑎
= −[𝜑(𝑥)]𝑎

+∞ = 𝜑(𝑎) 

Résultats à savoir. 

(1 + 𝑥)𝛿𝑎 = 𝑇(1+𝑎)𝐻(𝑥−𝑎)
′  

Les primitives de (1 + 𝑥)𝛿𝑎 sont 𝑇(1+𝑎)𝐻(𝑥−𝑎)+𝑐, 𝑐 ∈ ℝ 

4.  Première méthode : 

On pose 𝑓(𝑥) = (1 + 𝑥)2 alors 𝑓′(𝑥) = 2(𝑥 + 1) 

(1 + 𝑥)2𝛿0
′ (𝜑) = 𝑓𝛿0

′ (𝜑) = 𝛿0
′ (𝑓𝜑) = −(𝑓′𝜑 + 𝑓𝜑′)(0) = −𝑓′(0)𝜑(0) − 𝑓(0)𝜑′(0)

= −2𝜑(0) − 𝜑′(0) = −2𝑇𝐻(𝜑) + 𝛿0(𝜑) 

(1 + 𝑥)2𝛿0
′ = −2𝑇𝐻 + 𝛿0 + 𝑐, 𝑐 ∈ ℝ 

Seconde méthode ((1 + 𝑥)2𝛿0)′ = (1 + 𝑥)2𝛿0
′ + 2(𝑥 + 1)𝛿0 

Donc  (1 + 𝑥)2𝛿0
′ = ((1 + 𝑥)2𝛿0)′ − 2(𝑥 + 1)𝛿0 = ((1 + 0)2𝛿0)′ − 2(0 + 1)𝛿0 = 𝛿0

′ − 2𝑇𝐻
′  

Même conclusion 

5. 𝑇 ∈ ℝ 

𝑇𝑝𝑒𝑖𝑔𝑛𝑒 𝑑𝑒 𝐷𝑖𝑟𝑎𝑐 𝑇(𝜑) = ∫ 𝜑(𝑥) ∑ 𝛿0(𝑥 − 𝑘𝑇)

+∞

𝑘=−∞

𝑑𝑥
+∞

−∞

= ∑ ∫ 𝜑(𝑥)𝛿0(𝑥 − 𝑘𝑇)𝑑𝑥
+∞

−∞

+∞

𝑘=−∞

= ∑ 𝜑(𝑘𝑇)

+∞

𝑘=−∞

= ∑ 𝑇𝐻(𝑥−𝑘𝑇)
′ (𝜑)

+∞

𝑘=−∞

= ( ∑ 𝑇𝐻(𝑥−𝑘𝑇)
 (𝜑)

+∞

𝑘=−∞

)

′

 

Une primitive du peigne de Dirac est ∑ 𝑇𝐻(𝑥−𝑘𝑇)
 +∞

𝑘=−∞  

6.   
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𝑇 1

√|𝑥|

(𝜑) = ∫ 𝜑(𝑥)
1

√|𝑥|
𝑑𝑥

+∞

−∞

= ∫ 𝜑(𝑥)
1

√−𝑥
𝑑𝑥

0

−∞

+ ∫ 𝜑(𝑥)
1

√𝑥
𝑑𝑥

+∞

0

 

= [−2√−𝑥𝜑(𝑥)]
−∞

0
− ∫ (−2)√−𝑥𝜑′(𝑥)𝑑𝑥

0

−∞

+ [2√𝑥𝜑(𝑥)]
0

+∞
− ∫ 2√𝑥𝜑′(𝑥)𝑑𝑥

+∞

0

 

= ∫ 2√−𝑥𝜑′(𝑥)𝑑𝑥
0

−∞

− ∫ 2√𝑥𝜑′(𝑥)𝑑𝑥
+∞

0

= ∫ 2𝐻(−𝑥)√−𝑥𝜑′(𝑥)𝑑𝑥
+∞

−∞

− ∫ 2𝐻(𝑥)√𝑥𝜑′(𝑥)𝑑𝑥
+∞

−∞

= − ∫ −2(𝐻(−𝑥)√−𝑥 − 𝐻(𝑥)√𝑥)𝜑′(𝑥)𝑑𝑥
+∞

−∞

= 2 ∫ (𝐻(−𝑥)√−𝑥 − 𝐻(𝑥)√𝑥)𝜑′(𝑥)𝑑𝑥
+∞

−∞

= 𝑇
2(𝐻(−𝑥)√−𝑥−𝐻(𝑥)√𝑥)
′  

Donc 𝐻(𝑥)√𝑥 − 𝐻(−𝑥)√−𝑥 = 𝐻(|𝑥|)√𝑥2 convient. 

7. Première méthode, on pose 𝑓(𝑥) = 1 + 𝑥 

(1 + 𝑥)𝛿0
′′(𝜑) = 𝛿0

′′(𝑓𝜑) = (−1)2(𝑓𝜑)′′(0) = (𝑓′′𝜑 + 2𝑓′𝜑′ + 𝑓𝜑′′)(0) = (2𝑓′𝜑′ + 𝑓𝜑′′)(0)

= 2𝑓′(0)𝜑′(0) + 𝑓(0)𝜑′′(0) = 2𝜑′(0) + 𝜑′′(0)) = −2𝛿0
′ (𝜑) + 𝛿0

′′(𝜑) 

 Donc  (1 + 𝑥)𝛿0
′′ = −2𝛿0

′ + 𝛿0
′′ 

Donc les primitives de (1 + 𝑥)𝛿0
′′ sont −2𝛿0 + 𝛿0

′ + 𝑐, 𝑐 ∈ ℝ. 

Seconde méthode ((1 + 𝑥)𝛿0)
′′

= (1 + 𝑥)′′𝛿0 + 2(1 + 𝑥)′𝛿0
′ + (1 + 𝑥)𝛿0

′′ = 2𝛿0
′ + (1 + 𝑥)𝛿0

′′ 

Donc (1 + 𝑥)𝛿0
′′ = ((1 + 𝑥)𝛿0)

′′
− 2𝛿0

′ = ((1 + 0)𝛿0)
′′

− 2𝛿0
′ = 𝛿0

′′ − 2𝛿0
′  

Même réponse. 

Exercice 3.  Résoudre l’équation 𝑢′ + 𝑎𝑢 = 𝑇 pour : 

1. 𝑎(𝑥) = 𝑥 et 𝑇 = 𝛿0 

2. 𝑎(𝑥) = 1 et 𝑇 = 𝐻 

3. 𝑎(𝑥) = 1 − 𝑥 et 𝑇 = 𝛿0
′  

Correction exercice 3    

On rappelle que la dérivée d’une distribution est donnée par 𝑇′(𝜑) = −𝑇(𝜑′) 

1.  𝑢′(𝑥) + 𝑥𝑢(𝑥) = 𝛿0(𝑥) 

La solution générale de 𝑢′(𝑥) + 𝑥𝑢(𝑥) = 0 est 𝑢(𝑥) = 𝜆𝑒−
𝑥2

2 , avec 𝜆 ∈ ℝ, il reste à trouver une 

distribution qui soit une solution particulière sous la forme : 𝑇𝑢𝑃
= 𝑇

𝜆(𝑥)𝑒
−

𝑥2

2

 

Comme pour les fonctions : 𝑇𝜆
′ = 𝑇𝜆′ = 𝑇

𝑒
𝑥2

2 𝛿0(𝑥)
 

𝑇
𝑒

𝑥2

2 𝛿0(𝑥)

(𝜑) = ∫ 𝜑(𝑥)𝑒
𝑥2

2 𝛿0(𝑥)𝑑𝑥
+∞

−∞

= 𝑒0𝜑(0) = 𝜑(0) = 𝑇𝐻
′ (𝜑) 

Donc 𝑇𝜆
′ = 𝑇𝐻

′  et alors 𝜆(𝑥) = 𝐻(𝑥) et 𝑇𝑢𝑃
= 𝑇

𝜆(𝑥)𝑒
−

𝑥2

2

= 𝑇
𝐻(𝑥)𝑒

−
𝑥2

2

 

La solution générale est : 𝑢(𝑥) = 𝜆𝑒−
𝑥2

2 + 𝐻(𝑥)𝑒− 
𝑥2

2  

2. Il faut résoudre l’équation homogène, 𝑢(𝑥) = 𝜆𝑒−𝑥. Ensuite il faut trouver une distribution qui soit 

solution de l’équation avec second membre de la forme : 𝑇𝑢𝑃
= 𝑇𝜆(𝑥)𝑒−𝑥 

Comme pour les fonctions : 𝑇𝜆
′ = 𝑇𝜆′ = 𝑇𝑒𝑥𝐻(𝑥) 

𝑇𝑒𝑥𝐻(𝑥)(𝜑) = ∫ 𝜑(𝑥)𝑒𝑥𝐻(𝑥)𝑑𝑥
+∞

−∞

= ∫ 𝜑(𝑥)𝑒𝑥𝑑𝑥
+∞

0

= [𝑒𝑥𝜑(𝑥)]0
+∞ − ∫ 𝜑′(𝑥)𝑒𝑥𝑑𝑥

+∞

0

 

= −𝜑(0) − ∫ 𝜑′(𝑥)𝑒𝑥𝑑𝑥
+∞

0

= −𝑇𝐻
′ − ∫ 𝜑′(𝑥)𝐻(𝑥)𝑒𝑥𝑑𝑥

+∞

−∞

= −𝑇𝐻
′ (𝜑) − 𝑇𝐻(𝑥)𝑒𝑥(𝜑′)  

= −𝑇𝐻
′ (𝜑) + 𝑇𝐻(𝑥)𝑒𝑥

′ (𝜑) = 𝑇−𝐻(𝑥)+𝐻(𝑥)𝑒𝑥
′ (𝜑) 
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Donc 𝑇𝜆
′ = 𝑇−𝐻(𝑥)+𝐻(𝑥)𝑒𝑥

′  et alors 𝜆(𝑥) = −𝐻(𝑥) + 𝐻(𝑥)𝑒𝑥 = 𝐻(𝑥)(𝑒𝑥 − 1) et 𝑇𝑢𝑃
= 𝑇𝜆(𝑥)𝑒−𝑥 =

𝑇𝐻(𝑥)(1−𝑒−𝑥) 

La solution générale est : 𝑇𝑢 = 𝑇𝜆𝑒−𝑥 + 𝑇𝐻(𝑥)(1−𝑒−𝑥) 

Ou encore 𝑢(𝑥) = 𝜆𝑒−𝑥 + 𝐻(𝑥)(1 − 𝑒−𝑥) = (𝜆 − 𝐻(𝑥))𝑒−𝑥 + 𝐻(𝑥) 

3.  𝑢′(𝑥) + (1 − 𝑥)𝑢(𝑥) = 𝛿0
′ (𝑥) 

La solution générale de 𝑢′(𝑥) + (1 − 𝑥)𝑢(𝑥) = 0 est 𝑢(𝑥) = 𝜆𝑒
𝑥2

2
−𝑥

, avec 𝜆 ∈ ℝ, il reste à trouver 

une distribution qui soit une solution particulière sous la forme : 𝑇𝑢𝑃
= 𝑇

𝜆(𝑥)𝑒
𝑥2

2
−𝑥

 

Comme pour les fonctions : 𝑇𝜆
′ = 𝑇𝜆′ = 𝑇

𝑒
𝑥2

2
−𝑥

𝛿0
′ (𝑥)

 

𝑇
𝑒

𝑥2

2
−𝑥

𝛿0
′ (𝑥)

(𝜑) = ∫ 𝜑(𝑥)𝑒
𝑥2

2
−𝑥𝛿0

′ (𝑥)𝑑𝑥
+∞

−∞

= − (𝑒
𝑥2

2
−𝑥𝜑(𝑥))

′

(0)

= − ((1 − 𝑥)𝑒
𝑥2

2
−𝑥𝜑′(𝑥) + 𝑒

𝑥2

2
−𝑥𝜑(𝑥)) (0) = −(−𝜑′(0) + 𝜑(0))

= 𝜑′(0) − 𝜑(0) = −𝛿0
′ (𝜑) + 𝛿0(𝜑) = −𝛿0

′ (𝜑) + 𝑇𝐻
′ (𝜑) 

𝜆(𝑥) = 𝐻(𝑥) − 𝛿0(𝑥) 

La solution générale est : 𝑢(𝑥) = 𝜆𝑒
𝑥2

2
−𝑥 + (𝐻(𝑥) − 𝛿0(𝑥))𝑒

𝑥2

2
−𝑥

 

Exercice 4. Déterminer les limites (au sens des distributions)  

1. lim
𝑛→+∞

𝑇𝑛𝜒[−1,1](𝑛𝑥)
 

2. lim
𝑛→+∞

𝑛 (𝛿
−

1

𝑛

− 𝛿1

𝑛

) 

3. lim
𝑎→0

𝑇𝑒𝑎𝑥 

4. lim
𝑛→+∞

𝑇
𝑒−𝑛𝑥2  

5. lim
𝑛→+∞

𝑇
√𝑛𝑒−𝑛𝑥2  

Correction exercice 4  

1.  𝑇𝑛𝜒[−1,1](𝑛𝑥)
(𝜑) = ∫ 𝑛𝜒[−1,1](𝑛𝑥)𝜑(𝑥)𝑑𝑥

ℝ
 

On fait le changement de variable 𝑦 = 𝑛𝑥, donc 𝑥 =
𝑦

𝑛
 et 𝑑𝑥 =

𝑑𝑦

𝑛
. Les bornes ne changent pas 

𝑇𝑛𝜒[−1,1](𝑛𝑥)
(𝜑) = ∫ 𝑛𝜒[−1,1](𝑦)𝜑(𝑦)

𝑑𝑦

𝑛ℝ

= ∫ 𝜒[−1,1](𝑦)𝜑 (
𝑦

𝑛
) 𝑑𝑦

ℝ

= ∫ 𝜑 (
𝑦

𝑛
) 𝑑𝑦

1

−1

 

Comme 𝜑 est à support compact, on peut appliquer le théorème de convergence dominée 

lim
𝑛→+∞

𝑇𝑛𝜒[−1,1](𝑛𝑥)
(𝜑) = lim

𝑛→+∞
∫ 𝜑 (

𝑦

𝑛
) 𝑑𝑦

1

−1

= ∫ lim
𝑛→+∞

𝜑 (
𝑦

𝑛
) 𝑑𝑦

1

−1

= ∫ 𝜑(0)𝑑𝑦
1

−1

= 2𝜑(0) = 2𝛿0(𝜑) 

Par conséquent 

lim
𝑛→+∞

𝑇𝑛𝜒[−1,1](𝑛𝑥)
= 2𝛿0 

2.  

𝑛 (𝛿
−

1
𝑛

− 𝛿1
𝑛

) (𝜑) = 𝑛 (𝛿
−

1
𝑛

(𝜑) − 𝛿1
𝑛

(𝜑)) = 𝑛 (𝜑 (−
1

𝑛
) − 𝜑 (

1

𝑛
))  

𝜑 vérifie les hypothèses du théorème des accroissements finis entre −
1

𝑛
 et 

1

𝑛
 donc il existe 𝑐𝑛 ∈ ]−

1

𝑛
,

1

𝑛
[ 

tel que : 𝜑 (−
1

𝑛
) − 𝜑 (

1

𝑛
) = (−

1

𝑛
−

1

𝑛
) 𝜑′(𝑐𝑛) = −

2

𝑛
𝜑′(𝑐𝑛) 

Alors 𝑛 (𝛿
−

1

𝑛

− 𝛿1

𝑛

) (𝜑) = −2𝜑′(𝑐𝑛) 

Lorsque 𝑛 → +∞, 𝑐𝑛 → 0, par conséquent  
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lim
𝑛→+∞

𝑛 (𝛿
−

1
𝑛

− 𝛿1
𝑛

) (𝜑) = lim
𝑛→+∞

−2𝜑′(𝑐𝑛) = −2𝜑′(0) = 2𝛿0
′ (𝜑) 

Donc lim
𝑛→+∞

(𝛿
−

1

𝑛

− 𝛿1

𝑛

) = 2𝛿0
′  

3.  

𝑇𝑒𝑎𝑥(𝜑) = ∫ 𝑒𝑎𝑥𝜑(𝑥)𝑑𝑥
ℝ

 

𝜑 est à support compact donc on peut appliquer le théorème de convergence dominée 

lim
𝑎→0

𝑇𝑒𝑎𝑥 (𝜑) = ∫ lim
𝑎→0

𝑒𝑎𝑥𝜑(𝑥) 𝑑𝑥
ℝ

= ∫ 𝜑(𝑥)𝑑𝑥
ℝ

= ∫ 𝜒ℝ(𝑥)𝜑(𝑥)𝑑𝑥
ℝ

= 𝑇𝜒ℝ
(𝜑) 

On a donc lim
𝑎→0

𝑇𝑒𝑎𝑥 = 𝑇𝜒ℝ
 

4.   

𝑇
𝑒−𝑛𝑥2(𝜑) = ∫ 𝑒−𝑛2𝑥𝜑(𝑥)𝑑𝑥

ℝ

 

𝜑 est à support compact donc on peut appliquer le théorème de convergence dominée 

lim
𝑛→+∞

𝑇
𝑒−𝑛𝑥2 (𝜑) = ∫ lim

𝑛→+∞
𝑒−𝑛𝑥2

𝜑(𝑥)𝑑𝑥
ℝ

= ∫ 0 × 𝜑(𝑥)𝑑𝑥
ℝ

= 0 

Car lim
𝑛→+∞

𝑒−𝑛𝑥2
= {

1  si   𝑥 = 0
0   si   𝑥 ≠ 0 

 

lim
𝑛→+∞

𝑇
𝑒−𝑛𝑥2 = 0 

5.   

𝑇
√𝑛𝑒−𝑛2𝑥(𝜑) = ∫ √𝑛𝑒−𝑛𝑥2

𝜑(𝑥)𝑑𝑥
ℝ

= ∫ 𝑒−𝑦2
𝜑 (

𝑦

√𝑛
) 𝑑𝑦

ℝ

 

On peut appliquer le théorème de la convergence dominée car 𝜑 est à support compact 

lim
𝑛→+∞

𝑇
√𝑛𝑒−𝑛𝑥2(𝜑) = ∫ lim

𝑛→+∞
𝑒−𝑦2

𝜑 (
𝑦

√𝑛
) 𝑑𝑦

ℝ

= ∫ 𝑒−𝑦2
𝜑(0)𝑑𝑦

ℝ

= 𝜑(0) ∫ 𝑒−𝑦2
𝑑𝑦

ℝ

= 𝜑(0)√2𝜋

= √2𝜋𝛿0(𝜑) 

lim
𝑛→+∞

𝑇
√𝑛𝑒−𝑛𝑥2 = √2𝜋𝛿0 

Exercice 5. Soit 𝛿𝑎 la distribution de Dirac en 𝑎, 𝛿𝑎(𝜑) = 𝜑(𝑎). Déterminer    

1. (𝑥 − 𝑎)𝛿𝑎. 

2. (𝑥 − 𝑎)𝛿𝑎
′ . 

3. (𝑥 − 𝑎)2𝛿𝑎
′ . 

Correction exercice 5   

1. (𝑥 − 𝑎)𝛿𝑎(𝜑) = 𝛿𝑎((𝑥 − 𝑎)𝜑) = (𝑎 − 𝑎)𝜑(𝑎) = 0 

Autrement dit : (𝑥 − 𝑎)𝛿𝑎 = 0 

2. 𝑓𝛿𝑎
′ (𝜑) = 𝛿𝑎

′ (𝑓𝜑) = −𝛿𝑎((𝑓𝜑)′) = −𝑓′(𝑎)𝜑(𝑎) − 𝑓(𝑎)𝜑′(𝑎) 

Donc (𝑥 − 𝑎)𝛿𝑎
′ (𝜑) = 𝛿𝑎

′ ((𝑥 − 𝑎)𝜑) = −𝜑(𝑎) = −𝛿𝑎(𝜑) 

Autrement dit (𝑥 − 𝑎)𝛿𝑎
′ = −𝛿𝑎 

3. (𝑥 − 𝑎)2𝛿𝑎
′ (𝜑) = 𝛿𝑎

′ ((𝑥 − 𝑎)2𝜑) = −2(𝑎 − 𝑎)𝜑(𝑎) − (𝑎 − 𝑎)2𝜑′(𝑎) = 0 

Autrement dit  (𝑥 − 𝑎)2𝛿𝑎
′ = 0 

Exercice 6.  Déterminer 

1. (
𝑑

𝑑𝑥
− 𝜆) 𝑇𝑒𝜆𝑥𝐻(𝑥). 

2. (
𝑑2

𝑑𝑥2 + 𝜔2) 𝑇sin(𝜔𝑥)

𝜔
𝐻(𝑥)

 

Correction exercice 6   

1.   
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(
𝑑

𝑑𝑥
− 𝜆) 𝑇𝑒𝜆𝑥𝐻(𝑥)(𝜑) = 𝑇

𝑒𝜆𝑥𝐻(𝑥)
′ (𝜑) − 𝜆𝑇𝑒𝜆𝑥𝐻(𝑥)(𝜑) = −𝑇𝑒𝜆𝑥𝐻(𝑥)(𝜑′) − 𝜆𝑇𝑒𝜆𝑥𝐻(𝑥)(𝜑)

= − ∫ 𝑒𝜆𝑥𝐻(𝑥)𝜑′(𝑥)𝑑𝑥
ℝ

− 𝜆 ∫ 𝑒𝜆𝑥𝐻(𝑥)𝜑(𝑥)𝑑𝑥
ℝ

= − ∫ 𝑒𝜆𝑥𝜑′(𝑥)𝑑𝑥
+∞

0

− 𝜆 ∫ 𝑒𝜆𝑥𝜑(𝑥)𝑑𝑥
+∞

0

= −[𝑒𝜆𝑥𝜑(𝑥)]
0

+∞
+ ∫ 𝜆𝑒𝜆𝑥𝜑(𝑥)𝑑𝑥

+∞

0

− 𝜆 ∫ 𝑒𝜆𝑥𝜑(𝑥)𝑑𝑥
+∞

0

= 𝜑(0) = 𝛿0(𝜑) 

Donc (
𝑑

𝑑𝑥
− 𝜆) 𝑇𝑒𝜆𝑥𝐻(𝑥) = 𝛿0 

2.   

(
𝑑2

𝑑𝑥2
+ 𝜔2) 𝑇sin(𝜔𝑥)

𝜔
𝐻(𝑥)

(𝜑) = 𝑇sin(𝜔𝑥)
𝜔 𝐻(𝑥)

′′ (𝜑) + 𝜔2𝑇sin(𝜔𝑥)
𝜔

𝐻(𝑥)
(𝜑)

= −𝑇sin(𝜔𝑥)
𝜔 𝐻(𝑥)

′ (𝜑′) + 𝜔2𝑇sin(𝜔𝑥)
𝜔

𝐻(𝑥)
(𝜑) = 𝑇sin(𝜔𝑥)

𝜔
𝐻(𝑥)

(𝜑′′) + 𝜔2𝑇sin(𝜔𝑥)
𝜔

𝐻(𝑥)
(𝜑)

= ∫
sin(𝜔𝑥)

𝜔
𝐻(𝑥)𝜑′′(𝑥)𝑑𝑥

ℝ

+ 𝜔2 ∫
sin(𝜔𝑥)

𝜔
𝐻(𝑥)𝜑(𝑥)𝑑𝑥

ℝ

= ∫
sin(𝜔𝑥)

𝜔
𝜑′′(𝑥)𝑑𝑥

+∞

0

+ 𝜔 ∫ sin(𝜔𝑥) 𝜑(𝑥)𝑑𝑥
+∞

0

= [
sin(𝜔𝑥)

𝜔
𝜑′(𝑥)]

0

+∞

− ∫ cos(𝜔𝑥) 𝜑′(𝑥)𝑑𝑥
+∞

0

+ 𝜔 ∫ sin(𝜔𝑥) 𝜑(𝑥)𝑑𝑥
+∞

0

= − ∫ cos(𝜔𝑥) 𝜑′(𝑥)𝑑𝑥
+∞

0

+ 𝜔 ∫ sin(𝜔𝑥) 𝜑(𝑥)𝑑𝑥
+∞

0

= −[cos(𝜔𝑥) 𝜑(𝑥)]0
+∞ − 𝜔 ∫ sin(𝜔𝑥) 𝜑(𝑥)𝑑𝑥

+∞

0

+ 𝜔 ∫ sin(𝜔𝑥) 𝜑(𝑥)𝑑𝑥
+∞

0

= 𝜑(0) = 𝛿0(𝜑) 

Donc (
𝑑2

𝑑𝑥2 + 𝜔2) 𝑇sin(𝜔𝑥)

𝜔
𝐻(𝑥)

= 𝛿0 

Exercice 7. Déterminer les produits de convolution des distributions suivantes : 

1. 𝛿0 ⋆ 𝜒[0,1]. 

2. 𝛿0
′ ⋆ 𝑇𝐻(𝑥) sin(𝑥). 

3. 𝛿𝑎 ⋆ 𝛿𝑏. 

4. 𝛿0
′ ∗ 𝐻. 

5. 𝑃𝑒𝑖𝑔𝑛𝑒 𝑑𝑒 𝐷𝑖𝑟𝑎𝑐4 ∗ 𝑇𝜒[−1,1]
 

Correction exercice 7   

1.  𝛿0 ⋆ 𝜒[0,1](𝜑) = ∫ (∫ 𝛿0(𝑡)𝜒[0,1](𝑥 − 𝑡)𝑑𝑡
ℝ

)𝜑(𝑥)𝑑𝑥
ℝ

 

Comme ∫ 𝛿0(𝑡)𝜒[0,1](𝑥 − 𝑡)𝑑𝑡
ℝ

= 𝛿0 (𝜒[0,1](𝑥 − 𝑡)) = 𝜒[0,1](𝑥) 

𝛿0 ⋆ 𝜒[0,1](𝜑) = ∫ (∫ 𝛿0(𝑡)𝜒[0,1](𝑥)𝑑𝑡
ℝ

) 𝜑(𝑥)𝑑𝑥
ℝ

= ∫ 𝜒[0,1](𝑥) (∫ 𝛿0(𝑡)𝑑𝑡
ℝ

) 𝜑(𝑥)𝑑𝑥
ℝ

= ∫ 𝜒[0,1](𝑥)𝜑(𝑥)𝑑𝑥
ℝ

= 𝑇𝜒[0,1]
(𝜑) 

Donc 𝛿0 ⋆ 𝜒[0,1] = 𝑇𝜒[0,1]
 

2.  
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𝛿0
′ ⋆ 𝑇𝐻(𝑥) sin(𝑥)(𝜑) = ∫ (∫ 𝛿0

′ (𝑡)𝐻(𝑥 − 𝑡) sin(𝑥 − 𝑡) 𝑑𝑡
ℝ

) 𝜑(𝑥)𝑑𝑥
ℝ

= ∫ (∫ 𝛿0
′ (𝑡)𝐻(𝑥 − 𝑡) sin(𝑥 − 𝑡) 𝜑(𝑥)𝑑𝑥

ℝ

) 𝑑𝑡
ℝ

= ∫ 𝛿0
′ (𝑡) (∫ 𝐻(𝑥 − 𝑡) sin(𝑥 − 𝑡) 𝜑(𝑥)𝑑𝑥

ℝ

) 𝑑𝑡
ℝ

 

Comme ∫ 𝛿0
′ (𝑡)𝑓(𝑡)𝑑𝑡

ℝ
= 𝛿0

′ (𝑓) = −𝑓′(0) 

− (∫ 𝐻(𝑥 − 𝑡) sin(𝑥 − 𝑡) 𝜑(𝑥)𝑑𝑥
ℝ

)

′

(0) = − (∫ 𝐻(𝑦) sin(𝑦) 𝜑(𝑦 + 𝑡)𝑑𝑦
ℝ

)

′

(0)

= − (∫ 𝐻(𝑦) sin(𝑦) 𝜑′(𝑦 + 𝑡)𝑑𝑦
ℝ

) (0) = − (∫ 𝐻(𝑦) sin(𝑦) 𝜑′(𝑦)𝑑𝑦
ℝ

)

= 𝑇𝐻(𝑦) sin(𝑦)
′ (𝜑)  

Donc 𝛿0
′ ⋆ 𝑇𝐻(𝑥) sin(𝑥) = 𝑇𝐻(𝑦) sin(𝑦)

′  

3.   

𝛿𝑎 ⋆ 𝛿𝑏(𝜑) = ∫ (∫ 𝛿𝑎(𝑡)𝛿𝑏(𝑥 − 𝑡)𝑑𝑡
ℝ

) 𝜑(𝑥)𝑑𝑥
ℝ

= ∫ 𝛿𝑎(𝑡) (∫ 𝛿𝑏(𝑥 − 𝑡)𝜑(𝑥)𝑑𝑥
ℝ

) 𝑑𝑡
ℝ

= ∫ 𝛿𝑎(𝑡) (∫ 𝛿𝑏(𝑥)𝜑(𝑥 + 𝑡)𝑑𝑥
ℝ

) 𝑑𝑡
ℝ

 

Comme ∫ 𝛿𝑏(𝑥)𝜑(𝑥 + 𝑡)𝑑𝑥
ℝ

= 𝛿𝑏(𝜑(𝑥 + 𝑡)) = 𝜑(𝑥 + 𝑏) 

𝛿𝑎 ⋆ 𝛿𝑏(𝜑) = ∫ 𝛿𝑎(𝑡) (∫ 𝛿𝑏(𝑥)𝜑(𝑡 + 𝑏)𝑑𝑥
ℝ

) 𝑑𝑡
ℝ

= ∫ 𝛿𝑎(𝑡)𝜑(𝑡 + 𝑏) (∫ 𝛿𝑏(𝑥)𝑑𝑥
ℝ

) 𝑑𝑡
ℝ

= ∫ 𝛿𝑎(𝑡)𝜑(𝑏 + 𝑡)𝑑𝑡
ℝ

= ∫ 𝛿𝑎(𝑡)𝜑(𝑏 + 𝑎)𝑑𝑡
ℝ

= 𝜑(𝑏 + 𝑎) ∫ 𝛿𝑎(𝑡)𝑑𝑡
ℝ

= 𝜑(𝑏 + 𝑎)

= 𝛿𝑎+𝑏(𝜑) 

Donc 𝛿𝑎 ⋆ 𝛿𝑏 = 𝛿𝑎+𝑏 

4. 𝛿0
′ ∗ 𝐻(𝜑) = 𝑇𝐻

′ (𝜑) = 𝛿0(𝜑) 

Donc 𝛿0
′ ∗ 𝐻 = 𝛿0 

5.   

𝑃𝑒𝑖𝑔𝑛𝑒 𝑑𝑒 𝐷𝑖𝑟𝑎𝑐4 ∗ 𝑇𝜒[−1,1]
(𝜑) = ∫ (∫ ( ∑ 𝛿0(𝑦 − 4𝑘)

+∞

𝑘=−∞

) 𝑇𝜒[−1,1]
(𝑧)𝜑(𝑦 + 𝑧)𝑑𝑧

+∞

−∞

) 𝑑𝑦
+∞

−∞

 

= ∫ ∑ 𝛿0(𝑦 − 4𝑘) ( ∫ 𝜑(𝑦 + 𝑧)𝑑𝑧
1

−1

)

+∞

𝑘=−∞

𝑑𝑦
+∞

−∞

= ∫ ∑ 𝛿0(𝑦 − 4𝑘) ( ∫ 𝜑(𝑡)𝑑𝑡
𝑦+1

𝑦−1

)

+∞

𝑘=−∞

𝑑𝑦
+∞

−∞

= ∫ ∑ 𝛿0(𝑦 − 4𝑘) ( ∫ 𝜑(𝑡)𝑑𝑡
𝑦+1

𝑦−1

)

+∞

𝑘=−∞

𝑑𝑦
+∞

−∞

= ∑ ∫ 𝛿0(𝑦 − 4𝑘) ( ∫ 𝜑(𝑡)𝑑𝑡
𝑦+1

𝑦−1

)
+∞

−∞

+∞

𝑘=−∞

= ∑ ( ∫ 𝜑(𝑡)𝑑𝑡
4𝑘+1

4𝑘−1

)

+∞

𝑘=−∞

= ∑ ( ∫ 𝜒[4𝑘−1,4𝑘+1]𝜑(𝑡)𝑑𝑡
+∞

−∞

)

+∞

𝑘=−∞

= ∑ ( 𝑇𝐻(𝑥−4𝑘+1)(𝜑) − 𝑇𝐻(𝑥−4𝑘−1)(𝜑))

+∞

𝑘=−∞

= ∑ 𝑇𝐻(𝑥−(4𝑘−1))(𝜑)

+∞

𝑘=−∞

− ∑ 𝑇𝐻(𝑥−(4𝑘+1))(𝜑)

+∞

𝑘=−∞

 

Car 𝑇𝜒[𝑎,𝑏]
(𝜑) = 𝑇𝐻(𝑥−𝑎)(𝜑) − 𝑇𝐻(𝑥−𝑏)(𝜑)  
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Puis on remarque que 

∑ (−1)𝑙𝑇𝐻(𝑥−(2𝑙−1))(𝜑)

+∞

𝑙=−∞

= ∑ (−1)2𝑘𝑇𝐻(𝑥−(4𝑘−1))(𝜑)

+∞

𝑙=−∞
𝑙=2𝑘

+ ∑ (−1)2𝑘+1𝑇𝐻(𝑥−(2(2𝑘+1)−1))(𝜑)

+∞

𝑙=−∞
𝑙=2𝑘+1

= ∑ 𝑇𝐻(𝑥−(4𝑘−1))(𝜑)

+∞

𝑘=−∞

− ∑ 𝑇𝐻(𝑥−(4𝑘+1))(𝜑)

+∞

𝑘=−∞

 

Finalement 

𝑃𝑒𝑖𝑔𝑛𝑒 𝑑𝑒 𝐷𝑖𝑟𝑎𝑐4 ∗ 𝑇𝜒[−1,1]
= ∑ (−1)𝑙𝑇𝐻(𝑥−(2𝑙−1))

+∞

𝑙=−∞

 

 

 

 


