Contrôle continu final Mercredi 17 mai 2017

Durée: 2H

Les documents et les calculatrices sont interdits.

On prendra soin de JUSTIFIER les réponses aux exercices.

Questions de Cours (4 points):

- 1. (2 points) Énoncer le théorème de construction du processus de Poisson.
- 2. (1 point) Énoncer la propriété de Markov forte pour le processus de Poisson.
- 3. (1 point) Énoncer le théorème de caractérisation du mouvement brownien géométrique de volatilité σ et de taux moyen μ .

Exercice 1 (4 points + Bonus : 1 point) On considère la chaîne de Markov $(X_n)_{n\geq 0}$ sur l'ensemble $E = \{1, 2, ..., 8\}$ donnée par la matrice de transition suivante (les numéros de colonnes et lignes rappellent le nom des états).

		1	2	3	4	5	6	7	8
	1	5/6	1/6	0	0	0	0	0	0
	2	5/6	0	1/6	0	0	0	0	0
	3	5/6	0	0	1/6	0	0	0	0
Q =	4	0	0	0	1	0	0	0	0
	5	1/3	0	0	0	0	1/3	1/3	0
	6	0	0	0	0	0	1/2	0	1/2
	7	0	0	0	0	1/3	0	1/3	1/3
	8	0	0	0	0	0	1/3	0	2/3

On rappelle que l'on note \mathbf{P}_x la probabilité pour la chaîne $CM(E, \delta_x, P)$ partant de x. \mathbf{E}_x est l'espérance pour \mathbf{P}_x . Soit τ_4 le temps d'atteinte de l'état 4, c'est-à-dire :

$$\tau_4 = \inf\{n \ge 1, X_n = 4\}.$$

1. Classifions les états (c'est-à-dire : trouver les classes irréductibles, les états récurrents et transitoires)

On a $6 \to 8 \to 6$ sans d'autres connections sortantes vers d'autres états donc $C := \{6, 8\}$ est une classe irréductible close donc récurrente.

On a {4} absorbant donc classe irréductible close donc récurrente.

On a $1 \to 2 \to 3 \to 1$ et $\{1, 2, 3\}$ et $3 \to 4 \not\to 3$ sans autre connexions sortante, donc c'est classe irréductible et 3 transitoire donc toute la classe est transitoire.

 $5 \to 1 \not\to 5$ donc 5 transitoire. De plus $5 \to 7 \to 5$ donc $\{5,7\}$ est la dernière classe irréductible et on a vu que $\{5,7\}$ est transitoire comme 5 transitoire.

2. Trouvons les mesures de probabilités invariantes pour chaque classe irréductible récurrente puis les mesures de probabilités invariantes de la chaîne complète.

On trouve l'unique mesure de probabilité invariante de C $p\delta_6 + (1-p)\delta_8$, $p \in [0,1]$ elle vérifie p/2 + (1-p)/3 = p et p/2 + (1-p)2/3 = (1-p) ce qui force 5p/6 = 1/3 soit p = 2/5. Donc la mesure invariante est $\pi = \frac{2}{5}\delta_6 + \frac{3}{5}\delta_8$.

L'unique mesure de probabilité invariante sur la classe $\{4\}$ est δ_4 .

Les mesures de probabilités invariantes de la chaîne complète (de matrice Q) sont les combinaisons convexes de celles sur les classes irréductibles à savoir : $t\pi + (1-t)\delta_4$ avec $t \in [0,1]$.

- 3. $\mathbf{E}_6(\tau_6) = 1/\pi_6 = 5/2$ par la relation du cours avec la probabilité invariante.
- 4. Calculons $\mathbf{E}_5(\tau_4) \geq E_5(\tau_4 \mathbf{1}_{\{X_1=6\}}) = P_5(X_1=6)\mathbf{E}_6(\tau_4) = +\infty$. par la propriété de Markov faible et car 6 est dans une classe irréductible différente de 4 donc le tenmps d'attente de 4 partant de 6 est infini.
- 5. Calculons $\mathbf{E}_1(\tau_4)$.

Par Markov faible on a $\mathbf{E}_1(\tau_4) = 1 + 5/6\mathbf{E}_1(\tau_4) + \mathbf{E}_2(\tau_4)/6$. Il faut donc une équation sur $E_2(\tau_4)$ $\mathbf{E}_2(\tau_4) = 1 + 5/6\mathbf{E}_1(\tau_4) + \mathbf{E}_3(\tau_4)/6$.

Il faut donc une équation sur $E_3(\tau_4)$ obtenue de même par Markov faible : $\mathbf{E}_3(\tau_4) = 5/6\mathbf{E}_1(1 + \tau_4) + 1/6 = 1 + \mathbf{E}_1(\tau_4)5/6$.

On résout le système :

$$\mathbf{E}_2(\tau_4) = 1 + 5/6\mathbf{E}_1(\tau_4) + 1/6 + \mathbf{E}_1(\tau_4)5/6^2$$

puis
$$\mathbf{E}_1(\tau_4) = 1 + 5/6\mathbf{E}_1(\tau_4) + 1/6 + 5/6^2\mathbf{E}_1(\tau_4) + 1/6^2 + \mathbf{E}_1(\tau_4)5/6^3$$
.

DOnc
$$\mathbf{E}_1(\tau_4) = \frac{1-1/6^3}{1-1/6} + 5/6 \frac{1-1/6^3}{1-1/6} \mathbf{E}_1(\tau_4)$$
. soit encore $\mathbf{E}_1(\tau_4) = 6^3 \frac{1-1/6^3}{1-1/6} = (6^3 - 1)6/5 = 43 \times 6 = 258$.

6. Bonus (1 point) Soit C l'unique classe irréductible close contenant 2 états. Pour $x \in E$, calculer

$$p_x = \mathbf{P}_x(X_n \in C \text{ pour tout } n \text{ assez grand}).$$

Pour $x \in \{1, 2, 3, 4\}$ aucun chemin ne même à C donc $p_1 = p_2 = p_3 = p_4 = 0$.

Pour $x \in \{6, 8\} = C$ comme la marche reste dans C par récurrence, $p_6 = p_8 = 1$

Il reste à utiliser Markov faible pour trouver un système sur p_5, p_7

SOit $A = \{X_n \in C \text{ pour tout } n \text{ assez grand}\}$ On a

$$p_5 = P_5(A) = E_5(A(1_{\{X_1=1\}} + 1_{\{X_1=6\}} + 1_{\{X_1=7\}})) = P_5(X_1=1)p_1 + P_5(X_1=6)p_6 + P_5(X_1=7)p_7 = p_7/3 + 1/3$$

$$p_7 = P_7(A) = E_7(A(1_{\{X_1=5\}} + 1_{\{X_1=7\}} + 1_{\{X_1=8\}})) = P_7(X_1 = 5)p_1 + P_7(X_1 = 7)p_7 + P_7(X_1 = 8)p_8 = p_5/3 + p_7/3 + p_7/3$$

Exercice 2 (3 points)

Soit $(B_t)_{t\geq 0}$ un mouvement brownien et $(N_t)_{t\geq 0}$ un processus de Poisson d'intensité $\lambda > 0$ indépendants.

1. Calculons $E(B_s^3 B_t^3)$ pour s < t.

Par indépendance des incréments $B_t - B_s$, B_s , on a

$$E(B_s^3 B_t^3) = E(B_s^3 (B_s^3 + (B_t - B_s)^3 + 3B_s^2 (B_t - B_s) + 3B_s (B_t - B_s)^2)$$

= $E(B_s^6) + E(B_s^3) E((B_t - B_s)^3) + 3E(B_s^5) E(B_t - B_s) + 3E(B_s^4) E((B_t - B_s)^2)$

Or les moments impaires sont nuls par parité. On utilise la relation $E(B_sP(B_s))=sE(P'(B_s))$ pour un polynôme. On obtient $:E(B_s^4)=3sE(B_s^2)=3s^2,\ E(B_s^6)=5sE(B_s^4)=15s^3.$ En bilan on a

$$E(B_s^3 B_t^3) = 15s^3 + 9s^2(t-s).$$

2. Calculons de même par indépendance des incréments : $E(N_s^2N_t) = E(N_s^3) + E(N_s^2)E((N_t-N_s))$ pour s < t. Comme N_t-N_s est une variable de Poisson de paramètre $\lambda(t-s)$ on a $E((N_t-N_s)) = \lambda(t-s)$, $Var(N_s)) = \lambda s$ donc $E(N_s^2) = \lambda s + \lambda^2 s^2$.

Calculons

$$E(N_s(N_s-1)(N_s-2)) = \sum_{k=0}^{\infty} k(k-1)(k-2) \frac{(\lambda s)^k}{k!} e^{-\lambda s} = (\lambda s)^3$$

Donc

$$E(N_s^3) = (\lambda s)^3 + 3E(N_s^2) - 2E(N_s) = (\lambda s)^3 + 3(\lambda s)^2 + \lambda s$$

D'où

$$E(N_s^2 N_t) = (\lambda s)^3 + 3E(N_s^2) - 2E(N_s) = (\lambda s)^3 + 3(\lambda s)^2 + \lambda s + \lambda (t - s)(\lambda s + \lambda^2 s^2)$$

3. Calculons par indépendance $E(B_s^2N_s^2)=E(B_s^2)E(N_s^2)=s(\lambda s+\lambda^2 s^2)$.

Exercice 3 (4 points)

Soit $(B_t)_{t>0}$ un mouvement brownien.

1. Calculer, si elle existe, la densité de la loi de la variable aléatoire (B_1, B_2) . La covariance est $C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} det(C) = 1.2 - 1 = 1 \neq 0$ donc la densité existe $C^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ Donc (B_1, B_2) a une densité

$$\frac{1}{2\pi}exp(-\frac{2x_1^2+x_2^2-2x_1x_2}{2}).$$

2. Soit s > 0. Calculons $\mathbf{E}(B_s|B_{2s}, B_{3s}) = \lambda B_{2s} + \mu B_{3s}$. On a les relations par (PC):

$$E((\lambda B_{2s} + \mu B_{3s})B_{2s}) = E(B_s B_{2s}) = s = (\lambda + \mu)2s$$

$$E((\lambda B_{2s} + \mu B_{3s})B_{3s}) = E(B_s B_{3s}) = s = (\lambda 2s + \mu 3s)$$

ce qui donne $\mu = 0$, $s = \lambda 2s$ soit $\lambda = 1/2$. $E((\lambda B_{2s} + \mu B_{3s})B_{2s}) = \frac{1}{2}B_{2s}$

3. Par onditionnement successif:

$$\mathbf{E}(B_s|B_{2s}) = \mathbf{E}(\mathbf{E}(B_s|B_{2s}, B_{3s})|B_{2s}) = \frac{1}{2}B_{2s}.$$

4. Calculons l'espérance conditionnelle par modularité $\mathbf{E}(B_s^2|B_{2s}) = \mathbf{E}((B_s - \mathbf{E}(B_s|B_{2s}))^2|B_{2s}) + \mathbf{E}(B_s|B_{2s}))^2$.

Puis comme $(B_s - \mathbf{E}(B_s|B_{2s}))$ est indépendant de B_{2s} par le cours, on obtient :

$$\mathbf{E}(B_s^2|B_{2s}) = \mathbf{E}((B_s - \frac{1}{2}B_{2s})^2) + \mathbf{E}(B_s|B_{2s})^2 = s + \frac{1}{4}2s - s + \frac{1}{4}B_{2s}^2 = \frac{s}{2} + \frac{1}{4}B_{2s}^2.$$

5. Calculons l'espérance conditionnelle par modularité et indépendance et annulation des moments impairs comme ci-dessus

$$\mathbf{E}(B_s^4|B_{2s}) = \mathbf{E}(B_s|B_{2s})^4 + 6\mathbf{E}(B_s|B_{2s})^2 E((B_s - \frac{1}{2}B_{2s})^2) + E((B_s - \frac{1}{2}B_{2s})^4) = \frac{1}{16}B_{2s}^4 + \frac{3s}{4}B_{2s}^2 + 3\frac{s^2}{4}B_{2s}^4 + \frac{3s}{4}B_{2s}^2 + 3\frac{s^2}{4}B_{2s}^2 + 3\frac{s^2}{4}B_{2s}^2$$

Exercice 4 (5 points + Bonus :1 point)

Des clients arrivent dans une banque selon un processus de Poisson N_t d'intensité $\lambda > 0$. Le temps t = 1 est pour le nombre d'arrivée en 1 heure.

- 1. Calculer l'espérance du nombre de clients arrivés pendant les 2 premières heures $E(N_2) = 2\lambda$ vu N_2 de loi de Poisson de paramètre 2λ
- 2. Par le cours La loi de l'instant d'arrivée S_2 du 2 ème client est une loi Gamma de densité $s\lambda^2 e^{-\lambda s} 1_{s>0}$ et son espérance $E(S_2) = E(T_1 + T_2) = 2/\lambda$. vu que l'espérance d'une v.a exponentielle de paramètre λ comme T_i est $1/\lambda$.
- 3. La probabilité que 2 clients soient arrivés dans les 20 premières minutes sachant que 3 clients sont arrivés durant la première heure est

$$P(N_{1/3} = 2|N_1 = 3) = \frac{P((N_1 - N_{1/3}) = 1, N_{1/3} = 2)}{P(N_1 = 3)}$$

Or pour la loi de Poisson $P(N_s - N_t = k) = \lambda^k (t - s)^k e^{-\lambda(t - s)}/k!$ donc

$$P(N_{1/3} = 2|N_1 = 3) = \frac{\lambda(2/3)e^{-\lambda(2/3)}\lambda^2(1/3)^2e^{-\lambda(1/3)}3!}{2!\lambda^3e^{-\lambda}} = \frac{2}{3}.$$

4. Soit X_n le temps nécessaire pour servir le n-ième client arrivé. On suppose suit qu'elles sont indépendantes et identiquement distibués de loi exponentielle de paramètre $\mu > 0$, et qu'elles sont indépendantes de N_t . Il y a un seul guichet ouvert. Calculer la probabilité que le 2 ème client doive attendre.

Le deuxième client doit attendre si son temps d'arrivée S_2 est plus petit que $T_1 + X_1$ le temps de fin de service du premier client, soit :

$$P(S_2 \le T_1 + X_1) = P(T_2 \le X_1) = \int_0^\infty dt \int_0^\infty dx 1_{t \le x} \lambda \mu e^{-\lambda t} e^{-\mu x} = \int_0^\infty dx \lambda e^{-(\mu + \lambda)x} = \frac{\lambda}{\mu + \lambda}.$$

5. **Bonus (1 point)** Soit S_k le temps d'arrivée du n-ième client. Calculer la loi de S_k sachant $N_t = n$ pour $n \ge k$.

6. Soit $X_t = \sum_{k=1}^{N_t} (t - S_k)^2$. Comme en TD $E(X_t | N_t = n) = E(\sum_{k=1}^n (t - S_k)^2 | N_t = n)$ SOit Y_k des variables iid uniformes sur [0, t] comme par le cours conditionnellement à $N_t = n$, la loi de $(S_1, ..., S_n)$ est égale à la loi de $(Y_1, ..., Y_n)$ réordonné et que a fonction ne dépent pas de l'ordre, on obtient :

$$E(X_t|N_t=n) = E(\sum_{k=1}^n (t-Y_k)^2) = nE((t-X_1)^2) = n\frac{1}{t} \int_0^t ds(t-s)^2 = n\frac{t^2}{3}$$

Or par le cours $E(X_t|N_t) = \sum_{n=1}^{\infty} E(X_t|N_t=n) 1_{N_t=n} = N_t \frac{t^2}{3}$ Donc par PC

$$E(X_t) = E(E(X_t|N_t)) = \frac{t^2}{3}E(N_t) = \frac{\lambda t^3}{3}.$$