FEUILLE DE TD 2 : Espérance conditionnelle. Temps d'arrêts.

Dans toute la feuille d'exercices, on travaille sur un espace probabilisé $(\Omega, \mathcal{F}_0, \mathbf{P})$ et sauf mention contraire, les variables aléatoires sont supposées être définies sur cet espace. Dans toute (in)égalité faisant intervenir l'espérance conditionnelle, la mention « presque sûrement» est sous-entendue.

On fixe aussi une filtration $(\mathcal{F}_n)_{n\geqslant 1}$ par rapport à laquelle tous les temps d'arrêts seront définis.

Exercice 1 Soit (X, Y) un vecteur aléatoire de loi

$$P_{(X,Y)} = \frac{1}{4} \delta_{\{(0,-1)\}} + \frac{1}{4} \delta_{\{(0,1)\}} + \frac{1}{2} \delta_{\{(1,1)\}}.$$

- 1. Calculer les lois marginales P_X, P_Y .
- 2. Soit Z de même loi que X; T de même loi que Y avec Z, T indépendants. Calculer $\mathbf{E}(Z|T)$.
- 3. Calculer $\mathbf{E}(X|Y)$.

Exercice 2 Inégalité de Markov conditionnelle

Soit $\mathcal{F} \subset \mathcal{F}_0$ une sous-tribu. Pour $A \in \mathcal{F}_0$, on définit la probabilité conditionnelle de A sachant \mathcal{F} par la formule

$$\mathbf{P}[A|\mathcal{F}] = \mathbf{E}[\mathbf{1}_A|\mathcal{F}].$$

Montrer l'inégalité suivante pour toute variable aléatoire X positive et tout t > 0,

$$\mathbf{P}[X \geqslant t | \mathcal{F}] \leqslant \frac{1}{t} \mathbf{E}[X | \mathcal{F}].$$

Exercice 3 Deux espérances conditionnelles ne commutent pas

Soit $\Omega=\{1,2,3\}$ avec la probabilité uniforme. Soient $X=1_{\{1\}}+21_{\{2,3\}}$ et deux sous-tribus $\mathcal{F}_1=\sigma(\{1\}),\mathcal{F}_2=\sigma(\{2\})$. Calculer $\mathbf{E}[X|\mathcal{F}_2]$. Vérifier que :

$$\mathbf{E}\left[\mathbf{E}[X|\mathcal{F}_1]|\mathcal{F}_2\right] \neq \mathbf{E}\left[\mathbf{E}[X|\mathcal{F}_2]|\mathcal{F}_1\right].$$

(Sans calculer $\mathbf{E}\left[\mathbf{E}[X|\mathcal{F}_2]|\mathcal{F}_1\right]$ puis en le calculant.)

Exercice 4 Espérance conditionnelle et indépendance

- 1. Soient X et Y deux variables aléatoires telles que X, Y et XY soient dans L^1 . Montrer que $(1) \Rightarrow (2) \Rightarrow (3)$.
 - (1) X et Y sont indépendantes.
 - (2) $\mathbf{E}[Y|X] = \mathbf{E}(Y)$.
 - (3) $\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y)$.
- 2. Soit $P_{(X,Y)} = \frac{1}{4}\delta_{(0,-1)} + \frac{1}{4}\delta_{(0,1)} + \frac{1}{2}\delta_{(1,0)}$, montrer que (X,Y) vérifie (2) mais pas (1)
- 3. Soit $X \sim \mathcal{N}(0,1)$ et $Y = X^2$ montrer que X,Y vérifient (3) mais pas (2).

Exercice 5 Soient X_1, X_2 des variables i.i.d $\mathcal{N}(0,1)$

- 1. Calculer $\mathbf{E}(X_1 + X_2 | X_1)$.
- 2. Calculer $\mathbf{E}((X_1 + X_2)^2 | X_1)$.
- 3. Calculer $\mathbf{E}(exp(X_1 + X_2)|X_1)$.
- 4. Calculer $\mathbf{E}(X_1|X_1 + X_2)$.
- 5. Calculer $\mathbf{E}(X_1^2|X_1+X_2)$.
- 6. Calculer $\mathbf{E}(exp(X_1)|X_1+X_2)$.

Exercice 6

Soient $\mathcal{G} \subset \mathcal{F}$ deux sous-tribus de \mathcal{F}_0 , et X une variable aléatoire dans L^2 . Montrer que

$$\mathbf{E}\left((X - \mathbf{E}[X|\mathcal{G}])^2\right) = \mathbf{E}\left((X - \mathbf{E}[X|\mathcal{F}])^2\right) + \mathbf{E}\left((\mathbf{E}[X|\mathcal{F}] - \mathbf{E}[X|\mathcal{G}])^2\right)$$

Exercice 7

Soit $\mathcal{G} \subset \mathcal{F}_0$ une sous-tribu, et X, Y deux variables aléatoires dans L^2 telles que $\mathbf{E}X^2 = \mathbf{E}Y^2$ et $X = \mathbf{E}[Y|\mathcal{G}]$. Montrer que X = Y.

Exercice 8

Soit $\mathcal{G} \subset \mathcal{F}_0$ une sous-tribu, et soit Y une variable aléatoire dans L^1 telle que $\mathbf{E}[Y|\mathcal{G}]$ ait la même loi que Y. Montrer que $Y = \mathbf{E}[Y|\mathcal{G}]$.

Exercice 9 Somme d'un nombre aléatoire de variables aléatoires

Soit (Y_n) une suite de variables aléatoires i.i.d. d'espérance μ et de variance $\sigma^2 < +\infty$. Soit N une variable aléatoire à valeurs dans \mathbb{N} , indépendante de (Y_n) et telle que $\mathbf{E}N < +\infty$. On pose

$$X = Y_1 + \dots + Y_N := \sum_{n=0}^{\infty} (Y_1 + \dots + Y_n) 1_{\{N=n\}}.$$

- 1. Calculer $\mathbf{E}[X|N]$.
- 2. Calculer $\mathbf{E}(X)$.
- 3. Montrer la formule suivante

$$Var(X) = \sigma^2 \mathbf{E}(N) + \mu^2 Var(N).$$

(Pour se rappeler la formule on peut penser aux deux cas particuliers où Y_1 ou N est constante).

Exercice 10 Espérance conditionnelle et indépendance

Soit X dans $L^1.\mathcal{G}$, \mathcal{F} deux sous-tribus de \mathcal{F}_0 tel que $\sigma(X) \vee \mathcal{F}$ et \mathcal{G} soient indépendantes. Montrer que

$$\mathbf{E}[X|\mathcal{G}\vee\mathcal{F}] = \mathbf{E}[X|\mathcal{F}]$$

Exercice 11 Sur la voie de la loi forte des grands nombres

Soit (X_n) une suite de variables aléatoires i.i.d. dans L^1 et $S_n = \sum_{i=1}^n X_i$.

1. Montrer que, pour $i \in [1, n]$:

$$\mathbf{E}[X_i|\ \sigma(S_n)] = \mathbf{E}[X_1|\ \sigma(S_n)]$$

2. En déduire $\mathbf{E}[X_1 | \sigma(S_n)]$ puis $\mathbf{E}[X_1 | \mathcal{F}_{-n}]$ avec $\mathcal{F}_{-n} = \sigma(S_{n+j}, j \in \mathbb{N})$.

Exercice 12

Soient S et T deux temps d'arrêt. Montrer que $S \wedge T = \min(S, T)$ et $S \vee T = \max(S, T)$ sont aussi des temps d'arrêt.

Exercice 13

Soient S et T deux temps d'arrêt. Est-ce que S+T est un temps d'arrêt? Donner une preuve ou un contre-exemple.

Exercice 14

Soit (Y_n) une suite de variables aléatoires telle que, pour tout n, Y_n est \mathcal{F}_n -mesurable. Soit T un temps d'arrêt fini presque sûrement. Montrer que $Y_T \in \mathcal{F}_T$.

Exercice 15

Soient S et T deux temps d'arrêt tels que $S \leqslant T$. Montrer que $\mathcal{F}_S \subset \mathcal{F}_T$.

Exercice 16

Soient T_1 et T_2 deux temps d'arrêt tels que $T_1 \leqslant T_2$, et $A \in \mathcal{F}_{T_1}$. On définit T par

$$T(\omega) = \begin{cases} T_1(\omega) & \text{si } \omega \in A \\ T_2(\omega) & \text{sinon.} \end{cases}$$

Montrer que T est un temps d'arrêt.