Probabilités discrètes et Statistiques descriptives Contrôle continu 2 du 3 avril 2017, durée : 1h15

Exercice 1. Questions de cours

- 1. Donner la définition de la fonction génératrice d'une variable aléatoire X à valeurs dans \mathbb{N} . Dans le cas où $\mathbb{E}(X)$ et Var(X) sont définies, quelle relations lient ces quantités à la fonction génératrice?
- 2. Soit Z une variable aléatoire à valeurs dans $\{1,2,3\}$ telle que $\mathbb{P}(Z=1)=\mathbb{P}(Z=3)=1/4$ et $\mathbb{P}(Z=2)=1/2$. Calculer Var(Z).
- 3. Soit X une variable aléatoire géométrique de paramètre p > 0. Calculer sa fonction génératrice et son espérance.

Exercice 2. Grandes déviations

Soit $(x_i)_{i\in\mathbb{N}^*}$ une suite de variables indépendantes de loi de Bernoulli de paramètre 1/2. On pose

$$S_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

1. Calculer $Var(S_n)$ et $\mathbb{E}(S_n)$. Montrer que pour tout C > 0,

$$\mathbb{P}(|S_n - 1/2| \ge C) \le \frac{1}{4nC^2}$$

2. Montrer que pour tout $\alpha > 0$,

$$\mathbb{E}(e^{\alpha X_1}) = \frac{1 + e^{\alpha}}{2}$$

et en déduire que

$$\mathbb{E}\left(e^{\alpha n S_n}\right) = \left(\frac{1 + e^{\alpha}}{2}\right)^n$$

3. Soit $p \in [1/2, 1]$. Montrer que pour tout $\alpha > 0$,

$$\mathbb{P}(S_n \ge p) \le \frac{\mathbb{E}\left(e^{\alpha n S_n}\right)}{e^{\alpha n p}}$$

4. En considérant $\alpha = \ln(p) - \ln(1-p)$, déduire des questions précédentes que

$$\mathbb{P}(S_n \geq p) \leq e^{-nI(p)}$$

où
$$I(p) = \ln(2) + p \ln(p) + (1-p) \ln(1-p)$$
.

Exercice 3. Maximum de deux variables aléatoires

On rappelle que pour une variable aléatoire X à valeurs dans \mathbb{R} , la fonction de répartition de X est définie par $F_X(t) = \mathbb{P}(X \leq t)$ pour tout $t \in \mathbb{R}$.

Soit $N \in \mathbb{N}^*$ un entier naturel non nul. On suppose que X et Y sont des variables aléatoires indépendantes et uniformes à valeurs dans $\{1, 2, \cdots, N\}$, et on pose Z = max(X, Y).

- 1. Montrer que pour tout $n \in \{1, 2, \dots, N\}$, $F_X(n) = n/N$.
- 2. Montrer que pour tout $n \in \{1, 2, \dots, N\}$, $F_Z(n) = F_X(n)F_Y(n)$.
- 3. Calculer $\mathbb{P}(Z=k)$ pour $k \in \{1, 2, \dots, N\}$.

Exercice 4. Produit d'une variable de Bernoulli et d'une variable de Poisson

Soient X et Y des variables indépendantes où X suit la loi de Bernoulli de paramètre p et Y suit la loi de Poisson de paramètre λ . On pose Z=XY.

- 1. Calculer $\mathbb{P}(Z=0)$ ainsi que $\mathbb{P}(Z=k)$ pour tout $k \in \mathbb{N}^*$.
- 2. Montrer que la fonction génératrice de Z est

$$G_Z(t) = pe^{\lambda(t-1)} + 1 - p.$$

3. Calculer $\mathbb{E}(Z)$ et Var(Z).