TD Feuille 5

Exercice 1. (Calculer l'es	pérance et la	variance des	lois usuelles	ci-dessous.
---------------	---------------	---------------	--------------	---------------	-------------

	notation	ensemble de réalisations	P[X=k]	espérance	variance
loi binomiale	$\mathcal{B}(n,p)$	$k \in [\![0,n]\!]$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
loi géométrique	$\mathcal{G}(p)$	$k \in \mathbb{N}^*$	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
loi de Poisson	$\mathcal{P}(\lambda)$	$k \in \mathbb{N}$	$\exp(-\lambda)\frac{\lambda^k}{k!}$	λ	λ
loi uniforme	$\mathcal{U}(\llbracket 1, n \rrbracket)$	$k \in [\![1,n]\!]$	$\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$

Exercice 2. Soit $\lambda > 0$ et pour tout entier naturel $n \ge 1$, soit X_n une variable aléatoire de loi binomiale de paramètres n et λ/n . Montrer que pour tout $k \in \mathbb{N}$,

$$\lim_{n \to \infty} P(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Indication. On pourra démontrer que $\lim_{n\to\infty} (1-\lambda/n)^n = e^{-\lambda}$.

Exercice 3. La compagnie « La guêpe » assure 1000 navires. Un navire a une valeur de 10 millions d'euros. La probabilité de perte d'un navire est estimée à 0,001 pour une année. Les risques de perte des navires sont indépendants.

- a) On appelle X la variable aléatoire ayant pour valeur le nombre de navires perdus en une année parmi les navires assurés par « La guêpe ». Quelle est la loi de probabilité de X?
- b) Quelle est la probabilité qu'il y ait 3 navires perdus en une année?
- c) À la fin de l'année, la compagnie « La guêpe » règle les sinistres de l'année. À combien doivent s'élever ses réserves pour qu'elle puisse honorer ses engagements avec une probabilité de 0,999?

Exercice 4. Un boulanger réalise 100 petits pains aux pépites de chocolat. Il met 800 pépites dans sa pâte. Quelle est la loi du nombre X de pépites qui se trouve dans le pain que vous achetez? Combien de pépites pouvez-vous espérer avoir (en moyenne)? Calculer $P[5 \le X \le 8]$.

Exercice 5. Une urne contient 5 boules numérotées de 1 à 5. On tire 2 boules simultanément. Soit X la v.a. égale à la somme des 2 numéros indiqués sur la boule. Donner la loi de X et calculer son espérance. Déterminer F sa fonction de répartition et calculer $P(X \in]3,5]$, F(5), F(5-).

Exercice 6. Soit X une v.a. dont la fonction de répartition est donnée par

$$F(x) = \begin{cases} 0 & \text{si } x < 0; \\ \frac{1}{2} & \text{si } x \in [0, 1[; \\ \frac{5}{6} & \text{si } x \in [1, 2[; \\ 1 & \text{si } x \ge 2. \end{cases}$$

Calculer P(X < 1), P(X = 1), $P(X = \frac{3}{2})$, $P(X \in [0, 2])$.

Exercice 7. On lance un dé ordinaire non pipé jusqu'à obtenir 6. On note T le nombre de lancers.

- 1. Quelle est la loi de T? Quelle est son espérance? Calculer la fonction de répartition de T. En déduire P[2 < T < 8].
- 2. Calculer P[T > 3] et $P[T > 6 \mid T > 3]$. Généraliser.
- 3. Quel est le nombre minimal de lancers à effectuer pour que la probabilité d'obtenir au moins un 6 soit supérieure à 1/2?