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LES DOCUMENTS, CALCULATRICES ET TÉLÉPHONES NE SONT PAS AUTORISÉS
LES RÉPONSES AUX QUESTIONS DOIVENT ÊTRE JUSTIFIÉES

Question de Cours (5 points, cf. cours) :

Exercice 1 (4 points)
1. Montrer que pour tous les entiers n,m, l ∈ N, on a les inégalités :

√
n+m+ l ≤ (

√
n+
√
m+

√
l) ≤ 3

√
n+m+ l.

Solution : n ≤ n + m + l donc en passant la racine carrée qui est croissante :
√
n ≤√

n+m+ l. En faisant de même pour m, l, on obtient en sommant l’inégalité de
droite (

√
n+
√
m+

√
l) ≤ 3

√
n+m+ l.

Comme la fonction carrée est aussi croissante, la première inégalité est aussi équiva-
lente à :

n+m+ l ≤ (
√
n+
√
m+

√
l)2 = n+m+ l + 2

√
n
√
m+ 2

√
m
√
l + 2

√
n
√
l,

et cette inégalité est vraie car chacune des racines en plus dans le terme de droite
est positive. En prenant la racine carré (croissante) on obtient l’inégalité de gauche
voulue.

2. Montrer que ∑
(n,m)∈N2:n+m≤N

1 =
(N + 1)(N + 2)

2
.

Solution : Par exemple par sommation par paquet finie et/ou par changement d’indice
(n = n, k = m+ n) :

∑
(n,m)∈N2:n+m≤N

1 =
N∑
k=0

∑
(n,m)∈N2:n+m=k

1 =
N∑
k=0

k∑
n=0

1 =
N∑
k=0

k+1 =
N+1∑
l=0

l =
(N + 1)(N + 2)

2
.

A la fin, on utilise que la somme des N premiers entiers est N(N+1)
2

. (cf. L1 ou
récurrence facile)

3. Soit I = N3−{(0, 0, 0)}. Trouver les α > 0 tels que la famille suivante est sommable :∑
(n,m,l)∈I

1

(
√
n+
√
m+

√
l)α

.

Solution : Les inégalités de la question 1 donnent, vu α > 0 et croissance de x 7→ xα :

1

3α(n+m+ l)α/2
≤ 1

(
√
n+
√
m+

√
l)α
≤ 1

(n+m+ l)α/2
.
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Donc par 2 dominations (avec à droite et à gauche la même série à multiplication par
une constante prêt) la sommabilité de la série demandée est équivalente à celle∑

(n,m,l)∈I

1

(n+m+ l)α/2
.

Comme c’est une série à termes positifs, on applique le théorème de sommation par
paquet pour Λk = {(n,m, l) ∈ I : n + m + l = k} et la partition I = ∪N≥1ΛN . Cela
donne l’égalité et l’équivalence des sommabilités des deux membres :

∑
(n,m,l)∈I

1

(n+m+ l)α/2
=

∞∑
N=1

∑
(n,m,l)∈ΛN

1

(n+m+ l)α/2
=

∞∑
N=1

Card(ΛN)

Nα/2

Il suffit de calculer le cardinal de ΛN = {(n,m,N−n−m) ∈ N2 : (n,m) ∈ N2, n+m ≤
N} mais cette représentation donne que c’est la somme calculée en 2 : Card(ΛN) =
(N+1)(N+2)

2
. Le terme général de la dernière série est donc équivalent à N2/Nα/2 et

converge donc par le critère de Riemann si et seulement si α/2 − 2 > 1 soit une
sommabilité si et seulement si α > 6.

Exercice 2 (5 points + Bonus : 2 points) On se place dans l’e.v.n (R2, || · ||∞).
On pose

O := {(x, y) ∈]0,+∞[2: x2 + y2 < 1}

et
F = {(x, y) ∈ R2 : −1 ≤ x ≤ 1, y = 0}

1. Montrer que O est un ouvert de (R2, || · ||∞).
Solution : On pose f(x, y) = x2 + y2 qui est un polynôme (en dimension finie) donc
continue. On pose aussi g(x, y) = x, h(x, y) = y qui sont linéaires en dimension
finie, donc continue. Donc O = f−1(] − ∞, 1[) ∩ g−1(]0,+∞[) ∩ h−1(]0,+∞[) est
ouvert comme intersection d’un nombre fini (3) d’ouverts, chacun ouvert comme
image réciproque d’un intervalle ouvert par f, g, h continues.

2. Montrer que F est un fermé de (R2, || · ||∞).
Solution :
F est fermés comme intersection de (deux) fermés, comme images réciproques g−1([−1, 1])
et h−1({1}) d’intervalles fermés par g, h continue.

3. Soit L = O ∪ F . Est-ce que L est ouvert ? fermé ? (justifier)
Solution : Montrons que L n’est ni fermé ni ouvert.
Si on prend xn = (1/n, 1−1/n) ∈ O ⊂ L (car 1/n2+(1−1/n)2 = 1−2(1−1/n)/n < 1),
xn → (0, 1) 6∈ L, donc par caractérisation séquentielle des fermés, L n’est pas fermé.
Si on prend yn = (0,−1/n) ∈ Lc, xn → (0, 0) ∈ F ⊂ L, donc par caractérisation
séquentielle des fermés, Lc n’est pas fermé, donc L n’est pas ouvert.

4. Calculer l’adhérence de L. (justifier)
Solution : Montrons que L = F ∪ C avec C = f−1(] − ∞, 1]) ∩ g−1([0,+∞[) ∩
h−1([0,+∞[). On raisonne par double inclusion.
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D’abord C est fermé comme intersection de fermés, images réciproques de 3 intervalles
fermés par f, g, h continues. Donc Son union (finie) avec F esst aussi fermé et contient
L, donc L ⊂ F ∪ C, comme plus petit fermé contenant L.
Pour l’autre inclusion il suffit de montrer que (F ∪ C)− L = C − L ⊂ L.
Or C − L = C1 ∪ {(0, 1)} ∪ C2 avec C1 = {(0, x), x ∈ [0, 1[} et C2 = {(x, y) ∈
]0,+∞[2, x2 + y2 = 1}. Comme on a déjà vu à la question précédente que (0, 1) ∈ L,
il reste à montrer Ci ∈ L.
Or pour n assez grand zn = (1/n, x) ∈ O ⊂ L pour x ∈ [0, 1[ donc xn → (0, x) ∈ L
par caractérisation séquentielle de l’adhérence, c’est à dire : C1 ⊂ L.
De même, pour (x, y) ∈ C2, tn = (1 − 1/n)(x, y) ∈ O ⊂ L et tn → (x, y) ∈ L par
caractérisation séquentielle de l’adhérence, c’est à dire : C2 ⊂ L.

5. Calculer la frontière de L. (Bonus : 2 points)
Solution : On a Fr(L) = L − Int(L) donc il reste à calculer Int(L). Montrons que
Int(L) = O. On a vu au 1 que O et ouvert, et O ⊂ L, donc comme l’intérieur est le
plus grand ouvert contenu dans L, on a O ⊂ Int(L).
La réciproque Int(L) ⊂ O est équivalente en passant au complémentaire à Oc ⊂ Lc

et vu Lc ⊂ Lc, il suffit de montrer L−O = F ⊂ Lc.
Or, pour x ∈ [−1, 1], (x,−1/n) ∈ Lc et (x,−1/n) → (x, 0) ∈ F donc par caractéri-
sation séquentielle de l’adhérence (x, 0) ∈ Lc et comme tout point de F est de cette
forme, on a bien F ⊂ Lc.
Bilan : on a bien Int(L) = O et il suffit de calculer : Fr(L) = F ∪ C − O =
(C−L)∪(L−O) = C1∪{(0, 1)}∪C2∪F avec les notations de la question précédente.

Exercice 3 (6 points)
Soit E = Lip([0, 1],R) l’espace des fonctions lipschitziennes de [0, 1] dans R. On le voit
comme le sous-espace E ⊂ (C0([0, 1],R), || · ||∞) des fonctions continues bornées, et on le
munit donc de la norme :

||f ||∞ = sup
x∈[0,1]

|f(x)|.

1. Montrer que ||f ||∞ < +∞ pour tout f ∈ E.
Solution 1 : C’est une partie du théorème de Weierstrass : une fonction f , continue
sur le compact [0, 1], est bornée et atteint ses bornes. Être bornée veut exactement
dire ||f ||∞ < +∞.
Solution 2 : Si f est K lipschitzienne, on a |f(x)− f(y)| ≤ K|x− y| donc en y = 0,
on obtient : |f(x) − f(0)| ≤ K|x| ≤ K pour 0 ≤ x ≤ 1, on obtient par inégalité
triangulaire :

|f(x)| ≤ |f(0)|+ |f(x)− f(0)| ≤ |f(0)|+K

d’où en passant au sup sur [0, 1] :

||f ||∞ ≤ |f(0)|+K.

2. Soit f : [0, 1]→ R définie par f(x) = x1/3 (racine cubique de x). Montrer que f 6∈ E.
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Solution : Pour montrer que f n’est pas K-lipshitzienne, on trouve des suites xn, yn ∈
[0, 1] telles que |f(xn)−f(yn)|

|xn−yn| →n→∞ ∞ . On prend xn = 1/n, yn = 0. d’où

|f(xn)− f(yn)|
|xn − yn|

=
n

n1/3
= n2/3 →n→∞ ∞.

3. Montrer que f est uniformément continue.
Solution 1 : f est continue sur un compact [0, 1], donc par le théorème de Heine :
uniformément continue.
Solution 2 : On montre |f(x) − f(y)| ≤ f(|x − y|) donc pour ε on pose η = ε3 et si
|x− y| ≤ η, alors |f(x)− f(y)| ≤ f(ε3) = ε.

4. Soit fn : [0, 1]→ R définie par fn(x) =

(
x+

1

n

)1/3

. Montrer que fn ∈ E.

Solution : Comme en TD, on vérifie que la dérivée est bornée. fn est dérivable de
dérivée f ′n(x) = 1

3

(
x+ 1

n

)−2/3 qui est décroissante, on a ||f ′n||∞ = f ′n(0) = n2/3

3
. Par

le théorème fondamental du calcul, on obtient pour x < y :

|fn(x)− fn(y)| = fn(y)− fn(x) =

∫ y

x

f ′n(t)dt ≤ ||f ′n||∞(y − x).

Donc fn est K-lipschitzienne pour K = n2/3

3
.

5. Montrer que ||fn − f ||∞ → 0.
Solution 1 : On utilise l’uniforme continuité de g(x) = x1/3 pour g : [0, 2] → R. Vu
que fn est obtenue en restreignant g sur [1/n, 1 + 1/n] (et en translatant).
Soit ε > 0 soit δ > 0 telle que pour tout (x, y) ∈ [0, 2]2 si |x − y| ≤ δ implique
|g(x)− g(y)| ≤ ε Soit alors n telle que 1/n ≤ δ, alors

|fn(x)− f(x)| = |g(x+
1

n
)− g(x)| ≤ ε.

Soit en passant au sup sur [0, 1], on obtient : ||fn − f ||∞ ≤ ε. Ce qui implique la
limite voulue.
Solution 2 :
On fait une étude de variation pour calculer la norme infinie. On pose gn = fn − f ,
qui est dérivable sur ]0, 1[, continue sur [0, 1]. On a

g′n(x) =
1

3

((
x+

1

n

)−2/3

− x−2/3

)
< 0,

car x 7→ x−2/3 est strictement décroissante. Donc gn est aussi décroissante sur ]0, 1[
et donc aussi par continuité sur [0, 1], donc atteint son maximum en 0 :

||fn − f ||∞ = fn(0)− f(0) =
1

n1/3
→ 0.

6. En déduire que E n’est pas fermé dans (C0([0, 1],R), || · ||∞).
Solution : fn ∈ E and fn → f mais f 6∈ E, donc par caractérisation séquentielle des
fermés, E n’est pas fermé.
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