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Ce polycopié de cours estissu d’un cours donné
en 2019 puis aussi de 2023 a 2025 a U'Université
Claude Bernard Lyon 1. Il a été rendu plus accessible
aux lecteurs dyslexiques en utilisant le travail décrit
dans Making an Accessible Open Logic Textbook
(for Dyslexics) par Richard Zach.

Le code latex pour la présentation du livre
forallx: Calgary (Accessible) par P.D. Magnus, Tim
Button, Robert Trueman et Richard Zach, a été utilisé
sous licence CC BY 4.0 . Vu notre utilisation
systématique d’environnements pour énoncer des
définitions, Théorémes, Lemmes, etc. comme il est
d’'usage en mathématiques, nous avons en plus veillé
a appliquer les mémes usages typographiques
recommandés dans ces environnements dans les
versions accessibles de ce cours.

Certaines sections indiquées au cours du texte
sont tirées d’un polycopié du méme cours de
2018-2019 de Thomas Blossier, Maria Carrizosa et
Julien Melleray avec permission.

L’auteur ne prétend bien siir a aucune originalité
mathématiques sur des sujets si classiques. Il espere

1. Voir aussi du méme auteur Accessible Open Text-
books in Math—-Heavy Disciplines The challenge
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cependant, apres quinze ans d’enseignements de
analyse et des probabilités en parcours
mathématiques et économie, qu’il a atteint son objectif
pédagogique de permettre plusieurs niveaux de lecture
a un publique qui a principalment besoin des
applications du sujet en probabilité et modélisation. Au
niveau minimum, il suffit d’apprendre les définitions et
résultats principaux avec % et de bien comprendre les
exemples qui seront la source d’exercices types
incontournables. A un deuxieéme niveau, les étudiants
hésitant avec des études de mathématiques
appliquées devraient comprendre les résultats du
corps du texte et leurs preuves. C’est ’enseignement
que lauteur donne en pratique au tableau pendant les
50 heures de ce cours. Enfin, les étudiants a l'aise qui
se destinent a la recherche mathématique, malgré leur
parcours inhabituel, auront tout intérét a faire des
excursions dans les compléments en appendices, qui
rassemblent des preuves supplémentaires et des
prolongements immédiats, le plus souvent nécessaires
pour les preuves supplémentaires de d’autres sections
de 'appendices. Ce sont des matériaux soit
enseignées a d’autres niveaux, soit enseignées dans
des versions précédentes de ce cours et qui ce sont
révélées trop ambitieuses pour le public visé.
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Chapitre 1

Ensembles
denom-
brables et
Familles
sommables

Un espace de probabilité discret (disons dénombrable)
associe des nombres, les probabilités aux événements de
base {w;}, correspondant aux éléments w; de 'espace des
réalisations et en sommant a des évenements plus
compliqués. Comme ces nombres vont étre associés a des
ensembles, Uordre de sommation de ces nombres ne doit
pas importer. On va donc étudier une notion de sommation

11
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de série ou l'ordre de sommation n’importe pas. Le but est
donc pour une famille de nombres (u;)jcz, indicée par un
ensemble infini I (le plus souvent dénombrable) de définir

Zui,

en conservant les propriétés de commutativité et
d’associativité des sommes finies.

la somme :

Méme dans le cas I =N, le but est d’obtenir une notion
de sommation qui ne privilégie pas les sous—-ensembles
finis [0, n]] comme la notion de somme de série usuelle. On
verra que dans ce cas, cette notion de sommation coincide
avec la convergence absolue que vous connaissez déja.

Le but de la Théorie de la mesure sera d’étendre cette
construction a des espaces dits mesurés (de probabilité ou
de masse totale différente de 1), incluant les espaces
probabilités continues. Le principe de la construction sera
le méme et généralisera le cas plus simple de ce chapitre.
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1 Ensembles (au plus)
dénombrables

Rappels sur les ensembles

Définition 1.1

La fonction indicatrice d’une partie A est
Uapplication 14 : Q — {0; 1} définie par

l siweA
1a(w) = .
0 siwgA

On a admis en L1 Uexistence de 'ensemble N des
entiers naturels et d’un ensemble constitué des parties de Q
(ce sont des axiomes de base de la théorie des ensembles).

Définition 1.2

L’ensemble des parties de Q est noté P(Q2). Une
famille £ de parties de Q est une partie de P(Q) (soit
F CcP(Q) ouF € P(P()). Les éléments de F sont des
parties de Q.

Lemme 1.1

La fonction indicatrice A~ 1,4 réalise une bijection
entre P(Q) et {0, 1} ('ensemble des applications de
Q dans {0, 1}).




Chapitre 1. Ensembles dénombrables et
Familles sommables 14

Démonstration. L’inverse est h— h~1({1}). La vérification
que c’est bien un inverse est facile, et laissée en
exercice. O

Rappel 1.1. Si A et B sont deux parties de Q (i.e.
deux éléments de P(Q)).

1. Onalesrelations Ac BouBc Aou (A¢ B et
B¢ A). Ac B s’écrit aussi B> A.

2. Onadéfinien L1: Ax B l'ensemble des couples
(a,b) ac A, b e B, lintersection AnB
(ensemble des éléments a la fois dans A et
dans B), 'union Au B (ensemble des éléments
a la fois dans A ou dans B), le complémentaire
deBdans A:A-B=AnB‘={xeA:x¢B}et
la différence symétrique AAB=(A-B)U(B-A).
On remarquera la relation de ces opérations
avec les connecteurs logiques de base.

3. Plus généralement on définit 'union d’une
famille A; e P(Q),iel:

UA,-:{er:ElieI:xeA;},
iel

et de Uintersection d’'une méme famille :
ﬂA,-z{er 1Viel: xeA}.
iel

qui vérifie les relations de distributivités :

(UA,)nC:U(A,mC)

iel iel
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(ﬂA,)uC:ﬂ(A,-uC)

iel iel

et plus généralement

(Ua)n(Uc)= U tincy.

iel jel iel,je]
(NAo(N6)= N Av
iel jel iel,je]

4. A et B sont disjoints si An B =0.

5. On a les relations fondamentales du
complémentaire (A€)¢ = A et pour le
complémentaire des unions

(Ua) =N
iel iel

et (de facon équivalente) des intersections :

(N4) =Uar.
iel iel

x Rappel 1.2. Soit Ac Eetf:Q — E, onrappelle
que l'image réciproque f~1(A) est définie par:

f LA ={weQ: flw) e A}
On a vu en L1 les relations
f-L(AuB)=f 1A Uf B,

f-L(AnB)=f1(A)Nnf LB,




Chapitre 1. Ensembles dénombrables et
Familles sommables 16

f=1(AS) = [f 1A,

f-l(UA,-) = A, (1.1)

iel iel
f_l(ﬂA,') = ﬂ f_l(A,').
iel iel

Un ensemble A qui n’est pas fini est dit infini.

Ensembles infinis dénombrables

% Définition 1.3

Un ensemble infini A est dénombrable s’il existe une
bijection f : A—> N.

Un ensemble A est au plus dénombrable s’il existe
une injection f : A — N.

Remarque 1.3. Certains auteurs disent dénombrable
pour ce que nous appelons au plus dénombrable et
infini dénombrable avec le sens de dénombrable
ci-dessus.

On va utiliser librement le lemme suivant :

1. Toute partie non-vide de N a un minimum.

2. Une application strictement croissante
f:N >N (resp. f:[[0, n]] —» N) vérifie f(p) > p
pour tout p dans son domaine.
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Démonstration. 1. Si P est non-vide et donc, disons,
contient n, alors [[@, n]] N P est aussi non-vide et FINI, donc
a clairement un minimum. 2. Il suffit de voir le deuxiéme cas
(en restreignant aux segments initiaux), on le montre par
récurrence sur n. Sin=0, f(0) e Ndonc c’est évident. En
supposant 'hypothése vraie au rang n, on considéere
f:[[0,n+1]] - N, la restriction a [[0, n]] vérifie 'hypotheése
de récurrence, donc f(p) = ppourp<netf(n+1l)>f(ny=n
mais dans N cela implique f(n+1) > n+1 et conclut U'étape
d’induction. O

On peut représenter les éléments d’un ensemble
dénombrable A a 'aide d’une suite infinie en écrivant
A={xp;n=>1} (x estl'inverse de la bijection f).

* Proposition 1.3

Les ensembles au plus dénombrables sont soit finis,
soit dénombrables. De plus, pour une partie infinie

P c N, il existe une bijection strictement croissante et
une seule de N — P.

Démonstration. Les ensembles au plus dénombrables
sont par définition en bijection avec les parties de N. Dans
le cas infini, il suffit de voir le second point pour obtenir la
bijection avec N. On définit par récurrence la bijection
f:N*— P. Plus précisément, on construit par récurrence
sur n une application strictement croissante f, : [[1,n]] — P
telle que pour tout x e Im(fy),y € P-Im(fy), x < y et
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falg1,ky = fc- Comme P, infini, il est non-vide donc admet un
élément ag = min(P) On pose f3(0) = ag d’ou Uinitialisation.

On suppose construit f,, et on prend
ap.1 = min(P - Im(f,)) qui existe car cette partie est infinie
de N donc non vide (si elle n’était pas infinie, P serait finie
comme union finie de parties finies). On pose
fre1(K)=fr(k), k < n, fr,1(n+1)=a,.1 de sorte que par ’hyp
de rec sur f,, ap.1 > fa(k), k < n ce qui donne la stricte
croissance de f,,; en combinant avec celle de f,. Enfin, si
ye P-—Im(f,,1) c P-1Im(f,)onaparhyp de rec
y > fa(k)k <nety>a,. carc’estle mindonc>etona
y # dp.1 par construction. Donc la relation demandée a
'étape suivante est vérifiée.

On obtient f strictement croissante donc injective en
rassemblant les valeurs des f, qui s’accordent
(f(n)="fy(n)=fyu(n), m>n).

Pour voir que f bijective, par 'absurde, sinon il existe
b e P - Im(f) mais par stricte croissance d’entiers f(n) — o
donc il existe n minimal tel que b < f(n) = f,(n) ce qui
impose par minimalité b > f(n - 1) et contredit
fa(n)=Min(P -Im(f,_1))vube P-Im(f,_1).

Pour Uunicité, si g est une autre telle bijection g-1of
est une bijection strictement croissante de N — N ainsi que
sa réciproque et le lemme 1.2 donne donc
g lof(n)y>n,f1og(n) > netdonc, d ol par croissance de
g, f appliquée encore a ces relations : f = g. O
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* Proposition 1.4

Un ensemble P est au plus dénombrable si et
seulement si il existe une surjection f : N — P.

Démonstration. Pour Uimplication directe, si P est
dénombrable, la bijection de la définition convient, si P est
fini, en bijection avec [[0, n - 1]] alors le reste modulo n
donne la surjection N — [[0, n - 1]] qui composée a la
bijection donne la surjection cherchée. Réciproquement,
'ensemble f~1(p), p € P est une partie de N qui a un plus
petit element a, : a: P — N est U'injection cherchée. O

On va obtenir des exemples d’ensembles
dénombrables les plus courants. Pour cela on a besoin de
quelques méthodes de constructions.

1. Laréunion d’une suite (Xp)ns9 d’ensembles finis
2 a 2 disjoints est au plus dénombrable.

2. Un ensemble X est au plus dénombrable si et
seulement si il admet une suite exhaustive de
parties finies, c’est a dire une suite croissante
de parties finies dont 'union est X.

3. Le produit cartésien d’un nombre fini
d’ensembles au plus dénombrables est au plus
dénombrable.
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n
Démonstration. 1. Soit a, = Card(X,) et A, = Z a

k=0
(A_1 =0). On a des bijections

hp: [[Ap-1+1,Anll = [[1, an]] = Xp qui induisent une
application h : N* - U, X, deés qu’un nombre infini de X
n’est pas vide, ou h : [[1, Ap]l > Us X, qui est par
construction surjective. L’injectivité des h, et le fait que les
X, sont disjoints donne Uinjectivité de h. 2. Si X est fini on
prend la suite constante, sinon, pour une bijection h : N — X
on prend X, = h([[0, n]]) comme suite croissante cherchée.
Réciproquement, la suite croissante X, donne une suite
disjointe Xp, X1 — X, de parties finies, donc 1 donne que
Uunion est au plus dénombrable.

3. Une récurrence triviale ramene au cas du produit de
2 ensembles A, B. Soith:N— A, g : N — B des surjections
données par la proposition 1.4. f=hx g : N2 - Ax B est
une surjection qui raméne au cas N2 qui admet pour suite
exhaustive d’ensembles finis [[0, n])?. O

% Proposition 1.6

Les ensembles N¥, k e N*; Z et Q sont infinis
dénombrables.

Démonstration. On a vu le cas du produit Nk au lemme

précédent. [[-n, n]] est une suite exhaustive d’ensemble fini
pour Z qui est donc au plus dénombrable par la proposition
précédente, il est infini car il contient N. Enfin (p, q) = p/q
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est une surjection de Zx N* — Q, donc, par la proposition
1.4, Q est au plus dénombrable, et infini car il contientN. O

Enfin, on améliore le lemme précédent.

Proposition 1.7

Une réunion au plus dénombrable d’ensembles au
plus dénombrables est au plus dénombrable.

Démonstration. Soit (Xp)nse Une suite d’ensembles
dénombrables (si la suite est finie, on peut la prolonger en
une suite infinie.). Soit f, : N — X, une surjection donnée
par la proposition 1.4. Petite subtilité, on a besoin de former
une suite (f"%q"EN’ c’est a dire une application de

N —

U X,,) , ce qui n’est pas completement anodin et

neN
utilise 'axiome du choix dénombrable). On pose

f:N2 > U Xp défini par f(n, p) = f,(p) et en composant

neN
avec une surjection N — N2, on obtient le résultat par la
réciproque dans la proposition juste citée. O

Les ensembles au plus dénombrables serviront de base
aux probabilités discretes.

Ensembles infinis non dénombrables

Les ensembles qui n’appartiennent pas aux catégories
précédentes (finis ou infinis dénombrables) sont dits infinis
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non dénombrables. On va voir que par exemple, R et C,
[a, b], a < b sont infinis non dénombrables.

Le résultat clef est toujours un argument diagonal :

% Lemme 1.8: (Théoreme de Cantor)

Il n’existe pas de surjection h: E — P(E) entre un
ensemble E et 'ensemble de ses parties.

Démonstration. En effet une application h: E — P(E)
permet de considérer 'ensemble A={xec E: x ¢ h(x)}. Il
n'existe pas de y tel que h(y) = A car par 'absurde, si il
existait, soit y € A et alors y ¢ h(y) = A une contradiction,
soit y ¢ A et alors y € h(y) = A encore une contradiction. [

Remarque 1.4. En conséquence de ce lemme et de
la proposition 1.4, P(N) n’est pas dénombrable (il est
infini a cause de l'injection x — {x} défini sur N), car
sinon on aurait une surjection de N —» £(N). En
conséquence {0, 1}, en bijection par la fonction
indicatrice n’est pas non-plus dénombrable.

% Théoréme 1.9

[0, 1] et R ne sont pas dénombrables.

En conséquence un intervalle quelconque [a, b], pour
a < b, en bijection avec [0, 1] ne 'est pas non plus. et un
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intervalle quelconque contenant au moins deux points (qui
contient donc aussi un [a, b]) est aussi non—-dénombrable.

Démonstration. On construit une injection

¢0:{0,1} - [0, 1] (le cas R s’en déduit. ('image de cette
injection va étre ’ensemble triadique de Cantor). On fixe
a=(ap) €{0, 1} on définit une suite de segments emboités,
on pose Jg =1[0, 1] et si J, =[xn, yn] alors on découpe
Uintervalle en trois en posant u, = (2x, + yn)/3 et
Vn=(Xn+2yn)/3.Sia, =0, on pose J,.1 =[Xn, Un], et si
dn=1, onpose J,.1=[Vn, ¥n]. On obtient par construction
une suite de segments emboités, x,, y, sont des suites
adjacentes et y, — x, < 1/3" (récurrence facile) donc
Uintersection est un singleton n, J, = {p(a)}.

Pour voir que ¢ est injective on note que si a # @’ sont
deux suites et n le premier indice avec a, # aj, alors
Jann J, =0 et les images sont donc distinctes. O

Remarque 1.5. L’ensemble triadique de Cantor a
plein de propriétés intéressantes. Topologiquement,
il est fermé, totalement disconnecté (les composantes
connexes sont les singletons). Il est de longueur
nulle (car inclus dans Uunion sur tous les cas
possibles des J, dont la longueur perd un facteur 2/3
a chaque n). Le sens de cette longueur sera vu au
chapitre 3 (c’est la mesure de Lebesgue). Il est en fait
fractal de dimension de Hausdorff In(2)/ln(3) < 1 (ce
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qui réexplique la longueur nulle, mais c’est un sujet
beaucoup plus avancé des mesures intermédiaires
entre discret et continue).

Exemple 1.1

L’ensemble des nombres irrationnels R — Q est

non-dénombrable, car sinon son union avec Q a
savoir R serait dénombrable, ce qui n’est pas le cas.

2 Familles sommables a termes
positifs

Rappels

Rappel 1.6. La somme x + y avec X, y € R, est définie
a 'exception du cas oll x = 0 et y = —x.
Contrairement au cas des limites, on pose 0. +c0 =0,
t. + 00 =+co pour t > 0.

Pour un ensemble A non-vide (non-nécessairement
borné), on utilise sup A pour le plus petit majorant M e R de
A etinf A pour le plus grand minorant m € R de A.

On utilisera aussi inf® = +oo, sUp 0 = —co.
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Si (aj)jz1,...,n €st une suite finie (disons de nombres
complexes) et o : [[1, n]] — [[1, n]] une bijection.

La propriété de commutativité de la somme donne :

n n
2.91= 0 -
i=1

i=1

Démonstration. En voyant o comme produit de
transpositions, il suffit de montrer le résultat pour o = (k)
une transposition avec j < k.

Mais par commutativité (a+ b = b+ a) et associativité
((a+b)+c=a+(b+c)) delasomme:

n

Z Ao (i) = Z Ao (i) + Ao (j) + Z Ao (i) * Ao (k) + Z Ao (i)

i=j+1 i=k+1

—Za cas S aeae Y a,_Za,

i=j+1 i=k+1 i=

O

Corollaire 1.10

Si E est fini et e : [[1, n]] — E une bijection, f: E - C

n
alors Z f(e;) ne dépend pas de la bijection e. On note
i=1

Zf(e)_Zf(e)

ecE
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Démonstration. Sion prend une autre bijection e’ on
considére la bijection o = e 1o e’ de sorte que eoo =e’. La
formule de commutativité de la somme conclut :

D flen =) fesi) =) f(e).
i=1 i=1 i=1

Le résultat suivant résume les propriétés de
manipulation de ces sommes :

Proposition 1.11

1. Si E fini, on a
Card(E) = Z 1.
ecE
2. (Sommation par paquet) Si E fini est une union
disjointe finie E = U E; (c’est a dire I fini et
iel

EinE;j=0sii#j)etf:E—Calors:

Z f(e) =Z Z f(e).

ecE iel ecE;

En particulier, on a Card(E) = Z Card(Ej).
iel
3. (interversion de sommes finies) Si E, F sont
finiseta: Ex F — C, alors :

P B 5,

ecE feF (e,f)eExF feF ecE

En particulier, on a
Card(E x F)= Card(E)Card(F).
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Démonstration. 1. Si Card(E)=n, E ={eq, ..., €n} pour
n

une bijection e : [[1, n]] — E, on a donc Z 1 :Z 1=npar
ecE i=1
définition.

2.0nposej:[[1, m] = I une bijfaction et

i
nj= Cafd(Ej(i)) On note Ny =0, N; = Z n,.
(=1

Ona N;j-N;_1=n;,i>1donc on a une bijection (en
composant la soustraction de N;_1 : [[N;_1+ 1, N;T — [[1, n/]]
avec la bijection donnée par la définition du cardinal
([1, nill = Ej¢iy, gi : [[Nj-1+1, Ni]l = Ejy- On pose
g(k)=gi(k), si ke [[N;_1+1, N;]l. Montrons que g réalise
une bijection de [[1, Nn]] — E. En effet, par hypothese, E
est Uunion des Ej;,, dont tous les éléments sont atteints par
gi, donc par g qui est donc surjective. De plus, si
g(k) =g(l) € E;, comme l'union décrivant E est disjointe, on
ak,le[[Ni_1+1,N]] etgi(k)=g;(l) et comme g; est
injective, on déduit k = [ et donc comme k, [ sont arbitraires,
on déduit que g est aussi injective.
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Donc par définition de la somme sur un ensemble (au
début et aux deux derniéres lignes) :

> f(e)= Z f(g(k))

ecE
N; Nm
=Zf<g(k)>+ DL fgUoy+-+ > f(g(k)
k=1 k=N1+1 k=Np_1+1
m N
=> Z f(g(k))
=1 k=N_1+1
m N,
=30 > flguky)
=1 k=N _1+1
HIPWE
=1 ecEjy
Z f(e)
iel ecE;

Le résultat sur le cardinal est une application du 1. et de la
sommation par paquet pour la fonction f = 1 constante :

Card(E) = Z 1=Z Z 1 =Z Card(E;).

ecE iel ecE; iel

3. Il suffit d’appliquer la sommation par paquet aux
unions disjointes

ExF =Ugcg{€} x F=Ur.pE x {f}.
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Pour le cardinal on a par le 1 et la distributivité de la
multiplication par rapport a Uaddition :
Card(E x F) = Z 1:2 Zl
(e,fleExF ecE feF
= Z Card(F) = Card(F) Z 1
ecE ecE
= Card(E)Card(F).
[

Définition et premieres propriétés

% Définition 1.4

Une famille (a;);c; de nombres réels positifs est dite

sommable si
sup{Zaj:JcI, fini}<oo
jed

et alors on note

Za,-:sup{Zaj:_]cI, fini}.

iel jel

Tout d’abord, le résultat simple suivant raméne au cas
I dénombrable, ce que 'on supposera par la suite :

Si (a;j)jc; est une famille sommable, alors le support
Ip={iel:a;+0}estauplus dénombrable.
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Démonstration. Si S = Z a; =0, alors Iy =0. Sinon si
iel
S:Za,- >Qetsil,={icl:aj>S/n}, alors Iy =Up-11,
iel
est au plus dénombrable comme union d’une suite

d’ensembles finis car Card(I,) < n. En effet, si j e I,

a;j> S/ndoncsijclI,finiS> Z a;j> SCard(J)/n donc
j€Jn
Card(J) < netdonc Card(I,) < n. O

On résume les propriétés générales dans 'énoncé
suivant :

Proposition 1.13

1. (critere des suites exhaustives) Si (Jp)pse €st
une suite exhaustive de parties finies de I, alors
la famille (a;)jc; est sommable si et seulement
si la suite (Z di)nsp €st bornée et alors on a

i€Jn

Za,-zsupz ai=lim Z a;.
iel oSN i€Jn n_moiej,«,
2. (lemme de domination) Si a; < b; pour tout i et
(b;) sommable, alors (a;)jc; est sommable et

alors Z a; < Z b;.

iel iel
3. (lemme de permutation) Si (a;);c; est sommable

eto : I — I estune bijection, alors (a,(j))ics est
sommable de méme somme.
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Démonstration. 1/ La famille Z a; étant inclus dans la
i€jn
famille des sommes finies, il est clair qu’elle est majorée si

la famille est sommable (et on a en passant au sup la partie
> de U’égalité énoncée). Mais réciproquement toute famille
finie est inclus dans un certain J,, par définition d’une suite
exhaustive, d’ou la borne inverse et la réciproque.

2/ Il suffit de borner les sommes partielles finies
Z a; < Z b; et passer au sup.
ie] ie]

3/ Pour tout J fini, o(J) est fini donc

Z Ay (iy = Z aj < Z a;. D’ou la sommabilité et la premiere
ie] ieo(]) iel
inégalité en passant au sup. En considérant la bijection

réciproque o1 on obtient de méme l'autre inégalité. O

Le dernier résultat généralise la commutativité des
sommes.

Corollaire 1.14

Une famille a termes positifs (an)nen €st sommable si

et seulement si la série Z a, est convergente.
n=0

Sommation par paquet et applications

On conclut avec les deux résultats importants, le
premier généralise 'associativité des sommes finies. On
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rappelle qu’une partition (I),ca de I est une famille
d’ensembles 2 a 2 disjoints d’union égale a I.

* Théoréme 1.15: (de sommation par paquets - Cas

Positif)

Soit (I})1ep une partition de I. Une famille (a;);c; est
sommable si et seulement si on a a la fois les deux
propriétés suivantes :

1. pour chaque A € A, (aj)jc;, est sommable,
disons de somme o,
2. et (02)1en €St sommable.

Dans tous les cas (méme en ’absence de
sommabilité), on a l’égalité :

Sa-Fn-3(%a)

iel el el \iel,

Démonstration. Commencons par la condition nécessaire.
Si (a;)jc; est sommable alors les sommes finies d’une sous
famille (aj)jc;, sont bornées par les sommes de la famille
totale donc on a la premiere condition de sommabilité et

oy < Z a;. Plus si on a des sous ensembles finis
iel
Jic Iy, ..., Jn c I, pour des a; distincts, ils sont disjoints

n
et leur union J = U Ji estun sous—ensemble fini de I donc
k=1

S S a-YasYa

k=1ie]y ie] iel
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Donc en passant successivement au sup sur les Ji fini, on

n
NI
k=1

iel

obtient :

Donc la famille (o)),ca €st sommable et on obtient la
premiére inégalité > en passant au sup.

Réciproquement, pour tout J partie finie de I on définit
Ji=Jn1I, et on obtient un nombre fini de 1 tel que
n

J={JJ1,- On déduit

k=1
Sa=> Y s Z%<Zw
ie] k=1ie]y AEN

D’ou la bornitude sur J qui donne la sommabilité, et autre
inégalité en passant au sup. O

Un cas particulier est la “version famille sommable” du
théoréme de Fubini (qui se généralise a un théoreme
d’intégration). Le cas positif est nommé théoreme de
Fubini-Tonelli. Il correspond a la décomposition

I'x J=Ujer{i} x J=UjegI x {j}.

Il donne un résultat d’interversion des sommes.

% Théoréme 1.16: (de Fubini-Tonelli)

Une famille double (aj j)jc1,jcj a termes positifs est
sommable si et seulement si on a 'une des deux
propriétés équivalentes suivantes :
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1. pourtoutiel, (a;j)jcy estsommable et la

famille des sommes (Z aj j)icr €st sommable
2. pourtoutje J, (a,-,,-),-ej:i:st sommable et la
famille des sommes (Z aj j)jej €st sommable
iel
Dans tous les cas (méme en 'absence de
sommabilité), on a l’égalité :

T e 2(2 ) =, (Z ) |

(i,j)eIx] iel \jel jeld \iel

Démonstration. C’est une application directe du résultat

de sommation par paquets avec les partitions ci-dessus.

O

Exemple 1.2

(o] (o] 1
Calculons la somme I = ZZ—
par S, (i+j+1)2

Comme c’est une série a coefficient positifs, chaque
somme est somme d’une famille sommable, donc par
Fubini-Tonelli, on obtient une somme sur le produit :

1
I= EE = g _ .
(o D2 T f 2
Py (I+_[+ 1 .o (i+j+1)

Comme chaque terme de la somme ne dépend que de
n=i+j+1,o0naenvie de considérer la partition de
N2 = UpewAp avec Ap ={(i,j) eN2 : j+j+1=n}. Parle
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théoreme de sommation par paquet, on a :

C 1
=2 2 T

n=1(i,j)eNn

1

m Mais A, est

Il suffit donc de calculer Z
(i,j)eENn
fini de taille n vu
Ap={(i,n-1-i):0<i<n-1}=[0,n-1], donc
Z 1 _Card(Ap) 1

— > = > = —. C’est le terme
(i Ten, (i+j+1) n n

d’une série de Riemann divergente, donc I =+ et les

familles ne sont pas sommables.

3 Familles sommables a termes
scalaires

Comme pour les séries, on se raméne au cas a valeur
positif en prenant le module. On pourrait traiter de facon
semblable le cas a valeurs vectorielles (par exemple dans
R" ou dans ce qu’on appelera au chapitre suivant un e.v.n.
ou toute suite de Cauchy converge, un e.v.n dit complet) en
prenant la norme a la place du module. On note K=R ou
K =C le corps de référence.
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% Définition 1.5

Une famille (z;)jc; de nombres complexes ou réels est
dite sommable si la famille (|zj|)jc; est sommable. On
note ¢1(I,K) 'ensemble des familles sommables
d’éléments de K indexées par I.

On note

12lly = ) 1zl

iel

¢1(I,K) est un espace vectoriel et de plus on a pour
u,velt (I,K),u,vek:

lldu+pvily < |alllully + |ulllv]]L-

Démonstration. On voit que c’est un sous—-espace
vectoriel de Uensemble des fonctions KI. D’abord, la famille
nhulle est sommable et de plus si 1, u €K, (a)), (b;) des
familles sommables, pour J fini, on a par U'inégalité
triangulaire (des nombres) :

Do lAaj+ubil < ) IAllajl+1ullbj]
ie] ie]
=41 )] @il +ul ) 1bj]
ie] ie]
<lalllally + lulllbllx

donc comme la valeur est bornée, on obtient, la sommabilité
de la famille (1a; + ub;), donc ¢1(I,K) est stable par
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combinaison linéaire et est donc un sous—espace vectoriel
de K!, puisqu’il contient aussi la famille nulle (0).

De plus en passant au sup sur J on obtient
[[1a+ublly < [alllally +|ulllbll1- O

Comme d’habitude pour définir Uintégrale (ici on va
définir de méme la somme), on sépare les parties positives,
négatives des parties réelles et imaginaires, pour définir la
somme. On note donc (a;), = max(a;, 0), (a;)- = max(-a;, 0)
de sorte que

Zj= (%Zj)+ - (%Zj)_ + I'(SZ]')+ - I'(SZJ')_

Comme (Rzj), +(Rzj)_, (Izj), +(Izj)- <|zj| on déduit
que si (z;) est sommable, alors
(Rz))+), (Rz))-, ((3z))+), ((3z))-) le sont aussi par
domination.

Définition 1.6

La somme d’une famille sommable (z;);c; est la
valeur :

Z Zj = Z:(?&zj)Jr - Z(‘sz)_

jel jel jel

+ iZ(Szj)+ - iZ(Szj)_.

jel jel
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Exercice 1.1. Vérifier que la somme d’une famille
sommable est une application linéaire. (indication :
considérer une suite exhaustive de parties finies pour
se ramener au cas des sommes finies).

On a le résultat qui résume les propriétés
élémentaires :

Proposition 1.18

1. Une famille (z;)jc; est sommable si et seulement
si (Rzj)jcr et (3z))jc; sont sommables.
2. (z))je; est sommable si et seulement si (Z))je;
est sommable et on a:
2,%= 2%
jel jel
3. Pour (z;)jc; sommable, on a 'inégalité
triangulaire généralisée :

Z Zj| < Z |z;l.
jel jel
4. (lemme de permutation) Si (z;)jc; est sommable

eto : I — I estune bijection, alors (Z,(j))icr est
sommable de méme somme. En particulier, si
Z a, est une série absolument convergente et
o une permutation de N alors Z ds(n) €st
absolument convergente de méme somme.
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Démonstration. 1/ Les bornes |Rz;| < |z;| et |Tz| < |z
donnent la condition nécessaire par domination.
Réciproquement |z;| = V|Rz|2 +|9z;]2 < [Rzj| +|Tz;| et
comme ¢! estun e.v, on a vu que hypothése implique
(IR zj|+|3zi))je; sommable d’ou le résultat a nouveau par
domination.

2/ U'équivalence est évidente en utilisant 2 fois le 1.
L’égalité vient directement de la définition.

3/ On fixe une suite exhaustive J, de I. D’apres le
critere des suites exhaustives pour les quatre séries a
termes positives intervenant dans la somme,

Z zj= rl,'_To zj, Z |zj| = rl’|_)rro10 Z |z;j| donc par Uinégalité
jel jedn jel Jjedn
triangulaire pour les sommes finies (et continuité du

module)

2,4)=|5im 2, 2= im| ) 2

jel je€dn j€Jn
< li i| = il.
<m 3 121= 3 le
j€Jn jel

4/ Tout vient du cas positif, soit par la définition de
sommabilité soit par la définition de la somme en terme de
somme de familles a termes positifs. Le cas particulier vient
du fait que si la famille est indicée par N, le critere des
suites exhaustives (appliqué a la suite [[0, n]]) implique
qu’étre sommable équivaut a étre absolument
convergente. O
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Remarque 1.7. Une série Z an telle que pour tout o
permutation de N on ait Z d,(n) convergeant est dite
inconditionnellement convergente. Un résultat
classique qu’on trouve par exemple dans Bourbaki
Topologie Générale IV.44 [2]dit qu’une série
numérique inconditionnellement convergente est
absolument convergente. Il n’y a donc pas
d’extension possible du dernier énoncé.

On finit avec les résultats de sommation par paquets et
de Fubini. Dans les deux cas, on n’a plus d’équivalence
comme dans le cas a terme positif. On utilise alors
souvent/toujours le cas a terme positif pour montrer la
sommabilité nécessaire a appliquer le cas avec
signe/complexe.

% Théoréeme 1.19: (de sommation par paquets - Cas

Général)

Soit (Iy),ea une partition de I. Si une famille (z;);cr est
sommable alors on a les deux propriétés suivantes :

1. pour chaque A € A, (2))je1, €st sommable,
disons de somme o,
2. et (0))1en €St sommable.

De plus, on a I’égalité :

R ML

iel AEN AeN \iel
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Démonstration. Comme (|z;|)jc1, la sommabilité de
(I1zil)ier, vient du cas positif. De plus, par 'inégalité
triangulaire des familles sommables (proposition 1.18),

| Z zi| < Z |zj| et le théoreme de sommation par paquets

i€I/1 I‘GI/{
assure la sommabilité du membre de droite, donc par

comparaison, celle de (o1),en comme voulu. L’égalité vient
du cas positif appliqué aux parties positives et négatives
des parties réelle et imaginaire. O

En appliquant la sommation par paquets a la méme
partition que dans le cas positif, on obtient :

% Théoréme 1.20: (de Fubini)

Si une famille double (z; j)jc1,jcj €St sommable alors
on a les deux propriétés suivantes :

1. pourtoutiel, (z;;)jc; estsommable et la

famille des sommes (Z z; j)ier €St sommable
jeJ
2. pourtoutje J, (Zj;)jer est sommable et la
famille des sommes (Z Zj j)jej €st sommable
iel

De plus, on a l’égalité :

S e z(z ) =, (Z ) |

(i,j)eIx] iel \je] jed \iel




Chapitre 2

Introduction
a la Topologie
des Espaces
Meétriques

Dans tout le cours, K =R, (le corps des nombres réels)
ou C (le corps des nombres complexes). |1]| est la valeur
absolue ou le module de 1 € K.

42
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1 Distance et Norme sur un
espace vectoriel

% Définition 2.1

Soit X un ensemble (en général supposé non-vide).
Une distance sur X est une application
d: XxX — [0,+[ telle que :
i Vx,yeX, d(x,y)=d(y,x) (symétrie)
ii Vx,y,ze X d(x,z)<d(x,y)+d(y, z) (inégalité
triangulaire ou sous-additivité)
iii Vx,ye X d(x,y)=0 x=y (séparation)

Un couple (X, d) est appelé espace métrique (em).

% Définition 2.2

Soit E un K-e.v. Une norme sur E est une application
n:E — [0, +c] telle que :

i Vxe E, 1 eK n(Ax)=|1|n(x) (homogénéité)
ii Vx,y e E n(x+y)<n(x)+n(y) (inégalité
triangulaire ou sous-additivité)
iii Vxe€ E n(x) =0 < x =0 (séparation)
Souvent on note n(x) =||x||, sauf dans '’exemple
E =K, n(x) = |x|. Un couple (E, ||.||) est appelé espace
vectoriel normé (evn).
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Exemple 2.1

Soit X c E une partie (non-vide) avec
d(x,y)=1lx-yl|, alors (X, d) est un espace métrique
et tout espace métrique est de cette forme.

Exemple 2.2

Si E=R" on a trois normes classiques, si
X = (X1, .euy Xp) :

n
X111 = Ixil
i=1

n
1X1]> = Z|X,'|2 (norme euclidienne)
Ji:l

[[ Xl = max |Xil
i=1l...n

Exercice 2.1. Montrer que ce sont des normes (cf.
TD de L2).

* Exemple 2.3

Si E = C%Ja, b],R) 'ensemble des fonctions
continues sur [a, b], on a trois normes :

b
||f||1:/a ()t

b
I1fll2 = /|f(t)|2dt
a
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Iflle = sup [f(t)|
tela,b]

Cette derniere norme est la norme de la convergence

uniforme (la convergence pour ||.||. coincidera avec
la convergence uniforme)

Le lemme 1.17 se reformule en disant :

(¢1(I,K),||-|l1) est un espace vectoriel normé.

Démonstration. ||-||1 vérifie U'inégalité triangulaire (cas
A=u=1dulemme 1.17). De plus || - || est positif. Comme
la;| <|lall1, a; =9 si||all1 =9, pour tout j donc a =0 ce qui
donne 'axiome de séparation. Enfin Z [1a;| = |/l|z la;|

ie] ie]
donc en passant au sup : || [|a||1 = ||1a]|; (d’ou
’homogénéité). O

Exemple 2.4

SiZ=XxY avec (X, dx), (Y,dy) des espaces
métriques. On définit :

dZ((X’ y)l (X/l y,)) = maX(dX(X, X,)’ dY(y’ yl))

C’est une distance sur Z (exo) que 'on utilisera dans
cette situation ultérieurement (distance produit).
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R=RU{-o, o} est un espace métrique avec la

distance
dﬁ(Xl y) =
min(1, |x - y|) si X,y €R
0 Si X =Yy € {-00, 400}
1 sinon

Proposition 2.2

(Inégalité triangulaire inverse) Soit (X, d) un espace

métrique.

VX, y,zeX‘ dx,z)-d(y, 2) ‘S d(x,y).

Démonstration. Cas d(x,z) > d(y, z) : Comme
d(x,z)<d(x,y)+d(y, z) par Uinégalité triangulaire, on en
déduit | d(x,2)-d(y, 2) | = d(x,2)- d(y, 2) < d(x, y).

Dans le cas d(y, z) > d(x, z), on échange x et y par

symétrie. O
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2 Métriques équivalentes

% Définition 2.3

Soit X un ensemble. Deux distances d; et d, sur X
sont dites équivalentes si

dc, C > 0,Vx, y € X,
Cdl(X! y) < dZ(Xl y) < Cd]_(X, y)

On note alors d; ~ d,. Des normes sont équivalentes
si les distances induites le sont.

Remarque 2.1. L’équivalence des distances est une
relation d’équivalence, c’est a dire qu’elle est
réflexive (d; ~ d1), symétrique (d; ~ d, = d, ~ d;) et
transitive (dy ~ d,, d, ~ d3 = d; ~ d3). Si deux normes
sont équivalentes les notions d’analyses (limite,
continuité, ...) sont les mémes pour les deux normes.

Exemple 2.6

Dans R, ||.||1, II-1l2, ||-]l« SONt équivalentes (cf. TD de
L2). On verra plus tard qu’en dimension finie toutes
les normes sont équivalentes.
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3 Boules dans un espace
meétrique

% Définition 2.4

Soientae X etre [0, o].
On appelle boule ouverte de centre a et de rayon r
de X la partie :

B(a,r={xe X, | d(x,a)<r}.

et boule fermée de centre a et de rayon r de X la
partie :

Br(a,r) ={xeX, |d(x,a)<r}.

On appelle sphéere de centre a et de rayon r de X la
partie :

S(a,rn={xeX, |d(x,a)=r}.

Dans lecas r=0, B(x,0) =0, BF(x, 0) = {x}.

Exercice 2.2. Dessiner les boules de R? pour

1012y - M125 1l
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Parties bornées

Définition 2.5

Un ensemble A c X est dit borné si
IM € [0,00[,ae X¥x e A,d(x,a) <M, c’est adire s’il
est contenu dans une boule.

4 Suites dans un espace
meétrique

On rappelle qu’une suite de E est une application
u:N— E notée (Up)nso-

Convergence

Définition 2.6: (Convergence)

Soit (u,) une suite d’un espace métrique (X, d). On
dit que u, converge vers [ € X (et on note
[=lim,_e UpOU Uy —>p_ o ) sila suite numérique
d(up, l) converge vers 0, c’est-a-dire :

Ye > 0,3ng e N, Vn > ng, d(un, ) <e.

Remarque 2.2. Ceci équivaut a
Ve > 0,3ng e N,¥n > ng, U< B(l,e). Comme dans R
on a unicité de la limite (justifiant la notation). En




Chapitre 2. Introduction a la Topologie 50

effet si on a deux limites (1, b pour n grand

up € B(ly,e)n B(l, €) donc par inégalité triangulaire
d(ly, L) <d(ly, uy) +d(up, ) <2e Comme e >0
arbitraire d(ly, ) = 0, soit par 'axiome de séparation

=0,

Proposition 2.3

(i) Si up, — u, alors pour tout x, d(u,, x) — d(u, x).
(ii) Toute suite convergente est bornée (réciproque
fausse).
(iii) Si E estun evn u, — u, v, — v alors pour toute
suite 1, € K, telque 1, - 1 0on a
ApUpn+Vp > AU+ V.

Démonstration. (i) Par linégalité triangulaire inverse
ld(un, x)—d(u, x)| < d(up, u)
(ii) Par (i) et le cas réel.
(iii) Vudpup+vp—Qu+v)=Ap(Up—u)+(Vp=V)+(1An-2)uU,
homogénéité et inégalité triangulaire implique :

[|[AnUn+ Vp— (AU + V)|

<|Anlllun = ull + vy = VIl +|1n - A|lul| — ©.
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Suite extraite, valeur d’adhérence

Définition 2.7

Soit (up) une suite de X on appelle suite extraite ou
sous-suite une suite de la forme v, = uy(n), pour
¢ : N — N une application strictement croissante

Définition 2.8

On appelle valeur d’adhérence d’une suite (up) toute
limite d’une suite extraite convergente.

Proposition 2.4

Toute suite extraite d’une suite convergente converge
vers la méme limite. (Autrement dit, toute suite
convergente n’a qu’une seule valeur d’adhérence, sa
limite.)

Démonstration. Supposons u, — [ et si v, une suite
extraite, d(vp, ) est extraite de d(up, [) (le résultat est donc
une conséquence du cas réel). O
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5 Suite de Cauchy, Complétude

Définition 2.9

Une suite (u,) de X est dite de Cauchy si:

Ve>0,aNeN,V¥(p,q) N>, p>Netg>N

= d(up, Ug) <e.

La proposition suivante est similaire au cas réel (cf.
cours de L2).

Proposition 2.5

Toute suite convergente est de Cauchy. Toute suite
de Cauchy est bornée. Toute suite de Cauchy
possédant une valeur d’adhérence est convergente.

Définition 2.10

Un espace métrique X est dit complet si toute suite
de Cauchy de X converge dans X. Si un evn E est
complet on dit que c’est un espace de Banach.

On a vu en premiere année que K est complet (mais
pas Q). Vous avez vu en L2 que (R",||-||2) est complet. On
verra que tout evn de dimension finie est complet.
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* Proposition 2.6

Un evn E est complet si et seulement si toute série
absolument convergente est convergente.

Démonstration. Si E est complet et (x;) est absolument

p
convergente, la suite des sommes partielles S, = Zx,-
i=1

g-1 q
vérifie, pour g > p, ||Sp - Sqll < Z [|xi]| donc comme Z [1xi]|
k=p k=1

est convergente donc de Cauchy, on déduit que (Sp) est de
Cauchy donc converge.

Réciproquement, si toute suite absolument
convergente converge, soit (x;) une suite de Cauchy. Il suffit
de montrer qu’elle admet une sous-suite convergente pour
voir qu’elle converge. Par la propriété de Cauchy, on trouve
par induction ||xs,, || avec |[Xp,,, — Xn, || < 2—1k de sorte que la
série télescopique Z Xn,,, — Xn, €st absolument convergente
donc converge, et donc la sous-suite (x,,) converge. O

Exemple 2.7

Dans le cadre de 'exemple 2.3, vous avez vu en L2
que toute série normalement convergente de

(C%Ia, b],R),||.|lo) converge uniformément. D’aprés
le résultat précédent, c’est équivalent a dire que
(C%[a, b],R), ||.|l) est un espace de Banach (aussi
vu directement en L2 en analyse 2 Prop 7.6). Par
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contre ce n’est pas le cas de (C%([a, b],R), ||.1]:),
i=1,2.0nverra qu’ils sont denses dans les espaces
de Lebesgue Li([a, b],R) qui seront eux complets, et
sont les constructions de base de la théorie de
Uintégration de Lebesgue.

Proposition 2.7

Si X, Y sont des espaces métriques complets. Alors
X x Y (munie de la distance produit de U'exemple 2.4)
est complet.

Démonstration. Si (un, vp) est de Cauchy dans X x Y, de
méme, (u,) est de Cauchy dans X, et (v,) dans Y, donc par
complétude (u,) converge vers u et (v,) vers v. En
conséquence (up, vy) converge vers (u, v) vu

d((un, vn), (U, v)) = max(d(un, u), d(vp, v)) — 0. O

Théoreme de Point fixe

% Théoréeme 2.8: (du point fixe de Banach)

Soit (X, d) un espace métrique complet, et f: X — X
une application telle que

Jk<1lvVx#yeX d(f(x),f(y) <kd(x,y).

Alors f admet un unique point fixe.
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Démonstration. Soit xg € X on définit par récurrence
Xn=f(x,_1) = f°"(xg). Donc

d(Xps1, Xn) = d(f(Xn), f(Xp_1)) < kd(Xn, Xp_1)
< knd(X]_,X@). (21)

Montrons que x, est bornée en voyant par récurrence
n-1

que d(xp, Xg) < Z k'd(x1, xg). C’est évident pour n=1. Et
i—0
par U'inégalité triangulaire et (2.1) :
d(Xps1, Xg) < d(Xps1, Xn) + d(Xn, Xq)

n-1

< knd(X]_, Xp) + Z kid(X]_, Xo)
i=0

n
= > k'd(x1, xo)
i=0

Or on reconnait une série géométrique convergente, d’ou la
. 1
borne : d(xu.1, Xe) < 773 d(X1, Xp).

Montrons que x, est de Cauchy. En effet, pour m > n,

d(Xn, Xm) = d(f°"(xe), " (Xm-n))

< k"d(Xe, Xm-n)
1
< knmd(x:[, X@)

Comme k”rlk — 0, on déduit que pour Ngrandet m>n> N
d(xn, Xm) est arbitrairement petit, donc x, est de Cauchy.
Par complétude de X, on obtient donc que x, converge,
disons vers x. Maintenant, en passant a la limite dans (2.1),

on obtient d(f(x), x) =lim, d(f(x,), Xn) <
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limsup, d(f(xn), Xn) < limsup, k"d(x1, xXg) = 0 donc par
séparation f(x) = x et x est le point fixe cherché.

6 Ouverts dans un espace
meétrique

Soit (X, d) un espace métrique.

% Définition 2.11

Une partie O c X est un ouvert (ou une partie
ouverte) si

Vxe O,3r>0, B(x,r)cO.

Exemples d’ouverts et propriétés

X, 0 sont des ouverts de X. [a, b], [a, b[ ne sont pas
ouverts dans R mais ]a, b[ Uest.

Proposition 2.9

Les boules ouvertes sont ouvertes.

On remarquera que le mot ouvert a deux sens dans
"boules ouvertes" et "parties ouvertes" mais qu’ils sont
cohérents grace a la proposition (les boules fermées ne sont
pas des ouverts, cf. TD).
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Démonstration. Soit a € X, r > 0 montrons que B(a, r) est
un ouvert (B(a, Q) est vide donc ouvert). Soit x € B(a, r),
r-d(x, a) > 0, il suffit donc de montrer que :

B(x,r-d(x,a)) c B(a,r).

C’est une conséquence de l'inégalité triangulaire. En
effet, si y € B(x, r-d(x, a)), alors
diy,a)<d(y,x)+d(x,a) <(r-d(x,a)+d(x,a)=r, donc
y € B(a,r). O

% Proposition 2.10

1. La partie vide 0 et X sont des ouverts.

2. laréunion d’une famille d’ouverts est ouverte.

3. lUintersection d’'une famille finie d’ouverts est
ouverte.

Remarque 2.3. On appelle topologie une famille de
parties d’'un ensemble, qui, comme la famille des
ouverts d’un espace métrique, vérifie ces trois
propriétés. La famille des ouverts de X est donc
appelée topologie (métrique) de X.

NnenB(a, 1/n) = {a} qui n’est pas ouvert dans X
montre que 'hypothése "finie" est cruciale dans 3.

Démonstration. 1. évident.
2. Soit (Oj)jc; une famille d’ouverts. On peut supposer I
non vide (sinon U'union vide étant vide on est ramené a
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1). Soit x € O = U1 O;, donc il existe je I, x € O;.
Comme Oj est ouvert il existe r >0, B(x,r)c O; c O.
Donc O est ouvert.

3. Soit 01, ..., O, une famille finie d’ouverts. Soit
xeO0O=01n---n0p. Comme x € Oj, et O; ouvert, il
existe r; > 0, B(x, rj) c Oj. Soit r=minj_1._,ri > 0. On
déduit de la définition que B(x, r) c B(x, rj) c O; donc
B(x, r) c O, ce qui montre que O est ouvert.

O

Exemple 2.8

Soit O = {(x, y), x > 0}. Montrons que c’est un ouvert
de R? pour la norme [|.||». En effet

0= [J 10,2x[xly - x, y +xI
(x,y)e0

= | By, x,

(x,y)e0

est ouvert comme union d’ouverts.

% Proposition 2.11: (Ouverts pour la métrique in-

duite)

Soit A c (X, d) avec la métrique induite, O est un
ouvert de A, si et seulement si il existe un ouvert U de
X tel que O=UnA.
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Démonstration. On suppose O ouvert de A. Pour chaque
x € O, on fixe ry > 0 tel que Ba(x, ry) ¢ O. On pose alors

U= Bx(x,

xeO
qui est un ouvert de X par union de boules ouvertes. Or
OcUnAcarry>0donc pourtout xe O, x € Bx(x, ry) c U.

EtUNA-= U Bx(X, ) NA= U Ba(x, rx) c O. Donc
xeO xeO
UnA=0.

Réciproquement, comme U est ouvert soit x e O c U, il
existe r >0, Bx(x,r)c Udonc
Ba(x,r)=Bx(x,r)nAc UnA=0 donc O est ouvert dans
A. O

Intérieur

Définition 2.12

Soit A c X, on dit que x est intérieur a A (ou A est un
voisinage de x) si3r > 0, B(x, r) c A.

On note Int(A) ou A Uensemble des points intérieurs
aA.

* Proposition 2.12

Int(A) est le plus grand ouvert contenu dans A.
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Démonstration. 1. Int(A) contient tous les ouverts
inclus dans A.
Soit U un ouvert contenu dans A. Soit x € U, alors
comme U est ouvert, 3r > 0, B(x,r) c U c A, donc x
estintérieur a A. Ainsi U c Int(A)

2. Int(A) est un ouvert. Soit x € Int(A). Soitdoncr >0

tel que B(x, r) c A. Comme B(x, r) est ouvert, tout
y € B(x, r) estintérieur a B(x, r) donc intérieur a A. En
bilan, Yx € Int(A),3r > 0, B(x, r) c Int(A), ce qui
conclut.

O
Corollaire 2.13: (exo, cf TD)

A ouvert si et seulement si A =1Int(A).
A c B = Int(A) c Int(B)
Int(A)ulInt(B) c Int(AuU B)
Int(A)nInt(B) =Int(An B)

Exemple 2.9

Soit F ={(x, y), x = 0}. Montrons que

Int(F)=0 :={(x,y),x>0}.0Onavual'exemple 2.8
que O est ouvert, donc comme O c F, on a

O c Int(F). Il reste a voir que
Int(F)n{(x,y),x=0}=0 (car alors

Int(F)c F-{(x,y),x=0}= 0). Mais soit

(—€,y) € Bj.((0,y),e)n F pour tout e > @, donc

AN w N R
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By.;1.((0,y),€) ¢ F donc (0, y) n’est pas intérieur a F,
ce qu’il fallait démontrer.

7 Fermés dans un espace
meétrique.

Soit (X, d) un espace métrique.

Rappel 2.4. Soit Ac X, onnote AS={xe X | x¢A}
le complémentaire de A. On rappelle que
0°=X,X=0,(A)C=A, AUA = X, AnA°=0. Les
lois de De Morgan impliquent que pour une famille

(Aiier .
g
iel iel
c
A = JAs.
iel iel

Soit F c X. On dit que F est un fermé de X si F¢ est
un ouvert de X.

Définition 2.13

Le résultat suivant est obtenu en passant au
complémentaire le résultat sur les ouverts.
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* Proposition 2.14

1. La partie vide 0 et X sont des fermés.

2. lintersection d’'une famille de fermés est
fermée.

3. lunion d’une famille finie de fermés est fermée.

* Proposition 2.15: (Caractérisation séquentielle

des fermés)

Une partie F d’un espace métrique X est fermée si et
seulement si toute suite convergente (x,) d’éléments
de F a sa limite dans F.

Démonstration. Supposons F fermé. Soit (x,) une suite
d’éléments de F, convergente vers x. Soit y € F¢, comme
F¢ estouvert il existe e >0 B(y,e) c F¢, d’oll x, ¢ B(y,¢€)
Donc d(xp, y) > €. En passant a la limite on déduit

d(X, y) Z' d(Xnyx)_d(Xf'l’ y) |

> €— d(Xn, X) —n—ooco € > @,

Donc d(x, y) > e donc x # y. Comme y était arbitraire dans
F¢, xeF.

Réciproquement, supposons que F n’est pas fermé et
montrons que la seconde caractérisation est fausse. Soit
x € F€ montrant que F¢ n’est pas ouvert, donc pour tout
neN, B(x,1/n)n F #0. Soit x, € B(x,1/n)n F
d(xn, x) <1/n -4, 0, donc (x,) est une suite d’éléments
de F qui converge vers x € F€. O
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Exemple 2.10

Montrons avec la caractérisation séquentielle que
A={(x,y),x >0,y >0} n’est pas fermé pour la norme
[|.llc. En effet A>(1/n,1/n) — (0,0) ¢ A, ce qui
contredirait Uhypothése que A fermé. Montrons de
méme que B={(x,y),x >0,y > 0} est fermé. En
effet, Soit (x,, yn) € B tel que (x,, yn) — (X, y)on a
Xn — X, Yn — y donc comme x, > 0, on déduit x > 0,
et de méme y > 0 donc (x, y) € B . Ainsi, comme toute
limite de suite de B est dans B, on déduit que B est
fermé.

Vous avez vu en L2 le résultat suivant :

Proposition 2.16: (Relations Fermé-Complet)

Soit E un espace métrique.

1. Si C c E est complet alors il est fermé.
2. Si Cc E estcompletet Fc C estun fermé de
E, alors F est complet.

Démonstration. 1. Si C c E est complet alors si on
considere une suite (x,) convergente vers x dans E,
elle est de Cauchy, donc converge dans C, donc x € C
par unicité de la limite.

2. Si Cc E estcomplet et F c C. Soit x, une suite de
Cauchy de F, elle converge dans C, donc comme F
est fermé, la limite est dans F, donc toute suite de
Cauchy de F converge dans F.
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En passant au complémentaire la proposition 2.11, on
obtient :

Proposition 2.17: (Fermés pour la métrique induite)

Soit A c (X, d) avec la métrique induite, F est un
fermé de A, si et seulement si il existe un fermé C de
X telque F=CnA.

Adhérence

Définition 2.14

Soit A c X. Un point x € X est dit adhérent a A si
Ve > 0B(x,e) N A %£0.

On note A (ou Adh(A)) U'ensemble des points
adhérents a A.

Exemple 2.11

X=X,0=0,Ac A.Sir>0,dansune.v.n. E,on a
B(a, r)=Bgr(a,r). Si A={xp}nex les valeurs
d’adhérence de la suite (x,) sont dans A qui est
Uunion de '’ensemble des valeurs d’adhérence et de A
(exo0).
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Proposition 2.18

(Adh(A))€ = Int(AC).
(Int(B))¢ = Adh(BY).

Démonstration. Un point x € X n’appartient pas a Adh(A)
si et seulement si

Je>0,B(x,e)NA=0 < Je >0, B(x,¢e) c A°. C’est par
définition équivalent a dire que x est un point adhérent a
AC€.En appliquant le premier résultat a A= B¢, on en déduit
le second. O

On en déduit toutes les propriétés en passant au
complémentaire celles de Uintérieur.

Corollaire 2.19

1. Aestle plus petit fermé contenant A.
2. Afermé si et seulementsi A= A.

3. AcB=>ACB

4, AnB>ANB

5. AUB=AUB

Démonstration. 1. A est fermé vu que son complémentaire
est 'ouvert Int(A°). Si F est un fermé contenant A, F¢ est

un ouvert contenu dans A€ donc dans Int(A¢) le plus grand
ouvert contenant A¢. En passant au complémentaire, F 5 A.
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Les résultats 2.3.4.5 sont analogues, par passage au
complémentaire, de résultats sur Uintérieur. O

* Proposition 2.20: (Caractérisation séquentielle

de 'adhérence)

x € A si et seulement si il existe une suite (a,)
d’éléments de A vérifiant a, — x.

Démonstration. Six est adhérent a A pour tout entier n
B(x,1/n)n A est non vide donc contient un élément a,. La
suite (a,) € AY converge vers x vu d(ap, x) <1/n — 0. La
réciproque vient de la caractérisation séquentielle des
fermés vu A fermé. O

* Exemple 2.12

Montrons que si A={(x, y),x >0, y > 0} alors
A=B={(x,y),x>0,y>0}.0navualexemple 2.10
que B est fermé, donc comme A c B, on en déduit
AcB

Il reste a montrer que
B-A={(x,y),x=0,y>00uy=0,x>0}cA.Or
(0,y)=lim,(1/n,y+1/n)etsiy>0,
(1/n,y+1/n) € A, donc (0, y) € A. De méme
(x,0) = limpse(x+1/n,1/n) e Asix>0.
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Densité, Frontiere

Définition 2.15

Une partie A est dite dense dans X si A= X.

Exemple 2.13

Q et Q¢ sont denses dans R.

Définition 2.16

Un point x € X est dit point frontiére d’une partie A si
pour tout r > 0, B(x, r) est d’intersection non vide
avec A et A¢. On note Fr(A) 'ensemble des points
frontiéres de A.

Remarque 2.5. D’apres la définition,
Fr(A) = Fr(AS) = An A€ est un fermé.

Exercice 2.3. Montrer que Int(A€), Fr(A), Int(A)
forment une partition de X (i.e. sont disjoints deux a
deux et leur union est X).

8 Fonctions continues

Définitions équivalentes

On considere (X, dx =d) et (Y, dy = d) deux espaces
métriques.
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% Définition 2.17

Soient Ac X, Y des espaces métriquesetf: A— Y.
1. Soitae A, f est dit continue en a si
limy_q f(x) = f(a), soit
Ve> 0,36 >0,Yx e A
dx(x,a) <6= dy(f(x), f(a)) <e.
2. f est continue sur A si f est continue en tout
point de A. Autrement dit,

Vae A, Ve> 0,36 >0,
Vx € Adx(x, a) <6 = dy(f(x), f(a)) <e.

Remarque : 6 =6(a, €) dépend a la fois de € et de a.
Vous avez vu en L2, le résultat suivant.

* Proposition 2.21: (Caractérisation séquentielle

de la continuité)

Soit f : X = Y. L’application f est continue en x € X si
et seulement si pour toute suite (x,) d’éléments de X :
si x, converge vers x, alors f(x,) converge vers f(x).

Démonstration. Supposons que f tend vers [ = f(x) en x.
Soite > 0 il existe n > 0 tel que f(B(x,n)) c B(l,€). Vu que
Xp — a il existe N, tel que vn > N, d(x,, a) <n donc

vn > N, d(f(xy), ) <e. Ceciindique que f(x,) — L.
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Réciproquement, supposons par contraposition, qu’il
existe e > 0 tel que pour toutn > 0 f(B(x,n)) N B(l,e)¢ # 0.
Donc, en prenant, = 1/n, on obtient x, € B(x, 1/n), tel que
d(f(xp), ) > €. Pour tout n, donc x, — a et f(x,) ne
converge pas vers [ comme voulu. O

* Proposition 2.22: (Caractérisation topologique

de la continuité)

Soit f : X — Y. Les assertions suivantes sont
équivalentes :
1. f est continue sur X.
2. Pour tout ouvert O de Y, l'image inverse f~1(0)
est ouverte dans X.
3. Pour tout fermé F de Y, 'image inverse f~1(F)
est fermée dans X.

Démonstration. 2. <= 3. vientde (f"1(B))¢ = (f"1(B9)) et
de la relation fermés/ouverts.

1. = 2. Soit O un ouvertde Y et x € O, il existe et on
choisit e(x) > 0 tel que B(x, e(x)) c O. Par continuité de f,
soity € f1(0), f(y)=x € O, il existe 5(y) > 0 tel que
f(B(y,d(y)) c B(x,e(f(y))) c O. Donc B(y,s(y)) c f~1(0)
et comme y est arbitraire, f~1(0) est ouvert.

2. = 1. Soit a € A. Montrons que limy_4 f(x) = f(a).
Soite > 0. Par 1. V = f~"1(B(f(a), €)) est un ouvert X. Or
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ae€ V donc 35 > 0 tel que B(a,s) c V. En conséquence
f(B(a,s)) c f(V)=f(f"1(B(f(a),e) c B(f(a),e),

ce qui conclut. O

Corollaire 2.23: (Stabilité par composition de la

continuité)

Sif:X—>Yetg:Y — Zsontcontinues, alors
gof : X — Z est continue.

Démonstration. Pour tout ouvert U de Z, g~1(U) est ouvert
de Y par coninuité de g, puis f~-1(g~1(U)) est ouvert par

coninuité de f, mais f-1(g~1(U)) = (go f)~1(U). Comme c’est
vrai pour tout ouvert U, on déduit de nouveau du théoréme
précédent que go f est continue. O

Exemple 2.14

1. f: X — R définit par f(x) = d(x, z) est continue
sur E car |d(x, z) - d(xg, 2)| < d(x, Xg) (inégalité
triangulaire inverse).

2. Soit@<p<n=r+s, p:R"— RS définie par si
X=(y,z)eR"=R"xR%, p(x) = z. On munit R" et
RS des normes ||.||1, on voit ||[p(X)]|l1 < |IX]|1,
donc comme p est linéaire, p est continue car

Ip(x) = p(Wll =1lp(Xx = Y1 < |Ix = yll1-
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Remarque 2.6. Il résulte des théorémes sur les
limites que les opérations algébriques usuelles
(somme, produit, composition) préservent la
continuité. En particulier si P est une fonction
polynomiale P : R™ — R c’est a dire de la forme

P(x) = Z aj,,....i,X{ ... X,/ est continue comme

finie
somme et produits des projections (x1, ..., Xp) = X;.

% Théoréme 2.24: (de prolongement des identités)

Sif,g:(X,d) — (Y, d) sontdeux applications
continues et D c X est dense. Si f et g sont égales
sur D, alors elles sont égales (sur tout X).

Démonstration. Soit x € X, on sait par caractérisation
séquentielle de ’adhérence qu’il existe a, € D avec a, — X.
Par continuité de f, g en x, et caractérisation séquentielle
de la continuité : f(a,) — f(x), g(a,) — g(x). Mais on sait
que f(an) = g(ap) par hypothése, donc par unicité de la
limite dans Y, f(x) = g(x). Comme x est arbitraire, on a
f=g. O
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Homéomorphismes, Continuité
uniforme, Lipschitzianité

Définition 2.18

Une application f : X — Y est dite un
homéomorphisme (ou une application bicontinue) si
elle est bijectiveetsif: X —» Yetf1:Y — X sont
continues.

% Définition 2.19

Une application f : X — Y est uniformément

continue si :

Ve > 0,36 > 0 :(Y(x, x') € X?,d(x, x") <)
= d(f(x), f(x')) < e.

Une application f : X — Y est K-lipschitzienne avec
K € [0, +oo[ si :

V(x,y) e X%, d(f(x), f(y)) < Kd(x, y).

Remarque : dans la continuité uniforme, § = 6(¢) ne
dépend PAS de x, contrairement au cas de la continuité.

Proposition 2.25

Une application uniformément continue est continue.
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Proposition 2.26

Un application K-lipschitzienne est uniformément
continue.

Démonstration. Pour € > 0 dans la définition il suffit de
prendre § = ¢/K. O

Exemple 2.15

f:R, = R f(x) =Vx est uniformément continue mais
pas lipschitzienne (cf TD.). Toute application
uniformément continue est continue mais la
réciproque est fausse : g : R —» R g(x) = x2 n’est pas
uniformément continue sur R (cf TD.).

X +— d(x, z) est 1-lipschitzienne X - R, (X, y) > xX+y
est 2-lipschitzienne Ex E — E.

Le résultat suivant ne doit pas étre confondu avec le
Théoreme 2.24qui ne donne que lunicité d’un prolongement
mais pas son existence.

* Théoréme 2.27: (de prolongement des applica-

tions uniformément continues)

Sif:(D,d) — (Y, d) estune application
uniformément continue, D c (X, d) est dense et
(Y, d) est complet. Alors f admet un unique
prolongement continue g : (X, d) — (Y, d) et celui-ci
est uniformément continue.
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Démonstration. L’unicité vient du Théoreme 2.24.

Soit x € X, et par densité x, € D, x, — x. Comme f est
uniformément continue soite > 0 et § > 0 tel que
dx(x,y) <é6= dy(f(x),f(y) <e.Sionprend N tel que
d(Xn, Xm) <6, pour n,m > N, on voit que
dy(f(xn), f(xm)) <€, donc comme € est arbitraire, (f(xp)) est
de Cauchy. Donc (f(xp)) converge vers z € Y par
complétude.

Soit y, — x une autre telle suite, alors
d(f(yn), z) < d(f(xn), f(yn)) +d(f(xn), z) — 0, car
d(f(xn), f(yn)) < e dés que d(xp, yn) < det on voit donc que
d(Xxn, yn) — 0 implique que d(f(xp), f(yn)) — 0. Donc la
limite z ne dépend pas de la suite choisie. On pose g(x) = z.

En particulier, g étend f (en considérant la suite
constante). Soit z € X avec d(x, z) <6 et z, — z alors pour
n assez grand d(xp, z,) <6 donc dy(f(x,), f(z,) < € eton
déduit en passant a la limite dy(g(x), g(z)) < e. Donc g est
uniformément continue (avec méme constantes que f). 0O

Fonctions continues bornées

Exemple 2.16

Soit X un espace métrique, F un e.v.n. et Cp(X, F)
’ensemble des fonctions continues bornées sur X a
valeur dans F, on a la norme uniforme (exo : vérifier
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que c’est bien une norme) :

Iflleo = sup [If(X)IlF

xeX

Le résultat suivant a été vu en L2 pour F =R.

% Théoréme 2.28

Les espaces (Cp(X, F),||.|lw), pour X espace
métrique et F espace de Banach est un espace de
Banach.

Démonstration. On a vu que ce sont des espaces normés.
Montrons qu’ils sont complets. Soit f, une suite de Cauchy,
donc comme ||fy(x) — fg(X)||F < ||fp — fgllw, pOur tout x € X,
(fp(x)) est de Cauchy, donc par complétude de F, converge
vers une valeur f(x). Soient p, g tels que pour tout x

[1fp(x) — fq(X)]| < € en prenant la limite g — o, on déduit
[1fp(x) — f(x)|| < e donc ||f, - f|| < €. Donc f, converge
uniformément vers f, donc f est continue (résultat de L2 ou
exo). De plus, ||fy||» est convergente, donc de Cauchy, donc
bornée, disons par M. En passant a la limite dans l'inégalité
[1fp(X)||lF < M, on obtient ||f(x)||r < M et donc f est aussi
bornée par M. Donc la limite f est continue bornée et f,
converge vers f dans Cp(X, F). Ce qui donne la
complétude. O



Chapitre 2. Introduction a la Topologie 76

9 Applications linéaires
continues

On considere (E, ||.||) et (F,||.]|) deux evn.

Rappel 2.7. Une application u : E — F est dite
linéaire si :

(i) Vx,y € E,u(x+y)=u(x)+u(y)

(i) Vxe E,A e K, u(Ax)=Au(x).

Proposition 2.29

Siu: E— F estune application linéaire, les

assertions suivantes sont équivalentes :

1. u est lipschitzienne.
2. u estcontinue.
3. u estcontinue en 0.
4. u est continue en un point.
5. Il existe a € E,n > 0 tel que
u(B(a,n)) c B(u(a), 1).
6. u est bornée sur la boule unité fermée Bg(0, 1)

Démonstration. (Preuve facultative) 1. = 2.,

2.2 3.,3.>4.,4. = 5. sont évidentes (et n'utilisent pas la
linéarité). Si on suppose 5., il existe n > 0 tel que si

[Ix —a|| <nalors ||[u(x)—u(a)|| <1.Soithe E, h+0,

X =a+ hn/||h|| de sorte que ||x — a|| <75, on déduit donc
[lu(h)lin/Ilhll = |lu(x = a)]] < 1 c’est-a-dire [[u(h)]| < [|hll/n
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(ce qui est aussi vrai pour h=0). En particulier, si |[|h]| < 1,
on obtient donc 6.

Si on suppose 6., on montre finalement 1, on pose
C = supp <1 llu(h)|| < o et on obtient de méme pour h # 0,
[luCh/|lh|D]| < C donc ||u(h)|| < C||h|| (ce qui est aussi vrai
pour h =0). Donc pour tout x, y en utilisant encore la
linéarité u(x - y) = u(x) - u(y), on obtient :

llu(x) = u(y)ll < Clix = yll,

donc u est C-lipschitzienne. O

Proposition 2.30

Si¢: E - Kestune application linéaire (forme
linéaire), ¢ est continue si et seulement si son noyau
H=Ker¢=¢"1({0}) est fermé.

Démonstration. Si ¢ est continue, ¢~ 1({0}) est fermé
comme image inverse d’un singleton, qui est fermé.
Réciproquement, supposons ¢ non nulle, soit e tel que
#(e)=1. Comme le complémentaire de H est ouvert soit
r> 0 tel que B(e, r) c HE.

Montrons par ’absurde que pour tout x € B(e, r),
#(x) € B(1, 1). En effet, sinon soit x avec |¢(x) — 1| > 1. Si
t=-¢(x)/(1-¢(x)), on
p(te+(1-6H)x)=tl+(1-bep(x)=t(1l-¢(x))+¢(x)=0. Or
llte+(1-t)x —ell=[1-tll[x - ell =[x - ell/l¢(x) - 1| < r une
contradiction car alors y=te+(1-t)x € B(e,r)nH.
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On a donc vu ¢(B(e, r)) c B(¢(e), 1) d’ol ¢ continue par
la proposition précédente.

[
Définition 2.20
L’espace E’ := L(E,K) des formes linéaires continues

sur un e.v.n. E est munie de la norme duale

Ifller == sup [f(X)I.

xeE,||x||e<1

* Définition 2.21

L’espace L(E, F) des applications linéaires continues
d’un e.v.n. E vers un e.v.n. F est munie de la norme

subordonnée (ou norme d’opérateur) :

Wl == sup  [If(0)llF.

XeE,||x||[g<1

Remarque 2.8. La preuve de 6. implique 5. dans la
proposition 2.29 montre en fait que si f € L(E, F)
alors f est |||f|||-lipschitzienne.

Un espace dual est toujours complet par le résultat
suivant :
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Théoreme 2.31

Si E estun e.v.n. et F un espace de Banach, alors
(L(E, F),|||.]ll) est un espace de Banach.

Démonstration. Soit B la boule fermée de E de centre 0 et
derayonleti: L(E,F)— Cp(B, F) larestriction a la boule.
Par définition des normes, c’est une isométrie qui identifie
donc L(E, F) a un sous espace de C,(B, F). Montrons que
ce sous espace est fermé (il sera donc complet par
complétude de Cp(B, F) par théoréeme 2.28).

Montrons que

I(L(E, F))={ue Cp(B, F) :¥a, pe K| +|ul < 1,
Vx,y eB,

UAX+py)=au(Xx)+puuy)}.

Cela suffit car cela décrit i(L(E, F)) comme une intersection
de fermé vu que u — u(y) est une application continue sur
Cy(B, F). L'inclusion c est évidente. Réciproquement si u
est continue sur B donc en 0@ et dans ’ensemble indiqué,
pour x € E\ {0}, on pose Ug(x) = ||x||Eu(m) et ug(0)=0.
D’abord, si ||x|| < 1 on remarque que ug étend la précédente
valeure de u sur B (en prenant y = 0 dans la relation). De
méme, ug est positivement homogene. Donc, si (x, y) # 0,
on pose x” = x/max([|x][, [Iyl]), y" = y/max(|[x]l, [[yID,
A=/ +|ul), o’ = u/(|2| +|u]) pour obtenir par homogénéité
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et la relation appliquée a x’, y’, A", 1’ :

Ue(AX +py) = (|A]+ [u)) max([[x]], [[yIDu(’' x" +u"y’)
= (|A]+ [u]) max([Ix]], Iy D[ u(x") + " u(y’)]
=AUE(X)+uUg(y)

Donc ug est linéaire continue en 0, donc linéaire continue et
u=i(ug) comme souhaité. O

Définition 2.22

Une application linéaire u : E — F est une isométrie
(linéaire) si :

vx e E,|lu()ll = 1x]I.

Proposition 2.32

Une isométrie (linéaire) est toujours injective.

Une isométrie u : E — F identifie donc E au
sous—espace vectoriel u(E) c F avec la norme induite.

Démonstration. Si u(x) =0 alors 0 =||u(x)|| = ||x|| donc par
séparation x = 0. O
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10 Propriétés particulieres des
evn de dimension finie.

Complétude

% Théoréme 2.33

Tout evn de dimension finie est complet.

Démonstration. C’est bien connu en dimension 1. On
montre donc le résultat par récurrence sur la dimension. On
suppose donc le résultat acquis en dimension strictement
inférieure a n, soit (E, ||.||) de dimension n. Soit ¢ une forme
linéaire non nulle sur E, son noyau F est de dimension
(n-1), donc par hypothese de récurrence (F,||.||) (muni de
la restriction de la norme de E) est complet. Par conséquent
F est fermé dans E, donc ¢ est continue.

Soit e € E avec ¢(e) = 1. L'isomorphisme linéaire
u:(@,f)—ae+fdeKxF (avec la norme produit donc
complet par la proposition 6) sur E est continue
(1 +||le|)-lipschitzien). Son isomorphisme réciproque est
donné par :

Vx e E, ut(x)=(s(x), x - ¢(x)e).

u~! est donc aussi continue comme ¢ . u~1 étant
lipschitzienne (car linéaire continue et par la proposition
2.29), si (xp,), suite de E, est de Cauchy u=(x,) e Kx F
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U'est aussi donc converge par complétude de Kx F, d’ol
xn = u(u~(x,)) converge aussi par continuité de u~!. O

Applications linéaires

Rappel 2.9. Si E de dimension n et F de dimension
p. Soit (ey, ..., e5) une base de E, (f, ..., f,) une
base de F. Une application linéaire u est décrite par
sa matrice A = (ajj)ie[1,p),je[1,n) dans ces bases. Alors,

n p
Si x= ijej et y=u(x)= Z yifi, on rappelle que :

=il i—1
n
Yi= Z aijXj.
j=1
On définit aussi la base duale (&5 coep &) de l'ev des

formes linéaires sur E caractérisés par e}‘(ek) =1si
j =k et@sinon. En conséquence, pour tout x € E :

u(x) = Z xju(ej) = Z e}‘(x)u(ej).
j=1

J=1

% Théoréme 2.34

Toute application linéaire entre evn de dimensions
finies est continue (et méme lipschitzienne).

Démonstration. En utilisant la représentation du rappel
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il suffit de montrer que les formes linéaires e} sont
continues. Mais Ker e est un sous-espace vectoriel de
dimension fini donc complet (Théoréme 2.33), donc fermé
(proposition 2.16) dans E, d’ou la continuité voulue
(proposition 2.30). La lipschitzianité vient de la proposition
2.29. O

Equivalence des normes et
conséquences.

% Théoréme 2.35

Toutes les normes d’un espace vectoriel normé de
dimension finie sont équivalentes.

Démonstration. Si||.||1 et]].]|, sont deux normes sur E,
Uapplication linéaire identité u = Ideg vu de (E,||.||]1) vers
(E, ||.]|2) est continue ainsi que son inverse u~! (théoréme
2.34), donc elles sont C et 1/c-lipschitzienne
respectivement (proposition 2.29). On en déduit, pour tout
xekE:

lIXIl2 = lluCx) = u(@)llz < ClixIlx,
- - 1
X112 = llu™ () = u™ @)1y < ZIIX]l2,

d’ou U'équivalence des normes souhaitée. O
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Remarque 2.10. Sur R" on peut donc parler de
continuité, limite etc. sans préciser la norme.

Proposition 2.36

Soient Eunevn, Ac E, f: A—R".Si x € A, on note
f(x)=(f(x), ..., fa(x)) ou les f; sont les fonctions
composantesde f : f; : A— R.

Soitx € Aet b=(by,..., bs) €R", alors on a
'équivalence :

limf(x)=besVi=1...nlim f;(x) = b;.
X—a X—a

Démonstration. Ona fi=p;jof, ol p; esti—eme projection
pi : R" — R définie par p;j(x1, ..., Xn) = Xj. p; est continue
d’aprés 'exemple 2.14.2.

Silimy_ 4 f(x)=b, on déduit limy_, fi(x) = b; d’apres le
Théoréme de composition des limites.

Réciproquement, on munit R” de la norme ||.||. Si pour
tout i limy_ 4 f;(x) = b;j on a donc pour € > 0, U'existence de
6; > 0 tel que si ||x - a|| < 6;, ||fi(x) = bj|| < €. On pose
d=min;_1. ,(6;)) > 0. Donc si ||x —a|| <6, pour tout i
1fi(x) = bil| < e donc ||f(x) - bllw = max||fj(x) - bil| < e.
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Corollaire 2.37

Soient Eunevn, Ac E, f: A—R". Si xe€ A, on note
f(x)=(fi(x), ..., fao(x)) ou les f; sont les fonctions
composantes de f : f; : A— R. f est continue sur A
(resp. en a € A) si et seulement si les f; sont
continues sur A (en resp. a € A).

La preuve du résultat suivant est semblable et omise.

Proposition 2.38

Soit X, = (x'V, ..., x{")) une suite de R et soit

L=(t,...,¢). Alors X, converge vers L si et

seulement si pour tout i=1...p x\" 5 ¢.

Proposition 2.39

Soient AcR", p; :R" - R la i-&me projection définie
par p;(X1, ..., Xn) = X;. Alors A est bornée dans R” si
et seulement si pour tout i, p;(A) est bornée dans R.
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11 Compacité dans les espaces
meétriques

% Définition 2.23

Soit K une partie de (X, d) espace métrique K est dite
(séquentiellement) compacte si elle possede la
propriété suivante (dite de Bolzano-Weierstrass) : De
toute suite de K, on peut extraire une suite
convergente dans K.

Rappel 2.11. Dans R le théoréme de
Bolzano-Weierstrass indique que toute suite bornée
admet une sous-suite convergente et donc que tout
fermé borné est compact.

Proposition 2.40

Un compact K d’'un espace métrique X est un fermé
borné de X. Un sous-ensemble fermé d’un compact
est compact. Le produit de 2 espaces compacts est

compact.

Démonstration. 1. Un compact K est fermé, car si une
suite (up) converge vers [ dans E, elle admet une
sous-suite convergeant vers k € K, dont la limite est
nécessairement [ = k (proposition 2.4), donc [ € K.

2. On montre par contraposée qu’un ensemble non borné
A ne peut pas étre compact. Si A non-borné, soit
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xn € Atel que d(x,, ¥y) = n, si une suite extraite
Xp(n) — X convergeait, elle serait bornée, ce qui n’est
pas le cas car d(Xg(n), ¥) = ¢(N) = noeo .

3. Si F c K avec K compact, F fermé, une suite de F
admet une sous suite convergeant dans K par
compacité, donc sa limite est dans F par fermeture,
d’ou F compacte.

4. Si K, L sont compacts, pour une suite (xp, yn) € Kx L,
on extrait une suite (x4(n)) convergente dans K, puis
on réextrait (¥sy(n))) convergente dans L (et a fortiori
(X (n))) €st aussi convergente) donc (Xg(y(n))» Yow(n)))
converge dans K x L.

O

Exemple 2.17

Soit F = {(x, y) e RZ, xy = 1} est fermé mais pas
compact. En effet, si f(x, y) = xy est polynomiale
donc continue R? — R donc F = f~1({1}) est fermé
comme image réciproque d’un fermé par une
application continue. Mais F n’est pas compact car
pas borné. x, =(1/n,n) € F et || Xyl = N — oo.

2 Remarque 2.1. En général dans un evn un fermé
borné n’est PAS toujours compact. Dans

C9([0, 1],R), montrons que la boule unité fermée
n’est pas compacte. f,(x) = x" vérifie ||f]|l = 1, mais
comme f,(x) — f(x) (on dit converge simplement vers
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f) avec f(x) =0 si x <1, f(1) =1, donc f non continue.
Toute suite extraite de f devrait converger vers cette
limite qui n’est pas continue, donc elle ne peut pas
converger dans C9([0, 1], R) vers cette limite qui n’est
pas dans C%([0, 1],R). En général, on peut montrer
que les boules fermées d’evn sont compactes si et
seulement si 'evn est de dimension finie, on montre
une implication ci-dessous.

% Théoréme 2.41

Siu: E— F estcontinue et K c E est compacte alors

u(K) est compacte.

Démonstration. Soit y, une suite de u(K) donc y, = u(xp)
,avec (x,) suite de K, on extrait donc une suite x,)
convergeant vers x € K. Par continuité, la suite extraite
Yo(n) = U(Xp(n)) = U(X) € U(K). O

% Corollaire 2.42: (Thm. de Weierstrass)

Si K ¢ X espaces métriques est compacteetf: K - R
est continue, alors la fonction f est bornée et atteint
ses bornes : Ixg, X1 € K,V¥x € Kf(xg) < f(x) < f(x7).

Démonstration. f(K) est compacte donc fermée et bornée.
Donc f est bornée, et le f(K) contient son sup et son inf
(par fermeture) c’est-a-dire, il existe yg, y1 € f(K)
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Yo = infycx f(X), y1 = sup,cx f(x). Finalement y; = f(x;) avec
Xj € K. O

Corollaire 2.43

Soit X, K deux espaces métriques avec K compact et
f: K — X une bijection continue, alors f est une
homéomorphisme (c’est-a-dire f~1 est continue et X
est aussi compacte).

Démonstration. Comme f bijective, pour un fermé F c K,
donc un compact, (f-1)"1(F) = f(F) est 'image directe du
compact F dans X, donc est compact donc fermé. f-1
envoie donc un fermé sur un fermé, donc est continue par
caractérisation topologique de la continuité (Proposition
2.22). O

% Théoréeme 2.44

Dans un evn de dimension finie, les compacts sont
exactement les fermés bornés.

Démonstration. Il reste a montrer que les fermés bornés
sont compacts. D’apres le théoréme 2.34 un isomorphisme
linéaire u de E sur K" est continu de (E, |[|.|]) sur (K™, ||.|lc),
et u~! également. u(K) est fermé comme image réciproque
d’un fermé par u~! continue, u(K) est borné comme image
d’un borné par une application lipschitzienne. Donc L = u(K)
est un fermé borné de (K", ||.||»). Il suffit de voir que c’est
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un compact, car alors K = u~1(L) est compact comme image
continue d’'un compact (theoréme 2.41). Soit

(xp) = (x5", ..., x5") une suite de L, par définition de la
norme (x!(,")) sont bornés, elles admettent donc, par le
théoréme de Bolzano-Weierstrass dans K, une sous-suite
simultanément convergente. x'” — x( Donc si

é(p)
x=(xD, ..., x(") ona
_ () i
IXs(p) = XIl = Maxiz1_.n X, = x| - 0 et comme L est
fermé; x € L ce qui conclut. O

Exemple 2.18

Soit K = {(x, y) e RZx2+ y2/2 = 1} est compact. En
effet, si f(x, y) = x2+ y%/2 est polynomiale donc
continue R2 —» R donc F = f~1({1}) est fermé comme
image réciproque d’un fermé par une application
continue. De plus K c By j...F(9, V2) donc K est borné,
donc fermé borné dans R? de dimendion finie, donc K
est compact.

Exemple 2.19

Soit g : K — R définie par g(x, y) = x* + y? g est
continue donc atteint ses bornes sur K compact. En
effet g est la distance euclidienne a 'origine, il est
facile de voir qu’elle atteint son maximum 2 en

(0, +V2) sur K et son minimum 1 en (+1, 0) sur K. Le
théoréme des extremas liés permettra de retrouver ce
résultat pour des g et des K plus généraux.
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% Théoréme 2.45: (de Heine)

Toute fonction continue f sur un compact K c X est
uniformément continue.

Démonstration. Soit g: (x,y) — d(f(x), f(y)) de K? dans
R elle est continue (pour la distance produit sur X2 par
composition) donc g(K?) est compact. Soit e > 0 reste a
trouver un 6 de continuité uniforme.

A={(x,y) € KX | d(f(x), f(y)) = e} = g7 ([¢, +oo])

est fermé dans K2 donc compact. Donc U'application
continue (x, y) — d(x, y) atteint sa borne inférieure m. On a
m # @ car sinon on aurait un (x, x) € A, ce qui n’est pas
possible vu € > 0.

Finalement si s > 0 esttel que § < m, si d(x, y) <45, on

a(x,y) ¢ A, donc d(f(x), f(y)) <e. O

Complément : un résultat reliant
compléetude et compacité (facultatif)

Proposition 2.46

Tout espace métrique compact X est complet.

Démonstration. Soit (x,) une suite de Cauchy de X, elle
admet par compacité une suite extraite convergente, donc
elle converge (proposition 2.5). O
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Définition 2.24

Un espace métrique (X, d) est précompact si pour
tout e > 0, X peut étre couvert par un nombre fini de
boules ouvertes de rayon e.

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec
[6, Th II.1 p135] ou Gourdon d’Analyse [5, p 32]) ou la
proposition A.7.

Proposition 2.47

Un espace métrique X est compact si et seulement si
il est précompact et complet.

Complément : Compacité topologique
(facultatif)

On rappelle le résultat suivant (cf. e.g. Gourdon
d’Analyse [5, Thm 1 p 28])

Théoréme 2.48: (Propriété de Borel-Lebesgue)

Pour un ensemble K d’un espace métrique X est
compact, si et seulement si, pour tout (U;);jc; est un
recouvrement de K par des ouverts U; de X, au sens
ol K c U U; alors K admet un sous-recouvrement

iel
fini : il existe Iy c I fini tel que K ¢ U U;.

iEIg
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En passant au complémentaire et a la contraposée, on
obtient aussi la version équivalente :

Théoréme 2.49

Pour un ensemble K d’un espace métrique X est
compact, si et seulement si, pour tout (Fj);c; est un
fermé de K, si pour toute intersection finie (i.e. avec
Iy fini) est non-vide ﬂ F; # 0 alors Uintersection

iGIe
complete est aussi non-vide ﬂ Fi +0.
iel

12 Intégrale de Riemann a
valeur Espace de Banach

Nous référons par exemple au Gourdon d’Analyse [5]
(chapitre 3 secion 1) pour cette section. Soit F un evn
complet. Soit I = [a, b] c R un segment. On rappelle les
définitions :

Définition 2.25

Une subdivision de [a, b] est suite finie (a;)j_g,... » de
la forme a=ay < a; <---<ap=>b. Une fonction
continue par morceaux sur I est une fonction
f:I— F telle qu’il existe une subdivision (a;)-,... ,n,
telle que pour i € [0, n - 1]], chaque restriction
fla;,a.,,1 €St continue et admette des limites en a;, g;,1.
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Une fonction f : I — F est dite en escalier si il existe
une subdivision (a;)j-,...,n, telle que pour
i€[[0,n-1]], fig, a,, €stconstante.

On définit E=CM(I, F) 'ensemble des fonctions
continues par morceaux sur I a valeur F. Comme chaque
prolongement par continuité de fjq, 4, €St continue sur un
compact [a;, aj,1], donc bornée, les fonctions continues par
morceaux sont bornées. On note D c E 'ensemble des
fonctions en escaliers.

E est donc un Evn (PAS complet) pour la norme de la
convergence uniforme, si f € E :

lflle = sup [If(DIlF-
tel

On va utiliser le théoréme suivant de prolongement des
applications linéaires continues pour définir Uintégrale a
valeur dans F. C’est une application immédiate du
Théoréeme 2.27 :

Proposition 2.50

Toute application linéaire continue u d’un
sous—espace vectoriel dense D d’un evn E vers un
evn complet F se prolonge en une unique application
linéaire continue v : E — F, ayant la méme constante
de lipschitzianité que u.
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Démonstration. Comme u est continue donc
K-lipschitzienne (par proposition 2.29) donc uniformément
continue, l'unique prolongement est donné par le Théoréme
2.27.

Si x, — X, yn — y en passant a la limite dans la relation
Ulaxp+pByn) =al(xy)+Bu(yn), on déduit que v est linéaire
et avec ||U(xn — Vo)l < K||Xn — Vnll, on déduit que v est
K-lipschitzienne. O

Pour une fonction en escalier ¢ : [a, b] — F de
subdivision (a))i-g,... n. On définit

n

ai_1+a
0= [ stde=) (@~ g e “50).

la,b] i1
I est une application linéaire continue, car par l'inégalité
triangulaire

HOIE Z ja; - aial oS5 < slielb - al.

Comme les fonctions en escalier sont denses dans les
fonctions continues par morceaux (exo. TD), la proposition
précédente permet d’étendre l'intégrale comme quand F =R
etona:

Définition 2.26

L’intégrale des fonctions continues par morceaux
CM(A, F) est Uunique prolongement linéaire continu
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de Uintégrale des fonctions en escaliers, noté
[P atf(o) = [P f(tydt.

Proposition 2.51

(Inégalité triangulaire) || [ dtf (D)llr < [ dtlIf(t)]]F.

Démonstration.
n b
_a gi-1tai
M@ lr < 35 1= o455 .= [ vsconear
pour ¢ en escalier et on prolonge par continuité. O

On a toutes les propriétés usuelles, Chasles, linéarité,
en particuliersi F=R" et f = (f1, ..., fn)
[P fdt=(f) ftdt, ..., [2 .t do).

Rappel sur les Intégrales impropres

Définition 2.27

Pour une fonction f continue sur un intervalle I - R
qui n’inclut pas toutes ses bornes ou qui n’est pas
borné, on définit U'intégrale impropre de la maniére
suivante :

1. Dans lecas I =[a,b[aveca< b, b eRU {+oo}

b ] c
/af(x)dx=£|/n2/a f(x)dx
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2. Dans le cas I =]a, b] avec a< b, a e RU {-o0}

b _ b
/af(x)dx=£m/c f(x)dx

3. Dans lecas I =]a, b[ avec a < b, a e RU {0},
b e RU {+x} on prend a < c < b et on pose

/abf(x)dx:/acf(x)dx+/cbf(x)dx.

Dans tous ces cas, on dit que Uintégrale est
convergente si la limite existe et est finie.

Dans tous les cas, on s’occupera surtout du cas
I =1a, b[ puisque le cas I =]a, b] est similaire en
remplacant f par x — f(-x)

Le cas le plus important est le cas suivant (car on va
disposer de théorémes de comparaison avec des fonctions
positives de références) :

Définition 2.28

Pour une fonction f continue sur un intervalle I
(comme dans la définition précédente) est dite
intégrable sur I si fab |f(x)|dx converge. Dans ce cas
on dit aussi que fab f(x)dx est absolument
convergente.
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Exercice 2.4. Convergence et valeur de

11
—dx.
0 Vx

La limite infinie est en 0. Donc Soit t > @ on Calcule
/tl \/l;dx = [2vVx]l =2 -2+Vt. La limite en t — 0 est
finie donc lintégrale converge et vaut 2.

Exemples de référence (a connaitre
TRES BIEN)

1. [, e Xdx converge et vaut 1. En
effet,feA e Xdx=1-e" 5,4, 1.
Plus généralement, fem e 9% dx converge si et
seulement si a > 0, et vaut alors 1/a.

2. /1°° t%,dt converge si et seulement si o > 1 (intégrale
de Riemann) et vaut

/ idl‘:L,cx>l,
1 t® a-1

/ idl’=+00,a'S1.
R

En effet, sia # 0, flAt%,dtz A__”;Il et poura > 1,

A-etl . . 0, tandis que poura <1 A=l 5, 4o
. A
Slla =1, _/1 %dt =In(A) > A s00 +0
3. /@ tindt converge si et seulement si o < 1 (intégrale
de Riemann) et vaut

1
/ ldt= ! ,a<1
o [° l-a
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11
/ —dt=+4c0,a>1
@ t()’

Eneffetsm;ﬁ@ fl Ldt=1- "" et poura > 1,
a ! -, g +00, tandis que pour a<la*l 5,50
Sia=1, fl Ldx =ln(a)] »ae .

4. [;7 & dt =+ diverge toujours pour tout @ € R(en
combinant les 2 points précédents).

Théoremes de comparaison

Le contexte est le suivant : on se donne une fonction
continue f : I =[a, b[— R et on étudie la nature de
intégrale impropre /ab f(x)dx

La méthode la plus simple consiste a chercher une
fonction convenable continue et positive
g:I=Ja,b[— [0,[ et de comparer f a g. Les trois
résultats de base a utiliser sont les suivants (avec C>0 une
constante).

Théoréme 2.52

Théoréme de comparaison .

5. Si|f(x)] < Cg(x), Vx € [a, b[, etsi [ g(x)dx
converge, alors fab f(x)dx converge
(absolument).

6. Sif(x)> Cg(x), Vx € [a, b| et si /ab g(x)dx = +co
alors /ab f(x)dx = +co.
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13 Espaces métriques
séparables

Définition 2.29

Une partie A est dite dense dans E si A= E. Un
ensemble est dit séparable si il admet un
sous—-ensemble au plus dénombrable dense (ou
autrement dit une suite dense).

Lemme 2.53

Un sous—-ensemble F d’'un espace métrique séparable
est séparable.

Démonstration. On peut supposer F non-vide, sinon,
c’est évident (la partie vide donc finie est dense). On fixe
donc xg € F

Soit u, une suite dénombrable dense. Soit
dm,n € B(um, 1/n)N F si cet ensemble est non-vide, et sinon
on pose am,n = Xp. La famille {am,n, m, n € N} est finie ou
dénombrable et dense car si x € F il existe d(upm, X) <1/2n
donc ap, 2, existe car B(um, 1/2n) N F est non vide et par
inégalité triangulaire d(um, am,24) < 1/n. O

Proposition 2.54

R™,1].]le) €st séparable.
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Démonstration. On a vu que Q" est dénombrable comme
produit d’ensembles dénombrables. Montrons qu’il est

dense dans R". En effet si x = (x1, ..., Xp) on pose
Xp = (%, ey %) avec | x| la partie entiére de x. Donc
Loxi] < pxj < |px;]+1et
loxd ) L
p p

donc |[xp — X||le < 1/p —p—e 0. Donc vu x, € Q7, x € Q".
Comme x est arbitraire. R" ¢ Q" CQFD. O

Exercice 2.5. Montrer que Q¢ est dense dans R.
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peut garantir que c’est un minimum local si sa hessienne est
définie positive.

Il reste les questions : comment avoir un minimum
global? comment avoir unicité du minimum? Une réponse
va étre obtenue en étudiant une notion, qui, dans le cas des
fonctions C?, sera équivalente a une positivité globale de la
hessienne. L’avantage est qu’on peut trouver une définition :
la notion de fonction convexe, sans hypothese de
dérivabilité et qui va étre robuste et permettre d’obtenir
aussi des critéres d’optimisation du premier ordre, sur des
ensembles eux aussi convexes (pas forcément ouverts).

On suppose donc que E est un espace vectoriel (e.v.)
sur R.

1 Ensembles Convexes

Soit x, y € E, on appelle segment d’extrémité x et y la
partie
[X’ y] = {/1X+(1 _/l)yl)' € [@’ 1]}

On retrouve bien siir la définition usuelle du segment
dans R. (avec la notation inhabituelle [-1,-2] = [-2,-1])

* Définition 3.1

Un ensemble C c E est dit convexe si
Vx,ye C,[x,y] cC.
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Par convention, C =0 est convexe méme si les
convexes intéressants sont les convexes non-vides...

Proposition 3.1

Si E estun e.v.n., les boules (ouvertes et fermés)
sont des convexes.

Démonstration. Considérons le cas des boules ouvertes.
Soient x,ye B(a,r), z=Ax+(1-2)y, 2 € [0, 1].

Par Uinégalité triangulaire et homogénéité, on a :
l1z=all=llA(x-a)+(1-)(y - a)ll
<|alIx = all +|1-2allly - all

<|Alr+|1-a|r=r.

Donc z € B(a, r). Le cas des boules fermées est
similaire. O

Exemple 3.1

On pose [[(x, y)ll12 = (Ix|'/2 +]y|/?)2. On note
B={(x,y) €R2:[|(x, y)ll1/2 < 1}. On remarque que
(1,0),(0,1) e B, (1/4,1/4) € Bmais (1/2,1/2) ¢ B
donc B n’est pas convexe et ||-||;,2 n'est PAS une
norme sur R2.

Exercice 3.1. Montrer que les ensembles convexes
de R sont exactement les intervalles.
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Le résultat suivant est laissé en exercice.

Proposition 3.2

Si C est convexe, alors son adhérence C et son
intérieur Int(C) sont convexes. Une intersection (finie
ou infinie) d’ensembles convexes est convexe. Si

Ci1 c E, C; c F sont convexes, alors C; x C, est
convexe dans E x F.

Cones tangents et normaux dans R”

On suppose E =R" (ou un espace préhilbertien comme
au dernier chapitre pour avoir un produit scalaire). On
n
rappelle (f, x) = Z fix;, pour f, x € E.
i=1
Les deux ensembles suivant seront importants pour
formuler des conditions pour des problémes de minimisation
sous contrainte. On rappelle que pour A, Bc E,CcR,x€ E,
A+B={a+b:acA,beB},CA={ca,ceC,acA},A-x=
{a-x:aeA},x+A={a+x:aeA}.

* Définition 3.2

Le cone tangent (au sens de 'analyse convexe) du
convexe S c E e.v.n. au point x € S est

u-Xx

5 ,Ue S, s>0}=Ri(S-Xx),

Ts(x) :={
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Le cone normal est son polaire, c’est a dire le cone
convexe fermé :
Ns(x):={fe E:VYueS,{(f,u-x) <0}
={fe E:Vve Ts(x){(f,v)<0}.

Exercice 3.2. Si L estuns.e.vde E (de dimension
finie), a € L. Montrer que T,(a) = L et
Ni(a)=Lt={ye E:{y,t)=0vVle L}, est’orthogonal
de L.

Exercice 3.3. Si S convexe et a € Int(S). Montrer
que Ts(a)=E et N (a) ={0}.

2 Fonctions convexes

Il est pratique de considérer des fonctions
f: E —>]—o00,400] =R U {+0}. Dans ce cas on parle de
domaine de £ :

D(f)={x € E : f(x) < oo}.

Les propriétés que l'on considéere dans cette section
vont étre déterminées par ’ensemble des valeurs au dessus
du graphe de f, que U'on appelle épigraphe de f :

Epi(f) = {(x,1) € ExR : f(x) < A}.
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On utilise les conventions co+co =0 et l.co=c0 sid >0,
0.00=0.

% Définition 3.3

Soit C un ensemble convexe.

1. Une fonction f : C —] — o, +] est dite convexe
si pour tout 1 €]0,1[, x, y,€ C,

fAX+(1=-2)y) <Af(X)+(L=-D)f(y).

2. Une fonction f : C —] — =, +0] est dite
strictement convexe si pour tout
1€]0,1[,x,y,e C,avec x #y

fAX+(1=2)y) <Af(x)+ (1 -A)f(y).

3. Une fonction f : C — [-c0, +o[ est dite concave
si —f est convexe.

Exemple 3.2

n
Une fonction affine f(xq1, ..., Xn) = Z ajxj+ b est
i=1
convexe et concave mais pas strictement convexe!

Une norme sur E est convexe.

Remarque 3.1. Si f est convexe, alors C n D(f) est
convexe car si f(x) < +o0, f(y) < o alors

FAX+(L=2)y) < Af(x)+ (1 =) Ff(y) < .
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On peut donc toujours remplacer soit C par E soit C
par Cn D(f) selon votre godt (pour les fonctions
infinies ou les ensembles convexes).

1.

1.

Proposition 3.3

Soit Eune.v.etf: C —] -, .

f est convexe si et seulement si Epi(f) est
convexe

Si f est convexe alors pour tout t € R,

f~1(] — =, t]) est convexe. La réciproque est
fausse.

. Siu>0,f,gconvexes alors uf + g est convexe.

De plus, elle est aussi strictement convexe si f
ou g l'est.

. Sif;,ieIsontconvexes alors 'enveloppe

supérieure f(x) =sup;.; fi(x) est convexe.

. (facultatif) f est convexe ssi g : E —] — o, +0],

définie par g(x) = f(x) si x € C et g(x) = +co
sinon, est convexe.

. Si f est strictement convexe, alors f a au plus

un minimum sur C.

Le dernier point donne la premiere relation simple des

fonctions convexes a l'optimisation.

Démonstration. Pour (1), 'énoncé est vide si f(x) ou
f(y) = 0. Soitdonc (x, t1), (y, t;) € Epi(f) (comme on veut
ti < oo cela utilise la réduction précédente). On remarque
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que Ax+(1-D)y,At; + (1 -A)ty) € Epi(f) ssi
fAx+(1-y)<at+(1-A)t,.

Si les épigraphes sont convexes, cette propriété est
vérifiée et donc en prenant Uinfimum sur t;, t, (qui donne
f(x), f(y)) on a le résultat. Si f vérifie l'inégalité, on utilise
f(x) <ty, f(y) <t pour conclure :

FAX+(L=)y) <AFO)+ (1 =D Ff(y) <Aty +(1-Db.

(1)’ On montre la convexité de D = {x : f(x) < t} comme
ci-dessus. Soit x, y € D alors pour 1€ [0, 1] :
fAx+(1-2)y)<Af(x)+(L-Df(y) <at+(1-A)t=t. Donc
Ax+(1-2)y e D.Parcontre si g=1jp,, alorssit <0,

g l(J-co,t])=0,si0<t<1,g 1(]-00,t])=]-c0,0] et
sinon pourt>1, g 1(] - o, t]) =R et ce sont 3 intervalles
donc 3 ensembles convexes. Mais g n’est pas convexe
g@=1>1/2g(-1)+1/2g(1)=1/2.

(2) est évident en utilisant U'inégalité :

uf(Ax+(1-Dy)+gAx+(1-2)y)
<pu@f(xX)+ (1 -D)f(y)+Agx)+(1-1)g(y))
=Auf+g@)(xX)+(1-2)(uf +g)(y)).

(3) vient de la stabilité des convexes par intersection et
de Epi(f) =njcrEpi(f;).

(4) est évident car Epi(f) = Epi(g).
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(5) si x # y sont deux points atteignant le minima,
f((x+y)/2) < (f(x)+f(y))/2 contredisant la minimalité. O

Une propriété importante des fonctions convexes est le
fait qu’on peut les caractériser en terme d’accroissements :

Proposition 3.4

Soit f : E =] — o, +00] une fonction. f est convexe si et
seulement si pour tout x, h € E la fonction
Ay pf(t) i= LXHNZI00 o5t croissante sur R:.

Démonstration. Il suffit de noter que

g(t) = Ax‘hf(t) = w est croissante si et seulement si
g(t) < g(s) pour @ <t < s sietseulementsion a l’inégalité
de convexité :

f(x+th) = f(%(x+ sh)+x(1- é)) < f(x+sh)£+ f(x)(1- 2).

Donc la convexité de f implique la croissance énoncée et
réciproquement en prenant s = 1 on écrit toute paire x, y
sous la forme y = x + h et 'inégalité ci-dessus se réécrit en
Uinégalité définissant la convexité de f :

f((l-t)x+ty)=f(x+th)y < f(x+Mt+f(x)(1-1)
= f(y)t+F(x)(1-1).

Cela implique une régularité minimale des fonctions
convexes :
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Corollaire 3.5

Sif: E -] -0, ] est convexe, pour tout x € D(f) et
tout h € E, la dérivée directionnelle D} f(x) existe
dans [-oo, 0] au sens ou la limite suivante existe et

vaut :
D! f(x) i= lim f(x+th)-f(x)
t—0+ t
_inf f(x +th) - f(x)_
t>0 t

Démonstration. Par la proposition précédente
g(t) — f(x+rht)—f(x)

t — 0% qui coincide avec Uinfimum. O

est croissante donc admet une limite pour

Calcul des cones normaux courants

Soient g1, ..., gn des fonctions convexes C! définies
U — R avec U ouvert convexe tel qu’il existe xg € U avec
gi(Xg) < O pour tout i.

Soit la contrainte :

C={xeU:Vie{l,...,n}, gi(x) <0}.

On sait que chaque gi‘l(] — o0, 0]) est convexe comme
image réciproque d’un intervalle borné supérieurement par
une application convexe. Par intersection, on sait donc que
C=n",9:1(] -, 0]) c U est aussi convexe.
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% Théoréeme 3.6: (admis, cf Section B.1)

Soit x € C tel que :

1. les [ premieres contraintes sont actives, c’est a
dire: g1(x)=...=g(x) =0
2. les autres contraintes ne sont pas actives, c’est
a dire g1(x) <0,...g5(x) <0
Sil=0,0na Nc(x)={0} et sinon, le cone normala C
en x est donné par

l
Nc(x) = {Z/l,-Vg,-(x),/l,- > 0} ;

i=1

Exemple 3.3

Soit A={(x,y)eR?: x>y >0,}.Sion pose
gi1(x,y)=y-x,g>(x,y) =-y qui sont linéaires donc

convexes et C1, ona:

A={(x,y)eR?: g1(x,y) <0, g2(x,y) < 0}

Calculons N4(0) le cone normal en 0 = (0, 0).
Onag1(0,0)=0=g,(0,0) donc toutes les
contraintes sont actives.

On calcule donc
Vg1(0,0)=(-1,1),Vg,(0,0)=(0,-1). D’apres le
théoreme, on a:

Na(0) =R.(-1,1) +R.(0, -1).
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Exercice 3.4. 1. Pour A de 'exemple précédent,
si a=(x, x) pour x > 0. Montrer que
Na(a) =R, (-1, 1).

2. Pour b=(x,0), x > 0. Montrer que
Na(b) =R,(0,-1).

3. Y-a-t-il d’autres valeurs de N4(c) et si oui,
pour quels points ce A?

Fonctions convexes sur R

Soit I un intervalle de R. Pour une fonction f : I — R et

ac I, on considere la fonction (taux d’accroissement de f en

. f(x)-f(a)
a) Agf définie par Agf(x) = —_—a pour tout x € I'\ {a}.

La proposition 3.4 se reformule sous la forme :

Proposition 3.7

Une fonction f : I — R est convexe si et seulement si
pour tout a € I, la fonction A,f est croissante sur

I'\{a}.

On en déduit les inégalités suivantes (inégalité des
pentes, cf dessin en cours) sur une fonction f :
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% Proposition 3.8

Une fonction convexe f : I — R vérifie 'inégalité des
pentes :

Va, b, cel, a<b<c

_ fb)-f(a < f(c)-f(a) L f(c) - f(b)
b-a c-a c-b

% Théoréme 3.9

Soit I un intervalle ouvertde R, et f: I — R une
fonction convexe. Alors pour tout g € I, f admet des
dérivées a droite et a gauche en a. On a pour tout
xel:f(x)>f\(a)(x-a)+f(a)et

f(x) > fj(a)(x — a) + f(a). En particulier, il existe une
fonction affine g telle que g(a) = f(a) et g(x) < f(x)
pour tout x € I. De plus, si a < b sont dans I, on a
fy(a) < f/(a) < f;(b).

Démonstration. Soit a € I. Dans le cas d’une fonction a
une variable, le corollaire 3.5 implique U'existence de
dérivées a droites et a gauches (pour U'instant peut-étre
infinies). Dans l'inégalité des pentes en faisant ¢ — b* ou
a— b~, on obtient :

f(b) - f(a)
< T

f(c) - f(b)
T c-p 77

< fy(b),

fg(b) <
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Poura<b, 0 <ej<(b-a)/2,l'inégalité des pentes
appliquée aux points a< a+e; < b-e, < b donne:

f(a+e)-f(a) _flb-e)-f(a+en)

€1 T (b-a-e1-€)
_ f(b-cp) -~ F(b)
< =

et en passant a la limite e; — 0* ou €, — 0* puis les
deux, on obtient :

f(b-ey) - f(b)

f(’j(a) < =

f(a+e1)-f(a)
€1

fi(a) < f3(b).

< fg(b),

Donc f(’j(a) < +co, fj(a) > —co, ce qui termine la preuve des
dérivabilités a droite et a gauche, et on a l'inégalité
attendue.

De plus, la formulation comme infimum, dans le
corollaire 3.5, montre que pour tout x > a que

W%Z(a) > fy(a) etdonc f(x) > f/(a)(x - a) + f(a). De
méme, pour tout x < gon a M < fg’(a); en

multipliant par x — a (qui est nég;tif!) on a donc que pour
tout x < a f(x) > f(a) + fi(a)(x - a).

De plus, f4(b) < f;(b) (en passant aux limites
a— b~,c— b* dans linégalité des pentes); par
conséquent, pour x < a fg(a)(x - a) = f/(a)(x - a), et on voit
finalement que Uinégalité f(x) > f)(a)(x - a) + f(a) est valide
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pour tout x e R. Le méme raisonnement s’applique pour
montrer que 'autre inégalité est vraie pour tout x € R. O

Corollaire 3.10

Soit I un intervalle ouvert de R, alors une fonction
convexe f: I — R est continue.

Exercice 3.5. Trouver une fonction convexe
f:[0,1[— R qui n'est pas continue en {0}.

Proposition 3.11

Si E=R et f est dérivable sur un ouvert convexe
U c E (donc un intervalle ouvert) alors f est convexe
si et seulement si f’ est croissante.

Démonstration. =) Supposons f convexe, l'inégalité
qu’on a montrée au (2) du théoreme précédent s’écrit
(f'(u)y-Ff(v))(u-v) >0 donc (f'(u)-f'(v)), (u-v) ont méme
signe et f’ est croissante. On peut alternativement utilisé
pour a < b, f'(a) = f/(a) < fg(b) = f'(b) grace a Uinégalité
vue au théoréeme 3.9.

<) Réciproquement si f’ croissante, montrons que f
convexe, on veut voir f(1a+(1-1)b) <af(a)+ (1 -A)f(b)

pour a < b, €]0, 1[. Par I’égalité des accroissements finis,
f(Aa+(1-1)b)—f(a)
(1-2)(b-a)

la,Aa+(1-2)b[, et de méme

est atteinte par f’ en un point de

f(b)-f(1a+(1-1)b)
(A(b-a)

la pente

est atteinte par
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f’ en un pointde Jaa+(1-24)b, b[ donc par croissance de la
dérivée :

f(Ala+(1-2)b) - f(a) - f(b)y-f(1a+(1-2)b)
(1-2)(b-a) - A(b-a)

1 1
(1-)(b-a) 1b-a

f(a) f(b)
Sd-nb-ao " 1b-a

ef(1a+(1-2)b)( )

1 f f(b
= fAa+1-Db) () < (1(_";)+ ;).

Ceci conclut. O

3 Propriétés différentielles des
fonctions convexes.

Rappel sur la différentiabilité (au sens
de Fréchet)

On rappelle que pour E, F des e.v.n. 'ensemble des
applications linéaires continues L(E, F) est un e.v.n. avec
la norme d’opérateur (dite aussi norme subordonnée)

I = supyxje<1 IOl F-
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Définition 3.4

Soit E, F des e.v.n., U c E un ouvert, f: U — F est
différentiable (au sens de Fréchet) en x si il existe
T € L(E, F) notée df(x) telle que

If(x + h) = f(x) = df(x)(Ml = o(llAll), si [|h]|— 0.

f est C! (ou continuement différentiable) sur U si f
est différentiable entout x e U et df : U — L(E, F) est
continue. On note aussi D,f(x) = df(x)(h)

f est C% si f est C! et df est aussi C1. On note
d?f(x)(h, k) = Di(Dpf)(x).

On rappellequesig: U—> V cF,f:V — Zsont
différentiables, alors f o g aussi et
d(fog)(x)=df(g(x))odg(x). Deplussi Z=Retfaun
minimum local en x € V avec V ouvert, alors df(x) = 0.

Remarque 3.2. Il est important de noter que df(x)
est une application linéaire, donc df(x)(h) est
linéaire en h, mais pas forcément en x. Pour insister
sur ce point, on note parfois de facon équivalente :

df(x)(h) = df(x).h = df(x).[h]

Dans le cas le plus fréquent pour nous ol
E =R", F =R, si f est différentiable, alors elle admet
des dérivées partielles, le gradient de f en a est noté
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Vf(a) = (F-(a), ..., 2-(a)). Alors, on a :

df(a)(h) = (Vf(a), hy = Z 68—(0)h
Jj=1

Caractérisations différentielles des
fonctions convexes

Le théoreme suivant résume les 3 caractérisations
principales de la convexité en terme de différentiabilité, par
la position relative des plans tangents et du graphe, par la
monotonie de la dérivée premiere ou par la positivité de la
dérivée seconde (le résultat n’est pas optimal, il suffit en
fait d’'une dérivabilité directionnelle appelée dérivée au
sens de Gateaux) :

% Théoréme 3.12

Soit E un e.v.n. et U un ouvert convexe, f: U >R
une fonction différentiable en tout point de U.

1. f est convexe ssi pourtout u,ve U:
f(u)y—f(v) = df(v).[u-v]
2. f est convexe ssi pour tout u,ve U:
[df(u)-df(v)].[u-v] =0

3. Si f esten plus C?, f est convexe ssi d?f(x) est
positive pour tout x € U au sens ol
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d?f(x)(h, h) > 0 pour tout x € U, h € E. De plus,
si E=R" avec la norme euclidienne, ou plus
généralement si E est préhilbertien (cf. chapitre
5), si d2f(x) est définie positive, pour tout x € U
(c’est-a-dire pour tout h 0, d2f(x)(h, h) > 0)
alors f est strictement convexe.

Remarque 3.3. (Rappel d’algebre linéaire) Si E =R",
alors d?f(x) est positive si et seulement si la matrice
hessienne Hf(x) est positive (rappel

(Hf(x));j = (M 7% (X))). Comme elle est toujours
symétrique et donc diagonalisable en base
orthonormale, cela équivaut a ce que ces valeurs
propres soient toutes positives. Dans le cas n=2

H(f)(x) = ( 2 j ) (c’est a dire on prend les notations

de Monge r = ngg(x), S= awy(x) t=2 g(x)) alors
H(f)(x) est positive si et seulement si rt—s2 >0 et

r>0.19

a. Eneffet D2f(x)((hy, hy), (hy, hy)) = rh2+2shy hy+
ths = (h?)P(hy/hy) si hy # 0, avec P(1) = r+2s1 + ta?
le polynome de second degré de discriminant A =
4s2 — 4rt. Si A < 0 pas de racine et selon le signe
de r, P est soit toujours positif (cas D?f(a) définie
positive) soit toujours négative (D%f(a) définie néga-
tive). Si A = 0, il y a une racine double et on a la
méme conclusion sur la positivité. Si h; = 0, alors
D2f(x)((h1, hy), (h1, hy))) =2shy h, n’est positive que
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si s =0 car sinon en (hy, hy) = (s,-1), on a la valeur
strictement négative —2s? et c’est aussi le seule cas
ou le déterminant rt—s? est positif pour r =0). Si A > 0
on a 2 racines réelles et P prend a la fois des valeurs
positives et négatives.

Remarque 3.4. Un cas particulier du (3) est le cas ou
il existe ¢ > 0 telle que d?f(x)(h, h) > c||h||? pour tout
xe U,he E=R". Le cas de stricte convexité se
déduit donc en décomposant f =g+ §||x||2. L'inégalité
donne que d?g = d?f - c est positive donc g convexe
et on verra au dernier chapitre que U'identité du
parallélogramme implique que §||x||2 est strictement
convexe, donc par somme f est strictement convexe
(de facon trés uniforme). C’est une situation
intéressante pour les problemes de minimisation qui
permet d’obtenir la convergence de suites
minimisantes et des stratégies algorithmiques de
minimisation (cf. cours de recherche opérationnelle
au S6).

121

Démonstration. (1) Si f convexe, 'inégalité vient du

corollaire 3.5 en comparant Uinfimum a la valeuren t=1

pour h=u-v:

f(v+th)-f(v)
t
< f(u+h)-f(u)="~f(u)-"~f(v).

df(v).[u-v]=inf
t>0
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Réciproquement on applique l'inégalité en
z=tx+(1-t)y € U par convexité de U pour x,y € U d’ol :

(A) f(x)-f(2) = df(z)[x - 2],
(B) f(y)-f(z) > df(2)[y - zI,
et t(A)+(1-1t)(B) donne
tF(x)+(1-t)f(y)-f(2)
>df(D)[t(x-2)+(1-t)(y-2)]=df(2)(0)=0

ce qui donne l'inégalité de convexité.

(2) Si f convexe, on utilise de méme les inégalités du
corollaire 3.5 :

df(u)y(v-u) < f(v)-f(u), df(v)(u-v)<f(u)-Ffv)

En sommant, on obtient U'inégalité (df(u) — df(v))(v - u) < 0.
Réciproquement, on utilise ¢(t) = f(tx + (1 - t)y) qui par
composition est dérivable de dérivée
() =df(tx+(1-t)y)(x-y).Orsit<s

¢'(s) = ¢ (1) =[df(y + s(x - y)) —df(y + t(x = y)](x - y)

1
= cldf(y +s(x—y) —df(y +t(x - y))]
(y+s(x-y)-(y+t(x-y)) =0

Donc ¢’ est croissante et par un résultat a 1 variable

(proposition 3.12) ¢ est convexe.

(3)Si f est C2, on dérive en t la relation du (2) avec
V=X, U= X+ th une fois divisée par t et on obtient
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d?f(x)(h, h) > 0. Réciproquement, en dérivanten t, la
fonction g définie par g(t) = df(v+t(u—-v))(u-v) (qui est
C! car df est C1) et en appliquant le théoréme fondamental
du calcul :

[df(u) - df(v)][u-v]=g(1)-9g(0)

1
:/ dtdf(v+t(u-v))(u-v,u-v) >0
0
et on retrouve le critéere du (2).

Pour la stricte convexité, commencons par le cas E =R,
donc U =TI un intervalle ouvert. Soit [a, b] c I il suffit de
voir f strictement convexe sur [a, b]. On fixe
[a, b] cla’, b'[c[a’, b]cI

On suppose dans ce cas f”(x) > 0 pour tout x e I et f”
continue (vue f de classe C?). Donc f” atteint son minimum
sur [a@’, b’] en xp de sorte que f”’(x) > c = f"(xp) > 0@ pour
tout x €]a@’, b’[c [a@’, b’]. Donc comme a la remarque 3.4
implique f =g+ CXTZ avec g” > 0 donc g convexe et donc f
strictement convexe sur]a’, b'[.

On pose g4 p(t) = ta+(1-t)b. Soit maintenant le cas
général E =R". Par définition, f est strictement convexe si
et seulement si pour tout segment
[a,blc U,a#b,hgp="Fogg, eststrictement convexe sur
[0, 1] (ou sur]0, 1[ en élargissant les intervalles comme
avant). Or h7 (1) = df?(gq,p(t))(a-b,a-b)> 0 pour tout
t €]0, 1[. On déduit donc du premier cas que h, ; est
strictement convexe sur 10, 1[ et donc aussi f. Comme U
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ouvert, on peut trouver a’, b’ € U avec
[a,b] c[a’, b']-{a’, b}, [a’, b]cU.

Pour montrer Comme g, ,, est continue bijective de
[0,1] - [a@’,b']sia +#b, [a,b] estcompact comme image
direct du compact [0, 1] par une application continue.

t— hg,b(at+(1 -t(b-a)) =
d?f(at+(1-1t)(b-a))(b-a, b- a)est continue sur [a’, b’]
donc atteint son minimum en xy € [a’, b’] qui est donc
hy ,(x) = d?f(xe)(b-a,b-a)> cx,(b-a,b-a). En
appliquant a Uintervalle ouvert ]Ja’, b’[ le premier cas, on
déduit que h, p, est strictement convexe sur ]a’, b’[, donc
aussi par restriction h; ,. Comme a # b € U arbitraires, f est
aussi strictement convexe. O

Exercice 3.6. Montrer que f(x) = x* est strictement
convexe sur R mais que sa dérivée seconde n’est pas
bornée inférieurement par c > 0.

Convexité, Critere d’extremum global

On retrouve d’abord un critere d’optimisation du
premier ordre

Proposition 3.13

Si f estde classe C! sur un ouvert convexe U et f est
convexe, alors tout point a € U est un minimum global
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de f si et seulement si c’est un point critique de f
(c’est a dire un point a tel que df(a) = 0).

Démonstration. On sait déja par le cours de L2 que si f a
un minimum local en a alors df(a) = 0. En effet, rappelons
la preuve, pour tout he E, il existe e >0 : B(a,¢€l||h||) c U
(car U ouvert) et f(a = th) > f(a) pour tout t €] — ¢, €[. Donc,
en divisant par t > 0 on obtient :
f(a+th)-f(a)
t
f(a-th)-f(a)
-t
donc df(a)(h) = 0 pour tout h ce qui veut dire df(a) = 0.

—t-o- df(a)(h) > 0

—to- df(a)(h) <0

La nouveauté est la réciproque, on suppose f convexe.
Il suffit de noter par le théoreme 3.12 que pour c € C,
f(c)-f(a) = df(a)(c-a)=0donc f(a)=inf..cf(c)eta
atteint Uinfimum de f sur C. O

On a un critére d’optimisation plus général sur un
convexe C c R". On rappelle que Vf(a) = (£-(a), ..., 2-(a)).

% Théoréme 3.14

Soit C un convexe de R" avec C c U un ouvert et
f: U — Rune fonction de classe C!, convexe sur C.
Alors a est un minimum global de f sur C si et
seulement si —Vf(a) e Nc(a) c’est a dire si et
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seulement si

Yce C,(Vf(a),c-a)>0.

Démonstration. On rappelle la définition

Nc(a)={fe E:VceS,{(f,c-a) <0} ce qui donne la
derniére reformulation. Si a est un minimum global

f(a) < f(tc+(1-t)a) pour ce C,t€]0, 1[ vu que par
convexité tc+ (1 -t)a € C. En prenant la limite, on obtient

f(t(c-a)+a)-f(a) -
: >

(Vf(a),c—-a)= tli)rg+

Réciproquement, si 'inégalité est vérifiée donc on peut
utiliser le théoreme 3.12 (dont la preuve du 1 s’applique
méme si C n’est pas ouvert) et on obtient :

0 <(Vf(a),c-a)=df(a)(c-a) < f(c)-f(a).

donc f(c) > f(a) pour tout c € C et donc g est un minimum
de f sur C. O

Exemple 3.4

On prend g(c) = ||f - c||§ le carré de la distance
euclidienne a f € E. Alors Vg(a) =-2(f — a) et donc on
obtient que g € C minimise la distance de x a C si et
seulement si :

Vce C,(x-a,c-a)<0.




Chapitre 3. Convexité 127

Ce sera le critére du théoréeme de projection sur un
convexe fermé C ou U'on verra U'existence d’un tel
point a au dernier chapitre. Dans R" on peut aussi voir
U'existence par compacité de C n B pour une boule
fermée B assez grande pour qu’une inégalité
grossiére permette d’assurer que tout minimum doive
s’y trouver. On obtient ainsi le résultat suivant.

% Théoréeme 3.15: (théoréme de projection sur un

convexe fermé de R")

Soit C c R" = E un convexe fermé non-vide et ||.||; la
norme euclidienne. Pour tout f e R”, il existe un
unique u = Pc(f) tel que

f— = inf ||f - .

I1f = ull2 \I/QCII v|l2

De plus, c’est 'unique vecteur u € C tel que :
Vve C,{(f-u,v-u)<0.

De plus, pour tout c€ C, c+ Nc(c) = PZH({c}) et
forment une partition de R".

La preuve suivante par compacité ne fonctionnera pas
en dimension infinie, mais le résultat sera encore vrai dans
un espace de Hilbert (cf. chapitre 5).

Démonstration. Comme C non vide r=inf,.c||f - v||; < .
Soit D=CnB(f,r+1). Comme la boule fermé est un
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convexe fermé, D est un convexe fermé comme intersection
de convexes fermés, et il est aussi borné par définition,
donc c’est un compact de R". De plus, D c C, donc
infuccllf = v||2 <infycp||f - V||, par définition de Uinfimum.
Mais soit 1 >e >0 et ve C tel que ||[f - v||; < r+e€ alors par
définition v e D etdonc infycp|If —=d|; <||[f=-Vl]2 < r+e.
Donc en passant a la limite e — 0, on a obtenu :

inf |[f=v|l, <r=inf||f-v]|, <inf||f-V]|,.
VeDII 2 veC” 12 VeDII 12

Or v ||f - v||; est continue sur le compact D, donc atteint
son infimum en u e D c C. Par croissance du carré, c’est
aussi le point ou ||f - v||§ atteint son infimum. La hessienne
de v - ||f - v|| est 'identité, donc cette application est
strictement convexe, elle a donc un unique minimum P(f).
La caractérisation du minimum a été vue a 'exemple
précédent. Enfin cette caractérisation donne (en
retraduisant avec la définition de Nc(c)

Pl({ch={feE:VveC,(f-c,v-c)<0}
={feE:f-ceNc(c)}=c+Nc(c).

Le fait que P : E — C est une application surjective (vu
que Pc(c)=c pour c € C) implique le résultat sur la
partition. O

4 Premieres Inégalités de
convexité

Citons un exemple important et simple.
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Exercice 3.7. Soit f: [0, +co[— [0, +o[ une fonction
concave. Montrer que pour tout x,y > 0 on a
f(x+y) < f(x)+F(y).

Démonstration. Fixons y > 0 et considérons la fonction
g: [0, +o[— R définie par g(x) = f(x) + f(y) - f(x+y).

Alors, pourtout a < b € [0, +0[, On a

g(b)-g(a) _f(b)-f(a) f(b+y)-fla+y)

b-a b-a b-a
. f(b+y)-f(a+y) f(b+y)-f(a+y)
Puisque P = bty —(a+y) est le taux
d’accroissement de f entre (b+y) et (a+y), Uinégalité des
g(b)-g(a)

pentes nous donne donc que > 0, autrement dit

) b-a
g est croissante.

Par conséquent, on a pour tout x que g(x) > g(0) = f(9),
etdonc f(x)+f(y)-f(x+y)>f(0) >0, ce qu'on voulait
démontrer. O

On verra au chapitre intégration section 5.2 U'inégalité
la plus importante, Uinégalité de Jensen, qu’on appliquera
ensuite au chapitre Espace L*.

Voici en exercice un cas (trés) particulier de U'inégalité
de Jensen (cf. Corollaire 5.6 pour une preuve).
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Exercice 3.8. Soit I un intervalle deR, a1, ..., ap
n
des réels positifs tels que Za,- =1, et ¢ une fonction

i=1
convexe sur I. Alors, pour tout x1,...,x,€ I ona

¢ (Z aiXi) < Zaitp(xi) .
i-1 -1
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Chapitre 4

Integration de
Lesbesgue :
Construction
de U'integrale
et grands
theoremes

Le but de ce chapitre “ Construction de Uintégrale et
grands théoremes" est de donner le cadre pour votre cours
de probabilité du second semestre, en pensant 'espérance
comme une intégrale, tout en généralisant Uintégrale de

132



Chapitre 4. Intégration de Lesbesgue 133

Riemann et la somme de séries vues en L1 ou en L2. Ce
seront aussi les 2 exemples importants unifiés dans ce
chapitre (qui donnent les exemples des variables aléatoires
continues et discretes).

On va se concentrer dans ce chapitre sur la
construction de U'intégrale et les grands théoréemes qu’il faut
apprendre a utiliser. On verra le minimum des définitions
requises pour formuler cette construction. Pour cela, on va
s’appuyer sur les similarités avec vos cours de probabilités
et avec le chapitre 1. Ce sont des constructions importantes
dont la démarche sera reprise par exemple au semestre
prochain pour la construction de I’espérance conditionnelle.
On reporte au deux chapitres suivants les résultats plus
techniques dont il est moins important de retenir une idée
des preuves.

Dans ce chapitre, le corps est K=R ou K=C. Pour
U'intégration, on a aussi besoin de la droite réelle étendue :
R=RU{-, +0} avec les mémes conventions qu’au chapitre
précédent: co+co=c0 etd.co=c0sid>0,0.00=0.
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Rappels

Droite réelle étendue

Rappel 4.1. La somme x +y avec x, y € R, est définie
a 'exception du cas oll x = 0 et y = —x.
Contrairement au cas des limites, on pose 0. +c0 =0,
t. + 00 =+co pour t > 0.

Pour un ensemble A non-vide (non-nécessairement
borné), on utilise sup A pour le plus petit majorant M e R de
A etinf A pour le plus grand minorant m € R de A.

On utilisera aussi inf® = +oo, sUp 0 = —co.

Exercice 4.1. Soient A, B parties non vides de R.
Montrer que :

1. M=sup Assi M estun majorant de A et il existe
une suite (xp), avec x, € A telle que x, — M.
Caractérisation analogue de inf A .

2. Tout A (non-vide) admet une borne supérieur
sup A €] — o0, 0] et une borne inférieur
infA e [—o0, oo.

3. sup A etinf A sontuniques.

4. sup(-tA)=-tinf A, vVt €]0, [. Formules
analogues pour sup(tA), inf(tA), inf(-tA).
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5. sup(A+B)=sup A+sup B et
inf(A+ B) =inf A+inf B (avec la somme usuelle
d’ensemble A+ B={a+b:acA, beB}.

6. SiAc B, alorsinfB<infA<supA<supB.

7. Si (Xp)pso €St une suite croissante de réels,
alors lim x, = sup{xn; n > 0} =sup x, . Enoncé
analogue pour une suite décroissante.

8. SisupA> x eR, alors il existe un y € A tel que
y > X.

Limites inférieures et supérieures

% Définition 4.1

Pour une suite x, € R, sa limite supérieure est le
nombre :

lim sup Xp = infsup x;, = lim sup x;
n>1 k>n n—oo s p

(L’égalité vient de la décroissance de la suite des sup,
et c’est aussi la plus grande valeur d’adhérence :exo),
sa limite inférieure est le nombre :

l|m inf x, =sup |nf X¢ = lim inf x;.
n>1 k> n—o k>n

(c’est aussi la plus petite valeur d’adhérence exo)
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On a les formules suivantes (pour t > 0) :
limsup -x, =-liminf x,,
liminf-x, =-limsup x,
limsup tx, =tlimsup x,,
liminftx, = tliminf x,
limsup xp+yn, < limsup x, +limsup y,
liminfx, +yn > liminfx, +liminfy,

Enfin, limsup x, = liminf x, = € R si et seulement si
Xnp — L.

Démonstration. Toutes les (in)égalités sont des
conséquences des propriétés des sup, inf puis un passage a
la limite :

sup —Xxp = mfxn, inf-x,=-sup x,
k>n k> k>n k>n

sup txp, = tsup xp, |nf txp=t |nf Xn
k>n k>n k> k>n

SUP Xp+Yn < SUP Xp+SUpP Yp
k>n k>n k>n

inf x,+yn
k>n

\%

inf x, +inf
k>n n kznyn

Enfin, le sens intéressant est celui ou
limsup x, =liminf x, =2 <R et alors
Xn=infysn X < Xp < supysp Xg = Yn et le théoreme des
gendarmes permet de conclure que la limite commune de
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Xn, Yn est aussi la limite £ de x,. Réciproquement, si
Xp — £, alors pour tout e > 0, pour ngrand, f —e < x, < l+¢€
d’ol on déduit £ —e < liminfx, <limsupx, <f+eete— 0

conclut. O

1 Tribus, fonctions mesurables
et mesures

Tribus

Vous avez ’habitude de parler d’événement d’un
espace de probabilité et de considérer la famille 7 c P(Q)
des évenements d’un tel espace. Souvent (pour les
probabilités discretes), on peut prendre 7 = P(Q),
Uensemble de toutes les parties de Q, mais cela ne sera pas
possible pour généraliser U'intégrale de Riemann, on ne
pourra pas définir Uintégrale de n’importe quel ensemble.
La définition suivante retient donc les propriétés
essentielles de la famille des événements que l'on veut pour
définir une probabilité sur une telle famille.

% Définition 4.2

Une tribu (ou o—algébre) sur Q est une famille 7 de
partie de Q, soit 7 c P(Q) telle que :

1. 0T
2. SiAe7 alors A7 .
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3. Pour toute suite infinie (dénombrable) (Ap)ps1
de parties de 7, alors leur union est aussi dans
la tribu U A, eT.

n>1
Un ensembe A € 7 est appelée partie 7-mesurable
ou simplement mesurable.
Un espace mesurable est une paire (Q2,7) formée
d’un ensemble Q et d’une tribu 7 sur Q. Les enembles
A € 7 sont appelés ensembles mesurables (pour la
tribu 7 ou 7-mesurables).

Le résultat suivant est assez évident

Pour toute suite finie A,---, A, de 7, alors

AjU--UAp,eT.

Pour toute suite infinie (dénombrable, resp. finie)

(Ap)ps1 (resp. Ay, ---, Ap) de parties de 77, alors leur
n

intersection ﬂ Ap €T (resp. ﬂA,- eT).

n>1 i=1

Démonstration. Pour le premier, il suffit de prolonger la
suiteen Ay =07 pour k> n+1 etalors
AU UAs=|JAneT
n>1
Pour Uintersection, il suffit de combiner union et
complémentaire, par exemple dans le cas dénombrable :

ﬂAnz(UAg)ceT. O

n>1 n>1
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Remarque 4.2. On verra au chapitre suivant la notion
plus élémentaire d’algebre de parties (ou clan) ou 'on
demande seulement la stabilité par union finie, mais
elle ne suffira pas pour la construction de Uintégrale.
Il faut comparer la notion de tribu a celle de topologie
de la remarque 2.3, qui était 'axiomatisation des
parties ouvertes d’'un espace métrique. Comme une
topologie, une tribu est stable par intersection finie,
mais méme plus elle est stable par intersection
dénombrable. Mais par contre, elle n’est pas stable
par union quelconque, mais seulement par union
dénombrable. Donc aucune des notions n’est plus
générale que 'autre. Enfin, la nouveauté est la
stabilité par complémentaire, ou autrement dit par
toutes les opérations logiques de bases sur les
ensembles (complémentaire, intersection et union
binaires), et c’est la clef pour son application en
probabilité (on veut aussi que les événements soient
stables par toutes les opérations logiques). On va
cependant traiter dans beaucoup d’aspect la notion de
tribu comme la famille des ouverts d’un espace
métrique (ou plus généralement topologique).

Mesure et Probabilité sur une tribu

L’intégation va dépendre d’un objet de base qui permet
la “mesure du volume" (ou en physique la “mesure de la
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masse" ou d’autres grandeurs extensives) et qui va
généraliser la notion de probabilité.

% Définition 4.3: Définition d’une mesure

Soit (2,7) un espace mesurable.
On appelle mesure (positive) est une application
u: T — [0,+c0] ayant les propriétés suivantes :

1. u(0)=9

2. (o-additivité) Pour toute suite au plus
dénombrable (Aj)jc; 9 d’éléments de 7 deux a
deux disjoints,

n(JAn =) uA.
iel iel

Une mesure de probabilité P est une mesure
positive P vérifiant en plus P(Q) = 1. Un espace
mesuré (resp. de probabilité) est un triplet (Q, 7, u)
(resp. (2,7, P)) formée d’'une mesure positive u (resp.
une mesure de probabilité P) sur un espace
mesurable (Q, 7).

a. c’est é dire soit I = [[0O, n]] et dans ce cas

Zp(A) Z“(A ), soit soit I = N et dans ce cas

iel

Z”(A") = Z,u(A,-) est la somme de la série, finie ou
iel i=0

+00

Une mesure a des propriétés trés similaires a celle
d’une probabilité dont vous avez 'habitude (exo).
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% Proposition 4.3

i) Si Ac B alors u(A) < u(B) (u est croissante).
ii) Pour toute suite au plus dénombrable (A;)jcr,

“(U Aj) < Z”(A") (u est sous—additive).
iel iel
iii) Si (Ap)p=1 €st une suite croissante,

n((J An) = lim u(An) = sup u(An).
il n=e0 n>1

iv) Si (Ap)p=1 €st une suite décroissante avec
u(A1) < eo,

u([) An) = lim u(An) = inf u(Ap).

nx>1

V) Siu(Q) est finie : u(A°) = u(Q) — u(A).

Ensembles u-négligeables

% Définition 4.4

Soit (2,7, u) un espace mesuré, un ensemble Ac Q
est u—négligeable si il existe B € 7 contenant Ac B
et avec u(B) = 0.

Attention, A n’est par forcément mesurable donc on ne
peut PAS déduire u(A) = 0. Mais la seule extension possible,
si A devenait mesurable, serait la valeur 0.
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Lemme 4.4

Une union au plus dénombrable d’ensembles
u-négligeables est u—négligeable.

Démonstration. Si (An)nse €st u—négligeable, alors il
existe une suite B, € 7 avec u(B,) =0 et A, c B, donc

UA,,CUBneT,u(UBn)sZu(Bn)ze.

n>0 n>0 n>0 n>0

Exercice 4.2. Montrer que le seul ensemble
v—négligeable pour la mesure de comptage v est
lensemble vide.

Définition 4.5

Une propriété P(w) des points w € Q est dite vraie
presque partout (par rapport a u, ou u—presque
partout, ou u—.p.p) si{we Q : -P(w)} est
u—négligeable. Autrement dit, si il existe B €7 avec
1(B) =0 telle que P est vraie sur B€.

Exercice 4.3. Montrer que Uindicatrice de Q 1 est

nulle A-p.p.

Un ensemble peut donc étre dense et 1-négligeable.
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Exemples de tribus

Exemple 4.1

7 =P(Q) est une tribu (appelée tribu discréte) et
7 ={0, Q} est aussi une tribu (appelée tribu
grossieére).

Tribus engendrés par une famille d’ensembles

En pratique, on n’a pas besoin de connaitre en détail,
tous les éléments contenus dans une tribu, il suffit de savoir
qu’on a assez d’élements voulus (les générateurs de la
tribu). Ceci est permis par le lemme suivant.

Si (77)jer est une famille de tribus, alors N;c; 77 est
une tribu. On peut donc parler de la plus petite tribu
contenant une famille A c P(Q), qui est Uintersection
de toutes les tribus contenant A, elle est notée o (A)
et appelée la tribu engendrée par A.

Démonstration. C’est une conséquence directe de la
forme de la définition. 0 € 7; pour tout i, donc 0 € N1 7;.

De plus, si A€ N7, alors A € 7; pour tout i, donc
comme 7; est une tribu, A¢ € ; pour chaque i et donc
A € Nier Ti-
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Enfin, si pour chaque n> 1, A, € N;e; 7, alors A, € 7;

pour tout i, donc comme 7; est une tribu, U Ap, € 97 pour
n>0

O

chaque j et donc U A, € ﬂ‘l}.

n>1 iel

Exemple 4.2: (cf. TD)

Si Ac Q, latribu engendrée par A est
ao({A}) ={A, A%, 0, Q}.

Exemple 4.3: (cf. TD)

Si Ay, -, A, c Q forment une partition (c’est a dire
sont 2 a 2 disjoints et d’'union Q), la tribu engendrée
o({A1, -, An}) ={Uic1A; : I c [[1, n]I}.

% Définition 4.6

Pour (X, d) un espace métrique dont 7 est la
topologie des ouverts, on appelle tribu borélienne
sur X, notée B(X) =o(7) la tribu engendrée par les
ouverts de X.

Le résultat suivant est montré en annexe C en section
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 Lemme 4.6

Sur R, la tribu borélienne a le systeme de
générateurs :

I

B(RM) 20'( : la;, bi[, a; < b; GR)
=il

A partir de la, on obtiendra en TD les autres
générateurs usuels.

% Lemme 4.7: (cf. TD)

Sur R, la tribu borélienne a les différents systemes
de générateurs :
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Tribu engendrée par une fonction

Lemme 4.8

Soit f : Q — (E, B) une fonction,
o(f) := f1(B)={f1(B), Be B} cT estune tribu sur
Q. On U'appelle tribu engendrée par f.

Démonstration. C’est essentiellement une application des
rappels sur 'image réciproque de fonctions (1.1). D’abord
f-10)=0eo(f), fL(E)=Q e o(f). Pour Aec 8B (resp,
ApeB,n>1):

[f1(A)]¢ = FL(AS) e o(f) car A€ € B,

L) F 1A = f-l( 9 A,,) co(fycar | JA,e8

n>1 n>1 nx1

Exemples de mesures

Exemple 4.4: (Mesure de comptage)

Sur tout ensemble Q, on définit sur £(Q), la mesure
suivante (dite de comptage)

+00 sinon

V(A):{Card(A) si A fini
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Exemple 4.5: (Mesure discréete sur Q fini)

Sur tout ensemble dénombrable Q = {wn, n € [[1, n]},
pour (u;) € [0, +oo[™ on définit sur P(Q) :

n(A) =) i
wi€A
C’est une mesure sur £(Q). Une fois connue
Uintégration pour la mesure de comptage (ou de facon
équivalente si on connait la notion de famille
sommable, on pourra généraliser cet exemple au cas
Q dénombrable)

Enfin, Uexemple fondamental est le théoréme donnant
Uexistence de la mesure de Lebesgue (admis)

* Théoréme 4.9: (définissant U’intégrale de Le-

besgue)

(admis) Il existe une unique mesure 1 sur (RY, B(RY))
invariante par translation ? telle que

/1([0,1]”)=1

Cette mesure est appelée mesure de Lebesgue sur
R? et notée 1 = 1,4 et elle vérifie pour a; < b; :

(ﬁ Ty & ) (ﬂ ai, ‘)=1j(bi—0,)

a. au sens ou pour tout a e RY, B € B8(RY), si on note
a+B={a+b,be B}, alors 1(a+B)=NA\(B)
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Proposition 4.10: (définissant la mesure image)

Soit f : Q — (E, B)une fonction et (Q, o(f), u) un
espace mesuré alors la formule uf(B) = u(f~1(B)) for
B € B est une mesure sur 7, appelée mesure image
de u par f.

Démonstration. Pour voir que uf est une mesure sur 8, il
faut noter uf(0) = 4(0) = 0. Puis pour la o-additivité, pour
Aje 8B,ieIdeux a deux disjoints avec I au plus
dénombrable, on a :

(A= s (U =s(Urea)

= D (A = ) ul (A,
iel iel
vu que les f-1(A;) e o(f) sont aussi deux a deux disjoints
par (1.1), on a pu utilisé a 'avant-derniere égalité la
o-additivité de u.

Fonctions mesurables

Il nous reste a spécifier les fonctions qu’on va pouvoir
intégrer. Il faut lire la définition suivante comme ’analogue
de la définition topologique de la continuité (proposition
2.22)
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Définition 4.7

Une fonction f: (Q,7) — (E, B) entre espaces
mesurables est mesurable si f~1(8) c 7 c’est a dire
si pourtout Be 8, f-1(B)e7.Si
(Q,7)=(X,B(X),(E,B)=(Y,8B(Y)), on appelle
fonction borélienne une fonction mesurable
f:(X,B(X) - (Y, B(Y)).

On déduit immédiatement de la définition comme le
corollaire 4.11 :

* Lemme 4.11: (Stabilité par composition de la me-

surabilité)

Sif:(D,A) - (E,B) etg:(E,B)— (F,C) sont
mesurables, alors, gof : D — F est mesurable.

Démonstration. Pour tout ensemble mesurable U € C,

g 1(U) € B est mesurable de Y par mesurabilité de g, puis
f-1(g~1(U)) € T est mesurable de X par mesurabilité de f,
mais f~1(g 1 (U)) = (go f)~"1(U) € A. Comme c’est vrai pour
tout ensemble mesurable U, on déduit de la définition
précédente go f est mesurable. O

Comme en probabilité, U'intérét principal de la notion
de mesurabilité est de permettre de définir la notion de
mesure image (analogue de la loi d’une variable aléatoire).
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Proposition 4.12

Soit f : Q — (E, B) une fonction, la tribu engendrée
par f du lemme 4.8 o(f) := f~1(B) = {f"1(B), B € B} est
la plus petite tribu rendant f mesurable. Autrement
dit : Si 7 c P(Q) est une tribu, f : (Q,7) — (E, B) est
mesurable si et seulement si o(f) c 7.

Démonstration. On a vu au lemme 4.8 que o(f) est une
tribu. f : (Q, o (f)) — (E, B) est mesurable par définition, car
pour tout B € 8, on a f~1(B) € o(f) par définition de o (f), et
cela veut dire f: (Q,0(f)) —» (E, B) est mesurable par
définition de la mesurabilité. L’équivalence

f:(Q,7)— (E, B) est mesurable si et seulement si o(f) c T
vient aussi directement des deux mémes définitions.
L’'inclusion o(f) c 7 dit justement que o(f) est plus petite
(pour Uinclusion) que toute tribu rendant f mesurable. O

Exemple 4.6

Si Ac 7, lafonction indicatrice 14 : (2,7) — (R, B(R))
est mesurable, car o(1,) = c({A}) = {A, A, 0, Q} par
Uexemple 4.2 et donc o(1,4) c 7 par la définition
d’une tribu.

En pratique, on a besoin d’'une description en terme de
parties génératrices :



Chapitre 4. Intégration de Lesbesgue 151

Lemme 4.13

Une fonction f: (Q,7) — (E, c(A)), vers un espace
mesurable engendré par une famille A, est mesurable
si et seulement si f~1(A) c 7 c’est a dire si pour tout
AcA, f LA eT.

Démonstration. Si f mesurable, vu que A c o (A), le fait
que f~1(A) € 7 est une conséquence directe de la définition.
Le contenu du lemme est donc la réciproque.

On introduit une fammille 8 (qui va se révéler étre la
plus grande tribu de E rendant f mesurable, la preuve est
donc trés similaire a celle sur o (f)) :

B={BeP(E): f 1B eT}.

Par hypothése A c B. Vérifions que B est une tribu (par la
définition) :
>0ecBcarfl0)=0eT
> Si Be B, alors f-1(BS)=f1(B)°e7 car7 estune
tribu donc B€ ¢ 8B
> SiAp,e8B,n>1,alors f‘l(U Ap) = U f-Y(Ap) €T car

n>1 n>1

7 est une tribu donc U Ap,eB

n>1
En conséquence, 8 est une tribu qui contient A, donc
o(A) c B ce qui dit exactement : VB € o(A) : f-1(B) € T soit
la définition de f mesurable. O
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Corollaire 4.14

Une fonction f : (Q,7) — (Y, 8B(Y)) vers la tribu
borélienne d’un espace métrique est mesurable, si et
seulement si pour tout ouvert U (resp. tout fermé F)
ona fY(U)e7 (resp. f~1(F) e 7). En particulier, si
(2,7) = (X, B(X)) pour un espace métrique X, alors,
toute fonction continue f est borélienne.

Démonstration. Le premier résultat est une conséquence
directe du lemme vu que

B(Y) =0'({U cyY:U ouvert}) =0'({F CY:F fermé}). Par
la proposition 2.22, f~1(U) est ouvert (resp. f~1(F) est
fermé) donc dans B(X) pour tout ouvert U de Y, on déduit
que la continuité implique la mesurabilité. O

En composant, avec les produits et sommes qui sont
des applications continues, on obtient les mémes stabilités
algébriques que pour les fonctions continues :

Corollaire 4.15

Les fonctions mesurables (22,7) — R sont stables par
combinaisons linéaires, produits, fractions
rationnelles a dénominateur non nulle, passage a
'exponentielle (etc.)

On tire de méme immédiatement des lemmes 4.6 et
4.7 :
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Corollaire 4.16

Une fonction f = (fy,---,fy) : (,7) - (R", B(R")) est
mesurable si et seulement si 'une des assertions
suivantes est vérifiée :

1. Pour tout by, -, by €R, f‘l(ﬁ] - o0, b,-]) eT
i=1
2. Pourtout ay, -, ap €R, f’l(ﬁ[ai,+°°[) €T
3. Pour Eout a; < by, ,an< b,,iZIR,
f’l(l—[[a,-, b,-]) eT
4, Pouri?)ut a; <by,---,an < by €eR,
f—l(]_[]a,-, b,-[) eT.
5. Pouri?éut i=1,---,n,
fi,--,fn:(Q,7) — (R, B(R)) sont toutes
mesurables.

Corollaire 4.17

Une fonction f : (Q,7) — (R, B(R)) (a valeur dans
'espace métrique (R, dy) de Uexemple 2.5) est
mesurable si et seulement si les trois assertions
suivantes sont vérifiées :

1. f1{eo)) eT
2. Fl{-col) e T
3. Pourtouta<beR, fi([a,b])eT

On renvoie aussi a 'annexe section 3 pour le résultat
important suivant
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% Théoréme 4.18

Les constructions suivantes sont mesurables :

1. Un supremum d’une suite f, : (2,7) — R de
fonctions mesurables

2. La limsup, liminf d’une suite f, : (Q,7) — R de
fonctions mesurables

3. Une limite simple d’une suite f, : (Q,7) — R de
fonctions mesurables

Unicité des mesures o-finies

Définition 4.8

Soit (Q, A, u) un espace mesuré. On dit que (X, A, u)

est o—fini s’il existe une suite de parties mesurables

(Ap)nen telle que u(Ap) < +oo pour tout n, et Q = U An.
n

Cette hypothese est par exemple vérifiée quand
1(Q) < +oo (donc en particulier quand y est une mesure de
probabilité), quand Q =N muni de la mesure de comptage,
ou quand Q =R" muni de la mesure de Lebesgue.

On renvoie a 'annexe C en section 1 pour une preuve
d’un corollaire tres classique au lemme de classe monotone
pour les mesures dans le cas des mesures o-finies.
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Corollaire 4.19: (au lemme de classe monotone)

Soient u et v des mesures sur un espace mesurable
(2, 7). Soit & une famille stable par intersection finie
qui engendre 7. Si u et v coincident sur & (i.e.
u(E)=v(E),VE € &) et si il existe une suite de parties
A, e & telle que Q =UpA, et u(Ap) =v(Ap) < +oo alors
u ety sont égales (i.e. u(B)=v(B),VYB € T).

2 Les fonctions étagées
(mesurables) et leur intégrale

Comme les fonctions en escalier sont la base pour
Uintégrale de Riemann, on considere ici la classe des
fonctions étagées (mesurables) qui sont la base de
Uintégrale de Lebesgue. Les fonctions en escaliers sont les
combinaisons linéaires des indicatrices d’intervalles 14 p).
On les prend pour base de intégrale de Riemann car on
sait définit [ 1,4 p(x)dx = (b - a).

On fixe a partir de maintenant un espace mesuré
(Q,7, ).

Maintenant, qu’on dispose d’une mesure u, on veut
définir de méme pour Ae7 :

/1Aduz/ 14(w) dpu(w) = u(A).
Q Q

Plus généralement, on définit :
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Définition 4.9

Pour A, B € 7, Uintégrale de 1, sur B par rapport a
1 est notée et définie par:

/1Adﬂz/1A<w>du(w)=ﬂ<AmB>.
B B

Les combinaisons linéaires de fonctions indicatrices
(mesurables) vont donc étre de méme la base de Uintégrale
de Lebesgue :

Définition 4.10

Soit (2, 7) un espace mesurable, on appelle fonction
étagée f : (Q,7) — RY une fonction de la forme

f(w) = Z aila(w)
i-1

pour a; e R et A; € 7. Pour d = 1, la représentation
est dite canonique si a; <--- < ap, tous non nuls
(Vi,a; #0) etles Ay, ---, A, sont deux a deux disjoints
et non vides.

Exercice 4.4. Les fonctions étagées sur (Q,7)
forment un sous espace vectoriel des fonctions
Q - RY.

Comme on veut que l'intégrale soit linéaire, on est
conduit a la définition suivante :
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Définition 4.11

n

Soit f une fonction étagée positive f(w) = Z a;jla,(w)
i=1

avec A; € 7 des ensembles mesurables deux a deux

disjoints (a; > 0), on définit 'intégrale de f sur
B € 9 par rapport a u par:

./Bfd#E‘/Bf(w)dﬂ(w):;am(AinB).

On reporte a 'annexe C section 4 la preuve facile mais
fastidieuse du lemme suivant :

Lemme 4.20

Soit (Q,7, u) un espace mesuré, et
f,h:(Q,7)— [0, +x] étagées positives, Be 7 :
1. Sif>0,alors [, fdu= [, 1gfdpu.
2. Sif>0,c>0,alors [, cfdu=c [, fdu.
3. (additivité) fB f+hdy= fB fdu +fB hdu.
4. (monotonie) Si 0 < f < h alors
Q< [pfdu< [;hdu.

Le résultat crucial qui va permettre l'extension de
Uintégrale est le résultat suivant :
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% Lemme 4.21

Soit (Q,7) un espace mesurable. Toute fonction
mesurable positive f : (Q,7) — (R, B(R)) est limite
simple d’une suite croissante de fonctions étagées
positives.

Démonstration. On prend

4n_1
k
fr(X) = 2" f(x)mreo + Z 2 Lr ki (X)

2% si £ <f(x)< & = L 9<k<4n
=4 0 si %zznsf(x)«oo < f(x).
27 si f(X) = +o0

1. Comme f mesurable, chacun des f~ 1([2,,, k2+,,1 eT et

f~1({+c0}) € T et donc f, est étagée (comme
combinaison linéaire de fonctions indicatrices
mesurables).

2. La suite est croissante @ < f, < f,, pour n < m. Sur
f-1([0,2"]), on découpe chaque intervalle de
définition de f, en 2’”‘” ensembles dans la définitions
de fm. Si fn(x) = & < f(x) < %1,0 < k <2™", on
trouve k =x2™M" "+1pour0s [<2M" 0 <k<4" par

division euclidienne et

Sur f~1(]2", +o0[) on a fr(x) =0 < f(x). Vu
fn(x) < f(X) < fn(X) + 5= on en déduit
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f(x) = 2 < fa(x) < f(x) si f(x) < 2", on déduit la

convergence simple.

3 Intégrale des fonctions
mesurables positives

On peut maintenant définir U'intégrale des fonctions
mesurables positives :

% Définition 4.12

Soit f : Q — [0, +0] une fonction mesurable positive
sur un espace mesuré (Q, 7, u), on définit Uintégrale
de f sur B € 7 par rapport a u par:

/B fdy = /B f (@) du(w)

=sup{/sgdy : g étagée, 0 < g< f} € [0, +].

Remarque 4.3. Pour la mesure de comptage v sur I,
toute suite a : I — [0, +] est mesurable positive et
Uintégrale correspond a la définition de la somme
d’une famille sommable :

/Ifdv:Za,-zsup{Zaj:JcI, fini}.

iel jed
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Remarque 4.4. Si f est étagée positive, pour chaque
g < f étagée positive, on a vu au lemme 4.20,
[39du < [5 fdu donc

/fd,uzsup{/gdp:gétagée, esgsf}.
B B

Et comme f fait parti des g du sup, on a en fait égalité,
et la valeur de la définition du cas étagé positif
coincide avec la nouvelle valeure.

Premieres propriétés

On reporte a 'annexe C section 4 la preuve facile mais
fastidieuse du lemme suivant :

Lemme 4.22

Soit (2,7, u) un espace mesuré, et
f,h:(Q,7) > [0, +x] mesurable positive, A, Be 7 :

1. (monotonie) Si @ < f < h alors
0< [pfdu< [;hdu.

2. Sif>0,alors [, fdu= [, 1gfdu. En particulier,
pour Ac B, 0 < [, fdu < [, fdp.

3. Sif>0,c>0,alors [;cfdu=c [, fdu.

4. Sif=0oupu(B)=0,alors [, fdu=0.

5. (sur-additivité) [, f+hdu> [ fdu+ [; hdu.

La derniére propriété n’est pas optimale, nous verrons
Uadditivité en utilisant le théoreme de convergence
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monotone. Nous la mentionnons ici pour signaler que
Uadditivité n’est pas évidente a partir de la définition.

Théoreme de convergence monotone
de Beppo Levi

% Théoréme 4.23: (Théoréme de convergence mo-

notone ou TCM)

Soit Z, : (2,7) — [0, +], une suite croissante de
fonctions mesurables positives qui tend simplement
vers Z. Alors Z est mesurable et pour tout Be 7 :

lim/anu=/deE/ lim Zydy.
n—oo B B Bn—)oo

Démonstration. La mesurabilité de Z vient du théoreme
4.18. Posons a = sup,,/B Zndp.

Comme Z, < Zy < Z pour n < m, la monotonie de
Uintégrale (du lemme 4.22) montre que

/any</Zmdy</Zdy

Donc, comme la suite fB Zpdu est croissante, elle converge

lim/anp=a§/de.
n—oo B B

Pour la réciproque, soit 1 > € > 0 et une fonction étagée
m

g(w) = Z bilg,(w) < Z(w). On pose
i=1

vers son sup et :
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An={weQ: Zy(w) 2 Z(w) —eZ(w)}. Par la monotonie de
Uintégrale et la formule pour les fonctions étagées :

/an/.lZ/anAnd/J
B B

Z(l—e)LglAndu 4.1)

m
= (1—6)2[‘),’#(5,’0/\,«,0 B).
i=1

Remarquons finalement que U A, =Q vu que pour tout
n>0

weQ, Zn(w) > Z(Q) > Z(w) - eZ(w). Comme Z, est
croissante, A, est aussi croissante donc par la proposition
4.3,

,u(B,-mAnt)ay(UBinAnﬂB)zp(B;nB).
n
En passant a la limite dans (4.1), on obtient :
m
az(1—6)Zb,ﬂ(3,nB):(l—e)/Bgdﬂ
i=1

soit en passant au sup sur g < Z puis a la limite e — 0, on
obtient U'inégalité voulue a > [, Zdp.

On obtient un résultat concret d’approximation pour
/B fdu.
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Corollaire 4.24

Soit f mesurable positive. Pour toute suite croissante
de fonctions étagées telle que f, —» f, on a

/B fodu — fB fdu.

Corollaire 4.25: (Linéarité de Uintégrale : cas posi-

tif)

Soient f, g mesurables positives eta,8 >0,0na:

/af+,6’gdu=a/fdu+ﬁ/gdu.
B B B

Démonstration. Par le lemme 4.21, on a des suites
croissantes de fonctions étagées f, —» f, g, — g donc
afy, + 5 gn est une suite croissante de fonctions étagées et
afp+B9gn — af +g. Parle TCM ou le corollaire précédent,
en passant a la limite dans 'égalité du lemme 4.20 :

/ozfn+,Bgndu=a'/fnd,u+,B/gndu
B B B

—>/a/f+ﬁgd/1:a/fd,u+,8/gd,u.
B B B

% Corollaire 4.26: (Interversion Série-intégrale :

cas positif)

Soient f, : Q — [0, +o0] une suite de fonctions
mesurables positives alors la somme
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Z fn: Q — [0, +] est mesurable et on a pour tout

/Bandp=Z/Bfndy.

n>0 n>0

n>0

BeT :

n
Démonstration. La suite des sommes partielles S, = Z fi

k=0
est croissante mesurable (par somme finie). Le résultat est

donc une application du TCM. O

Lemme de Fatou

% Théoréme 4.27: (Lemme de Fatou)

Soient Be 7 et X, : (2,7) — [0, +], une suite de
fonctions mesurables positives alors liminf,_. X, est
mesurable et

liminf X,du < liminf | X,du.
B

B n—oo n—oo

Démonstration. La mesurabilité de liminf,_. X, vient du
théoréme 4.18.

Par définition, liminf,_. X, = sup,, Z, pour la suite
croissante Z, = inf,om Xy < Xpm. En particulier, par
monotonie de l'intégrale, fB Zmdu < fB Xndu pour n> m,
donc en passant a Uinfimum : [, Zpdu < infusm [ Xndp.
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Par le théoreme de convergence monotone, on obtient
(en combinant a U'inégalité ci—-dessus) :

liminf X,du= lim /Zmdp—sup/Zmdu
B n—ooo m—oo

<sup|nf X,,dy_hmmf X,,du

m hzm n—oo

4 Intégrale des fonctions
intégrables

Comme pour les séries et les intégrales impropres en
L2, le deuxieme cas apres le cas positif est celui qu’on
appelle “absoluement convergent" pour les séries ou
“intégrable” pour les intégrales. Ils ont en commun de
considérer la méme opération (somme de série ou intégrale)
pour la valeur absolue, et si la grandeur obtenue est finie,
on peut alors définir 'opération sans valeur absolue. On
suit la méme stratégie pour U'intégrale de Lebesgue.

On aura besoin de la :

Remarque 4.5. Soit f : (Q,7) — (R, B(R)) une
fonction mesurable, sa partie positive est

f. = max(f, Q) et sa partie négative est

f- =max(-f,0). f, f_ et la valeur absolue |f| sont
mesurables par composée de f avec des applications
continues. Elles vérifient f=f, — f_ et |f|=f +f_.
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De méme, pour f : (Q,7) — (C, B(C)) une fonction
mesurable, son module |f|, et ses parties réelles et
imaginaires R(f), 3(f) sont mesurables et

f=R(F)+iI(F)=R(F)s - R(F)_+iT(F)s - iT(f)_.

% Définition 4.13

Soit (2,7, 1) un espace mesuré, une fonction
mesurable f : (Q,7) — R) est intégrale par rapport a
usur B e 7 sison module |f|: (Q,7) — [0, +x] est
d’intégrale finie sur B, i.e. / |fldu < +c0. On note
LY(Q,7,u) Vensemble des fgnctions intégrables a
valeur R.

Sif:(Q,7)— (R, B(R)) est intégrable sur B, on a
donc/f+dy,/ f_d,us/|f|du < 400 et on peut définir
l’intégE;ale de ? par rapgort ausurB:

/fdy:/f+dy—/f_dy.
B B B

Si on dit f est intégrable, c’est qu’on veut implicitement
dire sur Q, son ensemble de définition. Dans ce cas, on écrit
aussi: [fdu= [, fdu.

Définition 4.14

Soit (2,7, u) un espace mesuré, une fonction
mesurable f : (Q,7) — C (resp.
f=(f,-,f):(Q,7)—R") est intégrale par
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rapport a u sur B € 7 si ses parties réelles et
imaginaire Rf,3f : (Q,7) — R (resp. ses
coordonnées f;) sont intégrables sur B, i.e. de facon
équivalente si / |fldu < +00. On note £L1(Q, T, u; C)
'ensemble des Fonctions intégrables a valeur C.

On pose alors :

‘/fd,u:‘/‘Rfd,u+i‘/5fd,u€C,

B B B

(resp./fdy:(/fldu,m ,/f,,dp)eR”)
B B B

L’équivalence vient de
[51Rfldu, [o19fldu < [p1fldu < [g|Rfldu+ [513f|dpu.

Premieres propriétés

Lemme 4.28

Sif:(Q,7,u) — R estintégrable (sur Q), alors
p{w : |[fl(w) = +0}) = 0

Démonstration. En effet, si A={w : |f|(w) =+}, On a
(+00)14 < |f| et donc +oou(A) < [ |f|du < +oo ce qui n’est
possible que pour u(A) = 0. O
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% Lemme 4.29

Soit (Q,7,u) un espace mesuré,etf,g: (Q,7) =K
des fonctions intégrables sur B € 7, alors
0.
1.
2.

. (domination) Si h: (Q,7) — K est mesurable et

(monotonie) Si f < g alors [, fdu < [, gdu.

1pf estintégrable sur Q et [, fdu= [, 1pfdu.
(linéarité) Si a, B € K alors af +Bg est intégrable
sur B et

/af+ﬁgdu=a/fdu+ﬁ/gdu.
B B B

dominée par |f| au sens |h| < |f| alors h est
intégrable sur B.
(inégalité triangulaire) SIK=R, on a:

V fd s/|f|dy.
B B

On verra le cas complexe de 'inégalité triangulaire un
peu plus loin.

Démonstration. 1. Vu |1gf| = 1g|f|, en utilisant le cas
positif du lemme 4.22, on a [, [1gf|du = [;|f|du < +oo d’ol

Uintégrabilité. Le calcul de Uintégral se déduit alors du
méme résultat en prenant partie positive et négative des
parties réelles et imaginaires.

2. Par Uinégalité triangulaire |af + 89| < |a||f| +|81|9],

donc en passant a U'intégrale et utilisant le cas positif de la
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linéarité de Uintégrale (Corollaire 4.25) :

/B|af+ﬁg|duS/Blallf|+l,6’llg|du

=|aI/|f|du+I/3|/|9|du<+°°-
B B

De méme, ’égalité des intégrales vient en prenant partie
positive et négative des parties réelles et imaginaires.

3. Il suffit d’utiliser la monotonie de Uintégrale
[glhldu < [o1fldu < +o.

4. Dans le cas réel, on a utilise juste 'inégalité
triangulaire :

/fdyH/ f+dy—/f_dp‘
B B B
S/f+dy+/f_du=/|f|d/1.
B B B

Théoreme de Convergence dominée de
Lebesgue

% Théoréme 4.30: (Théoréeme de Convergence do-

minée ou TCD)

Soient Z,,Z : (2,7, 1) — K des fonctions mesurables
et Ae 7 avec u(A°) = 0 satisfaisant :
1. (Condition de domination) il existe une fonction
Y intégrable (positive) telle que |Z,| < Y,
2. pourtoutwe A, Zp(w) — Z(w)
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alors on a:

3. Z estintégrable
4. [, 1Zn—Z|du— 0
5. on peut intervertir limite et intégrale

lim/any=/Zdy= lim Zpdp.

Définition 4.15

Si une propriété est vraie sur un ensemble A € 7 avec
u(A€) =0, on dit que A est vraie presque partout.

L’hypothése 2. se formule en disant que Z, converge
vers Z presque partout. On étudiera cette notion avec plus
de détail au chapitre suivant.

Démonstration. En appliquant aux parties réelles et
imaginaires, il suffit de montrer le cas K=R.

1. L’inégalité |Z,| < Y implique en passant a la limite
|Z] < Y sur A, ou autrement dit par domination, Z est
intégrable sur A. Comme u(A¢) =0, on a aussi
|[Z] < Y +o0lpc et Y +o00lyc est aussi intégrable, donc Z est
méme intégrable.

3. L'inégalité |Z,| < Y se traduit aussi par
Y-2Zn,Zn+Y >0 eton peut appliquer le lemme de Fatou
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4.27 :
/(Y—Z)d,u:/liminf(Y—Zn)dy
A A n

< lim inf/(Y— Zy)du
n A

=/ Ydu - lim sup/Z,,dp,
A n A

/(Y+Z)dy=/liminf(Y+Zn)d,u
A A n
< liminf/(Y+Z,,)dy
n A

=/ Yd,u+liminf/Z,,dy,
A n A

donc en soustrayant le terme en Y,

/Zd,usliminf/anpslim sup/Z,,d,us/Zd,u
A n n A

et on en déduit donc U'égalité et la derniéere
convergence.

2. Enfin, par Uinégalité triangulaire, on déduit
|Zn—Z| < |Zn|+|Z| <2Y sur A etil satisfait la méme
condition de domination et pour tout w € A, |Z, - Z|(w) — 0.
En appliquant le reste du résultat, on obtient donc
/Q|Zn—Z|d,u—>/QOd/1=@ O
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* Corollaire 4.31: (Interversion Série-intégrale :

cas général)

Soient f, : Q — K une suite de fonctions mesurables

telle que Z / |fnldu < oo pour B € 7, alors la somme
n>0

Z fn : Q - K converge (absolument) pour presque

n>0
tout w dans B et est intégrable sur B eton a :

L3 tadu=Y [ fadu.

n>0 n>0

Démonstration. On considere la suite des sommes
n

partielles S, = Z fr qui vérifie, grace a U'inégalité
k=0
trlangula|re la condltlon de domination

|Skl < Z || < Z |fx| =: Z. Or par le cas positif de

Uinterversion, /Zd,u Z/|f,,|dy<oodonc2est

n>0

intégrable sur B. Soit A={w e B : Z(w) < o}, de sorte que
Z fx converge absolument sur A donc S, converge

sli<mplement vers la somme (qui est donc mesurable par le
théoreme 4.18). Par le lemme 4.28 on a u(A€) = 0 donc le
TCD s’applique (sur B a la place de Q) et donne le

résultat. O
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5 Théoreme de transfert

% Théoréme 4.32: (Théoréme de transfert)

Soit f: (Q,7,u) — (E, &) une fonction mesurable de
mesure image us et h: (E, &) — (R, B(R)) une autre
fonction mesurable. Alors, si h est a valeur positive :

[hot) du- /E h(x) dug(x).

De plus, si h n’est pas a valeur positive
hofell(Q,7,u) sietseulementsi he LY(E, &, uy) et
on aencore [(hof)du= [ h(x)dus(x).

Autrement dit, on ramene une intégrale sur Q a une
intégrale sur R :

/h(f(w))du(w)=/h<x>duf<x).
Q R

Démonstration. On procéde comme pour la construction
de Uintégrale. Si h=1gavec Be &, hof =141 etdonc

[ ho fdu=utF 1B =g (B) = [ hx)dug(0.

Par linéarité, on obtient le cas de h étagé. Si h positive, h
est la limite croissante d’une suite de fonctions étagées hy,
(du lemme 4.21). Comme hp(x) — h(x) par construction, on
applique le théoreme de convergence monotone aux deux
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mesures :

/hofdy:rl]ergO/(hnof)dy
= tim [ ha(0dug0 = [ hOodur(x0.

Le dernier résultat du cas intégrable est évident par le
cas positif pour 'équivalence et par linéarité pour
légalité. O

Le résultat similaire suivant est important en
probabilité. Nous avons vu la tribu engendrée par f : o(f) au
lemme 4.8. Le résultat suivant donne une interprétation
concrete des fonctions o(f)-mesurables.

Proposition 4.33: (Lemme de Doob-Dynkin)

Soit f une fonction mesurable, f: (Q,7,u) — (E, &),
et soito(f) ={A=f"1(B), Be &} latribu engendrée
par f. Alors g : Q —» (R", B(R")) est o(f)-mesurable si
et seulement si il existe h: (E, &) — (R", B(R"))
mesurable telle que g=ho f.

Démonstration. La condition suffisante est évidente car
pour un borélien A, (ho f)~1(A) = f-1(h~1(A)) qui est
mesurable car h~1(A) € & car h borélienne et 'image inverse
par f est alors par définition un élément de o(f).

Réciproquement, on raisonne comme pour le transfert
par le cas étagé g = Z/l,-lA,. et A; = f~1(B)) et alors
i
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h= Z/l,‘lgi convient. Sinon, si g positive, on la prend pour

i
limite simple de g, étagée de la forme h, o f par le cas
étagé, et on pose

h(x) = li,r7n inf hp(x).

h convient car mesurable positive (comme liminf de
fonctions mesurables) et car g(w) = lim, hp(f(w)) = h(f(w))
vu qu’en f(w) la suite (h,) converge d’aprés le choix de g,.
Le cas général se montre par linéarité a partir du cas
positif. O

6 Comparaison aux
constructions de L2

Intégrale de Riemann des fonctions
continues par morceau

Comme on a vu au chapitre 2, la base de U'intégrale de
Riemann est la notion de fonction en escalier. Ce sont des
combinaisons linéaires d’indicatrices d’intervalles de forme
1i,b; €t 1¢;. Or les intervalles sont des boréliens, donc les
fonctions en escalier sont boréliennes étagées. On a

/1]a’b[d/l=(b—a)=/1]a’b[(X)dX,

/1{c}d/l=@=/1{x}(X)dX,

donc par combinaison linéaire, intégrale de Riemann et de
Lebesgue par rapport a la mesure de Lebesgue coincident.
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Soit f continue par morceau sur [a, b], U'intégrale de
Riemann est construite en choisissant f, en escalier
convergent uniformément vers f et donc simplement, donc f
est borélienne comme limite simple de fonctions
boréliennes (cf. le théoreme 4.18). De plus, elle est bornée
donc intégrable sur [a, b].

Quitte a décomposer en partie réelle et imaginaire, on
suppose f réelle. Donc pour tout x € [a, b] on a
[F(x) = fa(x)| < ||fn - flle SOIt

fn(X) = lfn = flleo < F(X) < fa(X) +Ifn = flle-

En intégrant au sens de Lebesgue, et en utilisant que
les deux c6tés coincident avec celle de Riemann, on obtient
Uinégalité :

b
/ Fa(X)dX — || fn - Fll(b - @)

b
s/ fd/ls/ £ (X)dx + 1|y - Fllo(b - a).
[a,b] a

En passant a la limite n — co, on a ||fy — f|l — O et
/ab fa(x)dx — /ab f(x)dx par définition de Uintégrale de
Riemann. On a donc obtenu le point 1. du résultat suivant :

% Théoréme 4.34

1. Toute fonction continue par morceau sur un
segment [a, b] est intégrable par rapport a la
mesure de Lebesgue 1 et son intégrale de
Riemann coincide avec celle pour la mesure de
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Lebesgue :

b
/ f(x)dx =/ fda.
a [a,b]

2. Toute fonction continue positive sur un
intervalle I (]a, b], ]a, b[ ou [a, b[) admet une
intégrale par rapport a la mesure de Lebesgue 1
et son intégrale de Riemann coincide avec celle
pour la mesure de Lebesgue (finie ou +) :
fab f(x)dx = [, fda.

3. Toute fonction continue intégrable sur un
intervalle I (]a, b],]a, b[ ou [a, b[) est
intégrable par rapport a la mesure de Lebesgue
A si et seulement si elle est intégrable au sens
de Riemann. Dans ce cas, son intégrale de
Riemann coincide avec celle pour la mesure de
Lebesgue : fab f(x)dx = [, fda.

Démonstration. On se place dans le cas I =[a, b[. On
pose by=b-1/nsib<+ccetb,=a+nsib=+02.0npose
fn =114, - Comme f positive, f, sont des suites
croissantes qui convergent simplement vers f (sont
stationnaires égales a f). On peut appliquer le théoreme de
convergence monotone et

bn b
1 - um/f,,cm nm/ fda = lim/ f(x)dx:/ F(x)dx.
n—oo n—oo a,bn] n—oo [q4 a



Chapitre 4. Intégration de Lesbesgue 178

3. L’équivalence des intégrabilités vient du 2. appliqué
a lintégrale de |f|. Pour 'égalité dans , on utilise la méme
suite qu’au 2 et on note |f,| < |f|, qui est une domination si f
intégrable. La méme limite est maintenant valable par le
TCD.

On pourra donc appliquer les théoremes précédents aux
intégrales (de Riemann) usuelles vues en L2.

Remarque 4.6. Pour les fonctions f : [a, b] — R, on
peut définir une notion plus générale de fonction
“Riemann intégrable", elle méme plus générale que
Uintégrale des fonctions continues par morceaux.
L’intégrale de Lebesgue généralise aussi cette
version plus générale, cf. e.g.
http://math.univ-lyonl.fr/fhomes-www/mironescu/
resources/cours_mesure_integration.pdf section
6.8.1

Mesures a densité

Le résultat suivant est laissé en exercice


http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
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* Proposition 4.35: (Mesures a densité (ou absolu-

ment continue))

Soit f: X — [0, +co] une fonction mesurable. On
définit une application v : A — [0, +oo] par

v(A):Afd,u.

Alors, v est une mesure sur X, appelée mesure de
densité f par rapport a . De plus h est intégrable par
rapport a v si et seulement si fh est intégrable par

rapport a u et :
/hdv:/ fhdy .
X X

Pour une mesure a densité v par rapport a u, si u(A) =0
alors v(A) = 0. En fait, cette propriété caractérise les
mesures a densité (c’est un théoréme beaucoup plus dur, le
théoreme de Radon-Nikodym cf. section 5)

Exemple 4.7

On peut définir une mesure de probabilité sur les
boréliens de R en posant

1 x2
A= — T d .
) \/ﬂ/Ae (%)

Cette mesure s’appelle la mesure gaussienne. C’est
un exemple de probabilité a densité par rapport a la
mesure de Lebesgue. Pour vérifier qu’il s’agit bien
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d’une probabilité, il faut vérifier que :

1 2
= — _Td :].
a(®) m/Re (%)

On le vérifiera plus loin par changement de variable a
la fin du chapitre 5 a la formule (5.1)

Lien avec les Séries

Soit Q un ensemble. On considére 'espace mesuré
(Q,P(), v). Tout fonction f : Q —» R est P(Q)-mesurable.
On peut donc ignorer la mesurabilité pour le cas des séries.

Cas Q={wy, -+ ,wn} fini

n
Toute fonction s’écrit f = Z f(wi) 1y, et est donc
k=1

n
étagée. On déduit que / fdv = Z f(wy), d’abord pour les
Q k=1
fonctions étagées, puis positives, puis quelconques (on

peut prendre toutes les limites constantes).

Cas Q=N

Lemme 4.36

1. Sif >0 alors / fdv = Z f(n)
Q n=0
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2. f estintégrable si et seulement si Z f(n) est
absolument convergente et encore

/Qfdv: Z@ £(n).

n

Démonstration. 1) Soit f, = Z f(k)1;k, est une suite
k=1

croissante de fonctions donc par le TCM

n o)
/Qfdv:lip[)fndvzlirmkz_lef(k)znzzef(n)

2) L’équivalence vient du 1) f est intégrable ssi|f| a
une intégrale fini, donc ssi Z |[f(n)| c’est a dire ssi Z f(n)

n=0
est absolument convergente. La définition de intégrale et
de la somme coincident alors

/Qfdvz/ﬂﬁrdv—/Q f_dv
= Z f(n), - Z f(ny_ = Z f(n).
n=0 n=0 n=0

Cas Q ={wpn, n € N} dénombrable

Onaw:N— Q une bijection, donc la mesure image
vo({i}) = v({w 1(i)} = 1 = v({i}) est encore la mesure de
comptage, le théoréme de transfert donne donc :
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Lemme 4.37

Pour tout f : Q — [0, +o0],

Afdv:/lgf(w)dvzgf(wn)

En particulier si o :N — N est une bijection

Z f(o(n)) = Z f(n) et le méme résultat est valide

pour les serles absolument convergentes (on dit

qu’elles sont commutativement convergentes.)
Aussi L1(Q,v) = ¢1(Q) est 'ensemble des familles
sommables sur Q avec la norme 1.

Probabilité discrete sur Q = {w,, n € N}
dénombrable

C’est une densité f : Q — [0, 1] par rapport a la mesure

de comptage telle que /Q fdv = Z f(wp) =1.
n=0

7 Intégrales dépendantd’un
parametre

Soient (2,7, 4) un espace mesuré, E un evn. Soit
finalement A une partie de E.
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Définition 4.16

Soit f : AxQ — K. On suppose que pour tout x € A,

t — f(x,t) estintégrable (soit dans L1(Q, 7, n)). Dans
ce cas, on peut poser:

F(x) = [, f(x, t)du(t). On définit ainsi une intégrale
dépendant d’un parameétre la fonction F: A - K.

% Théoréeme 4.38: (Théoreme de continuité avec

hypothése de domination)

Soit f: AxQ — K. On suppose :

1. Pourtout x € A, t— f(x,t), est mesurable sur
Q.

2. Pour tout presque tout t € Q, x — f(x, t) est
continue en xg € A.

3. (Hypothése de domination) Il existe une
fonction intégrable g: Q - R, ge LY(Q, T, p)
telle que

Vte Q,Vx e A, |f(x,t)] < g(t).

Alors la fonction x — F(x) = [, f(x, t)du(t) est
continue en Xxg.

On remarquera que dans l’hypothese de domination, la
fonction g ne dépend PAS de x.

Démonstration. L’hypothése de domination garantit que
t— f(x,t) estintégrable. Soit x, € A tel que x, — xp. Par
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continuité de x — f(x, t), pour chaque t, f(x,, t) = f(xg, t).
On peut donc appliquer le théoreme de convergence
dominée (avec domination par g) pour conclure

tim [ foen, 0dute) = [ foxo, D).

O

Exemple 4.8: (cf TD.)

Soit f : R — C intégrable sur R (par rapport a la
mesure de Lebesgue 1). Sa transformée de Fourier
est définie par :

f(x) =/Rf(t)e”xdt.

Elle est continue sur R en utilisant une domination par
|f].

Théoréeme 4.39: (Théoreme de dérivabilité avec hy-

pothése de domination)

Soit f: UxQ — K avec U c R" un ouvert.
On suppose :

1. Pourtout x e U, t— f(x,t), estintégrable sur
Q.

2. Il existe N avec u(N€) =0, tel que pour tout
t € N, la fonction x — f(x, t) admet une i-éme
dérivée partielle sur U.
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3. (Hypothése de domination) Pour tout compact
K c U, il existe une fonction intégrable
gk € L1(Q) telle que

Vte N,¥x e K, ‘a—f(x, b < gk(t).
0Xj

Alors la fonction x — F(x) :/Q f(x, t)du(t) admet une

i-&me dérivée partielle sur U, 2L e L1(Q) et:

oF of
zmm=Lﬁumwm.

Remarque 4.7. Soit f =(fy, ..., fm) : UxQ — R™ avec
U c R" un ouvert. Si chaque f;(x, .) est intégrable sur
Q pour tout x € U, on peut définir Uintégrale
coordonnée par coordonnée :

mewm
4Aﬁmnwmwn4mmnwm»

Alors le théoreme s’applique en remplacant la valeur
absolue par la norme dans la domination (et en
appliquant le résultat coordonnée par coordonnée.)

Démonstration. On peut supposer n=m =1 (car les
dérivées partielles se calculent coordonnée par
coordonnée). On fixe xu et montre la dérivabilité en xg. On
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pose h(x,t)=0site N etpourteN

f(x,t)-f(xq,t) ;
= Si X # Xp

h(x, t) = o X~Xe _ .
% (Xe, t) sinon

Pour x # xg,
F(x) = F(xo) /
AT T h .
X — %o o (x, )ydu(t)

Il suffit donc de prouver que x — fQ h(x, t)du(t) est
continue en xp. Par hypothése, t — h(x, t) est mesurable
pour x # xg et par exemple en tant que liminf (sur N) aussi
ex xg et x = h(x, t) est continue pour t € N (par continuité
d’une fonction dérivable d’une variable). Enfin Uinégalité
des accroissements finis a x — f(x, t) donne, pour x # xp,
xeK=[xg—¢€,xg+€] c U (un compact car fermé borné de R
contenu dans U pour € assez petit) :
of
W(U, t)

]

[lh(x, )] < sup

ue[xe,x]

< gi(t).

La méme inégalité étant évidente en xp, on a la condition de
domination et le théoreme de continuité appliqué a K
conclut. O

 Corollaire 4.40: (Théoreme de dérivation succes-

sive)

Soit f: Ux V >Rl avec U cR", V c R™ des ouverts,
une fonction C* (k e NU {c0}). Soit u une mesure sur
une tribu 7 > B(V).




Chapitre 4. Intégration de Lesbesgue 187

On suppose qu’il existe ¢g, ¢1, ..., ¢y u—intégrables
sur V telles que [|f(x, t)|| < ¢g(t) et

VY(i1, «euyin), i1+ ...+in=p < k,Yxe U,Vte V

Ot (x, 1)

S < dp(h).
OX['...0x;

Alors la fonction x — F(x) = [, f(x, t)du(t) est de
classeCksurUetpourp=ii+...+in < k:

o F

i1 i
ox;'...0xy

oPf
=/ ——(x, t)d .
= [ O D duh)

OxIt...0x,

Démonstration. Il suffit d’appliquer le théoréme de
dérivation avec condition de domination par récurrence
simple (coordonnées f; par coordonnée f =(f;,---,fy)) . La
mesurabilité de f vient de sa continuité vu que 7 contient
les boréliens. Son intégrabilité vient de la domination

[F(x, t)] < ¢g(t) et sur les autres dérivées successives des
autres dominations. On peut prendre N = 0. O

Un exemple : la transformée de Fourier
d’une mesure avec moments d’ordre 2.

Soit 4 une mesure (de masse) finie sur 8(R") (par
exemple une probabilité a densité par rapport a 1) tel que
Xi, XiXj, i,j=1,---,nsontintégrables c’est a dire :

[ xitdu0 <o, [ pxixgldutx < oo
RM RN
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On verra plus tard grace a l'inégalité de Cauchy-Schwarz
qu’il suffit de supposer xl? intégrable. On reprend la
transformée de Fourier vu en TD et a 'exemple 4.8 qui est
définie par:

i = [ e a0 = [ Fe 0duc,
f(&, x) = e,

f est C2 (méme C*) sur R2" et vérifie les dominations :

[f(&,x)| <1
%f(f,x)— ixje&x, ‘—f(-’f x)| < Ixil
. 52
. x.@l{&EX) -
(9{,7 (9{,7] ——f(&,x) = XjX;je ) ‘3‘_‘3/351' f(&, x)| < | X X

et par Uhypothése u de masse finie, 1 est intégrable et par
les hypotheses d’intégrabilité, les autres membres de droite
des dominations sont intégrables aussi par rapport a u. Par
le théoreme de dérivation avec condition de domination, on
déduit donc que 1 est C? et :

a—flu(f) y /R XN du(x)

62
0&0¢j
Cet exemple sera utilisé au S6 pour montrer le Théoreme
centrale limite dans R".

GO == [ xixe €0 du(x).
Rn
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1 Mesure produit et théoremes
de Fubini

Tribus produits

La méthode de base pour calculer une intégrale d’une
fonction de 2 variables est de se ramener a des intégrales
de fonctions de 1 variable. Pour cela il nous faut d’abord
expliquer comment on peut munir X x Y d’une structure
d’espace mesuré quand X, Y sont tous les deux munis d'une
telle structure.

% Définition 5.1

Soient (X, A, uy) et (Y, B, uz) deux espaces mesurés
o—finis. On note A ® B la tribu engendrée par les
parties de la forme Ax B, ou Ac A, Be B; on
Uappelle tribu produit des tribus A et B.

SiA=0c(E) etB=0c(F),0na
ﬂ@Bza({ExF,Eea,FeT}).

En particulier, BR™™) = B(R") ® B(R™). De plus, si
f:(X,A)—>(Z,C)etg:(Y,B)— (Z,D) sont
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mesurables, 'application
(f,g9) : ( XxY, A®B) - (ZxT,C®D) définie par
(f, 9)(x,y) = (f(x), g(y)) est mesurable.

Démonstration. VU{ExF,Ec &, FeF} cA®B, on
obtient en passant a la tribu engendrée
G :=o-({E><F,EeS,FeT})c3{®B.

Réciproquement, on pose
A ={AecA:YFeF,Ax FeG}. On a clairement que A’
contient & et on vérifie facilement que c’est une tribu (vu que
ASXF=(QxF)-(AxF)eGpour FeF.) Dou A =c(&E) = A.
De méme, on pose ensuite, B ={BeB:YVAc A, Ax B e G}
et on déduit du point précédent que ¥ c 8’ c 8 et comme
avant que B’ est une tribu d’ou 8 = 8’. Finalement, on a
donc Ax B c G d’ol Uinclusion complémentaire de tribus.

Le cas particulier 8(R™™) = B(R") ® B(R™) est une
conséquence immédiate du Corollaire 4.16.

Pour le dernier point, comme
C®D =a'<{E>< F,EeC,Fe D}) il suffit de noter que
(f, ) WEXF)=fYE)yxg ' (F) e AxB c A B et le lemme
4.13 conclut. O
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Mesure produit

Théoreme 5.2: (définissant la mesure produit)

Soient (21, 71, u1) et (22, 77, up) deux espaces
mesurés o—finis. Alors il existe une unique mesure vy
sur 71 ® 7; vérifiant

v(AX B) = u1(A)u2(B)

pour tout A € 77 et tout B € 7; (avec la convention
usuelle 0.(+x) = 0). Cette mesure est notée
H1 ® ur =v, et est o-finie.

Exemple 5.1

Si A, désigne la mesure de Lebesgue sur R”, alors on
a toujours Apzm=4,®4Am,m. On applique le corollaire
4.19 au lemme de classe monotone a 'ensemble des

pavés &. Par définition, Ap.m, 1y ® Ay coincident sur
les pavés. Or Uyen[-M, MM = RM*M et

Anem([=M, M]™M) = (2 M) =

Ap® Am)([-M, M]™™) < +00 donc on conclut a
'égalité voulue.

La preuve va étre basée sur le fait de montrer un cas
particulier du théoréme de Fubini suivant pour les fonctions
indicatrices.

Démonstration. Unicité On applique le méme corollaire
4.19 au lemme de classe monotone. ON prend
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E={AxB,Ac7], Be7;}qui engendre 771 ® 7> par définition.
Deux mesures vy, v, vérifiant le théoréme coincident sur &.
Or comme uj, up sont o-finies, on obtient Q; = U, A; , avec
AineTdietuj(Ajn) <+co. Alors,ona Ay ,x Ay 5 € E etestde
mesure u1 (A1, n)u2(Az,n) < +oo pour vy, v2. Ceci donne la
derniere hypothése du corollaire 4.19 qui conclut a u; = u>.

Existence Pour C € 71 ® 73, on pose
Cx={yeQ,:(x,y)e C}. On cherche a voir que Cy € 73.
Supposons d’abord u, finie. On considére

C={CeT1®T; :VXCx €T

et x > up;(Cy) est 77 — mesurable}.

Alors on a

> C contient les pavés mesurables C = Ax B avec
AcT,BeT; car (Ax B)x € {0, B} en distinguant le cas
xeA, x¢gAdonc uy;(Cx) =1a(x)u2(B).

> C est une classe monotonecarsi C'c C,C’'eC
(C\ C)x =Cx\ C, dou la mesurabilité et
u2(C\ Cx = u2(Cx) — u2(C}) par finitude de u, qui est
mesurable par différence donc C\ C’ € C. De méme si
C, est une suite croissante (U, Cp)x = Up(Cp)x qui est
dans 7; et u((UnCn)x) = sup, u2((Cn)x) est bien
mesurable.

Donc C contient la classe monotone engendrée par les
pavés, donc (par le lemme de classe monotone) est égale a
T1©7;.



Chapitre 5. Intégration avancée : Théoréme
de Fubini, Changements de variables 194

Si u, est o—finie, on regarde les mesures induites et
déduit le méme résultat de mesurabilité de u;(Cy) par limite
croissante.

On peut donc poser

v<C>=/Q 12(C)dpr (X).

Il faut voir que c’est une mesure en montrant la
o—-additivité : Soient C" des ensembles mesurables
disjoints, (en utilisant qu’alors les C? sont disjoints), il
suffit d’utiliser Uinterversion série intégrale :

v(Jen= [l chdut
- [ Dm0
=3[ ma(Chduato = Yivcn.

n

Enfin, v convient par le calcul précédent de
2 ((AX B)x) :

v<A><B>=fQ 14(X)u2(B)dur (X) = a1 (A (B).

Théoreme de Fubini-Tonelli et Fubini
(admis)

La mesure produit u; ® u, étant définie a partir de u; et
12, on s’attend a ce qu’il en soit de méme de l'intégrale
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d’une fonction mesurable relativement a u; ® up. ' Et C’est
effectivement le contenu des théorémes de Fubini. On
commence par le cas positif.

% Théoréme 5.3: (Fubini-Tonelli)

Soient (21,71, u1) et (Q,, 72, u2) deux espaces
mesurés o-finis. Soit f: Q1 x Q, — [0, +0] une
fonction 77 ® ,—mesurable. Alors :

1. y— f(x,y) estune fonction mesurable (sur
(92,7) dans [0, +o0] ) pour tout x € Q, et

X = f(x,y)du,(y) est une fonction

mesurazble (sur (Qq1,77)).

2. x— f(x,y) est une fonction mesurable (sur
(Q1,77) dans [0, +]) pour tout y € Q,, et
y — / f(x, y)duq(x) est une fonction

mesuralble (sur (Q3,7)).
3. Ona

/ F(x, y)dur ® ua(x, y)

QIXQZ

=/ ( F(x, y)dﬂz(y)) dur (x)
o, \Ja,

=/( f(x,y)dm(X))duz(y)-
QZ Ql

1. Cette sous-section reprend le cours de 2018-2019 de
T. Blossier, M. Carrizosa et ]J. Melleray.
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Exercice 5.1. Calculer l'aire du disque unité
D={(x,y)eR%: x2+y2 <1}.

Comme dans le cas des fonctions définies sur R", on en
déduit facilement un théoréme qui s’applique a toutes les
fonctions intégrables (et pour vérifier qu’une fonction est
intégrable, on peut commencer par appliquer le théoréme de
Fubini-Tonelli a |f]).

% Théoréme 5.4: (Fubini)

Soient (21,71, u1) et (Q,, 7, u2) deux espaces
mesurés o-finis. Soit f: Q; x 2, —» R une fonction
intégrable. Alors :

1. vy f(x,y) estune fonction intégrable (sur Q5)
pour presque tout x € Q1, et
X - / f(x,y)duy(y) est une fonction
Q

intégrazble (sur Q7).

2. x— f(x,y) est une fonction intégrable (sur Q;)
pour presque tout y € Q,, et
y / f(x,y)dui(x) est une fonction
intégr%lble (sur Q5)

3. Ona

/ F(x, y)dur ® ua(x, y)
leﬂz

/Q ( F(x, Y)duz(y)) du1(x)

/(/ f(x, y)dﬂl(X))duz(y)-
Q;
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Exercice 5.2. Soit f, g des fonctions mesurables
positives sur R, on définit la convolution de f, g par :

Fra00= [ Fx=yg(yday) e (o, .
On rappelle que
17l = [ 1Fo01da00.
1. Montrer que f = g est mesurable et que

I1f = glly = 1Ifll111gll1-

2. Montrer que la définition de f = g s’étend pour
presque tout x au f, g € L1(R, d1) et que
f+gelLY(R, dr).

3. Montrer que pour f, g, h toutes mesurables
positives ou toutes intégrables, alors

f«(g=h)=(fxg)=h.

2 Une Inégalité de convexite :
I’Inégalité de Jensen

La convexité (ou la concavité) est souvent utilisée pour
établir des inégalités.?

2. Cette partie reprend le cours de 2018-2019 de T. Blos-
sier, M. Carrizosa et J. Melleray.
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Voyons maintenant l'inégalité de convexité la plus
importante de notre cours.

% Théoréme 5.5: (Inégalité de Jensen)

Soit (X, A, u) un espace de probabilité, g une fonction
u—intégrable a valeurs dans un intervalle I, et
¢: I - R une fonction convexe. Alors on a

so(/ gd#)S/soogd#
X X

(Uintégrale de droite peut étre égale a +!).

Démonstration. D’abord, par le théoreme 3.9, ¢ est
dérivable a droite et a gauche, donc continue sur Uintérieur
de I, donc borélienne sur I (exo) donc la composée ¢po g est
bien mesurable. Posons m =fX gdu. Notons que me I. En
effet I est définie par une ou deux inégalités, I = I; n I, avec
(I1={x:x>a}oulI{={x:x>a}oul; =R) etde méme

(I ={x:x<b}youl,={x:x<b}oul,=R). Expliquons
d’abord que si g est a valeur dans I; = {x : x > a}, alors
comme l'intégrale préserve les inégalités larges

/x gdu > /x adu=acaru(X)=1etdonc me I,. De méme si
Iy ={x : x> a} si on n’avait pas fx gdu > a, on aurait donc
[x9du=a= [, adudonc [ (g-a)du=0 mais alors g-a
serait nulle u-presque partout, donc {x e X : g(x) > a} =X
serait de mesure nulle, contredisant 'hypothése que X est
un espace de probabilité. On conclut donc aussi dans ce cas
/x gdu € I,. On raisonne pareil pour I, (ou on applique le
premier cas a —g pour changer le sens des inégalités).
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Maintenant qu’on a vu que m € I, on distingue 3 cas. Si
jamais m est le minimum de I (s’il existe!) alors on a
/X(g— m)ydu=0etg-mz=0, donc g— m est nulle presque
partout, par conséquent on a

/)(soogdﬂ=f)(so(m)du=so(m)=90(/ngﬂ) :

On traite de méme le cas ou m est le maximum de I;
finalement, le cas qui nous reste est celui ot m appartient a
Uintérieur de 1.

Alors, on sait que @g(m) existe et en posant a = ¢g(m),
le théoreme 3.9 donne que

Vtel o(t)—9p(m)=a(t-m).

En particulier, pour tout x € X on a
0(g(x)) = o(m)+a(g(x) — m). Comme g est intégrable et les
fonctions constantes sont intégrables (car u est finie), donc
la borne inférieure est intégrable, et on en déduit que la
partie négative de ¢ o g est d’intégrale finie; et en intégrant
cette inégalité, on obtient aussi que

/Xsoogd/«tZ/XsO(m)du+a/X(g—m)du

=¢<m)+a(/x gdu—m) = g(m) .

Le corollaire suivant est un cas (tres) particulier de
Uinégalité de Jensen, qui peut se montrer élémentairement,
sans théorie de la mesure.
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Corollaire 5.6

Soit I un intervalle de R, a1, ..., a, des réels positifs
n
tels que Za,- =1, et ¢ une fonction convexe sur I.

i=1
Alors, pour tout x7,...,xp €I ona

¢ (Z CViXi) < Zaitp(xi) .
i-1 -1

Démonstration. On fixe x1, ..., x, € I et on considere

lespace mesuré d’ensemble sous-jacent X = {xq, ..., Xp},
n

ou toutes les parties sont mesurables et u = Za,-éxi, ol by,

i=1
désigne la mesure de Dirac en x;. Alors u est une mesure de

probabilité; de plus pour toute fonction g: X - Ron a
n
/ gdu =Za/ig(xi) .
X i=1

En considérant pour g la fonction identité, on a donc
/¢ogdy Za,cp(x,) et/gdu Za,x, L’'inégalité de

Jensen nous donne donc comme attendu

¢ (Z a’ixi) < Zaisﬁ(xi) .
i-1 i-1
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Remarque 5.1. Dans le corollaire ci-dessus, le cas
n =2 correspond exactement a la définition de la
convexité. En particulier, une application ¢ qui
satisfait 'inégalité de Jensen pour toute fonction
intégrable sur un espace de probabilité, est
nécessairement convexe.

3 Théoreme de changement de
variables

En pratique, pour calculer une intégrale multiple, on
est souvent amené a faire un changement de variables pour
se ramener a un domaine plus simple sur lequel appliquer le
théoréeme de Fubini. On énonce le théoréme dans le cadre le
plus courant ou les fonctions que l'on peut utiliser pour faire
un changement de variables sont les difféomorphismes de
classe C!.

Cas affine

On commence par montrer le cas des fonctions affines.
Nous allons baser la preuve sur une caractérisation de la
mesure de Lebesgue :
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Théoréeme 5.7

(admis) La mesure de Lebesgue sur R" est invariante
par translation, au sens ou pour tout A € B8(R™) et tout
x € R" ,onai(x+A)=1,(A) avec
X+A:={x+a,ac A}

Inversement, si u est une mesure sur (R", B(R™)) finie
sur les parties bornées et invariante par translation,
alors il existe une constante ¢ > 0 telle que u = ca,.

Exercice 5.3. On cherche a montrer Uunicité. On
pose ¢ = u([@, 1["). Montrer en utilisant des
recouvrements par des translations d’un ensemble

fixé que
1. u((0, 1" = ¢
2. pour di,...,ap>0,0na

n o n :
Lmai] . Iliz;Lmail
ug[e, D=
En déduire que u(T17,[ai, bi[) = c[11L;(b; - a)) et
conclure (en utilisant un corollaire du lemme de
classe monotone).

Soit be R" et A€ M,(R) une matrice inversible. On
pose f(x) = Ax+ b avec f : R" — R", alors pour tout
borélien Bde R",on a:

An(f(B)) = |det(A)|An(B).
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Exercice 5.4. Si A n’est pas inversible montrer que
A(f(B)) = 0. (Indication : on pourra montrer que f(B)
estinclus dans un hyperplan affine, i.e. un
sous—-espace affine de dimension n- 1, dans le cas
b =0 dans un s.e.v. de dimension n-1).

Démonstration. f(B)=(f"1)~1(B) est bien borélien car f-1
est linéaire (en dimension finie donc) continue donc
borélienne. De méme A(f(-)) = f~1.1 est la mesure image par
f-1 donc c’est bien une mesure finie sur les parties bornées
(car f(B) est borné pour tout borné B, cf chapitre 3

f(B(@, M)) c B(0, ||b]| + M|||f||]) avec |||f]|| la norme
subordonnée de f). Montrons qu’elle est invariante par
translation.

On a pour g e R"
An(f(a+B))=An(b+A(a+B))=1n(Ad+f(B)) =1,(f(B)) par
invariance par translation de la mesure de Lebesgue. Le
théoreme précédent montre donc que A,(f(B)) = c1,(B) pour
tout borélien B. Il suffit donc de bien choisir le borélien pour
chaque A pour montrer que c = |det(A)|.

Par décomposition polaire, une matrice réelle s’écrit
A= 0S avec O orthogonale et S symétrique. Cette matrice S
peut se diagonaliser en base orthogonale S = OéDOz donc,
ensemble, cela donne une décomposition A= O;D0; ol
01 = 00j, O; sont orthogonales et D est diagonale réelle.
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Comme 1, est invariante par translation, on est donc
ramené au cas b = 0.

On est donc ramener au deux cas A orthogonale et A
diagonale inversible.

Si A orthogonale, alors on choisit la boule unité
euclidienne B = B, car une matrice orthogonale laisse
invariante cette boule (c’est par définition une isométrie
pour la norme euclidienne) donc A,(f(Bp)) = 1,(B,) et
c=1=|det(A)| (vu AA' =1,
det(A)? = det(A)det(A!) = det(I) = 1).

Si A=diag(dq, ..., dp) alors on prend B=1[0, 1]" car
A(B) =T17,10, d;] avec [0, d;] = [d;, 0] si d; < 0. Dans tous
les cas 1,(A(B)) =17, |di| = |det(A)|A(B) comme voulu.

Dans le cas général, A= 0;S0,, par composition, on
obtient :
A(A(B)) =|det(0y)||det(D)|det(O,)[A(B)
= | det(A)|A(B).
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Rappel (de L2) sur les
difféeomorphismes

Définition 5.2

Soient U c R", V c RP. Une application f : U — V une
fonction différentiable. f est un difféomorphisme si f
est bijective et que f~! est différentiable.

On dit que f est un Ck-difféomorphisme (k € N* U )
si de plus f et f~1 sont de classe Ck.

Proposition 5.9

Soit f : U — V un difféomorphisme, alors ¥x € U,
df(x) : R" — RP est un isomorphisme linéaire (en
particulier nécessairement n=p) eton a:

(df(x))~t = df1(f(x)).

Remarque 5.2. 1. Le résultat précédent montre
que la dimension est invariante par
difféomorphisme. De méme des ouverts de R" et
RP ne peuvent étre homéomorphes que sin=p
mais c’est beaucoup plus dur (Théoreme
d’invariance du domaine de Brouwer). Par
contre, il existe des applications continues
surjectives de [0, 1] dans [0, 1]2.

2. Le théoreme d’inversion locale va donner des
conditions pour la réciproque de la proposition
précédente
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Démonstration. Comme f~1o f(y) =y, en différenciant
f-1o f par le théoréme des fonctions composées en x, on
obtient : df~1(f(x)) o df(x) = id.

De méme en différenciant fo f-1(y) =y en z=f(x) on
obtient : df(f~1(z))o df~1(z) = Id. Donc df(x) et df"1(f(x))
sont inverses l'une de 'autre, ce qui conclut. O

Définition 5.3

Soit f : U — R? une application différentiable sur un
ouvert U c R". f(x) = (fi(x), ..., fp(x)). La matrice de
Uapplication linéaire df(x) dans les bases canoniques
de R" et RP est appelée, matrice jacobienne de f et
notée J(f)(x) :

f
J(H(X)); = <§—Xj<x>>.

Remarque 5.3. Le théoreme de dérivation des
fonctions composées donne donc :

J(g o f)(xe) = J(9)(f(xe))J(f)(Xe),

et le résultat pour les inverses de la proposition
précédente s’écrit :

J(F Y (ye) = [J(H(F(ye)] L.

Le théoreme suivant avec k = 1 permettra de vérifier
Uhypothése du théoréeme de changement de variable.
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Théoréme 5.10: (d’inversion globale)

Soit f : U — R" une application de classe Ck (avec
k > 1) injective et telle que pour tout x € U,

df(x) : R" - R" est un isomorphisme linéaire, alors
f(U) estun ouvertdeR" et f: U — f(U) est un
ck-difféomorphisme.

Remarque 5.4. df(x) estunisomorphisme si et
seulement si det(Jf(x)) # 0.

Cas général (admis)

Nous pouvons maintenant énoncer le théoréme de
changement de variables. 3

% Théoréme 5.11: (Théoréeme de changement de

variables)

Soient U, V deux ouverts de R", et ¢: U — V un
difféomorphisme de classe C!. Rappelons qu’on note
An la mesure de Lebesgue sur R". Alors on a :

1. Pour toute partie B borélienne de U,
An(e(B) = [ det(Je(0)Idan(0).

3. Cette sous-section reprend le cours de 2018-2019 de
T. Blossier, M. Carrizosa et ]J. Melleray.
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2. Sif: V- [0,+x] est borélienne, alors
/f(x)dan(x)
Vv
=/Ufoso(y>|detu¢<y>>|dzn<y>.

3. Sif: V—>Restintégrable, alors
y = foop(y)|det(Je(y))| estintégrable sur U et
on a

/ F(X)dAn(x)
\v

=/Ufoso(y)lde’f(Jw(y))ld/ln(y)-

Remarque 5.5. Le cas affine est une conséquence du
lemme 5.8 et du théoreme de transfert appliqué
f=¢1:(V,B(V),1,) — (U,8(U)). Le 1 du théoréme
ou le lemme 5.8 ci-dessus, s’interpréte comme le
calcul de la mesure image de la mesure de Lebesgue
induite sur V : (1, v)x ayant une densité

fx(x) =|det(Jo(x))|1y(x) par rapporta 1,. Le résultat
correspond a h=f oy de sorte que :

/Vfd/lnzfvh(X)d/l,,

- [ Bt dan)

=/Ufo¢<y>|detuso<y>>|dan(y>.
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Exemple 5.2: (changement de variables en coordon-

nées polaires)

On considére 'application ¢ : U =]0, +o0[x]0, 27[— R?
définie par ¢(r,0) = (rcosé, rsinég).
cosf -rsind

Alors, la matrice jacobienne de ¢ est|
sinfd rcosé

de déterminant r.

De plus, ¢ est injective et

¢(U) =R?\ ([0, +oo[x{0}) = V.

Ainsi, ¢ est un cl-difféomorphisme de U sur V.
Comme 1,(R%\ V) =0, c’est-a—dire R? \ V est
négligeable, il n’est pas génant que ¢ ne soit pas un
difféomorphisme de U sur R? tout entier.

Par exemple, calculons

I=/(X+y)2dxdy, ou D={(x,y): x*+y?<1}.
D

En utilisant le théoréme de changement de variables
avec les coordonnées polaires (et le théoreme de
Fubini), on obtient ¢=1(D n V) =]0, 1[x]0, 2x[ et
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I = / (x +y)>dxdy
DnV

/ (rcos®+rsing)’rdrde
¢~1(DnV)

1
/dr
0

2r
(/ r3(cos?@+sin’6+2cos@sin 9)d9)
0

1 2r
/ r3( do(1 +sin 20)) dr
0 0

1

/ 2xr3dr
0

T

5"

Exemple 5.3

Calculons (3) = [ t71/2e"tdt.
On commence par le changement de variable (pour
les intégrales a une variable) u?2 = t, dt = 2udu :

1 +0o0
rs) =/ t~12e-tdt

2 0
“+00 2 +00 2
=2/ e Y du=/ e “du
0 —ez

avec la derniere égalité venant de la parité de la

fonction u — e~¥*,
Enfin, on calcule le carré de cette intégrale en
utilisant d’abord Fubini-Tonelli pour obtenir une
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intégrale double (on utilise R? \ ({0} x [0, +co[) = V
vérifiant 1,(V¢) =0 comme a 'exemple précédent).

([ ooy

=/ dxdy e X2 =/ dxdy e X~V
R2 %

d’ou par changement de variable en coordonnée
polaire (comme a l'exemple précédent on utilise
¢~ 1(V) = U pour le domaine d’intégration) :

(r(%))2 = (/@h de/@m dre"22r/2)
2 +00
_ (/0 dal) [—e"z/Z]@

= (271).% =7.

2

On a aussi vérifier que

/ e‘”zdu=\/E.

(o)

En faisant, le changement de variable linéaire
u=x/V2, on obtient :

1 /+oo _ 2/2
— e *X/4dx = +/r. (5.1)
V2 Jow g
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Chapitre 6

Introduction

aUuX espaces
[ P

Soit (Q, 7, u) un espace mesuré (7 la tribu, u la
mesure). On va travailler en identifiant les fonctions si elles
coincident u—presque partout. Autrement dit, on écriraf=g
quand u({x: f(x) # g(x)}) = 0; en particulier, f = 0 signifiera
que f vaut @ presque partout. Par exemple, si f est la
fonction caractéristique de Q, on pourra écrire f = 0. Ainsi,
dit en mots, on va en fait travailler avec les “classes
d’équivalence de fonctions a égalité u—presque partout
prés". K sera égale aR ou C.

213
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1 L’espace L*(Q, u)

* Définition 6.1

Soit f: Q — K une fonction mesurable. On dit que

M € [0, +oo[ est une borne essentielle de f ou que f
est essentiellement bornée par M si

u({x: |f(x)| > M}) =0, autrement dit, si f <M
u—presque partout.

On définit leur ensemble :

L®(Q, 7, u;K) =
{f; f: Q> K, mesurable et 3C <0 : |[f| < Cu—p.p.}

et la fonction (qui est une norme selon le lemme suivant) :
[[fllo=inf{C :|f|< Cu—p.p.} =: €S5S sSUpp,calf(X)|.
On note aussi plus brievement

L= (Q;K) = L=(Q, u; K) = L=(Q, T, u; K) et L=(Q) = L*(Q; R), si
il n’y a pas de confusion possible.

Exercice 6.1. (cf TD) Montrer que |f| < ||f||p.P-

(L®(Q,7,u;K), || |lo) €st un espace vectoriel normé.

Démonstration. On montre qu’il s’agit d’'un sous—espace
vectoriel de 'espace des classes d’équivalences de
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fonctions mesurables. Bien sir 0 est bornée donc
essentiellement bornée.

Soient f, g e L®(Q, 7, u;K), 1 € K. Par Uexo

p({w [f(w)] > [Iflle}) = 0,
n({w 1 1g(w)| > [1gll}) = 0.

Or par lU'inégalité triangulaire des nombres on
a:l(Af+ g)(w)| < A|If(w)| +|g(w)| donc

{w f (@) < |Ifllo} N {w 1 ()] < [1glle}
CHw [+ g) ()] < || flleo + 1G]}

et en passant au complémentaire

p{w : [(Af+ g) ()| > [l +11Glle})
<u({w  [f(w)] > [[flle}) + u({w 1 [g(w)] > [Ill}) = 0

Donc, par définition, Af + g est essentiellement bornée et
[|AF + gl < A flleo +11Gllco- On déduit que L®(Q; K) est bien
un espace vectoriel et U'inégalité triangulaire. En fait

p{w @ [f(w)| > C}) = p({w : |2 f(w)] > |1|C}) donc en
comparant les infima, ||[1f||w = |1] ||f|]~ C& qui donne la
positive homogénéité. Enfin par définition, si ||f|| = 0 alors
f =0 presque partout donc sa classe d’équivalence est
nulle. O

Théoréeme 6.2

(L®(Q,7,u;K), || |lo) est un espace de Banach.
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Démonstration. Il reste a montrer la complétude : Soit f,
une suite de Cauchy de fonctions mesurables
essentiellement bornées. Montrons que que f, converge
vers f(w) =limsup,_,. fr(w) qui est une fonction mesurable
comme limsup de fonctions mesurables et dont on va voir
gu’elle est essentiellement bornée. Donc, par 'hypothese
d’avoir une suite de Cauchy, pour n>0,e=1/nil existe N,
tel que Vp, g > Np, ||f, - fgllw < 1. Par définition de la norme,
on peut donc fixer A, p q (pour p, g > Np) avec u(Ag , ;) =0
tel que

sup |fp(w) - fa(w)| <

w€An,p,q

S|

On va intersecter tous ces ensembles (une intersection
dénombrable) pour avoir u—p.p. une suite de Cauchy. On
prend donc A =nNp.9 Np g>N, An,p,q- ON a

H(AS) < Z Z u(A5 5.q) =0 (Vvu que A€ estune union
n>0 p,q=Np

dénombrable).

De plus pour w € A€, on a
1
Vnan’ q = Nn, |fp(w)_ fq(w)| < F

donc (f,(w)) est de Cauchy dans K donc converge. Sa limite
est forcément f(w) et en passant a la limite g — o ci dessus,
pourtoutwe A:

Vn,v¥p = Np, [fy(w) - f(w)] < %

Comme u(A€) =0 on déduit

1
Vnan 2 Nn; ||fp_ f”oo < F-
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Ceci implique ||f||lw < ||fplle +||fp — fll dOnc f est dans
L*(Q, 7, u;K) et la convergence de f, vers f dans cet
espace. Comme toute suite de Cauchy converge, on a
obtenu la complétude voulue. O

2 Définitions et propriétés
élémentaires des espaces
LP(2, u)

On définit les espaces :
.Ep(Q,‘T,,u;K):{f:Q—>Kmesurable|/|f|pdu<oo},
pour p € [1, oo[. Alors

||f||p=</ dulfiP)1P.

n’est pas une norme (mais une seminorme sur £LP(Q, 7, 1)
carsi ||f|[p, = 0 alors f est seulement nulle presque partout.
On considere donc U'espace des classes d’équivalences a
égalité presque partout prés de fonctions f et Uespace de
Lebesgue :

% Définition 6.2

LP(Q, T, u;K) =

{f; f : Q > K mesurable et/|f|pd,u<oo},

pour p € [1, oof.
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Comme pour le cas p =, on on note aussi plus
brievement

LP(Q;K) = LP(Q, u; K) = LP(Q, T, 4, K)
et LP(Q) =LP(Q;R), siil n'y a pas de confusion possible.

Par la suite, on identifie f a f dans ce contexte, on
répete que les égalités sont des égalités u—p.p..

Montrons que [|.||, est une norme sur LP(Q, 7, ). La
séparation et ’homogénéité sont maintenant évidentes. On
rappelle U'inégalité de Holder d’abord dans le cas le plus

simple

Proposition 6.3

Si f, g sont mesurables, ||f||, <+ et ||g]lw < +o0, alors
fg e LP(Q, T, 1;K) et Ifgllp < Ifllpllgll-

Démonstration. Il suffit de noter que, u—presque partout,
on a|g(x)| < llglle, et donc [f(x)g(x)|P < |f(x)|Pllgll&- En
intégrant cette inégalité, on obtient bien

||fg||5=/ﬂ|f(x>g<x>|"du

S/Qlf(X)l”Ilgllfodu=IIfIIZIIQIIfo-

La version générale est la suivante
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* Lemme 6.4: (inégalité de Holder)

Sip,ge[l,o[telsquel/p+1/g=1/r <1,
felP(Q,7,u;K),geL9Q,T,u;K) alors
fge L"(Q,7,u;K) et

Ifgllr < [Ifllpllgllq-

Démonstration. En remplacant f, g par ||, |g|" on se
ramene au cas r=1.

Par hypothése danslecasr=1,1 < p < o, on
remarque que par concavité du logarithme, on a pour
a,b>0

log (aP/p+b9/q) > log (a”)/p+log(b?)/q
=log (ab) .

Donc on obtient en exponentiant (et en vérifiant
directement les cas d’annulations), U'inégalité d’Young :

FOP , 19001°

f
F(x)g(x)| < p g

Donc en intégrant, on obtient fg e L! et appliquanta Af,
1>0:
polop AT q
» ||f||p+T||9||q-
Comme le cas d’annulation ||f||, = 0 ou [|g||qg = @ sont
évidents (car alors fg=0 u— p.p.), on conclut en supposant
[1fllp # 0, 11gllqg # @ et en prenant la valeur de A donnant le
minimum A = ||f[I;]1g11%'". O

A
IIfglly <
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Une conséquence importante est U'exercice suivant :

Exercice 6.2. Si u est une mesure finie pour
1 < p < g< o, montrer que :

L¥(Q,7T,u;K) c LYQ, T, u;K)
c LP(Q, T, 1K) c LYQ, T, u; K).

On en déduit U'inégalité triangulaire :

* Théoreme 6.5: (Inégalité de Minkowski)

Soient pe[1,+] et f,ge LP(Q). Alors f+g e LP(Q)
et|If+gllp < lIfllp+1gllp-

Démonstration. On a déja traité le cas p = +oo, et le cas
p =1 est simplement U'inégalité triangulaire habituelle.
Supposons donc p €]1,+oo[ et f, g € LP(Q).

Commencons par montrer que ||f + g||p < +c0. Comme
X — xP est convexe et croissante, on a pour tout x que

J < |

1 1
= P, = p
< SO+ Z1g(x1P .

1
if(X) +

1 1 1
3700+ 3900 29t

En intégrant cette inégalité, on obtient que

1 1
=5 I1f+9l5 < S5+ 1g15) -

Ceci nous prouve que [|f + gl|p < +c0.
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_P_
p-1
Ci-dessous, on va utiliser 'inégalité de Holder, et le fait

Maintenant, notons g = 'exposant conjugué de p.

que
%
i+ g7 = (/ |f+g|<P-1>qdu)
q Q
1-4 .
=(/|f+g|") —If+ gl
Q
Alors on a
If+glp = /Qlf+g|pdp
< /Q(|f|+|g|)|f+g|"‘1du
- /Q|f||f+g|”-1dy+/9|g||f+g|”-1dy
p-1 p-1
< Wl |1F + 9177t gl i + a7

(Il + gllp) 1F + 917
(IFllp + gl + g5~

Si jamais ||f + gll, =0 on n’arien a démontrer; sinon, en
divisant des deux cOtés par ||f+g||f;_1 on obtient finalement
If+gllp < [Ifllp+1gllp- O

Exercice 6.3. Soit (2,7, u) un espace mesure o-fini.
Soit f > 0 une fonction mesurable positive, alors pour
p €]0, oo

/ fpd,uz/oo dtptP L u({w : f(w) > t}).
0
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On rappelle d’abord la version L? du théoreme de
convergence dominée.

% Théoréme 6.6: (Théoréme de convergence domi-

née LP)

Soit p € [1, +oo[. Soit (2, x) un espace mesuré, et f,
une suite de fonctions mesurables convergeant
u—presque partout vers f, et vérifiant la domination
|fq] < g avec g € LP(Q, u). Alors, f,, f € LP(Q, n) et f,
converge vers f dans LP(Q, u), c’est a dire.

lim ||, - Il = ©.

Démonstration. On a |f, - f|P — 0 u—presque partout. De
|fn] < g on déduit que f,,, inLP(Q, u;K) en passant a la limite
on obtient |[f| < g etdonc f € LP(Q, u;K). De plus, on a la
domination :

[fn = fIP < (Ifal + )P < (29)P = 2P gP

et comme g € LP(Q, u) et positive, on déduit que gP = |g|P est
u—intégrable et sert donc de domination pour appliquer le
théoréme de convergence dominée usuelle qui donne le
résultat :

||fn—f||5=/ﬂ|fn—f|"dy —>,Hm/99du=0.
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% Théoréme 6.7: (de Riesz-Fischer)

Soit (Q, u) un espace mesuré, les espaces LP(Q, u, K)
pour p € [1, o] sont des espaces de Banach.

Démonstration. On vient de voir que LP(Q, u,K) est un
espace vectoriel normé, et méme la complétude dans le cas

p:OO_

Il reste le cas p < ». En décomposant en partie réelle
et imaginaire, on peut supposer et donc on suppose K =R.

Pour la complétude, on utilise la proposition 2.6. Soit
Z U, qui est absolument convergente, il faut montrer qu’elle

k
converge dans LP. Soit gy = Z [Uunl, l19kllp < Z [lUunllp et
n=1
|gklP est croissante, donc par convergence monotone

converge vers g avec ||g|lp < Y |lunllp- Donc |g|P € LT qui
donne une domination pour |§un|p et Z up est p.p.
absolument convergente, donc a p.p. une limite et par
convergence dominée, converge donc dans LP. . O

Résultats de convergences

En suivant le méme raisonnement on obtient le résultat
suivant :
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% Théoréme 6.8

Soient (Q, 7, u) un espace mesuré, p € [1, +oo[, et (fy)
une suite d’éléments de LP(Q) qui converge vers f
dans (LP(Q), - llp). Alors il existe une suite extraite
(fn,) telle que (f,,) tend vers f, u—presque partout et
dans LP(Q).

Démonstration. On extrait (f,,) telle que

1fn., = fnllp < 1/2k. (c’est possible car la suite est de
Cauchy dans LP donc on prend ny telle que

||fg = fa llp < 1/2% pour g > ny.)

n
Donc on pose g, = Z |fn.., — fn,| Qui est une suite
) k=1
croissante avec

19kllp < D" gy = fallp < ) 1/2K = 1.
k k=1

On déduit donc en appliquant le théoreme de convergence

monotone que g, a une limite g = Z |fn.., — fn | telle que
k=1
[19llp < 1. On lutilise maintenant comme condition de

domination. Donc Z:(f,,k+1 - fn,) est absolument convergente

surA={w: g(w) < cfo} etona u(A° =0, vu||g|lp < c. Donc
par série télescopique (f,, (w)) converge pour w € A. (et
comme suite extraite elle converge aussi dans L? mais en
fait elle est dominée par |f,,|+ g € LP et converge aussi par
convergence dominée). O
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Proposition 6.9

Soient (2,7, 1) un espace de probabilité et
f: Q— [0, +] une fonction mesurable. Alors on a

fllo= i fllp -
il = Xim_11£ll,

Démonstration. Commencons par remarquer que l'on a
toujours

Ifllp = (/Q|f|"du)” < (1F18u(@))” = Iflls -

Par conséquent, si ||f||[, — +o quand p — +co alors
|| f|lo = +oo. Pour voir la réciproque, notons que pour t < ||f||w
fixé, 'ensemble Ay = {x € Q: |[f(x)| > t} est de mesure
strictement positive, par conséquent

Illp = (tPu(A)? = tu(A)? — t quand p — +o .

Ceci montre que si ||f||o = +o0 alors ||f]|, tend vers +co; mais
aussi que, si ||f|lo <+ On a pour tout £ > 0 que pour p
suffisamment grand ||f|le —& < [|fllp < [|flle- O

Résultats de densité

On rappelle le résultat suivant qui se déduit de la
construction de U'intégrale (cf. lemme 4.21)
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Lemme 6.10

Soit (2, 4, 7) un espace o-fini. L’ensemble S des
fonctions étagées intégrables est dense dans tous les
LP(Q,u,T), 1< p<co. En particulier,

LY(Q, u, T) N L®(Q, u, T) est dense dans LP(Q, u, T)
pour 1 < p < co.

Lemme 6.11

Soit (Q, u, 7) un espace o-fini avec 7 = (&) pour &
une famille stable par intersection finie et de mesure

finie pour u, et contenant une suite A, avec u(Ap) <
et Q =uU,A,. Alors 'espace vectoriel

E = Vect{l,, A€ &} est dense dans tous les
LP(Q,u,T), 1 < p<oo. En particulier, si & est
dénombrable, alors LP(Q,u,7), 1 < p < o est
séparable.

En général L*(Q, u,7) n'est PAS séparable, sauf si Q
est un ensemble fini, par exemple ¢°(N) n’est pas séparable
(c’est un exercice plus dur de niveau M1).

Démonstration. Soit A, € & avec u(A,) <o et Q =UrA,.

. —LP .
Soit M:={AeT :Vn,1ana, € E }. Clairement & c M.
On va montrer que M est une classe monotone :

> QeMcarly, € E
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> SiAc BetA,BeM,onalpana, =1sna, —1lana, par
le TD 1 donc dans 'espace vectoriel ELP

> Si B, € M suite croissante d’union B alors
1g,na, — lgna, partout parle TD 1, Oron a
domination par 14, € LP(Q, u, 7) donc par
convergence dominée 1g_~a, — lgna, dans
LP(Q, u,T) et donc lgna, cEY

Le lemme de classe monotone implique M > T(S)
Donc si B € 7(&) est de mesure finie, on a 1gna, € E et par
la méme application du théoréme de convergence dominée
(par 15 cette fois) on déduit 15 € E . Donc E contient
toute fonction étagée intégrable et le résultat précédent
conclut. La séparabilité vient de la densité de 'ensemble
dénombrable Vecty(la, A€ &). O

Le support d’'une fonction continue f est le fermé
supp(f) = f-1({0})c. Un fonction sur R" est donc a support
compact quand elle est nulle en dehors d’un ensemble
borné. On note C2(Q) est 'ensemble des fonctions a
support compact sur un ouvert Q.

 Théoréme 6.12

Soit Q c R" un ouvert et 2 la mesure de Lebesgue sur
la tribu borélienne B(Q) = B(R™)q (tribu induite sur Q).
Alors 'ensemble des fonctions continues a support
compact C%(Q) est dense dans LP(Q, 8(Q), 1) pour

1 <p <o, quiestséparable.
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Démonstration. Par le lemme précédent avec
E={A=T1.,la;, bi], a; < bj} 'ensemble des pavés, il suffit
de voir que les 1, sont approchés par des fonctions
continues a support compact pour A = Hf’zl[a,, bi]. Par
produit de fonctions (de variables différentes), cela se
rameéne au cas n=1. Soit f =1, p) et fp(t)=1site|a,b],
fo(t)=1-max(n(t->b),1)sit> b,
fa(t)=1-max(n(a-t),1)sit < a. Alors il est facile de voir
que (fp)p>1 est une suite dans C?(Q) qui converge
ponctuellement vers f (exo). Elle est dominée par 1;5_1 pi1)
qui est dans LP(Q, B(2), 1) pour 1 < p < oo donc par
convergence dominée, ||f, — f||, — 0. Donc on peut
appliquer le lemme précédent et conclure. O

3 Cas discret : espaces ¢°(I),
pe[l, [ (cf. TD)

Définition 6.3

Soit p € [1, o[. Une famille (z;);c; de nombres
complexes ou réels est dite p-sommable si la famille
(|1zi|P)ic; €st sommable. On note ¢P(I,K) 'ensemble
des familles d’éléments de K p-sommable.

Un examen de la définition indique que
¢P(I,K)=LP(I,P(I),v) avec v la mesure de comptage, c’est
donc un espace de Banach. On a aussi par définition (dans
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le cas positif puis le cas quelconque) :

Za,-z/ladv.

iel

On note

l121lp = (Z |z,-|P)l/p :

iel

L’'inégalité de Holder s’écrit donc pour
xetd(Il),yetP(I):avecl/p+1/g=1,p,qe]l,oof:

> xiyil < (Zv«-w)lm (va’)l/p

iel iel iel




Chapitre 7

Espaces de
Hilbert; bases
hilbertiennes

1 Geénéralités
Soit H un espace vectoriel surK=R ou C

* Définition 7.1

Un produit scalaire sur H est une application

(,)Y:HxH->EK

telle que :

1. pourtouty e H, (y,.): H— K est linéaire
2.-SiK=RVx,yeH,(x,y)={(y, x) (symétrie)

230
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-SiK=CVx,yeH,(x,y)=(y, x) (symétrie
hermitienne)

3. pour xe H, (x, x) eR"

4. pour x e H, (x, x) =0 si et seulement si x = 0.
Un espace H avec un tel produit scalaire est un
espace préhilbertien réel (si K=R) et complexe (si
K =C).

On remarque que dans le cas complexe, (., y) est
antilinéaire, c’est-a-dire avec 1 le conjugué complexe,

VX,y,ze H A1 e€C, Ax+2z,y)=A(x,y)+(z,y).

Exemple 7.1

Sur H=¢2(N,C) := L(N, v;C) (espace L? avec la
mesure de comptage v) on a le produit scalaire
(hermitien canonique) :
X, ¥y =) %y
iel
Dans le cas réel, la méme formule sans conjugaison
complexe fonctionne.

Exemple 7.2

Sur H=L%(Q, u;C) avec (Q, u) un espace mesuré
o-fini, on a le produit scalaire (hermitien canonique) :

(f, g) = /ng(xw(x).
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Exemple 7.3

Sur H= C%a, b],C) on a le produit scalaire :
b
(f,9)= [ Fx0900d0.
a

Proposition 7.1

Si H est muni d’un produit scalaire on a l'inégalité de
Cauchy-Schwarz :

(X, 2 < (X, X)Xy, )

avec égalité si et seulement si x, y sont liés. De plus
[Ix]] = v{x, x) est une norme sur H vérifiant Uidentité
du parallélogramme :

1
= SUIXIZ + 11yl

A2

Démonstration. On a

(X+ty, x+ty) = [IX||2+ E2||yl|? + 2tR((x, ¥)) = @

c’est un polynome de degré 2 qui est toujours positif ou

nul, donc son discriminant A = 4R((x, y))? — 4||x]|%|ly||? < @.

En remplacant y par uy avec u = % Si(x,y)#0on

obtient

R((X, yyu) =[x, )| < |Ix]1*Cuy, uy)

2112 211112
= X1y 1= au = (x| 11°
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Le méme calcul donne pour u de module 1 la norme de

2
| iv1ix = wlixity | = 211y 211x12 = 211XV IR (x, uy))

qui vaut 0 si on choisit u tel que (x, y)u = [{x, y)| et que l'on
est dans le cas d’égalité de C-S, ce qui donne la relation de
dépendance linéaire cherchée ||y||x - u||x||ly = 0. (La
réciproque, c’'est a dire l’égalité en cas de dépendance
linéaire, est évidente).

Pour vérifier que l'on a une norme, la positivité vient de
'axiome 3, la séparation vient du dernier axiome,
'homogénéité vient de

Ay, dy) =224y, y) =121y, y)
et U'inégalité triangulaire vient d'une application de C-S:

(X+y, x+y)=IXI2+1lylI? +2R(x, y)
< |IxI12+11yl1? + 21Ix1yl = (Ix1+ Ty D2,

Enfin, on a aussi la relation :

X=y,x=y)y=IXIZ+lylI* = 2R(x, y)

soit en faisant la somme (avec l'égalité débutant le calcul
pour 'inégalité triangulaire), on obtient Uidentité du
parallélogramme. O

Remarque 7.1. L’identité du parallélogramme
implique que H%HZ > 1(11x1|12 +11y11?) avec égalité si et
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seulement si x = y ce qui donne un résultat de
convexité (en faite stricte car 'inégalité est stricte si
x # y). (On avu en TD que par continuité la convexité
a mi point implique la convexité).

Une autre identité importante s’établit en prenant la
différence des égalités donnant la preuve de Uidentité
du parallélogramme ci-dessus, c’est identité de
polarisation :

X + ylI2 = llx = ylI®
4

R(x,y)=

On retrouve aussi

|Ix +iyll? = lIx = iyll®
4

Iy, x) = R(iy, x) =

d’ou la formule de polarisation complexe :

¥, x)
_ lx+ yII2 = lx = ylI? +illx + iy|l> = i|lx - iy|?
4
ou encore en bref
13
<V'X>=z;"k““"ky"2 (7.1)

* Définition 7.2

Un espace pré-hilbertien complet est appelé espace
de Hilbert.




Chapitre 7. Espaces de Hilbert; bases
hilbertiennes 235

% Théoréme 7.2

Soit (Q,7, u) un espace mesuré. Alors
H=1L%Q,7,u;K) estun espace de Hilbert sur K avec
le produit scalaire défini pour f, g € H par :

(f, 9) :/QTQdu-

Démonstration. On ne traite que le cas K=C. Si f,ge H,
Uinégalité de Holder avec p= g=2 donne fge LY(Q, T, u;K)
et donc lU'intégrale définissant le produit scalaire est bien
définie. On vérifie les axiomes des produits scalaires : 1/
(f, g) est linéaire en la deuxieme variable g par linéarité de
Uintégrale.

2/ la symétrie hermitienne vient du calcul suivant :

<f,g>=/979dy=/ﬂﬁd#=/ﬂf@dlnm.

3/
(f, fy = /Q Fdy = 1fI12 € [0, +oo

4/ Comme on sait déja que ||.||> la séparation de la
norme implique que si ||f|| = 0 alors f =0 (u—-presque
partout c’est a dire) dans H = L2(Q, 7, u; K).

On a donc bien un espace pré-hilbertien, et le
Théoréme de Riesz-Fischer 6.7 dit que L?(Q, 7, u; K) est
complet, donc un espace de Hilbert. O



Chapitre 7. Espaces de Hilbert; bases
hilbertiennes 236

Exemple 7.4

¢%(N; C) sont des espaces de Hilbert (cf. chapitre 6
pour la complétude), mais pas C%([a, b], C) dont la
complétion est Uespace de Hilbert L2([a, b],1;C). La
complétion d’un espace préhilbertien en tant qu’e.v.n.
(cf. annexe A section 3) est toujours un espace de
Hilbert.

2 Projection sur un convexe
ferme

On va généraliser U'existence de projection orthogonale
sur un sous—espace d’un espace euclidien d’abord au cas
des convexes fermés et en dimension infinie.

% Théoreme 7.3

Soit H un espace de Hilbert et C ¢ H un convexe
fermé non-vide. Pour tout f € H il existe un unique
u=Pc(f) e C tel que

If - ull = \Ilggllf— vil.

De plus c’est Uunique vecteur u € C vérifiant la
propriété caractéristique :

vveC, R{f-u,v-u))<0

Enfin, Pc est une application 1-lipschitzienne
appelée projection sur C.
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Remarque 7.2. Un théoréme de projection similaire
sur un convexe fermé est valide dans LP(Q, 7, u) pour
tout 1 < p < o (et pas seulement p=2), maisiln’y a
pas de caractérisation aussi simple de la projection
Pc (en ’absence de produit scalaire) et la projection
Pc est seulement uniformément continue (et plus
nécessairement Lipschitz). Mais ce résultat est
beaucoup plus dur (un exercice difficile de M1 Math).

Démonstration. On fait une preuve directe, utilisant
Uidentité du parallélogramme.

Soit v, € C tel que ||[f — vy|| = d =inf,cc||f - V]|

En appliquant Uidentité aa=f-v,,b=Ff- vy, on
trouve :

Vn—Vm
2

Vp + va2 |

2 1
5 | =3 a1F = vall2 +11f = vanl®) - 2.

|7-

. 2
Or par convexité “24¥m ¢ C donc ||f - Y25 || > d2 donc

On déduit donc que v, est de Cauchy, donc converge
vers u et par continuité de la norme d = ||f - u||.

Vo—Vm|? 1
| < S AU = vall? 11 = vl ?) - 07 - 0.

Soitg:ve||f- v||§. On peut calculer la différentielle
dg(u) =R({f-u,.)). Orsi g atteint son minimum en u, pour
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veC,te]0,1],
If —tv—(1-t)ull3

= [|f — ull5 + t?|lv - ull5 - 2tR(f - u, v - u))

2
> |If - ull3

donc 2R((f - u, t — u)) < t||v - u||} et la limite t — @ donne
Uinégalité caractéristique. Réciproquement, onaent=1,
U'inégalité qui conclut :

WF—ull3=1If = v|I3=2R{(f-u,v-u)-|lv-ul}<0.

Pour voir U'unicité, si uy, u, € C, on peut utiliser la
convexité stricte sous la forme de U'identité du
parallélogramme, on a

ui+ Uy |? uy—u
- =5+ 7

2 1
. 22| = S = w20 - ul?) = d?

soit comme ||f - %”2 > d? on déduit ||%H2 < 0 donc
u; =u.

Par Uunicité, Pc est bien définie et il ne reste qu’a voir
la lipschitizianité. En appliquant la propriété caractéristique
pour f1, f; :

R((fL - Pc(f1), Pc(f) - Pc(f1))) <0,

R = Pc(f), Pc(fi) - Pc(f))) <0,

soit en additionnant :

R((fL =+ Pc(fy) = Pc(f1), Pc(f) - Pc(f1))) <0
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soit en utilisant Cauchy-Schwarz :

IPc(f) = Pc(f)II? < R((fL - fo, Pc(fh) = Pc(f1)))
<|lfi = BINIPc(fp) = Pc(f)ll.

O

% Théoréeme 7.4

Soit H un espace de Hilbert et K ¢ H un sous espace
vectoriel fermé. Pour tout f € H, il existe un unique
u= Pg(f) e K tel que

I1f —ullz = inf [If - gll>.
veK
De plus c’est Uunique vecteur u € K tel que
YveK, (v,f-u)=0

Enfin, Px est une application linéaire bornée appelée
projection orthogonale sur K.

Démonstration. Il reste a voir la nouvelle caractérisation
équivalente car celle-ci étant une relation linéaire, elle
impose la linéarité de Py (1 Pk (f)+ Px(g) vérifie la relation
pour Af + g et doit donc étre par unicité Px(Af +g)). La
nouvelle caractérisation est plus forte. Réciproquement, si
RUF-u,v—-u)) <0, enprenant v=2uetv=0,ontrouve
Rf-u,u))=0donc R(f -u, v)) <0 pour tout v dans K
donc aussi pour —v par linéarité d’ou l'égalité a 0. O
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Exemple 7.5

Si H=L%(Q, u,R)
C={f>0p.p.}.

Alors Pc(f) = flit.q). (exo0) Trouver aussi de méme la
projection sur 'ensemble de f : Q — [0, 1].

3 Applications : Orthogonalité
et Dualité

Orthogonalité

On peut définir dans un espace de Hilbert une notion
d’orthogonal comme en dimension finie.

% Définition 7.3

Si F c H estun sous—espace, alors l'orthogonal de F
est
Ft={xeH,VyeF,(x,y)=0}

On dit que x est orthogonal a F si x € F+. On remarque
que

Ft= Ky, NtHey

yeF
est toujours un sous—-espace fermé comme intersection de
sous—espaces fermé, comme image inverse d’un
sous—-espace fermé par une application linéaire continue (le
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produit scalaire). La proposition suivante décrit la
décomposition en somme directe orthogonale. Tout se
passe comme en dimension finie pour les sous-espaces
fermés, et sinon, il faut ajouter une adhérence.

% Proposition 7.5

Si F est un sous—espace de 'espace de Hilbert H
alors F*+ = F, et on a la somme directe orthogonale

H=FeF*

etalors pr et pr. = 1 - pg sont les projections
associées a cette décomposition.

Ici F++ = (F)* est Uorthogonal de 'orthogonal.

Démonstration. 1. Onremarque d’abord que F c F++.
En effet par définitionde F:tsixe F,ye F+,(x,y)=0
et donc comme c’est pour tout y € F* la définition du
biorthogonal donne x € F++.

2. Onremarque ensuite que F++ n F+ = {0}. En effet, si
x € F++ n F* alors (x, x) =0 donc x =0 (par 'axiome
de séparation).

3. Montrons ensuite que pr. =1- pg (les projections
sont bien définies car on a des sous-espaces fermés
'espace de Hilbert H donc on peut utiliser le
théoreme de projection). En effet, si y € H la relation
caractéristique de la projection othogonale dit que
y — pg(y) est orthogonal a F donc dans F* et comme
y = (y = pe(y)) = pe(y) est orthogonal a F*, on doit
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avoir y — pg(y) = pr:(y) par caractérisation de la
projection.

4. On en déduit la somme H = F + F* (par Uinclusion du 1
et Uintersection du 2, on sait que cette somme doit
étre directe). Le point précédent donne la relation

y =pre(y)+pe(y)

ce qui montre que tout vecteur H se décompose
comme somme d’un vecteur de F et d’un vecteur de
F+.L’énoncé sur les projections associées a la
décomposition est évident a partir de la.

5. Il reste a voir que F+ c F ce qui donne ’égalité avec
le point 1. Mais si y € F**, y - Pg(y) e F*+ parletle
fait fait que F++ est un sous—-espace vectoriel. Mais on
vient de voir au 3 que y — P=(y) = pr:(y) € F+. Donc
y - P=(y) € F**n F* = {0} par le 2. donc y = P=(y) € F,
ce qui conclut.

Dualité : le théoreme de représentation
de Riesz

On en déduit maintenant le calcul du dual de H (voir
sous-section 9 pour des rappels).
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% Théoréme 7.6: (théoréme de représentation de

Riesz)

Soit ¢ une forme linéaire continue sur un espace de
Hilbert H alors il existe un unique f € H tel que

Yv e H,¢(v)={(f, V).
De plus, on a Uexpression duale pour la norme :

Ifll = sup Kf, v)l.

llvil=1

Remarque 7.3. (facultative) Dans le cas complexe,
f— (f,.) estune isométrie antilinéaire identifiant H
et H’ (et donc identifiant linéairement H’ au conjugué
H ayant la méme structure normique et de groupe
mais 1.V=1v si v v est la bijection/identité de

H — H notée - pour le caractére suggestif de la
relation a la conjugaison complexe). Dans la cas
complexe on a donc H’ ~ H et dans le cas réel H ~ H.

Démonstration. Soit K =¢~1({0}) le noyau de ¢. Si K=H
alors f =0 convient. On suppose donc K # H. Soit donc
go¢ Ketg= % un vecteur de norme 1 et
orthogonal a K. Comme ¢ est une forme linéaire, on s’attend
a ce que K et g engendrent L2, sorte de généralisation du
théoreme du rang (on va voir cela plus loin en utilisant

Uorthogonalité). En effet, soitve H, w=v - ¢E;)g vérifie
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p(w) =¢(v) - gggzz)(g):@ donc we K=Kerpgetv=1g+w
avec A = ﬁg;.

On montre donc que f = ¢(g)g convient, en montrant
l'égalité sur un v quelconque en utilisant la forme
précédente :

(f,v)y=9¢(9)(g,Vv)=¢(g)(g,1g+ W)
= ¢(9)A119l15 = ¢(g)A = ¢(V).

L’égalité des normes vient de Cauchy Schwarz qui implique
que > avec égalité en prenant v = f/||f]| si f # 0. O

Remarque 7.4. (facultative) Il n’est parfois pas
judicieux d’identifier un espace de Hilbert a son dual,
notamment quand plusieurs espaces de Hilbert sont
considérés et que les identifications sont
incompatibles a des relations de sous—espaces. Soit
H=¢2(N)etK={ueH, Z n?|un|? < oo} Sion

neN
considéere 'ensemble des suites telles que
L={(upn) Z i2|u,,|2 < oo}. Il est facile de voir que
n

neN
K c Hc L et que La transposé de l'inclusion K c H

s’identifiea H~ H’ c K’ = L. Il vaut alors mieux
identifier K’ a L (et pas K) en ayant une identification
compatible avec les inclusions avec H.
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4 Bases Hilbertiennes

% Définition 7.4

Soit H un espace préhilbertien. Une famille (x;);c; est
dite orthogonale si pour tout i # j, (x;, x;) = 0.

Si de plus ||xj|| = 1, elle est dite orthonormale.

Une base hilbertienne (ou base orthonormale) de H
est une famille orthonormale (e;);c; telle que
Vect(e;, i € I) est dense dans H.

Exemple 7.6

e; la suite dont la seule coordonnée non-nulle est la

i-&me égale a 1 donne une base hilbertienne de ¢2(I).
(par construction de ¢2(I)) Les bases hilbertiennes
vont permettre d’identifier tout espace de Hilbert a cet
exemple.

Procédé d’orthonormalisation de
Gram-Schmidt

Notons ! tout d’abord que la projection d’un point sur un
sous—espace vectoriel de dimension finie se calcule
facilement a aide d’une base (de préférence orthonormale)
de F:

1. Cette sous—section reprend le cours de 2018-2019 de
T. Blossier, M. Carrizosa et ]J. Melleray.
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Proposition 7.7

Soit H un espace de Hilbert et F un sous-espace
vectoriel de dimension finie avec (x1, ..., X;) une
base de F (non nécessairement orthonormale). Soit
B;,j = (xj, ;). Alors B est inversible et pour tout x € E,
on a

pE(X) = > (B7)i(Xi, X)X;.

ij=1

Démonstration. Pour voir que B est inversible, il suffit de
montrer que les vecteurs de ces lignes ((x;, X;))j-1,...,n Sont
n

linéairement indépendants. Si on a Z/l,'((X,-, Xj))j=1,....n =10,
i=1

n

on a <Z/l_,-x,-, Xj) = 0 pour tout j. En prenant une
i=1

combinaison linéaire

n__n no__
:Z/l O Aixiy xpy =11 Apxill?,
j=1 i=1 i=1

n

donc Z_ =0 donc comme x1, ..., X, était une base, on
i=1

obtient 1; = @ pour tout i, ce qui donne la liberté voulue.
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Pour x € H, on a

(Xiox = > (B7h (X1, X))

i,j=1

= (X X) = D (B7H) i, X)X, X)

i,j=1

n
= (X, X) = > (B7Y)ji(xi, x)By ;= 0
ij=1
n
donc x — Z (B™1); i(xi, x)xj € F* donc par caractérisation
ij=1
de la projection orthogonale

Pr(X) = D (B7Y) (X1, X)X;.

i,j=1

Remarque 7.5. Voici un cas particulier important du
résultat précédent. Soit E un espace de Hilbert et F
un sous—espace vectoriel de dimension finie avec
(e1, ..., ep) une base orthonormale de F. Alors pour
tout x e E, on a

pr(X) =) (e, x)e;.
i=1

Exemple 7.7

Soit H=L%(Q,7,u) et Ac7,onavuenTD que
T(A) ={0, A, A, Q}. F=L2(Q, T (A), u) et un espace
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de dimension au plus 2 engendrée par

€1 =14, €, = 1c (du moins si A, Q ont mesures finis).
Cette famille est orthogonale mais pas orthonormale.
lle1ll? = [ 1adu = u(A), |lez]|? = u(A€). Supposons ces
deux nombres non nuls et finis de sorte que F a
exactement dimension 2. Alors la matrice de la
proposition précédente est B = diag(u(A), u(A°)) et
Bl =diag(1/u(A), 1/u(A°)), la formule de projection
donne donc pour f e L2(Q, 7, ) :

P2, 7a),u(F) (7.2)

1 1
= [— fdul 1l —_— fdul 1 ac.
(u(A)/A “) A+(ﬂ(AC) Ac “) 2

Rappelons que le procédé de Gram-Schmidt permet de
calculer une base orthonormale d’un espace euclidien a

partir d’une base donnée :

Proposition 7.8: (Procédé de Gram-Schmidt)

Soit E un espace euclidien et (eq, ..., €,) une base
(resp. une famille libre) de E. Pour chaque 0 < i < n,
notons F; le sous—espace vectoriel Vec(eq, ..., €;)
engendré par eg, ..., ;. Alors, la famille (e], ..., e})
définie de la maniére suivante est une base
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orthonormale (resp. une famille orthonormale) de E :

7 el
o =
! llevll
i-1
ei=Dl(ereier
o e~ Pr,(€) p)
! llei = pr,_, (el | "—1< ' enel
e,-—z ek, e; ek
k=1

pourl<i<n.

Exercice 7.1. Vérifier que les vecteurs e; = (1,1, 1),
e;=(1,1,-1) et e3 = (0, 1, 1) forment une base de R3.
Utiliser le procédé de Gram-Schmidt sur cette base
pour obtenir une base orthonormale.

Théoreme des bases

Exemple 7.8

en(x) =exp(inx), n € Z définit une base hilbertienne
de U'espace pré-hilbertien C?K(R,C) 'ensemble des
fonctions continues 2x périodiques, muni du produit
scalaire :

1 2r
(f, )= z/@ F(Dg(t)dt.

C’est la base des décompositions en série de Fourier
(on montrera cela plus en détail dans la section
suivante). Le but est de décomposer de facon
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similaire tout vecteur de H comme somme d’une série
en fonction d’une base.

% Théoréme 7.9

Soit H un espace préhilbertien et I un ensemble

dénombrable.

1. Une famille orthonormale (x;);c; est libre et
vérifie 'inégalité de Bessel, pour tout x € H :

D106 X <lixii?
iel
2. De plus une famille orthonormale (€;);jc; est une
base hilbertienne si et seulement si on a
'égalité de Bessel-Parseval, pour tout x € H :

D lx, enl? = 1ix1?

iel
De plus, dans ce cas, pour tout x € H, la série
suivante converge (dans H mais pas
absolument)

X = Z ei(ej, X).
iel
3. Si H est un espace de Hilbert séparable, toute
famille orthonormale peut étre complétée en
une base hilbertienne au plus dénombrable
(ej)ier de Het J: x— ({ej, x))jcr établit alors
une isométrie surjective J : H ~ ¢2(I).
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Remarque 7.6. De la formule pour x, on tire par
continuité la formule pour le produit scalaire (qui est
une série absolument convergente par
Cauchy-Schwarz) :

(v, %) =Dy, eier, x).

iel

Démonstration. Comme I est dénombrable, on peut
supposer et on suppose I =N.

(1) Si Z/l,-x,- =0, on calcule 1; = (x;, Z/l,-x,-) =0 donc
x; est bien libre. Soit V, = Vect(e;, i € [[0, n]]), on a déja vu
la formule pour la projection orthogonale sur V, :

pa(x) =) eilej, x).
i=0

Donc par la propriété de contraction de p, et
Uorthogonalité

Ipa (112 = ()" eidei, x), D ej(ej, x))
i=0 j=0

n

2 2

=) IKei, 17 < ix]|
i=0

En passant a la limite n — « on obtient l'inégalité de Bessel
pour la somme et on trouve en particulier ((x, €;))icy € £2(N).

(2) Si (ej)jey €St Une base soit x, € Vect(ej, i€ I)
convergeant vers x.
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De plus, pour n assez grand |||x||? — ||xn||?| < €/2 et pour
tout m,

Hpm OO = [1Pm(Xa)[12] < 1pm(Xn = )11 Xnll + 1 X]])

< Hxn = XMUIXall +1I1X1]) < €/2

(avec la derniére inégalité pour n assez grand) d’ol en
prenant m tel que pm(xn) = X, (car x, est dans un certain Vp,
comme combinaison linéaire finie des e;), on obtient

m

2 2
D Kej, P = Ix]|
i=0

et donc la somme de la série est ||x|| d’ou I’égalité de

<e€

Parseval.

Réciproquement, Si on a égalité, on a la limite

n
D Kej, ) = 11pn OOl —nmes l1X]12
j=0

et ceci implique par le théoreme de Pythagore :
1pn(x) = 115 = [IX[15 = [1Pa(X)]15 =1 @

donc tout élément de H est limite d’éléments de
Vect(e;,i e I)d’ ol la propriété de densité manquante pour
obtenir une base hilbertienne.

De plus un calcul donne la formule pour x :

Ix = eiei, NI = 3 (e, ) — 0.

i=0 i=n+1
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(3) Soit O la famille othonormale de départ. Soit
K = Vect(0), on cherche une base orthonormale de K+ pour
compléter O, il est bien séparable comme sous espace de
H. Soit (Xn)new une famille dénombrable dense de K+.
Quitte a extraire une sous-suite, on peut supposer que
Xn ¢ Vect(Xxg, ..., Xn_1) de sorte que (x,)nen €St une famille
libre.

On peut donc orthonormaliser (xg, ..., Xn) et obtenir
(eg, ..., €n) tel que Vect(xg, ...., xn) = Vect(eg, ...., €,). Par
la construction, on remarque que l'orthonormalisation pour
(Xg, ..., Xps1) ON cOmmence par les mémes vecteurs et on
obtient donc une famille orthonormale (f;)nen. Comme

Vect(xp, n e N) =U> ,Vect(Xxg, ...., Xn)
=V 5 Vect(fy, ..., fn)
= Vect(f,, n €N),

ces deux ensembles sont denses et donc (f,)pen €St Une
base de K*. Maintenant, O et (fy)nen forment une famille
orthonormale de H et tout O est une base de K par définition
de K, donc la décomposition orthogonale x = Pi(x) + Px.(x)
permet d’approcher Pg(x) par un élément y, € Vect(O),
Pi.(x) par un élément z, € Vect(f,, n € N) et

Yn+2Zn € Vect(O, f,, n € N) tend vers x, d’ou la densité
voulue pour que {e,, n e N} = OU {f,, n € N} forme une base
de H.

Une fois l'existence d’une base, l'lisométrie est
évidente par le (2), et si on a une suite (1;)jc; dans ¢2(I), on
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voit que Z/l,-e,- converge par complétude comme ci-dessus
et on obtient ainsi la surjectivité.

On vient de voir (en prolongeant la famille vide) qu’un
espace de Hilbert séparable a une base dénombrable.
Réciproquement, un espace de Hilbert a base dénombrable
estisométrique a ¢2(N) pour lequel Vectg(en, n € N} donne
une famille dénombrable dense. O

Exemples de base 1: Séries de Fourier

On va obtenir un premier exemple de base en utilisant
le théoreme d’approximation de Weierstrass.

Vous pouvez voir dans la section de compléments le
corollaire A.10 pour une preuve probabiliste basée sur la loi
faible des grands nombres.

* Théoréeme 7.10: (d’approximation de Weiers-

trass)

Soit K un compact de R”, les fonctions polynomiales
(a coefficients réels ou méme rationnels) sont denses
dans C%(K,R).

En conséquence, (C?(K,R),||.|l») est séparable et sa
tribu borélienne 8(C%(K,R)) est dénombrablement
engendrée (c’est a dire admet une partie génératrice
au plus dénombrable).
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Remarque 7.7. Le mouvement brownien sur [0, 1],
un objet probabiliste important (vu en M1) peut étre
défini comme une probabilité sur la tribu borélienne
de (C°([0, 1], R), [|.]l)-

Exemple 7.9

Montrons que e,(x) = exp(inx), n € Z forme une base
hilbertienne de L2([0, 2x],C) :

1 2r
(f, )= Z/@ F(Dg(t)dt.

D’abord, on sait que CZ(]@, 2n[,C) est dense car il
contient C2(]0, 2x[) qui est dense par le Théoréme
6.12. Il s’agit donc presque de la complétion de
'exemple précédent.

Ensuite on vérifie Uorthonormalité :

1 2n ]
(€n, em) = Z/@ exp(i(m—-n)t)ydt = 1ym=pny.

Enfin, il reste a voir que Vect(e,) est dense. Or, on a
Vect(ep) = {P(e’*, e ™), PeC[X, Y]} =

{P(cos(x), sin(x)), P eC[X, Y]}. Soit

D={(x,y) eR?,x?+y? =1}, soit fe CI (R,C) On
définit g : D — C par g(cos(x), sin(x)) = f(x). Il est
facile de voir que g est continue sur D (utiliser

tan, cot selon le point comme carte coordonnée) donc
par le théoréme d’approximation de Weierstrass 7.10,
il existe un polynéme P tel que ||P - g||» < € donc, si
Q = P(cos(.), sin(.)) € Vect(epn), on a
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Q- fll <11Q - fllo < [|P - gl|lw < €. D0l la densité
voulue.
C’est la base des décompositions en série de Fourier.

Exemple de base 2 : Polynomes
d’Hermite

L’exercice suivant est corrigé a ’annexe E en section 3.
Vérifier qu’une famille est orthonormée est toujours un
exercice calculatoire.

Exercice 7.2. Soit H=L%(R, B(R), y) espace de
Hilbert réel des fonctions de carrés intégrables pour
la mesure gaussienne standard définie pour un
borélien B par y(B) = fB —e” X*/2dx. H muni de la
norme usuelle :

f _\/ f 2 _XZ/zd
= X X

x2/2 n ,
Hn<x>:<—1>”e\/m (%) (e=¥12)

(et donc Hp(x) = 1). On appelle les H, les polyndomes
d’Hermite.

Soit
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1. Montrer que pour n > 1, H, est un polyndme de
la forme :

Vn!

n n-1

X k

Hp(x) = | + Z agx”.
k=0

2. Montrer que (Hp),sp est une famille
orthonormale de H.

Montrer le résultat de densité sous—jacent pour obtenir
une base est souvent plus dur. Quand on ne peut pas utiliser
un résultat connu, on utilise souvent la méthode qui
consiste a montrer que 'orthogonale est {0} en utilisant la
proposition 7.5. On va donc déduire le résultat suivant de
cela et du théoreme d’inversion de Fourier :

Théoreme 7.11

Soit y la mesure gaussienne standard sur R. Alors la
famille des polyndmes d’Hermite (Hp),-p €St une base
orthonormale de L2(R, B(R), y). En particulier, les
polyndmes sont denses dans L2(R, B(R), y) qui est
séparable.

Démonstration. Montrons d’abord que la série

o ()"
—t2/2
exp( /);QW

H, converge dans LZ(R, B(R), 7).
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On calcule la norme du terme général de la suite

N f
Su=exp(-12/2) ). U0
n=0

n
- H, par orthonormalité de s (H,) :

ni2
ISnI2 = exp(- t)z o

N 12\n
=exp(—t2)z ()" exp(t? —t%) =1

Donc pourp>qg =N,
1Spun - Sqll2 < exp(-t2) 3 )"
I

Cauchy et donc convergZ: I(\ilans L2. Quitte a extraire on sait
qu’elle converge presque partout, donc sa limite ponctuelle
sera aussi sa limite dans L2. Concluons que F;, définie par
Fi(x) = exp(itx), est la limite. Il suffit donc de voir que pour

tout x e R :

—Noe 0. Donc S, est de

(- t)”

Fe(x) = exp(- rz/Z)Z Hn(X).

Ceci équivaut, vu la définition de H, a
Fr(x) exp(t?/2 - x*/2) = exp(-(it - x)*/2)
_ = (—It)n d n —X2/2
B Z n! (a) (e )
n=0

ce qui est la somme de la série de Taylor en x évaluée en
a=itde f(x)=exp(-x%/2) (pour f somme de série entiére

R n
surC f(x+a)= Z %f“’)(x). Ceci est bien vérifié car la
n=0
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fonction du milieu est analytique par composée de fonctions
analytiques sur C (un polynome et exp sont sommes de
séries entieres sur C donc aussi leur composée).

Conclusion : on a F; € Vect(Hp, n € N).

On montre maintenant que toute fonction
felL?R,8B(R),y), orthogonale a K := Vect(H,, n € N) est
nulle. On peut supposer f réelle en prenant partie réelle et
imaginaire. Si f orthogonale a tout H, on a (f, F;) =0 et
donc

u(t) =/ f(x)exp(itx — x2/2) = 0.

Or si g(x) = f(x)exp(-x%/2) g € L1(R, 1) est équivalent
afell(R,B(R),y) ce quiestlecas cary estune mesure de
probabilité et donc L2(R, B(R), y) c LLY(R, B(R), y). Donc on a
g(t) =0 et par le théoréme d’inversion de Fourier, g(x) =0
presque partout, soit f = @ dans L2(R, B(R), y).

Bilan pour K = Vect(H,, n € N) K+ ={0} donc
K = K+ ={0}* = L2(R, B(R), y), d’ou la densité voulue. O

On a utilisé le théoréme suivant (peut—&tre vu en cours
de probabilité, cf. annexe E section 4 pour la variante sur les
mesures de probabilité, cf. aussi le livre de Rudin d’analyse
réelle et complexe [7, Thm 9.11 et 9.12] pour n=1)
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Définition 7.5

Soit f € LL(R", B(R"), 1) la transformée de Fourier de
f est la fonction de t e R" :

f(t) = /R e D f(x)A(dx).

On renvoie a la section E.4 pour une preuve du résultat
fondamental suivant.

* Théoreme 7.12: (Théoreme d’injectivité de la

transformation de Fourier (admis))

Soient deux fonctions f;, f, € LL(R", B(R"), 1) On
suppose que pour tout t € R"” les transformées de
Fourier sont égales :

fi(t) = h(t), VteR".

Alors f; = f, presque partout.
De plus, si f; € LY(R", 1) alors f; est (égale presque
partout a) une fonction continue :

1

00 = e

/ fi(t)exp(—i(x, t))dt.
Rn
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5 Une Application : Le
théoreme de convergence des
martingales bornées dans
L%(Q, T, P) (facultatif)

Dans cette section, on conclut par une application en
probabilité. On prend (Q, 7, P) un espace de probabilité.
Une filtration est une suite croissante de sous—tribu (7;)ps0-
Un exemple de telle suite est 7, =7 ((Xp, ..., Xn)) de la tribu
engendrée par un vecteur aléatoire. On peut considérer les
espaces de Hilbert H, = L2(Q, 75, P) c L2(Q, 7, P). C’est un
sous—-espace fermé car si H, 3 X = m—e X On a vu au
chapitre précédent, que quitte a extraire X, converge p.p.
vers X et donc X est aussi 7,—mesurable et donc est dans
H,. Par caractérisation séquentielle cela dit H, fermé. On
dispose donc de la projection orthogonale Py, . EN
probabilité, vous noterez Py, (X) = E(X|7,) et vous
interpréterez cette projection comme une espérance
conditionnelle.

Définition 7.6

Une suite (X,)new €st une martingale dans L2 (pour
la filtration (7p)pse Si pour tout m > n Py, (Xm) = Xp.

Cette condition dit que la moyenne de la future variable
Xm, conditionnellement au présent H,, est égale a X, (si X,
est la valeur d’un gain au temps n, en moyenne on n’a rien
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gagné a attendre le temps m > n). Une somme de v.a. i.i.d.
dans L2 d’espérance nulle est une telle martingale. Par
exemple, la somme des n premiers termes d’une suite de
variables gaussiennes centrées indépendantes donne une
martingale dans L2. On va montrer un théoréme de
convergence pour les martingales bornées dans L2.

Théoréme 7.13

Soit (Tn)pse-Soit (Xn)nen €st une martingale dans
H=L%(Q, 7, P) qui est une suite bornée, c’est-a-dire,
qu’il existe M > 0 telle que sup, || Xn|l2 < M. Alors X,
converge dans L?(Q, 7, P) vers une variable X et

Xn = PH,(X).

Ce théoreme se généralise a un théoreme de
convergence des martingales bornées dans LP, 1 < p < c0. Il
y a aussi une version pour les martingales L! mais il faut
une hypotheése technique plus compliquée (dite d’'uniforme
intégrabilité). (On dit que X, est une martingale fermée
quand X, = Py,(X) comme ci-dessus).

Démonstration. On considere la décomposition
orthogonale H,,1 = K, ® H, avec Hy = Ko On voudrait dire
que L?(Q, 7 (UpseTn), P) = ®ns0Ky st une somme
orthogonale infinie, mais comme on n’a pas introduit la
notion,on va donc faire une preuve directe.

Remarquez déja que Xp,1 — Xn = Xpe1 — P, (Xps1) € Kn
par la condition de martingale. Donc par le théoreme de
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Pythagore et une récurrence triviale, on obtient :

n
2 2 2 2 2
1Xna1ll3 = 11 Xne1 = Xall3 + 11Xl = [1XalI3 + > 11 Xye1 = Xill3.
k=0

On déduit donc de la bornitude en prenant la limite

Xl + > 1Xie1 - Xill3 < M2 et donc la série est
k=0
convergente. On déduit aussi que pourp>qg=> N

p

2 2

1Xpe1 = Xqll3 = > 11Xke1 = Xill}
k=q

< > IXke1 = Xill3 —Noeo ©-
k=N
Donc (Xp) est de Cauchy dans un espace de Hilbert donc
converge vers X. Comme Py, est 1-lipschitz donc continue,
on déduit en passant a la limite dans la relation
Xn=Pu,(Xm) >moe Pu,(X) = Xp



Bibliographie

(1]

(2]

(3]

(4]

(5]

P. Barbe et M. Ledoux, Probabilité, EDP Sciences
2007 (chapitres 1 et 2)

N. Bourbaki Topologie Générale. Chapitre 1 a 4
Diffusion C.C.L.S., Paris, 1971.

H. Brezis Analyse fonctionnelle Théorie et
applications Collection Mathématiques appliquées
pour la maitrise. Masson 1987

Mathématiques tout-en-un, sous la direction de

C Deschamps, F. Moulin et A. Warusfel Dunod
Disponible en ligne (Chapitres 3 a 6 et Chapitres 13 et
14.)

X. Gourdon, Analyse, Ellipses 1994, Collection les
maths en téte (Chapitre 1 et Annexe B.)

264


https://unr-ra-scholarvox.com.docelec.univ-lyon1.fr/book/88833757

Bibliographie 265

[6] H. Queffélec et C. Zuily, Eléments d’analyse, 2éme
édition Dunod 2002

[7] W. Rudin Analyse réelle et complexe. Cours et
exercices Traduit par Jean Dhombres. Dunod 1998



PARTIE IV

Anhnexes :
complements
facultatifs

266



Complements
facultatifs au
chapitre 2 :
Topologie des
espaces
metriques

267



Annexe A. Compléments facultatifs au
chapitre 2 : Topologie des e.m. 268

1 Théoreme de Tietze (niveau
L3-M1)

Comme jolie application de la complétude, on va
donner en exercice (corrigé), la preuve du théoréme de
Tietze

Exercice A.1. Extension de Tietze-Urysohn

Soit F un fermé de X espace métrique. Soit

E = CE(X,R) 'espace des fonctions continues
bornéesetp: E — CE(F,R) Uapplication de
restriction ( pour f : X —» R, p(f) = f|F est la restriction
de f a F. On va montrer que p est surjective.

1. Est-ce que E est complet?
2. Soitge C?)(F,R) avec [|g]l- < 1. Soient
Ky :=g71([1/3,1]) et K := g~ 1([-1,-1/3]).
Soit :
1 d(X’ KZ) - d(X, Kl)
3d(x, Ky)+d(x, Ky)’
d(x, Ky) :==inf{d(x, y), y € Ki}.

f(x)=
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(On comprend la valeur comme 0 si Ky et K>
vides et sinon, —1/3 si K; vide, 1/3 si K; vide).
Vérifier que f e E

3. Montrer que ||f||lo < 1/3 et
lIp(f) = glls <@ =2/3..

4. Construire une suite f, par récurrence a partir
du résultat précédent telle que fr,= Fg+...+ Fp

et ;
1 2
DI Flls < 3@+t 35)
k=0
et
n+1
1P(fa) = gl < 77

5. Montrer que f, converge. En déduire, qu’il
existe F e E, ||F|lo < 1 telle que p(F)=g.

Extension de Tietze-Urysohn (Correction)

Soit F un fermé de X espace métrique. Soit
E = Cg(X,R) etp: E— C?(F,R) lapplication de restriction.
On va montrer que p est surjective (et un peu mieux).

1. Soit g e C%K) avec ||g||l. < 1. Soient

Ki:=g1([1/3,1]) et K, := g~ 1([-1,-1/3]). Soit :

_ 1 d(X1 KZ) - d(Xi Kl)
F0 =330, Ky v dix, Kn) '

Vérifions que f € E, ||f||lo < 1/3 et
[Ip(F) = gl <@ =2/3. (on dit que p est presque
surjective)
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f est continue car d(., K;) est continue et le
dénominateur estnon nulcar K1n K, =0 et d(.,K;) >0
sur Kf.

2. Or par linégalité triangulaire :

1d(x,Ky)+d(x,Ky) 1
Pl < 3 G Ko v dx. Ky~ 3

donc f est bornée et ||f||. < 1/3.

1 1
Ip(f)—gl= 1/<1I§—g|+1l<zl—§—g|

+(1K - 1K1 - 1K2)|f_ gl
< (k= 1k, = L) (I Flleo +119ll0)

1 1
+ 11111k, (5 = Dl + Lo 11k, (-5 = Dl

et tous les termes sont inférieurs a 2/3 par définition.
3. On construit construire une suite f, par récurrence a
partir du résultat précédent telle que f, = Fg+...+ Fp,

n

4 1 2
DU Flls < A+t 3
k=0

et
n+1l

1P(fa) = gl < Sy
On prend fo = Fp = f donné par 1 a partir de g. On
prend Fn/|lp(fa_1) — gll donné par 1 a partir de
—[p(fa_1) = 91/1lp(fa-1) — Glle (si le dénominateur est 0
onh s’arréte et on prend la suite constante).
Donc on a les deux inégalités

S

12

1
1Falle < 511P(Fr-1) = lle < 557
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et

2 2n+1
[1p(Fn)+p(fa_1) = gllo < 11P(fa-1) = Glle < 371

La deuxiéme inégalité donne ||p(fy) — g||e < g:—ﬂ La

premiére inégalité suit par Uhypothese de récurrence.
4. Déduisons qu’il existe F € E, ||F||» < 1 telle que

p(F)=g. Z F, est donc absolument convergente

dans E, donc par complétude convergente, donc soit

F= Z F,=Llimf,. En passant a la limite on obtient

n=0
(par la somme d’une série géométrique)

Flos YAl i 2 11y
TT4a T3 L3l T 31-2/3

et ||p(F) - g||l~ =0 donc p(F) = g par séparation.

2 Complément sur UEspace
dual (niveau début de M1)

Définition A.1
L’espace E’ := L(E,K) des formes linéaires continues

sur un e.v.n. E est munie de la norme duale

Ifller == sup [f(x)I.

xeE,||x||<1

On a vu dans la section précédente que c’est toujours
un espace de Banach. Il sera trés utile dans ce cours pour
étudier E lui-méme.
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Le résultat suivant, conséquence de Hahn-Banach
permet de décrire réciproquement la norme de E en terme
de celle de E’ (cela ressemble a la définition de ||f||gs mais
c’est un théoreme difficile! que 'on exploitera pour relier E
au dual du dual dans la section suivante) :

Proposition A.1

Soit (E, ||.||g) un e.v.n., alors

Ixle= sup [f(x)|=_ max [f(x)].
feE,||fllg <1 feE,|Ifllgr <1

Démonstration. Par définition, on a

sup  [f(x)l < sup  |lfllelixlle =lIxlle-
feEr,||fl|er<1 feEr lIflle<1

Inversement, on applique le Théoreme de
Hahn-Banach B.9 a G =Rx en posant g(tx) = t||x||g de sorte
que g(tx)|| < ||tx||e. Donc, il existe f € E’ tel que
f(x)=g(x)=lIxllg et f(y) < |lylle c’est-a-dire ||f||gr < 1. En
particulier, le sup est atteint en f et est donc un
maximum. O

On rappelle deux exemples d’espaces classiques.

Exemple A.1

co(I) est 'ensemble des suites (x;)jc; qui tendent
vers 0 dans le sens ol si e > 0, il existe une partie F
finie telle que |x;| < e pour tout i ¢ F. On munit co(I)




Annexe A. Compléments facultatifs au
chapitre 2 : Topologie des e.m. 273

de la norme sup :

[[X|leo = SUP | Xj] < 0.
iel

¢>(I) est 'ensemble des suites bornée (x;);c; avec la
méme norme || X||c-

Exemple A.2

¢1(I) est 'ensemble des suites (x;)jc; sommables, tel

qu’il existe une constante C, tel que pour toute partie

F finie telle que Z |x;| < C. On munit £1(I) de la
ieF

IXll = sup D xil =: D Ixi] < co.

ieF iel

norme :

On étudiera la dualité des espaces LP dans un chapitre
ultérieur. Le résultat suivant donne un exemple de calcul de
dual :

Proposition A.2

Le dual de cy(I) est isométrique a

eH(I) = (co(I))'.

Démonstration. On définit T : ¢1(I) — (co(I)) par:
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T((uDL(v)] = ). uiv;.,

iel

Bien siir, on a l'inégalité montrant que T est bien défini
et contractant :

I T [(v)ll < D il [vil < llclle Y luil.

iel iel

Montrons que T estisométrique. Comme les suites a
support fini sont denses dans ¢1(I) il suffit de montrer
'égalité dans ce cas, et cela vient en posant
(vj) = 1{\,];&@}‘?—;' € co(I) si (u;) a support fini de
T((up)(vi) =lI(uplla. Donc comme [[(vj)llc, <1 ona
Uinégalité manquante :

T U (coy = U1

Montrons que T est surjectif. Soit f € (cg(I)) et e; la
suite valant 1 en i et 0@ ailleurs. Soit u; = f(e;), montrons
que (u;) € ¢1(N). Or par Uisométrie

(uiLlicA)lla < NT(UilicPDl(cy = T ((U))oVEl oy = l1foVEl(cyy < |

car ve((x;)) = (1ijcrX;) est une contraction sur cy pour F fini
(et par le calcul a support fini qui suit qui implique
fove=T((uj) o ve). Donc pour tout F fini :

D il < Il ey

ieF

ce qui donne la sommabilité u € ¢1(I).
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Montrons enfin que f = T((u;)).

En effet, si v est a support fini, f(v) = T((u;))(v) par
linéarité mais comme les deux c6tés sont continus en v et
que (par définition) les suites a support fini sont denses
dans cg(I), on obtient f = T((u;)).

Un autre résultat de base permet d’associer a une
application continue u: E — F une application (dite
transposée ou adjoint) entre les duaux u! : F’ — E’.

Proposition A.3

Siu: E— F estune application linéaire continue
ut(f) = f o u définie une application linéaire continue
ut: FF > E’etona

t
[Tt = 1 ull]-

Démonstration. Par composition, si f € F/, u linéaire
continue, f o u est linéaire continue donc appartienta E’. La
linéarité en f est évidente. de plus

Hut (OO < IflleAlullllix] g donc

lut(Hlle < [Ifllellulll.

Ceci donne |||uf]||| < |[|ul]].
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Réciproquement on utilise la proposition précédente
pour obtenir :

luCOllF = sup [(W'(HOX)I< sup ([ (Ollellxlle < lllufllllx]e.

IIfllp <1 1fllp <1

Ceci donne par définition de la norme subordonnée, l'autre
inégalité : [||u]l| < ||lut]l].

O

3 Bidual, Complété (niveau
début de M1)

Le dual du dual E” = (E’)’ est appelé bidual de E.

Définition A.2

L’application J: E — E” qui envoie J(x)(f) = f(x)
pour f € E’ est appelée injection canonique de E
dans E”.

Proposition A.4

L’injection canonique J : E — E” est une isométrie
(c’est pour cela que c’est une injection).

Démonstration. En appliquant la définition de la norme du
dual puis la conséquence de Hahn-Banach de la section
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précédente (proposition A.1), on obtient :

IJX)Mer = sup [J(x)(Hl= sup [F(x)|=][x]le.
[fllgr<1 [Ifllgr<1

On donne un exemple :

Proposition A.5

(co(D)” = (£X(D)) = £2(I).

Démonstration. On définit T : ¢=(I) — (¢1(I)) par:

T(uDL(v)] =) uiv;.,

iel

Bien sir, on a l'inégalité montrant que T est bien défini
et contractant :

Tl < D luil il < llclle Y ugl.

iel iel

Montrons que T est surjectif. Soit f € (£1(I)) et e; la
suite valant 1 eni et 0 ailleurs. Soit u; = f(e;), alors
lujl < ||fll,1 donc (u;) € £2(I), montrons que f = T((u;)).

En effet, si v est a support fini, f(v) = T((u;))(v) par
linéarité mais comme les deux cotés sont continus en v et
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que (par définition) les suites a support fini sont denses
dans ¢1(I), on obtient f = T((uj)).

Montrons que T est isométrique. Mais
IT(upll = [T(up(enl=luil donc || T(upll = [[(uplle=(1) €t on
obtient donc l'égalité.

Définition A.3

7.

z = ——E" a
L’adhérence E := J(E) E dans E” est appelée

complété de E.

Comme c’est un espace fermé d’un espace complet,
c’est un espace de Banach muni d’une injection i: E — E
(qui estid si E est déja n espace de Banach). Il est
caractérisé par la propriété universelle suivante.
Contrairement a la compacité qui est dure a trouver en
dimension infinie, la complétude est simple grace a cette
construction, car il suffit de passer au complété (mais, dans
des espaces de fonctions, il faut travailler pour décrire plus
explicitement ce complété, comme espace de fonctions
concretes).

Proposition A.6

Soit F un espace de Banach et u: E — F une
application linéaire continue, il existe une unique
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extension U : E — F telle que fioi=u. De plus, ona

&t = Halll-

Démonstration. pour Uexistence on considere

(uhYt : E” — F” et on regarde sa restriction u a E. Sur E, U
coincide avec u donc est a valeur dans F. Par densité de E,
| existe une suite u, — u e E et donc U(E) c F. Or comme F
est complet il est fermé dans son bidual donc F = F. Cela
donne Uexistence. L'unicité vient de la densité de E dans E.
Par la construction on a |||&]]] < |||u]||. L’autre inégalité vient
par densité. O

4 Compléments sur la
compacité et complétude
(niveau L2-L3)

Définition A.4

Un espace métrique (X, d) est précompact si pour
tout e > 0, X peut étre couvert par un nombre fini de
boules ouvertes de rayon e.

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec
[6, Th II.1 p135] ou Gourdon d’Analyse [5, p 32]) :
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Proposition A.7

Un espace métrique X est compact si et seulement si
il est précompact et complet.

Démonstration. L'implication, compact implique
précompact vient de la définition. L’'implication compact
implique complet vient de Bolzano-Weierstrass (vu qu’une
suite de Cauchy ayant une sous-suite convergente
converge).

Réciproquement, on utilise aussi Bolzano-Weierstrass.
On va construire une suite extraite de Cauchy par extraction
diagonale. Soit (x,) suite de X.X est recouvert par un
nombre fini de boules B(a, 1) donc par principe des tiroirs, il
existe une sous-suite (x4,(n)) de (xp) contenu dans une de
ces boules B(ag, 1). Par récurrence, on obtient une suite
extraite (Xgqo...00,(n)) CONtenu dans B(ap, 1/2P) en ayant
choisi un recouvrement fini B(a, 1/2P) de B(ap_1, 1/2P-1) et
un terme de ce recouvrement contenant une sous-suite de
la suite—extraite précédente (Xpgo...0p,_1(m)- ON considere
Uextraction diagonale y, = Xg0...00,(n)- VU que ¢;(n) > n car
les ¢; sont strictement croissantes, y(n) =¢go...o¢n(n) >
$9o...00s_1(N)>pgo...0op,_1(N—-1)=y(n-1) donc
Yn = Xy(n) €St bien une suite extraite telle que a partir du
rang n, (Yi)ksn extraite de (X,y... 00, (k)) €St dans la boule
B(an,1/2"). Donc y, est de Cauchy donc converge par
complétude. O
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Théoréeme A.8: (de Tychonov)

Un produit [];c; X; d’espaces topologiques compacts
est compact.

Comme le cas non—-métrique, non-dénombrable utilise
'axiome du choix sous la forme du lemme de Zorn, on
reverra cela plus loin.

Exercice A.2. Si I dénombrable, X; métriques,
montrer que [];c; X; est un espace métrique compact.
(Indication utiliser le résultat précédent.)

5 Theéoreme d’approximation de
Weierstrass (niveau L3-M1)

Théoréme A.9: (de Bernstein)

Soit f : [0, 1]" — C continue et définissons le
polyndme de Bernstein :

N N
BN(f)(X]_,...,Xn):Z...Z
k1:0 kn=0
k k
C;\(;C,Isl"f(wl, ceey Wn)xfl(l —X]_)kal...X,I;"(l _Xn)r\lfkn

Alors By (f) converge uniformément sur [0, 1]" vers f
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Démonstration. On interpréte de facon probabiliste By(f).
Soit Q ={0, 1}N" avec la mesure de probabilité

P(w].: il;---:wNn:in)

= x ML - xR xkn (1 - xp)N ke

avec k; le nombre de 1 parmi iy(j-1)+1, ---, ini- On note
S1(w) = UGN Sp(w) = MEDGEON S = (S, .., Sp)

qui sont des variables de loi binomiales indépendantes du
point de vue probabiliste. Alors
[ dPf(S1, ..., Sp) = Bn(f)(X1, ..., Xp), donc si
w(h) =sup{|f(x)-f(y)|: |x-y| < h} est le module
d’uniforme continuité de f, on a:
|f(Xl! ey Xn) - BN(f)(Xl’ LEER) Xn)|
< |f(X1, vy Xn) = F(S)I1
< w(8) + 2||flloP (I(X1,5 -5 Xn) = S| = 6)

Or par union disjointe et l'inégalité de Markov :

P (I(X1, ey Xn) = S| 28) < 3" P (Ix; = Sil 2 6)
i=1

S E(1xi - Sil?)
< ;—62

Or un calcul simple donne
E(lx; - Sil?) = Var(S;) = 2320 < L donc

limsup sup [F(X1,.euy Xn) = BN(F) (X1, ..oy Xp)]
N—oco  (xq,..., xn)€(0,1]"
. 2n||f||e
<limsu o) +
< {imsupw(o)+ =5

= w(0) —5—0 0.
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O

Corollaire A.10: (Théoréme d’approximation de

Weierstrass)

Soit K un compact de R” les polynémes (a coefficients
complexes) sont denses dans C%(K,C). En
conséquence, C%(K,C) est séparable.

Démonstration. Comme K est fermé borné, K c [-N, N]"
et par le théoréme de Tietze D.3, f continue sur K se
prolonge en une fonction continue sur [-N, N]7, il suffit
donc du cas K =[-N, N]" que U'on obtient par translation et
dilatation (qui conservent les polyndmes) du résultat
précédent. Comme Q[/] :=Q+ iQ est dense dans C, on voit
facilement que les polyndomes a coefficients dans Q[i] sont
aussi denses, et forment un ensemble dénombrable, comme
union dénombrable des polynomes de degré au plus m en

chaque variable (c’est plus simple a décrire qu’en terme de
m

degré total) qui s’écrivent sous la forme Z A,-x{l...x}',”
i1 in=0

et qui s’identifient donc au produit Q[i/]™" ~ Q2™", qui est

dénombrable comme produit fini d’ensembles

dénombrables. O

Remarque A.1. Plus généralement, le théoréme de
Stone Weierstrass indique que toute sous-algébre A
(stable par conjugaison complexe) de C%(K,C) avec K
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compact qui contient les fonctions constantes et
sépare les points (au sens pour x # y il existe P A
avec P(x) # P(y)) est dense pour la norme
uniforme :A = C%(K, C).

6 Un résultat de compacité : le
Théoreme d’Ascoli (niveau L3
Math)

Les compacts sont difficiles a trouver en dimension
infinie, et la moitié viennent (ou sont des variantes) du
résultat suivant (I’autre moitié sont des conséquences du
Théoréme de Tychonov), que l'on va déduire de la relation
entre complétude et compacité.

Remarque A.2. Soit (Y, d) un espace métrique
borné, d, € (CE(Y,R)), dy(x)=d(y, x) ladistance a y.
[ldy — dz|| = supyey |d(y, x) = d(z, x)| = d(y, z) (car <
par U'inégalité triangulaire inverse et > en prenant
Xx=youx=2z)Doncd:Y — C)(Y,R)estune
isométrie.

Définition A.5

Soient X, Y des espaces métriques, une partie
F c C%X, Y) est équicontinue si pour tout e > 0, il
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existe 6 =6(e) > 0, tel que Vx,y € X,Vfe F, si
d(x,y) <¢alors d(f(x), f(y)) <e.

Par exemple une famille d’application
K-lipschitziennes (comme une famille de la boule unité
fermé de rayon K des applications linéaires continues entre
espaces de Banach) forme une famille équicontinue.

Théoréeme A.11: (d’Ascoli)

Soient X, Y des espaces métriques compacts, si une
partie F est équicontinue alors F est compacte (pour
la topologie de la convergence uniforme donnée par
la distance d(f, g) = sup,cx d(f(x), g(x))).

Exercice A.3. Montrer la réciproque facile.

Démonstration. Comme Y compactil est complet borné
doncd:Y — Cz(Y,R) est une isométrie et d(Y) est complet
donc fermé. Elle induit une isométrie de

Co%X,Y)— Co%X, CS(Y,R)) qui est un espace de Banach.
Les équations f(x) € d(Y), x € X montrent que 'image de
Uisométrie est fermé (comme intersection de fermés

Nxex €Vt (d(Y)), evy(f) = f(x)) donc complet. Donc

C%X, Y) est aussi complet (on aurait aussi pu reprendre la
preuve du cas Y Banach) et F aussi.

Il reste & voir que F est précompact. Or en recouvrant
F par des boules de rayon €/2, F est recouvert par les
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boules de méme centre et rayon ¢, donc il suffit de voir F
précompact. Soit e > 0, on fixe 5(¢) > @ donné par
'équicontinuité et R les centres d’un recouvrement de X par
des boules de rayons §(e) donné par sa précompacité.

Remarquons que si d(f(r), g(r)) < e pourtout r e R, en
prenant r avec d(x, r) < 6(e), on a par ’équicontinuité et
Uinégalité triangulaire :

d(f(x), g(x))
< d(f(x), f(nN)+d(f(r),g(r)+d(g(r), g(x)) < 3e
= d(f, g) < 3e.

Soit enfin S les centres des boules de rayon /2 recouvrant
Y. Nous allons indicer les boules d’un 4e recouvrement par
les applications SR de R vers S en nombre fini. Pour ¢ € SR,
soit

Fy={fe F,YreR,d(¢(r), f(r) <e/2}

Si f, g € Fy alors Uinégalité triangulaire donne,
d(g(r), f(r)) < e pour tout r donc d(f, g) < 3e et si F,; est
non-vide il estinclus dans B(by, 4¢).

Enfin, il suffit donc de voir que F c U, srFy. Or chaque
valeur possible de f(r) est a distance inférieure a /2 d’un
s=¢(r) € S pour un certain ¢, ce qui conclut. O

Théoreme A.12: (d’Ascoli)

Soient X un espace métrique compact et E un e.v.n.
de dimension finie, si une partie F est équicontinue et
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bornée de C(X, E) alors F est compacte (pour la
topologie de la convergence uniforme donnée par la
norme ||.||w).

Démonstration. Si M =sup{||f||w, f € F},

F c C%X, BF(0, M)) et Y = BF(0, M) est fermé borné donc
compact comme E est de dimension finie. Le théoreme
précédent conclut. O
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1 Propriétés des Cones
tangents et normaux dans R”

En pratique, on peut utiliser le résultat suivant pour se
ramener a des cas plus simples :

Proposition B.1

Soient A, B des convexes de E.

1. Si Ac B alors pour tout x € A, Ta(x) c Tg(x) et
Na(x) o Ng(x).
2. SiaceInt(A), Ta(a) = E et Ny(a) ={0}.
3. Siug,...,up e Nay(x) alors
n
{D iU, A; = 0} € Na(x).
i=1
4. Sia=# balors Ny p(a)=R(b-a)*+R.(a-b)
et pour u e [a, b] -{a, b} Nyg p(u)=(R(b-a))*.
5. Pourx e A, Ac x+ Ta(x) et Ty,1,x) = Ta(x) et
donc NX+TA(X) = Na(x).

Démonstration. (1) Ta(x) =Ri(A— x) c Tg(x) est par
monotonie de 'adhérence. Si f € Ng(x) alors pour tout
y € Tg(x) (en particulier y € Ta(x) on a (f, x) <0 et donc
f € Na(x). Donc on a Uinclusion Na(x) > Ng(x).
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(2) ae Int(A) il existe une boule donc un convexe
B(a,r)c Ar> 0 etdonc par (1)
Ta(a) > Tga,n(a) DR.(B(a,r)-a)=R.B(0, r)=E par la
définition. Vu E+ = {0} le résultat sur le cone normal s’en
déduit.

(3) C’est la propriété de cone. Par hypothése pour
X e Ta(x)ona (u,, X) < 0 donc pour 4; > 0
(Z/l Uj, X) = Z/l (Uj, x) <0 et donc Z/l ui € Na(x).
i=1 i=1 i=1

(4) Comme [a, b] est convexe, on obtient
Tu([a,b])=R,[a-u,b-uletu=12a+(1-2)b donc
(a-u)y=(1-1)(a-b), b—u=21(b-a) donc
Tu([a,b])=R,[a-u,b-u]l =R(b-a) dou le calcul du cone
normal par 'exo 3.2. De méme T,([a, b]) =R.(b - a) donc
clairement f € Ny([a, b]) se décompose selon la somme
directe orthogonale R(b-a)® (R(b-a))* f=A(b-a)+ v et
on (f, b—a)=1||b - a||? qui est négatif si et seulement si
1 < 0. Donc si et seulement si f € (R(b-a))* +R.(a-b)
comme annoncé.

(5) Par la formule
X+Ta(X)=X+R(A=X) D x+(A-x) = A. Par Uinclusion
TxsTo(x) 2 Ta(Xx). Mais x + Ta(x) — x = Ta(x) donc
TxeTax) = RiTa(X) = Ta(x) car Ta(x) estun cdne fermé. On
déduit directement le cas des cOnes normaux. O
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Exemple B.1

Soit A={(x,y)eR?: x>y >0,}. Calculons N4(0) le
cone normal en 0 = (0, 0).

D’abord on essaye de borner supérieurement
'ensemble. En prenant [(0,0),(1,1)] c A,on a

Na(0Q) c Nio,0),(1,1)1(0)
= (R(1, 1))* +R.(-1,-1)
:{/l(l’_l)"',u(_l!_l)’/l ERlﬂZ 0}

De méme

Na(Q) c Nio,0),(1,0)1(0)
= (R(1,0))" +R.(-1,-1)
= {/l,(el 1) +:u,(_1! 0)’/1, € R! ﬂl 2 e}

Donc N4(0) est inclus dans Uintersection, résolvons
le systeme (—u’,A’) = (1 —u, -1 — u) avec les
conditions ci—-dessus ,4,4’ €R, u, x’ > 0 Il faut donc
“A—-pu=-A+u-2u=yu —2udonc

No.0)(A) c {'(-1,1) +pu(0,-2), pu, ' > 0}.

Montrons qu’il y a égalité en montrant que

(=1,1) € Na(0) et (0,-1) € N4(0) (car on a alors
l'autre inclusion par le 3 de la précédente
proposition).

La formule du cas convexe donne T4(0) = A donc soit
(x,y) € A, on calcule {(x,y),(-1,1))=y-x<0
d’apres 'équation de A donc (=1, 1) € N4(0).
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Enfin ((x, ¥), (0,-1)) =-y <0 donc (0, -1) € N4(0)
comme voulu.
On a donc

Na(0) =R.(-1,1) +R.(0, -2).

On est maintenant prét pour la :

Preuve du Théoréme 3.6. On rappelle que
C={xeU:Vie{l,...,n}, gi(x) < 0}.

On a supposé xg € Int(C) c U existe. Soit x € C tel que :

1. les [ premieres contraintes sont actives, c’est a dire :

g1(X)=...=g((x)=0
2. les autres contraintes ne sont pas actives, c’est a dire

9i.1(x) <0,...g9n(x) <0
Sil=0,0ona

xelInt(C)={xeU:Vie{l,...,n}, gi(x) <0}

donc Nc(x) = {0} par la proposition B.1.2. Sinon, le but est
de voir :

[
Nc(x) = {Z/lngi(X), A= @} .

i=1
Etape 1:inclusion o.

Par la proposition B.1.3. il suffit de voir que
Vgi(x) € Nc(x) pour 1 <i < [, soit autrement dit par
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définition de N(x), il faut voir :
(Vgi(x),u-x)<0,YueC
Or par le théoreme 3.12, onaVvu,x e U

(Vgi(x),u—-x) < gj(u)-gj(x)=g;(u) <0,

carue C.
Etape 2 : inclusion c.
Soit f € Nc(x).

On remarque d’abord que si on prend hg = xg — x on a
dgi(x)(he) < gi(Xxe) — gi(x) = gi(Xg) <@ pourtouti=1,..., [

Soit donc maintenant h tel que dg;(x)(h)<0,i=1,...,1
(il en existe par la remarque), alors
gi(x+th)-g;i(x)=tdg;(x)(h)+o(t) donc g;(x + th) < 0 pour
t > 0 petit,eti=1,...[ De plus pour t assez petit comme
gi1(X) <0,...9n(x) <0, on déduit par continuité
g1(x+th)<0,...gn(x+th) <0 d’ou x+th e A pour tout t
assez petit.

Par définition de N-(x), on adonc (f,x+th-x) <0
donc en particulier (~f, h) > 0 et on ne peut pas avoir
—(f, h) < 0. Donc -f, dgy1(x), ..., dg;(x) vérifient la premiere
condition de la Proposition B.15 (avec E =R") donc aussi la
seconde et sont donc positivement linéairement dépendants.
On a donc des 4, positifs non tous nuls tel que

(
—/l@f+Z/l,-Vg,-(x) =0.
i=1
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l
Montrons enfin que 19 # 0. Si on avait Z/I,Vg,-(x) =0

i=1
il n’y aurait pas de h tel que dg;(x)(h) < 0 pour tout
i=1,...,lcequicontredit dg;(x)(hg) < 0.

On conclut a 'égalité voulu :

[ [
; //ll— gi(x) € {Z/lngi(X)y/li > 9}

i=1

2 Enveloppe convexe, cones
tangents et cones normaux
pour tout e.v.n. E (Niveau L3)

Comme pour les adhérences, la stabilité par
intersection garantit existence d’un plus petit convexe
contenant A.

Définition B.1

L’enveloppe convexe d’un ensemble A, notée
Conv(A) est le plus petit convexe contenant A.
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Conv(A)
U {Z tixj, Xj € A, avecz ti=1,t; >0}
neN* j=1

Démonstration. Soit Conv’(A) le membre de droite.

Convy(A) = {En: tixi, Xj € A, avecZ ti=1,t >0} Le cas
n=1dans l’ui;}on est Adonc Ac Conv’(A). Si

y1= Zn: tixj € Convy(A), y; = i sjzj e Convp,(A) sont deux
pointlzlquelconques alors pojalr/l €[0,1]

Ay + (1 - /l)yz_z/lt,x,+2(1 1)s;z;.
i=1 j=1

n m
Comme Z/lt,-+2(1 -1)sj=1+(1-2) on déduit
i=1 j=1
Ay1+(1-2)y; € Conv;,,,(A). Ceci montre que Conv’(A) est

un convexe qui contient A.

Il est facile de voir que tout ensemble convexe est
n

stable par combinaison convexe Z tix; avec Z ti=1,t;>0
i=1
par récurrence sur n et ainsi Con},(A) c Conv(A). Si t, =1,

les autres sont nuls et r|en n’est a montrer. En écrivant
Zt,x,_(l t,,)( Zt,x)+t,,xn on a par 'hypothése de

récurrence —— g tixj € Conv(A) car
I-t,
i=1
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n

Yn = 1—_1rn Z ti=(1-1ty)/(1-t,) =1 (et les coefficients sont
i=1

positifs). Donc on a aussi la combinaison convexe

n

O

Z tixi=(L—ty)yn+thxp e Conv(A).
i=1

Dans R" il ne suffit que du barycentre de n+ 1 points.

Théoreme B.3: (de Carathéodory)

(admis) Si AcR", on a

Conv(A)

n+1 n+1

Z{Z tixi, X € A, aVGCZt;Z 1,¢ Z@}
i=1 i=1

Les deux ensembles suivant seront importants pour
formuler des conditions pour des problémes de minimisation
sous contrainte.

Définition B.2
Le cone tangent de 'ensemble A c E e.v.n. au point

ac A est

Ta(a):={be E:Ja;—> a,a;cA,
ai—a

ti>0,t; > 0:b=1Llim }

I

Le cone normal est son polaire, c’est a dire le cone
convexe fermé :

Na(a) :={f € E* : Vx € T4(a), f(x) < 0}.
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Exemple B.2

Ta(a) est toujours fermé. Si L estuns.e.vde E ge L,
Ti(a)=Let N (a)=L*.Siace Int(A), Ta(a) = E et
Na(a) ={0}.

Le résultat montrer Uaccord avec la définition du cas
E =R" dans le cas convexe (avec lUidentification usuelle de
E’ a E comme pour tout espace de Hilbert.)

Proposition B.4

Si S est convexe et x € S, alors T,(S) est convexe et
Scx+Tx(S). De plus, on a

u—x
S
Nx(S)={feE":VYueS, f(u-x) <0}

Tx(S) ={

,ueS,s> 0},

Démonstration. R;(S - x) est convexe comme S — x donc
en prenant U'adhérence, aussi 'ensemble W =R::(S——x) que
Uon veut montrer étre Ts(x). Si on a une suite

(Xp—X)/th = U € Ts(x) comme tous les éléments sont dan
W, on obtient par fermeture aussi la limite, donc Ts(x) c W.
Réciproquement, pour t > 0,
Xpi=t(u-x)+x="Lu+(1-L)x e Spournassezgrand par
convexité et (x, — x)/tp=t(u-x) sit,=1/n— 0 donc
t(u-x) e Tg(x) comme voulu. Les autres relations sont
alors évidentes, car S- x c Ts(x) (car s=1) et par la

définition de Ns(x) comme polaire. O
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3 Points selles (Niveau L2-L3)

Les points critiques a qui ne sont pas des extrema
peuvent étre de différents types. L’absence d’extrema peut
étre visible sur une droite passant par a s’ily a un point
d’inflexion (comme pour x — x3 dans R) et il peuty avoir des
points critiques qui sont des maxima dans certaines
directions et des minima dans d’autres. Ces points ont un
certain intérét et seront nommés points selles.

Définition B.3
SoitUcR"etf:U—-RetacU.

1. Soient deux sous—-espaces vectoriels F et G
supplémentaires R" = F® G (c’est a dire
FNnG={0}etR"=F + G) On dit que g est un
point selle (resp. point selle local) de f selon
la décomposition R" = F @ G si g est un
minimum (resp. minimum local) pour la
restriction fio.r de f au sous espace affine a+ F,
et si g est un maximum (resp. maximum local)
pour la restriction f g, de f au sous espace
affine a+ G. On parle de point selle si il existe
une telle décomposition.

2. Si f de classe C!. Soit a un point critique de f,
un sous espace vectoriel H c R" est un plan
d’inflexion si pour toute droite A passant par a
inclus dans a+ H, fi, n’a pas d’extrema local en
a.
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Remarque B.1. La décomposition F & G d’un point
selle n’est pas forcément unique et on ne demande
rien en dehors (a+ G) U (F + a), en particulier, il peuty
avoir des plans d’inflexion en un point selle (ex
f(x,y)=x%-y2+(x-y)3,(0,0) estun point selle
local dans la décomposition (R, 0) @ (0, R) car x2 + x3
a un minimum local en @ et —y? — y3 un maximum
local, de méme (0, 0) est un point selle dans la
décomposition R(1,1/2)®R(1/2, 1) mais R(1,-1) est
une droite d’inflexion)

Proposition B.5

Soit f: U » R de classe C!

1. Si g estun point selle de f, c’est un point
critique de f.

2. Si f est C? et a est un point critique de f. Si
D%f(a) est non-dégénérée, ni positive ni
négative, alors a est un point selle local de f.

3. Si g est un point critique de f H est un plan
d’inflexion en a de dimension dim(H) > n/2
alors a n’est pas un point selle local. De plus si
f est C2 pour tout he H, D*f(a)(H, H) = 0.

Démonstration. Pour (1) on remarque qu’il suffit de
montrer df(a) = 0 ce qui ne dépend pas de la base de R" on
peut donc supposer a point selle pour la décomposition

F =RKx {0}, G={0} xR"k, Comme frestreinta a+ F a un
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minimum local, les k premieres dérivées partielles
s’annulent, les n-k dernieres s’annulent a cause du
maximum sur a+ G, d’oul df(a) = 0.

La preuve de (2) nécessite quelques bases d’algebre
linéaire. Pour (2), comme D2?f(a) est non dégénérée, les
valeurs propres de H(f)(a) (les racines du polyndme
X — det(H(f)(a) - Xid)) sont non nulles. Comme la matrice
DZ%f(a) n’est ni positive ni négative, il y a a la fois des
valeurs propres A positives et négatives. Soit F 'espace
vectoriel engendré par les vecteurs propres u (les u e R" tels
que H(f)(a)u = Au qui existent car si det(H(f)(a)-1id) =0,
H(f)(a) - Aid n’est pas injective donc a un noyau) des
valeurs propres A strictement positives, et de méme G avec
les négatives. D%f(a) restreint a F est positive donc flg.r
admet un minimum local et de méme pour G.

Pour (3), si dim(H) > n/2 et supposons par ’absurde a
point selle, on a dim(F)+ dim(G) = n, on a soit
dim(F) > n/2, soit dim(G) > n/2, disons qu’on se trouve
dans le premier cas, alors
n>dim(H+ F)=dim(F)+dim(H)-dim(F n H) implique
dim(FnH)>dim(F)+dim(H)-n>n/2+n/2-n=0 donc
FnH=#{0}une contradiction car la restriction de f a toute
droite dans a+ F n H devrait avoir un minimum local en g et
un point d’inflexion a la fois. Si D2f(a)(H, H) # 0, on a vu
que cela suffit a ce que f ait un extremum local sur la droite
a+RH, vusi¢(d)=Ff(a+aH), ¢’ (0) = D%f(a)(H, H). O
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Théoréeme B.6

Soient A c R"k B c Rk des compacts convexes et
K: C=AxB — R continue. Si pour tout

(a,b)e C,aecR"k beRK x+— K(x, b) est convexe et
y — K(a, y) est concave, alors il existe un point de C
qui soit un point selle (xg, o) selon la décomposition
Rk % {0} ® {0} x Rk autrement dit :

VXEA,yGB K(XG:V)SK(XB,VO)SK(X,VQ)- (B.1)
De plus, (B.1) est équivalente a l'égalité :

MinycaMax,gK (X, y) = Max,cgMiny.aK(x, y).
(B.2)

Remarque B.2. On a des Min et Max au lieu d’inf et
sup car des fonctions continues sur des compacts
atteignent leurs bornes (cf. la preuve pour la
continuité de x —» Max,gK(x, y) et de facon similaire
de y = MaxycaK(X, y).

Dans le cas ou f est bilinéaire, ce résultat s’appelle
le théoréme du min-max de von Neumann. Il a une
signification en théorie des jeux. Si f donne la valeur
que gagne un joueur A en position x € U si f(x) > 0 et
—f(x) la valeur que gagne le joueur B (et perd le
joueur A) si f(x) < 0. Si A ne peut influencer que la
direction {0} x R¥ et B seulement la direction

Rk x {0}. Alors un point selle est un "équilibre de
Nash" c’est-a-dire un point ou ni A ni B n’ont intérét
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a changer leur stratégie, car si A change sa stratégie
celle de B étant constante, étant donné que le point
selle est un maximum, A va perdre en gain, et de
méme si B change sa position avec celle de A
constante, le caractére de minimum dans la direction
du changement de B montre que B ne peut que perdre
plus.

Démonstration. .
MaxycgMinycaK(x, y) < MinycaMax,cgK(x, y) est
toujours vrai. Comme pourtout x € A,y € B,
MinycaK(x, y) < K(x,y) < Max,caK(x, y), on déduit
en prenant le max :
Max,gMinyeaK(x, y) < Max,gK(x, y) soit en
prenant un Min en x :

MaxyegMinyeaK(x, y) < MinycaMax,gK(X, y).

e (B.1)= (B.2)
De plus, en considérant (xg, yp) de (B.1), on a :

K(Xg, Yo) < MinycaK(X, yo)

< MaxycgMinycaK(x, y),
K(Xg, Yo) = MaxygK(Xq, ¥)

> MinycaMax,cgK(x, y),

d’ou 'égalité compléte en rassemblant les 3 derniéres
inégalités.
e g:xm— Max,.gK(x, y) est continue.
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Soit x, xp € A, X5 — X, soit y, (resp t) atteignant le
max pour x, (resp x) c’est a dire :

MaxycgK(Xxn, ¥) = K(Xn, yn). Supposons que

g(xn) = K(xp, yn) ne converge pas vers g(x). Par
compacité, on peut extraire une suite telle que
Yo(ny — Y. Par continuité de K :

9(Xs(m) = K(Xg(n)» Yo(n)) —
K(x,Y) < K(x,t)=Maxy.gK(x,y)=g(x).
Or K(Xg(ny, t) < K(X4(n)» Yocny) donc en passant a la
limite par continuité de K, K(x,t) < K(x,Y) < K(x, t),
une contradiction.

e (B.1) = (B.2) On prend xg € A réalisant le minimum
c’est a dire tel que :

a = MinxeAMaXyeBK(X; y)= MaxyeBK(XQ’ y)

Il existe par la continuité du point précédent et par
compacité. De méme, il existe yy € B réalisant le
maximum :

MinycaK(x, yo) = MaxycgMiny.aK(x, y) =a.

Donc pour tout x € A, y € B, en utilisant (B.2) pour
'égalité du milieu, on obtient :

K(xp,y) < Maxy.gK(xq, Y)
=a =MinxcaK(X, yo) < K(X, yg).

En prenant x = xg, ¥ = Va, on voit a = K(xg, yg), Ce qui
dit donc que (xg, yg) est un point selle.
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e Montrons (B.2). Considérons, pour e > 0,
Ke(X,y) = K(x,y) +ellx]]5.

Comme x — e||x||§ est strictement convexe, il en est
de méme de K.(., y) pour tout y € B (convexe plus
strictement convexe donne strictement convexe).
Montrons que pour tout y, la fonction K.(., y) a un
unique minimum. En effet, si x; # x, sont deux
minima, par stricte convexité :

Ke((x+y)/2,y) < Ke(x1,¥)/2+Ke(X2,y)/2 = K(Xj, ¥) en
contradiction avec le caractére de minimum. Donc on
a un unique E(y) atteignant le minimum de K.(., y)
Par le deuxieme point (appliqué a —K.(y, x))

f.(y) = K.(E(y), y) est continue, donc atteint son
maximum en y*. En conséquence, par la définition de
f. et le choix de y*

fe(y*): MaxyeBMinxeAKe(X, )/)
= Ke(E(Yy"), y) = MinycaKc(X, ¥7).
Soitxe A,y e B,t€]0,1[, on a par concavité :
KE(X! (1 - t)y*+ ty) = (1_ t)KE(Xl y*)+ tKE(Xl y)
> (1-t)f(y") + tKe(x, ).

En prenant x = E((1-t)y* + ty), on obtient

fe(L=t)y +ty) 2 (1 - O)f(y) +tK(E(1-)y* +ty), y).
Vu que y* maximise f., en soustrayant et divisant par
t,ona:

fe(y") 2 Kd(E((1 =)y +ty), y) (%).
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On veut prendre t — 0, voyons que y — E(y) est
continue. Supposons y, — y, et supposons

E(yn) / E(y) par compacité, on a une suite extraite
Ys(n) telle que E(y4n)) — Z # E(y). Par continuité
Ke(CE(Yom))s Yocn) = Ke(Z,y) > K(E(Y), ¥),
U'inégalité stricte venant de l'unicité du minimum d’une
fonction strictement convexe.

Or par définition Ke(E(Y)), Vo(m) = Ke(E(Yg(n))), Yoim)
donc en passant a la limite

Ke(E(Y), ¥) 2 Ke(Z,y) > Ke(E(y), ¥), une
contradiction.

On a donc montré la continuité de y — E(y).

Donc en passant a la limite dans lU'inégalité (), on
obtient : f.(y*) > K.(E(y*), y) et ce pour tout y € B Par
ailleurs par définition de f,, f.(y*) < Kc(x, y*).
Autrement dit (E(y*), y*) est un point selle de K.. Par
Uimplication (B.1) = (B.2), on déduit, vu

K(x,y) < Ke(x,y) < K(x,y)+eD (avec

D= MaxX€A||x||§ < co par compacité) :

MinxeAMaxyeBK(X’ y)
< MinycaMax,egKe(X, ¥)
= MaxyeBMinxeAKe(Xv Y)

< eC+MaxyegMingaK(x, y).

En prenant e — 0, on obtient l'inégalité qui manque
pour avoir (B.2) pour K.
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4 Jauge de Minkowski d’un
ensemble convexe (Niveau
M1)

L’un des objectifs principaux de ce chapitre est
d’utiliser le théoréeme de Hahn-Banach pour séparer des
convexes par des hyperplans fermés, lieu d’annulation
d’une forme linéaire continue. Pour cela, nous devons
associer a un convexe une fonction (qui sera souvent une
semi-norme) et que l'on pourra utiliser comme domination
dans le théoréme d’Hahn-Banach.

Définition B.4

Soit E un R-e.v., un convexe C c E est dit absorbant
si pourtout x e E, x € AC pourun 1 > 0.

Définition B.5

Soit E un R-e.v. et C un convexe absorbant. La jauge
de Minkowski de C est la fonction :

ucX):=infila >0 : 1 1x e C} e [0, o)

Théoreme B.7

Soit E un R-e.v. et C un convexe absorbant. Alors

Loucx+y) <puc(X)+uc(y).
2. pe(tx) = tuc(x) sit >0,
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3. Si—-C=C, uc estune seminorme.

4. SiA={x:puc(x)<1},B={x:puc(x) <1} alors
A c C c Bsontdes convexes et uag=ug=puc

5. Si E estune.v.n. et@ e Int(C) (ce qui implique
C absorbant), uc est continue et de plus

A=1Int(C),B=C.

Démonstration. Soitt=puc(x)+e>0, S=uc(y)+e>0de
sorte que x/t, y/s € C. Or on peut écrire la combinaison
X+y _

P t x s Yy
convexe sulvante it —siit T sits € C et donc

uc(x+y)<s+t. Comme e > 0 est arbitraire, on déduit (1).

(2) est une conséquence directe de la définition. Si
~C=Cuc(x)=puc(-x) dolt on déduit uc(tx) = |tluc(x), la
seule relation manquante pour (3).

Les inclusions entre A, B, C viennent de la définition :
x € Cdonne x/1e Cetdonc uc(x)<letsiuc(x)<1,alors
x/1le C. Elles impliquent ug < uc < ua. Siug(x) <s<t
alors x/s e Bdonc uc(x/s) <1donc uc(x/t)<s/t<1dou
x/t e Adonc ua(x) < t soit en passant a Uinfimum des t,
ua(x) < mug(x) ce qui donne la derniére égalité de (4). A, B
convexes sont semblables a la convexité des boules en
utilisant (1) et (2).

Pour (5), on remarque qu’il existe B(0,¢) c C donc

uc(ex/lIx]) < 1 soit uc(x) < x]|/e.
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De plus par inégalité triangulaire
uc(X) < luc(x=y)|+uc(y) et de méme eninversant x, y donc

luc(X) —pucI < luc(x =yl <lIx-yll/e

donc uc est 1/e-lipschitzienne donc continue. On déduit
que A est ouvert, B fermé et donc A c Int(C),C c B. Or, soit
€, si xe Bx(1-1/n)e C et converge vers x € C donc Bc C.
De méme si x € AS, (L+e)x ¢ C donc x e C< donc A€ c C¢
d’ou en prenant le complémentaire Int(C) c A. O

Vous pouvez aussi en exercice essayer de montrer le
résultat suivant directement.

Corollaire B.8

Soit C un convexe d’intérieur non vide d’un e.v.n.,
Int(C) = Int(C) et Int(C) = C.

Démonstration. En translatant, on peut supposer

0 € Int(C),, Alors comme uc = urpr(cy = He, par le (5)
ci-dessus, le calcul de Uintérieur/adhérence en terme de la
jauge donne que ces trois ensembles ont méme intérieur et
méme adhérence. O
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5 Séparation des convexes
(Niveau M1)

Un élément f € E’ tel que f # O permet de construire un
hyperplan fermé (translation de Ker(¢), voir lemma 2.30) :
{x € E, f(x)=c}. Les deux ensembles {x € E, f(x) < c} et
{x € E, f(x) = c} sont des demi—-espaces. On dit que deux
ensembles sont séparés (par 'hyperplan) si chaque
ensemble est dans un des demi-espaces. On parle de
séparation stricte si C; c {x € E, f(x) < c} et
C,c{xeE,f(x)>d}pourd>c.

On va obtenir un résultat de séparation en utilisant un
résultat abstrait de prolongement :

Théoreme B.9: (de prolongement de Hahn-Banach)

(admis)

Soient E un espace vectoriel, p: E — R une
application positivement homogene et sous—additive,
c’est-a-dire vérifiant :

> p(tx)=tp(x)xe E, t >0

> p(x+y)<px)+p(y), x,y€E.
Soient G c E un sous—-espace vectorieletg: G - R
une application linéaire dominée par p :

Vx e G, g(x) < p(x).

Alors il existe une forme linéaire f sur E qui prolonge
g (c’est-a-dire Vx € G, g(x) = f(x)) et encore dominée
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par p, c’est-a-dire telle que

Vx e E, f(x) < p(x).

La version suivante du théoreme de Hahn-Banach
permet de séparer des ensembles convexes bien choisis.

Théoreme B.10: (de séparation de Hahn-Banach)

Soient A, B deux convexes non-vides disjoints d’un
e.v.n. E, ils sont séparés par un hyperplan dans les
deux cas suivants :

1. Si A estouvert, alors il existe fe E’ et ceR
telle que

VxeA, yeB:f(x)<c<f(y).

2. Si A est compact et B est fermé, alors il existe
fe E'etc<deRtelle que

VxeA,yeB:f(x)<c<d<f(y).

Démonstration. 1) Premier cas : B={xp}.

On peut supposer que @ € A pour utiliser la
fonctionnelle u4 comme fonctionnelle sous-additive et
positivement homogéne p du théoreme de Hahn Banach.

Soit G =Rxg et g(txp) = t.
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On remarque que ua(xg) > 1 car
A=1Int(A)={x:ua(x) <1} par le théoréme B.7 et x5 ¢ A.

donc pour t>0 g(txg) =t < tua(xg) = ua(txg) et pour
t <0 g(txg) <0 < ua(txg). Donc on obtient la domination
hypothése de Hahn-Banach :

Vx e G, g(x) < pa(x).

En appliquant le théoréme, on obtient donc f linéaire
étendant g et telle que (en réutilisant la lipshitzianité
obtenue dans la preuve du théoreme B.7 (5))

Vx € E, f(X) < pa(x) < Mi|x]|.

Ceciimplique en particulier f e E*, f(x) <1 pourxe A
et f(x) =1 sur B. Ce qui donne la séparation.

Second cas : B quelconque.

On pose C = A- B qui est convexe, ouvert (comme
union U,cgA—y) et @ ¢ C. Donc d’apres le premier cas il
existe f € E’ telle que f(z) <@ pour z=a- b € A- B soit
f(a) < f(b) pourae A, be B. En passant au sup on obtient :

Supxeaf(x) < Inf,cgf(y) :=c.

De plus, comme A ouvert on obtient
AcInt({x:f(x)<c})) ={x:f(x)<c}.
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2)Vérifions qu’il existe e > @ tel que A+ B(0, ¢) et
B+ B(0, €) soient disjoints (ce sont aussi des convexes
ouverts comme au 1). Sinon, on trouve
Xp€ A+B(0,1/nyn B+ B(0,1/n) donc y, € A, z, € B avec
lYn = Xnll, 1Zzn — Xnl| < 1/n. En extrayant par compacité une
sous-suite y,, — y € Aon obtient z,, — y € B, une
contradiction.

Donc on peut appliquer le cas 1) a A+ B(0, ¢) et
B+ B(@,¢) . On obtient f € E’ non-nulle telle que :

Yae A,Yze B(0,¢),Ybe B :
fla)+f(z) <a < f(b)+f(2).

En prenant des sup sur la boule unité :
Vae A,¥be B: f(a)+]||flle <a<f(b)-|f|le.

Comme ||f|| # 0, il suffit de prendre
c=a-||flle/2<d=a+]|f|le/2. O

Applications

Il vient de U'application directe au cas A= {x}, B={y}
qui sont des compacts.

Proposition B.11: (separation des points)

E’ sépare les points de E : Pour x # y € E il existe
f e E’ telle que f(x) # f(y).
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Le deuxiéme cas particulier permet de séparer un point
et un espace fermé F

Proposition B.12

Si F c E un sous—espace vectoriel de l’e.v.n. E. Si
x ¢ F alors il existe f € E’ telle que f(x) =1 et

F c Ker(f).

En particulier, F+ =0 ssi F est dense dans E.

La proposition précédente a des conséquences
intéressantes pour comprendre Uinjectivité et la surjectivité
(ou plutét la densité de l'image) des applications linéaires
en dimension infinie.

On commence par un préliminaire algébrique sur
lorthogonalité dans les espaces de Banach.

Définition B.6

Soit E un e.v.n. et F un sous-espace de E et N un
sous—espace de E’. Les orthogonaux de F et N sont
les sous—espaces fermés :

Ft:={feE f(x)=0xc F},

N :={x e E, f(x)=0Vfe N}.
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Proposition B.13

Soient X, Y dese.v.net T € L(X, Y). Alors

Ker(TH =[Im(T)]* Ker(T)=*[Im(TH].

Démonstration. En effet, y € Ker(T?!) ssi pour tout x € E,
0=[T'(Y](x)=y(T(x)) ssiye[Im(T)]*.

De méme, y € Ker(T) ssi pour tout x € E*,
0=x[T(y)]=[T'(x)(y)ssiye*[Im(TH]. O

Proposition B.14

Soient X, Y dese.v.net T e L(X,Y).

1. Im(T) est dense dans Y si et seulement si T!
est injectif.

2. SiXcY,(Xt) =X estlafermeture normique
de X dans Y.

Démonstration. Pour 1, T! est injectif si et seulement si
Im(T)* =Ker(T!) =0 (proposition B.13) ssi Im(T) est dense
par la proposition précédente.

Pour 2, X c +(X*) donc comme le terme de droite est
fermé, 'adhérence estinclus. Réciproquement, soit x ¢ X
par la conséquence de Hahn-Banach ci-dessus, soit f € E’
telle que f(x) =1, et f € X+, on déduit que x ¢ +(X*4). O
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Le résultat suivant qu’on a utilisé pour les calculs de
cones normaux est un exercice typique d’application de
Hahn-Banach.

Proposition B.15

Soit{f;:i=1,2,---,k} un ensemble fini dans E’
(pour un e.v.n. E). Les affirmations suivantes sont
équivalentes :

(1) Il n’y a aucun v € E tel que f;(v) < @ pour tout

ie€[l,n];

(2) L’ensemble {f;:i=1,2,..., k} est positivement
linéairement dépendant : il existe un vecteur
nkon—nul/l =1, ,4,) # 0 avec 1, > 0 tel que

Dlaifi=0
i=1

Démonstration. Montrons premierement le sens facile :
(2) = (1). A partir de 1; > 0, on obtient en appllquant av,

Z/l fi(v) =0, Or f;(v) < @ pour tout i implique Z/l fi(v) <0,
i=1 i=1
donc cela implique (1) par contraposée.

Dans l'autre sens (1) = (2), on utilise le théoréme de
séparation de Hahn-Banach pour

Ki={yeRk:y,<0,vie{l,2,...,k}},
Kz = {(fi(v), (v), ..., fy(v)) : v € E}.
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Vu que p;(y) = y; est linéaire sur Rk de dimension finie,
donc convexe continue, on obtient que
Ky = mf.‘zlplil(] — o0, O[) est une intersection finie de convexes
ouverts, donc un convexe ouvert.

Ky =Im(fy, -, f) >0 estuns.e.vdeRK doncun
convexe non-vide. (1) indique qu’ils sont disjoints. Par
conséquent le cas 1 du théoreme B.10 s’applique et donne
A=(11, - ,4) € E' =Rk et c tels que :

Vx e Ky, y e Ky, A, X)y < c <A, y)

Comme K, estun s.e.v., pourt—0ona
c<t{d,y) > 0,donc c<0.Deplus c <+n{a, y) etdonc
+n{d,y) < -c=|c|force [{1, y)| < % — @ donc (1, y)=0.

De plus (-1, ,-1,---, -1y e K; so
- —%Z/lj < € <0.Donc en passant a la limite, n — o, on
J#i

obtient —-1; <0, donc 1; > 0. Et 1 # 0 vient de
</l! (1! ’1)> <0.
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Complements
facultatifs au
chapitre 4 :
Espaces
mesures.

1 Lemme de classe monotone
Définitions

Au lemme 4.3 iii), on a vu comment on remplace les
unions dénombrables par des unions cro issantes d’une suite

317
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d’unions finies. Cela suggére que la notion d’union
croissante pourrait remplacer utilement (pour la théorie)
celle d’union dénombrable et suggere la définition suivante
de classe monotone. !

Définition C.1

Une classe monotone sur Q est une famille M de
partie de Q contenant Q et stable par différence et
unions croissantes, c’est-a-dire M c P(Q) telle que :

1. Qe M

2. SiA,Be Mavec Bc A alors A- B e M.

3. Si{A,, n >0} c M estune suite croissante (i.e.
A, c A1, alors U Ap e M.

n>0

Lemme C.1: (cf. TD)

1. Une tribu est une classe monotone.

2. Une classe monotone stable par intersection
finie est une tribu.

3. Si (M;)jc; sont des classes monotones, alors
leur intersection ﬂM,- est une classe

iel
monotone.

1. Comme dans le livre de Barbe-Ledoux [1], on suit la
tradition francaise pour cette définition (différente de la tradi-
tion anglo-saxone venant du livre de Durett de Probabilités).
Attention, ce n’est pas la méme définition dans le cours du
MGA.
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On peut donc parler de la plus petite classe monotone
contenant une famille A c P(Q), qui est Uintersection
de toutes les classes contenant A, elle est notée
M(A) et appelée la classe monotone engendrée par
A.

Le résultat principal

Théoréme C.2: (Lemme de classe monotone)

Soit & une famille de partie de Q stable par
intersection finie, alors la classe monotone et la tribu
engendrée par & coincident : M(&) = o (&).

Démonstration. Par le lemme C.1 1), o(&) est une classe
monotone contenant &, donc comme M(E) est la plus petite
telle classe, on a M(&) c o (&).

M(E) est une tribu. Par le lemme C.1 2), il suffit de
voir que M := M(E) est stable par intersection binaire. On
pose

K={AeM:VBe&, An B e M}.

Comme E est stable par intersection finie, E c XK. On a
QeMetsiAc Cavec A,CecK,Beé&, alors
(C-ANnNB=(CnB)-(AnB) e M par différence
d’ensembles de M. Enfin, de méme comme intersection
distribue sur les unions croissantes, K est stable par
intersection croissante et donc une classe monotone. Or
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elle contient &, comme ona vu, donc M(&E) c K et comme par
définition K c M(&E). on a égalité.

On est maintenant prét a définir la classe qui va vérifier
la stabilité voulue par intersection :

L={AeM:¥VCeM,AnC e M}.

On montre comme avant que £ est une classe monotone
(ex0). Montrons que & c L. Soitdonc Be &, alors Ce Mc K
donc, par définition de K, pour Bn C € M. Et comme c’est
vrai pour tout C € M, on en déduit par définition de £ que
B e £, comme voulu.

Finalement, £ est une classe monotone telle que
& c L c M(&) donc, par définition de la classe monotone
engendrée, £ = M(E).

Inclusion réciproque. Comme M(&) est une tribu
contenant & et que o (&) est la plus petite telle tribu, on
obtient M(&) > o (E). O

Corollaire C.3: (au lemme de classe monotone)

Soient u et v des mesures finies de mémes masses
(i.e. u(2) =v(Q)) sur un espace mesurable (2, 7).
Soit & une famille stable par intersection finie qui
engendre 7. Si u et v coincident sur & (i.e.
u(E)=v(E),VE € &) alors u et v sont égales (i.e.
u(B)=v(B),YB e T).
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Démonstration. Soit M ={B c E : u(B) =v(B)}. Par
Uhypothese, M contient &. Vérifions que c’est une classe
monotone :
> Q€ M car uetvont méme masse.
> Si A,Be M, Ac B, alors par la proposition 4.3 v) on a
u(B = A)=u(B) - u(A)=v(B) -v(A) =v(B-A).
> SiAjcAyc---cApcC---,A, e M, estune suite
croissante, par la proposition 4.3 iii),
u( | An) = lim u(An) = lim v(An) = v( [ An).
nx1 nx1
Bilan, M est une classe monotone qui contient &, donc
M(E) c M. Or par le lemme de classe monotone
M(E) =a(E) =T d’ou le résultat. O

Preuve du corollaire 4.19 au lemme de
classe monotone sur Uunicité des
mesures sigma-finie

On commence par le cas ou la suite de parties A, € &
est croissante.

Notons up, v, les mesures induites par u, v sur A,
respectivement. On a deux mesures finies avec
un(E)=u(EnAp)=v(EnN Ap) =va(E) pour tout E € & donc
par le corollaire au lemme de classe monotone pour les
mesures finies, on déduit u, =v,. Pour tout Be 7, on a
B=Bn (U Ap) = U(B N A,) donc par union croissante :

n

n

p(B) = lim pin(B) = lim vn(B) = v(B).
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Dans le cas ou la suite A, n’est pas croissante, on
utilise B, =U? | A; qui est une suite croissante, mais pas
forcément dans &, donc il faut travailler plus pour vérifier
Uhypothése pour la mesure induite sur B,. D’abord, par la
formule de Poincaré :

n
pUR A0 = ) DR DT A 0N Ay < oo
k=1 1<ip<--<ig<n
Et comme toutes les intersections sont dans &€ tous les
termes de la formule sont égaux aux termes correspondants
pour v donc u(By) =v(Bp). On considére les mesures
induites pour B€ 7(E),un(B) = u(Bn Bp),v(Bn By) =vny(B).
On vient de voir que up, vy, sont finies. Montrons que pour
E €& un(E)=vn(E) En effet En By =U]_j(ENA)) eten
appliquant la formule de Poincaré encore (en remarquant
que les intersections sont celles d’éléments de E.

u(Ug_1(ENAy)

=zn:(_1)k—1 Z p(ENALn---NnA;)
k=1

1<ip<-<ig<n

M:

(-1)k-1 Z V(ENA; NN A;) =v(UT_ (ENAY).

1 1<ip<---<ig<n

=~
]

On conclut comme avant du corollaire au lemme de classe

monotone pour les mesures finies, que u, = v,. Puis pour

toutBeg,onaB=Bn (U Bp) = U(Bm Bj) donc par union
n n

croissante :

u(B) = lim up(B) = lim v (B) = v(B).
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2 Compléments sur les
Boréliens

On rappelle que la tribu des boréliens d’un espace
métrique (X, d) est la tribu engendrée par 'ensemble des
ouverts 7. (cf. définition 4.6). En pratique, il est difficile de
décrire tous les boréliens (les ouverts sont déja difficiles a
décrire), mais on n’a pas besoin de description explicite
(juste de familles génératrices simples, et stables par
intersections finies).

Remarque C.1. Il existe des ensembles qui ne sont
pas boréliens sur R, et donc des fonctions
non-boréliennes. Ils ne sont pas si faciles a définir,
donc en pratique, tous les ensembles qu’on
rencontrera seront boréliens.

Espaces métriques séparables et leurs
boréliens

Définition C.2

Une partie A est dite dense dans E si A= E. Un
ensemble est dit séparable si il admet un
sous—-ensemble au plus dénombrable dense (ou
autrement dit une suite dense).
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Un sous—ensemble F d’un espace métrique séparable
est séparable.

Démonstration. On peut supposer F non-vide, sinon,
c’est évident (la partie vide donc finie est dense). On fixe
donc xg € F

Soit u, une suite dénombrable dense. Soit
dm,n € B(Uum, 1/n)N F si cet ensemble est non-vide, et sinon
on pose am,n = Xp. La famille {am,n, m, n € N} est finie ou
dénombrable et dense car si x € F il existe d(upm, X) <1/2n
donc ap 2, existe car B(um, 1/2n)n F est non vide et par
inégalité triangulaire d(um, am,24) < 1/n. O

Proposition C.5

(R, [|.|le) €St séparable.

Démonstration. On a vu que Q" est dénombrable comme
produit d’ensembles dénombrables. Montrons qu’il est
dense dans R". En effet si x = (x1, ..., Xp) on pose

Xp = (%, e %) avec | x] la partie entiere de x. Donc
Lpxil < px; < |pxi]+1et

1

p

il <

}M_
p

donc |[xp — X||le < 1/p —p_e 0. Donc vu x, € Q7, x € Q".
Comme x est arbitraire. R" c Q" CQFD. O
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Exercice C.1. Montrer que Q¢ est dense dans R.

Proposition C.6

Soit (X, d) un espace métrique séparable, alors la
tribu borélienne est engendrée par les boules
ouvertes B(X) = (T(B : Boule ouverte de X).

Démonstration. Toute boule ouverte est un ouvert donc
{B : Boule ouverte de X} c B(X) et donc en passanta la
tribu engendrée : a(B : Boule ouverte de X) c B(X).

Le contenu de la proposition est la réciproque. Il suffit
de montrer que 7 C o-(B :Boule ouverte de X) car alors, en
passant a la tribu engendré, on obtient
B(X) c O'(B :Boule ouverte de X).

Montrons qu’en fait, tout ouvert U est union au pus
dénombrable de boules ouvertes. Comme X est séparable,
c’est aussi le cas de U. Soit D = {x, : n e N} c U une suite
dense. Comme U est ouvert, il existe r, € QN]0, +oo[ tel que
B(xn, rp) c U. Soit donc
A={(Xp, In) : rph € QN]0, +oo[, B(xp, rn) c U} estdonc a.p.d
comme sous—ensemble d’un produit d’ensembles
dénombrables. Donc en passant a 'union on
a: U B(xp, rn) c U. Montrons que

(Xn,rn)€A

U= U B(xp, In) € o-(B : Boule ouverte de X)

(Xn,rn)eA
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Soit x € U, il existe r > 0 avec B(x, r) c U. Puis il
existe n tel que d(x, x,) < £ etsoitr,eQavecr/3 <rp,<r/2
(par densité de Q dans R= donc
x € B(xp,r/3) c B(xp, rp) c B(xp, r/2) c B(x, r)c Udonc

(Xp,rn) e Aetxe U B(xpn, rn). Comme x est arbitraire,
(Xn,rn)€A
on a l'insclusion réciproque qui conclut :

Uc U B(Xn, In)- O

(Xn,rn)€A

Preuve du Corollaire 4.17. 1l suffit de remarquer que
B(R) = 0'({{+oo}, {~oo}}U{la,b[:a<b<a+ 2}), carR est
séparable ({+c0, —0} UQ est dense car la densité surR
coincide avec la densité usuelle vu qu’on a les méms
ouverts, cf TD 1) et que les ensembles de la partie
génératrice sont les boules ouvertes pour d.

Il suffit de noter que

la, b[= ﬂ [a— %, b+%] € 0'({{+oo}, {-c0}}yuU{[a, b] : a< b})

nx>1
pour déduire que

B(®) = o({{+e0}, {-c0}} U {[a, b] : a < b}
Par le lemme 4.13, on a alors que f est mesurable si et

seulement si

1. f1{eo)) eT
2. fFl{-co) eT
3. Pourtouta<beR, fi([a,b])eT

C’est exactement le résultat voulu (et on a vu que le dernier
point équivaut a la mesurabilité de la restrition de f a R.
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O

Preuve du lemme 4.6

Pour rappel, on veut montrer que

n
B®M =o([ [la;, bil, ai < b; e R).
i=1
Comme les produits d’intervalles ouverts sont des ouverts,
et que les boules ouvertes pour la norme infini sont des
boules ouvertes, on a

{B :Boule ouverte de R", || - ||}
n
c {n]ai, bi[,a; < b; eR} cT.
i=1

Donc en prenant la tribu engendrée et en appliquant la
proposition C.6 sachant que R" est séparable par la
proposition C.5, on obtient :

B(RM :a({B : Boule ouverte de R, || - IIOO})

c 0'( : la;, bi[, a; < b GR) c O'(T) = B(R").
=1

I
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3 Stabilité des fonctions
mesurables

Un supremum d’une suite f, : (Q,7) — R de fonctions

mesurables est mesurable.

Démonstration. On note f =sup,.; f, et on remarque que

fl([~,a]) ={we Q:supf(w) < a}

nx1

= Nps1fy t([-c0, a]).

Or par le corollaire 4.17, on sait que f,1({-c} est dans 7 et
aussi f;1(] -, a]) = Ups1f,1([-n, @]) € T par union
dénombrable. Donc chaque f;1([-~, a]) € 7 et donc par
intersection dénombrable, on a f~1([-w, a]) € 7. Par le
corollaire 4.16, on déduit que la restriction de f a R est
mesurable et donc pour tout a < b, ona f~1([a, b]) € T.

Enfin, f~1({-co}) = Nps1fr ({~0}) € T et
f—l — f—l
({+oo}) = () F~1(In, +o0]) € T OF

nx1
f-1(n, +]) = f-1([-c0, n])€ € 7 donc par intersection

dénombrable, on a bien f~1({+w}) € 7. Par la réciproque du
corollaire 4.17, on déduit que f est mesurable. O
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Lemme C.8

La limsup, liminf d’'une suite f, : (Q,7) —» R de
fonctions mesurables est mesurable.

Démonstration. Comme inf, f, = -sup,—f,, on déduit
qu’un infimum d’une suite de fonctions mesurables est
mesurable. Or, comme rappelé au chapitre précédent,

lim supf = |nf sup f, lim mff,, =sup |nf fx
0 k>n n>0 k>

est donc mesurable en utilisant le résultat du lemme
précédent sur le suprémum (ou Uinfinimum) de fonctions
mesurables. O

Proposition C.9

Une limite simple d’une suite f, : (Q,7) —» R de
fonctions mesurables est mesurable.

Démonstration. Si une suite converge simplement, on a
limp_e fn=limsup, f, qui est donc mesurable par le lemme
précédent. O
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4 Compléments sur la
construction de U'intégrale

Intégrale des fonctions étagées

La définition 4.11 est motivée par le résultat suivant :
L’intégrale fB fdu ne dépend pas de la décomposition
f(w) = znl a;ls,(w) en somme d’indicatrice

i=1
d’ensembles deux a deux disjoints mais seulement de
f.

n

Démonstration. Pour f = Z ajla,, il existe toujours une
i=1

(unique) représentation canonique de f en voyant

by <---< bp tel que 'image f(Q)-{0} ={by,---,bn} eten

prenant B; = f~1({b;}) € 7 car f est mesurable. Alors, on a
n
f(w) = Z bilg,(w). Comme les A, sont 2 a deux disjoints, on

i=1
voit B; comme union disjointe de A; et donc
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u(BinB) = Z u(Ajn B) donc, en regroupant par paquet :
{j:aj=b;}

n

/ fd/l = Z a,'/J(Aj N B)
B =1
m

= Z Z bju(A;n B)

i=1 {j:a,-:b,-}

3

b,'/l(B,' N B).
i=1

C’est la formule qui ne dépend que de f (comme sa
représentation canonique).

Preuve du lemme 4.20

n
1. Si f(w) = Z a;l,,(w) avec les A; deux a deux
i=1

n
disjoints, alors 1gf(w) :Z a;ila,ng(w). Donc

i=1

n
./B fdy = Z aiju(Ain B) = /Q ].dey.

i=1

n
2. De méme, cf(w) =Z cajly,(w), alors
i=1

n
/B cfdu = Z caju(A;nB) = c/ fdu.
i=1 B

m
3.Side plus h= Z bjlp;(w) avec les B; deux a deux
j=1

m n
disjoints, et soit By = Q — U Bj,Ag = - UA,-, alors les
j=1 i=1
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A;in Bj deux a deux disjoints i=0,---,n,j=0,---, m. De
méme, avec dg = by = 0, f(w) = izn: a;ilang;(w),

m n 10 =0
h(w) =ZZ bj1a,nB;(w). Donc

j=0 i=0

f(w)+h(w) =D (ai+bp)Lan (@)

Jj=0 i=0

On obtient donc :

/f+hdy=

INGE

(a;+ bj)u(A; 0 B))

L ZM=

aip(Ain B+ > > bju(A;in B))

Jj=0 i=0

I
[

i

/fdy+/hdu
B

4.Si0<f<halors h=(h-f)+f estlasomme de deux
fonctions étagées positives et par le 3,

[ fdu < [, fdu+ [y(h—fydu= [, hdu.

T
S

Preuve du lemme 4.22

On va utiliser que toutes les propriétés sont vraies si
f, h sont étagées par définition de lU'intégrale dans ce cas.

1. Soit g étagée avec g < f alors g < h, donc par
définition @ < [, gdu < [, hdu. En passant au sup sur les g,
on obtient @ < [, fdu < [, hdp.
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2. Soit g étagée avec g < f, alors 1gg < 15f. Or par le
cas étagé du lemme 4.20, on a [, gdu= [, 1ggdu et donc
par définition : [, gdu= [, 1ggdu < [, 1gfdu. En passant au
sup, on obtient [, fdu < [, 1gfdu.

En sens inverse, g étagée positive avec g < 1gf < f
vérifie donc glg = g et par définition
Jo9du=[,91sdu= [, gdu < [; fdu soit en passant au sup
fQ lgfdu < ./B fdu.

Le cas particulier vient du 1. appliqué a Uinéaglité
1,f < 1gf sous la forme :
0< [,fdu= [, 11fdu< [, 1gfdu= [;fdpu.

3. Si c=0 c’est évident, on suppose donc ¢ > 0. Alors
pour g < f avec g étagée positive, on a cg < cf donc par le
cas étagé du lemme 4.20, ona ¢ [; gdu = [, cgdu < [; cfdpu.
En passant au sup, on a obtenu :

c/fdugfcfd,u
B B

mais en appliquant) cf a la place de fet f = %cf, on

obtient : ) 1
L[ cta s/c—fd =/fd
C/B H B C K B H

d’ou Uinégalité dans l'autre sens [, cfdu < c [; fdu et donc
U'égalité.

4.Sif=00<g< fimplique g =0 et en passant au sup
de 0, on obtient le résultat.



Annexe C. Compléments facultatifs au
chapitre 4 : Espaces mesurés. 334

n
Siu(B)=0, f;gdu= [, 15gduetsig(w) =) aila(w),
i=1

n

ona [, 1ggdu= Z aiu(Bn Aj) =0 car chaque
i1

u(BnA;j) <u(B)=0.

5.Siona@<g<f,0<kx<havecg, k mesurable
positive, alors g+ k < f + h est mesurable positive, donc
[ f+hdu> [ g+kdu= [, gdu+ [; kdu. En passant au sup,
on obtient le résultat.
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1 Formule alternative de la
norme (niveau L3)

On va en déduire U'expression alternative suivante dont
Uinégalité triangulaire se déduit facilement. Cette méthode
a 'avantage d’étre utile pour le calcul du dual.

Proposition D.1

Soit u o-finie, pe[1,~], gtelque 1/p+1/g=1le
coefficient conjugué, alors pour tout g mesurable

||g||q=supﬂf fgdu];nfnpﬂ,

fg e LX(Q, ), f e LX(Q, ) N LR, w) -

Démonstration. Soit A, croissant telle que
UAp =Q, u(Ap) <oo. On commence par le cas g e L9(Q, u).

Par Hélder, fg € L donc Uintégrale est définie (avec la
condition [|f||, < 1 seule) et

[

< |lfgllx < lIfllpligllq
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d’ou ||g||q est plus grand que le sup de ’énoncé. Mais, pour
p€ll, [, sion prend f =7|g|?2/l|gll§ " on a

[fIP = Iglp(q’l)/llgllz(q_l) = Iglq/llgllg car
p(g-1)=qgp(1-1/g)=q, donc f e LP et

IIfllp = E(If1P) = 11g113/11gllg = 1. Donc [|f1a,llp <IIfll; <1
donc comme LP(Ap, p) c L1(An, ) car u(Ap) < on a

fla, € LY(Q, ) etdonc

fla, .
In,m(f) = 1{f1An¢0}|f1—An|ml”(m, 1f1a,0)
e L¥(Q, )N LY Q, p)

d’ol le sup est supérieur a

‘/ gn,m(f)gdu' — Mmoo

/ flAngd,u’ > noco

[

(par convergence dominée par |gn, m(f)g| < |fg]) et le sup est
supérieur a |[ fgdu|= [ |g|‘7dy/||g||g‘1 =1gllq- On déduit
donc ’égalité énoncée.

Sip=1, q=o, soit

c> sup{‘/ fgdu‘ il < 1fg € L2(Q, 0,
felX@,mn L9, w}

et A={x:|g(x)| > C}. Supposons par I’absurde que u(A) > 0
soit B c A avec u(B) €]0, «f. Alors f = 13% est dans L1!

et ||f]l; =1 (et borné par 1/u(B) donc dans L) mais

|[ fgdu| = [ 13#'(93') > C en contradiction avec le choix de C

donc u(A) =0 ce qui implique ||g||- < C ce qui donne le

résultat en prenant Uinf des C.
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Si p=o,q=1, il suffit de prendre f = 1g¢@% € Lx(Q)
et fly, € L®(Q) N LY(Q) de sorte que fla,g=|f|14, etla
norme [[fly, |l < 1. Donc le supremum, est supérieur a

/ |f|1a,du — ||f||1 par convergence monotone.

Sion ne suppose plus g € L9(Q, u) mais ||g||q = . Soit
alors gn,m = 1{g¢0}%min(m, g1)1a, € L9(Q2, 1) on obtient
fo.mx € LY n L~ de norme < 1 dans LP tel que

|/ o m kGnm| =k |G mllq-

Comme on a l'inégalité par Holder,

V fo,m,k(Gn,m = gLa,)| < [1fn,m,kllpll(gn,m = g1a,)llg

< 1(gn,m = 91a)llg > m—-e @

par convergence monotone car | min(|g|, m) —|g||? décroit
vers 0, on trouve une suite my tel que

|/ Fom k9100 = 1910, 10

(fini ou infini). Enfin comme par convergence monotone
1914,llg = |Igllq, ON trouve une suite

|/ o me k9L a0] =i 11G]1q = oo.

Comme ||fy, m, kla,llp <1, et fy m (la, €Linl®et
frgmek91a, € L! cela donne la solution :

sup{‘/ fgdu‘ fllp<1,fgelX(Q), fellnLl™)

= oo =|gllq-



Annexe D. Compléments facultatifs et hors
programme au chapitre 6 : Espaces LP 339

Exemple D.1

Dans le cas ou u est la mesure de comptage sur [
(o—finie si I dénombrable), u(A) = Card(A), on obtient
l'espace ¢P(I,K) des suites indicées par I de
puissance p sommable, i.e. telles que

DXl < o

iel
pour p € [1, [ et 'ensemble des suites bornées,
c’est-a-dire telles que

X[l = SUP [ Xj| < 00
iel

pour p = co.

2 Premiers résultats de densité
(niveau M1)

On rappelle qu’une fonction étagée intégrable sur
(Q, u,T) estune combinaison linéaire (finie) de fonctions
indicatrices 1, avec u(A) < o.

Soit (Q, u, 7) un espace o-fini. L’ensemble S des
fonctions étagées intégrables est dense dans tous les
LP(Q,u,7), 1< p<oco. En particulier,
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LYQ, u, T) N L®(Q, u, T) est dense dans LP(Q, u, T)
pour 1 < p < co.

Démonstration. Cela vient de la construction de
Uintégrale, et du fait que les fonctions étagées sont dans
LY(Q, 1, T) N L=(Q, u, 7), mais rappelons une preuve. En
décomposant en parties réelle et imaginaire puis parties
positive et négative, on se ramene a approcher f € LP avec
f>0.SiQ=UAsu(An) <o, 0nal|fly, —fllp — 0 par
convergence dominée, donc on prend h=11,4,.

On prend

4n 4n
k k
hn(x) = kze >a bk, (h(x) = kze > lha, ki (0 < h(x)

2n>

Comme h mesurable, il est facile de voir que he S,

1
[1h = hnllp < 1A Lpxs2nllp + 11 aix)<2n 1Am||pﬁ
et le premier terme tend vers 0 par convergence dominée
(par |h|P), le second car u(Am)Y/P < . Donc h puis f sont
dans ’adhérence.

Pour obtenir un résultat de densité des fonctions
continues, on a besoin d’un résultat de continuité sur un
grand ensemble pour les fonctions mesurables. On a besoin
d’une compatibilité entre théorie de la mesure et topologie
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qui fait Uobjet de la définition suivante. L’essentiel est que
la mesure de Lebesgue sur R" est un exemple de mesure de
Radon, ainsi que toutes les mesures a densité par rapport a
la mesure de Lebesgue (et aussi les mesures discretes).

Définition D.1

Une mesure de Radon positive sur X localement
compact est une mesure positive définie sur une tribu
7 contenant la tribu borélienne 8 et telle que :

1. u(K) < oo pour K compact (on parle de mesure
de Borel).

2. u est extérieurement réguliére au sens ol pour
tout E€7,o0na:

u(E) =inf{u(V)|E c V, V ouvert }

3. u vérifie pour tout E ouvert et E € 7 avec
U(E) <0, 0na:

#(E) =sup{u(K)|E > K, K compact }

4. 7 est complete pour y au sens ou si E € T,
AcEetu(E)y=0alors AecT.

On va utiliser deux lemmes topologiques (en fait
reliés) :
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Théoréme D.3: (de prolongement de Tietze)

(exo en section A) Soit X un espace métrique, F un
fermé de X et f : F — R une fonction continue bornée
par C, alors il existe une fonction g : X — R bornée
par C et prolongeant f.

On rappelle qu’un espace topologique est dit
localement compact si tout point a un voisinage
(d’adhérence) compact. [Rmq : pour nous, un voisinage d’un
point n’est pas forcément ouvert, c’est seulement un
ensemble contenant un ouvert contenant le point] Par
exemple c’est le cas de X =R"!

Lemme D.4: (d’Urysohn)

Si X est un espace métrique localement compact, V
un ouvert contenant un compact K, alors il existe f
continue a support compacttelque 14y < f<1y.

Démonstration. Pour tout x € K, soit Uy voisinage ouvert
d’adhérence compact inclus dans V (pour voir que
l'adhérence peut étre inclus dans V il suffit d’intersecter le
voisinage avec {y : d(y, V¢ > €/2} poure=d(x, V°)). On
recouvre K par un nombre fini de Uy, K c U := ule Uy, et
U= U?:l Uy, est compact et on trouve un ouvert d’adhérence
compact W, Vo> W 5 U et on pose F = WU K. On définit
g:F—>Rparg=1k.Six,e F, x, —» x € K nécessairement
pour n grand x, € U donc x, € K donc g(xp) = g(x) = 1. De
méme si x € W€, pour n grand, x, € (U)¢, donc x, € W€ et
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g(xn) = g(x) =0. Donc g est continue sur F et s’étend en une
fonction f : X — R continue par le théoreme précédent et en
centrantonaméme, 0 < f <1 (jf-1/2|<1/2). Doncle

support de f est dans W compactet 1y <f <1y <1y ce qui
conclut. O

Théoréme D.5: (de Lusin)

Soit X un espace métrique localement compact. u une
mesure de Radon positive. Soit f une fonction
complexe mesurable sur X s’annulant en dehors de A
avec u(A) < o. Alors, pour tout e > 0, il existe g
continue a support compact avec

SUPyex [g(X)] < supyex If(X)] et telle que :

u({x  f(x) # g(x)}) <e.

Démonstration. Cas A compact, 0 <f < 1. On pose

2n
k
fa(0)= ) 5Lk e (FO0) < faa (%) < F(x).
k=0

Remarquons que t, := fh1(X) — fr(x) =
2n+1

1
i kz;) 1[%‘%[“(@) = et 17 (f.1 :=0) avec T, c Ade
SO”EhUEZ

o)

f(x) = Z tn(X).

n=-1
Comme dans la preuve du lemme d’Urysohn, il existe un
ouvert A c V avec V compact, puis par régularité extérieure,
on trouve V, ouvert avecT, c V, c V et enfin par intérieure
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régularité sur les ensembles de mesures finies K, c T, avec
u(Vy—Kp) <27-"2¢. Par le lemme d’Urysohn, on trouve h,
continue a support compact avec 1¢, < h, < 1y,. On pose

(o8]

g = > 27" hy(x).
k=—1
Par convergence uniforme (car normale) de la série, g est
continue, a support compact car inclus dans V. Enfin
27" 1h,(x) = th(x) sauf sur V, — K, donc f = g sauf sur
Un(Vp — Kp) qui est de mesure au plus e

Cas A quelconque, 0 < f < 1. Par régularité, on prend
A c V ouvert, K c V compact avec
(AN KS <u(Vn K <e/2 eton applique a flg (vu
{flg # f} c AnK¢) le cas précédent en remplacant € par €/2.

Cas général Soit B, = {x|f(x)| > n} de sorte que
NBp =0, comme u(Bp) <« en utilisant le TCM sur 15, - 15,
u(Bp) — 0, on applique a (1 -1g,)f en décomposant la
fonction en somme de 4n fonctions a valeur [0, 1] (4 pour
décompositions en parties positives, négatives des parties
imaginaires et réelles, et ces fonctions sont dans [0, n] d’ol
la décomposition en somme de n fonctions a valeurs [0, 1]).
Enfin pour avoir 'inégalité on remplace g par ¢ o g avec
¢(x) =X, |X| < R=supyex [f(X)], ¢(x) = Rx/Ix],|x| > R. On a
g(x) =¢o g(x) pour tout x tel que f(x) = g(x), donc on
n’augmente pas 'ensemble sur lequel f et g different. O
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Corollaire D.6

Soit (X, u,7) un espace métrique localement compact
avec u mesure de Radon o-finie. L’ensemble C.(X)
des fonctions continues a support compact est dense
dans tous les LP(X,u,7), 1 < p <. De plus si
felP(X,u,T)et [fp=0, pourtoutsec Cc(X) alors
f=0p.p.

Démonstration. Par le lemme précédent, il suffit
d’approcher les éléments de S. Par le théoreme de Lusin
D.5, pour chaque fe S,e>0,0nage C.(X) avec

u(g#f) <eetsuplg| <sup|f|=C donc

[If - gllp < 2Cu(g # f)}/P et cette quantité est arbitrairement
petite. Pour le résultat d’annulation, si p > 1, On utilise la
densité dans L9, q exposant conjugué, pour obtenir f fg==0
pour g € L9, d’ou on déduit ||f||, = @ par la proposition D.1.
Si p=1, onremplace f par f|y avec V ouvert V compact,
qui couvrent X par locale compacité de sorte qu’on peut
supposer u(X) < . On peut supposer f réelle. Soit

fi € Cc(X) avec ||f - fi]l1 <€, Ky = f{1([e, ) et

K_q1= fl‘l(] — 00, €]) sont compacts, on prolonge par le
Théoréme de Tietze D.3, u e C.(X) valant € sur K, et soit
K=K;UK_1.Donc

||f]_||1:/ f1u+/ |f]_|§/ f1u+2/ |f]_|§€+/ fu+2,u(X—K)ESé
K X-K X X-K X

car |fi]| <esur X - K. Donc ||f||1 £ 2e+2u(X)e pour toute > 0
ce qui donne f = 0. O
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Donnons une application.

Proposition D.7

Soit 1 < p < et soit 7,f(x) := f(x + h) pour

h,x eR?, f e LP(RY). La translation

7, 1 LP(RY) — LP(RY) est isométrique et pour tout
f e LP(RY) h s ,,(f) est continue de RY — LP(RY).

Démonstration. L’isométrie est évidente par invariance de
la mesure de Lebesgue par translation. Montrons que
[lthf — fllp = h_e 0. En effet pour e > 0, par densité du lemme
D.6, on trouve f; € Cc(RY) avec ||f; - f||, < €/3 donc comme
7, est une isométrie : on obtient :

lltnf = fllp < lltnfi —tnfllp + lltnfr = fillp + 111 = fllp

< 2¢/3+Leb(B(0, |[hl]) + Supp(f)"/P|ltsfi - fille

Pour h assez petit, comme f; est uniformément
continue (car continue a support compact et par le
Théoreme de Heine), on peut trouver 1 > § > 0 de sorte que
sillhll <6, lltnfr = fillo = supy [fi(x + h) - f1(X)| <
€/[3Leb(B(0, 1)+ Supp(f1))}/P] ce qui conclut. O
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3 Dualité des espaces de
Lebesgue LP(Q) (Niveau M1)

On rappelle que (2, u) est un espace mesuré o—fini. On
se souvient que pour pe[1,], gtelque 1/p+1/g=1la
proposition D.1 donne pour g mesurable :

/ fgdu

fell(Q,um)nL>(Q,pw,fgelr(Q,un)}.

l1gllq = sup{ sIfllp < 1,

On a méme le théoreme suivant (on notera que p <
contrairement au cas de la formule pour la norme ) :

Théoreme D.8: (de représentation de Riesz LP)

Soit Uapplication définie grace a l'inégalité de
Holder :

I:feld(Q e (ge L”(Q,ﬂ)H/fgdﬂ)

Alors I: L9(Q,u) — (LP(Q, u))’, réalise une isométrie
SURJECTIVE pour p € [1, [ et g exposant conjugué
c’est-a—dire telque 1/p+1/qg=1.

Attention le cas p = o est EXCLU... L*(Q)’ estun
espace trés gros de mesures sur un espace stonien compact
X tel que L*(Q) = C2(X).

Démonstration. Une premiére preuve classique utilise le
théoreme de Radon-Nikodym qui est au programme du



Annexe D. Compléments facultatifs et hors
programme au chapitre 6 : Espaces LP 348

cours de Th de la mesure (cf. par exemple le cours de
Probabilités de Philippe Barbe et Michel Ledoux [1]). Il
existe aussi une preuve par Uuniforme convexité dans le
livre d’Haim Brezis d’analyse fonctionnelle pour p # 1 et
avec une preuve directe n’utilisant que le cas p =2 (cas
Hilbert simple) pour le cas p=1. On donne ici une méthode
d’analyse fonctionnelle plus abstraite.

On a déja montré Uisométrie, il reste a voir la
surjectivité.
On fixe A, avec u(Ap) < « et U A, =Q, A, croissant.

neN

Le cas p =2 a été traité par le théoréme de
représentation de Riesz.

(1) cas p = 1Soit ¢ € (L1(Q, )’ avec ||¢|| < 1. D’abord
on définit T application linéaire continue sur L2(Q) (en fait a
valeur dans son dual identifié a lui méme) par :

(Tx, y) = ¢(xy)
vu que Xy € L1(Q) par Holder et on a
[ITI:=sup{l| Tx|l2, |Ix]l2 < 1}
=sup{(Tx, ), lIxll2 < 1, [lyll2 < 1} < I$ll11(q) -

La premiere égalité est la définition de la norme des
applications linéaires bornées, la deuxieme est le résultat
de dualité du cas p =2, la troisieme utilise Holder et la
définition de la norme du dual. Notons que si z € L*(Q),

(Tzx,y) =¢(zxy) =(Tx, Zy) =(ZTX, y¥)
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la deuxiéme relation en utilisant la commutativité des
espaces de fonctions soit la relation Zxy =xzy et la
seconde la définition du produit scalaire

(Tx,Zy)= [ TxZydu. donc on déduit si m; est la
multiplication par z e L*, Tm, = m,T. Montrons que T = myg
pour g € L*. (on dit que cette algébre est son propre
commutant dans B(L%(R)), ou qu’elle est maximale
commutative).

En effet, soit x, = T(14,) € L2. Ona||T|| <1 car
ll¢ll < 1.

Pour g e L* avec ||g||1 < 1,
‘/ T(l)gdﬂ’ - ‘/(|g|”2 T)(l)glgl‘l/zdu‘

=V T(Igll/z)glgl‘l/zd#'
<gl*2l211glgl™ 2112 = ligll1 < 1

ou on a utilisé a la deuxieme égalité la commutation avec
mg12. On voit donc par la formule de la proposition D.1 que
IT(1a,)lls < 1. Comme T(1a,) = T(1a,1a,) =14, T(14,)
donc on définit g(x) = T(1a,)(x) pour x € A, de facon
cohérente de sorte que gls, = T(1,,) d’ou

[19llc = sup,llgla,lle < 1.

Et pour zee LN LY c L? T(z1a,) = mg(z1,,) donc par
densité dans L2 T = m,. Enfin pour f € L1(Q) f = |f|}/?2g avec
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g e L2, on obtient

o(f) = ¢(If|*2g) = (T(IfI*?), g)
=(z(If1Y?), gy = I(2)(If|1*? g) = 1(2)(f).

donc ¢ = I(z) d’ou la surjectivité de I.

(2) cas p > 1 u(Q) < oo utilisant les cas p=1, 2. (On
Uappliquera ensuite a Q = A,.) Apreés normalisation, on peut
supposer u(Q) = 1.

On commence par montrer que via I, LP(Q) c L1(Q). Si
p < 2, c’est évident par Uinclusion L2(Q) c [LP(Q)] et par
restriction et théoréme de representation de Riesz, on
obtient g € L2(Q) c L1(Q) tel que

¢li2(0)(F)=(g, f)

Sip>2pourxel® etpe(LP),

-2 -2
|¢<x>|ﬂs/|x|"dus/|x|2||x||fo dy < [IxI2NxI1E2.

Par Uinégalité d’Young (cas particulier d’Holder utilisé
dans sa preuve) |ab| < aP/P + b?/Q utilisé avec
1/P+1/Q=1,P=p/2,Q=p/(p-2),
a=IxI1P /€2, b = (]|X|l) /2, on obtient :

_1

6(x)] < gnxnm

En incluant {(x, x), x € (L¥())} c L¥(Q) x L2(Q) avec
norme |[(X, ¥)Il = GlIX[lw + ﬁ”y”z on étend par Hahn
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Banach ¢ a L*(Q) x L2(Q) donnant un élément de
(¢1,¢2) € L¥(Q)" x L2(Q) avec [|¢1] < €/Q, ||g2]] < 55 (car
en calculant la norme duale on a
max(Ql|¢1ll/e, PeP/Q||¢,1) < 1) Donc
gl (@) = J(@)l (=) = lIB1ll(L=(a))y < €/Q et ¢, € L}(Q). Or
parle cas p=1, (LY(Q))” = L*(Q)’ et il contient L1(Q)
comme espace fermé isométriquement via J (comme tout
espace de Banach est inclus isométriquement comme
espace fermé dans son bidual). Comme le résultat
précédent indique ¢ € m(“(m)”, on déduit ¢ € J(L1(Q))
comme voulu. On a donc une fonction g telle que pour tout
fel>(Q)

o(h)= | gtdu

Soit donc g 'image dans L! de ¢ (on revient au cas
général p €]1, «[). Or dans le cas d’un espace avec mesure
finie, '’équation de la proposition D.1 donne :

181l (Ley = sup{lp(X)], lIx[lp < 1, x € L™}
= SUD{I/QXd,ul, Ixllp =1, x e L™} =1lgllq

On déduit donc g € L9 comme on voulait et ¢ = T(g) (en
étendant la relation depuisL>(Q) par densité dans LP(Q).

(3)cas 1 < p < o et u o-fini. Soit ¢ € (LP(Q, n))’, il faut
montrer qu’elle vient d’un élément de L9(Q2, u). On pose
¢n(f) =¢(fla,) pour f e LP(Ap, u) C LP(Q, n). Par le cas
précédent, il existe g, € L9(A,, u) telle que

VFeLP(An ), [ gafdu=6(FLa,).
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et

llgnllq = sup{|e(fla)[; lIfllp < 1, f € L*(An, )}

< lgll(Lry < oo.

Or par unicité dans le cas (2) et vu les A, croissant pour
n>m, gpla, = 9gm etdonc |g,| est croissantet g=sup|gny]
vérifie par convergence monotone ||g|lq < ||¢||(Lr) , VU
|gnl < |g| et comme g, — g p.s., on déduit par convergence
dominée ||gn — gllg — @ et en passant a la limite g, = gl,,.

Or fla, — f dans LP et donc par continuité la relation
¢(fla,)=T(g)(fla,) devient ¢(f) = T(g)(f) pour tout f € LP
donc ¢ =T(g).

4 Convolution

Dans cette section, on considere l’espace mesuré
(Q, 1, 7) = (R, Leb, B) muni de la tribu borélienne et de la
mesure de Lebesgue. On note alors LP(R%) = LP(RY, Leb, B).
Vu l'accord avec lU'intégrale de Riemann, on note aussi
dy =da(y).

Théoreme D.9: (définissant la Convolution)

Soient f e L1(RY), g e LP(RY),1 < p < . Pour presque
tout x eRY, y — f(x - y)g(y) est dans L1(RY). La
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convolution de f et g est la fonction f = g définie par :
(Fr9)00= [ fix=patndy.
Alors f«g e LP(RY) et :

1 gllp < 1Ifll111glp-

Démonstration. Si p=oco, comme |g| < ||g||lwp-P-,
f(x-y)g(y) <|9llelf(x — y)| d’ou Uintégrabilité et la borne
souhaitée en intégrant (comme la mesure de Lebesgue est
invariante par translation).

On suppose d’abord p =1 et on utilise le Théoreme de
Fubini Tonelli pour calculer :

/dx|f|*|g|<x)=/dx/dy|f(x—y>||g(y)|
=/dy/dx|f(x—y>||g(y>|
=||f||1/dy|g(y>|=||f||1 lglly < e

On déduit du théoréme de Fubini que pour presque tout x,
y = f(x-y)g(y) estintégrable et on obtient la borne
souhaitée

1+ gll1 < Ifll1llgll1-

Pour 1 < p < oo, soit g 'exposant conjugué. Du cas
p =1 on déduit y — |f(x - y)||g(y)|P est dans L! donc
y — |f(x —y)|/P|g(y)| est dans LP pour presque tout x. Or
y — |f(x — y)|}/9 € L9 donc par Hélder,
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y = 1f(x = yllgy)l=1f(x = y)IYPlg(y)l.If(x — y)|}/9 est dans
L et

p
(F % @) (X)IP < (/ F(x - y>||g<y>|dy)
< (/ I (x - y>||g<y>|de) 1711679

Par U'inégalité précédente du cas p=1, on obtient donc en
intégrant :

I1F = gll8 < 1117911 = 1 g1P]la
< 1P/ glIBIIFllL = I F11P 1 gI1D.

Exercice D.1. (cfTD) Soitfe L', ge LP, he L9,
lv‘(x) :?(—x) Montrer que :

/mh:/g(m>.

5 Support de la convolution

Si f continue, Supp(f) ={x : f(x) # 0}. Le résultat
suivant permet d’étendre la définition aux fonctions
mesurables.
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Lemme D.10

Pour f : RY - K mesurable, soit (wj)jcs la famille de
tous les ouverts tels que, pour chaque i, f =0 p.p sur
wj. Si w=Ujcjw; alors f =0 p.p. sur w. De sorte que w
est le plus grand ouvert sur lequel f =0 p.p.

Démonstration. Il faut écrire w comme union dénombrable
car I n’est pas forcément dénombrable. Soit
Kn={xew:||x]| <n,dx,w >1/n} comme la distance a
un fermé est continue, on voit que K, fermé borné de R"
(e.v.n de dimension finie) donc est compact et w = Upen K.
Par compacité, K,, recouvert par une union finie

Kn Cwj,,V...Vwj, . dONC w=Upey j<r,w; j €St union
dénombrable d’ouvert sur lesquels f =0 p.p. d’ou le
résultat. O

Définition D.2

Soit f : RY - K mesurable, On pose Supp(f) =R - w
oU w est le plus grand ouvert sur lequel f =0 p.p. Si
f e LP(RY), on pose Supp(f) = Supp(f;) pour n’importe
quel représentant f; € f de la classe d’égalité presque
partout.

Proposition D.11

Sifell®RY),geLP(RY) alors:

Supp(f * g) c Supp(f)+Supp(g).
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Démonstration. On fixe x e RY avec y — f(x—y)g(y) € LL.
Si x ¢ Supp(f) +Supp(g), on a (x — Supp(f)) nSupp(g) =0
donc en intégrant f = g(x) = 0 sur

Int((Supp(f)+Supp(9))¢) = (Supp(f) + Supp(g)). Donc fx g
est 0, p.p. sur cet ouvert de sorte qu’il est inclus dans
Supp(f = g)°. O

6 Reégularisation par
convolution

On étudiera plus systématiquement au chapitre suivant
certaines classes importantes de fonctions continues. Pour
Q c RY un ouvert. On note Ck(Q) ’ensemble des fonctions
k-fois différentiables avec leurs dérivées continues et
Ck(Q) les fonctions a support compact de CK(Q). Pour
simplifier si @ € N9, on note

5] (]
pef=9 .9

—f.
(07 a
axll axd"

On note |a| = |a1] + ... +|agy4|. On note

C®(Q) = ke CK(Q),  CZ(Q) = ke CH(Q).

Proposition D.12

Soit1 < p <. SifeCKRrY,gelLPRY), ke NU {0}
alors f«ge CKRY) et si|a| < k:

D*(fxg)=D*(f)+g.
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De plus, si p < o, on a aussi la formule comprise
comme intégrale de Riemann a valeur LP(RY), si
Supp(f) c [-C, C]9 :

f>x<g=/ dyf(y)r—yg.
[—C,CJd

Démonstration. Par récurrence il suffit du cas k=1. On
applique le théoreme de dérivation avec condition de

domination. aixif(x -y)g(y) = (aixif)(x -y)g(y).

Comme (0ix,-f) est a support compact et continue, il est
borné par ||(Bixl_f)||oo et

3 3
'a_x,-f(x_ y)g(y)l < Ila—Xl_fllmlx(X— y)g(y),

avec K le compact support de f. Or par Holder

[ 1s-k()Igl(y)dy < Leb(B - K)*1|g||p, donc on a une
domination par une fonction intégrable clg_xg si x € B avec
B compact. Le théoreme de dérivation 4.39 conclut donc. De
plus, par changement de variables linéaire si

Supp(f) c [-C, C]9, on a

Frao= [ fix-yatndy
:/ f(y)g(x—y)dy
Rd
=/ F(y)(r_yg)(x)dy
[-C,C]d

avec 74(g)(x) = g(x+ h). On a vu a la proposition D.7 que
y — f(y)(r_yg) est continue a valeur LP(R?) on peut donc
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parler de son intégrale de Riemann, sur [-C, C]9 (calculée
successivement variable par variable). On obtient une suite
(de sommes de Riemann) qui converge dans LP(RY), donc
quitte a extraire une suite qui converge p.p. et donc p.p. la
limite f[-C,C]d dyf(y)(r-,g) coincide avec Uintégrale de
Riemann f[—c,C]d dyf(y)(r-y9)(x) par exemple si g est
continue a support compact et cette intégrale vaut
Uintégrale de Lebesgue donc f = g(x). On en déduit 'égalité
voulue dans LP si g continue a support compact. Or par
densité, on a une suite de fonctions g, continues a support
compact convergeant dans LP vers g. Et comme

Supgd llt-ygn — 71—y gllp — 0, f(.)(7-.gn) converge
uniformément vers f(.)(r_.g) et comme l'intégrale de
Riemann est continue pour la convergence uniforme
/[_C,CJ(, dyf(y)(r—yg) est la limite de f[—C,CJd dyf(y)(z-ygn)
dans LP qu’on a déja vu valoir f = g,, qui a pour limite fx g
donc ./[—C,C]d dyf(y)(r-yg) =fxg. O

7 Suites regularisantes et
densité par convolution

Définition D.3

Une suite régularisante est une suite de fonctions
pn€ C2(RY) avec fypn=1, pn>0 et
Supp(en) € By y,(0,1/n).
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Exercice D.2. Montrer que si pn(x) = Cn9p(nx) avec
C [p=1etp(x)=1gx,<1} exp(W) alors p, est
une suite régularisante sur RY.

Lemme D.13

Soit p, suite régularisante et f € LP(R?) pour
1< p<oo. Alors|lpp*f—-f|lp — 0.

Démonstration. On a comme ||.||, est une norme on a par
Uinégalité triangulaire (de Uintégrale de Riemann et la
proposition D.12) :

||pn*f—f||p=||/dm(y)(r_yf—f)np

s/ dypn(V)lley f = Dl
B(0,1/n)

Or si n assez grand, on a vu a la proposition D.7 que
[lt—yf = f)llp < e pour y € B(0,1/n) de sorte que la derniére
intégrale est bornée par e/B(@ 1m dypn(y) = €. O

Proposition D.14

Soit Q c RY un ouvert, alors C*(Q) est dense dans
LP(Q2) pour 1 < p < oo,

Démonstration. Soit f € LP(Q) et
Kn={xeQ:||x|]l2 <n,d(x,Q >1/n}. On a déja remarqué
que K, compact et UK, = Q donc flg, — f p.p. et par la
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domination |f1lk, — f| < |f| on conclut par le TCD a

[|flk, — fllp — @. Soit m > n, si on considere

pm* (flg,) e C°(RY), on a par la relation sur les supports
des convolution,

Supp(pm = flk,) € Supp(pm) +Supp(flg,)
cB©O,1/m+K,cQ

(vu que pour K, F compacts K + F est compact et en
comparant les distances pour la derniere inclusion). Donc
pm* (flg,) e CX(RY). Mais on a vu

llom = (flK,,) - f]-K,,HLI’(Q) =llom = (f]-Kn) - f]-K,,”p —moe 0.
Donc f1k, puis f sont dans 'adhérence de CZ(Q). O
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Le théoreme des bases ne nécessite pas ’hypothese T
dénombrable ou H séparable, voici la version générale.

Comme U'existence de base algébrique d’un espace
vectoriel de dimension infinie, elle requiére un lemme
général de théorie des ensembles :

361
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1 Rappel surle lemme de Zorn

Si on était en dimension finie, on voudrait faire une
récurrence sur le cardinal d’une famille orthonormale en
ajoutant un vecteur de plus pris dans un ensemble dense.
Une facon de rédiger la preuve est de considérer un
sous—espace de dimension maximale et d’obtenir une
contradiction en construisant une famille libre de cardinal 1
de plus.

Dans le cas de la dimension infinie on pourrait faire
une récurrence transfinie en complétant une base de G en
une base de E et mettant un “bon ordre" sur la base. En
analyse (ou en algebre), on préfére souvent utiliser la
conséquence suivante de 'axiome du choix, le lemme de
Zorn, qui utilise une notion de maximalité pour obtenir une
contradiction comme dans la preuve par induction.

Soit P muni d’un ordre partiel <. Q c P est dit
totalement ordonné si tout a, b € Q on a soit g < b, soit
b <a.ce P estun majorantde Qsivae Q,a < c.

m € P est un élément maximal de P si tout x € P tel que
m<xonax=m.

Enfin P est dit inductif si tout ensemble totalement
ordonné de P admet un majorant.
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Lemme E.1: (de Zorn)

Tout ensemble ordonné, inductif, non vide admet un
élément maximal.

2 Théoreme des bases dans le
cas général

Théoréme E.2

Soit H un espace préhilbertien.

1. Une famille orthonormale (x;);c; est libre et
vérifie l'inégalité de Bessel, pour tout x e H :

DI X2 < 112
iel
2. De plus une famille orthonormale (e;);c; est une
base hilbertienne si et seulement si on a
'égalité de Bessel-Parseval :
DU X2 = 1x|P2
iel
De plus, dans ce cas, pour tout x € H, la série
suivante converge (dans H mais pas
absolument)
X = Z ei(ej, x).
iel
3. Si H est un espace de Hilbert, toute famille
orthonormale peut étre complétée en une base
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hilbertienne de H et J: x — ((x, €;))jc1 établit
alors une isométrie surjective J: H =~ ¢2(I).

Remarque E.1. De la formule pour x, on tire par
continuité la formule pour le produit scalaire (qui est
une série absolument convergente par
Cauchy-Schwarz) :

(v, x)= Y (v, ei)ei, x).

iel

Démonstration. (1) Si Z/l,-x,- =0, on calcule
iel
Aj=(x;j, Zﬁ,-x,) =0 donc x; est bien libre. Si F est une
iel
partie finie de I, et V = V= Vect(ej, i € F), on a déja vu la
formule pour la projection orthogonale sur V¢ :

pv(x) = eie;, x).

ieF

Donc par la propriété de contraction de pr et
l'ortogonalité

IpEOI12 = (D eiler, x), ) ej(ej, x))

ieF JjeF
2 2
= e, x)1? < Ixl|
ieF

la famille est donc sommable et on a l'inégalité de Bessel
pour la somme (en passant au supremum) et on trouve en
particulier ((x, e;))jec1 € £2(I).
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(2) Si (ej)jer €st une base soit x, € Vect(ej, i€ I)
convergeant vers x.

De plus, pour n assez grand |||x||? - ||xnl|?] < €/2 et pour
tout J,

Py, (O = 11pv, (X2

< v, (Xn = )M 1Xall +[1X])

< Hxn = XMUIXnll +11X1]) < €/2

d’ou en prenant J tel que py,(xp) = X, on obtient

> Kej, )1 = 11X
ie]

<e€

et donc la somme de la série est ||x|] d’ou I’égalité de
Parseval.

Réciproquement, Si on a égalité, on trouve J, tel que

D Kej, P =1py,, (0112 = lIx|?

jedn

et ceci implique par le théoreme de Pythagore :

pv,, (X) = XI5 = 1IXII5 = Ipv,, ()15 — 0

donc tout élément de H est limite d’éléments de
Vect(e;,i e I)d ol la propriété de base hilbertienne.

De plus un calcul donne la formule pour x :

X~ eiler, 0l = ) IKer, )2 — 0.

ieF i¢F
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(3) Considérons l'ensemble des familles orthonormales
contenant une famille orthonormale donnée, et ordonné par
inclusion. C’est un ensemble non-vide. Si on a une famille
totalement ordonnée de familles orthonormales, l'union est
un majorant, donc 'ensemble ordonné est inductif, il admet
donc par le lemme de Zorn un élément maximal (e;);cr. Si ce
n’était pas une base (complétant la famille orthonormale de
départ), on aurait un x avec

DX, el < IxII%.
iel
Comme H est complet la somme y = Z e;{ej, X) converge
iel
car si (I,) croissante telle que Z lKei, X)|2 — Z IKej, x)|% la
iel, icl
suite y, = Z e;j{ej, x) est de Cauchy car pourg>p

ielp

lyp=valls =" > e x) < ) Kej, x)I> — 0.

ielg-1I, i¢l,

On déduit que y — x est orthogonal a tout e; car tout i tel
que (e;, x) # 0 est dans un I, et que (y,— x, e;) =0 pour n
assez grand pour un tel i. Donc par orthogonalité
Iy = X113 = 1Ix117 = > 1, xpl2 > @
iel
donc ajouter (y — x)/||y — x|| a la famille orthonormale
contredit la maximalité et conclut.

Une fois l'existence d’une base, l'lisométrie est
évidente par le (2), et si on a une suite (1;);jc; dans ¢2(I), on
voit que Z/l,-e,- converge par complétude comme ci-dessus
et on obtient ainsi la surjectivité. O
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3 Correction de Uexercice sur
les polynomes de Hermite

Soit H=L?(R, u) Uespace de Hilbert réel des fonctions
de carrés intégrables pour la mesure gaussienne standard
u(dx) = \/%e‘xz/z dx, muni de la norme usuelle :

Tl \//|f( ey
= X X.
2 R V2n

Soit

- nexz/2 d\" -x%/2
Hn(x) = (=1) N (—) R

(et donc Hp(x)=1)

1. Montrons par récurrence que pour n > 1, H, est un
polyndome de la forme :

n-1
VnlHp(x) = x™ + Z agxk.
k=0

En effet Hy(x) = (-1)eX*/2(-xe~**/2) = x et si on
suppose ’hypothése au rang n

V(n+ D! Hp1(X)
= —ex'/2 (%) (e™* 12V nTHp(x))
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Or (dix) (e=X*/2xky = _xk+l@=x*/2 4 [xk-1o-X*/2 donc

Uhyp. de rec. donne

n-1
V(n+ Dl (x) = -eX/? (d%) (e (x4 3 apxk))
k=0

n-1
— (Xn+1 _ an—l) + Z ak(Xk+1 _ ka—l)
k=0

qui a la forme souhaitée.

2. Montrons que (Hp) ;s est une famille orthonormale de
H.
On calcule pour m> n:

(Hn, Hm)

_(_1\m 1 i " -x2/2
- (-1) —mm/”"“)(dx) (e**/2)dx

En intégrant par partie

[ (& v

d\m1 2
“ a0 (5] e

d m-1 2
—/H;(X)(a) (e7%/2)dx

le crochet est @ vu que P(x)e‘)(z/2 pour P polynome
tend vers 0 en +oo.
Par induction si m>n

<Hn; Hm>
B (_1)m—n (n+1) i)m—ml 22
= —\/ﬂm H, " (x) (dx (e ydx

=0
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etsim=nvu Hﬁ,")(x) =+vn! en appliquant le 1.

(Hn, Hn)
_(pm
VZavml

1 / -x2/2
V2r

comme voulue.

d\mn 2
HY 00 (o] e dx

4 Théoreme d’injectivité de la
transformée de Fourier

Définition E.1

La fonction caractéristique (f.c. ou transformée de
Fourier) du v.a. (X1, ..., Xn) : Q — R" est définie par

®(xy . X (t1y -evy ) = E[/0X0]]

pour tout t = (t1, ..., tp) € R" et en notant le produit
n

scalaire (t, X) := Z ti X;.
i=1

La fonction ¢x caractérise la loi de X par le théoréme
d’injectivité de la transformée de Fourier/ théoreme
d’inversion de la transformée de Fourier ci-dessous. On
utilisera aussi plus tard au chapitre 2 la fonction
caractéristique pour caractériser une notion de
convergence, au chapitre 3 pour Uintroduction des vecteurs
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gaussiens qui seront la base du chapitre 5 sur le mouvement
brownien. C’est une notion FONDAMENTALE...

Soit X ~ N(m, o%) de loi normale alors
Ox(t) = exp(-LL + imt).

Démonstration. On a vu une preuve a l'exercice 8 du TD 3
de MASS 31 utilisant que la partie imaginaire est nulle par
parité et le calcul de la partie réelle en établissant une
équation différentielle par intégration dépendant d’un
parametre.

On donne ici une autre preuve par prolongement
analytique. Par transfert, on doit montrer

x—m)?2

1 ixt_(zz 252 .
— 2 =exp(-£Z< +im n faisan hangemen
/Jme exp(——; t) en faisant le changement

de variables u=(x-m)/oc on serameneaucasoc=1, m=0.

En prenant m = z dans le calcul de la densité, on a pour
ze

R
&0 1 x2472-2xz 0 1 (x-2)2
dx——e™ " 2 :/ dx——e 2 =1.
</—oo V2r —c0 V2r
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Pour z € C, en appliquant le résultat précédent

/d 1 |zx|” %
2z !

N

n
:/\l/im/d Z'lel e‘%
1 X2
dx——e~ 7Tz
R V2r

2
< exp(| | ) <o

La premiere bornitude permet d’appliquer le TCD pour les

séries (ou Fubini pour la mesure discrete) et intervertir

somme et série :

> 1 Xn x2 1 x2
dx——"—e"~ T=/dx—e‘7+zx
HZ;‘) ./ \2x n! R V2nm
la fonction de droite est donc la somme d’une série entiere
exp(5 ) pour z € R, donc par identification des coefficients,

elle vaut cette valeur pour tout z € C, en particulier pour
z =it et on trouve le résultat. O

On démontrera le théoréme suivant dans la prochaine
section puisque la preuve utilise des propriétés générales
de U'indépendance importante a noter pour elles-mémes :

Théoreme E.4: (Théoreme d’injectivité de la trans-

formation de Fourier)

Deux v.a. (X1, ..., Xn), (Y1, ..., Yp) tels que

D xy, o xm) (1) =Py, vy, (HVE R
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sont égales en loi, c’est a dire :

De plus, si &x € LL(R", Leb) alors P(x,,....x, a une
densité par rapport a la mesure de Lebesgue donnée
par (la transformée de Fourier inverse) qui est une
fonction continue :

Sommes de variables aléatoires
indépendantes (Rappels)

Vous avez probablement vu en TD de théorie de la
mesure la définition de la convolution que Uon rappelle ici et
relie aux sommes de variables aléatoires indépendantes.

Définition E.2: (Convolution)

Soit u une mesure de Probasur ScR?etf:R >R
une fonction mesurable telle que pour tout x € S,

y — f(x — y) estdans LY(R?, ), la convolution de f et
u est la fonction f x u définie par:

(Frm00 = [ FOx=p)duty).
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Si u est absolument continue par rapport a la mesure
de Lebesgue de densité g, on note aussi f x g.

Proposition E.5

Soient X, Y : Q —» R? des v.a. indépendantes :

3. VteRY, dx,y(t) = dx ()P y(t)

4. Si X;, Yjsontdans L2(Q),
Cov(Xj+Y;, Xj+Y;)=Cov(X;, Xj)+ Cov(Yj, Y)).

5. Si Px(dx) = f(x)dx, Py(dx)=g(y)dy alors Px.y
est absolument continue par rapport a Lebesgue
(sur R%) de densité f « g définie Lebesgue p.p. :

Px.y(dz) = (f + g)(z)dz.

6. Si seulement X est de loi absolument continue
mais de densité continue bornée f, alors quel
que soit Y, Px,y est absolument continue par
rapport a Lebesgue (sur R9) de densité f = Py
(définie partout). De plus, pour tout h continue
bornée :

E((h+f)(Y)) = E(h(X +Y)).

Démonstration. 1. 0On a dx,y(t) = E[e/lX+V)] =
E[e™e] = E[e™]E[e] = dx(1)®y(t) 'avant derniére
égalité par indépendance car f(x) = e/™ est bornée donc
intégrable (par rapport a une probabilité).
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2. En général par bilinéarité Cov(X;+ Yj, X;+Y)) =
Cov(Xj, Xj)+ Cov(Y;, Yj)+ Cov(Y;, Xj)+ Cov(Y;, Xj), mais
ici par indépendance les deux derniers termes sont nuls.

3.1l faut d’abord vérifier que f = g est bien définie. Par
Fubini-Tonelli vu le caractere positif :

/Rn dx/Rn dyf(x - y)g(y)
Z/Rn dy(/Rn dxf(x -y))g(y)
= /R dyg(y)=1

donc [, dyf(x - y)g(y) existe et est fini p.p.

En prenant h mesurable positive et en appliquant le
transfert, on obtient par changement de variables z=x+y
dans lintégrale sur y obtenue par Fubini :

E(h(X+Y)) = ‘/RM h(x+y)f(x)dxPy(dy)
:/ h(2)f(z - y)dzPy(dy)
R2d
= /Rd h(z)(f+Py)(z)dz

ce qui donne le calcul de densité (égalité de la loi avec
seulement le cas h=1g). Dans le cas de 4. on raisonne
pareil sauf que f continue bornée donne x — f(x - )
intégrable par rapport a la proba Py directement.
L’application de Fubini vient de

f2a lh(2)F(z - y)|dzPy(dy) < ||h||~. L’égalité intermédiaire
donne aussi E(h(X+Y)) = /Rd(h* (y)Py(dy) = E((h+f)(Y))
par transfert. O
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Preuve [Facultative] du Thm
d’injectivité de la transformée de
Fourier

On va utiliser les lois gaussiennes pour se ramener au
cas avec densité tout en exploitant leurs propriétés de
stabilité par cette transformée.

Soit g, la densité sur R" d’'un n-uplet de variable
gaussienne i.i.d. N(0, o?). Pour tout h : R" - R
continue bornée, (hx* g,)(X) >5_9 h(x). On a méme
convergence uniforme sur tout compact.

En terme de convergence en loi, cela signifiera au
chapitre 2 que si (X1(0), ..., Xp(0)) sont les variables de
densités g,, alors x + (X1(0), ..., Xn(0)) —,_0 X €n loi en
utilisant la proposition E.5.(4) au cas Y = x.

Démonstration. Par transfert et changement de variables
(h+*gs)(x) — h(x) = /Rd(h(x —0z)-h(x))g1(2)dz.
En prenant, en prenant le supremum sur un compact K :

supl(h « g)(x) = h()
s/ sup |(h(x - oz) - h(x))|g1(2)dz
RY xeK

la limite vient de la convergence dominée par une constante
2||h||- puisque une constante est intégrable par rapport a
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une probabilité comme g;(z)dz, et la limite ponctuelle en z
vient de la continuité de h qui est donc uniformément
continue sur K + B(0, |z|) et donc pour |o| <1, x -0z, X sont
dans ce compact de distance o|z| tendant vers 0. Si h est
uniformément continue sur R on a méme convergence
uniforme sur RY. O

On a aussi besoin de la conséquence suivante du
lemme de classe monotone :

Proposition E.7

Soient X, Y : Q - R" des variables aléatoires. Les
propriétés suivantes sont équivalentes

3. X, Y sont égales en loi: Py = Py.
4. Pour tout h: R" - R, continue bornée,
[ h(X)dP = [ h(Y)dP
5. Pour tout ouvert O de R", Px(0O) = Py(O).
6. pour tout (xq1,..., Xp) €R" :

Px(] =0, X1] X ...x] =00, Xp])

= Py(] =00, X1] X ...X] — 0, Xn]).

La fonction Fx (X1, ..., Xn) = Px(] =00, X1] X ...X] =0, Xn])
appelée fonction de répartition caractérise donc la loi.

Démonstration. Les produits d’intervalles
] — o0, X1] X ...x] — 0, x] et les ouverts sont des familles
stables par intersection finie et engendrent la tribu des
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boréliens de R" (car par intersection et complémentaire on
obtient les boules carrées de la norme infini et que tout
ouvert de R" est union dénombrable de telles boules, de
centre un point de Q" par densité de Q".) On applique donc
le lemme de classe monotone pour obtenir les 2 derniéres
équivalences. 1 implique 2 vient du th de transfert plus bas
comme U'équivalence de 2 avec : Pour tout h : R? > R,

g NV APX(X) = fog h(X) APy (X).

Pour montrer 3 a partir de 2 et conclure, il suffit de
remarquer que h,(x) = max(1, nd(., O%)) sont des fonctions
continues bornées par 1 (car la distance a un fermé
x— d(x, 0% =inf{d(x,y),y € O} est continue, cf. MASS
31). Si x € O¢, hp(x) =0 et sinon, h, est une suite
croissante qui tend vers h,(x) — 1o(x) (carsi x € O,
nd(., 0% — o donc > 1 pour n assez grand donc hp(x) =1
pour n assez grand). Donc par convergence monotone,

Jea hn(X)dPx(x) = Px(0) d’ol U'égalité du 3. par celle du
2. O

Preuve du Thm E.4. Pour montrer Uinjectivité, par le
lemme E.7, il suffit de montrer que 'égalité des transformée
de Fourier implique égalité de E(h(X)) pour tout h continue
bornée.

Or par le lemme précédent, (h*+ g,)(x) — h(x) tout en
étant borné par ||h||. donc par TCD :

E(h(X)) = lim E((h* go)(X)) = lim E(h(X +Y,))
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la derniére égalité avec Y, de densité g, et indépendant de
X par la proposition E.5 (4) puisque la densité g, est
continue bornée. Or la transformée de Fourier de X + Y, est
Sx,y, (1) =dx(H)dy (1) par la proposition E.5 (2) et donc

lIt1150
2

Pxqy, (1) = Px(t)exp(- )

par le calcul du lemme E.3. Comme ceci est intégrable, on
s’attend a avoir la formule d’inversion de Fourier de la
deuxieme partie qui va donner E(h(X + Y,)) en fonction de
®x.v,(t), nous allons donc la montrer a la main dans ce cas
pour conclure la preuve.

Or en interprétant la densité comme une variante de la
transformée de Fourier dans le cas gaussien :

(G * P)(X)
1 x=yli3
=/ exp(- M2 5 ay)

rd cd(2m)d/2 202

2 —
- [, Pxtayav exp(- 5+ i =X vy
R2d o

ocd(2m)d
soit par le changement de variables u = v/o de jacobien o ¢

on obtient
E(h(X+ o) = [ dxh(x) (g« P (0
=/ dxPx(dy)dvh(x)
R3d

1 2lvii®
e @I ity x )
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soit en appliquant Fubini sur les intégrales en y, v

E(h(X +Y,))

B h(x) a?|vi? .
= ./de dxdv(zﬂ)dexp(— 5 —i{x, V)P x(v)

~ h(x) i
= /RZd dxdv(zﬂ)deXp( i{X, V)P xiy, (V)

qui est la formule souhaitée qui ne dépend bien que de la
transformée de Fourier ® x et conclut Uinjectivité.

Maintenant si ® x est intégrable
[h(X)® x.v, (V)] < h(Xx)|®x (V)| est une domination (si h est a
support compacte) et puisque ®x,y (V) 5,9 Px(Vv) par les
formules précédentes, on obtient par le TCD la formule
souhaitée pour la densité a la limite. La continuité de la
densité vient du Théoreme de continuité des intégrales a
parameéetres. On remarque qu’en utilisant
E(h(X))) = [, dxh(x)fx(x) pour tout h positive continue a
support compact, on déduit fx positive (sinon par continuité
elle est négative sur un ouvert dans lequel on peut prendre
le support de h pour contredire positivité de U'intégrale) et
par convergence monotone et faisant tendre h — 1, on
déduit fy intégrable et densité de proba. D’ol on peut
utiliser E(h(X))) = A«d dxh(x)fx(x) (maintenant valable pour
h continue bornée car fy peut servir de domination) pour
identifier Px(dx) = fx(x)dx en utilisant le lemme E.7. O
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5 Théoreme de Radon-Nikodym
et Théoreme de
Dunford-Pettis (Niveau
M1-M2)

Ce complément pourrait pour l'essentiel étre ajouté
comme application du théoreme de Riesz ou du théoréme de
dualité des espaces LP. Nous expliquons un théoréme de
théorie de la mesure qui permet de dire quand une mesure
provient d’une densité dans L1(Q, x). On en déduit une
application a un théoréme de compacité qui est utile pour la
preuve du cas uniformément continue du théoréme de
convergence des martingale dans L!, le théoréme de
Dunford-Pettis E.9.

Définition E.3

Si u,v sont des mesures de probabilités sur (Q,7), on
dit que u est absolument continue par rapport a v et
on note u < v si pour tout A€ 7, v(A) =0 implique que
u(A) =0

Définition E.4

Si u, v sont des mesures de probabilités sur (Q,7), on
dit que x admet une densité h e L1(Q,v) par rapport a
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v et on note h:% sih>0p.s.etpourtout Ae7 :

v b

/ 1ahdv = u(A).
Q

Les définitions s’étendent aux mesures o-finies, mais
on considére seulement ici le cas de probabilités.

Théoréme E.8: (de Radon-Nikodym)

Pour toutes mesures de probabilités u, v sur (Q, 7), il
y a équivalence entre u < v et Uexistence d’une
densité h = % e L1(Q,v) de u parrapporta v, et la
densité est alors unique v-p.s.

Démonstration. Sion a deux densités h, k,

[Q 14(h-k)dv =0 pour tout A7 mesurable, donc par la
construction de Uintégrale aussi [, fhdv = [, fkdv d’abord
pour f mesurable positive (par TCM) puis pour f mesurable
bornée donc par dualité h— k =0 dans L'(Q,v) donc v-p.s.

De plus, si on a existence d'une densité et si v(A) = 0,
par TCM, [, 1ah=1lim, o [, 1a(hAn)=0 car
| [ LaCh A nydvi < [I(h A mlI2111allz2 < nv(A)Y/2 = @ par
Cauchy-Schwartz. Donc u(A) =0 c’est a dire on a montré

<.

La partie difficile est Uexistence d’une densité si u < v.
On va utiliser le théoréme de représentation de Riesz (ou sa
variante pour la dualité de L!, le théoréme D.8). Soit
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Ue = u+avaveca > 0. L'idée est simple on s’attend a avoir

dv _ 1
dua — a+h

une densité % = a + h strictement positive et donc
bornée par 1/a donc dans L2 ensuite

@ _ h . .
a(l--2) =a-; —ane h eton devrait pouvoir retrouver h

ainsi.

Appliquons cette idée, si f € L1(Q, du,), on a

/Ifldv=1/|f|da/vgl/|f|dua
a a

Donc f e LY(Q, dv) et f — [ fdv définit une forme
linéaire continue sur LY(Q, du,), donc par le théoréme D.8,
il existe h, € L2(Q, du,) telle que pour tout f € L1(Q, du,) on

/fdv:/fhr,d,un.

Etde plus, on a ||hyl| =) < 1/a. Si f=1(, gy, On
obtient f max(9, h,)du, > 0 donc vaut 0, donc

V((he < 0)) < Tu,((hy < 0)) =0
donc h, > 0, v p.s.

On montre maintenant la monotonie attendue pour h,
(si on veut qu’elle soit égale a un 1) Sig > a, ona pour f
positive bornée en utilisant u,(g) < ug(g) pour g positive

v—p.S,
/fhﬁdpﬁzffdvszhad,uas‘/fhaduﬁ
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car fh, posivite v—p.s. par le résultat précédent, donc
comme c’est valable pour tout f > 0, on a hg < h,ug-p.s.
donc v-p.s.

Finalement, on a Uidentité

/fd,u:/fduc,—/fada/:/f(l—aha)dpa

=/fa(l—aha)dv+ff(1—ah(,)dy.

Par [[hyll(~(u,) < 1/a.onal-ah, >0 p,—p.s. donc
v=p.s. En raisonnant comme avant on obtient
(L-ah,) > (1-pBhg) v—p.s. Donc, par 'égalité précédente,
aprés simplification de f (et toujours pour f positive en
utilisant la croissance de « — ah, v-p.s. par ce qu’on vient
de voir donc u-p.s. par Uhypothése u < v) , on obtient

/fa(l—aha)dvszahady

sffﬁhﬁd,uszﬁ(l—ﬁhﬁ)dv

soita(l-ah,) <B(1-Bhg), v—p.s. donc converge vers un h
en croissant et par convergence monotone et 'égalité avant
on obtient

fhdy = lim / fo(l—ahy)dy

_ lim/fd,u—/f(l—ah(,)dusffdp.

Donc pour f =1 on trouve h e L1(Q, dv). Or par la monotonie
de la limite définissant h, on a

(1-ahy) = 2d=oh) g

a

—a—0 0



Annexe E. Compléments facultatifs et hors
programme au chapitre 7 384

v—p.s. puisque h est fini v—p.s. donc en utilisant encore
Uhypothése, aussi u—p.s. Comme on a vu la monotonie en «
par convergence monotone, on déduit f f(l-ahy)duy — 0 et
donc finalement 'égalité attendue qui conclut la preuve :

fhdy = lim/fdu—/f(l—aha)dyszdy.

@—00

On peut maintenant rappeler et prouver le théoréme
E.O:

Théoreme E.9: (Dunford-Pettis)

Soit une suite (X,) dans L1(Q, 7, P) avec 7 une tribu
dénombrablement engendrée (donc 7 =7 (&) avec &
dénombrable, en particulier 7 = 8(R™)). On a
'équivalence entre

3. (Xp) est uniformément intégrable
4. (Xp) admet une sous-suite (Xj,,) ayant pour
limite faible X € L1, c’est-a-dire :

Vfe L®(Q), E((Xn, - X)f) — 0.

5. (Xp) est bornée dans L! et pour tout e > 0, il
existe n > 0 tel que si A € 7 vérifie P(A) <p
alors pour tout n, E(14|X,|) <e.

C’est surtout ’équivalence entre 1. et 2. qui est difficile
et porte le nom de théoréme de Dunford-Pettis. L’hypothése
“dénombrablement engendrée" n’est pas nécessaire (cf.
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Delacherie-Meyer Probabilités et Potentiel Vol 1 p 27)
mais nous la faisons pour simplifier.

Démonstration. On commence par l’équivalence entre 1 et
3. Supposons 3. et fixons € > 0, n t.q. P(A) <n implique
E(14|Xn|) < €. Par l'inégalité de Markov

P(|Xn| = ©) < SUPLCE(‘X"') <ndesquec> w, en
appliquant alors a A = {|X,| > ¢}, on déduit

sup, E(1(|Xn| > c}|Xn]) <e. Et donc

limcoe E(1(|Xn| > ¢}/ Xnl) = 0 qui est Uuniforme intégrabilité
recherchée.

Réciproquement, pour € < 0 fixé, on prend ¢ > 0 tel que
sup, E(1{x,>c;|1Xnl) <€/2, (en particulier

E(I1Xnl) = E(L(x,12c}1 Xnl) + E(L(x,1<c} [ Xn]) < C+€/2
donc X, et bornée dans L!, de sorte que

E(14lXnl) = E(Lalyx, 231 XnD) + E(Lalgx,i<cy 1 Xnl)
< E(Lgx, =3 XnD) + E(1al(x,<c; ©)
<e/2+P(Ac

qui est borné par e dés que P(A) <5 =¢€/2c qui convient.

On suppose maintenant 3 et on montre 2. Si
T =0(An, n €N), A l'algébre engendré par les A, c’est a
dire les unions finis d’intersections finis de A,, A (qui n’est
en général pas une o algebres) qui est stable par,
complémentaire union finie et intersection finie. Il est facile
de voir que A est dénombrable.
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En séparant les parties positives,négatives, on peut
supposer X, > 0 et par extraction diagonale, on trouve ny
telle que E[X;, 14] — u(A) converge pour tout A € A.

Il est facile de voir que u(Q) < o vu que (Xp) est bornée
dans L1 (par 3.) u est additive sur les unions disjointes
finies (par additivité de 1 +— E[X;, 14] qui est une mesure et
passage a la limite). De plus, par 3., soit € positive, on a un
n tel que P(A) <nimplique E[Xp, 14] < e donc u(A) <e.

En particulier si P(A) =0, on a u(A) = 0.

Un résultat classique de théorie de la mesure dit que u
s’étend de facon unique sur o(A) en une mesure u* (cf. par
exemple Barbe-Ledoux [1, Thm 1.49]). Il est facile de voir
que 'on a encore si P(A) =0, on a u*(A) = 0. Donc, u* < P et
par le théoréme de Radom-Nikodym, il existe X € L! telle
que E(X1,4) =u(A) =Llim,_, 11, E[ X5, 14]. Il en est donc de
méme pour toute fonction étagée f, (resp. gm) d’une suite
décroissante (resp. croissante) convergeant vers f
mesurable positive bornée

D’ou on a les deux inégalités donnant l’égalité

lim sup E[Xp, f] < lim E[Xp, fm] = E(Xfm) — E(X)

n—oo

liminf E[ X, f] > ,l7im E[Xn,gdm] = E(Xgm) — E(XT).

n—oo

On a donc obtenu 2.

On laisse en exercice U'implication de 3. vers 1. que
l'on n’a pas utilisé dans le cours.
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