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Ce polycopié de cours est issu d’un cours donné
en 2019 puis aussi de 2023 à 2025 à l’Université
Claude Bernard Lyon 1. Il a été rendu plus accessible
aux lecteurs dyslexiques en utilisant le travail décrit
dans Making an Accessible Open Logic Textbook
(for Dyslexics) par Richard Zach 1 .

Le code latex pour la présentation du livre
forallx: Calgary (Accessible) par P.D. Magnus, Tim
Button, Robert Trueman et Richard Zach, a été utilisé
sous licence CC BY 4.0 . Vu notre utilisation
systématique d’environnements pour énoncer des
définitions, Théorèmes, Lemmes, etc. comme il est
d’usage en mathématiques, nous avons en plus veillé
à appliquer les mêmes usages typographiques
recommandés dans ces environnements dans les
versions accessibles de ce cours.

Certaines sections indiquées au cours du texte
sont tirées d’un polycopié du même cours de
2018-2019 de Thomas Blossier, Maria Carrizosa et
Julien Melleray avec permission.

L’auteur ne prétend bien sûr à aucune originalité
mathématiques sur des sujets si classiques. Il espère

1. Voir aussi du même auteur Accessible Open Text-
books in Math-Heavy Discipl ines The challenge

https://openlogicproject.org/2017/11/27/making-an-accessible-open-logic-textbook-for-dyslexics/
https://openlogicproject.org/2017/11/27/making-an-accessible-open-logic-textbook-for-dyslexics/
https://richardzach.org/
https://forallx.openlogicproject.org/forallxyyc-accessible.pdf
https://www.fecundity.com/job/
https://www.homepages.ucl.ac.uk/~uctytbu/
https://www.homepages.ucl.ac.uk/~uctytbu/
http://www.rtrueman.com/
https://creativecommons.org/licenses/by/4.0/
https://richardzach.org/2025/03/accessible-open-textbooks-in-math-heavy-disciplines/
https://richardzach.org/2025/03/accessible-open-textbooks-in-math-heavy-disciplines/


3

cependant, après quinze ans d’enseignements de
l’analyse et des probabilités en parcours
mathématiques et économie, qu’il a atteint son objectif
pédagogique de permettre plusieurs niveaux de lecture
à un publique qui a principalment besoin des
applications du sujet en probabilité et modélisation. Au
niveau minimum, il suffit d’apprendre les définitions et
résultats principaux avec ⋆ et de bien comprendre les
exemples qui seront la source d’exercices types
incontournables. A un deuxième niveau, les étudiants
hésitant avec des études de mathématiques
appliquées devraient comprendre les résultats du
corps du texte et leurs preuves. C’est l’enseignement
que l’auteur donne en pratique au tableau pendant les
50 heures de ce cours. Enfin, les étudiants à l’aise qui
se destinent à la recherche mathématique, malgré leur
parcours inhabituel, auront tout intérêt à faire des
excursions dans les compléments en appendices, qui
rassemblent des preuves supplémentaires et des
prolongements immédiats, le plus souvent nécessaires
pour les preuves supplémentaires de d’autres sections
de l’appendices. Ce sont des matériaux soit
enseignées à d’autres niveaux, soit enseignées dans
des versions précédentes de ce cours et qui ce sont
révélées trop ambitieuses pour le public visé.



4

Cours au S5 des parcours
Mathématiques-Informatique et
Mathématiques-économie : Topologie et Théorie de la
mesure. © 2025 par Yoann Dabrowski est licencié sous
Creative Commons Attribution-NonCommercial-ShareAlike
4.0.

Vous êtes libre de partager, copier, reproduire,
distribuer, communiquer, réutiliser, adapter, par tous
moyens, sous tous formats cette oeuvre. Toutes les
exploitations de l’œuvre ou des œuvres dérivées, sauf à des
fins commerciales, sont possibles. Les obligations liées à la
licence sont de :

⊲ créditer les créateurs de la paternité des œuvres
originales, d’en indiquer les sources et d’indiquer si
des modifications ont été effectuées aux œuvres
(obligation d’attribution) ;

⊲ ne pas tirer profit (gain direct ou plus-value
commerciale) de l’œuvre ou des œuvres dérivées ;

⊲ diffuser les nouvelles créations selon des conditions
identiques (selon la même licence) à celles de l’œuvre
originale (donc autoriser à nouveau les modifications
et interdire les utilisations commerciales)

⊲ Vous ne pouvez pas appliquer de conditions juridiques
ou de mesures technologiques qui restreignent
légalement les autres à faire tout ce que la licence
autorise.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Table des
matières
Table des matières 5

I Analyse réelle 10
1 Ensembles dénombrables et Familles sommables 11

1 Ensembles (au plus) dénombrables . . . . . 13
2 Familles sommables à termes positifs . . . . 24
3 Familles sommables à termes scalaires . . 35

2 Introduction à la Topologie 42
1 Distance et Norme sur un espace vectoriel . 43
2 Métriques équivalentes . . . . . . . . . . . . 47
3 Boules dans un espace métrique . . . . . . . 48
4 Suites dans un espace métrique . . . . . . . 49
5 Suite de Cauchy, Complétude . . . . . . . . 52
6 Ouverts dans un espace métrique . . . . . . 56
7 Fermés dans un espace métrique. . . . . . . 61
8 Fonctions continues . . . . . . . . . . . . . . 67

5



Table des matières 6

9 Applications linéaires continues . . . . . . . 76
10 Propriétés particulières des evn de dimen-

sion finie. . . . . . . . . . . . . . . . . . . . 81
11 Compacité dans les espaces métriques . . . 86
12 Intégrale de Riemann à valeur Espace de

Banach . . . . . . . . . . . . . . . . . . . . . 93
13 Espaces métriques séparables . . . . . . . . 100

3 Convexité 102
1 Ensembles Convexes . . . . . . . . . . . . . 103
2 Fonctions convexes . . . . . . . . . . . . . . 106
3 Propriétés différentielles des fonctions

convexes. . . . . . . . . . . . . . . . . . . . 117
4 Premières Inégalités de convexité . . . . . . 128

II Intégration 131
4 Intégration de Lesbesgue 132

1 Tribus, fonctions mesurables et mesures . . 137
2 Les fonctions étagées (mesurables) et leur

intégrale . . . . . . . . . . . . . . . . . . . . 155
3 Intégrale des fonctions mesurables positives159
4 Intégrale des fonctions intégrables . . . . . 165
5 Théorème de transfert . . . . . . . . . . . . 173
6 Comparaison aux constructions de L2 . . . . 175
7 Intégrales dépendant d’un paramètre . . . . 182

5 Intégration avancée : Théorème de Fubini, Chan-
gements de variables 190

1 Mesure produit et théorèmes de Fubini . . . 190
2 Une Inégalité de convexité : l’Inégalité de

Jensen . . . . . . . . . . . . . . . . . . . . . 197



Table des matières 7

3 Théorème de changement de variables . . . 201

III Introduction à l’analyse
fonctionnelle 212

6 Introduction aux espaces Lp 213
1 L’espace L∞ (Ω, 𝜇) . . . . . . . . . . . . . . . 214
2 Définitions et propriétés élémentaires des

espaces Lp (Ω, 𝜇) . . . . . . . . . . . . . . . . 217
3 Cas discret : espaces ℓ p (I ), p ∈ [1,∞[ (cf. TD)228

7 Espaces de Hilbert ; bases hilbertiennes 230
1 Généralités . . . . . . . . . . . . . . . . . . 230
2 Projection sur un convexe fermé . . . . . . . 236
3 Applications : Orthogonalité et Dualité . . . 240
4 Bases Hilbertiennes . . . . . . . . . . . . . . 245
5 Une Application : Le théorème de conver-

gence des martingales bornées dans
L2 (Ω,T ,P ) (facultatif) . . . . . . . . . . . . . 261

Bibliographie 264

IV Annexes : compléments fa-
cultatifs 266

A Compléments facultatifs au chapitre 2 : Topologie
des e.m. 268

1 Théorème de Tietze (niveau L3-M1) . . . . 268
2 Complément sur l’Espace dual (niveau début

de M1) . . . . . . . . . . . . . . . . . . . . . 271
3 Bidual, Complété (niveau début de M1) . . . 276



Table des matières 8

4 Compléments sur la compacité et complé-
tude (niveau L2-L3) . . . . . . . . . . . . . . 279

5 Théorème d’approximation de Weierstrass
(niveau L3-M1) . . . . . . . . . . . . . . . . 281

6 Un résultat de compacité : le Théorème d’As-
coli (niveau L3 Math) . . . . . . . . . . . . . 284

B Compléments facultatifs et hors programme au
chapitre 3 :Convexité 289

1 Propriétés des Cônes tangents et normaux
dans Rn . . . . . . . . . . . . . . . . . . . . . 289

2 Enveloppe convexe, cônes tangents et
cônes normaux pour tout e.v.n. E (Niveau L3)294

3 Points selles (Niveau L2-L3) . . . . . . . . . 298
4 Jauge de Minkowski d’un ensemble convexe

(Niveau M1) . . . . . . . . . . . . . . . . . . 306
5 Séparation des convexes (Niveau M1) . . . 309

C Compléments facultatifs au chapitre 4 : Espaces
mesurés. 317

1 Lemme de classe monotone . . . . . . . . . 317
2 Compléments sur les Boréliens . . . . . . . 323
3 Stabilité des fonctions mesurables . . . . . 328
4 Compléments sur la construction de l’intégrale330

D Compléments facultatifs et hors programme au
chapitre 6 : Espaces Lp 336

1 Formule alternative de la norme (niveau L3) 336
2 Premiers résultats de densité (niveau M1) . 339
3 Dualité des espaces de Lebesgue Lp (Ω) (Ni-

veau M1) . . . . . . . . . . . . . . . . . . . . 347
4 Convolution . . . . . . . . . . . . . . . . . . 352



Table des matières 9

5 Support de la convolution . . . . . . . . . . . 354
6 Régularisation par convolution . . . . . . . . 356
7 Suites régularisantes et densité par convo-

lution . . . . . . . . . . . . . . . . . . . . . . 358
E Compléments facultatifs et hors programme au

chapitre 7 361
1 Rappel sur le lemme de Zorn . . . . . . . . . 362
2 Théorème des bases dans le cas général . . 363
3 Correction de l’exercice sur les polynômes

de Hermite . . . . . . . . . . . . . . . . . . . 367
4 Théorème d’injectivité de la transformée de

Fourier . . . . . . . . . . . . . . . . . . . . . 369
5 Théorème de Radon-Nikodym et Théorème

de Dunford-Pettis (Niveau M1-M2) . . . . . 379



PARTIE I

Analyse réelle

10



Chapitre 1

Ensembles
dénom-
brables et
Familles
sommables

Un espace de probabilité discret (disons dénombrable)
associe des nombres, les probabilités aux évènements de
base {𝜔i }, correspondant aux éléments 𝜔i de l’espace des
réalisations et en sommant à des évènements plus
compliqués. Comme ces nombres vont être associés à des
ensembles, l’ordre de sommation de ces nombres ne doit
pas importer. On va donc étudier une notion de sommation
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de série où l’ordre de sommation n’importe pas. Le but est
donc pour une famille de nombres (u i ) i ∈I , indicée par un
ensemble infini I (le plus souvent dénombrable) de définir
la somme : ∑︁

i ∈I
u i ,

en conservant les propriétés de commutativité et
d’associativité des sommes finies.

Même dans le cas I = N, le but est d’obtenir une notion
de sommation qui ne privilégie pas les sous-ensembles
finis [[0, n]] comme la notion de somme de série usuelle. On
verra que dans ce cas, cette notion de sommation coïncide
avec la convergence absolue que vous connaissez déjà.

Le but de la Théorie de la mesure sera d’étendre cette
construction à des espaces dits mesurés (de probabilité ou
de masse totale différente de 1), incluant les espaces
probabilités continues. Le principe de la construction sera
le même et généralisera le cas plus simple de ce chapitre.
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1 Ensembles (au plus)
dénombrables

Rappels sur les ensembles
Définition 1.1

La fonction indicatrice d’une partie A est
l’application 1A : Ω → {0; 1} définie par

1A (𝜔) =
⎧⎪⎪⎨⎪⎪⎩

1 si 𝜔 ∈ A

0 si 𝜔 ∉ A

On a admis en L1 l’existence de l’ensemble N des
entiers naturels et d’un ensemble constitué des parties de Ω

(ce sont des axiomes de base de la théorie des ensembles).

Définition 1.2

L’ensemble des parties de Ω est noté P(Ω). Une
famille F de parties de Ω est une partie de P(Ω) (soit
F ⊂ P(Ω) ou F ∈ P(P(Ω)). Les éléments de F sont des
parties de Ω.

Lemme 1.1

La fonction indicatrice A ↦→ 1A réalise une bijection
entre P(Ω) et {0, 1}Ω (l’ensemble des applications de
Ω dans {0, 1}).
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Démonstrat ion. L’inverse est h ↦→ h−1 ({1}). La vérification
que c’est bien un inverse est facile, et laissée en
exercice.

Rappel 1.1. Si A et B sont deux parties de Ω (i.e.
deux éléments de P(Ω)).

1. On a les relations A ⊂ B ou B ⊂ A ou (A ⊄ B et
B ⊄ A). A ⊂ B s’écrit aussi B ⊃ A.

2. On a défini en L1 : A × B l’ensemble des couples
(a , b) a ∈ A , b ∈ B , l’intersection A ∩ B
(ensemble des éléments à la fois dans A et
dans B ), l’union A ∪ B (ensemble des éléments
à la fois dans A ou dans B ), le complémentaire
de B dans A :A − B = A ∩ B c = {x ∈ A : x ∉ B} et
la différence symétrique A∆B = (A − B) ∪ (B − A).
On remarquera la relation de ces opérations
avec les connecteurs logiques de base.

3. Plus généralement on définit l’union d’une
famille A i ∈ P(Ω) , i ∈ I :⋃︂

i ∈I
A i = {x ∈ Ω : ∃i ∈ I : x ∈ A i },

et de l’intersection d’une même famille :⋂︂
i ∈I
A i = {x ∈ Ω : ∀i ∈ I : x ∈ A i }.

qui vérifie les relations de distributivités :(︂⋃︂
i ∈I
A i

)︂
∩ C =

⋃︂
i ∈I

(A i ∩ C )
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(︂⋂︂
i ∈I
A i

)︂
∪ C =

⋂︂
i ∈I

(A i ∪ C )

et plus généralement(︂⋃︂
i ∈I
A i

)︂
∩

(︂ ⋃︂
j ∈J
C j

)︂
=

⋃︂
i ∈I , j ∈J

(A i ∩ C j ) .

(︂⋂︂
i ∈I
A i

)︂
∪

(︂ ⋂︂
j ∈J
C j

)︂
=

⋂︂
i ∈I , j ∈J

(A i ∪ C j ) .

4. A et B sont disjoints si A ∩ B = ∅.
5. On a les relations fondamentales du

complémentaire (Ac )c = A et pour le
complémentaire des unions(︂⋃︂

i ∈I
A i

)︂ c
=

⋂︂
i ∈I
Aci

et (de façon équivalente) des intersections :(︂⋂︂
i ∈I
A i

)︂ c
=

⋃︂
i ∈I
Aci .

∗ Rappel 1.2. Soit A ⊂ E et f : Ω → E , on rappelle
que l’image réciproque f −1 (A) est définie par :

f −1 (A) = {𝜔 ∈ Ω : f (𝜔) ∈ A}.

On a vu en L1 les relations

f −1 (A ∪ B) = f −1 (A) ∪ f −1 (B) ,

f −1 (A ∩ B) = f −1 (A) ∩ f −1 (B) ,



Chapitre 1. Ensembles dénombrables et
Famil les sommables 16

f −1 (Ac ) = [f −1 (A)]c ,

f −1
(︂⋃︂
i ∈I
A i

)︂
=

⋃︂
i ∈I
f −1 (A i ) , (1.1)

f −1
(︂⋂︂
i ∈I
A i

)︂
=

⋂︂
i ∈I
f −1 (A i ) .

Un ensemble A qui n’est pas fini est dit infini.

Ensembles infinis dénombrables
⋆ Définition 1.3

Un ensemble infini A est dénombrable s’il existe une
bijection f : A → N.
Un ensemble A est au plus dénombrable s’il existe
une injection f : A → N.

Remarque 1.3. Certains auteurs disent dénombrable
pour ce que nous appelons au plus dénombrable et
infini dénombrable avec le sens de dénombrable
ci-dessus.

On va utiliser librement le lemme suivant :

Lemme 1.2

1. Toute partie non-vide de N a un minimum.
2. Une application strictement croissante

f : N → N (resp. f : [[0, n]] → N) vérifie f (p) ≥ p
pour tout p dans son domaine.



Chapitre 1. Ensembles dénombrables et
Famil les sommables 17

Démonstrat ion. 1. Si P est non-vide et donc, disons,
contient n , alors [[0, n]] ∩ P est aussi non-vide et FINI, donc
a clairement un minimum. 2. Il suffit de voir le deuxième cas
(en restreignant aux segments initiaux), on le montre par
récurrence sur n . Si n = 0 , f (0) ∈ N donc c’est évident. En
supposant l’hypothèse vraie au rang n , on considère
f : [[0, n + 1]] → N, la restriction à [[0, n]] vérifie l’hypothèse
de récurrence, donc f (p) ≥ p pour p ≤ n et f (n + 1) > f (n) ≥ n
mais dans N cela implique f (n + 1) ≥ n + 1 et conclut l’étape
d’induction.

On peut représenter les éléments d’un ensemble
dénombrable A à l’aide d’une suite infinie en écrivant
A = {xn ; n ≥ 1} (x est l’inverse de la bijection f ).

⋆ Proposition 1.3

Les ensembles au plus dénombrables sont soit finis,
soit dénombrables. De plus, pour une partie infinie
P ⊂ N, il existe une bijection strictement croissante et
une seule de N → P .

Démonstrat ion. Les ensembles au plus dénombrables
sont par définition en bijection avec les parties de N. Dans
le cas infini, il suffit de voir le second point pour obtenir la
bijection avec N. On définit par récurrence la bijection
f : N∗ → P . Plus précisément, on construit par récurrence
sur n une application strictement croissante fn : [[1, n]] → P
telle que pour tout x ∈ Im ( fn ) , y ∈ P − Im ( fn ), x < y et
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fn | [[1,k ]] = fk . Comme P , infini, il est non-vide donc admet un
élément a0 = min (P ) On pose f0 (0) = a0 d’où l’initialisation.

On suppose construit fn , et on prend
an+1 = min (P − Im ( fn )) qui existe car cette partie est infinie
de N donc non vide (si elle n’était pas infinie, P serait finie
comme union finie de parties finies). On pose
fn+1 (k) = fn (k) , k ≤ n , fn+1 (n + 1) = an+1 de sorte que par l’hyp
de rec sur fn , an+1 > fn (k) , k ≤ n ce qui donne la stricte
croissance de fn+1 en combinant avec celle de fn . Enfin, si
y ∈ P − Im ( fn+1) ⊂ P − Im ( fn ) on a par hyp de rec
y > fn (k)k ≤ n et y > an+1 car c’est le min donc ≥ et on a
y ≠ an+1 par construction. Donc la relation demandée à
l’étape suivante est vérifiée.

On obtient f strictement croissante donc injective en
rassemblant les valeurs des fn qui s’accordent
(f (n) = fn (n) = fm (n) , m ≥ n ).

Pour voir que f bijective, par l’absurde, sinon il existe
b ∈ P − Im ( f ) mais par stricte croissance d’entiers f (n) → ∞
donc il existe n minimal tel que b < f (n) = fn (n) ce qui
impose par minimalité b > f (n − 1) et contredit
fn (n) = Min (P − Im ( fn−1)) vu b ∈ P − Im ( fn−1).

Pour l’unicité, si g est une autre telle bijection g−1 ◦ f
est une bijection strictement croissante de N → N ainsi que
sa réciproque et le lemme 1.2 donne donc
g−1 ◦ f (n) ≥ n , f −1 ◦ g (n) ≥ n et donc, d’où par croissance de
g , f appliquée encore à ces relations : f = g .
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⋆ Proposition 1.4

Un ensemble P est au plus dénombrable si et
seulement si il existe une surjection f : N → P .

Démonstrat ion. Pour l’implication directe, si P est
dénombrable, la bijection de la définition convient, si P est
fini, en bijection avec [[0, n − 1]] alors le reste modulo n
donne la surjection N → [[0, n − 1]] qui composée à la
bijection donne la surjection cherchée. Réciproquement,
l’ensemble f −1 (p) , p ∈ P est une partie de N qui a un plus
petit element ap : a : P → N est l’injection cherchée.

On va obtenir des exemples d’ensembles
dénombrables les plus courants. Pour cela on a besoin de
quelques méthodes de constructions.

Lemme 1.5

1. La réunion d’une suite (Xn )n≥0 d’ensembles finis
2 à 2 disjoints est au plus dénombrable.

2. Un ensemble X est au plus dénombrable si et
seulement si il admet une suite exhaustive de
parties finies, c’est à dire une suite croissante
de parties finies dont l’union est X .

3. Le produit cartésien d’un nombre fini
d’ensembles au plus dénombrables est au plus
dénombrable.
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Démonstrat ion. 1. Soit an = Card (Xn ) et An =

n∑︁
k=0

ak

(A−1 = 0). On a des bijections
hn : [[An−1 + 1, An ]] → [[1, an ]] → Xn qui induisent une
application h : N∗ → ∪nXn dès qu’un nombre infini de X i
n’est pas vide, ou h : [[1, Ap ]] → ∪nXn qui est par
construction surjective. L’injectivité des hn et le fait que les
Xn sont disjoints donne l’injectivité de h . 2. Si X est fini on
prend la suite constante, sinon, pour une bijection h : N → X
on prend Xn = h ( [[0, n]]) comme suite croissante cherchée.
Réciproquement, la suite croissante Xn donne une suite
disjointe X0 , Xn+1 − Xn de parties finies, donc 1 donne que
l’union est au plus dénombrable.

3. Une récurrence triviale ramène au cas du produit de
2 ensembles A , B . Soit h : N → A, g : N → B des surjections
données par la proposition 1.4. f = h × g : N2 → A × B est
une surjection qui ramène au cas N2 qui admet pour suite
exhaustive d’ensembles finis [[0, n]]2 .

⋆ Proposition 1.6

Les ensembles Nk , k ∈ N∗ ; Z et Q sont infinis
dénombrables.

Démonstrat ion. On a vu le cas du produit Nk au lemme
précédent. [[−n , n]] est une suite exhaustive d’ensemble fini
pour Z qui est donc au plus dénombrable par la proposition
précédente, il est infini car il contient N. Enfin (p , q) ↦→ p/q
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est une surjection de Z × N∗ → Q, donc, par la proposition
1.4, Q est au plus dénombrable, et infini car il contient N.

Enfin, on améliore le lemme précédent.

Proposition 1.7

Une réunion au plus dénombrable d’ensembles au
plus dénombrables est au plus dénombrable.

Démonstrat ion. Soit (Xn )n≥0 une suite d’ensembles
dénombrables (si la suite est finie, on peut la prolonger en
une suite infinie.). Soit fn : N → Xn une surjection donnée
par la proposition 1.4. Petite subtilité, on a besoin de former
une suite ( fn )n∈N, c’est à dire une application de

N →
(︄⋃︂
n∈N

Xn

)︄N
, ce qui n’est pas complètement anodin et

utilise l’axiome du choix dénombrable). On pose
f : N2 →

⋃︂
n∈N

Xn défini par f (n , p) = fn (p) et en composant

avec une surjection N → N2 , on obtient le résultat par la
réciproque dans la proposition juste citée.

Les ensembles au plus dénombrables serviront de base
aux probabilités discrètes.

Ensembles infinis non dénombrables
Les ensembles qui n’appartiennent pas aux catégories

précédentes (finis ou infinis dénombrables) sont dits infinis
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non dénombrables. On va voir que par exemple, R et C,
[a , b] , a < b sont infinis non dénombrables.

Le résultat clef est toujours un argument diagonal :

⋆ Lemme 1.8: (Théorème de Cantor)

Il n’existe pas de surjection h : E → P(E ) entre un
ensemble E et l’ensemble de ses parties.

Démonstrat ion. En effet une application h : E → P(E )
permet de considérer l’ensemble A = {x ∈ E : x ∉ h (x )}. Il
n’existe pas de y tel que h (y ) = A car par l’absurde, si il
existait, soit y ∈ A et alors y ∉ h (y ) = A une contradiction,
soit y ∉ A et alors y ∈ h (y ) = A encore une contradiction.

Remarque 1.4. En conséquence de ce lemme et de
la proposition 1.4, P(N) n’est pas dénombrable (il est
infini à cause de l’injection x ↦→ {x } défini sur N), car
sinon on aurait une surjection de N → P(N). En
conséquence {0, 1}N, en bijection par la fonction
indicatrice n’est pas non-plus dénombrable.

⋆ Théorème 1.9

[0, 1] et R ne sont pas dénombrables.

En conséquence un intervalle quelconque [a , b] , pour
a < b , en bijection avec [0, 1] ne l’est pas non plus. et un
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intervalle quelconque contenant au moins deux points (qui
contient donc aussi un [a , b]) est aussi non-dénombrable.

Démonstrat ion. On construit une injection
𝜑 : {0, 1}N → [0, 1] (le cas R s’en déduit. (l’image de cette
injection va être l’ensemble triadique de Cantor). On fixe
a = (an ) ∈ {0, 1}N on définit une suite de segments emboîtés,
on pose J0 = [0, 1] et si Jn = [xn , yn ] alors on découpe
l’intervalle en trois en posant un = (2xn + yn )/3 et
vn = (xn + 2yn )/3. Si an = 0, on pose Jn+1 = [xn , un ] , et si
an = 1, on pose Jn+1 = [vn , yn ] . On obtient par construction
une suite de segments emboîtés, xn , yn sont des suites
adjacentes et yn − xn ≤ 1/3n (récurrence facile) donc
l’intersection est un singleton ∩n Jn = {𝜑(a)}.

Pour voir que 𝜑 est injective on note que si a ≠ a ′ sont
deux suites et n le premier indice avec an ≠ a ′n , alors
Jn ∩ J ′n = ∅ et les images sont donc distinctes.

Remarque 1.5. L’ensemble triadique de Cantor a
plein de propriétés intéressantes. Topologiquement,
il est fermé, totalement disconnecté (les composantes
connexes sont les singletons). Il est de longueur
nulle (car inclus dans l’union sur tous les cas
possibles des Jn dont la longueur perd un facteur 2/3
à chaque n ). Le sens de cette longueur sera vu au
chapitre 3 (c’est la mesure de Lebesgue). Il est en fait
fractal de dimension de Hausdorff ln (2)/ln (3) < 1 (ce
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qui réexplique la longueur nulle, mais c’est un sujet
beaucoup plus avancé des mesures intermédiaires
entre discret et continue).

Exemple 1.1

L’ensemble des nombres irrationnels R − Q est
non-dénombrable, car sinon son union avec Q à
savoir R serait dénombrable, ce qui n’est pas le cas.

2 Familles sommables à termes
positifs

Rappels

Rappel 1.6. La somme x + y avec x , y ∈ R, est définie
à l’exception du cas où x = ±∞ et y = −x .
Contrairement au cas des limites, on pose 0. + ∞ = 0,
t . + ∞ = +∞ pour t > 0.

Pour un ensemble A non-vide (non-nécessairement
borné), on utilise sup A pour le plus petit majorant M ∈ R de
A et inf A pour le plus grand minorant m ∈ R de A.

On utilisera aussi inf ∅ = +∞, sup ∅ = −∞.
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Si (a i ) i=1,.. . ,n est une suite finie (disons de nombres
complexes) et 𝜎 : [[1, n]] → [[1, n]] une bijection.

La propriété de commutativité de la somme donne :
n∑︁
i=1
a i =

n∑︁
i=1
a𝜎 ( i ) .

Démonstrat ion. En voyant 𝜎 comme produit de
transpositions, il suffit de montrer le résultat pour 𝜎 = ( jk)
une transposition avec j < k .

Mais par commutativité (a + b = b + a ) et associativité
((a + b) + c = a + (b + c)) de la somme :

n∑︁
i=1
a𝜎 ( i ) =

j−1∑︁
i=1
a𝜎 ( i ) + a𝜎 ( j ) +

k−1∑︁
i=j+1

a𝜎 ( i ) + a𝜎 (k ) +
n∑︁

i=k+1
a𝜎 ( i )

=

j−1∑︁
i=1
a i + ak +

k−1∑︁
i=j+1

a i + a j +
n∑︁

i=k+1
a i =

n∑︁
i=1
a i .

Corollaire 1.10

Si E est fini et e : [[1, n]] → E une bijection, f : E → C

alors
n∑︁
i=1
f (e i ) ne dépend pas de la bijection e . On note

∑︁
e∈E

f (e) =
n∑︁
i=1
f (e i ) .
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Démonstrat ion. Si on prend une autre bijection e ′ on
considère la bijection 𝜎 = e−1 ◦ e ′ de sorte que e ◦ 𝜎 = e ′. La
formule de commutativité de la somme conclut :

n∑︁
i=1
f (e i ) =

n∑︁
i=1
f (e𝜎 ( i ) ) =

n∑︁
i=1
f (e ′

i ) .

Le résultat suivant résume les propriétés de
manipulation de ces sommes :

Proposition 1.11

1. Si E fini, on a

Card (E ) =
∑︁
e∈E

1.

2. (Sommation par paquet) Si E fini est une union
disjointe finie E =

⋃︂
i ∈I
E i (c’est à dire I fini et

E i ∩ E j = ∅ si i ≠ j ) et f : E → C alors :∑︁
e∈E

f (e) =
∑︁
i ∈I

∑︁
e∈E i

f (e) .

En particulier, on a Card (E ) =
∑︁
i ∈I
Card (E i ) .

3. (interversion de sommes finies) Si E , F sont
finis et a : E × F → C, alors :∑︁

e∈E

∑︁
f ∈F

ae , f =
∑︁

(e , f ) ∈E×F
ae , f =

∑︁
f ∈F

∑︁
e∈E

ae , f .

En particulier, on a
Card (E × F ) = Card (E )Card (F ).
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Démonstrat ion. 1. Si Card (E ) = n , E = {e1 , . . . , en } pour

une bijection e : [[1, n]] → E , on a donc
∑︁
e∈E

1 =

n∑︁
i=1

1 = n par

définition.

2. On pose j : [[1, m]] → I une bijection et

n i = Card (E j ( i ) ) On note N0 = 0, N i =
i∑︁
l=1
n l .

On a N i − N i−1 = n i , i ≥ 1 donc on a une bijection (en
composant la soustraction de N i−1 : [[N i−1 + 1, N i ]] → [[1, n i ]]
avec la bijection donnée par la définition du cardinal
[[1, n i ]] → E j ( i ) , g i : [[N i−1 + 1, N i ]] → E j ( i ) . On pose
g (k) = g i (k) , si k ∈ [[N i−1 + 1, N i ]] . Montrons que g réalise
une bijection de [[1, Nm ]] → E . En effet, par hypothèse, E
est l’union des E j ( i ) , dont tous les éléments sont atteints par
g i , donc par g qui est donc surjective. De plus, si
g (k) = g ( l ) ∈ E i , comme l’union décrivant E est disjointe, on
a k , l ∈ [[N i−1 + 1, N i ]] et g i (k) = g i ( l ) et comme g i est
injective, on déduit k = l et donc comme k , l sont arbitraires,
on déduit que g est aussi injective.
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Donc par définition de la somme sur un ensemble (au
début et aux deux dernières lignes) :∑︁

e∈E
f (e) =

Nm∑︁
k=1

f (g (k))

=

N1∑︁
k=1

f (g (k)) +
N2∑︁

k=N1+1
f (g (k)) + · · · +

Nm∑︁
k=Nm−1+1

f (g (k))

=

m∑︁
l=1

N l∑︁
k=N l−1+1

f (g (k))

=

m∑︁
l=1

N l∑︁
k=N l−1+1

f (g l (k))

=

m∑︁
l=1

∑︁
e∈E j ( l )

f (e)

=
∑︁
i ∈I

∑︁
e∈E i

f (e)

Le résultat sur le cardinal est une application du 1. et de la
sommation par paquet pour la fonction f = 1 constante :

Card (E ) =
∑︁
e∈E

1 =
∑︁
i ∈I

∑︁
e∈E i

1 =
∑︁
i ∈I
Card (E i ) .

3. Il suffit d’appliquer la sommation par paquet aux
unions disjointes

E × F = ∪e∈E {e} × F = ∪f ∈F E × {f }.
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Pour le cardinal on a par le 1 et la distributivité de la
multiplication par rapport à l’addition :

Card (E × F ) =
∑︁

(e , f ) ∈E×F
1 =

∑︁
e∈E

∑︁
f ∈F

1

=
∑︁
e∈E

Card (F ) = Card (F )
∑︁
e∈E

1

= Card (E )Card (F ) .

Définition et premières propriétés
⋆ Définition 1.4

Une famille (a i ) i ∈I de nombres réels positifs est dite
sommable si

sup
⎧⎪⎪⎨⎪⎪⎩
∑︁
j ∈J
a j : J ⊂ I , f in i

⎫⎪⎪⎬⎪⎪⎭ < ∞

et alors on note∑︁
i ∈I
a i = sup

⎧⎪⎪⎨⎪⎪⎩
∑︁
j ∈J
a j : J ⊂ I , f in i

⎫⎪⎪⎬⎪⎪⎭ .

Tout d’abord, le résultat simple suivant ramène au cas
I dénombrable, ce que l’on supposera par la suite :

Lemme 1.12

Si (a i ) i ∈I est une famille sommable, alors le support
I0 = {i ∈ I : a i ≠ 0} est au plus dénombrable.
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Démonstrat ion. Si S =
∑︁
i ∈I
a i = 0, alors I0 = ∅. Sinon si

S =
∑︁
i ∈I
a i > 0 et si In = {i ∈ I : a i ≥ S/n}, alors I0 = ∪n≥1 In

est au plus dénombrable comme union d’une suite
d’ensembles finis car Card (In ) ≤ n . En effet, si j ∈ In ,
a j ≥ S/n donc si J ⊂ In fini S ≥

∑︁
j ∈Jn

a j ≥ SCard (J)/n donc

Card (J) ≤ n et donc Card (In ) ≤ n .

On résume les propriétés générales dans l’énoncé
suivant :

Proposition 1.13

1. (critère des suites exhaustives) Si (Jn )n≥0 est
une suite exhaustive de parties finies de I , alors
la famille (a i ) i ∈I est sommable si et seulement
si la suite (

∑︁
i ∈Jn

a i )n≥0 est bornée et alors on a

∑︁
i ∈I
a i = sup

n∈N

∑︁
i ∈Jn

a i = l im
n→∞

∑︁
i ∈Jn

a i .

2. (lemme de domination) Si a i ≤ b i pour tout i et
(b i ) sommable, alors (a i ) i ∈I est sommable et
alors

∑︁
i ∈I
a i ≤

∑︁
i ∈I
b i .

3. (lemme de permutation) Si (a i ) i ∈I est sommable
et 𝜎 : I → I est une bijection, alors (a𝜎 ( i ) ) i ∈I est
sommable de même somme.
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Démonstrat ion. 1/ La famille
∑︁
i ∈Jn

a i étant inclus dans la

famille des sommes finies, il est clair qu’elle est majorée si
la famille est sommable (et on a en passant au sup la partie
≥ de l’égalité énoncée). Mais réciproquement toute famille
finie est inclus dans un certain Jn , par définition d’une suite
exhaustive, d’où la borne inverse et la réciproque.

2/ Il suffit de borner les sommes partielles finies∑︁
i ∈J
a i ≤

∑︁
i ∈J
b i et passer au sup.

3/ Pour tout J fini, 𝜎(J) est fini donc∑︁
i ∈J
a𝜎 ( i ) =

∑︁
i ∈𝜎 (J )

a i ≤
∑︁
i ∈I
a i . D’où la sommabilité et la première

inégalité en passant au sup. En considérant la bijection
réciproque 𝜎−1 on obtient de même l’autre inégalité.

Le dernier résultat généralise la commutativité des
sommes.

Corollaire 1.14

Une famille à termes positifs (an )n∈N est sommable si

et seulement si la série
∞∑︁
n=0

an est convergente.

Sommation par paquet et applications
On conclut avec les deux résultats importants, le

premier généralise l’associativité des sommes finies. On
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rappelle qu’une partition (I𝜆 )𝜆 ∈Λ de I est une famille
d’ensembles 2 à 2 disjoints d’union égale à I .

⋆ Théorème 1.15: (de sommation par paquets - Cas
Positif)

Soit (I𝜆 )𝜆 ∈Λ une partition de I . Une famille (a i ) i ∈I est
sommable si et seulement si on a à la fois les deux
propriétés suivantes :

1. pour chaque 𝜆 ∈ Λ, (a i ) i ∈I𝜆 est sommable,
disons de somme 𝜎𝜆

2. et (𝜎𝜆 )𝜆 ∈Λ est sommable.

Dans tous les cas (même en l’absence de
sommabilité), on a l’égalité :

∑︁
i ∈I
a i =

∑︁
𝜆 ∈Λ

𝜎𝜆 ≡
∑︁
𝜆 ∈Λ

⎛⎜⎝
∑︁
i ∈I𝜆

a i
⎞⎟⎠ .

Démonstrat ion. Commençons par la condition nécessaire.
Si (a i ) i ∈I est sommable alors les sommes finies d’une sous
famille (a i ) i ∈I𝜆 sont bornées par les sommes de la famille
totale donc on a la première condition de sommabilité et
𝜎𝜆 ≤

∑︁
i ∈I
a i . Plus si on a des sous ensembles finis

J1 ⊂ I𝜆 1 , . . . , Jn ⊂ I𝜆 n pour des 𝜆 j distincts, ils sont disjoints

et leur union J =

n⋃︂
k=1

Jk est un sous-ensemble fini de I donc

n∑︁
k=1

∑︁
i ∈Jk

a i =
∑︁
i ∈J
a i ≤

∑︁
i ∈I
a i
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Donc en passant successivement au sup sur les Jk fini, on
obtient :

n∑︁
k=1

𝜎𝜆 k ≤
∑︁
i ∈I
a i .

Donc la famille (𝜎𝜆 )𝜆 ∈Λ est sommable et on obtient la
première inégalité ≥ en passant au sup.

Réciproquement, pour tout J partie finie de I on définit
J𝜆 = J ∩ I𝜆 et on obtient un nombre fini de 𝜆 tel que

J =

n⋃︂
k=1

J𝜆 k . On déduit

∑︁
i ∈J
a i =

n∑︁
k=1

∑︁
i ∈Jk

a i ≤
n∑︁
k=1

𝜎𝜆 k ≤
∑︁
𝜆 ∈Λ

𝜎𝜆 .

D’où la bornitude sur J qui donne la sommabilité, et l’autre
inégalité en passant au sup.

Un cas particulier est la “version famille sommable” du
théorème de Fubini (qui se généralise à un théorème
d’intégration). Le cas positif est nommé théorème de
Fubini-Tonelli. Il correspond à la décomposition

I × J = ∪i ∈I {i } × J = ∪j ∈J I × {j }.

Il donne un résultat d’interversion des sommes.

⋆ Théorème 1.16: (de Fubini-Tonelli)

Une famille double (a i , j ) i ∈I , j ∈J à termes positifs est
sommable si et seulement si on a l’une des deux
propriétés équivalentes suivantes :



Chapitre 1. Ensembles dénombrables et
Famil les sommables 34

1. pour tout i ∈ I , (a i , j )j ∈J est sommable et la
famille des sommes (

∑︁
j ∈J
a i , j ) i ∈I est sommable

2. pour tout j ∈ J , (a i , j ) i ∈I est sommable et la
famille des sommes (

∑︁
i ∈I
a i , j )j ∈J est sommable

Dans tous les cas (même en l’absence de
sommabilité), on a l’égalité :

∑︁
( i , j ) ∈I×J

a i , j =
∑︁
i ∈I

⎛⎜⎝
∑︁
j ∈J
a i , j

⎞⎟⎠ =
∑︁
j ∈J

(︄∑︁
i ∈I
a i , j

)︄
.

Démonstrat ion. C’est une application directe du résultat
de sommation par paquets avec les partitions ci-dessus.

Exemple 1.2

Calculons la somme I =

∞∑︁
i=0

∞∑︁
j=0

1
( i + j + 1)2 .

Comme c’est une série à coefficient positifs, chaque
somme est somme d’une famille sommable, donc par
Fubini-Tonelli, on obtient une somme sur le produit :

I =
∑︁
i ∈N

∑︁
j ∈N

1
( i + j + 1)2 =

∑︁
( i , j ) ∈N2

1
( i + j + 1)2 .

Comme chaque terme de la somme ne dépend que de
n = i + j + 1, on a envie de considérer la partition de
N2 = ∪n∈N∗Λn avec Λn = {( i , j ) ∈ N2 : i + j + 1 = n}. Par le
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théorème de sommation par paquet, on a :

I =

∞∑︁
n=1

∑︁
( i , j ) ∈Λn

1
( i + j + 1)2 .

Il suffit donc de calculer
∑︁

( i , j ) ∈Λn

1
( i + j + 1)2 Mais Λn est

fini de taille n vu
Λn = {( i , n − 1 − i ) : 0 ≤ i ≤ n − 1} ≃ [[0, n − 1]] , donc∑︁
( i , j ) ∈Λn

1
( i + j + 1)2 =

Card (Λn )
n2 =

1
n . C’est le terme

d’une série de Riemann divergente, donc I = +∞ et les
familles ne sont pas sommables.

3 Familles sommables à termes
scalaires

Comme pour les séries, on se ramène au cas à valeur
positif en prenant le module. On pourrait traiter de façon
semblable le cas à valeurs vectorielles (par exemple dans
Rn ou dans ce qu’on appelera au chapitre suivant un e.v.n.
où toute suite de Cauchy converge, un e.v.n dit complet) en
prenant la norme à la place du module. On note K = R ou
K = C le corps de référence.
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⋆ Définition 1.5

Une famille (z i ) i ∈I de nombres complexes ou réels est
dite sommable si la famille ( |z i |) i ∈I est sommable. On
note ℓ 1 (I , K) l’ensemble des familles sommables
d’éléments de K indexées par I .

On note
| |z | |1 =

∑︁
i ∈I

|z i |.

Lemme 1.17

ℓ 1 (I , K) est un espace vectoriel et de plus on a pour
u , v ∈ ℓ 1 (I , K) , 𝜇, 𝜈 ∈ K :

| |𝜆u + 𝜇v | |1 ≤ |𝜆 | | |u | |1 + |𝜇 | | |v | |1 .

Démonstrat ion. On voit que c’est un sous-espace
vectoriel de l’ensemble des fonctions KI . D’abord, la famille
nulle est sommable et de plus si 𝜆 , 𝜇 ∈ K, (a i ) , (b i ) des
familles sommables, pour J fini, on a par l’inégalité
triangulaire (des nombres) :∑︁

i ∈J
|𝜆a i + 𝜇b i | ≤

∑︁
i ∈J

|𝜆 | |a i | + |𝜇 | |b i |

= |𝜆 |
∑︁
i ∈J

|a i | + |𝜇 |
∑︁
i ∈J

|b i |

≤ |𝜆 | | |a | |1 + |𝜇 | | |b | |1

donc comme la valeur est bornée, on obtient, la sommabilité
de la famille (𝜆a i + 𝜇b i ), donc ℓ 1 (I , K) est stable par
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combinaison linéaire et est donc un sous-espace vectoriel
de KI , puisqu’il contient aussi la famille nulle (0).

De plus en passant au sup sur J on obtient
| |𝜆a + 𝜇b | |1 ≤ |𝜆 | | |a | |1 + |𝜇 | | |b | |1 .

Comme d’habitude pour définir l’intégrale (ici on va
définir de même la somme), on sépare les parties positives,
négatives des parties réelles et imaginaires, pour définir la
somme. On note donc (a i )+ = max (a i , 0), (a i )− = max (−a i , 0)
de sorte que

z j = (ℜz j )+ − (ℜz j )− + i (ℑz j )+ − i (ℑz j )−

Comme (ℜz j )+ + (ℜz j )− , (ℑz j )+ + (ℑz j )− ≤ |z j | on déduit
que si (z j ) est sommable, alors
((ℜz j )+) , ((ℜz j )− , ((ℑz j )+) , ((ℑz j )−) le sont aussi par
domination.

Définition 1.6

La somme d’une famille sommable (z i ) i ∈I est la
valeur : ∑︁

j ∈I
z j :=

∑︁
j ∈I

(ℜz j )+ −
∑︁
j ∈I

(ℜz j )−

+ i
∑︁
j ∈I

(ℑz j )+ − i
∑︁
j ∈I

(ℑz j )− .
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Exercice 1.1. Vérifier que la somme d’une famille
sommable est une application linéaire. (indication :
considérer une suite exhaustive de parties finies pour
se ramener au cas des sommes finies).

On a le résultat qui résume les propriétés
élémentaires :

Proposition 1.18

1. Une famille (z i ) i ∈I est sommable si et seulement
si (ℜz i ) i ∈I et (ℑz i ) i ∈I sont sommables.

2. (z i ) i ∈I est sommable si et seulement si (z i ) i ∈I
est sommable et on a :∑︁

j ∈I
z j =

∑︁
j ∈I
z j ,

3. Pour (z i ) i ∈I sommable, on a l’inégalité
triangulaire généralisée :|︁|︁|︁|︁|︁|︁∑︁j ∈I z j

|︁|︁|︁|︁|︁|︁ ≤ ∑︁
j ∈I

|z j |.

4. (lemme de permutation) Si (z i ) i ∈I est sommable
et 𝜎 : I → I est une bijection, alors (z𝜎 ( i ) ) i ∈I est
sommable de même somme. En particulier, si∑︁

an est une série absolument convergente et
𝜎 une permutation de N alors

∑︁
a𝜎 (n ) est

absolument convergente de même somme.
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Démonstrat ion. 1/ Les bornes |ℜz i | ≤ |z i | et |ℑz i | ≤ |z i |
donnent la condition nécessaire par domination.
Réciproquement |z i | =

√︁
|ℜz i |2 + |ℑz i |2 ≤ |ℜz i | + |ℑz i | et

comme ℓ 1 est un e.v, on a vu que l’hypothèse implique
( |ℜz i | + |ℑz i |) i ∈I sommable d’où le résultat à nouveau par
domination.

2/ l’équivalence est évidente en utilisant 2 fois le 1.
L’égalité vient directement de la définition.

3/ On fixe une suite exhaustive Jn de I . D’après le
critère des suites exhaustives pour les quatre séries à
termes positives intervenant dans la somme,∑︁
j ∈I
z j = l im

n→∞

∑︁
j ∈Jn

z j ,
∑︁
j ∈I

|z j | = l im
n→∞

∑︁
j ∈Jn

|z j | donc par l’inégalité

triangulaire pour les sommes finies (et continuité du
module) |︁|︁|︁|︁|︁|︁∑︁j ∈I z j

|︁|︁|︁|︁|︁|︁ =
|︁|︁|︁|︁|︁|︁ l imn→∞

∑︁
j ∈Jn

z j

|︁|︁|︁|︁|︁|︁ = l im
n→∞

|︁|︁|︁|︁|︁|︁∑︁j ∈Jn z j
|︁|︁|︁|︁|︁|︁

≤ l im
n→∞

∑︁
j ∈Jn

|z j | =
∑︁
j ∈I

|z j |.

4/ Tout vient du cas positif, soit par la définition de
sommabilité soit par la définition de la somme en terme de
somme de familles à termes positifs. Le cas particulier vient
du fait que si la famille est indicée par N, le critère des
suites exhaustives (appliqué à la suite [[0, n]]) implique
qu’être sommable équivaut à être absolument
convergente.
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Remarque 1.7. Une série
∑︁

an telle que pour tout 𝜎
permutation de N on ait

∑︁
a𝜎 (n ) convergeant est dite

inconditionnellement convergente. Un résultat
classique qu’on trouve par exemple dans Bourbaki
Topologie Générale IV.44 [2]dit qu’une série
numérique inconditionnellement convergente est
absolument convergente. Il n’y a donc pas
d’extension possible du dernier énoncé.

On finit avec les résultats de sommation par paquets et
de Fubini. Dans les deux cas, on n’a plus d’équivalence
comme dans le cas à terme positif. On utilise alors
souvent/toujours le cas à terme positif pour montrer la
sommabilité nécessaire à appliquer le cas avec
signe/complexe.

⋆ Théorème 1.19: (de sommation par paquets - Cas
Général)

Soit (I𝜆 )𝜆 ∈Λ une partition de I . Si une famille (z i ) i ∈I est
sommable alors on a les deux propriétés suivantes :

1. pour chaque 𝜆 ∈ Λ, (z i ) i ∈I𝜆 est sommable,
disons de somme 𝜎𝜆

2. et (𝜎𝜆 )𝜆 ∈Λ est sommable.

De plus, on a l’égalité :

∑︁
i ∈I
z i =

∑︁
𝜆 ∈Λ

𝜎𝜆 ≡
∑︁
𝜆 ∈Λ

⎛⎜⎝
∑︁
i ∈I𝜆

z i
⎞⎟⎠ .
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Démonstrat ion. Comme ( |z i |) i ∈I , la sommabilité de
( |z i |) i ∈I𝜆 vient du cas positif. De plus, par l’inégalité
triangulaire des familles sommables (proposition 1.18),
|
∑︁
i ∈I𝜆

z i | ≤
∑︁
i ∈I𝜆

|z i | et le théorème de sommation par paquets

assure la sommabilité du membre de droite, donc par
comparaison, celle de (𝜎𝜆 )𝜆 ∈Λ comme voulu. L’égalité vient
du cas positif appliqué aux parties positives et négatives
des parties réelle et imaginaire.

En appliquant la sommation par paquets à la même
partition que dans le cas positif, on obtient :

⋆ Théorème 1.20: (de Fubini)

Si une famille double (z i , j ) i ∈I , j ∈J est sommable alors
on a les deux propriétés suivantes :

1. pour tout i ∈ I , (z i , j )j ∈J est sommable et la
famille des sommes (

∑︁
j ∈J
z i , j ) i ∈I est sommable

2. pour tout j ∈ J , (z i , j ) i ∈I est sommable et la
famille des sommes (

∑︁
i ∈I
z i , j )j ∈J est sommable

De plus, on a l’égalité :

∑︁
( i , j ) ∈I×J

z i , j =
∑︁
i ∈I

⎛⎜⎝
∑︁
j ∈J
z i , j

⎞⎟⎠ =
∑︁
j ∈J

(︄∑︁
i ∈I
z i , j

)︄
.
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ou C (le corps des nombres complexes). |𝜆 | est la valeur
absolue ou le module de 𝜆 ∈ K.
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1 Distance et Norme sur un
espace vectoriel

⋆ Définition 2.1

Soit X un ensemble (en général supposé non-vide).
Une distance sur X est une application
d : X × X → [0, +∞[ telle que :

i ∀x , y ∈ X , d (x , y ) = d (y , x ) (symétrie)
ii ∀x , y , z ∈ X d (x , z ) ≤ d (x , y ) + d (y , z ) (inégalité

triangulaire ou sous-additivité)
iii ∀x , y ∈ X d (x , y ) = 0 ⇐⇒ x = y (séparation)

Un couple (X , d ) est appelé espace métrique (em).

⋆ Définition 2.2

Soit E un K-e.v. Une norme sur E est une application
n : E → [0, +∞[ telle que :

i ∀x ∈ E , 𝜆 ∈ K n (𝜆x ) = |𝜆 |n (x ) (homogénéité)
ii ∀x , y ∈ E n (x + y ) ≤ n (x ) + n (y ) (inégalité

triangulaire ou sous-additivité)
iii ∀x ∈ E n (x ) = 0 ⇐⇒ x = 0 (séparation)

Souvent on note n (x ) = | |x | |, sauf dans l’exemple
E = K, n (x ) = |x |. Un couple (E , | |. | |) est appelé espace
vectoriel normé (evn).
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Exemple 2.1

Soit X ⊂ E une partie (non-vide) avec
d (x , y ) = | |x − y | |, alors (X , d ) est un espace métrique
et tout espace métrique est de cette forme.

Exemple 2.2

Si E = Rn on a trois normes classiques, si
X = (x1 , . . . , xn ) :

| |X | |1 =

n∑︁
i=1

|x i |

| |X | |2 =

⌜⃓⎷ n∑︁
i=1

|x i |2 (norme eucl idienne)

| |X | |∞ = max
i=1...n

|x i |

Exercice 2.1. Montrer que ce sont des normes (cf.
TD de L2).

⋆ Exemple 2.3

Si E = C 0 ( [a , b] , R) l’ensemble des fonctions
continues sur [a , b] , on a trois normes :

| | f | |1 =

∫ b

a
| f ( t ) |dt

| | f | |2 =

√︄∫ b

a
| f ( t ) |2dt
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| | f | |∞ = sup
t ∈[a ,b ]

| f ( t ) |

Cette dernière norme est la norme de la convergence
uniforme (la convergence pour | |. | |∞ coïncidera avec
la convergence uniforme)

Le lemme 1.17 se reformule en disant :

Lemme 2.1

(ℓ 1 (I , K) , | | · | |1) est un espace vectoriel normé.

Démonstrat ion. | | · | |1 vérifie l’inégalité triangulaire (cas
𝜆 = 𝜇 = 1 du lemme 1.17). De plus | | · | |1 est positif. Comme
|a i | ≤ | |a | |1 , a i = 0 si | |a | |1 = 0, pour tout i donc a = 0 ce qui
donne l’axiome de séparation. Enfin

∑︁
i ∈J

|𝜆a i | = |𝜆 |
∑︁
i ∈J

|a i |

donc en passant au sup : |𝜆 | | |a | |1 = | |𝜆a | |1 (d’où
l’homogénéité).

Exemple 2.4

Si Z = X × Y avec (X , dX ), (Y , dY ) des espaces
métriques. On définit :

dZ ((x , y ) , (x ′ , y ′)) = max (dX (x , x ′) , dY (y , y ′)) .

C’est une distance sur Z (exo) que l’on utilisera dans
cette situation ultérieurement (distance produit).
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Exemple 2.5

R = R ∪ {−∞, ∞} est un espace métrique avec la
distance

dR (x , y ) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min (1, |x − y |) si x , y ∈ R

0 si x = y ∈ {−∞, +∞}
1 sinon

Proposition 2.2

(Inégalité triangulaire inverse) Soit (X , d ) un espace
métrique.

∀x , y , z ∈ X
|︁|︁|︁ d (x , z ) − d (y , z )

|︁|︁|︁ ≤ d (x , y ) .

Démonstrat ion. Cas d (x , z ) ≥ d (y , z ) : Comme
d (x , z ) ≤ d (x , y ) + d (y , z ) par l’inégalité triangulaire, on en
déduit

|︁|︁|︁ d (x , z ) − d (y , z )
|︁|︁|︁ = d (x , z ) − d (y , z ) ≤ d (x , y ) .

Dans le cas d (y , z ) ≥ d (x , z ), on échange x et y par
symétrie.
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2 Métriques équivalentes
⋆ Définition 2.3

Soit X un ensemble. Deux distances d1 et d2 sur X
sont dites équivalentes si

∃c , C > 0,∀x , y ∈ X ,

cd1 (x , y ) ≤ d2 (x , y ) ≤ Cd1 (x , y ) .

On note alors d1 ∼ d2 . Des normes sont équivalentes
si les distances induites le sont.

Remarque 2.1. L’équivalence des distances est une
relation d’équivalence, c’est à dire qu’elle est
réflexive (d1 ∼ d1 ), symétrique (d1 ∼ d2 ⇒ d2 ∼ d1 ) et
transitive (d1 ∼ d2 , d2 ∼ d3 ⇒ d1 ∼ d3 ). Si deux normes
sont équivalentes les notions d’analyses (limite,
continuité, ...) sont les mêmes pour les deux normes.

Exemple 2.6

Dans Rn , | |. | |1 , | |. | |2 , | |. | |∞ sont équivalentes (cf. TD de
L2). On verra plus tard qu’en dimension finie toutes
les normes sont équivalentes.
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3 Boules dans un espace
métrique

⋆ Définition 2.4

Soient a ∈ X et r ∈ [0, ∞[.
On appelle boule ouverte de centre a et de rayon r
de X la partie :

B (a , r ) = {x ∈ X , | d (x , a) < r }.

et boule fermée de centre a et de rayon r de X la
partie :

BF (a , r ) = {x ∈ X , | d (x , a) ≤ r }.

On appelle sphère de centre a et de rayon r de X la
partie :

S (a , r ) = {x ∈ X , | d (x , a) = r }.

Dans le cas r = 0, B (x , 0) = ∅, BF (x , 0) = {x }.

Exercice 2.2. Dessiner les boules de R2 pour
| |. | |1 , | |. | |2 , | |. | |∞
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Parties bornées
Définition 2.5

Un ensemble A ⊂ X est dit borné si
∃M ∈ [0, ∞[, a ∈ X∀x ∈ A , d (x , a) ≤ M , c’est à dire s’il
est contenu dans une boule.

4 Suites dans un espace
métrique

On rappelle qu’une suite de E est une application
u : N → E notée (un )n≥0 .

Convergence
Définition 2.6: (Convergence)

Soit (un ) une suite d’un espace métrique (X , d ). On
dit que un converge vers l ∈ X (et on note
l = l imn→∞ un ou un →n→∞ l ) si la suite numérique
d (un , l ) converge vers 0, c’est-à-dire :

∀𝜖 > 0, ∃n0 ∈ N, ∀n ≥ n0 , d (un , l ) ≤ 𝜖 .

Remarque 2.2. Ceci équivaut à
∀𝜖 > 0, ∃n0 ∈ N, ∀n ≥ n0 , un ∈ B ( l , 𝜖 ) . Comme dans R

on a unicité de la limite (justifiant la notation). En
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effet si on a deux limites l1 , l2 pour n grand
un ∈ B ( l1 , 𝜖 ) ∩ B ( l2 , 𝜖 ) donc par inégalité triangulaire
d ( l1 , l2) ≤ d ( l1 , un ) + d (un , l2) ≤ 2𝜖 Comme 𝜖 > 0
arbitraire d ( l1 , l2) = 0, soit par l’axiome de séparation
l1 = l2 .

Proposition 2.3

(i) Si un → u , alors pour tout x , d (un , x ) → d (u , x ).
(ii) Toute suite convergente est bornée (réciproque

fausse).
(iii) Si E est un evn un → u , vn → v alors pour toute

suite 𝜆 n ∈ K, tel que 𝜆 n → 𝜆 on a
𝜆 nun + vn → 𝜆u + v .

Démonstrat ion. (i) Par l’inégalité triangulaire inverse
|d (un , x ) − d (u , x ) | ≤ d (un , u)

(ii) Par (i) et le cas réel.
(iii) Vu 𝜆 nun + vn − (𝜆u + v ) = 𝜆 n (un − u) + (vn − v ) + (𝜆 n − 𝜆 )u ,

homogénéité et inégalité triangulaire implique :

| |𝜆 nun + vn − (𝜆u + v ) | |

≤ |𝜆 n | | |un − u | | + | |vn − v | | + |𝜆 n − 𝜆 | | |u | | → 0.
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Suite extraite, valeur d’adhérence
Définition 2.7

Soit (un ) une suite de X on appelle suite extraite ou
sous-suite une suite de la forme vn = u𝜙(n ) , pour
𝜙 : N → N une application strictement croissante

Définition 2.8

On appelle valeur d’adhérence d’une suite (un ) toute
limite d’une suite extraite convergente.

Proposition 2.4

Toute suite extraite d’une suite convergente converge
vers la même limite. (Autrement dit, toute suite
convergente n’a qu’une seule valeur d’adhérence, sa
limite.)

Démonstrat ion. Supposons un → l et si vn une suite
extraite, d (vn , l ) est extraite de d (un , l ) ( le résultat est donc
une conséquence du cas réel).
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5 Suite de Cauchy, Complétude
Définition 2.9

Une suite (un ) de X est dite de Cauchy si :

∀𝜖 > 0,∃N ∈ N, ∀(p , q) ∈ N2 , p ≥ N et q ≥ N

⇒ d (up , uq ) ≤ 𝜖 .

La proposition suivante est similaire au cas réel (cf.
cours de L2).

Proposition 2.5

Toute suite convergente est de Cauchy. Toute suite
de Cauchy est bornée. Toute suite de Cauchy
possédant une valeur d’adhérence est convergente.

Définition 2.10

Un espace métrique X est dit complet si toute suite
de Cauchy de X converge dans X . Si un evn E est
complet on dit que c’est un espace de Banach.

On a vu en première année que K est complet (mais
pas Q). Vous avez vu en L2 que (Rn , | | · | |2) est complet. On
verra que tout evn de dimension finie est complet.
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⋆ Proposition 2.6

Un evn E est complet si et seulement si toute série
absolument convergente est convergente.

Démonstrat ion. Si E est complet et (x i ) est absolument

convergente, la suite des sommes partielles Sp =

p∑︁
i=1
x i

vérifie, pour q > p , | |Sp − Sq | | ≤
q−1∑︁
k=p

| |x i | | donc comme
q∑︁
k=1

| |x i | |

est convergente donc de Cauchy, on déduit que (Sp ) est de
Cauchy donc converge.

Réciproquement, si toute suite absolument
convergente converge, soit (x i ) une suite de Cauchy. Il suffit
de montrer qu’elle admet une sous-suite convergente pour
voir qu’elle converge. Par la propriété de Cauchy, on trouve
par induction | |xnk+1 | | avec | |xnk+1 − xnk | | ≤ 1

2k de sorte que la
série télescopique

∑︁
xnk+1 − xnk est absolument convergente

donc converge, et donc la sous-suite (xnk ) converge.

Exemple 2.7

Dans le cadre de l’exemple 2.3, vous avez vu en L2
que toute série normalement convergente de
(C 0 ( [a , b] , R) , | |. | |∞) converge uniformément. D’après
le résultat précédent, c’est équivalent à dire que
(C 0 ( [a , b] , R) , | |. | |∞) est un espace de Banach (aussi
vu directement en L2 en analyse 2 Prop 7.6). Par
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contre ce n’est pas le cas de (C 0 ( [a , b] , R) , | |. | | i ),
i = 1, 2. On verra qu’ils sont denses dans les espaces
de Lebesgue L i ( [a , b] , R) qui seront eux complets, et
sont les constructions de base de la théorie de
l’intégration de Lebesgue.

Proposition 2.7

Si X , Y sont des espaces métriques complets. Alors
X × Y (munie de la distance produit de l’exemple 2.4)
est complet.

Démonstrat ion. Si (un , vn ) est de Cauchy dans X × Y , de
même, (un ) est de Cauchy dans X , et (vn ) dans Y , donc par
complétude (un ) converge vers u et (vn ) vers v . En
conséquence (un , vn ) converge vers (u , v ) vu
d ((un , vn ) , (u , v )) = max (d (un , u) , d (vn , v )) → 0.

Théorème de Point fixe
⋆ Théorème 2.8: (du point fixe de Banach)

Soit (X , d ) un espace métrique complet, et f : X → X
une application telle que

∃k < 1 ∀x ≠ y ∈ X d ( f (x ) , f (y )) ≤ kd (x , y ) .

Alors f admet un unique point fixe.
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Démonstrat ion. Soit x0 ∈ X on définit par récurrence
xn = f (xn−1) = f ◦n (x0). Donc

d (xn+1 , xn ) = d ( f (xn ) , f (xn−1)) ≤ kd (xn , xn−1)

≤ k nd (x1 , x0) . (2.1)

Montrons que xn est bornée en voyant par récurrence

que d (xn , x0) ≤
n−1∑︁
i=0

k i d (x1 , x0). C’est évident pour n = 1. Et

par l’inégalité triangulaire et (2.1) :

d (xn+1 , x0) ≤ d (xn+1 , xn ) + d (xn , x0)

≤ k nd (x1 , x0) +
n−1∑︁
i=0

k i d (x1 , x0)

=

n∑︁
i=0
k i d (x1 , x0)

Or on reconnaît une série géométrique convergente, d’où la
borne : d (xn+1 , x0) ≤ 1

1−k d (x1 , x0).

Montrons que xn est de Cauchy. En effet, pour m > n ,

d (xn , xm ) = d ( f ◦n (x0) , f ◦n (xm−n ))

≤ k nd (x0 , xm−n )

≤ k n 1
1 − k d (x1 , x0)

Comme k n 1
1−k → 0, on déduit que pour N grand et m > n ≥ N

d (xn , xm ) est arbitrairement petit, donc xn est de Cauchy.
Par complétude de X , on obtient donc que xn converge,
disons vers x . Maintenant, en passant à la limite dans (2.1),
on obtient d ( f (x ) , x ) = l imn d ( f (xn ) , xn ) ≤



Chapitre 2. Introduction à la Topologie 56

l im supn d ( f (xn ) , xn ) ≤ l im supn k nd (x1 , x0) = 0 donc par
séparation f (x ) = x et x est le point fixe cherché.

6 Ouverts dans un espace
métrique

Soit (X , d ) un espace métrique.

⋆ Définition 2.11

Une partie O ⊂ X est un ouvert (ou une partie
ouverte) si

∀x ∈ O , ∃r > 0, B (x , r ) ⊂ O .

Exemples d’ouverts et propriétés
X , ∅ sont des ouverts de X . [a , b] , [a , b [ ne sont pas

ouverts dans R mais ]a , b [ l’est.

Proposition 2.9

Les boules ouvertes sont ouvertes.

On remarquera que le mot ouvert a deux sens dans
"boules ouvertes" et "parties ouvertes" mais qu’ils sont
cohérents grâce à la proposition (les boules fermées ne sont
pas des ouverts, cf. TD).
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Démonstrat ion. Soit a ∈ X , r > 0 montrons que B (a , r ) est
un ouvert (B (a , 0) est vide donc ouvert). Soit x ∈ B (a , r ),
r − d (x , a) > 0, il suffit donc de montrer que :

B (x , r − d (x , a)) ⊂ B (a , r ) .

C’est une conséquence de l’inégalité triangulaire. En
effet, si y ∈ B (x , r − d (x , a)), alors
d (y , a) ≤ d (y , x ) + d (x , a) < (r − d (x , a)) + d (x , a) = r , donc
y ∈ B (a , r ).

⋆ Proposition 2.10

1. La partie vide ∅ et X sont des ouverts.
2. la réunion d’une famille d’ouverts est ouverte.
3. l’intersection d’une famille finie d’ouverts est

ouverte.

Remarque 2.3. On appelle topologie une famille de
parties d’un ensemble, qui, comme la famille des
ouverts d’un espace métrique, vérifie ces trois
propriétés. La famille des ouverts de X est donc
appelée topologie (métrique) de X .
∩n∈NB (a , 1/n) = {a} qui n’est pas ouvert dans X
montre que l’hypothèse "finie" est cruciale dans 3.

Démonstrat ion. 1. évident.
2. Soit (O i ) i ∈I une famille d’ouverts. On peut supposer I

non vide (sinon l’union vide étant vide on est ramené à
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1). Soit x ∈ O = ∪i ∈IO i , donc il existe j ∈ I , x ∈ O j .
Comme O j est ouvert il existe r > 0, B (x , r ) ⊂ O j ⊂ O .
Donc O est ouvert.

3. Soit O1 , . . . , On une famille finie d’ouverts. Soit
x ∈ O = O1 ∩ · · · ∩ On . Comme x ∈ O i , et O i ouvert, il
existe r i > 0, B (x , r i ) ⊂ O i . Soit r = min i=1...n r i > 0. On
déduit de la définition que B (x , r ) ⊂ B (x , r i ) ⊂ O i donc
B (x , r ) ⊂ O , ce qui montre que O est ouvert.

Exemple 2.8

Soit O = {(x , y ) , x > 0}. Montrons que c’est un ouvert
de R2 pour la norme | |. | |∞ . En effet

O =
⋃︂

(x ,y ) ∈O
]0, 2x [×]y − x , y + x [

=
⋃︂

(x ,y ) ∈O
B | | . | |∞ ((x , y ) , x ) ,

est ouvert comme union d’ouverts.

⋆ Proposition 2.11: (Ouverts pour la métrique in-
duite)

Soit A ⊂ (X , d ) avec la métrique induite, O est un
ouvert de A, si et seulement si il existe un ouvert U de
X tel que O = U ∩ A.
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Démonstrat ion. On suppose O ouvert de A. Pour chaque
x ∈ O , on fixe rx > 0 tel que BA (x , rx ) ⊂ O . On pose alors

U =
⋃︂
x ∈O

BX (x , rx )

qui est un ouvert de X par union de boules ouvertes. Or
O ⊂ U ∩ A car rx > 0 donc pour tout x ∈ O , x ∈ BX (x , rx ) ⊂ U .
Et U ∩ A =

⋃︂
x ∈O

BX (x , rx ) ∩ A =
⋃︂
x ∈O

BA (x , rx ) ⊂ O . Donc

U ∩ A = O .

Réciproquement, comme U est ouvert soit x ∈ O ⊂ U , il
existe r > 0, BX (x , r ) ⊂ U donc
BA (x , r ) = BX (x , r ) ∩ A ⊂ U ∩ A = O donc O est ouvert dans
A.

Intérieur
Définition 2.12

Soit A ⊂ X , on dit que x est intérieur à A (ou A est un
voisinage de x) si ∃r > 0, B (x , r ) ⊂ A.
On note Int (A) ou Å l’ensemble des points intérieurs
à A.

⋆ Proposition 2.12

Int (A) est le plus grand ouvert contenu dans A.
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Démonstrat ion. 1. Int (A) contient tous les ouverts
inclus dans A.
Soit U un ouvert contenu dans A. Soit x ∈ U , alors
comme U est ouvert, ∃r > 0, B (x , r ) ⊂ U ⊂ A, donc x
est intérieur à A. Ainsi U ⊂ Int (A)

2. Int (A) est un ouvert. Soit x ∈ Int (A). Soit donc r > 0
tel que B (x , r ) ⊂ A. Comme B (x , r ) est ouvert, tout
y ∈ B (x , r ) est intérieur à B (x , r ) donc intérieur à A. En
bilan, ∀x ∈ Int (A) , ∃r > 0, B (x , r ) ⊂ Int (A), ce qui
conclut.

Corollaire 2.13: (exo, cf TD)

1. A ouvert si et seulement si A = Int (A).
2. A ⊂ B ⇒ Int (A) ⊂ Int (B)
3. Int (A) ∪ Int (B) ⊂ Int (A ∪ B)
4. Int (A) ∩ Int (B) = Int (A ∩ B)

Exemple 2.9

Soit F = {(x , y ) , x ≥ 0}. Montrons que
Int (F ) = O := {(x , y ) , x > 0}. On a vu à l’exemple 2.8
que O est ouvert, donc comme O ⊂ F , on a
O ⊂ Int (F ). Il reste à voir que
Int (F ) ∩ {(x , y ) , x = 0} = ∅ (car alors
Int (F ) ⊂ F − {(x , y ) , x = 0} = O ). Mais soit
(−𝜖 , y ) ∈ B | | . | |∞ ((0, y ) , 𝜖 ) ∩ F c pour tout 𝜖 > 0, donc
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B | | . | |∞ ((0, y ) , 𝜖 ) ⊄ F donc (0, y ) n’est pas intérieur à F ,
ce qu’il fallait démontrer.

7 Fermés dans un espace
métrique.

Soit (X , d ) un espace métrique.

Rappel 2.4. Soit A ⊂ X , on note Ac = {x ∈ X | x ∉ A}
le complémentaire de A. On rappelle que
∅c = X , X c = ∅, (Ac )c = A, A ∪ Ac = X , A ∩ Ac = ∅. Les
lois de De Morgan impliquent que pour une famille
(A i ) i ∈I (︄⋃︂

i ∈I
A i

)︄ c
=

⋂︂
i ∈I
Aci ,(︄⋂︂

i ∈I
A i

)︄ c
=

⋃︂
i ∈I
Aci .

Définition 2.13

Soit F ⊂ X . On dit que F est un fermé de X si F c est
un ouvert de X .

Le résultat suivant est obtenu en passant au
complémentaire le résultat sur les ouverts.
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⋆ Proposition 2.14

1. La partie vide ∅ et X sont des fermés.
2. l’intersection d’une famille de fermés est

fermée.
3. l’union d’une famille finie de fermés est fermée.

⋆ Proposition 2.15: (Caractérisation séquentielle
des fermés)

Une partie F d’un espace métrique X est fermée si et
seulement si toute suite convergente (xn ) d’éléments
de F a sa limite dans F .

Démonstrat ion. Supposons F fermé. Soit (xn ) une suite
d’éléments de F , convergente vers x . Soit y ∈ F c , comme
F c est ouvert il existe 𝜖 > 0 B (y , 𝜖 ) ⊂ F c , d’où xn ∉ B (y , 𝜖 )
Donc d (xn , y ) ≥ 𝜖 . En passant à la limite on déduit

d (x , y ) ≥ | d (xn , x ) − d (xn , y ) |

≥ 𝜖 − d (xn , x ) →n→∞ 𝜖 > 0,

Donc d (x , y ) ≥ 𝜖 donc x ≠ y . Comme y était arbitraire dans
F c , x ∈ F .

Réciproquement, supposons que F n’est pas fermé et
montrons que la seconde caractérisation est fausse. Soit
x ∈ F c montrant que F c n’est pas ouvert, donc pour tout
n ∈ N, B (x , 1/n) ∩ F ≠ ∅. Soit xn ∈ B (x , 1/n) ∩ F
d (xn , x ) ≤ 1/n →n→∞ 0, donc (xn ) est une suite d’éléments
de F qui converge vers x ∈ F c .
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Exemple 2.10

Montrons avec la caractérisation séquentielle que
A = {(x , y ) , x > 0, y > 0} n’est pas fermé pour la norme
| |. | |∞. En effet A ∋ (1/n , 1/n) → (0, 0) ∉ A, ce qui
contredirait l’hypothèse que A fermé. Montrons de
même que B = {(x , y ) , x ≥ 0, y ≥ 0} est fermé. En
effet, Soit (xn , yn ) ∈ B tel que (xn , yn ) → (x , y ) on a
xn → x , yn → y donc comme xn ≥ 0, on déduit x ≥ 0,
et de même y ≥ 0 donc (x , y ) ∈ B . Ainsi, comme toute
limite de suite de B est dans B , on déduit que B est
fermé.

Vous avez vu en L2 le résultat suivant :

Proposition 2.16: (Relations Fermé-Complet)

Soit E un espace métrique.

1. Si C ⊂ E est complet alors il est fermé.
2. Si C ⊂ E est complet et F ⊂ C est un fermé de

E , alors F est complet.

Démonstrat ion. 1. Si C ⊂ E est complet alors si on
considère une suite (xn ) convergente vers x dans E ,
elle est de Cauchy, donc converge dans C , donc x ∈ C
par unicité de la limite.

2. Si C ⊂ E est complet et F ⊂ C . Soit xn une suite de
Cauchy de F , elle converge dans C , donc comme F
est fermé, la limite est dans F , donc toute suite de
Cauchy de F converge dans F .
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En passant au complémentaire la proposition 2.11, on
obtient :

Proposition 2.17: (Fermés pour la métrique induite)

Soit A ⊂ (X , d ) avec la métrique induite, F est un
fermé de A, si et seulement si il existe un fermé C de
X tel que F = C ∩ A.

Adhérence
Définition 2.14

Soit A ⊂ X . Un point x ∈ X est dit adhérent à A si
∀𝜖 > 0B (x , 𝜖 ) ∩ A ≠ ∅.
On note A (ou Adh (A)) l’ensemble des points
adhérents à A.

Exemple 2.11

X = X , ∅ = ∅, A ⊂ A. Si r > 0, dans un e.v.n. E , on a
B (a , r ) = BF (a , r ). Si A = {xn }n∈N les valeurs
d’adhérence de la suite (xn ) sont dans A qui est
l’union de l’ensemble des valeurs d’adhérence et de A
(exo).



Chapitre 2. Introduction à la Topologie 65

Proposition 2.18

(Adh (A))c = Int (Ac ) .

(Int (B))c = Adh (B c ) .

Démonstrat ion. Un point x ∈ X n’appartient pas à Adh (A)
si et seulement si
∃𝜖 > 0, B (x , 𝜖 ) ∩ A = ∅ ⇐⇒ ∃𝜖 > 0, B (x , 𝜖 ) ⊂ Ac . C’est par
définition équivalent à dire que x est un point adhérent à
Ac .En appliquant le premier résultat à A = B c , on en déduit
le second.

On en déduit toutes les propriétés en passant au
complémentaire celles de l’intérieur.

Corollaire 2.19

1. A est le plus petit fermé contenant A.
2. A fermé si et seulement si A = A.
3. A ⊂ B ⇒ A ⊂ B
4. A ∩ B ⊃ A ∩ B
5. A ∪ B = A ∪ B

Démonstrat ion. 1. A est fermé vu que son complémentaire
est l’ouvert Int (Ac ). Si F est un fermé contenant A, F c est
un ouvert contenu dans Ac donc dans Int (Ac ) le plus grand
ouvert contenant Ac . En passant au complémentaire, F ⊃ A.
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Les résultats 2.3.4.5 sont analogues, par passage au
complémentaire, de résultats sur l’intérieur.

⋆ Proposition 2.20: (Caractérisation séquentielle
de l’adhérence)

x ∈ A si et seulement si il existe une suite (an )
d’éléments de A vérifiant an → x .

Démonstrat ion. Si x est adhérent à A pour tout entier n
B (x , 1/n) ∩ A est non vide donc contient un élément an . La
suite (an ) ∈ AN converge vers x vu d (an , x ) ≤ 1/n → 0. La
réciproque vient de la caractérisation séquentielle des
fermés vu A fermé.

⋆ Exemple 2.12

Montrons que si A = {(x , y ) , x > 0, y > 0} alors
A = B = {(x , y ) , x ≥ 0, y ≥ 0}. On a vu à l’exemple 2.10
que B est fermé, donc comme A ⊂ B , on en déduit
A ⊂ B
Il reste à montrer que
B − A = {(x , y ) , x = 0, y ≥ 0 ou y = 0, x ≥ 0} ⊂ A. Or
(0, y ) = l imn→∞ (1/n , y + 1/n) et si y ≥ 0,
(1/n , y + 1/n) ∈ A, donc (0, y ) ∈ A. De même
(x , 0) = l imn→∞ (x + 1/n , 1/n) ∈ A si x ≥ 0.
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Densité, Frontière
Définition 2.15

Une partie A est dite dense dans X si A = X .

Exemple 2.13

Q et Qc sont denses dans R.

Définition 2.16

Un point x ∈ X est dit point frontière d’une partie A si
pour tout r > 0, B (x , r ) est d’intersection non vide
avec A et Ac . On note Fr (A) l’ensemble des points
frontières de A.

Remarque 2.5. D’après la définition,
Fr (A) = Fr (Ac ) = A ∩ Ac est un fermé.

Exercice 2.3. Montrer que Int (Ac ) , Fr(A) , Int (A)
forment une partition de X (i.e. sont disjoints deux à
deux et leur union est X ).

8 Fonctions continues

Définitions équivalentes
On considère (X , dX = d ) et (Y , dY = d ) deux espaces

métriques.
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⋆ Définition 2.17

Soient A ⊂ X , Y des espaces métriques et f : A → Y .

1. Soit a ∈ A, f est dit continue en a si
l imx→a f (x ) = f (a), soit

∀𝜖 > 0, ∃𝛿 > 0, ∀x ∈ A

dX (x , a) < 𝛿 ⇒ dY ( f (x ) , f (a)) < 𝜖 .

2. f est continue sur A si f est continue en tout
point de A. Autrement dit,

∀a ∈ A , ∀𝜖 > 0, ∃𝛿 > 0,

∀x ∈ AdX (x , a) < 𝛿 ⇒ dY ( f (x ) , f (a)) < 𝜖 .

Remarque : 𝛿 = 𝛿(a , 𝜖 ) dépend à la fois de 𝜖 et de a .
Vous avez vu en L2, le résultat suivant.

⋆ Proposition 2.21: (Caractérisation séquentielle
de la continuité)

Soit f : X → Y . L’application f est continue en x ∈ X si
et seulement si pour toute suite (xn ) d’éléments de X :
si xn converge vers x , alors f (xn ) converge vers f (x ).

Démonstrat ion. Supposons que f tend vers l = f (x ) en x .
Soit 𝜖 > 0 il existe 𝜂 > 0 tel que f (B (x , 𝜂)) ⊂ B ( l , 𝜖 ). Vu que
xn → a il existe N , tel que ∀n ≥ N , d (xn , a) ≤ 𝜂 donc
∀n ≥ N , d ( f (xn ) , l ) ≤ 𝜖 . Ceci indique que f (xn ) → l .
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Réciproquement, supposons par contraposition, qu’il
existe 𝜖 > 0 tel que pour tout 𝜂 > 0 f (B (x , 𝜂)) ∩ B ( l , 𝜖 )c ≠ ∅.
Donc, en prenant, 𝜂 = 1/n , on obtient xn ∈ B (x , 1/n), tel que
d ( f (xn ) , l ) ≥ 𝜖 . Pour tout n , donc xn → a et f (xn ) ne
converge pas vers l comme voulu.

⋆ Proposition 2.22: (Caractérisation topologique
de la continuité)

Soit f : X → Y . Les assertions suivantes sont
équivalentes :

1. f est continue sur X .
2. Pour tout ouvert O de Y , l’image inverse f −1 (O )

est ouverte dans X .
3. Pour tout fermé F de Y , l’image inverse f −1 (F )

est fermée dans X .

Démonstrat ion. 2. ⇐⇒ 3. vient de ( f −1 (B))c = ( f −1 (B c )) et
de la relation fermés/ouverts.

1. ⇒ 2. Soit O un ouvert de Y et x ∈ O , il existe et on
choisit 𝜖 (x ) > 0 tel que B (x , 𝜖 (x )) ⊂ O . Par continuité de f ,
soit y ∈ f −1 (O ), f (y ) = x ∈ O , il existe 𝛿(y ) > 0 tel que
f (B (y , 𝛿(y ))) ⊂ B (x , 𝜖 ( f (y ))) ⊂ O . Donc B (y , 𝛿(y )) ⊂ f −1 (O )
et comme y est arbitraire, f −1 (O ) est ouvert.

2. ⇒ 1. Soit a ∈ A. Montrons que l imx→a f (x ) = f (a).
Soit 𝜖 > 0. Par 1. V = f −1 (B ( f (a) , 𝜖 )) est un ouvert X . Or
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a ∈ V donc ∃𝛿 > 0 tel que B (a , 𝛿) ⊂ V . En conséquence

f (B (a , 𝛿)) ⊂ f (V ) = f ( f −1 (B ( f (a) , 𝜖 ))) ⊂ B ( f (a) , 𝜖 ) ,

ce qui conclut.

Corollaire 2.23: (Stabilité par composition de la
continuité)

Si f : X → Y et g : Y → Z sont continues, alors
g ◦ f : X → Z est continue.

Démonstrat ion. Pour tout ouvert U de Z , g−1 (U ) est ouvert
de Y par coninuité de g , puis f −1 (g−1 (U )) est ouvert par
coninuité de f , mais f −1 (g−1 (U )) = (g ◦ f )−1 (U ). Comme c’est
vrai pour tout ouvert U , on déduit de nouveau du théorème
précédent que g ◦ f est continue.

Exemple 2.14

1. f : X → R définit par f (x ) = d (x , z ) est continue
sur E car |d (x , z ) − d (x0 , z ) | ≤ d (x , x0) (inégalité
triangulaire inverse).

2. Soit 0 ≤ p ≤ n = r + s, p : Rn → Rs définie par si
x = (y , z ) ∈ Rn = Rr × Rs , p (x ) = z . On munit Rn et
Rs des normes | |. | |1 , on voit | |p (x ) | |1 ≤ ||x | |1 ,
donc comme p est linéaire, p est continue car
| |p (x ) − p (y ) | |1 = | |p (x − y ) | |1 ≤ ||x − y | |1 .
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Remarque 2.6. Il résulte des théorèmes sur les
limites que les opérations algébriques usuelles
(somme, produit, composition) préservent la
continuité. En particulier si P est une fonction
polynomiale P : Rn → R c’est à dire de la forme
P (x ) =

∑︁
f in ie

a i1 , . . . , in x
i1
1 . . . x inn est continue comme

somme et produits des projections (x1 , . . . , xn ) ↦→ x i .

⋆ Théorème 2.24: (de prolongement des identités)

Si f , g : (X , d ) → (Y , d ) sont deux applications
continues et D ⊂ X est dense. Si f et g sont égales
sur D , alors elles sont égales (sur tout X ).

Démonstrat ion. Soit x ∈ X , on sait par caractérisation
séquentielle de l’adhérence qu’il existe an ∈ D avec an → x .
Par continuité de f , g en x , et caractérisation séquentielle
de la continuité : f (an ) → f (x ) , g (an ) → g (x ). Mais on sait
que f (an ) = g (an ) par hypothèse, donc par unicité de la
limite dans Y , f (x ) = g (x ). Comme x est arbitraire, on a
f = g .
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Homéomorphismes, Continuité
uniforme, Lipschitzianité

Définition 2.18

Une application f : X → Y est dite un
homéomorphisme (ou une application bicontinue) si
elle est bijective et si f : X → Y et f −1 : Y → X sont
continues.

⋆ Définition 2.19

Une application f : X → Y est uniformément
continue si :

∀𝜖 > 0, ∃𝛿 > 0 :(∀(x , x ′) ∈ X 2 , d (x , x ′) ≤ 𝛿)

⇒ d ( f (x ) , f (x ′)) ≤ 𝜖 .

Une application f : X → Y est K-lipschitzienne avec
K ∈ [0, +∞[ si :

∀(x , y ) ∈ X 2 , d ( f (x ) , f (y )) ≤ Kd (x , y ) .

Remarque : dans la continuité uniforme, 𝛿 = 𝛿(𝜖 ) ne
dépend PAS de x , contrairement au cas de la continuité.

Proposition 2.25

Une application uniformément continue est continue.
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Proposition 2.26

Un application K-lipschitzienne est uniformément
continue.

Démonstrat ion. Pour 𝜖 > 0 dans la définition il suffit de
prendre 𝛿 = 𝜖/K .

Exemple 2.15

f : R+ → R f (x ) =
√
x est uniformément continue mais

pas lipschitzienne (cf TD.). Toute application
uniformément continue est continue mais la
réciproque est fausse : g : R → R g (x ) = x 2 n’est pas
uniformément continue sur R (cf TD.).
x ↦→ d (x , z ) est 1-lipschitzienne X → R, (x , y ) ↦→ x + y
est 2-lipschitzienne E × E → E .

Le résultat suivant ne doit pas être confondu avec le
Théorème 2.24qui ne donne que l’unicité d’un prolongement
mais pas son existence.

⋆ Théorème 2.27: (de prolongement des applica-
tions uniformément continues)

Si f : (D , d ) → (Y , d ) est une application
uniformément continue, D ⊂ (X , d ) est dense et
(Y , d ) est complet. Alors f admet un unique
prolongement continue g : (X , d ) → (Y , d ) et celui-ci
est uniformément continue.
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Démonstrat ion. L’unicité vient du Théorème 2.24.

Soit x ∈ X , et par densité xn ∈ D , xn → x . Comme f est
uniformément continue soit 𝜖 > 0 et 𝛿 > 0 tel que
dX (x , y ) < 𝛿 ⇒ dY ( f (x ) , f (y ) ≤ 𝜖 . Si on prend N tel que
d (xn , xm ) < 𝛿, pour n , m ≥ N , on voit que
dY ( f (xn ) , f (xm )) ≤ 𝜖 , donc comme 𝜖 est arbitraire, ( f (xn )) est
de Cauchy. Donc ( f (xn )) converge vers z ∈ Y par
complétude.

Soit yn → x une autre telle suite, alors
d ( f (yn ) , z ) ≤ d ( f (xn ) , f (yn )) + d ( f (xn ) , z ) → 0, car
d ( f (xn ) , f (yn )) ≤ 𝜖 dès que d (xn , yn ) ≤ 𝛿et on voit donc que
d (xn , yn ) → 0 implique que d ( f (xn ) , f (yn )) → 0. Donc la
limite z ne dépend pas de la suite choisie. On pose g (x ) = z .

En particulier, g étend f (en considérant la suite
constante). Soit z ∈ X avec d (x , z ) < 𝛿 et zn → z alors pour
n assez grand d (xn , zn ) < 𝛿 donc dY ( f (xn ) , f (zn ) ≤ 𝜖 et on
déduit en passant à la limite dY (g (x ) , g (z )) ≤ 𝜖 . Donc g est
uniformément continue (avec même constantes que f ).

Fonctions continues bornées
Exemple 2.16

Soit X un espace métrique, F un e.v.n. et Cb (X , F )
l’ensemble des fonctions continues bornées sur X à
valeur dans F , on a la norme uniforme (exo : vérifier
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que c’est bien une norme) :

| | f | |∞ = sup
x ∈X

| | f (x ) | |F

Le résultat suivant a été vu en L2 pour F = R.

⋆ Théorème 2.28

Les espaces (Cb (X , F ) , | |. | |∞), pour X espace
métrique et F espace de Banach est un espace de
Banach.

Démonstrat ion. On a vu que ce sont des espaces normés.
Montrons qu’ils sont complets. Soit fn une suite de Cauchy,
donc comme | | fp (x ) − fq (x ) | |F ≤ || fp − fq | |∞, pour tout x ∈ X ,
( fp (x )) est de Cauchy, donc par complétude de F , converge
vers une valeur f (x ) . Soient p , q tels que pour tout x
| | fp (x ) − fq (x ) | | ≤ 𝜖 en prenant la limite q → ∞, on déduit
| | fp (x ) − f (x ) | | ≤ 𝜖 donc | | fp − f | | ≤ 𝜖 . Donc fp converge
uniformément vers f , donc f est continue (résultat de L2 ou
exo). De plus, | | fp | |∞ est convergente, donc de Cauchy, donc
bornée, disons par M . En passant à la limite dans l’inégalité
| | fp (x ) | |F ≤ M , on obtient | | f (x ) | |F ≤ M et donc f est aussi
bornée par M . Donc la limite f est continue bornée et fp
converge vers f dans Cb (X , F ). Ce qui donne la
complétude.
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9 Applications linéaires
continues

On considère (E , | |. | |) et (F , | |. | |) deux evn.

Rappel 2.7. Une application u : E → F est dite
linéaire si :

(i) ∀x , y ∈ E , u (x + y ) = u (x ) + u (y )
(ii) ∀x ∈ E , 𝜆 ∈ K, u (𝜆x ) = 𝜆u (x ) .

Proposition 2.29

Si u : E → F est une application linéaire, les
assertions suivantes sont équivalentes :

1. u est lipschitzienne.
2. u est continue.
3. u est continue en 0.
4. u est continue en un point.
5. Il existe a ∈ E ,𝜂 > 0 tel que

u (B (a , 𝜂)) ⊂ B (u (a) , 1).
6. u est bornée sur la boule unité fermée BE (0, 1)

Démonstrat ion. (Preuve facultative) 1. ⇒ 2.,
2. ⇒ 3.,3. ⇒ 4.,4. ⇒ 5. sont évidentes (et n’utilisent pas la
linéarité). Si on suppose 5., il existe 𝜂 > 0 tel que si
| |x − a | | ≤ 𝜂 alors | |u (x ) − u (a) | | ≤ 1. Soit h ∈ E , h ≠ 0,
x = a + h𝜂/| |h | | de sorte que | |x − a | | ≤ 𝜂 , on déduit donc
| |u (h) | |𝜂/| |h | | = | |u (x − a) | | ≤ 1 c’est-à-dire | |u (h) | | ≤ | |h | |/𝜂
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(ce qui est aussi vrai pour h = 0). En particulier, si | |h | | ≤ 1,
on obtient donc 6.

Si on suppose 6., on montre finalement 1, on pose
C = sup | |h | | ≤1 | |u (h) | | < ∞ et on obtient de même pour h ≠ 0,
| |u (h/| |h | |) | | ≤ C donc | |u (h) | | ≤ C | |h | | (ce qui est aussi vrai
pour h = 0). Donc pour tout x , y en utilisant encore la
linéarité u (x − y ) = u (x ) − u (y ), on obtient :

| |u (x ) − u (y ) | | ≤ C | |x − y | |,

donc u est C-lipschitzienne.

Proposition 2.30

Si 𝜙 : E → K est une application linéaire (forme
linéaire), 𝜙 est continue si et seulement si son noyau
H = Ker 𝜙 = 𝜙−1 ({0}) est fermé.

Démonstrat ion. Si 𝜙 est continue, 𝜙−1 ({0}) est fermé
comme image inverse d’un singleton, qui est fermé.
Réciproquement, supposons 𝜙 non nulle, soit e tel que
𝜙(e) = 1. Comme le complémentaire de H est ouvert soit
r > 0 tel que B (e , r ) ⊂ H c .

Montrons par l’absurde que pour tout x ∈ B (e , r ),
𝜙(x ) ∈ B (1, 1). En effet, sinon soit x avec |𝜙(x ) − 1 | ≥ 1. Si
t = −𝜙(x )/(1 − 𝜙(x )), on
𝜙( te + (1 − t )x ) = t 1 + (1 − t )𝜙(x ) = t (1 − 𝜙(x )) + 𝜙(x ) = 0. Or
| | te + (1 − t )x − e | | = |1 − t | | |x − e | | = | |x − e | |/|𝜙(x ) − 1 | ≤ r une
contradiction car alors y = te + (1 − t )x ∈ B (e , r ) ∩ H .
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On a donc vu 𝜙(B (e , r )) ⊂ B (𝜙(e) , 1) d’où 𝜙 continue par
la proposition précédente.

Définition 2.20

L’espace E ′ := L(E , K) des formes linéaires continues
sur un e.v.n. E est munie de la norme duale

| | f | |E ′ := sup
x ∈E , | |x | |E ≤1

| f (x ) |.

⋆ Définition 2.21

L’espace L(E , F ) des applications linéaires continues
d’un e.v.n. E vers un e.v.n. F est munie de la norme
subordonnée (ou norme d’opérateur) :

| | | f | | | := sup
x ∈E , | |x | |E ≤1

| | f (x ) | |F .

Remarque 2.8. La preuve de 6. implique 5. dans la
proposition 2.29 montre en fait que si f ∈ L (E , F )
alors f est | | | f | | |-lipschitzienne.

Un espace dual est toujours complet par le résultat
suivant :
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Théorème 2.31

Si E est un e.v.n. et F un espace de Banach, alors
(L (E , F ) , | | |. | | |) est un espace de Banach.

Démonstrat ion. Soit B la boule fermée de E de centre 0 et
de rayon 1 et i : L(E , F ) → Cb (B , F ) la restriction à la boule.
Par définition des normes, c’est une isométrie qui identifie
donc L (E , F ) à un sous espace de Cb (B , F ) . Montrons que
ce sous espace est fermé (il sera donc complet par
complétude de Cb (B , F ) par théorème 2.28).

Montrons que

i (L (E , F )) = {u ∈ Cb (B , F ) :∀𝜆 , 𝜇 ∈ K |𝜆 | + |𝜇 | ≤ 1,

∀x , y ∈ B ,

u (𝜆x + 𝜇y ) = 𝜆u (x ) + 𝜇u (y )}.

Cela suffit car cela décrit i (L(E , F )) comme une intersection
de fermé vu que u ↦→ u (y ) est une application continue sur
Cb (B , F ). L’inclusion ⊂ est évidente. Réciproquement si u
est continue sur B donc en 0 et dans l’ensemble indiqué,
pour x ∈ E \ {0}, on pose uE (x ) = | |x | |E u ( x

| |x | |E ) et uE (0) = 0.
D’abord, si | |x | | ≤ 1 on remarque que uE étend la précédente
valeure de u sur B (en prenant y = 0 dans la relation). De
même, uE est positivement homogène. Donc, si (x , y ) ≠ 0,
on pose x ′ = x/max ( | |x | |, | |y | |) , y ′ = y /max ( | |x | |, | |y | |),
𝜆 ′ = 𝜆/(|𝜆 | + |𝜇 |) , 𝜇′ = 𝜇/(|𝜆 | + |𝜇 |) pour obtenir par homogénéité



Chapitre 2. Introduction à la Topologie 80

et la relation appliquée à x ′ , y ′ , 𝜆 ′ , 𝜇′ :

uE (𝜆x + 𝜇y ) = ( |𝜆 | + |𝜇 |) max ( | |x | |, | |y | |)u (𝜆 ′x ′ + 𝜇′y ′)

= ( |𝜆 | + |𝜇 |) max ( | |x | |, | |y | |) [𝜆 ′u (x ′) + 𝜇′u (y ′)]

= 𝜆uE (x ) + 𝜇uE (y )

Donc uE est linéaire continue en 0, donc linéaire continue et
u = i (uE ) comme souhaité.

Définition 2.22

Une application linéaire u : E → F est une isométrie
(linéaire) si :

∀x ∈ E , | |u (x ) | | = | |x | |.

Proposition 2.32

Une isométrie (linéaire) est toujours injective.

Une isométrie u : E → F identifie donc E au
sous-espace vectoriel u (E ) ⊂ F avec la norme induite.

Démonstrat ion. Si u (x ) = 0 alors 0 = | |u (x ) | | = | |x | | donc par
séparation x = 0.
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10 Propriétés particulières des
evn de dimension finie.

Complétude
⋆ Théorème 2.33

Tout evn de dimension finie est complet.

Démonstrat ion. C’est bien connu en dimension 1. On
montre donc le résultat par récurrence sur la dimension. On
suppose donc le résultat acquis en dimension strictement
inférieure à n , soit (E , | |. | |) de dimension n . Soit 𝜙 une forme
linéaire non nulle sur E , son noyau F est de dimension
(n − 1), donc par hypothèse de récurrence (F , | |. | |) (muni de
la restriction de la norme de E ) est complet. Par conséquent
F est fermé dans E , donc 𝜙 est continue.

Soit e ∈ E avec 𝜙(e) = 1. L’isomorphisme linéaire
u : (𝜆 , f ) → 𝜆e + f de K × F (avec la norme produit donc
complet par la proposition 6) sur E est continue
((1 + ||e | |)-lipschitzien). Son isomorphisme réciproque est
donné par :

∀x ∈ E , u−1 (x ) = (𝜙(x ) , x − 𝜙(x )e) .

u−1 est donc aussi continue comme 𝜙 . u−1 étant
lipschitzienne (car linéaire continue et par la proposition
2.29 ), si (xn ), suite de E , est de Cauchy u−1 (xn ) ∈ K × F
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l’est aussi donc converge par complétude de K × F , d’où
xn = u (u−1 (xn )) converge aussi par continuité de u−1 .

Applications linéaires

Rappel 2.9. Si E de dimension n et F de dimension
p . Soit (e1 , . . . , en ) une base de E , ( f1 , . . . , fp ) une
base de F . Une application linéaire u est décrite par
sa matrice A = (a i j ) i ∈[1,p ] , j ∈[1,n ] dans ces bases. Alors,

si x =

n∑︁
j=1
x j e j et y = u (x ) =

p∑︁
i=1
y i f i , on rappelle que :

y i =
n∑︁
j=1
a i j x j .

On définit aussi la base duale (e∗
1 , . . . , e∗

n ) de l’ev des
formes linéaires sur E caractérisés par e∗

j (ek ) = 1 si
j = k et 0 sinon. En conséquence, pour tout x ∈ E :

u (x ) =
n∑︁
j=1
x j u (e j ) =

n∑︁
j=1
e∗
j (x )u (e j ) .

⋆ Théorème 2.34

Toute application linéaire entre evn de dimensions
finies est continue (et même lipschitzienne).

Démonstrat ion. En utilisant la représentation du rappel

u =

n∑︁
i=1
u (e i )e∗

i ,
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il suffit de montrer que les formes linéaires e∗
i sont

continues. Mais Ker e∗
i est un sous-espace vectoriel de

dimension fini donc complet (Théorème 2.33), donc fermé
(proposition 2.16) dans E , d’où la continuité voulue
(proposition 2.30). La lipschitzianité vient de la proposition
2.29.

Équivalence des normes et
conséquences.

⋆ Théorème 2.35

Toutes les normes d’un espace vectoriel normé de
dimension finie sont équivalentes.

Démonstrat ion. Si | |. | |1 et | |. | |2 sont deux normes sur E ,
l’application linéaire identité u = IdE vu de (E , | |. | |1) vers
(E , | |. | |2) est continue ainsi que son inverse u−1 (théorème
2.34), donc elles sont C et 1/c-lipschitzienne
respectivement (proposition 2.29). On en déduit, pour tout
x ∈ E :

| |x | |2 = | |u (x ) − u (0) | |2 ≤ C | |x | |1 ,

| |x | |1 = | |u−1 (x ) − u−1 (0) | |1 ≤ 1
c | |x | |2 ,

d’où l’équivalence des normes souhaitée.



Chapitre 2. Introduction à la Topologie 84

Remarque 2.10. Sur Rn on peut donc parler de
continuité, limite etc. sans préciser la norme.

Proposition 2.36

Soient E un evn, A ⊂ E , f : A → Rn . Si x ∈ A, on note
f (x ) = ( f1 (x ) , . . . , fn (x )) où les f i sont les fonctions
composantes de f : f i : A → R.
Soit x ∈ A et b = (b1 , . . . , bn ) ∈ Rn , alors on a
l’équivalence :

l im
x→a

f (x ) = b ⇐⇒ ∀i = 1...n l im
x→a

f i (x ) = b i .

Démonstrat ion. On a f i = p i ◦ f , où p i est i-ème projection
p i : Rn → R définie par p i (x1 , . . . , xn ) = x i . p i est continue
d’après l’exemple 2.14.2.

Si l imx→a f (x ) = b , on déduit l imx→a f i (x ) = b i d’après le
Théorème de composition des limites.

Réciproquement, on munit Rn de la norme | |. | |∞. Si pour
tout i l imx→a f i (x ) = b i on a donc pour 𝜖 > 0, l’existence de
𝛿 i > 0 tel que si | |x − a | | ≤ 𝛿 i , | | f i (x ) − b i | | ≤ 𝜖 . On pose
𝛿 = min i=1...n (𝛿 i ) > 0. Donc si | |x − a | | ≤ 𝛿, pour tout i
| | f i (x ) − b i | | ≤ 𝜖 donc | | f (x ) − b | |∞ = max | | f i (x ) − b i | | ≤ 𝜖 .
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Corollaire 2.37

Soient E un evn, A ⊂ E , f : A → Rn . Si x ∈ A, on note
f (x ) = ( f1 (x ) , . . . , fn (x )) où les f i sont les fonctions
composantes de f : f i : A → R. f est continue sur A
(resp. en a ∈ A) si et seulement si les f i sont
continues sur A (en resp. a ∈ A).

La preuve du résultat suivant est semblable et omise.

Proposition 2.38

Soit Xn = (x (1 )
n , . . . , x (p )

n ) une suite de Rp et soit
L = (ℓ1 , . . . ,ℓp ). Alors Xn converge vers L si et
seulement si pour tout i = 1...p x ( i )

n → ℓ i .

Proposition 2.39

Soient A ⊂ Rn , p i : Rn → R la i-ème projection définie
par p i (x1 , . . . , xn ) = x i . Alors A est bornée dans Rn si
et seulement si pour tout i , p i (A) est bornée dans R.
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11 Compacité dans les espaces
métriques

⋆ Définition 2.23

Soit K une partie de (X , d ) espace métrique K est dite
(séquentiellement) compacte si elle possède la
propriété suivante (dite de Bolzano-Weierstrass) : De
toute suite de K , on peut extraire une suite
convergente dans K .

Rappel 2.11. Dans R le théorème de
Bolzano-Weierstrass indique que toute suite bornée
admet une sous-suite convergente et donc que tout
fermé borné est compact.

Proposition 2.40

Un compact K d’un espace métrique X est un fermé
borné de X . Un sous-ensemble fermé d’un compact
est compact. Le produit de 2 espaces compacts est
compact.

Démonstrat ion. 1. Un compact K est fermé, car si une
suite (un ) converge vers l dans E , elle admet une
sous-suite convergeant vers k ∈ K , dont la limite est
nécessairement l = k (proposition 2.4), donc l ∈ K .

2. On montre par contraposée qu’un ensemble non borné
A ne peut pas être compact. Si A non-borné, soit
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xn ∈ A tel que d (xn , y ) ≥ n , si une suite extraite
x𝜙(n ) → x convergeait, elle serait bornée, ce qui n’est
pas le cas car d (x𝜙(n ) , y ) ≥ 𝜙(n) →n→∞ ∞.

3. Si F ⊂ K avec K compact, F fermé, une suite de F
admet une sous suite convergeant dans K par
compacité, donc sa limite est dans F par fermeture,
d’où F compacte.

4. Si K , L sont compacts, pour une suite (xn , yn ) ∈ K × L,
on extrait une suite (x𝜙(n ) ) convergente dans K , puis
on réextrait (y𝜙(𝜓 (n ) ) ) convergente dans L (et a fortiori
(x𝜙(𝜓 (n ) ) ) est aussi convergente) donc (x𝜙(𝜓 (n ) ) , y𝜙(𝜓 (n ) ) )
converge dans K × L .

Exemple 2.17

Soit F = {(x , y ) ∈ R2 , xy = 1} est fermé mais pas
compact. En effet, si f (x , y ) = xy est polynomiale
donc continue R2 → R donc F = f −1 ({1}) est fermé
comme image réciproque d’un fermé par une
application continue. Mais F n’est pas compact car
pas borné. xn = (1/n , n) ∈ F et | |xn | |∞ = n → ∞.

☡ Remarque 2.1. En général dans un evn un fermé
borné n’est PAS toujours compact. Dans
C 0 ( [0, 1] , R), montrons que la boule unité fermée
n’est pas compacte. fn (x ) = x n vérifie | | fn | |∞ = 1, mais
comme fn (x ) → f (x ) (on dit converge simplement vers
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f) avec f (x ) = 0 si x < 1, f (1) = 1, donc f non continue.
Toute suite extraite de f devrait converger vers cette
limite qui n’est pas continue, donc elle ne peut pas
converger dans C 0 ( [0, 1] , R) vers cette limite qui n’est
pas dans C 0 ( [0, 1] , R). En général, on peut montrer
que les boules fermées d’evn sont compactes si et
seulement si l’evn est de dimension finie, on montre
une implication ci-dessous.

⋆ Théorème 2.41

Si u : E → F est continue et K ⊂ E est compacte alors
u (K ) est compacte.

Démonstrat ion. Soit yn une suite de u (K ) donc yn = u (xn )
,avec (xn ) suite de K , on extrait donc une suite x𝜙(n )
convergeant vers x ∈ K . Par continuité, la suite extraite
y𝜙(n ) = u (x𝜙(n ) ) → u (x ) ∈ u (K ).

⋆ Corollaire 2.42: (Thm. de Weierstrass)

Si K ⊂ X espaces métriques est compacte et f : K → R

est continue, alors la fonction f est bornée et atteint
ses bornes : ∃x0 , x1 ∈ K , ∀x ∈ Kf (x0) ≤ f (x ) ≤ f (x1).

Démonstrat ion. f (K ) est compacte donc fermée et bornée.
Donc f est bornée, et le f (K ) contient son sup et son inf
(par fermeture) c’est-à-dire, il existe y0 , y1 ∈ f (K )
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y0 = inf x ∈K f (x ), y1 = supx ∈K f (x ). Finalement y i = f (x i ) avec
x i ∈ K .

Corollaire 2.43

Soit X , K deux espaces métriques avec K compact et
f : K → X une bijection continue, alors f est une
homéomorphisme (c’est-à-dire f −1 est continue et X
est aussi compacte).

Démonstrat ion. Comme f bijective, pour un fermé F ⊂ K ,
donc un compact, ( f −1)−1 (F ) = f (F ) est l’image directe du
compact F dans X , donc est compact donc fermé. f −1

envoie donc un fermé sur un fermé, donc est continue par
caractérisation topologique de la continuité (Proposition
2.22).

⋆ Théorème 2.44

Dans un evn de dimension finie, les compacts sont
exactement les fermés bornés.

Démonstrat ion. Il reste à montrer que les fermés bornés
sont compacts. D’après le théorème 2.34 un isomorphisme
linéaire u de E sur Kn est continu de (E , | |. | |) sur (K n , | |. | |∞),
et u−1 également. u (K ) est fermé comme image réciproque
d’un fermé par u−1 continue, u (K ) est borné comme image
d’un borné par une application lipschitzienne. Donc L = u (K )
est un fermé borné de (K n , | |. | |∞). Il suffit de voir que c’est
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un compact, car alors K = u−1 (L) est compact comme image
continue d’un compact (theorème 2.41). Soit
(xp ) = (x (1 )

p , . . . , x (n )
p ) une suite de L, par définition de la

norme (x ( i )
p ) sont bornés, elles admettent donc, par le

théorème de Bolzano-Weierstrass dans K, une sous-suite
simultanément convergente. x ( i )

𝜙(p ) → x ( i ) Donc si
x = (x (1 ) , . . . , x (n ) ), on a
| |x𝜙(p ) − x | | = max i=1...n |x ( i )

𝜙(p ) − x
( i ) | → 0 et comme L est

fermé ; x ∈ L ce qui conclut.

Exemple 2.18

Soit K = {(x , y ) ∈ R2x 2 + y 2/2 = 1} est compact. En
effet, si f (x , y ) = x 2 + y 2/2 est polynomiale donc
continue R2 → R donc F = f −1 ({1}) est fermé comme
image réciproque d’un fermé par une application
continue. De plus K ⊂ B | | . | |∞ ,F (0,

√
2) donc K est borné,

donc fermé borné dans R2 de dimendion finie, donc K
est compact.

Exemple 2.19

Soit g : K → R définie par g (x , y ) = x 2 + y 2 g est
continue donc atteint ses bornes sur K compact. En
effet g est la distance euclidienne à l’origine, il est
facile de voir qu’elle atteint son maximum 2 en
(0, ±

√
2) sur K et son minimum 1 en (±1, 0) sur K . Le

théorème des extremas liés permettra de retrouver ce
résultat pour des g et des K plus généraux.
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⋆ Théorème 2.45: (de Heine)

Toute fonction continue f sur un compact K ⊂ X est
uniformément continue.

Démonstrat ion. Soit g : (x , y ) → d ( f (x ) , f (y )) de K 2 dans
R elle est continue (pour la distance produit sur X 2 par
composition) donc g (K 2) est compact. Soit 𝜖 > 0 reste à
trouver un 𝛿 de continuité uniforme.

A = {(x , y ) ∈ K 2 | d ( f (x ) , f (y )) ≥ 𝜖 } = g−1 ( [𝜖 , +∞[)

est fermé dans K 2 donc compact. Donc l’application
continue (x , y ) ↦→ d (x , y ) atteint sa borne inférieure m . On a
m ≠ 0 car sinon on aurait un (x , x ) ∈ A, ce qui n’est pas
possible vu 𝜖 > 0.

Finalement si 𝛿 > 0 est tel que 𝛿 < m , si d (x , y ) ≤ 𝛿, on
a (x , y ) ∉ A, donc d ( f (x ) , f (y )) < 𝜖 .

Complément : un résultat reliant
complétude et compacité (facultatif)

Proposition 2.46

Tout espace métrique compact X est complet.

Démonstrat ion. Soit (xn ) une suite de Cauchy de X , elle
admet par compacité une suite extraite convergente, donc
elle converge (proposition 2.5).
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Définition 2.24

Un espace métrique (X , d ) est précompact si pour
tout 𝜖 > 0, X peut être couvert par un nombre fini de
boules ouvertes de rayon 𝜖 .

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec
[6, Th II.1 p135] ou Gourdon d’Analyse [5, p 32]) ou la
proposition A.7.

Proposition 2.47

Un espace métrique X est compact si et seulement si
il est précompact et complet.

Complément : Compacité topologique
(facultatif)

On rappelle le résultat suivant (cf. e.g. Gourdon
d’Analyse [5, Thm 1 p 28])

Théorème 2.48: (Propriété de Borel-Lebesgue)

Pour un ensemble K d’un espace métrique X est
compact, si et seulement si, pour tout (U i ) i ∈I est un
recouvrement de K par des ouverts U i de X , au sens
où K ⊂

⋃︂
i ∈I
U i alors K admet un sous-recouvrement

fini : il existe I0 ⊂ I fini tel que K ⊂
⋃︂
i ∈I0

U i .
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En passant au complémentaire et à la contraposée, on
obtient aussi la version équivalente :

Théorème 2.49

Pour un ensemble K d’un espace métrique X est
compact, si et seulement si, pour tout (F i ) i ∈I est un
fermé de K , si pour toute intersection finie (i.e. avec
I0 fini) est non-vide

⋂︂
i ∈I0

F i ≠ ∅ alors l’intersection

complète est aussi non-vide
⋂︂
i ∈I
F i ≠ ∅.

12 Intégrale de Riemann à
valeur Espace de Banach

Nous référons par exemple au Gourdon d’Analyse [5]
(chapitre 3 secion 1) pour cette section. Soit F un evn
complet. Soit I = [a , b] ⊂ R un segment. On rappelle les
définitions :

Définition 2.25

Une subdivision de [a , b] est suite finie (a i ) i=0, · · · ,n de
la forme a = a0 < a1 < · · · < an = b . Une fonction
continue par morceaux sur I est une fonction
f : I → F telle qu’il existe une subdivision (a i ) i=0, · · · ,n ,
telle que pour i ∈ [[0, n − 1]] , chaque restriction
f ]a i ,a i+1 [ est continue et admette des limites en a i , a i+1 .
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Une fonction f : I → F est dite en escalier si il existe
une subdivision (a i ) i=0, · · · ,n , telle que pour
i ∈ [[0, n − 1]] , f ]a i ,a i+1 [ est constante.

On définit E = CM (I , F ) l’ensemble des fonctions
continues par morceaux sur I à valeur F . Comme chaque
prolongement par continuité de f ]a i ,a i+1 [ est continue sur un
compact [a i , a i+1] , donc bornée, les fonctions continues par
morceaux sont bornées. On note D ⊂ E l’ensemble des
fonctions en escaliers.

E est donc un Evn (PAS complet) pour la norme de la
convergence uniforme, si f ∈ E :

| | f | |E = sup
t ∈I

| | f ( t ) | |F .

On va utiliser le théorème suivant de prolongement des
applications linéaires continues pour définir l’intégrale à
valeur dans F . C’est une application immédiate du
Théorème 2.27 :

Proposition 2.50

Toute application linéaire continue u d’un
sous-espace vectoriel dense D d’un evn E vers un
evn complet F se prolonge en une unique application
linéaire continue v : E → F , ayant la même constante
de lipschitzianité que u .
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Démonstrat ion. Comme u est continue donc
K-lipschitzienne (par proposition 2.29) donc uniformément
continue, l’unique prolongement est donné par le Théorème
2.27.

Si xn → x , yn → y en passant à la limite dans la relation
u (𝛼xn + 𝛽 yn ) = 𝛼u (xn ) + 𝛽u (yn ), on déduit que v est linéaire
et avec | |u (xn − yn ) | | ≤ K | |xn − yn | |, on déduit que v est
K-lipschitzienne.

Pour une fonction en escalier 𝜙 : [a , b] → F de
subdivision (a i ) i=0, · · · ,n . On définit

I (𝜙) =
∫
[a ,b ]

𝜙( t )dt =
n∑︁
i=1

(a i − a i−1)𝜙
(︂ a i−1 + a i

2
)︂
.

I est une application linéaire continue, car par l’inégalité
triangulaire

| |I (𝜙) | | ≤
n∑︁
i=1

|a i − a i−1 |
∥︁∥︁∥︁𝜙(︂ a i−1 + a i

2
)︂∥︁∥︁∥︁
F
≤ ||𝜙| |E |b − a |.

Comme les fonctions en escalier sont denses dans les
fonctions continues par morceaux (exo. TD), la proposition
précédente permet d’étendre l’intégrale comme quand F = R

et on a :

Définition 2.26

L’intégrale des fonctions continues par morceaux
CM (A , F ) est l’unique prolongement linéaire continu
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de l’intégrale des fonctions en escaliers, noté∫ b
a dtf ( t ) =

∫ b
a f ( t )dt .

Proposition 2.51

(Inégalité triangulaire) | |
∫ b
a dtf ( t ) | |F ≤

∫ b
a dt | | f ( t ) | |F .

Démonstrat ion.

| |I (𝜙) | |F ≤
n∑︁
i=1

|a i − a i−1 |
∥︁∥︁∥︁𝜙(︂ a i−1 + a i

2
)︂∥︁∥︁∥︁
F
=

∫ b

a
| |𝜙( t ) | |F dt

pour 𝜙 en escalier et on prolonge par continuité.

On a toutes les propriétés usuelles, Chasles, linéarité,
en particulier si F = Rn et f = ( f1 , . . . , fn )∫ b
a f ( t )dt = (

∫ b
a f1 ( t )dt , . . . ,

∫ b
a fn ( t )dt ) .

Rappel sur les Intégrales impropres
Définition 2.27

Pour une fonction f continue sur un intervalle I → R

qui n’inclut pas toutes ses bornes ou qui n’est pas
borné, on définit l’intégrale impropre de la manière
suivante :

1. Dans le cas I = [a , b [ avec a < b , b ∈ R ∪ {+∞}∫ b

a
f (x )dx = l im

c↗b

∫ c

a
f (x )dx
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2. Dans le cas I =]a , b] avec a < b , a ∈ R ∪ {−∞}∫ b

a
f (x )dx = l im

c↘a

∫ b

c
f (x )dx

3. Dans le cas I =]a , b [ avec a < b , a ∈ R ∪ {−∞},
b ∈ R ∪ {+∞} on prend a < c < b et on pose∫ b

a
f (x )dx =

∫ c

a
f (x )dx +

∫ b

c
f (x )dx .

Dans tous ces cas, on dit que l’intégrale est
convergente si la limite existe et est finie.

Dans tous les cas, on s’occupera surtout du cas
I = [a , b [ puisque le cas I =]a , b] est similaire en
remplaçant f par x ↦→ f (−x )

Le cas le plus important est le cas suivant (car on va
disposer de théorèmes de comparaison avec des fonctions
positives de références) :

Définition 2.28

Pour une fonction f continue sur un intervalle I
(comme dans la définition précédente) est dite
intégrable sur I si

∫ b
a | f (x ) |dx converge. Dans ce cas

on dit aussi que
∫ b
a f (x )dx est absolument

convergente.
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Exercice 2.4. Convergence et valeur de∫ 1

0

1
√
x
dx .

La limite infinie est en 0. Donc Soit t > 0 on Calcule∫ 1
t

1√
x dx = [2

√
x ]1
t = 2 − 2

√
t . La limite en t → 0 est

finie donc l’intégrale converge et vaut 2.

Exemples de référence (à connaître
TRES BIEN)

1.
∫ ∞

0 e−x dx converge et vaut 1. En
effet,

∫ A
0 e−x dx = 1 − e−A →A→∞ 1.

Plus généralement,
∫ ∞

0 e−ax dx converge si et
seulement si a > 0, et vaut alors 1/a.

2.
∫ ∞

1
1
t 𝛼 dt converge si et seulement si 𝛼 > 1 (intégrale

de Riemann) et vaut∫ ∞

1

1
t 𝛼 dt =

1
𝛼 − 1 , 𝛼 > 1,∫ ∞

1

1
t 𝛼 dt = +∞, 𝛼 ≤ 1.

En effet, si 𝛼 ≠ 0,
∫ A

1
1
t 𝛼 dt =

A−𝛼+1−1
−𝛼+1 et pour 𝛼 > 1,

A−𝛼+1 →A→+∞ 0, tandis que pour 𝛼 < 1 A−𝛼+1 →A→+∞ +∞
Si 𝛼 = 1,

∫ A
1

1
t dt = ln (A) →A→+∞ +∞

3.
∫ 1

0
1
t 𝛼 dt converge si et seulement si 𝛼 < 1 (intégrale

de Riemann) et vaut∫ 1

0

1
t 𝛼 dt =

1
1 − 𝛼

, 𝛼 < 1
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∫ 1

0

1
t 𝛼 dt = +∞, 𝛼 ≥ 1

.
En effet si 𝛼 ≠ 0,

∫ 1
a

1
t 𝛼 dt =

1−a−𝛼+1

−𝛼+1 et pour 𝛼 > 1,
a−𝛼+1 →a→0 +∞, tandis que pour 𝛼 < 1 a−𝛼+1 →a→0 0
Si 𝛼 = 1,

∫ 1
a

1
t dx = | ln (a) | →a→∞ ∞.

4.
∫ ∞

0
1
t 𝛼 dt = +∞ diverge toujours pour tout 𝛼 ∈ R(en

combinant les 2 points précédents).

Théorèmes de comparaison
Le contexte est le suivant : on se donne une fonction

continue f : I = [a , b [→ R et on étudie la nature de
l’intégrale impropre

∫ b
a f (x )dx

La méthode la plus simple consiste à chercher une
fonction convenable continue et positive
g : I = [a , b [→ [0, ∞[ et de comparer f à g . Les trois
résultats de base à utiliser sont les suivants (avec C>0 une
constante).

Théorème 2.52

Théorème de comparaison .

5. Si | f (x ) | ≤ Cg (x ), ∀x ∈ [a , b [, et si
∫ b
a g (x )dx

converge, alors
∫ b
a f (x )dx converge

(absolument).
6. Si f (x ) ≥ Cg (x ) , ∀x ∈ [a , b [ et si

∫ b
a g (x )dx = +∞

alors
∫ b
a f (x )dx = +∞.
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13 Espaces métriques
séparables

Définition 2.29

Une partie A est dite dense dans E si A = E . Un
ensemble est dit séparable si il admet un
sous-ensemble au plus dénombrable dense (ou
autrement dit une suite dense).

Lemme 2.53

Un sous-ensemble F d’un espace métrique séparable
est séparable.

Démonstrat ion. On peut supposer F non-vide, sinon,
c’est évident (la partie vide donc finie est dense). On fixe
donc x0 ∈ F

Soit un une suite dénombrable dense. Soit
am ,n ∈ B (um , 1/n) ∩ F si cet ensemble est non-vide, et sinon
on pose am ,n = x0 . La famille {am ,n , m , n ∈ N} est finie ou
dénombrable et dense car si x ∈ F il existe d (um , x ) < 1/2n
donc am ,2n existe car B (um , 1/2n) ∩ F est non vide et par
inégalité triangulaire d (um , am ,2n ) < 1/n .

Proposition 2.54

(Rn , | |. | |∞) est séparable.
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Démonstrat ion. On a vu que Qn est dénombrable comme
produit d’ensembles dénombrables. Montrons qu’il est
dense dans Rn . En effet si x = (x1 , . . . , xn ) on pose
xp = ( ⌊px1 ⌋

p , . . . , ⌊pxn ⌋
p ) avec ⌊x ⌋ la partie entière de x . Donc

⌊px i ⌋ ≤ px i ≤ ⌊px i ⌋ + 1 et|︁|︁|︁ ⌊px i ⌋p − x i
|︁|︁|︁ ≤ 1

p

donc | |xp − x | |∞ ≤ 1/p →p→∞ 0. Donc vu xp ∈ Qn , x ∈ Qn .
Comme x est arbitraire. Rn ⊂ Qn CQFD.

Exercice 2.5. Montrer que Qc est dense dans R.



Chapitre 3

Ensembles et
fonctions
convexes,
Introduction
à
l’optimisation

Vous avez vu en L2 qu’une fonction C 1 f qui atteint un
minimum sur un ouvert en x satisfait une condition
nécessaire du première ordre ∇f (x ) = 0 et si f est C 2 on

102
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peut garantir que c’est un minimum local si sa hessienne est
définie positive.

Il reste les questions : comment avoir un minimum
global ? comment avoir unicité du minimum ? Une réponse
va être obtenue en étudiant une notion, qui, dans le cas des
fonctions C 2 , sera équivalente à une positivité globale de la
hessienne. L’avantage est qu’on peut trouver une définition :
la notion de fonction convexe, sans hypothèse de
dérivabilité et qui va être robuste et permettre d’obtenir
aussi des critères d’optimisation du premier ordre, sur des
ensembles eux aussi convexes (pas forcément ouverts).

On suppose donc que E est un espace vectoriel (e.v.)
sur R.

1 Ensembles Convexes
Soit x , y ∈ E , on appelle segment d’extrémité x et y la

partie
[x , y ] = {𝜆x + (1 − 𝜆 )y , 𝜆 ∈ [0, 1]}.

On retrouve bien sûr la définition usuelle du segment
dans R. (avec la notation inhabituelle [−1, −2] = [−2, −1])

⋆ Définition 3.1

Un ensemble C ⊂ E est dit convexe si
∀x , y ∈ C , [x , y ] ⊂ C .
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Par convention , C = ∅ est convexe même si les
convexes intéressants sont les convexes non-vides...

Proposition 3.1

Si E est un e.v.n., les boules (ouvertes et fermés)
sont des convexes.

Démonstrat ion. Considérons le cas des boules ouvertes.
Soient x , y ∈ B (a , r ), z = 𝜆x + (1 − 𝜆 )y , 𝜆 ∈ [0, 1] .

Par l’inégalité triangulaire et homogénéité, on a :

| |z − a | | = | |𝜆 (x − a) + (1 − 𝜆 ) (y − a) | |

≤ |𝜆 | | |x − a | | + |1 − 𝜆 | | |y − a | |

< |𝜆 |r + |1 − 𝜆 |r = r .

Donc z ∈ B (a , r ). Le cas des boules fermées est
similaire.

Exemple 3.1

On pose | | (x , y ) | |1/2 = ( |x |1/2 + |y |1/2)2 . On note
B = {(x , y ) ∈ R2 : | | (x , y ) | |1/2 ≤ 1}. On remarque que
(1, 0) , (0, 1) ∈ B , (1/4, 1/4) ∈ B mais (1/2, 1/2) ∉ B
donc B n’est pas convexe et | | · | |1/2 n’est PAS une
norme sur R2 .

Exercice 3.1. Montrer que les ensembles convexes
de R sont exactement les intervalles.
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Le résultat suivant est laissé en exercice.

Proposition 3.2

Si C est convexe, alors son adhérence C et son
intérieur Int (C ) sont convexes. Une intersection (finie
ou infinie) d’ensembles convexes est convexe. Si
C1 ⊂ E , C2 ⊂ F sont convexes, alors C1 × C2 est
convexe dans E × F .

Cônes tangents et normaux dans Rn

On suppose E = Rn (ou un espace préhilbertien comme
au dernier chapitre pour avoir un produit scalaire). On

rappelle ⟨f , x ⟩ =
n∑︁
i=1
f i x i , pour f , x ∈ E .

Les deux ensembles suivant seront importants pour
formuler des conditions pour des problèmes de minimisation
sous contrainte. On rappelle que pour A , B ⊂ E , C ⊂ R, x ∈ E ,
A + B = {a + b : a ∈ A , b ∈ B}, CA = {ca , c ∈ C , a ∈ A}, A − x =

{a − x : a ∈ A}, x + A = {a + x : a ∈ A}.

⋆ Définition 3.2

Le cône tangent (au sens de l’analyse convexe) du
convexe S ⊂ E e.v.n. au point x ∈ S est

TS (x ) := { u − x
s , u ∈ S , s > 0} = R∗

+ (S − x ) ,
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Le cône normal est son polaire, c’est à dire le cône
convexe fermé :

NS (x ) := {f ∈ E : ∀u ∈ S , ⟨f , u − x ⟩ ≤ 0}

= {f ∈ E : ∀v ∈ TS (x )⟨f , v ⟩ ≤ 0}.

Exercice 3.2. Si L est un s.e.v de E (de dimension
finie), a ∈ L. Montrer que TL (a) = L et
NL (a) = L⊥ = {y ∈ E : ⟨y ,ℓ ⟩ = 0∀ℓ ∈ L}, est l’orthogonal
de L.

Exercice 3.3. Si S convexe et a ∈ Int (S). Montrer
que TS (a) = E et NL (a) = {0}.

2 Fonctions convexes
Il est pratique de considérer des fonctions

f : E →] −∞, +∞] = R ∪ {+∞}. Dans ce cas on parle de
domaine de f :

D ( f ) = {x ∈ E : f (x ) < ∞}.

Les propriétés que l’on considère dans cette section
vont être déterminées par l’ensemble des valeurs au dessus
du graphe de f , que l’on appelle épigraphe de f :

Epi( f ) = {(x , 𝜆 ) ∈ E × R : f (x ) ≤ 𝜆 }.
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On utilise les conventions ∞ +∞ = ∞ et 𝜆 .∞ = ∞ si 𝜆 > 0,
0.∞ = 0.

⋆ Définition 3.3

Soit C un ensemble convexe.

1. Une fonction f : C →] −∞, +∞] est dite convexe
si pour tout 𝜆 ∈]0, 1 [, x , y , ∈ C ,

f (𝜆x + (1 − 𝜆 )y ) ≤ 𝜆 f (x ) + (1 − 𝜆 ) f (y ) .

2. Une fonction f : C →] −∞, +∞] est dite
strictement convexe si pour tout
𝜆 ∈]0, 1 [, x , y , ∈ C , avec x ≠ y

f (𝜆x + (1 − 𝜆 )y ) < 𝜆 f (x ) + (1 − 𝜆 ) f (y ) .

3. Une fonction f : C → [−∞, +∞[ est dite concave
si −f est convexe.

Exemple 3.2

Une fonction affine f (x1 , . . . , xn ) =
n∑︁
i=1
a i x i + b est

convexe et concave mais pas strictement convexe !
Une norme sur E est convexe.

Remarque 3.1. Si f est convexe, alors C ∩ D ( f ) est
convexe car si f (x ) < +∞, f (y ) < ∞ alors

f (𝜆x + (1 − 𝜆 )y ) ≤ 𝜆 f (x ) + (1 − 𝜆 ) f (y ) < ∞.
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On peut donc toujours remplacer soit C par E soit C
par C ∩ D ( f ) selon votre goût (pour les fonctions
infinies ou les ensembles convexes).

Proposition 3.3

Soit E un e.v. et f : C →] −∞, ∞] .

1. f est convexe si et seulement si Epi ( f ) est
convexe

1’. Si f est convexe alors pour tout t ∈ R,
f −1 (] − ∞, t ]) est convexe. La réciproque est
fausse.

2. Si 𝜇 > 0, f , g convexes alors 𝜇f + g est convexe.
De plus, elle est aussi strictement convexe si f
ou g l’est.

3. Si f i , i ∈ I sont convexes alors l’enveloppe
supérieure f (x ) = sup i ∈I f i (x ) est convexe.

4. (facultatif) f est convexe ssi g : E →] −∞, +∞] ,
définie par g (x ) = f (x ) si x ∈ C et g (x ) = +∞
sinon, est convexe.

5. Si f est strictement convexe, alors f a au plus
un minimum sur C .

Le dernier point donne la première relation simple des
fonctions convexes à l’optimisation.

Démonstrat ion. Pour (1), l’énoncé est vide si f (x ) ou
f (y ) = ∞. Soit donc (x , t1) , (y , t2) ∈ Epi ( f ) (comme on veut
t i < ∞ cela utilise la réduction précédente). On remarque
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que (𝜆x + (1 − 𝜆 )y , 𝜆 t1 + (1 − 𝜆 ) t2) ∈ Epi ( f ) ssi
f (𝜆x + (1 − 𝜆 )y ) ≤ 𝜆 t1 + (1 − 𝜆 ) t2 .

Si les épigraphes sont convexes, cette propriété est
vérifiée et donc en prenant l’infimum sur t1 , t2 (qui donne
f (x ) , f (y )) on a le résultat. Si f vérifie l’inégalité, on utilise
f (x ) ≤ t1 , f (y ) ≤ t2 pour conclure :

f (𝜆x + (1 − 𝜆 )y ) ≤ 𝜆 f (x ) + (1 − 𝜆 ) f (y ) ≤ 𝜆 t1 + (1 − 𝜆 ) t2 .

(1)’ On montre la convexité de D = {x : f (x ) ≤ t } comme
ci-dessus. Soit x , y ∈ D alors pour 𝜆 ∈ [0, 1] :
f (𝜆x + (1 − 𝜆 )y ) ≤ 𝜆 f (x ) + (1 − 𝜆 ) f (y ) ≤ 𝜆 t + (1 − 𝜆 ) t = t . Donc
𝜆x + (1 − 𝜆 )y ∈ D . Par contre si g = 1 [0,∞[ alors si t < 0 ,
g−1 (] − ∞, t ]) = ∅, si 0 ≤ t < 1 , g−1 (] − ∞, t ]) =] − ∞, 0 [ et
sinon pour t ≥ 1, g−1 (] − ∞, t ]) = R et ce sont 3 intervalles
donc 3 ensembles convexes. Mais g n’est pas convexe
g (0) = 1 > 1/2g (−1) + 1/2g (1) = 1/2.

(2) est évident en utilisant l’inégalité :

𝜇f (𝜆x + (1 − 𝜆 )y ) + g (𝜆x + (1 − 𝜆 )y )

≤ 𝜇(𝜆 f (x ) + (1 − 𝜆 ) f (y )) + (𝜆g (x ) + (1 − 𝜆 )g (y ))

= (𝜆 (𝜇f + g) (x ) + (1 − 𝜆 ) (𝜇f + g) (y )) .

(3) vient de la stabilité des convexes par intersection et
de Epi ( f ) = ∩i ∈IEpi ( f i ) .

(4) est évident car Epi ( f ) = Epi (g) .
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(5) si x ≠ y sont deux points atteignant le minima,
f ((x + y )/2) < ( f (x ) + f (y ))/2 contredisant la minimalité.

Une propriété importante des fonctions convexes est le
fait qu’on peut les caractériser en terme d’accroissements :

Proposition 3.4

Soit f : E →] −∞, +∞] une fonction. f est convexe si et
seulement si pour tout x , h ∈ E la fonction
∆x ,h f ( t ) := f (x+th )− f (x )

t est croissante sur R∗
+ .

Démonstrat ion. Il suffit de noter que
g ( t ) = ∆x ,h f ( t ) = f (x+th )− f (x )

t est croissante si et seulement si
g ( t ) ≤ g (s) pour 0 < t < s si et seulement si on a l’inégalité
de convexité :

f (x + th) = f ( ts (x + sh) + x (1 − t
s )) ≤ f (x + sh) ts + f (x ) (1 − t

s ) .

Donc la convexité de f implique la croissance énoncée et
réciproquement en prenant s = 1 on écrit toute paire x , y
sous la forme y = x + h et l’inégalité ci-dessus se réécrit en
l’inégalité définissant la convexité de f :

f ((1 − t )x + ty ) = f (x + th) ≤ f (x + h) t + f (x ) (1 − t )

= f (y ) t + f (x ) (1 − t ) .

Cela implique une régularité minimale des fonctions
convexes :
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Corollaire 3.5

Si f : E →] −∞, ∞] est convexe, pour tout x ∈ D ( f ) et
tout h ∈ E , la dérivée directionnelle D ′

h f (x ) existe
dans [−∞, ∞] au sens où la limite suivante existe et
vaut :

D ′
h f (x ) := l im

t→0+

f (x + th) − f (x )
t

= inf
t>0

f (x + th) − f (x )
t .

Démonstrat ion. Par la proposition précédente
g ( t ) = f (x+th )− f (x )

t est croissante donc admet une limite pour
t → 0+ qui coïncide avec l’infimum.

Calcul des cônes normaux courants
Soient g1 , . . . , gn des fonctions convexes C 1 définies

U → R avec U ouvert convexe tel qu’il existe x0 ∈ U avec
g i (x0) < 0 pour tout i .

Soit la contrainte :

C = {x ∈ U : ∀i ∈ {1, .. . , n}, g i (x ) ≤ 0}.

On sait que chaque g−1
i (] − ∞, 0]) est convexe comme

image réciproque d’un intervalle borné supérieurement par
une application convexe. Par intersection, on sait donc que
C = ∩ni=1g

−1
i (] − ∞, 0]) ⊂ U est aussi convexe.
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⋆ Théorème 3.6: (admis, cf Section B.1)

Soit x ∈ C tel que :

1. les l premières contraintes sont actives, c’est à
dire : g1 (x ) = . . . = g l (x ) = 0

2. les autres contraintes ne sont pas actives, c’est
à dire g l+1 (x ) < 0, .. .gn (x ) < 0

Si l = 0, on a NC (x ) = {0} et sinon, le cône normal à C
en x est donné par

NC (x ) =
{︄ l∑︁
i=1

𝜆 i∇g i (x ) , 𝜆 i ≥ 0
}︄

.

Exemple 3.3

Soit A = {(x , y ) ∈ R2 : x ≥ y ≥ 0, }. Si on pose
g1 (x , y ) = y − x , g2 (x , y ) = −y qui sont linéaires donc
convexes et C 1 , on a :

A = {(x , y ) ∈ R2 : g1 (x , y ) ≤ 0, g2 (x , y ) ≤ 0}

Calculons NA (0) le cône normal en 0 = (0, 0).
On a g1 (0, 0) = 0 = g2 (0, 0) donc toutes les
contraintes sont actives.
On calcule donc
∇g1 (0, 0) = (−1, 1) , ∇g2 (0, 0) = (0, −1). D’après le
théorème, on a :

NA (0) = R+ (−1, 1) + R+ (0, −1) .
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Exercice 3.4. 1. Pour A de l’exemple précédent,
si a = (x , x ) pour x > 0. Montrer que
NA (a) = R+ (−1, 1) .

2. Pour b = (x , 0), x > 0. Montrer que
NA (b) = R+ (0, −1) .

3. Y-a-t-il d’autres valeurs de NA (c) et si oui,
pour quels points c ∈ A ?

Fonctions convexes sur R

Soit I un intervalle de R. Pour une fonction f : I → R et
a ∈ I , on considère la fonction (taux d’accroissement de f en

a ) ∆a f définie par ∆a f (x ) =
f (x ) − f (a)
x − a pour tout x ∈ I \ {a}.

La proposition 3.4 se reformule sous la forme :

Proposition 3.7

Une fonction f : I → R est convexe si et seulement si
pour tout a ∈ I , la fonction ∆a f est croissante sur
I \ {a}.

On en déduit les inégalités suivantes (inégalité des
pentes, cf dessin en cours) sur une fonction f :
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⋆ Proposition 3.8

Une fonction convexe f : I → R vérifie l’inégalité des
pentes :

∀a , b , c ∈ I , a < b < c

⇒ f (b) − f (a)
b − a ≤ f (c) − f (a)

c − a ≤ f (c) − f (b)
c − b .

⋆ Théorème 3.9

Soit I un intervalle ouvert de R, et f : I → R une
fonction convexe. Alors pour tout a ∈ I , f admet des
dérivées à droite et à gauche en a . On a pour tout
x ∈ I : f (x ) ≥ f ′d (a) (x − a) + f (a) et
f (x ) ≥ f ′g (a) (x − a) + f (a). En particulier, il existe une
fonction affine g telle que g (a) = f (a) et g (x ) ≤ f (x )
pour tout x ∈ I . De plus, si a < b sont dans I , on a
f ′g (a) ≤ f ′d (a) ≤ f

′
g (b).

Démonstrat ion. Soit a ∈ I . Dans le cas d’une fonction à
une variable, le corollaire 3.5 implique l’existence de
dérivées à droites et à gauches (pour l’instant peut-être
infinies). Dans l’inégalité des pentes en faisant c → b+ ou
a → b− , on obtient :

−∞ <
f (b) − f (a)
b − a ≤ f ′d (b) ,

f ′g (b) ≤
f (c) − f (b)
c − b < +∞.
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Pour a < b , 0 < 𝜖 i < (b − a)/2, l’inégalité des pentes
appliquée aux points a ≤ a + 𝜖 1 < b − 𝜖 2 < b donne :

f (a + 𝜖 1) − f (a)
𝜖 1

≤ f (b − 𝜖 2) − f (a + 𝜖 1)
(b − a − 𝜖 1 − 𝜖 2)

≤ f (b − 𝜖 2) − f (b)
−𝜖 2

et en passant à la limite 𝜖 1 → 0+ ou 𝜖 2 → 0+ puis les
deux, on obtient :

f ′d (a) ≤
f (b − 𝜖 2) − f (b)

−𝜖 2
,

f (a + 𝜖 1) − f (a)
𝜖 1

≤ f ′g (b) ,

f ′d (a) ≤ f
′
g (b) .

Donc f ′d (a) < +∞, f ′g (a) > −∞, ce qui termine la preuve des
dérivabilités à droite et à gauche, et on a l’inégalité
attendue.

De plus, la formulation comme infimum, dans le
corollaire 3.5, montre que pour tout x > a que
f (x ) − f (a)
x − a ≥ f ′d (a) et donc f (x ) ≥ f ′d (a) (x − a) + f (a). De

même, pour tout x < a on a f (x ) − f (a)
x − a ≤ f ′g (a) ; en

multipliant par x − a (qui est négatif !) on a donc que pour
tout x < a f (x ) ≥ f (a) + f ′g (a) (x − a).

De plus, f ′g (b) ≤ f ′d (b) (en passant aux limites
a → b− , c → b+ dans l’inégalité des pentes) ; par
conséquent, pour x < a f ′g (a) (x − a) ≥ f ′d (a) (x − a), et on voit
finalement que l’inégalité f (x ) ≥ f ′d (a) (x − a) + f (a) est valide
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pour tout x ∈ R. Le même raisonnement s’applique pour
montrer que l’autre inégalité est vraie pour tout x ∈ R.

Corollaire 3.10

Soit I un intervalle ouvert de R, alors une fonction
convexe f : I → R est continue.

Exercice 3.5. Trouver une fonction convexe
f : [0, 1 [→ R qui n’est pas continue en {0}.

Proposition 3.11

Si E = R et f est dérivable sur un ouvert convexe
U ⊂ E (donc un intervalle ouvert) alors f est convexe
si et seulement si f ′ est croissante.

Démonstrat ion. ⇒) Supposons f convexe, l’inégalité
qu’on a montrée au (2) du théorème précédent s’écrit
( f ′ (u) − f ′ (v )) (u − v ) ≥ 0 donc ( f ′ (u) − f ′ (v )) , (u − v ) ont même
signe et f ′ est croissante. On peut alternativement utilisé
pour a < b , f ′ (a) = f ′d (a) ≤ f

′
g (b) = f ′ (b) grâce à l’inégalité

vue au théorème 3.9.

⇐) Réciproquement si f ′ croissante, montrons que f
convexe, on veut voir f (𝜆a + (1 − 𝜆 )b) ≤ 𝜆 f (a) + (1 − 𝜆 ) f (b)
pour a < b , 𝜆 ∈]0, 1 [. Par l’égalité des accroissements finis,
la pente f (𝜆a+(1−𝜆 )b )− f (a )

(1−𝜆 ) (b−a ) est atteinte par f ′ en un point de
]a , 𝜆a + (1 − 𝜆 )b [, et de même f (b )− f (𝜆a+(1−𝜆 )b )

(𝜆 (b−a ) est atteinte par
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f ′ en un point de ]𝜆a + (1 − 𝜆 )b , b [ donc par croissance de la
dérivée :

f (𝜆a + (1 − 𝜆 )b) − f (a)
(1 − 𝜆 ) (b − a) ≤ f (b) − f (𝜆a + (1 − 𝜆 )b)

𝜆 (b − a)

⇐⇒f (𝜆a + (1 − 𝜆 )b) ( 1
(1 − 𝜆 ) (b − a) +

1
𝜆 (b − a) )

≤ f (a)
(1 − 𝜆 ) (b − a) +

f (b)
𝜆 (b − a)

⇐⇒ f (𝜆a + (1 − 𝜆 )b) ( 1
𝜆 (1 − 𝜆 ) ) ≤

f (a)
(1 − 𝜆 ) +

f (b)
𝜆

.

Ceci conclut.

3 Propriétés différentielles des
fonctions convexes.

Rappel sur la différentiabilité (au sens
de Fréchet)

On rappelle que pour E , F des e.v.n. l’ensemble des
applications linéaires continues L (E , F ) est un e.v.n. avec
la norme d’opérateur (dite aussi norme subordonnée)
| | | f | | | = sup | |x | |E ≤1 | | f (x ) | |F .
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Définition 3.4

Soit E , F des e.v.n., U ⊂ E un ouvert, f : U → F est
différentiable (au sens de Fréchet) en x si il existe
T ∈ L (E , F ) notée df (x ) telle que

| | f (x + h) − f (x ) − df (x ) (h) | | = o ( | |h | |) , si | |h | | → 0.

f est C 1 (ou continuement différentiable) sur U si f
est différentiable en tout x ∈ U et df : U → L(E , F ) est
continue. On note aussi Dh f (x ) = df (x ) (h)
f est C 2 si f est C 1 et df est aussi C 1 . On note
d 2 f (x ) (h , k) = Dk (Dh f ) (x ) .

On rappelle que si g : U → V ⊂ F , f : V → Z sont
différentiables, alors f ◦ g aussi et
d ( f ◦ g) (x ) = df (g (x )) ◦ dg (x ) . De plus si Z = R et f a un
minimum local en x ∈ V avec V ouvert, alors df (x ) = 0.

Remarque 3.2. Il est important de noter que df (x )
est une application linéaire, donc df (x ) (h) est
linéaire en h , mais pas forcément en x . Pour insister
sur ce point, on note parfois de façon équivalente :

df (x ) (h) ≡ df (x ) .h ≡ df (x ) . [h]

Dans le cas le plus fréquent pour nous où
E = Rn , F = R, si f est différentiable, alors elle admet
des dérivées partielles, le gradient de f en a est noté
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∇f (a) = ( 𝜕f
𝜕x1

(a) , . . . , 𝜕f
𝜕xn (a)). Alors, on a :

df (a) (h) = ⟨∇f (a) , h⟩ =
n∑︁
j=1

𝜕f
𝜕x j

(a)h j .

Caractérisations différentielles des
fonctions convexes

Le théorème suivant résume les 3 caractérisations
principales de la convexité en terme de différentiabilité, par
la position relative des plans tangents et du graphe, par la
monotonie de la dérivée première ou par la positivité de la
dérivée seconde (le résultat n’est pas optimal, il suffit en
fait d’une dérivabilité directionnelle appelée dérivée au
sens de Gâteaux) :

⋆ Théorème 3.12

Soit E un e.v.n. et U un ouvert convexe, f : U → R

une fonction différentiable en tout point de U .

1. f est convexe ssi pour tout u , v ∈ U :

f (u) − f (v ) ≥ df (v ) . [u − v ]

2. f est convexe ssi pour tout u , v ∈ U :

[df (u) − df (v )] . [u − v ] ≥ 0

3. Si f est en plus C 2 , f est convexe ssi d 2 f (x ) est
positive pour tout x ∈ U au sens où
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d 2 f (x ) (h , h) ≥ 0 pour tout x ∈ U , h ∈ E . De plus,
si E = Rn avec la norme euclidienne, ou plus
généralement si E est préhilbertien (cf. chapitre
5), si d 2 f (x ) est définie positive, pour tout x ∈ U
(c’est-à-dire pour tout h ≠ 0, d 2 f (x ) (h , h) > 0)
alors f est strictement convexe.

Remarque 3.3. (Rappel d’algèbre linéaire) Si E = Rn ,
alors d 2 f (x ) est positive si et seulement si la matrice
hessienne Hf (x ) est positive (rappel
(Hf (x )) i j = ( 𝜕2 f

𝜕x i 𝜕x j (x ))). Comme elle est toujours
symétrique et donc diagonalisable en base
orthonormale, cela équivaut à ce que ces valeurs
propres soient toutes positives. Dans le cas n = 2

H ( f ) (x ) =
(︄
r s
s t

)︄
(c’est à dire on prend les notations

de Monge r = 𝜕2 f
𝜕x 2 (x ) , s = 𝜕2 f

𝜕x𝜕y (x ) , t =
𝜕2 f
𝜕y 2 (x )) alors

H ( f ) (x ) est positive si et seulement si r t − s2 ≥ 0 et
r ≥ 0. a

a. En effet D 2 f (x ) ((h1 , h2) , (h1 , h2)) = rh2
1 +2sh1h2+

th 2
2 = (h 2

1 )P (h2/h1) si h1 ≠ 0, avec P (𝜆 ) = r + 2s𝜆 + t𝜆 2

le polynôme de second degré de discriminant ∆ =

4s2 − 4r t . Si ∆ < 0 pas de racine et selon le signe
de r , P est soit toujours positif (cas D 2 f (a) définie
positive) soit toujours négative (D 2 f (a) définie néga-
tive). Si ∆ = 0, il y a une racine double et on a la
même conclusion sur la positivité. Si h1 = 0, alors
D 2 f (x ) ((h1 , h2) , (h1 , h2))) = 2sh1h2 n’est positive que
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si s = 0 car sinon en (h1 , h2) = (s , −1), on a la valeur
strictement négative −2s2 et c’est aussi le seule cas
ou le déterminant r t −s2 est positif pour r = 0). Si ∆ > 0
on a 2 racines réelles et P prend à la fois des valeurs
positives et négatives.

Remarque 3.4. Un cas particulier du (3) est le cas où
il existe c > 0 telle que d 2 f (x ) (h , h) ≥ c | |h | |2 pour tout
x ∈ U , h ∈ E = Rn . Le cas de stricte convexité se
déduit donc en décomposant f = g + c

2 | |x | |
2 . L’inégalité

donne que d 2g = d 2 f − c est positive donc g convexe
et on verra au dernier chapitre que l’identité du
parallélogramme implique que c

2 | |x | |
2 est strictement

convexe, donc par somme f est strictement convexe
(de façon très uniforme). C’est une situation
intéressante pour les problèmes de minimisation qui
permet d’obtenir la convergence de suites
minimisantes et des stratégies algorithmiques de
minimisation (cf. cours de recherche opérationnelle
au S6).

Démonstrat ion. (1) Si f convexe, l’inégalité vient du
corollaire 3.5 en comparant l’infimum à la valeur en t = 1
pour h = u − v :

df (v ) . [u − v ] = inf
t>0

f (v + th) − f (v )
t

≤ f (u + h) − f (u) = f (u) − f (v ) .
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Réciproquement on applique l’inégalité en
z = tx + (1 − t )y ∈ U par convexité de U pour x , y ∈ U d’où :

(A) f (x ) − f (z ) ≥ df (z ) [x − z ] ,

(B) f (y ) − f (z ) ≥ df (z ) [y − z ] ,

et t (A) + (1 − t ) (B) donne

t f (x ) + (1 − t ) f (y ) − f (z )

≥ df (z ) [t (x − z ) + (1 − t ) (y − z )] = df (z ) (0) = 0

ce qui donne l’inégalité de convexité.

(2) Si f convexe, on utilise de même les inégalités du
corollaire 3.5 :

df (u) (v − u) ≤ f (v ) − f (u) , df (v ) (u − v ) ≤ f (u) − f (v )

En sommant, on obtient l’inégalité (df (u) − df (v )) (v − u) ≤ 0.
Réciproquement, on utilise 𝜙( t ) = f ( tx + (1 − t )y ) qui par
composition est dérivable de dérivée
𝜙′ ( t ) = df ( tx + (1 − t )y ) (x − y ). Or si t < s

𝜙′ (s) − 𝜙′ ( t ) = [df (y + s (x − y )) − df (y + t (x − y ))] (x − y )

=
1

s − t [df (y + s (x − y )) − df (y + t (x − y ))]

(y + s (x − y ) − (y + t (x − y ))) ≥ 0

Donc 𝜙′ est croissante et par un résultat à 1 variable
(proposition 3.12) 𝜙 est convexe.

(3)Si f est C 2 , on dérive en t la relation du (2) avec
v = x , u = x + th une fois divisée par t 2 et on obtient
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d 2 f (x ) (h , h) ≥ 0. Réciproquement, en dérivant en t , la
fonction g définie par g ( t ) = df (v + t (u − v )) (u − v ) (qui est
C 1 car df est C 1 ) et en appliquant le théorème fondamental
du calcul :

[df (u) − df (v )] [u − v ] = g (1) − g (0)

=

∫ 1

0
dtdf (v + t (u − v )) (u − v , u − v ) ≥ 0

et on retrouve le critère du (2).

Pour la stricte convexité, commençons par le cas E = R,
donc U = I un intervalle ouvert. Soit [a , b] ⊂ I il suffit de
voir f strictement convexe sur [a , b] . On fixe
[a , b] ⊂]a ′ , b ′ [⊂ [a ′ , b ′] ⊂ I

On suppose dans ce cas f ′′ (x ) > 0 pour tout x ∈ I et f ′′

continue (vue f de classe C 2 ). Donc f ′′ atteint son minimum
sur [a ′ , b ′] en x0 de sorte que f ′′ (x ) ≥ c = f ′′ (x0) > 0 pour
tout x ∈]a ′ , b ′ [⊂ [a ′ , b ′] . Donc comme à la remarque 3.4
implique f = g + c x 2

2 avec g ′′ ≥ 0 donc g convexe et donc f
strictement convexe sur ]a ′ , b ′ [.

On pose ga ,b ( t ) = ta + (1 − t )b . Soit maintenant le cas
général E = Rn . Par définition, f est strictement convexe si
et seulement si pour tout segment
[a , b] ⊂ U , a ≠ b , ha ,b = f ◦ ga ,b est strictement convexe sur
[0, 1] (ou sur ]0, 1 [ en élargissant les intervalles comme
avant). Or h ′′

a ,b ( t ) = df
2 (ga ,b ( t )) (a − b , a − b) > 0 pour tout

t ∈]0, 1 [. On déduit donc du premier cas que ha ,b est
strictement convexe sur ]0, 1 [ et donc aussi f . Comme U
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ouvert, on peut trouver a ′ , b ′ ∈ U avec
[a , b] ⊂ [a ′ , b ′] − {a ′ , b ′}, [a ′ , b ′] ⊂ U .

Pour montrer Comme ga ′ ,b ′ est continue bijective de
[0, 1] → [a ′ , b ′] si a ′ ≠ b ′, [a ′ , b ′] est compact comme image
direct du compact [0, 1] par une application continue.

t ↦→ h ′′
a ,b (at + (1 − t ) (b − a)) =

d 2 f (at + (1 − t ) (b − a)) (b − a , b − a) est continue sur [a ′ , b ′]
donc atteint son minimum en x0 ∈ [a ′ , b ′] qui est donc
h ′′
a ,b (x ) = d

2 f (x0) (b − a , b − a) ≥ cx0 (b − a , b − a). En
appliquant à l’intervalle ouvert ]a ′ , b ′ [ le premier cas, on
déduit que ha ′ ,b ′ est strictement convexe sur ]a ′ , b ′ [, donc
aussi par restriction ha ,b . Comme a ≠ b ∈ U arbitraires, f est
aussi strictement convexe.

Exercice 3.6. Montrer que f (x ) = x 4 est strictement
convexe sur R mais que sa dérivée seconde n’est pas
bornée inférieurement par c > 0.

Convexité, Critère d’extremum global
On retrouve d’abord un critère d’optimisation du

premier ordre

Proposition 3.13

Si f est de classe C1 sur un ouvert convexe U et f est
convexe, alors tout point a ∈ U est un minimum global
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de f si et seulement si c’est un point critique de f
(c’est à dire un point a tel que df (a) = 0).

Démonstrat ion. On sait déjà par le cours de L2 que si f a
un minimum local en a alors df (a) = 0. En effet, rappelons
la preuve, pour tout h ∈ E , il existe 𝜖 > 0 : B (a , 𝜖 | |h | |) ⊂ U
(car U ouvert) et f (a ± th) ≥ f (a) pour tout t ∈] − 𝜖 , 𝜖 [. Donc,
en divisant par t > 0 on obtient :

f (a + th) − f (a)
t →t→0+ df (a) (h) ≥ 0

f (a − th) − f (a)
−t →t→0+ df (a) (h) ≤ 0

donc df (a) (h) = 0 pour tout h ce qui veut dire df (a) = 0.

La nouveauté est la réciproque, on suppose f convexe.
Il suffit de noter par le théorème 3.12 que pour c ∈ C ,
f (c) − f (a) ≥ df (a) (c − a) = 0 donc f (a) = inf c∈C f (c) et a
atteint l’infimum de f sur C .

On a un critère d’optimisation plus général sur un
convexe C ⊂ Rn . On rappelle que ∇f (a) = ( 𝜕f

𝜕x1
(a) , . . . , 𝜕f

𝜕xn (a)).

⋆ Théorème 3.14

Soit C un convexe de Rn avec C ⊂ U un ouvert et
f : U → R une fonction de classe C1 , convexe sur C .
Alors a est un minimum global de f sur C si et
seulement si −∇f (a) ∈ NC (a) c’est à dire si et
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seulement si

∀c ∈ C , ⟨∇f (a) , c − a⟩ ≥ 0.

Démonstrat ion. On rappelle la définition
NC (a) = {f ∈ E : ∀c ∈ S , ⟨f , c − a⟩ ≤ 0} ce qui donne la
dernière reformulation. Si a est un minimum global
f (a) ≤ f ( tc + (1 − t )a) pour c ∈ C , t ∈]0, 1 [ vu que par
convexité tc + (1 − t )a ∈ C . En prenant la limite, on obtient

⟨∇f (a) , c − a⟩ = l im
t→0+

f ( t (c − a) + a) − f (a)
t ≥ 0

Réciproquement, si l’inégalité est vérifiée donc on peut
utiliser le théorème 3.12 (dont la preuve du 1 s’applique
même si C n’est pas ouvert) et on obtient :

0 ≤ ⟨∇f (a) , c − a⟩ = df (a) (c − a) ≤ f (c) − f (a) .

donc f (c) ≥ f (a) pour tout c ∈ C et donc a est un minimum
de f sur C .

Exemple 3.4

On prend g (c) = | | f − c | |22 le carré de la distance
euclidienne à f ∈ E . Alors ∇g (a) = −2( f − a) et donc on
obtient que a ∈ C minimise la distance de x à C si et
seulement si :

∀c ∈ C , ⟨x − a , c − a⟩ ≤ 0.
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Ce sera le critère du théorème de projection sur un
convexe fermé C où l’on verra l’existence d’un tel
point a au dernier chapitre. Dans Rn on peut aussi voir
l’existence par compacité de C ∩ B pour une boule
fermée B assez grande pour qu’une inégalité
grossière permette d’assurer que tout minimum doive
s’y trouver. On obtient ainsi le résultat suivant.

⋆ Théorème 3.15: (théorème de projection sur un
convexe fermé de Rn )

Soit C ⊂ Rn = E un convexe fermé non-vide et | |. | |2 la
norme euclidienne. Pour tout f ∈ Rn , il existe un
unique u = PC ( f ) tel que

| | f − u | |2 = inf
v ∈C

| | f − v | |2 .

De plus, c’est l’unique vecteur u ∈ C tel que :

∀v ∈ C , ⟨f − u , v − u⟩ ≤ 0.

De plus, pour tout c ∈ C , c + NC (c) = P −1
C ({c}) et

forment une partition de Rn .

La preuve suivante par compacité ne fonctionnera pas
en dimension infinie, mais le résultat sera encore vrai dans
un espace de Hilbert (cf. chapitre 5).

Démonstrat ion. Comme C non vide r = inf v ∈C | | f − v | |2 < ∞.
Soit D = C ∩ B ( f , r + 1). Comme la boule fermé est un
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convexe fermé, D est un convexe fermé comme intersection
de convexes fermés, et il est aussi borné par définition,
donc c’est un compact de Rn . De plus, D ⊂ C , donc
inf v ∈C | | f − v | |2 ≤ inf v ∈D | | f − v | |2 par définition de l’infimum.
Mais soit 1 > 𝜖 > 0 et v ∈ C tel que | | f − v | |2 ≤ r + 𝜖 alors par
définition v ∈ D et donc infd ∈D | | f − d | |2 ≤ || f − v | |2 ≤ r + 𝜖 .
Donc en passant à la limite 𝜖 → 0, on a obtenu :

inf
v ∈D

| | f − v | |2 ≤ r = inf
v ∈C

| | f − v | |2 ≤ inf
v ∈D

| | f − v | |2 .

Or v ↦→ || f − v | |2 est continue sur le compact D , donc atteint
son infimum en u ∈ D ⊂ C . Par croissance du carré, c’est
aussi le point où | | f − v | |22 atteint son infimum. La hessienne
de v ↦→ || f − v | |22 est l’identité, donc cette application est
strictement convexe, elle a donc un unique minimum PC ( f ).
La caractérisation du minimum a été vue à l’exemple
précédent. Enfin cette caractérisation donne (en
retraduisant avec la définition de NC (c)

P −1
C ({c}) = {f ∈ E : ∀v ∈ C , ⟨f − c , v − c⟩ ≤ 0}

= {f ∈ E : f − c ∈ NC (c)} = c + NC (c) .

Le fait que PC : E → C est une application surjective (vu
que PC (c) = c pour c ∈ C ) implique le résultat sur la
partition.

4 Premières Inégalités de
convexité

Citons un exemple important et simple.
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Exercice 3.7. Soit f : [0, +∞[→ [0, +∞[ une fonction
concave. Montrer que pour tout x , y ≥ 0 on a
f (x + y ) ≤ f (x ) + f (y ).

Démonstrat ion. Fixons y ≥ 0 et considérons la fonction
g : [0, +∞[→ R définie par g (x ) = f (x ) + f (y ) − f (x + y ).

Alors, pour tout a < b ∈ [0, +∞[, on a

g (b) − g (a)
b − a =

f (b) − f (a)
b − a − f (b + y ) − f (a + y )

b − a .

Puisque f (b + y ) − f (a + y )
b − a =

f (b + y ) − f (a + y )
(b + y ) − (a + y ) est le taux

d’accroissement de f entre (b + y ) et (a + y ), l’inégalité des
pentes nous donne donc que g (b) − g (a)

b − a ≥ 0, autrement dit
g est croissante.

Par conséquent, on a pour tout x que g (x ) ≥ g (0) = f (0),
et donc f (x ) + f (y ) − f (x + y ) ≥ f (0) ≥ 0, ce qu’on voulait
démontrer.

On verra au chapitre intégration section 5.2 l’inégalité
la plus importante, l’inégalité de Jensen, qu’on appliquera
ensuite au chapitre Espace Lp .

Voici en exercice un cas (très) particulier de l’inégalité
de Jensen (cf. Corollaire 5.6 pour une preuve).
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Exercice 3.8. Soit I un intervalle de R, 𝛼1 , . . . , 𝛼n

des réels positifs tels que
n∑︁
i=1

𝛼 i = 1, et 𝜑 une fonction

convexe sur I . Alors, pour tout x1 , . . . , xn ∈ I on a

𝜑

(︄ n∑︁
i=1

𝛼 i x i

)︄
≤

n∑︁
i=1

𝛼 i𝜑(x i ) .
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Chapitre 4

Intégration de
Lesbesgue :
Construction
de l’intégrale
et grands
théorèmes

Le but de ce chapitre “ Construction de l’intégrale et
grands théorèmes" est de donner le cadre pour votre cours
de probabilité du second semestre, en pensant l’espérance
comme une intégrale, tout en généralisant l’intégrale de

132
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Riemann et la somme de séries vues en L1 ou en L2. Ce
seront aussi les 2 exemples importants unifiés dans ce
chapitre (qui donnent les exemples des variables aléatoires
continues et discrètes).

On va se concentrer dans ce chapitre sur la
construction de l’intégrale et les grands théorèmes qu’il faut
apprendre à utiliser. On verra le minimum des définitions
requises pour formuler cette construction. Pour cela, on va
s’appuyer sur les similarités avec vos cours de probabilités
et avec le chapitre 1. Ce sont des constructions importantes
dont la démarche sera reprise par exemple au semestre
prochain pour la construction de l’espérance conditionnelle.
On reporte au deux chapitres suivants les résultats plus
techniques dont il est moins important de retenir une idée
des preuves.

Dans ce chapitre, le corps est K = R ou K = C. Pour
l’intégration, on a aussi besoin de la droite réelle étendue :
R = R ∪ {−∞, +∞} avec les mêmes conventions qu’au chapitre
précédent : ∞ +∞ = ∞ et 𝜆 .∞ = ∞ si 𝜆 > 0, 0.∞ = 0.
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Rappels

Droite réelle étendue

Rappel 4.1. La somme x + y avec x , y ∈ R, est définie
à l’exception du cas où x = ±∞ et y = −x .
Contrairement au cas des limites, on pose 0. + ∞ = 0,
t . + ∞ = +∞ pour t > 0.

Pour un ensemble A non-vide (non-nécessairement
borné), on utilise sup A pour le plus petit majorant M ∈ R de
A et inf A pour le plus grand minorant m ∈ R de A.

On utilisera aussi inf ∅ = +∞, sup ∅ = −∞.

Exercice 4.1. Soient A , B parties non vides de R.
Montrer que :

1. M = sup A ssi M est un majorant de A et il existe
une suite (xn ), avec xn ∈ A telle que xn → M .
Caractérisation analogue de inf A .

2. Tout A (non-vide) admet une borne supérieur
sup A ∈] − ∞, ∞] et une borne inférieur
inf A ∈ [−∞, ∞[.

3. sup A et inf A sont uniques.
4. sup (−tA) = −t inf A, ∀t ∈]0, ∞[. Formules

analogues pour sup ( tA) , inf ( tA) , inf (−tA).
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5. sup (A + B) = sup A + sup B et
inf (A + B) = inf A + inf B (avec la somme usuelle
d’ensemble A + B = {a + b : a ∈ A , b ∈ B}.

6. Si A ⊂ B , alors inf B ≤ inf A ≤ sup A ≤ sup B .
7. Si (xn )n≥0 est une suite croissante de réels,

alors l im xn = sup{xn ; n ≥ 0} = sup xn . Énoncé
analogue pour une suite décroissante.

8. Si sup A > x ∈ R, alors il existe un y ∈ A tel que
y > x .

Limites inférieures et supérieures
⋆ Définition 4.1

Pour une suite xn ∈ R, sa limite supérieure est le
nombre :

l im sup
n

xn = inf
n≥1

sup
k≥n

xk = l im
n→∞

sup
k≥n

xk

(L’égalité vient de la décroissance de la suite des sup,
et c’est aussi la plus grande valeur d’adhérence :exo),
sa limite inférieure est le nombre :

l im inf
n

xn = sup
n≥1

inf
k≥n

xk = l im
n→∞

inf
k≥n

xk .

(c’est aussi la plus petite valeur d’adhérence exo)
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Lemme 4.1

On a les formules suivantes (pour t > 0) :

l im sup −xn = − l im inf xn ,

l im inf −xn = − l im sup xn
l im sup txn = t l im sup xn ,

l im inf txn = t l im inf xn

l im sup xn + yn ≤ l im sup xn + l im sup yn

l im inf xn + yn ≥ l im inf xn + l im inf yn

Enfin, l im sup xn = l im inf xn = ℓ ∈ R si et seulement si
xn → ℓ .

Démonstrat ion. Toutes les (in)égalités sont des
conséquences des propriétés des sup, inf puis un passage à
la limite :

sup
k≥n

−xn = − inf
k≥n

xn , inf
k≥n

−xn = − sup
k≥n

xn

sup
k≥n

txn = t sup
k≥n

xn , inf
k≥n

txn = t inf
k≥n

xn

sup
k≥n

xn + yn ≤ sup
k≥n

xn + sup
k≥n

yn

inf
k≥n

xn + yn ≥ inf
k≥n

xn + inf
k≥n

yn

Enfin, le sens intéressant est celui où
l im sup xn = l im inf xn = ℓ ∈ R et alors
Xn = inf k≥n xk ≤ xn ≤ supk≥n xk = Yn et le théorème des
gendarmes permet de conclure que la limite commune de
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Xn , Yn est aussi la limite ℓ de xn . Réciproquement, si
xn → ℓ , alors pour tout 𝜖 > 0, pour n grand, ℓ − 𝜖 ≤ xn ≤ ℓ + 𝜖

d’où on déduit ℓ − 𝜖 ≤ l im inf xn ≤ l im sup xn ≤ ℓ + 𝜖 et 𝜖 → 0
conclut.

1 Tribus, fonctions mesurables
et mesures

Tribus
Vous avez l’habitude de parler d’évènement d’un

espace de probabilité et de considérer la famille T ⊂ P(Ω)
des évènements d’un tel espace. Souvent (pour les
probabilités discrètes), on peut prendre T = P(Ω),
l’ensemble de toutes les parties de Ω, mais cela ne sera pas
possible pour généraliser l’intégrale de Riemann, on ne
pourra pas définir l’intégrale de n’importe quel ensemble.
La définition suivante retient donc les propriétés
essentielles de la famille des évènements que l’on veut pour
définir une probabilité sur une telle famille.

⋆ Définition 4.2

Une tribu (ou 𝜎-algèbre) sur Ω est une famille T de
partie de Ω, soit T ⊂ P(Ω) telle que :

1. ∅ ∈ T
2. Si A ∈ T alors Ac ∈ T .
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3. Pour toute suite infinie (dénombrable) (An )n≥1

de parties de T , alors leur union est aussi dans
la tribu

⋃︂
n≥1

An ∈ T .

Un ensembe A ∈ T est appelée partie T -mesurable
ou simplement mesurable.
Un espace mesurable est une paire (Ω , T) formée
d’un ensemble Ω et d’une tribu T sur Ω . Les enembles
A ∈ T sont appelés ensembles mesurables (pour la
tribu T ou T -mesurables).

Le résultat suivant est assez évident

Lemme 4.2

Pour toute suite finie A1 , · · · , An de T , alors
A1 ∪ · · · ∪ An ∈ T .
Pour toute suite infinie (dénombrable, resp. finie)
(An )n≥1 (resp. A1 , · · · , An ) de parties de T , alors leur

intersection
⋂︂
n≥1

An ∈ T (resp.
n⋂︂
i=1
A i ∈ T ).

Démonstrat ion. Pour le premier, il suffit de prolonger la
suite en Ak = ∅ ∈ T pour k ≥ n + 1 et alors
A1 ∪ · · · ∪ An =

⋃︂
n≥1

An ∈ T

Pour l’intersection, il suffit de combiner union et
complémentaire, par exemple dans le cas dénombrable :⋂︂
n≥1

An =

(︂ ⋃︂
n≥1

Acn
)︂ c

∈ T .
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Remarque 4.2. On verra au chapitre suivant la notion
plus élémentaire d’algèbre de parties (ou clan) où l’on
demande seulement la stabilité par union finie, mais
elle ne suffira pas pour la construction de l’intégrale.
Il faut comparer la notion de tribu à celle de topologie
de la remarque 2.3, qui était l’axiomatisation des
parties ouvertes d’un espace métrique. Comme une
topologie, une tribu est stable par intersection finie,
mais même plus elle est stable par intersection
dénombrable. Mais par contre, elle n’est pas stable
par union quelconque, mais seulement par union
dénombrable. Donc aucune des notions n’est plus
générale que l’autre. Enfin, la nouveauté est la
stabilité par complémentaire, ou autrement dit par
toutes les opérations logiques de bases sur les
ensembles (complémentaire, intersection et union
binaires), et c’est la clef pour son application en
probabilité (on veut aussi que les évènements soient
stables par toutes les opérations logiques). On va
cependant traiter dans beaucoup d’aspect la notion de
tribu comme la famille des ouverts d’un espace
métrique (ou plus généralement topologique).

Mesure et Probabilité sur une tribu
L’intégation va dépendre d’un objet de base qui permet

la “mesure du volume" (ou en physique la “mesure de la
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masse" ou d’autres grandeurs extensives) et qui va
généraliser la notion de probabilité.

⋆ Définition 4.3: Définition d’une mesure

Soit (Ω , T) un espace mesurable.
On appelle mesure (positive) est une application
𝜇 : T → [0, +∞] ayant les propriétés suivantes :

1. 𝜇(∅) = 0
2. (𝜎-additivité) Pour toute suite au plus

dénombrable (A i ) i ∈I a d’éléments de T deux à
deux disjoints,

𝜇(
⋃︂
i ∈I
A i ) =

∑︁
i ∈I

𝜇(A i ) .

Une mesure de probabilité P est une mesure
positive P vérifiant en plus P (Ω) = 1. Un espace
mesuré (resp. de probabilité) est un triplet (Ω , T , 𝜇)
(resp. (Ω , T , P )) formée d’une mesure positive 𝜇 (resp.
une mesure de probabilité P ) sur un espace
mesurable (Ω , T).

a. c’est à dire soit I = [[0, n]] et dans ce cas∑︁
i ∈I

𝜇(A i ) =

n∑︁
i=0

𝜇(A i ), soit soit I = N et dans ce cas∑︁
i ∈I

𝜇(A i ) =
∞∑︁
i=0

𝜇(A i ) est la somme de la série, finie ou

+∞

Une mesure a des propriétés très similaires à celle
d’une probabilité dont vous avez l’habitude (exo).
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⋆ Proposition 4.3

i) Si A ⊂ B alors 𝜇(A) ≤ 𝜇(B) (𝜇 est croissante).
ii) Pour toute suite au plus dénombrable (A i ) i ∈I ,

𝜇(
⋃︂
i ∈I
A i ) ≤

∑︁
i ∈I

𝜇(A i ) (𝜇 est sous-additive).

iii) Si (An )n≥1 est une suite croissante,

𝜇(
⋃︂
n≥1

An ) = l im
n→∞

𝜇(An ) = sup
n≥1

𝜇(An ) .

iv) Si (An )n≥1 est une suite décroissante avec
𝜇(A1) < ∞,

𝜇(
⋂︂
n≥1

An ) = l im
n→∞

𝜇(An ) = inf
n≥1

𝜇(An ) .

v) Si 𝜇(Ω) est finie : 𝜇(Ac ) = 𝜇(Ω) − 𝜇(A).

Ensembles 𝜇-négligeables
⋆ Définition 4.4

Soit (Ω , T , 𝜇) un espace mesuré, un ensemble A ⊂ Ω

est 𝜇-négligeable si il existe B ∈ T contenant A ⊂ B
et avec 𝜇(B) = 0.

Attention, A n’est par forcément mesurable donc on ne
peut PAS déduire 𝜇(A) = 0. Mais la seule extension possible,
si A devenait mesurable, serait la valeur 0.
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Lemme 4.4

Une union au plus dénombrable d’ensembles
𝜇-négligeables est 𝜇-négligeable.

Démonstrat ion. Si (An )n≥0 est 𝜇-négligeable, alors il
existe une suite Bn ∈ T avec 𝜇(Bn ) = 0 et An ⊂ Bn , donc⋃︂

n≥0
An ⊂

⋃︂
n≥0

Bn ∈ T , 𝜇
(︂ ⋃︂
n≥0

Bn
)︂
≤

∑︁
n≥0

𝜇(Bn ) = 0.

Exercice 4.2. Montrer que le seul ensemble
𝜈-négligeable pour la mesure de comptage 𝜈 est
l’ensemble vide.

Définition 4.5

Une propriété P (𝜔) des points 𝜔 ∈ Ω est dite vraie
presque partout (par rapport à 𝜇, ou 𝜇-presque
partout, ou 𝜇-.p.p) si {𝜔 ∈ Ω : ¬P (𝜔)} est
𝜇-négligeable. Autrement dit, si il existe B ∈ T avec
𝜇(B) = 0 telle que P est vraie sur B c .

Exercice 4.3. Montrer que l’indicatrice de Q 1Q est
nulle 𝜆-p.p.

Un ensemble peut donc être dense et 𝜆-négligeable.
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Exemples de tribus
Exemple 4.1

T = P(Ω) est une tribu (appelée tribu discrète) et
T = {∅, Ω} est aussi une tribu (appelée tribu
grossière).

Tribus engendrés par une famille d’ensembles

En pratique, on n’a pas besoin de connaître en détail,
tous les éléments contenus dans une tribu, il suffit de savoir
qu’on a assez d’élements voulus (les générateurs de la
tribu). Ceci est permis par le lemme suivant.

Lemme 4.5

Si (Ti ) i ∈I est une famille de tribus, alors ⋂︁
i ∈I Ti est

une tribu. On peut donc parler de la plus petite tribu
contenant une famille A ⊂ P(Ω), qui est l’intersection
de toutes les tribus contenant A, elle est notée 𝜎(A)
et appelée la tribu engendrée par A.

Démonstrat ion. C’est une conséquence directe de la
forme de la définition. ∅ ∈ Ti pour tout i , donc ∅ ∈ ⋂︁

i ∈I Ti .

De plus, si A ∈ ⋂︁
i ∈I Ti , alors A ∈ Ti pour tout i , donc

comme Ti est une tribu, Ac ∈ Ti pour chaque i et donc
Ac ∈ ⋂︁

i ∈I Ti .
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Enfin, si pour chaque n ≥ 1, An ∈ ⋂︁
i ∈I Ti , alors An ∈ Ti

pour tout i , donc comme Ti est une tribu,
⋃︂
n≥0

An ∈ Ti pour

chaque i et donc
⋃︂
n≥1

An ∈
⋂︂
i ∈I

Ti .

Exemple 4.2: (cf. TD)

Si A ⊂ Ω, la tribu engendrée par A est
𝜎({A}) = {A , Ac , ∅, Ω}.

Exemple 4.3: (cf. TD)

Si A1 , · · · , An ⊂ Ω forment une partition (c’est à dire
sont 2 à 2 disjoints et d’union Ω), la tribu engendrée
𝜎({A1 , · · · , An }) = {∪i ∈IA i : I ⊂ [[1, n]]}.

⋆ Définition 4.6

Pour (X , d ) un espace métrique dont T est la
topologie des ouverts, on appelle tribu borélienne
sur X , notée B(X ) = 𝜎(T ) la tribu engendrée par les
ouverts de X .

Le résultat suivant est montré en annexe C en section
2.
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⋆ Lemme 4.6

Sur Rn , la tribu borélienne a le système de
générateurs :

B(Rn ) = 𝜎

(︂ n∏︂
i=1

]a i , b i [, a i < b i ∈ R
)︂

A partir de là, on obtiendra en TD les autres
générateurs usuels.

⋆ Lemme 4.7: (cf. TD)

Sur Rn , la tribu borélienne a les différents systèmes
de générateurs :

B(Rn ) = 𝜎

(︂ n∏︂
i=1

] − ∞, b i ] , b i ∈ R
)︂

= 𝜎

(︂ n∏︂
i=1

[a i , +∞[, a i ∈ R
)︂

= 𝜎

(︂ n∏︂
i=1

[a i , b i ] , a i < b i ∈ R
)︂

= 𝜎

(︂
F : F fermé de Rn

)︂
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Tribu engendrée par une fonction

Lemme 4.8

Soit f : Ω → (E , B) une fonction,
𝜎( f ) := f −1 (B) = {f −1 (B) , B ∈ B} ⊂ T est une tribu sur
Ω. On l’appelle tribu engendrée par f .

Démonstrat ion. C’est essentiellement une application des
rappels sur l’image réciproque de fonctions (1.1). D’abord
f −1 (∅) = ∅ ∈ 𝜎( f ), f −1 (E ) = Ω ∈ 𝜎( f ). Pour A ∈ B (resp,
An ∈ B , n ≥ 1) :

[f −1 (A)]c = f −1 (Ac ) ∈ 𝜎( f ) car Ac ∈ B ,⋃︂
n≥1

f −1 (An ) = f −1
(︂ ⋃︂
n≥1

An
)︂
∈ 𝜎( f ) car

⋃︂
n≥1

An ∈ B

Exemples de mesures
Exemple 4.4: (Mesure de comptage)

Sur tout ensemble Ω, on définit sur P(Ω), la mesure
suivante (dite de comptage)

𝜈(A) =
{︄

Card(A) si A fini
+∞ sinon
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Exemple 4.5: (Mesure discrète sur Ω fini)

Sur tout ensemble dénombrable Ω = {𝜔n , n ∈ [[1, n]]},
pour (𝜇 i ) ∈ [0, +∞[n on définit sur P(Ω) :

𝜇(A) =
∑︁
𝜔i ∈A

𝜇 i .

C’est une mesure sur P(Ω). Une fois connue
l’intégration pour la mesure de comptage (ou de façon
équivalente si on connaît la notion de famille
sommable, on pourra généraliser cet exemple au cas
Ω dénombrable)

Enfin, l’exemple fondamental est le théorème donnant
l’existence de la mesure de Lebesgue (admis)

⋆ Théorème 4.9: (définissant l’intégrale de Le-
besgue)

(admis) Il existe une unique mesure 𝜆 sur (Rd , B(Rd ))
invariante par translation a telle que

𝜆

(︂
[0, 1]n

)︂
= 1.

Cette mesure est appelée mesure de Lebesgue sur
Rd et notée 𝜆 ≡ 𝜆 d et elle vérifie pour a i < b i :

𝜆

(︂ n∏︂
i=1

[a i , b i ]
)︂
= 𝜆

(︂ n∏︂
i=1

]a i , b i [
)︂
=

n∏︂
i=1

(b i − a i ) .

a. au sens ou pour tout a ∈ Rd , B ∈ B(Rd ), si on note
a + B = {a + b , b ∈ B}, alors 𝜆 (a + B) = Λ (B)
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Proposition 4.10: (définissant la mesure image)

Soit f : Ω → (E , B)une fonction et (Ω , 𝜎( f ) , 𝜇) un
espace mesuré alors la formule 𝜇f (B) = 𝜇( f −1 (B)) for
B ∈ B est une mesure sur T , appelée mesure image
de 𝜇 par f .

Démonstrat ion. Pour voir que 𝜇f est une mesure sur B, il
faut noter 𝜇f (∅) = 𝜇(∅) = 0. Puis pour la 𝜎-additivité, pour
A i ∈ B , i ∈ I deux à deux disjoints avec I au plus
dénombrable, on a :

𝜇f
(︂⋃︂
i ∈I
A i

)︂
= 𝜇

(︂
f −1

(︂⋃︂
i ∈I
A i

)︂)︂
= 𝜇

(︂⋃︂
i ∈I
f −1 (A i )

)︂
=

∑︁
i ∈I

𝜇( f −1 (A i )) =
∑︁
i ∈I

𝜇f (A i ) ,

vu que les f −1 (A i ) ∈ 𝜎( f ) sont aussi deux à deux disjoints
par (1.1), on a pu utilisé à l’avant-dernière égalité la
𝜎-additivité de 𝜇.

Fonctions mesurables
Il nous reste à spécifier les fonctions qu’on va pouvoir

intégrer. Il faut lire la définition suivante comme l’analogue
de la définition topologique de la continuité (proposition
2.22)
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Définition 4.7

Une fonction f : (Ω , T) → (E , B) entre espaces
mesurables est mesurable si f −1 (B) ⊂ T c’est à dire
si pour tout B ∈ B, f −1 (B) ∈ T . Si
(Ω , T) = (X , B(X ) , (E , B) = (Y , B(Y )), on appelle
fonction borélienne une fonction mesurable
f : (X , B(X )) → (Y , B(Y )) .

On déduit immédiatement de la définition comme le
corollaire 4.11 :

⋆ Lemme 4.11: (Stabilité par composition de la me-
surabilité)

Si f : (D , A) → (E , B) et g : (E , B) → (F , C) sont
mesurables, alors, g ◦ f : D → F est mesurable.

Démonstrat ion. Pour tout ensemble mesurable U ∈ C,
g−1 (U ) ∈ B est mesurable de Y par mesurabilité de g , puis
f −1 (g−1 (U )) ∈ T est mesurable de X par mesurabilité de f ,
mais f −1 (g−1 (U )) = (g ◦ f )−1 (U ) ∈ A. Comme c’est vrai pour
tout ensemble mesurable U , on déduit de la définition
précédente g ◦ f est mesurable.

Comme en probabilité, l’intérêt principal de la notion
de mesurabilité est de permettre de définir la notion de
mesure image (analogue de la loi d’une variable aléatoire).
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Proposition 4.12

Soit f : Ω → (E , B) une fonction, la tribu engendrée
par f du lemme 4.8 𝜎( f ) := f −1 (B) = {f −1 (B) , B ∈ B} est
la plus petite tribu rendant f mesurable. Autrement
dit : Si T ⊂ P(Ω) est une tribu, f : (Ω , T) → (E , B) est
mesurable si et seulement si 𝜎( f ) ⊂ T .

Démonstrat ion. On a vu au lemme 4.8 que 𝜎( f ) est une
tribu. f : (Ω , 𝜎( f )) → (E , B) est mesurable par définition, car
pour tout B ∈ B, on a f −1 (B) ∈ 𝜎( f ) par définition de 𝜎( f ), et
cela veut dire f : (Ω , 𝜎( f )) → (E , B) est mesurable par
définition de la mesurabilité. L’équivalence
f : (Ω , T) → (E , B) est mesurable si et seulement si 𝜎( f ) ⊂ T
vient aussi directement des deux mêmes définitions.
L’inclusion 𝜎( f ) ⊂ T dit justement que 𝜎( f ) est plus petite
(pour l’inclusion) que toute tribu rendant f mesurable.

Exemple 4.6

Si A ∈ T , la fonction indicatrice 1A : (Ω , T) → (R, B(R))
est mesurable, car 𝜎(1A) = 𝜎({A}) = {A , Ac , ∅, Ω} par
l’exemple 4.2 et donc 𝜎(1A) ⊂ T par la définition
d’une tribu.

En pratique, on a besoin d’une description en terme de
parties génératrices :
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Lemme 4.13

Une fonction f : (Ω , T) → (E , 𝜎(A)), vers un espace
mesurable engendré par une famille A, est mesurable
si et seulement si f −1 (A) ⊂ T c’est à dire si pour tout
A ∈ A, f −1 (A) ∈ T .

Démonstrat ion. Si f mesurable, vu que A ⊂ 𝜎(A), le fait
que f −1 (A) ∈ T est une conséquence directe de la définition.
Le contenu du lemme est donc la réciproque.

On introduit une fammille B (qui va se révéler être la
plus grande tribu de E rendant f mesurable, la preuve est
donc très similaire à celle sur 𝜎( f )) :

B = {B ∈ P(E ) : f −1 (B) ∈ T }.

Par hypothèse A ⊂ B. Vérifions que B est une tribu (par la
définition) :

⊲ ∅ ∈ B car f −1 (∅) = ∅ ∈ T
⊲ Si B ∈ B, alors f −1 (B c ) = f −1 (B)c ∈ T car T est une

tribu donc B c ∈ B
⊲ Si An ∈ B, n ≥ 1, alors f −1 (

⋃︂
n≥1

An ) =
⋃︂
n≥1

f −1 (An ) ∈ T car

T est une tribu donc
⋃︂
n≥1

An ∈ B

En conséquence, B est une tribu qui contient A, donc
𝜎(A) ⊂ B ce qui dit exactement : ∀B ∈ 𝜎(A) : f −1 (B) ∈ T soit
la définition de f mesurable.
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Corollaire 4.14

Une fonction f : (Ω , T) → (Y , B(Y )) vers la tribu
borélienne d’un espace métrique est mesurable, si et
seulement si pour tout ouvert U (resp. tout fermé F )
on a f −1 (U ) ∈ T (resp. f −1 (F ) ∈ T ). En particulier, si
(Ω , T) = (X , B(X )) pour un espace métrique X , alors,
toute fonction continue f est borélienne.

Démonstrat ion. Le premier résultat est une conséquence
directe du lemme vu que
B(Y ) = 𝜎

(︂
{U ⊂ Y : U ouvert}

)︂
= 𝜎

(︂
{F ⊂ Y : F fermé}

)︂
. Par

la proposition 2.22, f −1 (U ) est ouvert (resp. f −1 (F ) est
fermé) donc dans B(X ) pour tout ouvert U de Y , on déduit
que la continuité implique la mesurabilité.

En composant, avec les produits et sommes qui sont
des applications continues, on obtient les mêmes stabilités
algébriques que pour les fonctions continues :

Corollaire 4.15

Les fonctions mesurables (Ω , T) → R sont stables par
combinaisons linéaires, produits, fractions
rationnelles à dénominateur non nulle, passage à
l’exponentielle (etc.)

On tire de même immédiatement des lemmes 4.6 et
4.7 :
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Corollaire 4.16

Une fonction f = ( f1 , · · · , fn ) : (Ω , T) → (Rn , B(Rn )) est
mesurable si et seulement si l’une des assertions
suivantes est vérifiée :

1. Pour tout b1 , · · · , bn ∈ R, f −1
(︂ n∏︂
i=1

] − ∞, b i ]
)︂
∈ T

2. Pour tout a1 , · · · , an ∈ R, f −1
(︂ n∏︂
i=1

[a i , +∞[
)︂
∈ T

3. Pour tout a1 < b1 , · · · , an < bn ∈ R,

f −1
(︂ n∏︂
i=1

[a i , b i ]
)︂
∈ T

4. Pour tout a1 < b1 , · · · , an < bn ∈ R,

f −1
(︂ n∏︂
i=1

]a i , b i [
)︂
∈ T .

5. Pour tout i = 1, · · · , n ,
f1 , · · · , fn : (Ω , T) → (R, B(R)) sont toutes
mesurables.

Corollaire 4.17

Une fonction f : (Ω , T) → (R, B(R)) (à valeur dans
l’espace métrique (R, dR) de l’exemple 2.5) est
mesurable si et seulement si les trois assertions
suivantes sont vérifiées :

1. f −1 ({∞}) ∈ T
2. f −1 ({−∞}) ∈ T
3. Pour tout a < b ∈ R, f −1 ( [a , b]) ∈ T

On renvoie aussi à l’annexe section 3 pour le résultat
important suivant
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⋆ Théorème 4.18

Les constructions suivantes sont mesurables :

1. Un supremum d’une suite fn : (Ω , T) → R de
fonctions mesurables

2. La l im sup, l im inf d’une suite fn : (Ω , T) → R de
fonctions mesurables

3. Une limite simple d’une suite fn : (Ω , T) → R de
fonctions mesurables

Unicité des mesures 𝜎-finies
Définition 4.8

Soit (Ω , A , 𝜇) un espace mesuré. On dit que (X , A , 𝜇)
est 𝜎-fini s’il existe une suite de parties mesurables
(An )n∈N telle que 𝜇(An ) < +∞ pour tout n , et Ω =

⋃︂
n
An .

Cette hypothèse est par exemple vérifiée quand
𝜇(Ω) < +∞ (donc en particulier quand 𝜇 est une mesure de
probabilité), quand Ω = N muni de la mesure de comptage,
ou quand Ω = Rn muni de la mesure de Lebesgue.

On renvoie à l’annexe C en section 1 pour une preuve
d’un corollaire très classique au lemme de classe monotone
pour les mesures dans le cas des mesures 𝜎-finies.
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Corollaire 4.19: (au lemme de classe monotone)

Soient 𝜇 et 𝜈 des mesures sur un espace mesurable
(Ω , T). Soit E une famille stable par intersection finie
qui engendre T . Si 𝜇 et 𝜈 coïncident sur E (i.e.
𝜇(E ) = 𝜈(E ) , ∀E ∈ E) et si il existe une suite de parties
An ∈ E telle que Ω = ∪nAn et 𝜇(An ) = 𝜈(An ) < +∞ alors
𝜇 et 𝜈 sont égales (i.e. 𝜇(B) = 𝜈(B) , ∀B ∈ T ).

2 Les fonctions étagées
(mesurables) et leur intégrale

Comme les fonctions en escalier sont la base pour
l’intégrale de Riemann, on considère ici la classe des
fonctions étagées (mesurables) qui sont la base de
l’intégrale de Lebesgue. Les fonctions en escaliers sont les
combinaisons linéaires des indicatrices d’intervalles 1 ]a ,b ] .
On les prend pour base de l’intégrale de Riemann car on
sait définit

∫
R 1 ]a ,b ] (x )dx = (b − a).

On fixe à partir de maintenant un espace mesuré
(Ω , T , 𝜇).

Maintenant, qu’on dispose d’une mesure 𝜇, on veut
définir de même pour A ∈ T :∫

Ω
1Ad 𝜇 ≡

∫
Ω

1A (𝜔)d 𝜇(𝜔) = 𝜇(A) .

Plus généralement, on définit :
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Définition 4.9

Pour A , B ∈ T , l’intégrale de 1A sur B par rapport à
𝜇 est notée et définie par :∫

B
1Ad 𝜇 ≡

∫
B

1A (𝜔)d 𝜇(𝜔) = 𝜇(A ∩ B) .

Les combinaisons linéaires de fonctions indicatrices
(mesurables) vont donc être de même la base de l’intégrale
de Lebesgue :

Définition 4.10

Soit (Ω , T) un espace mesurable, on appelle fonction
étagée f : (Ω , T) → Rd une fonction de la forme

f (𝜔) =
n∑︁
i=1
a i 1A i (𝜔)

pour a i ∈ Rd et A i ∈ T . Pour d = 1, la représentation
est dite canonique si a1 < · · · < an , tous non nuls
(∀i , a i ≠ 0) et les A1 , · · · , An sont deux à deux disjoints
et non vides.

Exercice 4.4. Les fonctions étagées sur (Ω , T)
forment un sous espace vectoriel des fonctions
Ω → Rd .

Comme on veut que l’intégrale soit linéaire, on est
conduit à la définition suivante :
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Définition 4.11

Soit f une fonction étagée positive f (𝜔) =
n∑︁
i=1
a i 1A i (𝜔)

avec A i ∈ T des ensembles mesurables deux à deux
disjoints (a i > 0), on définit l’intégrale de f sur
B ∈ T par rapport à 𝜇 par :∫

B
fd 𝜇 ≡

∫
B
f (𝜔)d 𝜇(𝜔) =

n∑︁
i=1
a i 𝜇(A i ∩ B) .

On reporte à l’annexe C section 4 la preuve facile mais
fastidieuse du lemme suivant :

Lemme 4.20

Soit (Ω , T , 𝜇) un espace mesuré, et
f , h : (Ω , T) → [0, +∞] étagées positives, B ∈ T :

1. Si f ≥ 0, alors
∫
B fd 𝜇 =

∫
Ω

1B fd 𝜇.
2. Si f ≥ 0, c > 0, alors

∫
B cfd 𝜇 = c

∫
B fd 𝜇.

3. (additivité)
∫
B f + hd 𝜇 =

∫
B fd 𝜇 +

∫
B hd 𝜇.

4. (monotonie) Si 0 ≤ f ≤ h alors
0 ≤

∫
B fd 𝜇 ≤

∫
B hd 𝜇.

Le résultat crucial qui va permettre l’extension de
l’intégrale est le résultat suivant :
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⋆ Lemme 4.21

Soit (Ω , T) un espace mesurable. Toute fonction
mesurable positive f : (Ω , T) → (R, B(R)) est limite
simple d’une suite croissante de fonctions étagées
positives.

Démonstrat ion. On prend

fn (x ) = 2n1 {x : f (x )=+∞} +
4n−1∑︁
k=0

k
2n 1 f −1 ( [ k

2n , k+1
2n [ ) (x )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k

2n si k
2n ≤ f (x ) < k+1

2n , 0 ≤ k < 4n

0 si 4n−1+1
2n = 2n ≤ f (x ) < +∞

2n si f (x ) = +∞
≤ f (x ) .

1. Comme f mesurable, chacun des f −1 ( [ k2n , k+1
2n [) ∈ T et

f −1 ({+∞}) ∈ T et donc fn est étagée (comme
combinaison linéaire de fonctions indicatrices
mesurables).

2. La suite est croissante 0 ≤ fn ≤ fm pour n ≤ m . Sur
f −1 ( [0, 2n ]), on découpe chaque intervalle de
définition de fn en 2m−n ensembles dans la définitions
de fm . Si fm (x ) = k

2m ≤ f (x ) < k+1
2m , 0 ≤ k < 2m+n , on

trouve k = 𝜅2m−n + l pour 0 ≤ l < 2m−n , 0 ≤ 𝜅 < 4n par
division euclidienne et

fn (x ) =
𝜅

2n ≤ fm (x ) = k
2m =

𝜅

2n + l
2m

≤ f (x ) < 𝜅

2n + l + 1
2m ≤ fn (x ) +

l + 1
2m

Sur f −1 (]2n , +∞[) on a fn (x ) = 0 ≤ fm (x ). Vu
fn (x ) ≤ f (x ) ≤ fn (x ) + 1

2n on en déduit
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f (x ) − 1
2n ≤ fn (x ) ≤ f (x ) si f (x ) ≤ 2n , on déduit la

convergence simple.

3 Intégrale des fonctions
mesurables positives

On peut maintenant définir l’intégrale des fonctions
mesurables positives :

⋆ Définition 4.12

Soit f : Ω → [0, +∞] une fonction mesurable positive
sur un espace mesuré (Ω , T , 𝜇), on définit l’intégrale
de f sur B ∈ T par rapport à 𝜇 par :∫

B
fd 𝜇 ≡

∫
B
f (𝜔)d 𝜇(𝜔)

= sup
{︂ ∫

B
gd 𝜇 : g é tagée, 0 ≤ g ≤ f

}︂
∈ [0, +∞] .

Remarque 4.3. Pour la mesure de comptage 𝜈 sur I ,
toute suite a : I → [0, +∞] est mesurable positive et
l’intégrale correspond à la définition de la somme
d’une famille sommable :∫

I
fd 𝜈 =

∑︁
i ∈I
a i = sup

⎧⎪⎪⎨⎪⎪⎩
∑︁
j ∈J
a j : J ⊂ I , f in i

⎫⎪⎪⎬⎪⎪⎭ .
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Remarque 4.4. Si f est étagée positive, pour chaque
g ≤ f étagée positive, on a vu au lemme 4.20,∫
B gd 𝜇 ≤

∫
B fd 𝜇 donc∫

B
fd 𝜇 ≥ sup

{︂ ∫
B
gd 𝜇 : g é tagée, 0 ≤ g ≤ f

}︂
.

Et comme f fait parti des g du sup, on a en fait égalité,
et la valeur de la définition du cas étagé positif
coïncide avec la nouvelle valeure.

Premières propriétés
On reporte à l’annexe C section 4 la preuve facile mais

fastidieuse du lemme suivant :

Lemme 4.22

Soit (Ω , T , 𝜇) un espace mesuré, et
f , h : (Ω , T) → [0, +∞] mesurable positive, A , B ∈ T :

1. (monotonie) Si 0 ≤ f ≤ h alors
0 ≤

∫
B fd 𝜇 ≤

∫
B hd 𝜇.

2. Si f ≥ 0, alors
∫
B fd 𝜇 =

∫
Ω

1B fd 𝜇. En particulier,
pour A ⊂ B , 0 ≤

∫
A fd 𝜇 ≤

∫
B fd 𝜇.

3. Si f ≥ 0, c ≥ 0, alors
∫
B cfd 𝜇 = c

∫
B fd 𝜇.

4. Si f = 0 ou 𝜇(B) = 0, alors
∫
B fd 𝜇 = 0.

5. (sur-additivité)
∫
B f + hd 𝜇 ≥

∫
B fd 𝜇 +

∫
B hd 𝜇.

La dernière propriété n’est pas optimale, nous verrons
l’additivité en utilisant le théorème de convergence
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monotone. Nous la mentionnons ici pour signaler que
l’additivité n’est pas évidente à partir de la définition.

Théorème de convergence monotone
de Beppo Levi

⋆ Théorème 4.23: (Théorème de convergence mo-
notone ou TCM)

Soit Zn : (Ω , T) → [0, +∞] , une suite croissante de
fonctions mesurables positives qui tend simplement
vers Z . Alors Z est mesurable et pour tout B ∈ T :

l im
n→∞

∫
B
Znd 𝜇 =

∫
B
Zd 𝜇 ≡

∫
B

l im
n→∞

Znd 𝜇.

Démonstrat ion. La mesurabilité de Z vient du théorème
4.18. Posons 𝛼 = supn

∫
B Znd 𝜇.

Comme Zn ≤ Zm ≤ Z pour n ≤ m , la monotonie de
l’intégrale (du lemme 4.22) montre que∫

B
Znd 𝜇 ≤

∫
B
Zmd 𝜇 ≤

∫
B
Zd 𝜇

Donc, comme la suite
∫
B Znd 𝜇 est croissante, elle converge

vers son sup et :

l im
n→∞

∫
B
Znd 𝜇 = 𝛼 ≤

∫
B
Zd 𝜇.

Pour la réciproque, soit 1 > 𝜖 > 0 et une fonction étagée

g (𝜔) =
m∑︁
i=1
b i 1B i (𝜔) ≤ Z (𝜔). On pose



Chapitre 4. Intégrat ion de Lesbesgue 162

An = {𝜔 ∈ Ω : Zn (𝜔) ≥ Z (𝜔) − 𝜖Z (𝜔)}. Par la monotonie de
l’intégrale et la formule pour les fonctions étagées :∫

B
Znd 𝜇 ≥

∫
B
Zn1An d 𝜇

≥ (1 − 𝜖 )
∫
B
g1An d 𝜇 (4.1)

= (1 − 𝜖 )
m∑︁
i=1
b i 𝜇(B i ∩ An ∩ B) .

Remarquons finalement que
⋃︂
n≥0

An = Ω vu que pour tout

𝜔 ∈ Ω, Zn (𝜔) → Z (Ω) > Z (𝜔) − 𝜖Z (𝜔). Comme Zn est
croissante, An est aussi croissante donc par la proposition
4.3,

𝜇(B i ∩ An ∩ B) → 𝜇(
⋃︂
n
B i ∩ An ∩ B) = 𝜇(B i ∩ B) .

En passant à la limite dans (4.1), on obtient :

𝛼 ≥ (1 − 𝜖 )
m∑︁
i=1
b i 𝜇(B i ∩ B) = (1 − 𝜖 )

∫
B
gd 𝜇

soit en passant au sup sur g ≤ Z puis à la limite 𝜖 → 0, on
obtient l’inégalité voulue 𝛼 ≥

∫
B Zd 𝜇.

On obtient un résultat concret d’approximation pour∫
B fd 𝜇.
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Corollaire 4.24

Soit f mesurable positive. Pour toute suite croissante
de fonctions étagées telle que fn → f , on a∫
B fnd 𝜇 →

∫
B fd 𝜇.

Corollaire 4.25: (Linéarité de l’intégrale : cas posi-
tif)

Soient f , g mesurables positives et 𝛼, 𝛽 > 0, on a :∫
B
𝛼 f + 𝛽gd 𝜇 = 𝛼

∫
B
fd 𝜇 + 𝛽

∫
B
gd 𝜇.

Démonstrat ion. Par le lemme 4.21, on a des suites
croissantes de fonctions étagées fn → f , gn → g donc
𝛼 fn + 𝛽gn est une suite croissante de fonctions étagées et
𝛼 fn + 𝛽gn → 𝛼 f + 𝛽g . Par le TCM ou le corollaire précédent,
en passant à la limite dans l’égalité du lemme 4.20 :∫

B
𝛼 fn + 𝛽gnd 𝜇 = 𝛼

∫
B
fnd 𝜇 + 𝛽

∫
B
gnd 𝜇

→
∫
B
𝛼 f + 𝛽gd 𝜇 = 𝛼

∫
B
fd 𝜇 + 𝛽

∫
B
gd 𝜇.

⋆ Corollaire 4.26: (Interversion Série-intégrale :
cas positif)

Soient fn : Ω → [0, +∞] une suite de fonctions
mesurables positives alors la somme
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∑︁
n≥0

fn : Ω → [0, +∞] est mesurable et on a pour tout

B ∈ T : ∫
B

∑︁
n≥0

fnd 𝜇 =
∑︁
n≥0

∫
B
fnd 𝜇.

Démonstrat ion. La suite des sommes partielles Sn =

n∑︁
k=0

fk

est croissante mesurable (par somme finie). Le résultat est
donc une application du TCM.

Lemme de Fatou
⋆ Théorème 4.27: (Lemme de Fatou)

Soient B ∈ T et Xn : (Ω , T) → [0, +∞] , une suite de
fonctions mesurables positives alors l im infn→∞ Xn est
mesurable et∫

B
l im inf
n→∞

Xnd 𝜇 ≤ l im inf
n→∞

∫
B
Xnd 𝜇.

Démonstrat ion. La mesurabilité de l im infn→∞ Xn vient du
théorème 4.18.

Par définition, l im infn→∞ Xn = supm Zm pour la suite
croissante Zm = infn≥m Xn ≤ Xm . En particulier, par
monotonie de l’intégrale,

∫
B Zmd 𝜇 ≤

∫
B Xnd 𝜇 pour n ≥ m ,

donc en passant à l’infimum :
∫
B Zmd 𝜇 ≤ infn≥m

∫
B Xnd 𝜇.
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Par le théorème de convergence monotone, on obtient
(en combinant à l’inégalité ci-dessus) :∫

B
l im inf
n→∞

Xnd 𝜇 = l im
m→∞

∫
B
Zmd 𝜇 = sup

m

∫
B
Zmd 𝜇

≤ sup
m

inf
n≥m

∫
B
Xnd 𝜇 ≡ l im inf

n→∞

∫
B
Xnd 𝜇.

4 Intégrale des fonctions
intégrables

Comme pour les séries et les intégrales impropres en
L2, le deuxième cas après le cas positif est celui qu’on
appelle “absoluement convergent" pour les séries ou
“intégrable" pour les intégrales. Ils ont en commun de
considérer la même opération (somme de série ou intégrale)
pour la valeur absolue, et si la grandeur obtenue est finie,
on peut alors définir l’opération sans valeur absolue. On
suit la même stratégie pour l’intégrale de Lebesgue.

On aura besoin de la :

Remarque 4.5. Soit f : (Ω , T) → (R, B(R)) une
fonction mesurable, sa partie positive est
f+ = max ( f , 0) et sa partie négative est
f− = max (−f , 0). f+, f− et la valeur absolue | f | sont
mesurables par composée de f avec des applications
continues. Elles vérifient f = f+ − f− et | f | = f+ + f− .
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De même, pour f : (Ω , T) → (C, B(C)) une fonction
mesurable, son module | f |, et ses parties réelles et
imaginaires ℜ( f ) , ℑ( f ) sont mesurables et

f = ℜ( f ) + iℑ( f ) = ℜ( f )+ −ℜ( f )− + iℑ( f )+ − iℑ( f )− .

⋆ Définition 4.13

Soit (Ω , T , 𝜇) un espace mesuré, une fonction
mesurable f : (Ω , T) → R) est intégrale par rapport à
𝜇 sur B ∈ T si son module | f | : (Ω , T) → [0, +∞] est
d’intégrale finie sur B , i.e.

∫
B
| f |d 𝜇 < +∞. On note

L1 (Ω , T , 𝜇) l’ensemble des fonctions intégrables à
valeur R.
Si f : (Ω , T) → (R, B(R)) est intégrable sur B , on a
donc

∫
B
f+d 𝜇,

∫
B
f−d 𝜇 ≤

∫
B
| f |d 𝜇 < +∞ et on peut définir

l’intégrale de f par rapport à 𝜇 sur B :∫
B
fd 𝜇 =

∫
B
f+d 𝜇 −

∫
B
f−d 𝜇.

Si on dit f est intégrable, c’est qu’on veut implicitement
dire sur Ω, son ensemble de définition. Dans ce cas, on écrit
aussi :

∫
fd 𝜇 =

∫
Ω
fd 𝜇.

Définition 4.14

Soit (Ω , T , 𝜇) un espace mesuré, une fonction
mesurable f : (Ω , T) → C (resp.
f = ( f1 , · · · , fn ) : (Ω , T) → Rn )) est intégrale par
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rapport à 𝜇 sur B ∈ T si ses parties réelles et
imaginaire ℜf , ℑf : (Ω , T) → R (resp. ses
coordonnées f i ) sont intégrables sur B , i.e. de façon
équivalente si

∫
B
| f |d 𝜇 < +∞. On note L1 (Ω , T , 𝜇; C)

l’ensemble des fonctions intégrables à valeur C.
On pose alors :∫

B
fd 𝜇 =

∫
B
ℜfd 𝜇 + i

∫
B
ℑfd 𝜇 ∈ C,

(resp .
∫
B
fd 𝜇 =

(︂ ∫
B
f1d 𝜇, · · · ,

∫
B
fnd 𝜇

)︂
∈ Rn )

L’équivalence vient de∫
B |ℜf |d 𝜇,

∫
B |ℑf |d 𝜇 ≤

∫
B | f |d 𝜇 ≤

∫
B |ℜf |d 𝜇 +

∫
B |ℑf |d 𝜇.

Premières propriétés
Lemme 4.28

Si f : (Ω , T , 𝜇) → R est intégrable (sur Ω), alors
𝜇({𝜔 : | f | (𝜔) = +∞}) = 0

Démonstrat ion. En effet, si A = {𝜔 : | f | (𝜔) = +∞}, on a
(+∞)1A ≤ | f | et donc +∞𝜇(A) ≤

∫
B | f |d 𝜇 < +∞ ce qui n’est

possible que pour 𝜇(A) = 0.
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⋆ Lemme 4.29

Soit (Ω , T , 𝜇) un espace mesuré, et f , g : (Ω , T) → K

des fonctions intégrables sur B ∈ T , alors

0. (monotonie) Si f ≤ g alors
∫
B fd 𝜇 ≤

∫
B gd 𝜇.

1. 1B f est intégrable sur Ω et
∫
B fd 𝜇 =

∫
Ω

1B fd 𝜇.
2. (linéarité) Si 𝛼, 𝛽 ∈ K alors 𝛼 f + 𝛽g est intégrable

sur B et∫
B
𝛼 f + 𝛽gd 𝜇 = 𝛼

∫
B
fd 𝜇 + 𝛽

∫
B
gd 𝜇.

3. (domination) Si h : (Ω , T) → K est mesurable et
dominée par | f | au sens |h | ≤ | f | alors h est
intégrable sur B .

4. (inégalité triangulaire) Si K = R, on a :|︁|︁|︁|︁∫
B
fd 𝜇

|︁|︁|︁|︁ ≤ ∫
B
| f |d 𝜇.

On verra le cas complexe de l’inégalité triangulaire un
peu plus loin.

Démonstrat ion. 1. Vu |1B f | = 1B | f |, en utilisant le cas
positif du lemme 4.22, on a

∫
Ω
|1B f |d 𝜇 =

∫
B | f |d 𝜇 < +∞ d’où

l’intégrabilité. Le calcul de l’intégral se déduit alors du
même résultat en prenant partie positive et négative des
parties réelles et imaginaires.

2. Par l’inégalité triangulaire |𝛼 f + 𝛽g | ≤ |𝛼 | | f | + |𝛽 | |g |,
donc en passant à l’intégrale et utilisant le cas positif de la



Chapitre 4. Intégrat ion de Lesbesgue 169

linéarité de l’intégrale (Corollaire 4.25) :∫
B
|𝛼 f + 𝛽g |d 𝜇 ≤

∫
B
|𝛼 | | f | + |𝛽 | |g |d 𝜇

= |𝛼 |
∫
B
| f |d 𝜇 + |𝛽 |

∫
B
|g |d 𝜇 < +∞.

De même, l’égalité des intégrales vient en prenant partie
positive et négative des parties réelles et imaginaires.

3. Il suffit d’utiliser la monotonie de l’intégrale∫
B |h |d 𝜇 ≤

∫
B | f |d 𝜇 < +∞.

4. Dans le cas réel, on a utilise juste l’inégalité
triangulaire :|︁|︁|︁|︁∫

B
fd 𝜇

|︁|︁|︁|︁ = |︁|︁|︁|︁∫
B
f+d 𝜇 −

∫
B
f−d 𝜇

|︁|︁|︁|︁
≤

∫
B
f+d 𝜇 +

∫
B
f−d 𝜇 =

∫
B
| f |d 𝜇.

Théorème de Convergence dominée de
Lebesgue

⋆ Théorème 4.30: (Théorème de Convergence do-
minée ou TCD)

Soient Zn , Z : (Ω , T , 𝜇) → K des fonctions mesurables
et A ∈ T avec 𝜇(Ac ) = 0 satisfaisant :

1. (Condition de domination) il existe une fonction
Y intégrable (positive) telle que |Zn | ≤ Y ,

2. pour tout 𝜔 ∈ A, Zn (𝜔) → Z (𝜔)
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alors on a :

3. Z est intégrable
4.

∫
Ω
|Zn − Z |d 𝜇 → 0

5. on peut intervertir limite et intégrale

l im
n→∞

∫
Ω
Znd 𝜇 =

∫
Ω
Zd 𝜇 =

∫
A

l im
n→∞

Znd 𝜇.

Définition 4.15

Si une propriété est vraie sur un ensemble A ∈ T avec
𝜇(Ac ) = 0, on dit que A est vraie presque partout.

L’hypothèse 2. se formule en disant que Zn converge
vers Z presque partout. On étudiera cette notion avec plus
de détail au chapitre suivant.

Démonstrat ion. En appliquant aux parties réelles et
imaginaires, il suffit de montrer le cas K = R.

1. L’inégalité |Zn | ≤ Y implique en passant à la limite
|Z | ≤ Y sur A, ou autrement dit par domination, Z est
intégrable sur A. Comme 𝜇(Ac ) = 0, on a aussi
|Z | ≤ Y + ∞1Ac et Y + ∞1Ac est aussi intégrable, donc Z est
même intégrable.

3. L’inégalité |Zn | ≤ Y se traduit aussi par
Y − Zn , Zn + Y ≥ 0 et on peut appliquer le lemme de Fatou
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4.27 : ∫
A
(Y − Z )d 𝜇 =

∫
A

l im inf
n

(Y − Zn )d 𝜇

≤ l im inf
n

∫
A
(Y − Zn )d 𝜇

=

∫
A
Yd 𝜇 − l im sup

n

∫
A
Znd 𝜇,

∫
A
(Y + Z )d 𝜇 =

∫
A

l im inf
n

(Y + Zn )d 𝜇

≤ l im inf
n

∫
A
(Y + Zn )d 𝜇

=

∫
A
Yd 𝜇 + l im inf

n

∫
A
Znd 𝜇,

donc en soustrayant le terme en Y ,

∫
A
Zd 𝜇 ≤ l im inf

n

∫
Znd 𝜇 ≤ l im sup

n

∫
Znd 𝜇 ≤

∫
A
Zd 𝜇

et on en déduit donc l’égalité et la dernière
convergence.

2. Enfin, par l’inégalité triangulaire, on déduit
|Zn − Z | ≤ |Zn | + |Z | ≤ 2Y sur A et il satisfait la même
condition de domination et pour tout 𝜔 ∈ A, |Zn − Z | (𝜔) → 0.
En appliquant le reste du résultat, on obtient donc∫
Ω
|Zn − Z |d 𝜇 →

∫
Ω

0d 𝜇 = 0
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⋆ Corollaire 4.31: (Interversion Série-intégrale :
cas général)

Soient fn : Ω → K une suite de fonctions mesurables
telle que

∑︁
n≥0

∫
B
| fn |d 𝜇 < ∞ pour B ∈ T , alors la somme∑︁

n≥0
fn : Ω → K converge (absolument) pour presque

tout 𝜔 dans B et est intégrable sur B et on a :∫
B

∑︁
n≥0

fnd 𝜇 =
∑︁
n≥0

∫
B
fnd 𝜇.

Démonstrat ion. On considère la suite des sommes

partielles Sn =

n∑︁
k=0

fk qui vérifie, grâce à l’inégalité

triangulaire, la condition de domination

|Sk | ≤
n∑︁
k=0

| fk | ≤
∞∑︁
k=0

| fk | =: Z . Or par le cas positif de

l’interversion,
∫
B
Zd 𝜇 =

∑︁
n≥0

∫
B
| fn |d 𝜇 < ∞ donc Z est

intégrable sur B . Soit A = {𝜔 ∈ B : Z (𝜔) < ∞}, de sorte que∑︁
k
fk converge absolument sur A donc Sn converge

simplement vers la somme (qui est donc mesurable par le
théorème 4.18). Par le lemme 4.28 on a 𝜇(Ac ) = 0 donc le
TCD s’applique (sur B à la place de Ω) et donne le
résultat.
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5 Théorème de transfert
⋆ Théorème 4.32: (Théorème de transfert)

Soit f : (Ω , T , 𝜇) → (E , E) une fonction mesurable de
mesure image 𝜇 f et h : (E , E) → (R, B(R)) une autre
fonction mesurable. Alors, si h est à valeur positive :∫

(h ◦ f ) d 𝜇 =

∫
E
h (x ) d 𝜇 f (x ) .

De plus, si h n’est pas à valeur positive
h ◦ f ∈ L1 (Ω , T , 𝜇) si et seulement si h ∈ L1 (E , E , 𝜇 f ) et
on a encore

∫
(h ◦ f )d 𝜇 =

∫
h (x )d 𝜇 f (x ) .

Autrement dit, on ramène une intégrale sur Ω à une
intégrale sur R :∫

Ω
h ( f (𝜔))d 𝜇(𝜔) =

∫
R
h (x )d 𝜇 f (x ) .

Démonstrat ion. On procède comme pour la construction
de l’intégrale. Si h = 1B avec B ∈ E , h ◦ f = 1 f −1 (B ) et donc∫

h ◦ fd 𝜇 = 𝜇( f −1 (B)) = 𝜇 f (B) =
∫
h (x )d 𝜇 f (x ) .

Par linéarité, on obtient le cas de h étagé. Si h positive, h
est la limite croissante d’une suite de fonctions étagées hn
(du lemme 4.21). Comme hn (x ) → h (x ) par construction, on
applique le théorème de convergence monotone aux deux
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mesures :∫
h ◦ f d 𝜇 = l im

n→∞

∫
(hn ◦ f )d 𝜇

= l im
n→∞

∫
hn (x )d 𝜇 f (x ) =

∫
h (x )d 𝜇 f (x ) .

Le dernier résultat du cas intégrable est évident par le
cas positif pour l’équivalence et par linéarité pour
l’égalité.

Le résultat similaire suivant est important en
probabilité. Nous avons vu la tribu engendrée par f : 𝜎( f ) au
lemme 4.8. Le résultat suivant donne une interprétation
concrète des fonctions 𝜎( f )-mesurables.

Proposition 4.33: (Lemme de Doob-Dynkin)

Soit f une fonction mesurable, f : (Ω , T , 𝜇) → (E , E),
et soit 𝜎( f ) = {A = f −1 (B) , B ∈ E} la tribu engendrée
par f . Alors g : Ω → (Rn , B(Rn )) est 𝜎( f )-mesurable si
et seulement si il existe h : (E , E) → (Rn , B(Rn ))
mesurable telle que g = h ◦ f .

Démonstrat ion. La condition suffisante est évidente car
pour un borélien A, (h ◦ f )−1 (A) = f −1 (h−1 (A)) qui est
mesurable car h−1 (A) ∈ E car h borélienne et l’image inverse
par f est alors par définition un élément de 𝜎( f ).

Réciproquement, on raisonne comme pour le transfert
par le cas étagé g =

∑︁
i
𝜆 i 1A i et A i = f −1 (B i ) et alors
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h =
∑︁
i
𝜆 i 1B i convient. Sinon, si g positive, on la prend pour

limite simple de gn étagée de la forme hn ◦ f par le cas
étagé, et on pose

h (x ) = l im inf
n→∞

hn (x ) .

h convient car mesurable positive (comme lim inf de
fonctions mesurables) et car g (𝜔) = l imn hn ( f (𝜔)) = h ( f (𝜔))
vu qu’en f (𝜔) la suite (hn ) converge d’après le choix de gn .
Le cas général se montre par linéarité à partir du cas
positif.

6 Comparaison aux
constructions de L2

Intégrale de Riemann des fonctions
continues par morceau

Comme on a vu au chapitre 2, la base de l’intégrale de
Riemann est la notion de fonction en escalier. Ce sont des
combinaisons linéaires d’indicatrices d’intervalles de forme
1 ]a ,b [ et 1 {c } . Or les intervalles sont des boréliens, donc les
fonctions en escalier sont boréliennes étagées. On a∫

1 ]a ,b [d𝜆 = (b − a) =
∫

1 ]a ,b [ (x )dx ,∫
1 {c }d𝜆 = 0 =

∫
1 {x } (x )dx ,

donc par combinaison linéaire, intégrale de Riemann et de
Lebesgue par rapport à la mesure de Lebesgue coïncident.
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Soit f continue par morceau sur [a , b] , l’intégrale de
Riemann est construite en choisissant fn en escalier
convergent uniformément vers f et donc simplement, donc f
est borélienne comme limite simple de fonctions
boréliennes (cf. le théorème 4.18). De plus, elle est bornée
donc intégrable sur [a , b] .

Quitte à décomposer en partie réelle et imaginaire, on
suppose f réelle. Donc pour tout x ∈ [a , b] on a
| f (x ) − fn (x ) | ≤ | | fn − f | |∞ soit

fn (x ) − || fn − f | |∞ ≤ f (x ) ≤ fn (x ) + | | fn − f | |∞ .

En intégrant au sens de Lebesgue, et en utilisant que
les deux côtés coïncident avec celle de Riemann, on obtient
l’inégalité :∫ b

a
fn (x )dx − || fn − f | |∞ (b − a)

≤
∫
[a ,b ]

fd𝜆 ≤
∫ b

a
fn (x )dx + || fn − f | |∞ (b − a) .

En passant à la limite n → ∞, on a | | fn − f | |∞ → 0 et∫ b
a fn (x )dx →

∫ b
a f (x )dx par définition de l’intégrale de

Riemann. On a donc obtenu le point 1. du résultat suivant :

⋆ Théorème 4.34

1. Toute fonction continue par morceau sur un
segment [a , b] est intégrable par rapport à la
mesure de Lebesgue 𝜆 et son intégrale de
Riemann coïncide avec celle pour la mesure de
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Lebesgue : ∫ b

a
f (x )dx =

∫
[a ,b ]

fd𝜆 .

2. Toute fonction continue positive sur un
intervalle I (]a , b] , ]a , b [ ou [a , b [) admet une
intégrale par rapport à la mesure de Lebesgue 𝜆

et son intégrale de Riemann coïncide avec celle
pour la mesure de Lebesgue (finie ou +∞) :∫ b
a f (x )dx =

∫
I fd𝜆 .

3. Toute fonction continue intégrable sur un
intervalle I (]a , b] , ]a , b [ ou [a , b [) est
intégrable par rapport à la mesure de Lebesgue
𝜆 si et seulement si elle est intégrable au sens
de Riemann. Dans ce cas, son intégrale de
Riemann coïncide avec celle pour la mesure de
Lebesgue :

∫ b
a f (x )dx =

∫
I fd𝜆 .

Démonstrat ion. On se place dans le cas I = [a , b [. On
pose bn = b − 1/n si b < +∞ et bn = a + n si b = +∞ 2. On pose
fn = f 1 [a ,bn ] . Comme f positive, fn sont des suites
croissantes qui convergent simplement vers f (sont
stationnaires égales à f ). On peut appliquer le théorème de
convergence monotone et

∫
I
fd𝜆 = l im

n→∞

∫
I
fnd𝜆 l im

n→∞

∫
[a ,bn ]

fd𝜆 = l im
n→∞

∫ bn

a
f (x )dx =

∫ b

a
f (x )dx .



Chapitre 4. Intégrat ion de Lesbesgue 178

3. L’équivalence des intégrabilités vient du 2. appliqué
à l’intégrale de | f |. Pour l’égalité dans , on utilise la même
suite qu’au 2 et on note | fn | ≤ | f |, qui est une domination si f
intégrable. La même limite est maintenant valable par le
TCD.

On pourra donc appliquer les théorèmes précédents aux
intégrales (de Riemann) usuelles vues en L2.

Remarque 4.6. Pour les fonctions f : [a , b] → R, on
peut définir une notion plus générale de fonction
“Riemann intégrable", elle même plus générale que
l’intégrale des fonctions continues par morceaux.
L’intégrale de Lebesgue généralise aussi cette
version plus générale, cf. e.g.
http://math.univ- lyon1.fr/homes-www/mironescu/
resources/cours_mesure_integration.pdf section
6.8.1

Mesures à densité
Le résultat suivant est laissé en exercice

http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
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⋆ Proposition 4.35: (Mesures à densité (ou absolu-
ment continue))

Soit f : X → [0, +∞] une fonction mesurable. On
définit une application 𝜈 : A → [0, +∞] par

𝜈(A) =
∫
A
fd 𝜇 .

Alors, 𝜈 est une mesure sur X , appelée mesure de
densité f par rapport à 𝜇. De plus h est intégrable par
rapport à 𝜈 si et seulement si fh est intégrable par
rapport à 𝜇 et : ∫

X
hd 𝜈 =

∫
X
fhd 𝜇 .

Pour une mesure à densité 𝜈 par rapport à 𝜇, si 𝜇(A) = 0
alors 𝜈(A) = 0. En fait, cette propriété caractérise les
mesures à densité (c’est un théorème beaucoup plus dur, le
théorème de Radon-Nikodym cf. section 5)

Exemple 4.7

On peut définir une mesure de probabilité sur les
boréliens de R en posant

𝜇(A) = 1
√

2𝜋

∫
A
e− x 2

2 d𝜆 (x ) .

Cette mesure s’appelle la mesure gaussienne. C’est
un exemple de probabilité à densité par rapport à la
mesure de Lebesgue. Pour vérifier qu’il s’agit bien
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d’une probabilité, il faut vérifier que :

𝜇(R) = 1
√

2𝜋

∫
R
e− x 2

2 d𝜆 (x ) = 1.

On le vérifiera plus loin par changement de variable à
la fin du chapitre 5 à la formule (5.1)

Lien avec les Séries
Soit Ω un ensemble. On considère l’espace mesuré

(Ω , P(Ω) , 𝜈). Tout fonction f : Ω → R est P(Ω)-mesurable.
On peut donc ignorer la mesurabilité pour le cas des séries.

Cas Ω = {𝜔1 , · · · , 𝜔n } fini

Toute fonction s’écrit f =
n∑︁
k=1

f (𝜔k )1 {𝜔k } et est donc

étagée. On déduit que
∫
Ω
fd 𝜈 =

n∑︁
k=1

f (𝜔k ), d’abord pour les

fonctions étagées, puis positives, puis quelconques (on
peut prendre toutes les limites constantes).

Cas Ω = N

Lemme 4.36

1. Si f ≥ 0 alors
∫
Ω
fd 𝜈 =

∞∑︁
n=0

f (n)
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2. f est intégrable si et seulement si
∑︁

f (n) est
absolument convergente et encore∫

Ω
fd 𝜈 =

∞∑︁
n=0

f (n) .

Démonstrat ion. 1) Soit fn =

n∑︁
k=1

f (k)1 {k } est une suite

croissante de fonctions donc par le TCM∫
Ω
fd 𝜈 = l im

n

∫
Ω
fnd 𝜈 = l im

n

n∑︁
k=0

f (k) =
∞∑︁
n=0

f (n)

2) L’équivalence vient du 1) f est intégrable ssi | f | a

une intégrale fini, donc ssi
∞∑︁
n=0

| f (n) | c’est à dire ssi
∑︁

f (n)

est absolument convergente. La définition de l’intégrale et
de la somme coïncident alors∫

Ω
fd 𝜈 =

∫
Ω
f+d 𝜈 −

∫
Ω
f−d 𝜈

=

∞∑︁
n=0

f (n)+ −
∞∑︁
n=0

f (n)− =

∞∑︁
n=0

f (n) .

Cas Ω = {𝜔n , n ∈ N} dénombrable

On a 𝜔 : N → Ω une bijection, donc la mesure image
𝜈𝜔 ({i }) = 𝜈({𝜔−1 ( i )} = 1 = 𝜈({i }) est encore la mesure de
comptage, le théorème de transfert donne donc :
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Lemme 4.37

Pour tout f : Ω → [0, +∞] ,∫
Ω
fd 𝜈 =

∫
N
f (𝜔)d 𝜈 =

∞∑︁
n=0

f (𝜔n )

En particulier, si 𝜎 : N → N est une bijection
∞∑︁
n=0

f (𝜎(n)) =
∞∑︁
n=0

f (n) et le même résultat est valide

pour les séries absolument convergentes (on dit
qu’elles sont commutativement convergentes.)
Aussi L1 (Ω , 𝜈) = ℓ 1 (Ω) est l’ensemble des familles
sommables sur Ω avec la norme 1.

Probabilité discrète sur Ω = {𝜔n , n ∈ N}
dénombrable

C’est une densité f : Ω → [0, 1] par rapport à la mesure

de comptage telle que
∫
Ω
fd 𝜈 =

∞∑︁
n=0

f (𝜔n ) = 1.

7 Intégrales dépendant d’un
paramètre

Soient (Ω , T , 𝜇) un espace mesuré, E un evn. Soit
finalement A une partie de E .
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Définition 4.16

Soit f : A × Ω → K. On suppose que pour tout x ∈ A,
t ↦→ f (x , t ) est intégrable (soit dans L1 (Ω , T , 𝜇)). Dans
ce cas, on peut poser :
F (x ) =

∫
Ω
f (x , t )d 𝜇( t ). On définit ainsi une intégrale

dépendant d’un paramètre la fonction F : A → K.

⋆ Théorème 4.38: (Théorème de continuité avec
hypothèse de domination)

Soit f : A × Ω → K. On suppose :

1. Pour tout x ∈ A, t ↦→ f (x , t ), est mesurable sur
Ω.

2. Pour tout presque tout t ∈ Ω, x ↦→ f (x , t ) est
continue en x0 ∈ A.

3. (Hypothèse de domination) Il existe une
fonction intégrable g : Ω → R+, g ∈ L1 (Ω , T , 𝜇)
telle que

∀t ∈ Ω , ∀x ∈ A , | f (x , t ) | ≤ g ( t ) .

Alors la fonction x ↦→ F (x ) =
∫
Ω
f (x , t )d 𝜇( t ) est

continue en x0 .

On remarquera que dans l’hypothèse de domination, la
fonction g ne dépend PAS de x .

Démonstrat ion. L’hypothèse de domination garantit que
t ↦→ f (x , t ) est intégrable. Soit xn ∈ A tel que xn → x0 . Par
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continuité de x ↦→ f (x , t ), pour chaque t , f (xn , t ) → f (x0 , t ) .
On peut donc appliquer le théorème de convergence
dominée (avec domination par g ) pour conclure

l im
n→∞

∫
Ω
f (xn , t )d 𝜇( t ) =

∫
Ω
f (x0 , t )d 𝜇( t ) .

Exemple 4.8: (cf TD.)

Soit f : R → C intégrable sur R (par rapport à la
mesure de Lebesgue 𝜆 ). Sa transformée de Fourier
est définie par :

f̂ (x ) =
∫
R
f ( t )e i tx dt .

Elle est continue sur R en utilisant une domination par
| f |.

Théorème 4.39: (Théorème de dérivabilité avec hy-
pothèse de domination)

Soit f : U × Ω → K avec U ⊂ Rn un ouvert.
On suppose :

1. Pour tout x ∈ U , t ↦→ f (x , t ), est intégrable sur
Ω.

2. Il existe N avec 𝜇(N c ) = 0, tel que pour tout
t ∈ N , la fonction x ↦→ f (x , t ) admet une i-ème
dérivée partielle sur U .
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3. (Hypothèse de domination) Pour tout compact
K ⊂ U , il existe une fonction intégrable
gK ∈ L1 (Ω) telle que

∀t ∈ N , ∀x ∈ K ,
|︁|︁|︁|︁ 𝜕f𝜕x i (x , t )

|︁|︁|︁|︁ ≤ gK ( t ) .
Alors la fonction x ↦→ F (x ) =

∫
Ω
f (x , t )d 𝜇( t ) admet une

i-ème dérivée partielle sur U , 𝜕f
𝜕x i ∈ L

1 (Ω) et :

𝜕F
𝜕x i

(x ) =
∫
Ω

𝜕f
𝜕x i

(x , t )d 𝜇( t ) .

Remarque 4.7. Soit f = ( f1 , . . . , fm ) : U × Ω → Rm avec
U ⊂ Rn un ouvert. Si chaque f i (x , .) est intégrable sur
Ω pour tout x ∈ U , on peut définir l’intégrale
coordonnée par coordonnée :∫

Ω
f (x , t )d 𝜇( t )

= (
∫
Ω
f1 (x , t )d 𝜇( t ) , · · · ,

∫
Ω
fn (x , t )d 𝜇( t )) .

Alors le théorème s’applique en remplaçant la valeur
absolue par la norme dans la domination (et en
appliquant le résultat coordonnée par coordonnée.)

Démonstrat ion. On peut supposer n = m = 1 (car les
dérivées partielles se calculent coordonnée par
coordonnée). On fixe x0 et montre la dérivabilité en x0 . On
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pose h (x , t ) = 0 si t ∈ N c et pour t ∈ N

h (x , t ) =
⎧⎪⎪⎨⎪⎪⎩
f (x , t )− f (x0 , t )

x−x0
, si x ≠ x0

𝜕f
𝜕x (x0 , t ) sinon

.

Pour x ≠ x0 ,

F (x ) − F (x0)
x − x0

=

∫
Ω
h (x , t )d 𝜇( t ) .

Il suffit donc de prouver que x ↦→
∫
Ω
h (x , t )d 𝜇( t ) est

continue en x0 . Par hypothèse, t ↦→ h (x , t ) est mesurable
pour x ≠ x0 et par exemple en tant que l im inf (sur N ) aussi
ex x0 et x ↦→ h (x , t ) est continue pour t ∈ N (par continuité
d’une fonction dérivable d’une variable). Enfin l’inégalité
des accroissements finis à x ↦→ f (x , t ) donne, pour x ≠ x0 ,
x ∈ K = [x0 − 𝜖 , x0 + 𝜖 ] ⊂ U (un compact car fermé borné de R

contenu dans U pour 𝜖 assez petit) :

| |h (x , t ) | | ≤ sup
u∈[x0 ,x ]

|︁|︁|︁|︁ 𝜕f𝜕x i (u , t )
|︁|︁|︁|︁ ≤ gK ( t ) .

La même inégalité étant évidente en x0 , on a la condition de
domination et le théorème de continuité appliqué à K
conclut.

⋆ Corollaire 4.40: (Théorème de dérivation succes-
sive)

Soit f : U × V → Rl avec U ⊂ Rn , V ⊂ Rm des ouverts,
une fonction Ck (k ∈ N ∪ {∞}). Soit 𝜇 une mesure sur
une tribu T ⊃ B(V ).
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On suppose qu’il existe 𝜙0 , 𝜙1 , . . . , 𝜙k 𝜇-intégrables
sur V telles que | | f (x , t ) | | ≤ 𝜙0 ( t ) et

∀( i1 , . . . , in ) , i1 + . . . + in = p ≤ k , ∀x ∈ U , ∀t ∈ V∥︁∥︁∥︁∥︁∥︁ 𝜕p f
𝜕x i11 . . .𝜕x inn

(x , t )
∥︁∥︁∥︁∥︁∥︁ ≤ 𝜙p ( t ) .

Alors la fonction x ↦→ F (x ) =
∫
V f (x , t )d 𝜇( t ) est de

classe Ck sur U et pour p = i1 + . . . + in ≤ k :

𝜕pF
𝜕x i11 . . .𝜕x inn

(x ) =
∫
V

𝜕p f
𝜕x i11 . . .𝜕x inn

(x , t )d 𝜇( t ) .

Démonstrat ion. Il suffit d’appliquer le théorème de
dérivation avec condition de domination par récurrence
simple (coordonnées f i par coordonnée f = ( f1 , · · · , fn )) . La
mesurabilité de f vient de sa continuité vu que T contient
les boréliens. Son intégrabilité vient de la domination
| f (x , t ) | ≤ 𝜙0 ( t ) et sur les autres dérivées successives des
autres dominations. On peut prendre N = ∅.

Un exemple : la transformée de Fourier
d’une mesure avec moments d’ordre 2.

Soit 𝜇 une mesure (de masse) finie sur B(Rn ) (par
exemple une probabilité à densité par rapport à 𝜆 ) tel que
x i , x i x j , i , j = 1, · · · , n sont intégrables c’est à dire :∫

Rn
|x i |d 𝜇(x ) < +∞,

∫
Rn

|x i x j |d 𝜇(x ) < +∞.
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On verra plus tard grâce à l’inégalité de Cauchy-Schwarz
qu’il suffit de supposer x 2

i intégrable. On reprend la
transformée de Fourier vu en TD et à l’exemple 4.8 qui est
définie par :

𝜇̂(𝜉) =
∫
Rn
e i ⟨𝜉 ,x ⟩d 𝜇(x ) =

∫
R
f (𝜉 , x )d 𝜇(x ) ,

f (𝜉 , x ) = e i ⟨𝜉 ,x ⟩ .

f est C 2 (même C∞) sur R2n et vérifie les dominations :

| f (𝜉 , x ) | ≤ 1
𝜕

𝜕𝜉 i
f (𝜉 , x ) = ix i e i ⟨𝜉 ,x ⟩ ,

|︁|︁|︁|︁ 𝜕

𝜕𝜉 i
f (𝜉 , x )

|︁|︁|︁|︁ ≤ |x i |

𝜕2

𝜕𝜉 i𝜕𝜉 j
f (𝜉 , x ) = −x i x j e i ⟨𝜉 ,x ⟩ ,

|︁|︁|︁|︁ 𝜕2

𝜕𝜉 i𝜕𝜉 j
f (𝜉 , x )

|︁|︁|︁|︁ ≤ |x i x j |

et par l’hypothèse 𝜇 de masse finie, 1 est intégrable et par
les hypothèses d’intégrabilité, les autres membres de droite
des dominations sont intégrables aussi par rapport à 𝜇. Par
le théorème de dérivation avec condition de domination, on
déduit donc que 𝜇̂ est C 2 et :

𝜕

𝜕𝜉 i
𝜇̂(𝜉) = i

∫
Rn
x i e i ⟨𝜉 ,x ⟩d 𝜇(x )

𝜕2

𝜕𝜉 i𝜕𝜉 j
𝜇̂(𝜉) = −

∫
Rn
x i x j e i ⟨𝜉 ,x ⟩d 𝜇(x ) .

Cet exemple sera utilisé au S6 pour montrer le Théorème
centrale limite dans Rn .
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1 Mesure produit et théorèmes
de Fubini

Tribus produits
La méthode de base pour calculer une intégrale d’une

fonction de 2 variables est de se ramener à des intégrales
de fonctions de 1 variable. Pour cela il nous faut d’abord
expliquer comment on peut munir X × Y d’une structure
d’espace mesuré quand X , Y sont tous les deux munis d’une
telle structure.

⋆ Définition 5.1

Soient (X , A , 𝜇1) et (Y , B , 𝜇2) deux espaces mesurés
𝜎-finis. On note A ⊗ B la tribu engendrée par les
parties de la forme A × B , où A ∈ A, B ∈ B ; on
l’appelle tribu produit des tribus A et B.

Lemme 5.1

Si A = 𝜎(E) et B = 𝜎(F ), on a
A ⊗ B = 𝜎

(︂
{E × F , E ∈ E , F ∈ F }

)︂
.

En particulier, B(Rn+m ) = B(Rn ) ⊗ B(Rm ). De plus, si
f : (X , A) → (Z , C) et g : (Y , B) → (Z , D) sont
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mesurables, l’application
( f , g) : (X × Y , A ⊗ B) → (Z × T , C ⊗ D) définie par
( f , g) (x , y ) = ( f (x ) , g (y )) est mesurable.

Démonstrat ion. Vu {E × F , E ∈ E , F ∈ F } ⊂ A ⊗ B, on
obtient en passant à la tribu engendrée
G := 𝜎

(︂
{E × F , E ∈ E , F ∈ F }

)︂
⊂ A ⊗ B.

Réciproquement, on pose
A′ = {A ∈ A : ∀F ∈ F , A × F ∈ G}. On a clairement que A′

contient E et on vérifie facilement que c’est une tribu (vu que
Ac × F = (Ω × F ) − (A × F ) ∈ G pour F ∈ F .) D’où A′ = 𝜎(E) = A.
De même, on pose ensuite, B′ = {B ∈ B : ∀A ∈ A , A × B ∈ G}
et on déduit du point précédent que F ⊂ B′ ⊂ B et comme
avant que B′ est une tribu d’où B = B′. Finalement, on a
donc A × B ⊂ G d’où l’inclusion complémentaire de tribus.

Le cas particulier B(Rn+m ) = B(Rn ) ⊗ B(Rm ) est une
conséquence immédiate du Corollaire 4.16.

Pour le dernier point, comme
C ⊗ D = 𝜎

(︂
{E × F , E ∈ C , F ∈ D}

)︂
il suffit de noter que

( f , g)−1 (E × F ) = f −1 (E ) × g−1 (F ) ∈ A × B ⊂ A ⊗ B et le lemme
4.13 conclut.
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Mesure produit
Théorème 5.2: (définissant la mesure produit)

Soient (Ω1 , T1 , 𝜇1) et (Ω2 , T2 , 𝜇2) deux espaces
mesurés 𝜎-finis. Alors il existe une unique mesure 𝜈

sur T1 ⊗ T2 vérifiant

𝜈(A × B) = 𝜇1 (A)𝜇2 (B)

pour tout A ∈ T1 et tout B ∈ T2 (avec la convention
usuelle 0. (+∞) = 0). Cette mesure est notée
𝜇1 ⊗ 𝜇2 = 𝜈, et est 𝜎-finie.

Exemple 5.1

Si 𝜆 n désigne la mesure de Lebesgue sur Rn , alors on
a toujours 𝜆 n+m = 𝜆 n ⊗ 𝜆m . On applique le corollaire
4.19 au lemme de classe monotone à l’ensemble des
pavés E . Par définition, 𝜆 n+m , 𝜆 n ⊗ 𝜆m coïncident sur
les pavés. Or ∪M ∈N [−M , M ]n+m = Rn+m et
𝜆 n+m ( [−M , M ]n+m ) = (2M )n+m =

(𝜆 n ⊗ 𝜆m ) ( [−M , M ]n+m ) < +∞ donc on conclut à
l’égalité voulue.

La preuve va être basée sur le fait de montrer un cas
particulier du théorème de Fubini suivant pour les fonctions
indicatrices.

Démonstrat ion. Unicité On applique le même corollaire
4.19 au lemme de classe monotone. ON prend
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E = {A × B , A ∈ T1 , B ∈ T2} qui engendre T1 ⊗ T2 par définition.
Deux mesures 𝜈1 , 𝜈2 vérifiant le théorème coïncident sur E .
Or comme 𝜇1 , 𝜇2 sont 𝜎-finies, on obtient Ω i = ∪nA i ,n avec
A i ,n ∈ Ti et 𝜇 i (A i ,n ) < +∞. Alors, on a A1,n × A2,n ∈ E et est de
mesure 𝜇1 (A1,n )𝜇2 (A2,n ) < +∞ pour 𝜈1 , 𝜈2 . Ceci donne la
dernière hypothèse du corollaire 4.19 qui conclut à 𝜇1 = 𝜇2 .

Existence Pour C ∈ T1 ⊗ T2 , on pose
Cx = {y ∈ Ω2 : (x , y ) ∈ C }. On cherche à voir que Cx ∈ T2 .
Supposons d’abord 𝜇2 finie. On considère

C = {C ∈T1 ⊗ T2 : ∀xCx ∈ T2

et x ↦→ 𝜇2 (Cx ) est T1 − mesurable}.

Alors on a

⊲ C contient les pavés mesurables C = A × B avec
A ∈ T1 , B ∈ T2 car (A × B)x ∈ {∅, B} en distinguant le cas
x ∈ A , x ∉ A donc 𝜇2 (Cx ) = 1A (x )𝜇2 (B) .

⊲ C est une classe monotone car si C ′ ⊂ C , C ′ ∈ C
(C \ C ′)x = Cx \ C ′

x d’où la mesurabilité et
𝜇2 (C \ C ′)x = 𝜇2 (Cx ) − 𝜇2 (C ′

x ) par finitude de 𝜇2 qui est
mesurable par différence donc C \ C ′ ∈ C. De même si
Cn est une suite croissante (∪nCn )x = ∪n (Cn )x qui est
dans T2 et 𝜇2 ((∪nCn )x ) = supn 𝜇2 ((Cn )x ) est bien
mesurable.

Donc C contient la classe monotone engendrée par les
pavés, donc (par le lemme de classe monotone) est égale à
T1 ⊗ T2 .
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Si 𝜇2 est 𝜎-finie, on regarde les mesures induites et
déduit le même résultat de mesurabilité de 𝜇2 (Cx ) par limite
croissante.

On peut donc poser

𝜈(C ) =
∫
Ω1

𝜇2 (Cx )d 𝜇1 (x ) .

Il faut voir que c’est une mesure en montrant la
𝜎-additivité : Soient C n des ensembles mesurables
disjoints, (en utilisant qu’alors les C n

x sont disjoints), il
suffit d’utiliser l’interversion série intégrale :

𝜈(
⋃︂
n
C n ) =

∫
Ω1

𝜇2 (
⋃︂
n
C n
x )d 𝜇1 (x )

=

∫
Ω1

∑︁
n

𝜇2 (C n
x )d 𝜇1 (x )

=
∑︁
n

∫
Ω1

𝜇2 (C n
x )d 𝜇1 (x ) =

∑︁
n

𝜈(C n ) .

Enfin, 𝜈 convient par le calcul précédent de
𝜇2 ((A × B)x ) :

𝜈(A × B) =
∫
Ω1

1A (x )𝜇2 (B)d 𝜇1 (x ) = 𝜇1 (A)𝜇2 (B) .

Théorème de Fubini-Tonelli et Fubini
(admis)

La mesure produit 𝜇1 ⊗ 𝜇2 étant définie à partir de 𝜇1 et
𝜇2 , on s’attend à ce qu’il en soit de même de l’intégrale
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d’une fonction mesurable relativement à 𝜇1 ⊗ 𝜇2 . 1 Et c’est
effectivement le contenu des théorèmes de Fubini. On
commence par le cas positif.

⋆ Théorème 5.3: (Fubini–Tonelli)

Soient (Ω1 , T1 , 𝜇1) et (Ω2 , T2 , 𝜇2) deux espaces
mesurés 𝜎-finis. Soit f : Ω1 × Ω2 → [0, +∞] une
fonction T1 ⊗ T2 -mesurable. Alors :

1. y ↦→ f (x , y ) est une fonction mesurable (sur
(Ω2 , T2) dans [0, +∞] ) pour tout x ∈ Ω1 , et
x ↦→

∫
Ω2

f (x , y )d 𝜇2 (y ) est une fonction

mesurable (sur (Ω1 , T1)).
2. x ↦→ f (x , y ) est une fonction mesurable (sur

(Ω1 , T1) dans [0, +∞]) pour tout y ∈ Ω2 , et
y ↦→

∫
Ω1

f (x , y )d 𝜇1 (x ) est une fonction

mesurable (sur (Ω2 , T2)).
3. On a ∫

Ω1×Ω2

f (x , y )d 𝜇1 ⊗ 𝜇2 (x , y )

=

∫
Ω1

(︃∫
Ω2

f (x , y )d 𝜇2 (y )
)︃
d 𝜇1 (x )

=

∫
Ω2

(︃∫
Ω1

f (x , y )d 𝜇1 (x )
)︃
d 𝜇2 (y ) .

1. Cette sous-section reprend le cours de 2018-2019 de
T. Blossier, M. Carrizosa et J. Melleray.
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Exercice 5.1. Calculer l’aire du disque unité
D = {(x , y ) ∈ R2 : x 2 + y 2 ≤ 1}.

Comme dans le cas des fonctions définies sur Rn , on en
déduit facilement un théorème qui s’applique à toutes les
fonctions intégrables (et pour vérifier qu’une fonction est
intégrable, on peut commencer par appliquer le théorème de
Fubini–Tonelli à | f |).

⋆ Théorème 5.4: (Fubini)

Soient (Ω1 , T1 , 𝜇1) et (Ω2 , T2 , 𝜇2) deux espaces
mesurés 𝜎-finis. Soit f : Ω1 × Ω2 → R une fonction
intégrable. Alors :

1. y ↦→ f (x , y ) est une fonction intégrable (sur Ω2 )
pour presque tout x ∈ Ω1 , et
x ↦→

∫
Ω2

f (x , y )d 𝜇2 (y ) est une fonction

intégrable (sur Ω1 ).
2. x ↦→ f (x , y ) est une fonction intégrable (sur Ω1 )

pour presque tout y ∈ Ω2 , et
y ↦→

∫
Ω1

f (x , y )d 𝜇1 (x ) est une fonction

intégrable (sur Ω2 )
3. On a ∫

Ω1×Ω2

f (x , y )d 𝜇1 ⊗ 𝜇2 (x , y )

=

∫
Ω1

(︃∫
Ω2

f (x , y )d 𝜇2 (y )
)︃
d 𝜇1 (x )

=

∫
Ω2

(︃∫
Ω1

f (x , y )d 𝜇1 (x )
)︃
d 𝜇2 (y ) .
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Exercice 5.2. Soit f , g des fonctions mesurables
positives sur R, on définit la convolution de f , g par :

f ∗ g (x ) =
∫
R
f (x − y )g (y )d𝜆 (y ) ∈ [0, ∞] .

On rappelle que

| | f | |1 =

∫
R
| f (x ) |d𝜆 (x ) .

1. Montrer que f ∗ g est mesurable et que

| | f ∗ g | |1 = | | f | |1 | |g | |1 .

2. Montrer que la définition de f ∗ g s’étend pour
presque tout x au f , g ∈ L1 (R, d𝜆 ) et que
f ∗ g ∈ L1 (R, d𝜆 ) .

3. Montrer que pour f , g , h toutes mesurables
positives ou toutes intégrables, alors

f ∗ (g ∗ h) = ( f ∗ g) ∗ h .

2 Une Inégalité de convexité :
l’Inégalité de Jensen

La convexité (ou la concavité) est souvent utilisée pour
établir des inégalités. 2

2. Cette partie reprend le cours de 2018-2019 de T. Blos-
sier, M. Carrizosa et J. Melleray.
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Voyons maintenant l’inégalité de convexité la plus
importante de notre cours.

⋆ Théorème 5.5: (Inégalité de Jensen)

Soit (X , A , 𝜇) un espace de probabilité, g une fonction
𝜇-intégrable à valeurs dans un intervalle I , et
𝜑 : I → R une fonction convexe. Alors on a

𝜑

(︃∫
X
gd 𝜇

)︃
≤

∫
X
𝜑 ◦ gd 𝜇

(l’intégrale de droite peut être égale à +∞ !).

Démonstrat ion. D’abord, par le théorème 3.9, 𝜑 est
dérivable à droite et à gauche, donc continue sur l’intérieur
de I , donc borélienne sur I (exo) donc la composée 𝜑 ◦ g est
bien mesurable. Posons m =

∫
X gd 𝜇. Notons que m ∈ I . En

effet I est définie par une ou deux inégalités, I = I1 ∩ I2 avec
(I1 = {x : x ≥ a} ou I1 = {x : x > a} ou I1 = R) et de même
(I2 = {x : x ≤ b} ou I2 = {x : x < b} ou I2 = R). Expliquons
d’abord que si g est à valeur dans I1 = {x : x ≥ a}, alors
comme l’intégrale préserve les inégalités larges∫
X gd 𝜇 ≥

∫
X ad 𝜇 = a car 𝜇(X ) = 1 et donc m ∈ I1 . De même si

I1 = {x : x > a} si on n’avait pas
∫
X gd 𝜇 > a , on aurait donc∫

X gd 𝜇 = a =
∫
X ad 𝜇 donc

∫
X (g − a)d 𝜇 = 0 mais alors g − a

serait nulle 𝜇-presque partout, donc {x ∈ X : g (x ) > a} = X
serait de mesure nulle, contredisant l’hypothèse que X est
un espace de probabilité. On conclut donc aussi dans ce cas∫
X gd 𝜇 ∈ I1 . On raisonne pareil pour I2 (ou on applique le

premier cas à −g pour changer le sens des inégalités).
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Maintenant qu’on a vu que m ∈ I , on distingue 3 cas. Si
jamais m est le minimum de I (s’il existe !) alors on a∫
X (g − m)d 𝜇 = 0 et g − m ≥ 0, donc g − m est nulle presque

partout, par conséquent on a∫
X
𝜑 ◦ gd 𝜇 =

∫
X
𝜑(m)d 𝜇 = 𝜑(m) = 𝜑

(︃∫
X
gd 𝜇

)︃
.

On traite de même le cas où m est le maximum de I ;
finalement, le cas qui nous reste est celui où m appartient à
l’intérieur de I .

Alors, on sait que 𝜑′
g (m) existe et en posant 𝛼 = 𝜑′

g (m),
le théorème 3.9 donne que

∀t ∈ I 𝜑( t ) − 𝜑(m) ≥ 𝛼( t − m) .

En particulier, pour tout x ∈ X on a
𝜑(g (x )) ≥ 𝜑(m) + 𝛼(g (x ) − m). Comme g est intégrable et les
fonctions constantes sont intégrables (car 𝜇 est finie), donc
la borne inférieure est intégrable, et on en déduit que la
partie négative de 𝜑 ◦ g est d’intégrale finie ; et en intégrant
cette inégalité, on obtient aussi que∫

X
𝜑 ◦ gd 𝜇 ≥

∫
X
𝜑(m)d 𝜇 + 𝛼

∫
X
(g − m)d 𝜇

= 𝜑(m) + 𝛼(
∫
X
gd 𝜇 − m) = 𝜑(m) .

Le corollaire suivant est un cas (très) particulier de
l’inégalité de Jensen, qui peut se montrer élémentairement,
sans théorie de la mesure.
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Corollaire 5.6

Soit I un intervalle de R, 𝛼1 , . . . , 𝛼n des réels positifs

tels que
n∑︁
i=1

𝛼 i = 1, et 𝜑 une fonction convexe sur I .

Alors, pour tout x1 , . . . , xn ∈ I on a

𝜑

(︄ n∑︁
i=1

𝛼 i x i

)︄
≤

n∑︁
i=1

𝛼 i𝜑(x i ) .

Démonstrat ion. On fixe x1 , . . . , xn ∈ I et on considère
l’espace mesuré d’ensemble sous-jacent X = {x1 , . . . , xn },

où toutes les parties sont mesurables et 𝜇 =

n∑︁
i=1

𝛼 i 𝛿x i , où 𝛿x i

désigne la mesure de Dirac en x i . Alors 𝜇 est une mesure de
probabilité ; de plus pour toute fonction g : X → R on a∫

X
gd 𝜇 =

n∑︁
i=1

𝛼 i g (x i ) .

En considérant pour g la fonction identité, on a donc∫
X
𝜑 ◦ gd 𝜇 =

n∑︁
i=1

𝛼 i𝜑(x i ), et
∫
X
gd 𝜇 =

n∑︁
i=1

𝛼 i x i . L’inégalité de

Jensen nous donne donc comme attendu

𝜑

(︄ n∑︁
i=1

𝛼 i x i

)︄
≤

n∑︁
i=1

𝛼 i𝜑(x i ) .
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Remarque 5.1. Dans le corollaire ci-dessus, le cas
n = 2 correspond exactement à la définition de la
convexité. En particulier, une application 𝜑 qui
satisfait l’inégalité de Jensen pour toute fonction
intégrable sur un espace de probabilité, est
nécessairement convexe.

3 Théorème de changement de
variables

En pratique, pour calculer une intégrale multiple, on
est souvent amené à faire un changement de variables pour
se ramener à un domaine plus simple sur lequel appliquer le
théorème de Fubini. On énonce le théorème dans le cadre le
plus courant où les fonctions que l’on peut utiliser pour faire
un changement de variables sont les difféomorphismes de
classe C1 .

Cas affine
On commence par montrer le cas des fonctions affines.

Nous allons baser la preuve sur une caractérisation de la
mesure de Lebesgue :
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Théorème 5.7

(admis) La mesure de Lebesgue sur Rn est invariante
par translation, au sens où pour tout A ∈ B(Rn ) et tout
x ∈ Rn , on a 𝜆 n (x + A) = 𝜆 n (A) avec
x + A := {x + a , a ∈ A}.
Inversement, si 𝜇 est une mesure sur (Rn , B(Rn )) finie
sur les parties bornées et invariante par translation,
alors il existe une constante c ≥ 0 telle que 𝜇 = c𝜆 n .

Exercice 5.3. On cherche à montrer l’unicité. On
pose c = 𝜇( [0, 1 [n ). Montrer en utilisant des
recouvrements par des translations d’un ensemble
fixé que

1. 𝜇( [0, 1
m [n ) = c 1

mn

2. pour a1 , . . . , an ≥ 0, on a

𝜇(
n∏︂
i=1

[0, ⌊mai ⌋
m [) = c

∏︁n
i=1 ⌊mai ⌋
mn

En déduire que 𝜇(∏︁n
i=1 [a i , b i [) = c

∏︁n
i=1 (b i − a i ) et

conclure (en utilisant un corollaire du lemme de
classe monotone).

Lemme 5.8

Soit b ∈ Rn et A ∈ Mn (R) une matrice inversible. On
pose f (x ) = Ax + b avec f : Rn → Rn , alors pour tout
borélien B de Rn , on a :

𝜆 n ( f (B)) = |det (A) |𝜆 n (B) .
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Exercice 5.4. Si A n’est pas inversible montrer que
𝜆 ( f (B)) = 0. (Indication : on pourra montrer que f (B)
est inclus dans un hyperplan affine, i.e. un
sous-espace affine de dimension n − 1, dans le cas
b = 0 dans un s.e.v. de dimension n − 1).

Démonstrat ion. f (B) = ( f −1)−1 (B) est bien borélien car f −1

est linéaire (en dimension finie donc) continue donc
borélienne. De même 𝜆 ( f (·)) = f −1 .𝜆 est la mesure image par
f −1 donc c’est bien une mesure finie sur les parties bornées
(car f (B) est borné pour tout borné B , cf chapitre 3
f (B (0, M )) ⊂ B (0, | |b | | + M | | | f | | |) avec | | | f | | | la norme
subordonnée de f ). Montrons qu’elle est invariante par
translation.

On a pour a ∈ Rn

𝜆 n ( f (a + B)) = 𝜆 n (b + A (a + B)) = 𝜆 n (Aa + f (B)) = 𝜆 n ( f (B)) par
invariance par translation de la mesure de Lebesgue. Le
théorème précédent montre donc que 𝜆 n ( f (B)) = c𝜆 n (B) pour
tout borélien B . Il suffit donc de bien choisir le borélien pour
chaque A pour montrer que c = |det (A) |.

Par décomposition polaire, une matrice réelle s’écrit
A = OS avec O orthogonale et S symétrique. Cette matrice S
peut se diagonaliser en base orthogonale S = O t

2DO2 donc,
ensemble, cela donne une décomposition A = O1DO2 où
O1 = OO t

2 , O2 sont orthogonales et D est diagonale réelle.
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Comme 𝜆 n est invariante par translation, on est donc
ramené au cas b = 0.

On est donc ramener au deux cas A orthogonale et A
diagonale inversible.

Si A orthogonale, alors on choisit la boule unité
euclidienne B = Bn car une matrice orthogonale laisse
invariante cette boule (c’est par définition une isométrie
pour la norme euclidienne) donc 𝜆 n ( f (Bn )) = 𝜆 n (Bn ) et
c = 1 = |det (A) | (vu AA t = I ,
det (A)2 = det (A)det (A t ) = det (I ) = 1).

Si A = diag (d1 , . . . , dn ) alors on prend B = [0, 1]n car
A (B) = ∏︁n

i=1 [0, d i ] avec [0, d i ] = [d i , 0] si d i < 0. Dans tous
les cas 𝜆 n (A (B)) =

∏︁n
i=1 |d i | = |det (A) |𝜆 (B) comme voulu.

Dans le cas général, A = O1SO2 , par composition, on
obtient :

𝜆 (A (B)) = |det (O1) | |det (D ) | det (O2) |𝜆 (B)

= | det (A) |𝜆 (B) .
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Rappel (de L2) sur les
difféomorphismes

Définition 5.2

Soient U ⊂ Rn , V ⊂ Rp . Une application f : U → V une
fonction différentiable. f est un difféomorphisme si f
est bijective et que f −1 est différentiable.
On dit que f est un Ck-difféomorphisme (k ∈ N∗ ∪∞)
si de plus f et f −1 sont de classe Ck .

Proposition 5.9

Soit f : U → V un difféomorphisme, alors ∀x ∈ U ,
df (x ) : Rn → Rp est un isomorphisme linéaire (en
particulier nécessairement n = p ) et on a :

(df (x ))−1 = df −1 ( f (x )) .

Remarque 5.2. 1. Le résultat précédent montre
que la dimension est invariante par
difféomorphisme. De même des ouverts de Rn et
Rp ne peuvent être homéomorphes que si n = p
mais c’est beaucoup plus dur (Théorème
d’invariance du domaine de Brouwer). Par
contre, il existe des applications continues
surjectives de [0, 1] dans [0, 1]2 .

2. Le théorème d’inversion locale va donner des
conditions pour la réciproque de la proposition
précédente
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Démonstrat ion. Comme f −1 ◦ f (y ) = y , en différenciant
f −1 ◦ f par le théorème des fonctions composées en x , on
obtient : df −1 ( f (x )) ◦ df (x ) = id .

De même en différenciant f ◦ f −1 (y ) = y en z = f (x ) on
obtient : df ( f −1 (z )) ◦ df −1 (z ) = Id . Donc df (x ) et df −1 ( f (x ))
sont inverses l’une de l’autre, ce qui conclut.

Définition 5.3

Soit f : U → Rp une application différentiable sur un
ouvert U ⊂ Rn . f (x ) = ( f1 (x ) , . . . , fp (x )) . La matrice de
l’application linéaire df (x ) dans les bases canoniques
de Rn et Rp est appelée, matrice jacobienne de f et
notée J ( f ) (x ) :

(J ( f ) (x )) i j = ( 𝜕f i
𝜕x j

(x )) .

Remarque 5.3. Le théorème de dérivation des
fonctions composées donne donc :

J (g ◦ f ) (x0) = J (g) ( f (x0))J ( f ) (x0) ,

et le résultat pour les inverses de la proposition
précédente s’écrit :

J ( f −1) (y0) = [J ( f ) ( f −1 (y0))]−1 .

Le théorème suivant avec k = 1 permettra de vérifier
l’hypothèse du théorème de changement de variable.
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Théorème 5.10: (d’inversion globale)

Soit f : U → Rn une application de classe Ck (avec
k ≥ 1) injective et telle que pour tout x ∈ U ,
df (x ) : Rn → Rn est un isomorphisme linéaire, alors
f (U ) est un ouvert de Rn et f : U → f (U ) est un
Ck-difféomorphisme.

Remarque 5.4. df (x ) est un isomorphisme si et
seulement si det (Jf (x )) ≠ 0.

Cas général (admis)
Nous pouvons maintenant énoncer le théorème de

changement de variables. 3

⋆ Théorème 5.11: (Théorème de changement de
variables)

Soient U , V deux ouverts de Rn , et 𝜑 : U → V un
difféomorphisme de classe C1 . Rappelons qu’on note
𝜆 n la mesure de Lebesgue sur Rn . Alors on a :

1. Pour toute partie B borélienne de U ,
𝜆 n (𝜑(B)) =

∫
B
| det (J𝜑(x )) |d𝜆 n (x ).

3. Cette sous-section reprend le cours de 2018-2019 de
T. Blossier, M. Carrizosa et J. Melleray.
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2. Si f : V → [0, +∞] est borélienne, alors∫
V
f (x )d𝜆 n (x )

=

∫
U
f ◦ 𝜑(y ) | det (J𝜑(y )) |d𝜆 n (y ) .

3. Si f : V → R est intégrable, alors
y ↦→ f ◦ 𝜑(y ) | det (J𝜑(y )) | est intégrable sur U et
on a ∫

V
f (x )d𝜆 n (x )

=

∫
U
f ◦ 𝜑(y ) | det (J𝜑(y )) |d𝜆 n (y ) .

Remarque 5.5. Le cas affine est une conséquence du
lemme 5.8 et du théorème de transfert appliqué
f = 𝜑−1 : (V , B(V ) , 𝜆 n ) → (U , B(U )). Le 1 du théorème
ou le lemme 5.8 ci-dessus, s’interprète comme le
calcul de la mesure image de la mesure de Lebesgue
induite sur V : (𝜆 n ,V )X ayant une densité
fX (x ) = | det (J𝜑(x )) |1U (x ) par rapport à 𝜆 n . Le résultat
correspond à h = f ◦ 𝜑 de sorte que :∫

V
fd𝜆 n =

∫
V
h (X )d𝜆 n

=

∫
Rn
h (y ) fX (y )d𝜆 n (y )

=

∫
U
f ◦ 𝜑(y ) | det (J𝜑(y )) |d𝜆 n (y ) .
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Exemple 5.2: (changement de variables en coordon-
nées polaires)

On considère l’application 𝜙 : U =]0, +∞[×]0, 2𝜋[→ R2

définie par 𝜙(r , 𝜃) = (r cos 𝜃 , r sin 𝜃).

Alors, la matrice jacobienne de 𝜙 est
(︄
cos 𝜃 −r sin 𝜃

sin 𝜃 r cos 𝜃

)︄
,

de déterminant r .
De plus, 𝜙 est injective et
𝜙(U ) = R2 \ ([0, +∞[×{0}) = V .
Ainsi, 𝜙 est un C1 -difféomorphisme de U sur V .
Comme 𝜆 2 (R2 \ V ) = 0, c’est-à-dire R2 \ V est
négligeable, il n’est pas gênant que 𝜙 ne soit pas un
difféomorphisme de U sur R2 tout entier.
Par exemple, calculons

I =

∫
D
(x + y )2dxdy , où D = {(x , y ) : x 2 + y 2 < 1}.

En utilisant le théorème de changement de variables
avec les coordonnées polaires (et le théorème de
Fubini), on obtient 𝜙−1 (D ∩ V ) =]0, 1 [×]0, 2𝜋[ et
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I =

∫
D∩V

(x + y )2dxdy

=

∫
𝜙−1 (D∩V )

(r cos 𝜃 + r sin 𝜃)2 rdrd 𝜃

=

∫ 1

0
dr(︄∫ 2𝜋

0
r 3 (cos2 𝜃 + sin2

𝜃 + 2 cos 𝜃 sin 𝜃)d 𝜃
)︄

=

∫ 1

0
r 3

(︄∫ 2𝜋

0
d 𝜃 (1 + sin 2𝜃)

)︄
dr

=

∫ 1

0
2𝜋r 3dr

=
𝜋

2 .

Exemple 5.3

Calculons Γ ( 1
2 ) =

∫ +∞
0 t −1/2e− t dt .

On commence par le changement de variable (pour
les intégrales à une variable) u2 = t , dt = 2udu :

Γ ( 1
2 ) =

∫ +∞

0
t −1/2e− t dt

= 2
∫ +∞

0
e−u2 du =

∫ +∞

−∞
e−u2 du

avec la dernière égalité venant de la parité de la
fonction u ↦→ e−u2 .
Enfin, on calcule le carré de cette intégrale en
utilisant d’abord Fubini-Tonelli pour obtenir une
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intégrale double (on utilise R2 \ ({0} × [0, +∞[) = V
vérifiant 𝜆 2 (V c ) = 0 comme à l’exemple précédent).

(Γ ( 1
2 ))2 =

(︃∫ +∞

−∞
dx

∫ +∞

−∞
dy e−x 2−y 2

)︃
=

∫
R2
dxdy e−x 2−y 2

=

∫
V
dxdy e−x 2−y 2

d’où par changement de variable en coordonnée
polaire (comme à l’exemple précédent on utilise
𝜙−1 (V ) = U pour le domaine d’intégration) :

(Γ( 1
2 ))2 =

(︄∫ 2𝜋

0
d 𝜃

∫ +∞

0
dre−r 2 2r /2

)︄
=

(︄∫ 2𝜋

0
d 𝜃1

)︄ [︂
−e−r 2/2

]︂+∞
0

= (2𝜋) . 1
2 = 𝜋.

On a aussi vérifier que∫ +∞

−∞
e−u2 du =

√
𝜋.

En faisant, le changement de variable linéaire
u = x/

√
2, on obtient :

1
√

2

∫ +∞

−∞
e−x 2/2dx =

√
𝜋. (5.1)
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Chapitre 6

Introduction
aux espaces
Lp

Soit (Ω , T , 𝜇) un espace mesuré (T la tribu, 𝜇 la
mesure). On va travailler en identifiant les fonctions si elles
coïncident 𝜇-presque partout. Autrement dit, on écrira f = g
quand 𝜇({x : f (x ) ≠ g (x )}) = 0 ; en particulier, f = 0 signifiera
que f vaut 0 presque partout. Par exemple, si f est la
fonction caractéristique de Q, on pourra écrire f = 0. Ainsi,
dit en mots, on va en fait travailler avec les “classes
d’équivalence de fonctions à égalité 𝜇-presque partout
près". K sera égale à R ou C.

213
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1 L’espace L∞(Ω , 𝜇)
⋆ Définition 6.1

Soit f : Ω → K une fonction mesurable. On dit que
M ∈ [0, +∞[ est une borne essentielle de f ou que f
est essentiellement bornée par M si
𝜇({x : | f (x ) | > M }) = 0, autrement dit, si f ≤ M
𝜇-presque partout.

On définit leur ensemble :

L∞ (Ω , T , 𝜇; K) =

{ ḟ ; f : Ω → K, mesurable et ∃C < ∞ : | f | ≤ C 𝜇 − p .p .}

et la fonction (qui est une norme selon le lemme suivant) :

| | f | |∞ = inf{C : | f | ≤ C 𝜇 − p .p .} =: ess suppx ∈Ω | f (x ) |.

On note aussi plus brièvement
L∞ (Ω ; K) = L∞ (Ω , 𝜇; K) = L∞ (Ω , T , 𝜇; K) et L∞ (Ω) = L∞ (Ω ; R), si
il n’y a pas de confusion possible.

Exercice 6.1. (cf TD) Montrer que | f | ≤ | | f | |∞p .p .

Lemme 6.1

(L∞ (Ω , T , 𝜇; K) , | | · | |∞) est un espace vectoriel normé.

Démonstrat ion. On montre qu’il s’agit d’un sous-espace
vectoriel de l’espace des classes d’équivalences de
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fonctions mesurables. Bien sûr 0 est bornée donc
essentiellement bornée.

Soient f , g ∈ L∞ (Ω , T , 𝜇; K), 𝜆 ∈ K. Par l’exo

𝜇({𝜔 : | f (𝜔) | > | | f | |∞}) = 0,

𝜇({𝜔 : |g (𝜔) | > | |g | |∞}) = 0.

Or par l’inégalité triangulaire des nombres on
a : | (𝜆 f + g) (𝜔) | ≤ |𝜆 | | f (𝜔) | + |g (𝜔) | donc

{𝜔 : | f (𝜔) | ≤ | | f | |∞} ∩ {𝜔 : |g (𝜔) | ≤ | |g | |∞}

⊂ {𝜔 : | (𝜆 f + g) (𝜔) | ≤ |𝜆 | | | f | |∞ + ||g | |∞}

et en passant au complémentaire

𝜇({𝜔 : | (𝜆 f + g) (𝜔) | > |𝜆 | | | f | |∞ + ||g | |∞})

≤ 𝜇({𝜔 : | f (𝜔) | > | | f | |∞}) + 𝜇({𝜔 : |g (𝜔) | > | |g | |∞}) = 0

Donc, par définition, 𝜆 f + g est essentiellement bornée et
| |𝜆 f + g | |∞ ≤ |𝜆 | | | f | |∞ + ||g | |∞ . On déduit que L∞ (Ω ; K) est bien
un espace vectoriel et l’inégalité triangulaire. En fait
𝜇({𝜔 : | f (𝜔) | > C }) = 𝜇({𝜔 : |𝜆 f (𝜔) | > |𝜆 |C }) donc en
comparant les infima, | |𝜆 f | |∞ = |𝜆 | | | f | |∞ ce qui donne la
positive homogénéité. Enfin par définition, si | | f | |∞ = 0 alors
f = 0 presque partout donc sa classe d’équivalence est
nulle.

Théorème 6.2

(L∞ (Ω , T , 𝜇; K) , | | · | |∞) est un espace de Banach.
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Démonstrat ion. Il reste à montrer la complétude : Soit fn
une suite de Cauchy de fonctions mesurables
essentiellement bornées. Montrons que que fn converge
vers f (𝜔) = l im supn→∞ fn (𝜔) qui est une fonction mesurable
comme lim sup de fonctions mesurables et dont on va voir
qu’elle est essentiellement bornée. Donc, par l’hypothèse
d’avoir une suite de Cauchy, pour n > 0, 𝜖 = 1/n il existe Nn
tel que ∀p , q ≥ Nn , | | fp − fq | |∞ ≤ 1

n . Par définition de la norme,
on peut donc fixer An ,p ,q (pour p , q ≥ Nn ) avec 𝜇(Acn ,p ,q ) = 0
tel que

sup
𝜔∈An ,p ,q

| fp (𝜔) − fq (𝜔) | ≤
1
n .

On va intersecter tous ces ensembles (une intersection
dénombrable) pour avoir 𝜇-p.p. une suite de Cauchy. On
prend donc A = ∩n>0 ∩p ,q≥Nn An ,p ,q . On a
𝜇(Ac ) ≤

∑︁
n>0

∑︁
p ,q≥Nn

𝜇(Acn ,p ,q ) = 0 (vu que Ac est une union

dénombrable).

De plus pour 𝜔 ∈ Ac , on a

∀n , ∀p , q ≥ Nn , | fp (𝜔) − fq (𝜔) | ≤
1
n

donc ( fn (𝜔)) est de Cauchy dans K donc converge. Sa limite
est forcément f (𝜔) et en passant à la limite q → ∞ ci dessus,
pour tout 𝜔 ∈ A :

∀n , ∀p ≥ Nn , | fp (𝜔) − f (𝜔) | ≤
1
n .

Comme 𝜇(Ac ) = 0 on déduit

∀n , ∀p ≥ Nn , | | fp − f | |∞ ≤ 1
n .
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Ceci implique | | f | |∞ ≤ || fp | |∞ + || fp − f | |∞ donc f est dans
L∞ (Ω , T , 𝜇; K) et la convergence de fn vers f dans cet
espace. Comme toute suite de Cauchy converge, on a
obtenu la complétude voulue.

2 Définitions et propriétés
élémentaires des espaces
Lp (Ω , 𝜇)

On définit les espaces :

Lp (Ω , T , 𝜇; K) = {f : Ω → K mesurable |
∫

| f |pd 𝜇 < ∞},

pour p ∈ [1, ∞[. Alors

| | f | |p = (
∫
d 𝜇 | f |p )1/p .

n’est pas une norme (mais une seminorme sur Lp (Ω , T , 𝜇)
car si | | f | |p = 0 alors f est seulement nulle presque partout.
On considère donc l’espace des classes d’équivalences à
égalité presque partout près de fonctions ḟ et l’espace de
Lebesgue :

⋆ Définition 6.2

Lp (Ω , T , 𝜇; K) =

{ ḟ ; f : Ω → K mesurable et
∫

| f |pd 𝜇 < ∞},

pour p ∈ [1, ∞[.
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Comme pour le cas p = ∞, on on note aussi plus
brièvement

Lp (Ω ; K) = Lp (Ω , 𝜇; K) = Lp (Ω , T , 𝜇; K)

et Lp (Ω) = Lp (Ω ; R), si il n’y a pas de confusion possible.

Par la suite, on identifie f à ḟ dans ce contexte, on
répète que les égalités sont des égalités 𝜇 − p .p . .

Montrons que | |. | |p est une norme sur Lp (Ω , T , 𝜇) . La
séparation et l’homogénéité sont maintenant évidentes. On
rappelle l’inégalité de Hölder d’abord dans le cas le plus
simple

Proposition 6.3

Si f , g sont mesurables, ∥ f ∥p < +∞ et ∥g ∥∞ < +∞, alors
fg ∈ Lp (Ω , T , 𝜇; K) et ∥ fg ∥p ≤ ∥ f ∥p ∥g ∥∞.

Démonstrat ion. Il suffit de noter que, 𝜇-presque partout,
on a |g (x ) | ≤ ∥g ∥∞, et donc | f (x )g (x ) |p ≤ | f (x ) |p ∥g ∥p∞. En
intégrant cette inégalité, on obtient bien

∥ fg ∥pp =

∫
Ω
| f (x )g (x ) |pd 𝜇

≤
∫
Ω
| f (x ) |p ∥g ∥p∞d 𝜇 = ∥ f ∥pp ∥g ∥

p
∞ .

La version générale est la suivante
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⋆ Lemme 6.4: (inégalité de Hölder)

Si p , q ∈ [1, ∞[ tels que 1/p + 1/q = 1/r ≤ 1,
f ∈ Lp (Ω , T , 𝜇; K) , g ∈ Lq (Ω , T , 𝜇; K) alors
fg ∈ L r (Ω , T , 𝜇; K) et

| | fg | | r ≤ || f | |p | |g | |q .

Démonstrat ion. En remplaçant f , g par | f | r , |g | r on se
ramène au cas r = 1.

Par hypothèse dans le cas r = 1, 1 < p < ∞, on
remarque que par concavité du logarithme, on a pour
a , b > 0

log
(︁
ap/p + bq/q

)︁
≥ log

(︁
ap

)︁
/p + log

(︁
bq

)︁
/q

= log
(︁
ab

)︁
.

Donc on obtient en exponentiant (et en vérifiant
directement les cas d’annulations), l’inégalité d’Young :

| f (x )g (x ) | ≤ | f (x ) |p
p + |g (x ) |q

q .

Donc en intégrant, on obtient fg ∈ L1 et appliquant à 𝜆 f ,
𝜆 > 0 :

| | fg | |1 ≤ 𝜆 p−1

p | | f | |pp +
𝜆−1

q | |g | |qq .

Comme le cas d’annulation | | f | |p = 0 ou | |g | |q = 0 sont
évidents (car alors fg = 0 𝜇 − p .p .), on conclut en supposant
| | f | |p ≠ 0, | |g | |q ≠ 0 et en prenant la valeur de 𝜆 donnant le
minimum 𝜆 = | | f | |−1

p | |g | |q/pq .
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Une conséquence importante est l’exercice suivant :

Exercice 6.2. Si 𝜇 est une mesure finie pour
1 ≤ p ≤ q ≤ ∞, montrer que :

L∞ (Ω , T , 𝜇; K) ⊂ Lq (Ω , T , 𝜇; K)

⊂ Lp (Ω , T , 𝜇; K) ⊂ L1 (Ω , T , 𝜇; K) .

On en déduit l’inégalité triangulaire :

⋆ Théorème 6.5: (Inégalité de Minkowski)

Soient p ∈ [1, +∞] et f , g ∈ Lp (Ω). Alors f + g ∈ Lp (Ω)
et ∥ f + g ∥p ≤ ∥ f ∥p + ∥g ∥p .

Démonstrat ion. On a déjà traité le cas p = +∞, et le cas
p = 1 est simplement l’inégalité triangulaire habituelle.
Supposons donc p ∈]1, +∞[ et f , g ∈ Lp (Ω).

Commençons par montrer que ∥ f + g ∥p < +∞. Comme
x ↦→ x p est convexe et croissante, on a pour tout x que(︃|︁|︁|︁|︁ 12 f (x ) + 1

2 g (x )
|︁|︁|︁|︁)︃p ≤

(︃|︁|︁|︁|︁ 12 f (x )|︁|︁|︁|︁ + |︁|︁|︁|︁ 12 g (x )|︁|︁|︁|︁)︃p
≤ 1

2 | f (x ) |p + 1
2 |g (x ) |p .

En intégrant cette inégalité, on obtient que

1
2p ∥ f + g ∥

p
p ≤ 1

2 (∥ f ∥pp + ∥g ∥pp )) .

Ceci nous prouve que ∥ f + g ∥p < +∞.
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Maintenant, notons q =
p

p − 1 l’exposant conjugué de p .
Ci-dessous, on va utiliser l’inégalité de Hölder, et le fait
que ∥︁∥︁∥︁| f + g |p−1

∥︁∥︁∥︁
q
=

(︃∫
Ω
| f + g | (p−1 )qd 𝜇

)︃ 1
q

=

(︃∫
Ω
| f + g |p

)︃1− 1
p
= ∥ f + g ∥p−1

p .

Alors on a

∥ f + g ∥pp =

∫
Ω
| f + g |pd 𝜇

≤
∫
Ω
( | f | + |g |) | f + g |p−1d 𝜇

=

∫
Ω
| f | | f + g |p−1d 𝜇 +

∫
Ω
|g | | f + g |p−1d 𝜇

≤ ∥ f ∥p
∥︁∥︁∥︁| f + g |p−1

∥︁∥︁∥︁
q
+ ∥g ∥p

∥︁∥︁∥︁| f + g |p−1
∥︁∥︁∥︁
q

= (∥ f ∥p + ∥g ∥p )
∥︁∥︁∥︁| f + g |p−1

∥︁∥︁∥︁
q

= (∥ f ∥p + ∥g ∥p )∥ f + g ∥p−1
p

Si jamais ∥ f + g ∥p = 0 on n’a rien à démontrer ; sinon, en
divisant des deux côtés par ∥ f + g ∥p−1

p on obtient finalement
∥ f + g ∥p ≤ ∥ f ∥p + ∥g ∥p .

Exercice 6.3. Soit (Ω , T , 𝜇) un espace mesure 𝜎-fini.
Soit f ≥ 0 une fonction mesurable positive, alors pour
p ∈]0, ∞[∫

f pd 𝜇 =

∫ ∞

0
dtpt p−1𝜇({𝜔 : f (𝜔) > t }) .
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On rappelle d’abord la version Lp du théorème de
convergence dominée.

⋆ Théorème 6.6: (Théorème de convergence domi-
née Lp )

Soit p ∈ [1, +∞[. Soit (Ω , 𝜇) un espace mesuré, et fn
une suite de fonctions mesurables convergeant
𝜇-presque partout vers f , et vérifiant la domination
| fn | ≤ g avec g ∈ Lp (Ω , 𝜇). Alors, fn , f ∈ Lp (Ω , 𝜇) et fn
converge vers f dans Lp (Ω , 𝜇), c’est à dire.

l im
n→∞

| | fn − f | |p = 0.

Démonstrat ion. On a | fn − f |p → 0 𝜇-presque partout. De
| fn | ≤ g on déduit que fn , inLp (Ω , 𝜇; K) en passant à la limite
on obtient | f | ≤ g et donc f ∈ Lp (Ω , 𝜇; K). De plus, on a la
domination :

| fn − f |p ≤ (| fn | + | f |)p ≤ (2g)p = 2pgp

et comme g ∈ Lp (Ω , 𝜇) et positive, on déduit que gp = |g |p est
𝜇-intégrable et sert donc de domination pour appliquer le
théorème de convergence dominée usuelle qui donne le
résultat :

| | fn − f | |pp =

∫
Ω
| fn − f |pd 𝜇 →n→∞

∫
Ω

0d 𝜇 = 0.
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⋆ Théorème 6.7: (de Riesz-Fischer)

Soit (Ω , 𝜇) un espace mesuré, les espaces Lp (Ω , 𝜇, K)
pour p ∈ [1, ∞] sont des espaces de Banach.

Démonstrat ion. On vient de voir que Lp (Ω , 𝜇, K) est un
espace vectoriel normé, et même la complétude dans le cas
p = ∞.

Il reste le cas p < ∞. En décomposant en partie réelle
et imaginaire, on peut supposer et donc on suppose K = R.

Pour la complétude, on utilise la proposition 2.6. Soit∑︁
un qui est absolument convergente, il faut montrer qu’elle

converge dans Lp . Soit gk =

k∑︁
n=1

|un |, | |gk | |p ≤
∑︁

| |un | |p et

|gk |p est croissante, donc par convergence monotone
converge vers g avec | |g | |p ≤

∑︁
| |un | |p . Donc |g |p ∈ L1 qui

donne une domination pour |
∑︁

un |p et
∑︁

un est p.p.
absolument convergente, donc a p.p. une limite et par
convergence dominée, converge donc dans Lp . .

Résultats de convergences
En suivant le même raisonnement on obtient le résultat

suivant :
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⋆ Théorème 6.8

Soient (Ω , T , 𝜇) un espace mesuré, p ∈ [1, +∞[, et ( fn )
une suite d’éléments de Lp (Ω) qui converge vers f
dans (Lp (Ω) , ∥ · ∥p ). Alors il existe une suite extraite
( fnk ) telle que ( fnk ) tend vers f , 𝜇-presque partout et
dans Lp (Ω).

Démonstrat ion. On extrait ( fnk ) telle que
| | fnk+1 − fnk | |p ≤ 1/2k . (c’est possible car la suite est de
Cauchy dans Lp donc on prend nk telle que
| | fq − fnk | |p ≤ 1/2k pour q ≥ nk .)

Donc on pose gn =

n∑︁
k=1

| fnk+1 − fnk | qui est une suite

croissante avec

| |gk | |p ≤
∑︁
k

| | fnk+1 − fnk | |p ≤
∞∑︁
k=1

1/2k = 1.

On déduit donc en appliquant le théorème de convergence

monotone que gk a une limite g =

∞∑︁
k=1

| fnk+1 − fnk | telle que

| |g | |p ≤ 1. On l’utilise maintenant comme condition de
domination. Donc

∑︁
k
( fnk+1 − fnk ) est absolument convergente

sur A = {𝜔 : g (𝜔) < ∞} et on a 𝜇(Ac ) = 0, vu | |g | |p < ∞. Donc
par série télescopique ( fnk (𝜔)) converge pour 𝜔 ∈ A. (et
comme suite extraite elle converge aussi dans Lp mais en
fait elle est dominée par | fn0 | + g ∈ Lp et converge aussi par
convergence dominée).
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Proposition 6.9

Soient (Ω , T , 𝜇) un espace de probabilité et
f : Ω → [0, +∞] une fonction mesurable. Alors on a

∥ f ∥∞ = l im
p→+∞

∥ f ∥p .

Démonstrat ion. Commençons par remarquer que l’on a
toujours

∥ f ∥p =

(︃∫
Ω
| f |pd 𝜇

)︃ 1
p
≤

(︂
∥ f ∥p∞𝜇(Ω)

)︂ 1
p
= ∥ f ∥∞ .

Par conséquent, si ∥ f ∥p → +∞ quand p → +∞ alors
∥ f ∥∞ = +∞. Pour voir la réciproque, notons que pour t < ∥ f ∥∞
fixé, l’ensemble A t = {x ∈ Ω : | f (x ) | > t } est de mesure
strictement positive, par conséquent

∥ f ∥p ≥ ( t p𝜇(A t ))
1
p = t 𝜇(A t )

1
p → t quand p → +∞ .

Ceci montre que si ∥ f ∥∞ = +∞ alors ∥ f ∥p tend vers +∞ ; mais
aussi que, si ∥ f ∥∞ < +∞ on a pour tout 𝜀 > 0 que pour p
suffisamment grand ∥ f ∥∞ − 𝜀 ≤ ∥ f ∥p ≤ ∥ f ∥∞.

Résultats de densité
On rappelle le résultat suivant qui se déduit de la

construction de l’intégrale (cf. lemme 4.21)
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Lemme 6.10

Soit (Ω , 𝜇, T) un espace 𝜎-fini. L’ensemble S des
fonctions étagées intégrables est dense dans tous les
Lp (Ω , 𝜇, T), 1 ≤ p < ∞. En particulier,
L1 (Ω , 𝜇, T) ∩ L∞ (Ω , 𝜇, T) est dense dans Lp (Ω , 𝜇, T)
pour 1 ≤ p < ∞.

Lemme 6.11

Soit (Ω , 𝜇, T) un espace 𝜎-fini avec T = 𝜎(E) pour E
une famille stable par intersection finie et de mesure
finie pour 𝜇, et contenant une suite An avec 𝜇(An ) < ∞
et Ω = ∪nAn . Alors l’espace vectoriel
E = Vect {1A , A ∈ E} est dense dans tous les
Lp (Ω , 𝜇, T), 1 ≤ p < ∞. En particulier, si E est
dénombrable, alors Lp (Ω , 𝜇, T), 1 ≤ p < ∞ est
séparable.

En général L∞ (Ω , 𝜇, T) n’est PAS séparable, sauf si Ω
est un ensemble fini, par exemple ℓ∞ (N) n’est pas séparable
(c’est un exercice plus dur de niveau M1).

Démonstrat ion. Soit An ∈ E avec 𝜇(An ) < ∞ et Ω = ∪nAn .

Soit M := {A ∈ T : ∀n , 1A∩An ∈ E L
p
}. Clairement E ⊂ M.

On va montrer que M est une classe monotone :

⊲ Ω ∈ M car 1An ∈ E



Chapitre 6. Introduction aux espaces Lp 227

⊲ Si A ⊂ B et A , B ∈ M , on a 1 (B\A )∩An = 1B∩An − 1A∩An par
le TD 1 donc dans l’espace vectoriel E L

p
.

⊲ Si Bm ∈ M suite croissante d’union B alors
1Bm∩An → 1B∩An partout par le TD 1, Or on a
domination par 1An ∈ Lp (Ω , 𝜇, T) donc par
convergence dominée 1Bm∩An → 1B∩An dans
Lp (Ω , 𝜇, T) et donc 1B∩An ∈ E L

p

Le lemme de classe monotone implique M ⊃ T (E).
Donc si B ∈ T (E) est de mesure finie, on a 1B∩An ∈ E L

p
et par

la même application du théorème de convergence dominée
(par 1B cette fois) on déduit 1B ∈ E L

p
. Donc E L

p
contient

toute fonction étagée intégrable et le résultat précédent
conclut. La séparabilité vient de la densité de l’ensemble
dénombrable VectQ (1A , A ∈ E).

Le support d’une fonction continue f est le fermé
supp ( f ) = f −1 ({0})c . Un fonction sur Rn est donc à support
compact quand elle est nulle en dehors d’un ensemble
borné. On note C 0

c (Ω) est l’ensemble des fonctions à
support compact sur un ouvert Ω.

⋆ Théorème 6.12

Soit Ω ⊂ Rn un ouvert et 𝜆 la mesure de Lebesgue sur
la tribu borélienne B(Ω) = B(Rn )Ω (tribu induite sur Ω).
Alors l’ensemble des fonctions continues à support
compact C 0

c (Ω) est dense dans Lp (Ω , B(Ω) , 𝜆 ) pour
1 ≤ p < ∞, qui est séparable.
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Démonstrat ion. Par le lemme précédent avec
E = {A =

∏︁n
i=1 [a i , b i ] , a i ≤ b i } l’ensemble des pavés, il suffit

de voir que les 1A sont approchés par des fonctions
continues à support compact pour A =

∏︁n
i=1 [a i , b i ] . Par

produit de fonctions (de variables différentes), cela se
ramène au cas n = 1. Soit f = 1 [a ,b ] et fn ( t ) = 1 si t ∈ [a , b] ,
fn ( t ) = 1 − max (n ( t − b) , 1) si t > b ,
fn ( t ) = 1 − max (n (a − t ) , 1) si t < a . Alors il est facile de voir
que ( fn )n≥1 est une suite dans C 0

c (Ω) qui converge
ponctuellement vers f (exo). Elle est dominée par 1 [a−1,b+1 ]

qui est dans Lp (Ω , B(Ω) , 𝜆 ) pour 1 ≤ p < ∞ donc par
convergence dominée, | | fn − f | |p → 0. Donc on peut
appliquer le lemme précédent et conclure.

3 Cas discret : espaces ℓ p (I ) ,
p ∈ [1, ∞[ (cf. TD)

Définition 6.3

Soit p ∈ [1, ∞[. Une famille (z i ) i ∈I de nombres
complexes ou réels est dite p-sommable si la famille
( |z i |p ) i ∈I est sommable. On note ℓ p (I , K) l’ensemble
des familles d’éléments de K p-sommable.

Un examen de la définition indique que
ℓ p (I , K) = Lp (I , P(I ) , 𝜈) avec 𝜈 la mesure de comptage, c’est
donc un espace de Banach. On a aussi par définition (dans
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le cas positif puis le cas quelconque) :∑︁
i ∈I
a i =

∫
I
ad 𝜈 .

On note

| |z | |p =

(︄∑︁
i ∈I

|z i |p
)︄1/p

.

L’inégalité de Hölder s’écrit donc pour
x ∈ ℓ q (I ) , y ∈ ℓ p (I ) : avec 1/p + 1/q = 1, p , q ∈]1, ∞[ :|︁|︁|︁|︁|︁∑︁

i ∈I
x i y i

|︁|︁|︁|︁|︁ ≤
(︄∑︁
i ∈I

|x i |q
)︄1/q (︄∑︁

i ∈I
|y i |p

)︄1/p



Chapitre 7

Espaces de
Hilbert ; bases
hilbertiennes

1 Généralités
Soit H un espace vectoriel sur K = R ou C

⋆ Définition 7.1

Un produit scalaire sur H est une application

⟨. , .⟩ : H × H → K

telle que :

1. pour tout y ∈ H , ⟨y , .⟩ : H → K est linéaire
2. - Si K = R ∀x , y ∈ H , ⟨x , y ⟩ = ⟨y , x ⟩ (symétrie)

230
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- Si K = C ∀x , y ∈ H , ⟨x , y ⟩ = ⟨y , x ⟩ (symétrie
hermitienne)

3. pour x ∈ H , ⟨x , x ⟩ ∈ R+

4. pour x ∈ H , ⟨x , x ⟩ = 0 si et seulement si x = 0.

Un espace H avec un tel produit scalaire est un
espace préhilbertien réel (si K = R) et complexe (si
K = C).

On remarque que dans le cas complexe, ⟨. , y ⟩ est
antilinéaire, c’est-à-dire avec 𝜆 le conjugué complexe,

∀x , y , z ∈ H , 𝜆 ∈ C, ⟨𝜆x + z , y ⟩ = 𝜆 ⟨x , y ⟩ + ⟨z , y ⟩.

Exemple 7.1

Sur H = ℓ 2 (N, C) := L2 (N, 𝜈 ; C) (espace L2 avec la
mesure de comptage 𝜈) on a le produit scalaire
(hermitien canonique) :

⟨x , y ⟩ =
∑︁
i ∈I
x i y i

Dans le cas réel, la même formule sans conjugaison
complexe fonctionne.

Exemple 7.2

Sur H = L2 (Ω , 𝜇; C) avec (Ω , 𝜇) un espace mesuré
𝜎-fini, on a le produit scalaire (hermitien canonique) :

⟨f , g⟩ =
∫
Ω
f (x )g (x )d 𝜇(x ) .
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Exemple 7.3

Sur H = C 0 ( [a , b] , C) on a le produit scalaire :

⟨f , g⟩ =
∫ b

a
f (x )g (x )dx ) .

Proposition 7.1

Si H est muni d’un produit scalaire on a l’inégalité de
Cauchy-Schwarz :

|⟨x , y ⟩|2 ≤ ⟨x , x ⟩⟨y , y ⟩

avec égalité si et seulement si x , y sont liés. De plus
| |x | | =

√︁
⟨x , x ⟩ est une norme sur H vérifiant l’identité

du parallélogramme :∥︁∥︁∥︁ x + y
2

∥︁∥︁∥︁2
+

∥︁∥︁∥︁ x − y
2

∥︁∥︁∥︁2
=

1
2 ( | |x | |2 + ||y | |2) .

Démonstrat ion. On a

⟨x + ty , x + ty ⟩ = | |x | |2 + t 2 | |y | |2 + 2 tℜ(⟨x , y ⟩) ≥ 0

c’est un polynôme de degré 2 qui est toujours positif ou
nul, donc son discriminant ∆ = 4ℜ(⟨x , y ⟩)2 − 4 | |x | |2 | |y | |2 ≤ 0.
En remplaçant y par uy avec u =

⟨x ,y ⟩
| ⟨x ,y ⟩ | si ⟨x , y ⟩ ≠ 0 on

obtient

ℜ(⟨x , y ⟩u) = |⟨x , y ⟩| ≤ | |x | |2 ⟨uy , uy ⟩

= | |x | |2 | |y | |2uu = | |x | |2 | |y | |2 .
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Le même calcul donne pour u de module 1 la norme de∥︁∥︁∥︁ | |y | |x − u | |x | |y
∥︁∥︁∥︁2

= 2 | |y | |2 | |x | |2 − 2 | |x | | | |y | |ℜ(⟨x , uy ⟩)

qui vaut 0 si on choisit u tel que ⟨x , y ⟩u = |⟨x , y ⟩| et que l’on
est dans le cas d’égalité de C-S, ce qui donne la relation de
dépendance linéaire cherchée | |y | |x − u | |x | |y = 0. (La
réciproque, c’est à dire l’égalité en cas de dépendance
linéaire, est évidente).

Pour vérifier que l’on a une norme, la positivité vient de
l’axiome 3, la séparation vient du dernier axiome,
l’homogénéité vient de

⟨𝜆y , 𝜆y ⟩ = 𝜆𝜆 ⟨y , y ⟩ = |𝜆 |2 ⟨y , y ⟩

et l’inégalité triangulaire vient d’une application de C-S :

⟨x + y , x + y ⟩ = | |x | |2 + ||y | |2 + 2ℜ⟨x , y ⟩

≤ ||x | |2 + ||y | |2 + 2 | |x | | | |y | | = ( | |x | | + | |y | |)2 .

Enfin, on a aussi la relation :

⟨x − y , x − y ⟩ = | |x | |2 + ||y | |2 − 2ℜ⟨x , y ⟩

soit en faisant la somme (avec l’égalité débutant le calcul
pour l’inégalité triangulaire), on obtient l’identité du
parallélogramme.

Remarque 7.1. L’identité du parallélogramme
implique que

∥︁∥︁ x+y
2

∥︁∥︁2 ≥ 1
2 ( | |x | |

2 + ||y | |2) avec égalité si et
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seulement si x = y ce qui donne un résultat de
convexité (en faite stricte car l’inégalité est stricte si
x ≠ y ). (On a vu en TD que par continuité la convexité
à mi point implique la convexité).
Une autre identité importante s’établit en prenant la
différence des égalités donnant la preuve de l’identité
du parallélogramme ci-dessus, c’est l’identité de
polarisation :

ℜ⟨x , y ⟩ = | |x + y | |2 − ||x − y | |2
4

On retrouve aussi

ℑ⟨y , x ⟩ = ℜ⟨iy , x ⟩ = | |x + iy | |2 − ||x − iy | |2
4

d’où la formule de polarisation complexe :

⟨y , x ⟩

=
| |x + y | |2 − ||x − y | |2 + i | |x + iy | |2 − i | |x − iy | |2

4

ou encore en bref

⟨y , x ⟩ = 1
4

3∑︁
i=0
i k | |x + i k y | |2 (7.1)

⋆ Définition 7.2

Un espace pré-hilbertien complet est appelé espace
de Hilbert.
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⋆ Théorème 7.2

Soit (Ω , T , 𝜇) un espace mesuré. Alors
H = L2 (Ω , T , 𝜇; K) est un espace de Hilbert sur K avec
le produit scalaire défini pour f , g ∈ H par :

⟨f , g⟩ =
∫
Ω
f gd 𝜇.

Démonstrat ion. On ne traite que le cas K = C. Si f , g ∈ H ,
l’inégalité de Hölder avec p = q = 2 donne f g ∈ L1 (Ω , T , 𝜇; K)
et donc l’intégrale définissant le produit scalaire est bien
définie. On vérifie les axiomes des produits scalaires : 1/
⟨f , g⟩ est linéaire en la deuxième variable g par linéarité de
l’intégrale.

2/ la symétrie hermitienne vient du calcul suivant :

⟨f , g⟩ =
∫
Ω
f gd 𝜇 =

∫
Ω
f gd 𝜇 =

∫
Ω
f gd 𝜇 = ⟨g , f ⟩.

3/
⟨f , f ⟩ =

∫
Ω
| f |2d 𝜇 = | | f | |22 ∈ [0, +∞[

4/ Comme on sait déjà que | |. | |2 la séparation de la
norme implique que si | | f | |2 = 0 alors f = 0 (𝜇-presque
partout c’est à dire) dans H = L2 (Ω , T , 𝜇; K) .

On a donc bien un espace pré-hilbertien, et le
Théorème de Riesz-Fischer 6.7 dit que L2 (Ω , T , 𝜇; K) est
complet, donc un espace de Hilbert.
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Exemple 7.4

ℓ 2 (N; C) sont des espaces de Hilbert (cf. chapitre 6
pour la complétude), mais pas C 0 ( [a , b] , C) dont la
complétion est l’espace de Hilbert L2 ( [a , b] , 𝜆 ; C) . La
complétion d’un espace préhilbertien en tant qu’e.v.n.
(cf. annexe A section 3) est toujours un espace de
Hilbert.

2 Projection sur un convexe
fermé

On va généraliser l’existence de projection orthogonale
sur un sous-espace d’un espace euclidien d’abord au cas
des convexes fermés et en dimension infinie.

⋆ Théorème 7.3

Soit H un espace de Hilbert et C ⊂ H un convexe
fermé non-vide. Pour tout f ∈ H il existe un unique
u = PC ( f ) ∈ C tel que

| | f − u | | = inf
v ∈C

| | f − v | |.

De plus c’est l’unique vecteur u ∈ C vérifiant la
propriété caractéristique :

∀v ∈ C , ℜ(⟨f − u , v − u⟩) ≤ 0

Enfin, PC est une application 1-lipschitzienne
appelée projection sur C .
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Remarque 7.2. Un théorème de projection similaire
sur un convexe fermé est valide dans Lp (Ω , T , 𝜇) pour
tout 1 < p < ∞ (et pas seulement p = 2), mais il n’y a
pas de caractérisation aussi simple de la projection
PC (en l’absence de produit scalaire) et la projection
PC est seulement uniformément continue (et plus
nécessairement Lipschitz). Mais ce résultat est
beaucoup plus dur (un exercice difficile de M1 Math).

Démonstrat ion. On fait une preuve directe, utilisant
l’identité du parallélogramme.

Soit vn ∈ C tel que | | f − vn | | → d = inf v ∈C | | f − v | |

En appliquant l’identité à a = f − vn , b = f − vm , on
trouve :∥︁∥︁∥︁f − vn + vm2

∥︁∥︁∥︁2
+

∥︁∥︁∥︁ vn − vm2

∥︁∥︁∥︁2
=

1
2 ( | | f − vn | |2 + || f − vm | |2) → d 2 .

Or par convexité vn+vm
2 ∈ C donc

∥︁∥︁f − vn+vm
2

∥︁∥︁2 ≥ d 2 donc∥︁∥︁∥︁ vn − vm2

∥︁∥︁∥︁2
≤ 1

2 ( | | f − vn | |2 + || f − vm | |2) − d 2 → 0.

On déduit donc que vn est de Cauchy, donc converge
vers u et par continuité de la norme d = | | f − u | |.

Soit g : v ↦→ || f − v | |22 . On peut calculer la différentielle
dg (u) = ℜ(⟨f − u , .⟩). Or si g atteint son minimum en u , pour
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v ∈ C , t ∈ [0, 1] ,

| | f − tv − (1 − t )u | |22
= | | f − u | |22 + t 2 | |v − u | |22 − 2 tℜ(⟨f − u , v − u⟩)

≥ || f − u | |22

donc 2ℜ(⟨f − u , t − u⟩) ≤ t | |v − u | |22 et la limite t → 0 donne
l’inégalité caractéristique. Réciproquement, on a en t = 1,
l’inégalité qui conclut :

| | f − u | |22 − || f − v | |22 = 2ℜ(⟨f − u , v − u⟩) − ||v − u | |22 ≤ 0.

Pour voir l’unicité, si u1 , u2 ∈ C , on peut utiliser la
convexité stricte sous la forme de l’identité du
parallélogramme, on a∥︁∥︁∥︁f − u1 + u2

2

∥︁∥︁∥︁2
+

∥︁∥︁∥︁u1 − u2
2

∥︁∥︁∥︁2
=

1
2 ( | | f − u1 | |2 + || f − u2 | |2) = d 2

soit comme
∥︁∥︁f − u1+u2

2
∥︁∥︁2 ≥ d 2 on déduit

∥︁∥︁ u1−u2
2

∥︁∥︁2 ≤ 0 donc
u1 = u2 .

Par l’unicité, PC est bien définie et il ne reste qu’à voir
la lipschitizianité. En appliquant la propriété caractéristique
pour f1 , f2 :

ℜ(⟨f1 − PC ( f1) , PC ( f2) − PC ( f1)⟩) ≤ 0,

ℜ(⟨f2 − PC ( f2) , PC ( f1) − PC ( f2)⟩) ≤ 0,

soit en additionnant :

ℜ(⟨f1 − f2 + PC ( f2) − PC ( f1) , PC ( f2) − PC ( f1)⟩) ≤ 0
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soit en utilisant Cauchy-Schwarz :

| |PC ( f2) − PC ( f1) | |2 ≤ ℜ(⟨f1 − f2 , PC ( f2) − PC ( f1)⟩)

≤ || f1 − f2 | | | |PC ( f2) − PC ( f1) | |.

⋆ Théorème 7.4

Soit H un espace de Hilbert et K ⊂ H un sous espace
vectoriel fermé. Pour tout f ∈ H , il existe un unique
u = PK ( f ) ∈ K tel que

| | f − u | |2 = inf
v ∈K

| | f − g | |2 .

De plus c’est l’unique vecteur u ∈ K tel que

∀v ∈ K , ⟨v , f − u⟩ = 0

Enfin, PK est une application linéaire bornée appelée
projection orthogonale sur K .

Démonstrat ion. Il reste à voir la nouvelle caractérisation
équivalente car celle-ci étant une relation linéaire, elle
impose la linéarité de PK (𝜆PK ( f ) + PK (g) vérifie la relation
pour 𝜆 f + g et doit donc être par unicité PK (𝜆 f + g)). La
nouvelle caractérisation est plus forte. Réciproquement, si
ℜ(⟨f − u , v − u⟩) ≤ 0, en prenant v = 2u et v = 0, on trouve
ℜ(⟨f − u , u⟩) = 0 donc ℜ(⟨f − u , v ⟩) ≤ 0 pour tout v dans K
donc aussi pour −v par linéarité d’où l’égalité à 0.
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Exemple 7.5

Si H = L2 (Ω , 𝜇, R)

C = {f ≥ 0 p .p .}.

Alors PC ( f ) = f 1 { f ≥0} . (exo) Trouver aussi de même la
projection sur l’ensemble de f : Ω → [0, 1] .

3 Applications : Orthogonalité
et Dualité

Orthogonalité
On peut définir dans un espace de Hilbert une notion

d’orthogonal comme en dimension finie.

⋆ Définition 7.3

Si F ⊂ H est un sous-espace, alors l’orthogonal de F
est

F ⊥ = {x ∈ H , ∀y ∈ F , ⟨x , y ⟩ = 0}

On dit que x est orthogonal à F si x ∈ F ⊥ . On remarque
que

F ⊥ =
⋂︂
y ∈F

(⟨y , ·⟩)−1 ({0})

est toujours un sous-espace fermé comme intersection de
sous-espaces fermé, comme image inverse d’un
sous-espace fermé par une application linéaire continue (le
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produit scalaire). La proposition suivante décrit la
décomposition en somme directe orthogonale. Tout se
passe comme en dimension finie pour les sous-espaces
fermés, et sinon, il faut ajouter une adhérence.

⋆ Proposition 7.5

Si F est un sous-espace de l’espace de Hilbert H
alors F ⊥⊥ = F , et on a la somme directe orthogonale

H = F ⊕ F ⊥

et alors pF et pF ⊥ = 1 − pF sont les projections
associées à cette décomposition.

Ici F ⊥⊥ = (F ⊥)⊥ est l’orthogonal de l’orthogonal.

Démonstrat ion. 1. On remarque d’abord que F ⊂ F ⊥⊥.
En effet par définition de F ⊥ si x ∈ F , y ∈ F ⊥, ⟨x , y ⟩ = 0
et donc comme c’est pour tout y ∈ F ⊥ la définition du
biorthogonal donne x ∈ F ⊥⊥ .

2. On remarque ensuite que F ⊥⊥ ∩ F ⊥ = {0}. En effet, si
x ∈ F ⊥⊥ ∩ F ⊥ alors ⟨x , x ⟩ = 0 donc x = 0 (par l’axiome
de séparation).

3. Montrons ensuite que pF ⊥ = 1 − pF (les projections
sont bien définies car on a des sous-espaces fermés
l’espace de Hilbert H donc on peut utiliser le
théorème de projection). En effet, si y ∈ H la relation
caractéristique de la projection othogonale dit que
y − pF (y ) est orthogonal à F donc dans F ⊥ et comme
y − (y − pF (y )) = pF (y ) est orthogonal à F ⊥, on doit
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avoir y − pF (y ) = pF ⊥ (y ) par caractérisation de la
projection.

4. On en déduit la somme H = F + F ⊥ (par l’inclusion du 1
et l’intersection du 2, on sait que cette somme doit
être directe). Le point précédent donne la relation

y = pF ⊥ (y ) + pF (y )

ce qui montre que tout vecteur H se décompose
comme somme d’un vecteur de F et d’un vecteur de
F ⊥. L’énoncé sur les projections associées à la
décomposition est évident à partir de là.

5. Il reste à voir que F ⊥⊥ ⊂ F ce qui donne l’égalité avec
le point 1. Mais si y ∈ F ⊥⊥, y − PF (y ) ∈ F

⊥⊥ par 1 et le
fait fait que F ⊥⊥ est un sous-espace vectoriel. Mais on
vient de voir au 3 que y − PF (y ) = pF ⊥ (y ) ∈ F ⊥ . Donc
y − PF (y ) ∈ F

⊥⊥ ∩ F ⊥ = {0} par le 2. donc y = PF (y ) ∈ F ,
ce qui conclut.

Dualité : le théorème de représentation
de Riesz

On en déduit maintenant le calcul du dual de H (voir
sous-section 9 pour des rappels).
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⋆ Théorème 7.6: (théorème de représentation de
Riesz)

Soit 𝜙 une forme linéaire continue sur un espace de
Hilbert H alors il existe un unique f ∈ H tel que

∀v ∈ H , 𝜙(v ) = ⟨f , v ⟩.

De plus, on a l’expression duale pour la norme :

| | f | | = sup
| |v | | ≤1

|⟨f , v ⟩|.

Remarque 7.3. (facultative) Dans le cas complexe,
f ↦→ ⟨f , .⟩ est une isométrie antilinéaire identifiant H
et H ′ (et donc identifiant linéairement H’ au conjugué
H ayant la même structure normique et de groupe
mais 𝜆 .v = 𝜆v si v ↦→ v est la bijection/identité de
H → H notée . pour le caractère suggestif de la
relation à la conjugaison complexe). Dans la cas
complexe on a donc H ′ ≃ H et dans le cas réel H ′ ≃ H .

Démonstrat ion. Soit K = 𝜙−1 ({0}) le noyau de 𝜙. Si K = H
alors f = 0 convient. On suppose donc K ≠ H . Soit donc
g0 ∉ K et g =

g0−PK (g0 )
| |g0−PK (g0 ) | |2 un vecteur de norme 1 et

orthogonal à K . Comme 𝜙 est une forme linéaire, on s’attend
à ce que K et g engendrent L2 , sorte de généralisation du
théorème du rang (on va voir cela plus loin en utilisant
l’orthogonalité). En effet, soit v ∈ H , w = v − 𝜙(v )

𝜙(g ) g vérifie
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𝜙(w ) = 𝜙(v ) − 𝜙(v )
𝜙(g ) 𝜙(g) = 0 donc w ∈ K = Ker 𝜙 et v = 𝜆g + w

avec 𝜆 =
𝜙(v )
𝜙(g ) .

On montre donc que f = 𝜙(g)g convient, en montrant
l’égalité sur un v quelconque en utilisant la forme
précédente :

⟨f , v ⟩ = 𝜙(g)⟨g , v ⟩ = 𝜙(g)⟨g , 𝜆g + w ⟩

= 𝜙(g)𝜆 | |g | |22 = 𝜙(g)𝜆 = 𝜙(v ) .

L’égalité des normes vient de Cauchy Schwarz qui implique
que ≥ avec égalité en prenant v = f /| | f | | si f ≠ 0.

Remarque 7.4. (facultative) Il n’est parfois pas
judicieux d’identifier un espace de Hilbert à son dual,
notamment quand plusieurs espaces de Hilbert sont
considérés et que les identifications sont
incompatibles à des relations de sous-espaces. Soit
H = ℓ 2 (N) et K = {u ∈ H ,

∑︁
n∈N

n2 |un |2 < ∞} Si on

considère l’ensemble des suites telles que
L = {(un )

∑︁
n∈N

1
n2 |un |

2 < ∞}. Il est facile de voir que

K ⊂ H ⊂ L et que La transposé de l’inclusion K ⊂ H
s’identifie à H ≃ H ′ ⊂ K ′ ≃ L. Il vaut alors mieux
identifier K ′ à L (et pas K ) en ayant une identification
compatible avec les inclusions avec H .
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4 Bases Hilbertiennes
⋆ Définition 7.4

Soit H un espace préhilbertien. Une famille (x i ) i ∈I est
dite orthogonale si pour tout i ≠ j , ⟨x i , x j ⟩ = 0.
Si de plus | |x i | | = 1, elle est dite orthonormale.
Une base hilbertienne (ou base orthonormale) de H
est une famille orthonormale (e i ) i ∈I telle que
Vect (e i , i ∈ I ) est dense dans H .

Exemple 7.6

e i la suite dont la seule coordonnée non-nulle est la
i-ème égale à 1 donne une base hilbertienne de ℓ 2 (I ).
(par construction de ℓ 2 (I )) Les bases hilbertiennes
vont permettre d’identifier tout espace de Hilbert à cet
exemple.

Procédé d’orthonormalisation de
Gram-Schmidt

Notons 1 tout d’abord que la projection d’un point sur un
sous-espace vectoriel de dimension finie se calcule
facilement à l’aide d’une base (de préférence orthonormale)
de F :

1. Cette sous-section reprend le cours de 2018-2019 de
T. Blossier, M. Carrizosa et J. Melleray.
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Proposition 7.7

Soit H un espace de Hilbert et F un sous-espace
vectoriel de dimension finie avec (x1 , . . . , xn ) une
base de F (non nécessairement orthonormale). Soit
B i , j = ⟨x i , x j ⟩. Alors B est inversible et pour tout x ∈ E ,
on a

pF (x ) =
n∑︁

i , j=1
(B−1)j , i ⟨x i , x ⟩x j .

Démonstrat ion. Pour voir que B est inversible, il suffit de
montrer que les vecteurs de ces lignes (⟨x i , x j ⟩)j=1,.. . ,n sont

linéairement indépendants. Si on a
n∑︁
i=1

𝜆 i (⟨x i , x j ⟩)j=1,.. . ,n = 0,

on a ⟨
n∑︁
i=1

𝜆 i x i , x j ⟩ = 0 pour tout j . En prenant une

combinaison linéaire

0 =

n∑︁
j=1

𝜆 j ⟨
n∑︁
i=1

𝜆 i x i , x j ⟩ = | |
n∑︁
i=1

𝜆 i x i | |2 ,

donc
n∑︁
i=1

𝜆 i x i = 0 donc comme x1 , . . . , xn était une base, on

obtient 𝜆 i = 0 pour tout i , ce qui donne la liberté voulue.
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Pour x ∈ H , on a

⟨xk ,x −
n∑︁

i , j=1
(B−1)j , i ⟨x i , x ⟩x j ⟩

= ⟨xk , x ⟩ −
n∑︁

i , j=1
(B−1)j , i ⟨x i , x ⟩⟨xk , x j ⟩

= ⟨xk , x ⟩ −
n∑︁

i , j=1
(B−1)j , i ⟨x i , x ⟩Bk , j = 0

donc x −
n∑︁

i , j=1
(B−1)j , i ⟨x i , x ⟩x j ∈ F ⊥ donc par caractérisation

de la projection orthogonale

pF (x ) =
n∑︁

i , j=1
(B−1)j , i ⟨x i , x ⟩x j .

Remarque 7.5. Voici un cas particulier important du
résultat précédent. Soit E un espace de Hilbert et F
un sous-espace vectoriel de dimension finie avec
(e1 , . . . , en ) une base orthonormale de F . Alors pour
tout x ∈ E , on a

pF (x ) =
n∑︁
i=1

⟨e i , x ⟩e i .

Exemple 7.7

Soit H = L2 (Ω , T , 𝜇) et A ∈ T , on a vu en TD que
T (A) = {∅, A , Ac , Ω}. F = L2 (Ω , T (A) , 𝜇) et un espace
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de dimension au plus 2 engendrée par
e1 = 1A , e2 = 1Ac (du moins si A , Ω ont mesures finis).
Cette famille est orthogonale mais pas orthonormale.
| |e1 | |2 =

∫
1Ad 𝜇 = 𝜇(A) , | |e2 | |2 = 𝜇(Ac ) . Supposons ces

deux nombres non nuls et finis de sorte que F a
exactement dimension 2. Alors la matrice de la
proposition précédente est B = diag (𝜇(A) , 𝜇(Ac )) et
B−1 = diag (1/𝜇(A) , 1/𝜇(Ac )), la formule de projection
donne donc pour f ∈ L2 (Ω , T , 𝜇) :

pL2 (Ω ,T(A ) ,𝜇) ( f ) (7.2)

=

(︃
1

𝜇(A)

∫
A
fd 𝜇

)︃
1A +

(︃
1

𝜇(Ac )

∫
Ac
fd 𝜇

)︃
1Ac .

Rappelons que le procédé de Gram-Schmidt permet de
calculer une base orthonormale d’un espace euclidien à
partir d’une base donnée :

Proposition 7.8: (Procédé de Gram-Schmidt)

Soit E un espace euclidien et (e1 , . . . , en ) une base
(resp. une famille libre) de E . Pour chaque 0 < i ≤ n ,
notons F i le sous-espace vectoriel Vec (e1 , . . . , e i )
engendré par e1 , . . . , e i . Alors, la famille (e ′

1 , . . . , e ′
n )

définie de la manière suivante est une base
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orthonormale (resp. une famille orthonormale) de E :

e ′
1 =

e1

∥e1 ∥

e ′
i =

e i − pF i−1 (e i )
∥e i − pF i−1 (e i )∥

=

e i −
i−1∑︁
k=1

⟨e ′
k , e i ⟩e ′

k

∥e i −
i−1∑︁
k=1

⟨e ′
k , e i ⟩e ′

k ∥

pour 1 < i ≤ n .

Exercice 7.1. Vérifier que les vecteurs e1 = (1, 1, 1),
e2 = (1, 1, −1) et e3 = (0, 1, 1) forment une base de R3 .
Utiliser le procédé de Gram-Schmidt sur cette base
pour obtenir une base orthonormale.

Théorème des bases
Exemple 7.8

en (x ) = exp ( inx ) , n ∈ Z définit une base hilbertienne
de l’espace pré-hilbertien C 0

2𝜋 (R, C) l’ensemble des
fonctions continues 2𝜋 périodiques, muni du produit
scalaire :

⟨f , g⟩ = 1
2𝜋

∫ 2𝜋

0
f ( t )g ( t )dt .

C’est la base des décompositions en série de Fourier
(on montrera cela plus en détail dans la section
suivante). Le but est de décomposer de façon
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similaire tout vecteur de H comme somme d’une série
en fonction d’une base.

⋆ Théorème 7.9

Soit H un espace préhilbertien et I un ensemble
dénombrable.

1. Une famille orthonormale (x i ) i ∈I est libre et
vérifie l’inégalité de Bessel, pour tout x ∈ H :∑︁

i ∈I
|⟨x , x i ⟩|2 ≤ ||x | |2

2. De plus une famille orthonormale (e i ) i ∈I est une
base hilbertienne si et seulement si on a
l’égalité de Bessel-Parseval, pour tout x ∈ H :∑︁

i ∈I
|⟨x , e i ⟩|2 = | |x | |2

De plus, dans ce cas, pour tout x ∈ H , la série
suivante converge (dans H mais pas
absolument)

x =
∑︁
i ∈I
e i ⟨e i , x ⟩.

3. Si H est un espace de Hilbert séparable, toute
famille orthonormale peut être complétée en
une base hilbertienne au plus dénombrable
(e i ) i ∈I de H et J : x ↦→ (⟨e i , x ⟩) i ∈I établit alors
une isométrie surjective J : H ≃ ℓ 2 (I ) .
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Remarque 7.6. De la formule pour x, on tire par
continuité la formule pour le produit scalaire (qui est
une série absolument convergente par
Cauchy-Schwarz) :

⟨y , x ⟩ =
∑︁
i ∈I

⟨y , e i ⟩⟨e i , x ⟩.

Démonstrat ion. Comme I est dénombrable, on peut
supposer et on suppose I = N.

(1) Si
∑︁

𝜆 i x i = 0, on calcule 𝜆 j = ⟨x j ,
∑︁

𝜆 i x i ⟩ = 0 donc
x i est bien libre. Soit Vn = Vect (e i , i ∈ [[0, n]]), on a déjà vu
la formule pour la projection orthogonale sur Vn :

pn (x ) =
n∑︁
i=0
e i ⟨e i , x ⟩.

Donc par la propriété de contraction de pn et
l’orthogonalité

| |pn (x ) | |2 =
⟨︁ n∑︁
i=0
e i ⟨e i , x ⟩,

n∑︁
j=0
e j ⟨e j , x ⟩

⟩︁
=

n∑︁
i=0

|⟨e i , x ⟩|2 ≤ ||x | |2

En passant à la limite n → ∞ on obtient l’inégalité de Bessel
pour la somme et on trouve en particulier (⟨x , e i ⟩) i ∈N ∈ ℓ 2 (N) .

(2) Si (e i ) i ∈N est une base soit xn ∈ Vect (e i , i ∈ I )
convergeant vers x .
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De plus, pour n assez grand | | |x | |2 − ||xn | |2 | ≤ 𝜖/2 et pour
tout m ,|︁|︁|︁| |pm (x ) | |2 − ||pm (xn ) | |2

|︁|︁|︁ ≤ ||pm (xn − x ) | | ( | |xn | | + | |x | |)

≤ | | (xn − x ) | | ( | |xn | | + | |x | |) ≤ 𝜖/2

(avec la dernière inégalité pour n assez grand) d’où en
prenant m tel que pm (xn ) = xn (car xn est dans un certain Vm
comme combinaison linéaire finie des e i ), on obtient|︁|︁|︁|︁|︁ m∑︁

i=0
|⟨e j , x ⟩|2 − ||x | |2

|︁|︁|︁|︁|︁ ≤ 𝜖

et donc la somme de la série est | |x | | d’où l’égalité de
Parseval.

Réciproquement, Si on a égalité, on a la limite
n∑︁
j=0

|⟨e j , x ⟩|2 = | |pn (x ) | |2 →n→∞ | |x | |2

et ceci implique par le théorème de Pythagore :

| |pn (x ) − x | |22 = | |x | |22 − ||pn (x ) | |22 →n→∞ 0

donc tout élément de H est limite d’éléments de
Vect (e i , i ∈ I ) d’où la propriété de densité manquante pour
obtenir une base hilbertienne.

De plus un calcul donne la formule pour x :

| |x −
n∑︁
i=0
e i ⟨e i , x ⟩| |2 =

∞∑︁
i=n+1

|⟨e i , x ⟩|2 → 0.
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(3) Soit O la famille othonormale de départ. Soit
K = Vect (O ), on cherche une base orthonormale de K⊥ pour
compléter O , il est bien séparable comme sous espace de
H . Soit (xn )n∈N une famille dénombrable dense de K⊥.
Quitte à extraire une sous-suite, on peut supposer que
xn ∉ Vect (x0 , . . . , xn−1) de sorte que (xn )n∈N est une famille
libre.

On peut donc orthonormaliser (x0 , . . . , xn ) et obtenir
(e0 , . . . , en ) tel que Vect (x0 , . . . . , xn ) = Vect (e0 , . . . . , en ). Par
la construction, on remarque que l’orthonormalisation pour
(x0 , . . . , xn+1) on commence par les mêmes vecteurs et on
obtient donc une famille orthonormale ( fn )n∈N . Comme

Vect (xn , n ∈ N) = ∪∞
n=0Vect (x0 , . . . . , xn )

= ∪∞
n=0Vect ( f0 , . . . . , fn )

= Vect ( fn , n ∈ N) ,

ces deux ensembles sont denses et donc ( fn )n∈N est une
base de K⊥. Maintenant, O et ( fn )n∈N forment une famille
orthonormale de H et tout O est une base de K par définition
de K , donc la décomposition orthogonale x = PK (x ) + PK⊥ (x )
permet d’approcher PK (x ) par un élément yn ∈ Vect (O ),
PK⊥ (x ) par un élément zn ∈ Vect ( fn , n ∈ N) et
yn + zn ∈ Vect (O , fn , n ∈ N) tend vers x , d’où la densité
voulue pour que {en , n ∈ N} = O ∪ {fn , n ∈ N} forme une base
de H .

Une fois l’existence d’une base, l’isométrie est
évidente par le (2), et si on a une suite (𝜆 i ) i ∈I dans ℓ 2 (I ), on
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voit que
∑︁

𝜆 i e i converge par complétude comme ci-dessus
et on obtient ainsi la surjectivité.

On vient de voir (en prolongeant la famille vide) qu’un
espace de Hilbert séparable a une base dénombrable.
Réciproquement, un espace de Hilbert à base dénombrable
est isométrique à ℓ 2 (N) pour lequel VectQ (en , n ∈ N} donne
une famille dénombrable dense.

Exemples de base 1 : Séries de Fourier
On va obtenir un premier exemple de base en utilisant

le théorème d’approximation de Weierstrass.

Vous pouvez voir dans la section de compléments le
corollaire A.10 pour une preuve probabiliste basée sur la loi
faible des grands nombres.

⋆ Théorème 7.10: (d’approximation de Weiers-
trass)

Soit K un compact de Rn , les fonctions polynômiales
(à coefficients réels ou même rationnels) sont denses
dans C 0 (K , R).
En conséquence, (C 0 (K , R) , | |. | |∞) est séparable et sa
tribu borélienne B(C 0 (K , R)) est dénombrablement
engendrée (c’est à dire admet une partie génératrice
au plus dénombrable).
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Remarque 7.7. Le mouvement brownien sur [0, 1] ,
un objet probabiliste important (vu en M1) peut être
défini comme une probabilité sur la tribu borélienne
de (C 0 ( [0, 1] , R) , | |. | |∞).

Exemple 7.9

Montrons que en (x ) = exp ( inx ) , n ∈ Z forme une base
hilbertienne de L2 ( [0, 2𝜋] , C) :

⟨f , g⟩ = 1
2𝜋

∫ 2𝜋

0
f ( t )g ( t )dt .

D’abord, on sait que C 0
b (]0, 2𝜋[, C) est dense car il

contient C 0
c (]0, 2𝜋[) qui est dense par le Théorème

6.12. Il s’agit donc presque de la complétion de
l’exemple précédent.
Ensuite on vérifie l’orthonormalité :

⟨en , em ⟩ =
1

2𝜋

∫ 2𝜋

0
exp ( i (m − n) t )dt = 1 {m=n } .

Enfin, il reste à voir que Vect (en ) est dense. Or, on a
Vect (en ) = {P (e ix , e− ix ) , P ∈ C[X , Y ]} =
{P (cos (x ) , s in(x )) , P ∈ C[X , Y ]}. Soit
D = {(x , y ) ∈ R2 , x 2 + y 2 = 1}, soit f ∈ C 0

2𝜋 (R, C) On
définit g : D → C par g (cos (x ) , s in(x )) = f (x ). Il est
facile de voir que g est continue sur D (utiliser
tan , cot selon le point comme carte coordonnée) donc
par le théorème d’approximation de Weierstrass 7.10,
il existe un polynôme P tel que | |P − g | |∞ ≤ 𝜖 donc, si
Q = P (cos (.) , s in(.)) ∈ Vect (en ), on a
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| |Q − f | |2 ≤ ||Q − f | |∞ ≤ ||P − g | |∞ ≤ 𝜖 . D’où la densité
voulue.
C’est la base des décompositions en série de Fourier.

Exemple de base 2 : Polynômes
d’Hermite

L’exercice suivant est corrigé à l’annexe E en section 3.
Vérifier qu’une famille est orthonormée est toujours un
exercice calculatoire.

Exercice 7.2. Soit H = L2 (R, B(R) , 𝛾) l’espace de
Hilbert réel des fonctions de carrés intégrables pour
la mesure gaussienne standard définie pour un
borélien B par 𝛾(B) =

∫
B

1√
2𝜋
e−x 2/2dx . H muni de la

norme usuelle :

| | f | |2 =

√︄∫
R
| f (x ) |2 e

−x 2/2
√

2𝜋
dx .

Soit

Hn (x ) = (−1)n e
x 2/2
√
n !

(︃
d
dx

)︃n
(e−x 2/2)

(et donc H0 (x ) = 1). On appelle les Hn les polynômes
d’Hermite.
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1. Montrer que pour n ≥ 1, Hn est un polynôme de
la forme :

Hn (x ) =
x n
√
n !

+
n−1∑︁
k=0

ak x k .

2. Montrer que (Hn )n≥0 est une famille
orthonormale de H .

Montrer le résultat de densité sous-jacent pour obtenir
une base est souvent plus dur. Quand on ne peut pas utiliser
un résultat connu, on utilise souvent la méthode qui
consiste à montrer que l’orthogonale est {0} en utilisant la
proposition 7.5. On va donc déduire le résultat suivant de
cela et du théorème d’inversion de Fourier :

Théorème 7.11

Soit 𝛾 la mesure gaussienne standard sur R. Alors la
famille des polynômes d’Hermite (Hn )n≥0 est une base
orthonormale de L2 (R, B(R) , 𝛾). En particulier, les
polynômes sont denses dans L2 (R, B(R) , 𝛾) qui est
séparable.

Démonstrat ion. Montrons d’abord que la série

exp (−t 2/2)
∞∑︁
n=0

( i t )n
√
n !
Hn converge dans L2 (R, B(R) , 𝛾).
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On calcule la norme du terme général de la suite

SN = exp (−t 2/2)
N∑︁
n=0

( i t )n
√
n !
Hn par orthonormalité de s (Hn ) :

| |SN | |22 = exp (−t 2)
N∑︁
n=0

| ( i t )n |2
n !

= exp (−t 2)
N∑︁
n=0

( t 2)n
n ! ≤ exp ( t 2 − t 2) = 1

Donc pour p ≥ q ≥ N ,

| |Sp+1 − Sq | |22 ≤ exp (−t 2)
∞∑︁
n=N

( t 2)n
n ! →N→∞ 0. Donc Sn est de

Cauchy et donc converge dans L2 . Quitte à extraire on sait
qu’elle converge presque partout, donc sa limite ponctuelle
sera aussi sa limite dans L2 . Concluons que F t , définie par
F t (x ) = exp ( i tx ), est la limite. Il suffit donc de voir que pour
tout x ∈ R :

F t (x ) = exp (−t 2/2)
∞∑︁
n=0

(−i t )n
√
n !

Hn (x ) .

Ceci équivaut, vu la définition de Hn à

F t (x ) exp ( t 2/2 − x 2/2) = exp (−( i t − x )2/2)

=

∞∑︁
n=0

(−i t )n
n !

(︃
d
dx

)︃n
(e−x 2/2)

ce qui est la somme de la série de Taylor en x évaluée en
a = i t de f (x ) = exp (−x 2/2) (pour f somme de série entière

sur C f (x + a) =
∞∑︁
n=0

an
n ! f

(n ) (x ). Ceci est bien vérifié car la



Chapitre 7. Espaces de Hilbert ; bases
hilbert iennes 259

fonction du milieu est analytique par composée de fonctions
analytiques sur C (un polynôme et exp sont sommes de
séries entières sur C donc aussi leur composée).

Conclusion : on a F t ∈ Vect (Hn , n ∈ N).

On montre maintenant que toute fonction
f ∈ L2 (R, B(R) , 𝛾), orthogonale à K := Vect (Hn , n ∈ N) est
nulle. On peut supposer f réelle en prenant partie réelle et
imaginaire. Si f orthogonale à tout Hn on a ⟨f , F t ⟩ = 0 et
donc

u ( t ) =
∫
f (x )exp ( i tx − x 2/2) = 0.

Or si g (x ) = f (x )exp (−x 2/2) g ∈ L1 (R, 𝜆 ) est équivalent
à f ∈ L1 (R, B(R) , 𝛾) ce qui est le cas car 𝛾 est une mesure de
probabilité et donc L2 (R, B(R) , 𝛾) ⊂ L1 (R, B(R) , 𝛾). Donc on a
ĝ ( t ) = 0 et par le théorème d’inversion de Fourier, g (x ) = 0
presque partout, soit f = 0 dans L2 (R, B(R) , 𝛾).

Bilan pour K = Vect (Hn , n ∈ N) K⊥ = {0} donc
K = K⊥⊥ = {0}⊥ = L2 (R, B(R) , 𝛾), d’où la densité voulue.

On a utilisé le théorème suivant (peut-être vu en cours
de probabilité, cf. annexe E section 4 pour la variante sur les
mesures de probabilité, cf. aussi le livre de Rudin d’analyse
réelle et complexe [7, Thm 9.11 et 9.12] pour n = 1)
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Définition 7.5

Soit f ∈ L1 (Rn , B(Rn ) , 𝜆 ) la transformée de Fourier de
f est la fonction de t ∈ Rn :

f̂ ( t ) =
∫
Rn
e i ⟨x , t ⟩ f (x )𝜆 (dx ) .

On renvoie à la section E.4 pour une preuve du résultat
fondamental suivant.

⋆ Théorème 7.12: (Théorème d’injectivité de la
transformation de Fourier (admis))

Soient deux fonctions f1 , f2 ∈ L1 (Rn , B(Rn ) , 𝜆 ) On
suppose que pour tout t ∈ Rn les transformées de
Fourier sont égales :

f 1̂ ( t ) = f 2̂ ( t ) , ∀t ∈ Rn .

Alors f1 = f2 presque partout.
De plus, si f 1̂ ∈ L1 (Rn , 𝜆 ) alors f1 est (égale presque
partout à) une fonction continue :

f1 (x ) =
1

(2𝜋)n
∫
Rn
f̂ 1 ( t )exp (−i ⟨x , t ⟩)dt .
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5 Une Application : Le
théorème de convergence des
martingales bornées dans
L2 (Ω , T , P ) (facultatif)

Dans cette section, on conclut par une application en
probabilité. On prend (Ω , T , P ) un espace de probabilité.
Une filtration est une suite croissante de sous-tribu (Tn )n≥0 .
Un exemple de telle suite est Tn = T ((X0 , . . . , Xn )) de la tribu
engendrée par un vecteur aléatoire. On peut considérer les
espaces de Hilbert Hn = L2 (Ω , Tn , P ) ⊂ L2 (Ω , T , P ) . C’est un
sous-espace fermé car si Hn ∋ Xm →m→∞ X on a vu au
chapitre précédent, que quitte à extraire Xmk converge p.p.
vers X et donc X est aussi Tn-mesurable et donc est dans
Hn . Par caractérisation séquentielle cela dit Hn fermé. On
dispose donc de la projection orthogonale PHn . EN
probabilité, vous noterez PHn (X ) = E (X |Tn ) et vous
interpréterez cette projection comme une espérance
conditionnelle.

Définition 7.6

Une suite (Xn )n∈N est une martingale dans L2 (pour
la filtration (Tn )n≥0 si pour tout m ≥ n PHn (Xm ) = Xn .

Cette condition dit que la moyenne de la future variable
Xm , conditionnellement au présent Hn , est égale à Xn (si Xn
est la valeur d’un gain au temps n , en moyenne on n’a rien
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gagné à attendre le temps m > n ). Une somme de v.a. i.i.d.
dans L2 d’espérance nulle est une telle martingale. Par
exemple, la somme des n premiers termes d’une suite de
variables gaussiennes centrées indépendantes donne une
martingale dans L2 . On va montrer un théorème de
convergence pour les martingales bornées dans L2 .

Théorème 7.13

Soit (Tn )n≥0 .Soit (Xn )n∈N est une martingale dans
H = L2 (Ω , T , P ) qui est une suite bornée, c’est-à-dire,
qu’il existe M > 0 telle que supn | |Xn | |2 ≤ M . Alors Xn
converge dans L2 (Ω , T , P ) vers une variable X et
Xn = PHn (X ) .

Ce théorème se généralise à un théorème de
convergence des martingales bornées dans Lp , 1 < p < ∞. Il
y a aussi une version pour les martingales L1 mais il faut
une hypothèse technique plus compliquée (dite d’uniforme
intégrabilité). (On dit que Xn est une martingale fermée
quand Xn = PHn (X ) comme ci-dessus).

Démonstrat ion. On considère la décomposition
orthogonale Hn+1 = Kn ⊕ Hn avec H0 = K0 On voudrait dire
que L2 (Ω , T (∪n≥0Tn ) , P ) = ⊕n≥0Kn est une somme
orthogonale infinie, mais comme on n’a pas introduit la
notion,on va donc faire une preuve directe.

Remarquez déjà que Xn+1 − Xn = Xn+1 − PHn (Xn+1) ∈ Kn
par la condition de martingale. Donc par le théorème de



Chapitre 7. Espaces de Hilbert ; bases
hilbert iennes 263

Pythagore et une récurrence triviale, on obtient :

| |Xn+1 | |22 = | |Xn+1 − Xn | |22 + ||Xn | |22 = | |X0 | |22 +
n∑︁
k=0

| |Xk+1 − Xk | |22 .

On déduit donc de la bornitude en prenant la limite

| |X0 | |22 +
∞∑︁
k=0

| |Xk+1 − Xk | |22 ≤ M 2 et donc la série est

convergente. On déduit aussi que pour p ≥ q ≥ N

| |Xp+1 − Xq | |22 =

p∑︁
k=q

| |Xk+1 − Xk | |22

≤
∞∑︁
k=N

| |Xk+1 − Xk | |22 →N→∞ 0.

Donc (Xn ) est de Cauchy dans un espace de Hilbert donc
converge vers X . Comme PHn est 1-lipschitz donc continue,
on déduit en passant à la limite dans la relation
Xn = PHn (Xm ) →m→∞ PHn (X ) = Xn
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1 Théorème de Tietze (niveau
L3-M1)

Comme jolie application de la complétude, on va
donner en exercice (corrigé), la preuve du théorème de
Tietze

Exercice A.1. Extension de Tietze-Urysohn
Soit F un fermé de X espace métrique. Soit
E = C 0

b (X , R) l’espace des fonctions continues
bornées et p : E → C 0

b (F , R) l’application de
restriction ( pour f : X → R, p ( f ) = f |F est la restriction
de f à F . On va montrer que p est surjective.

1. Est-ce que E est complet ?
2. Soit g ∈ C 0

b (F , R) avec | |g | |∞ ≤ 1. Soient
K1 := g−1 ( [1/3, 1]) et K2 := g−1 ( [−1, −1/3]).
Soit :

f (x ) = 1
3
d (x , K2) − d (x , K1)
d (x , K2) + d (x , K1)

,

d (x , K i ) := inf{d (x , y ) , y ∈ K i }.
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(On comprend la valeur comme 0 si K1 et K2

vides et sinon, −1/3 si K1 vide, 1/3 si K2 vide).
Vérifier que f ∈ E

3. Montrer que | | f | |∞ ≤ 1/3 et
| |p ( f ) − g | |∞ ≤ 𝛼 = 2/3..

4. Construire une suite fn par récurrence à partir
du résultat précédent telle que fn = F0 + . . . + Fn
et

n∑︁
k=0

| |Fk | |∞ ≤ 1
3 (1 + . . . + 2n

3n )

et
| |p ( fn ) − g | |∞ ≤ 2n+1

3n+1 .

5. Montrer que fn converge. En déduire, qu’il
existe F ∈ E , | |F | |∞ ≤ 1 telle que p (F ) = g .

Extension de Tietze-Urysohn (Correction)

Soit F un fermé de X espace métrique. Soit
E = C 0

b (X , R) et p : E → C 0
b (F , R) l’application de restriction.

On va montrer que p est surjective (et un peu mieux).

1. Soit g ∈ C 0 (K ) avec | |g | |∞ ≤ 1. Soient
K1 := g−1 ( [1/3, 1]) et K2 := g−1 ( [−1, −1/3]). Soit :

f (x ) = 1
3
d (x , K2) − d (x , K1)
d (x , K2) + d (x , K1)

, .

Vérifions que f ∈ E , | | f | |∞ ≤ 1/3 et
| |p ( f ) − g | |∞ ≤ 𝛼 = 2/3. (on dit que p est presque
surjective)
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f est continue car d (. , K i ) est continue et le
dénominateur est non nul car K1 ∩ K2 = ∅ et d (. , K i ) > 0
sur K ci .

2. Or par l’inégalité triangulaire :

| f (x ) | ≤ 1
3
d (x , K2) + d (x , K1)
d (x , K2) + d (x , K1)

=
1
3

donc f est bornée et | | f | |∞ ≤ 1/3.

|p ( f ) − g | = 1K1 |
1
3 − g | + 1K2 | −

1
3 − g |

+ (1K − 1K1 − 1K2 ) | f − g |

≤ (1K − 1K1 − 1K2 ) ( | | f | |∞ + ||g | |∞)

+ 1K1 | |1K1 (
1
3 − g) | |∞ + 1K2 | |1K1 (−

1
3 − g) | |∞

et tous les termes sont inférieurs à 2/3 par définition.
3. On construit construire une suite fn par récurrence à

partir du résultat précédent telle que fn = F0 + . . . + Fn
n∑︁
k=0

| |Fk | |∞ ≤ 1
3 (1 + . . . + 2n

3n )

et
| |p ( fn ) − g | |∞ ≤ 2n+1

3n+1 .

On prend f0 = F0 = f donné par 1 à partir de g . On
prend Fn/| |p ( fn−1) − g | |∞ donné par 1 à partir de
−[p ( fn−1) − g]/| |p ( fn−1) − g | |∞ (si le dénominateur est 0
on s’arrête et on prend la suite constante).
Donc on a les deux inégalités

| |Fn | |∞ ≤ 1
3 | |p ( fn−1) − g | |∞ ≤ 1

3
2n
3n
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et

| |p (Fn ) + p ( fn−1) − g | |∞ ≤ 2
3 | |p ( fn−1) − g | |∞ ≤ 2n+1

3n+1

La deuxième inégalité donne | |p ( fn ) − g | |∞ ≤ 2n+1

3n+1 . La
première inégalité suit par l’hypothèse de récurrence.

4. Déduisons qu’il existe F ∈ E , | |F | |∞ ≤ 1 telle que
p (F ) = g .

∑︁
Fn est donc absolument convergente

dans E , donc par complétude convergente, donc soit

F =

∞∑︁
n=0

Fn = l im fn . En passant à la limite on obtient

(par la somme d’une série géométrique)

| |F | |∞ ≤
∞∑︁
n=0

| |Fn | |∞ ≤ 1
3

∞∑︁
n=0

2n+1

3n+1 ≤ 1
3

1
1 − 2/3 = 1

et | |p (F ) − g | |∞ = 0 donc p (F ) = g par séparation.

2 Complément sur l’Espace
dual (niveau début de M1)

Définition A.1

L’espace E ′ := L(E , K) des formes linéaires continues
sur un e.v.n. E est munie de la norme duale

| | f | |E ′ := sup
x ∈E , | |x | | ≤1

| f (x ) |.

On a vu dans la section précédente que c’est toujours
un espace de Banach. Il sera très utile dans ce cours pour
étudier E lui-même.
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Le résultat suivant, conséquence de Hahn-Banach
permet de décrire réciproquement la norme de E en terme
de celle de E ′ (cela ressemble à la définition de | | f | |E ′ mais
c’est un théorème difficile ! que l’on exploitera pour relier E
au dual du dual dans la section suivante) :

Proposition A.1

Soit (E , | |. | |E ) un e.v.n., alors

∥x ∥E = sup
f ∈E ′ , | | f | |E ′ ≤1

| f (x ) | = max
f ∈E ′ , | | f | |E ′ ≤1

| f (x ) |.

Démonstrat ion. Par définition, on a

sup
f ∈E ′ , | | f | |E ′ ≤1

| f (x ) | ≤ sup
f ∈E ′ , | | f | |E ′ ≤1

| | f | |E ′ ∥x ∥E = ∥x ∥E .

Inversement, on applique le Théorème de
Hahn-Banach B.9 à G = Rx en posant g ( tx ) = t | |x | |E de sorte
que g ( tx ) | | ≤ | | tx | |E . Donc, il existe f ∈ E ′ tel que
f (x ) = g (x ) = | |x | |E et f (y ) ≤ ||y | |E c’est-à-dire | | f | |E ′ ≤ 1. En
particulier, le sup est atteint en f et est donc un
maximum.

On rappelle deux exemples d’espaces classiques.

Exemple A.1

c0 (I ) est l’ensemble des suites (x i ) i ∈I qui tendent
vers 0 dans le sens où si 𝜖 > 0, il existe une partie F
finie telle que |x i | ≤ 𝜖 pour tout i ∉ F . On munit c0 (I )
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de la norme sup :

| |x | |∞ = sup
i ∈I

|x i | < ∞.

ℓ∞ (I ) est l’ensemble des suites bornée (x i ) i ∈I avec la
même norme | |x | |∞.

Exemple A.2

ℓ 1 (I ) est l’ensemble des suites (x i ) i ∈I sommables, tel
qu’il existe une constante C , tel que pour toute partie
F finie telle que

∑︁
i ∈F

|x i | ≤ C . On munit ℓ 1 (I ) de la

norme :

| |x | |1 = sup
F

∑︁
i ∈F

|x i | =:
∑︁
i ∈I

|x i | < ∞.

On étudiera la dualité des espaces Lp dans un chapitre
ultérieur. Le résultat suivant donne un exemple de calcul de
dual :

Proposition A.2

Le dual de c0 (I ) est isométrique à

ℓ 1 (I ) ≃ (c0 (I ))′ .

Démonstrat ion. On définit T : ℓ 1 (I ) → (c0 (I ))′ par :
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T ((u i )) [(v i )] =
∑︁
i ∈I
u i v i .

Bien sûr, on a l’inégalité montrant que T est bien défini
et contractant :

|T ((u i )) [(v i )] | ≤
∑︁
i ∈I

|u i | |v i | ≤ | |c ∥∞
∑︁
i ∈I

|u i |.

Montrons que T est isométrique. Comme les suites à
support fini sont denses dans ℓ 1 (I ) il suffit de montrer
l’égalité dans ce cas, et cela vient en posant
(v i ) = 1 {v i≠0}

v i
|v i | ∈ c0 (I ) si (u i ) à support fini de

T ((u i )) (v i ) = | | (u i ) | |ℓ 1 . Donc comme | | (v i ) | |c0 ≤ 1 on a
l’inégalité manquante :

| |T ((u i )) | | (c0 ) ′ ≥ ||(u i ) | |ℓ 1 .

Montrons que T est surjectif. Soit f ∈ (c0 (I ))′ et e i la
suite valant 1 en i et 0 ailleurs. Soit u i = f (e i ), montrons
que (u i ) ∈ ℓ 1 (N). Or par l’isométrie

| | (u i 1 i ∈F ) | |ℓ 1 ≤ ||T ((u i 1 i ∈F )) | | (c0 ) ′ = | |T ((u i ))◦vF | | (c0 ) ′ = | | f ◦vF | | (c0 ) ′ ≤ || f | | (c0 ) ′

car vF ((x i )) = (1 i ∈F x i ) est une contraction sur c0 pour F fini
(et par le calcul à support fini qui suit qui implique
f ◦ vF = T ((u i )) ◦ vF ). Donc pour tout F fini :∑︁

i ∈F
|u i | ≤ | | f | | (c0 ) ′

ce qui donne la sommabilité u ∈ ℓ 1 (I ) .
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Montrons enfin que f = T ((u i )).

En effet, si v est à support fini, f (v ) = T ((u i )) (v ) par
linéarité mais comme les deux côtés sont continus en v et
que (par définition) les suites à support fini sont denses
dans c0 (I ), on obtient f = T ((u i )).

Un autre résultat de base permet d’associer à une
application continue u : E → F une application (dite
transposée ou adjoint) entre les duaux u t : F ′ → E ′ .

Proposition A.3

Si u : E → F est une application linéaire continue
u t ( f ) = f ◦ u définie une application linéaire continue
u t : F ′ → E ′ et on a

| | |u t | | | = | | |u | | |.

Démonstrat ion. Par composition, si f ∈ F ′, u linéaire
continue, f ◦ u est linéaire continue donc appartient à E ′. La
linéarité en f est évidente. de plus
| |u t ( f ) (x ) | | ≤ | | f | |F ′ | | |u | | | | |x | |E donc

| |u t ( f ) | |E ′ ≤ || f | |F ′ | | |u | | |.

Ceci donne | | |u t | | | ≤ | | |u | | |.
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Réciproquement on utilise la proposition précédente
pour obtenir :

| |u (x ) | |F = sup
| | f | |F ′ ≤1

| (u t ( f ) (x )) | ≤ sup
| | f | |F ′ ≤1

| | (u t ( f ) | |E ′ | |x | |E ≤ || |u t | | | | |x | |E .

Ceci donne par définition de la norme subordonnée, l’autre
inégalité : | | |u | | | ≤ | | |u t | | |.

3 Bidual, Complété (niveau
début de M1)

Le dual du dual E ′′ = (E ′)′ est appelé bidual de E .

Définition A.2

L’application J : E → E ′′ qui envoie J (x ) ( f ) = f (x )
pour f ∈ E ′ est appelée injection canonique de E
dans E ′′.

Proposition A.4

L’injection canonique J : E → E ′′ est une isométrie
(c’est pour cela que c’est une injection).

Démonstrat ion. En appliquant la définition de la norme du
dual puis la conséquence de Hahn-Banach de la section



Annexe A. Compléments facultat i fs au
chapitre 2 : Topologie des e.m. 277

précédente (proposition A.1), on obtient :

| |J (x ) | |E ′′ = sup
| | f | |E ′ ≤1

|J (x ) ( f ) | = sup
| | f | |E ′ ≤1

| f (x ) | = | |x | |E .

On donne un exemple :

Proposition A.5

(c0 (I ))′′ ≃ (ℓ 1 (I ))′ ≃ ℓ∞ (I ) .

Démonstrat ion. On définit T : ℓ∞ (I ) → (ℓ 1 (I ))′ par :

T ((u i )) [(v i )] =
∑︁
i ∈I
u i v i .

Bien sûr, on a l’inégalité montrant que T est bien défini
et contractant :

|T ((u i )) [(v i )] | ≤
∑︁
i ∈I

|u i | |v i | ≤ | |c ∥∞
∑︁
i ∈I

|u i |.

Montrons que T est surjectif. Soit f ∈ (ℓ 1 (I ))′ et e i la
suite valant 1 en i et 0 ailleurs. Soit u i = f (e i ), alors
|u i | ≤ | | f | |ℓ 1 donc (u i ) ∈ ℓ∞ (I ), montrons que f = T ((u i )).

En effet, si v est à support fini, f (v ) = T ((u i )) (v ) par
linéarité mais comme les deux côtés sont continus en v et
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que (par définition) les suites à support fini sont denses
dans ℓ 1 (I ), on obtient f = T ((u i )).

Montrons que T est isométrique. Mais
| |T (u i ) | | ≥ |T (u i ) (e i ) | = |u i | donc | |T (u i ) | | ≥ | | (u i ) | |ℓ∞ (I ) et on
obtient donc l’égalité.

Définition A.3

L’adhérence ˆ︁E := J (E )
E ′′

E dans E ′′ est appelée
complété de E .

Comme c’est un espace fermé d’un espace complet,
c’est un espace de Banach muni d’une injection i : E → ˆ︁E
(qui est id si E est déjà n espace de Banach). Il est
caractérisé par la propriété universelle suivante.
Contrairement à la compacité qui est dure à trouver en
dimension infinie, la complétude est simple grâce à cette
construction, car il suffit de passer au complété (mais, dans
des espaces de fonctions, il faut travailler pour décrire plus
explicitement ce complété, comme espace de fonctions
concrètes).

Proposition A.6

Soit F un espace de Banach et u : E → F une
application linéaire continue, il existe une unique
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extension ˆ︁u : ˆ︁E → F telle que û ◦ i = u . De plus, on a
| | | û | | | = | | |u | | |.

Démonstrat ion. pour l’existence on considère
(u t ) t : E ′′ → F ′′ et on regarde sa restriction ˆ︁u à ˆ︁E . Sur E , ˆ︁u
coincide avec u donc est à valeur dans F . Par densité de E ,
l existe une suite un → u ∈ ˆ︁E et donc ˆ︁u (ˆ︁E ) ⊂ ˆ︁F . Or comme F
est complet il est fermé dans son bidual donc ˆ︁F = F . Cela
donne l’existence. L’unicité vient de la densité de E dans ˆ︁E .
Par la construction on a | | | û | | | ≤ | | |u | | |. L’autre inégalité vient
par densité.

4 Compléments sur la
compacité et complétude
(niveau L2-L3)

Définition A.4

Un espace métrique (X , d ) est précompact si pour
tout 𝜖 > 0, X peut être couvert par un nombre fini de
boules ouvertes de rayon 𝜖 .

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec
[6, Th II.1 p135] ou Gourdon d’Analyse [5, p 32]) :
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Proposition A.7

Un espace métrique X est compact si et seulement si
il est précompact et complet.

Démonstrat ion. L’implication, compact implique
précompact vient de la définition. L’implication compact
implique complet vient de Bolzano-Weierstrass (vu qu’une
suite de Cauchy ayant une sous-suite convergente
converge).

Réciproquement, on utilise aussi Bolzano-Weierstrass.
On va construire une suite extraite de Cauchy par extraction
diagonale. Soit (xn ) suite de X .X est recouvert par un
nombre fini de boules B (a , 1) donc par principe des tiroirs, il
existe une sous-suite (x𝜙0 (n ) ) de (xn ) contenu dans une de
ces boules B (a0 , 1). Par récurrence, on obtient une suite
extraite (x𝜙0◦. . .◦𝜙p (n ) ) contenu dans B (ap , 1/2p ) en ayant
choisi un recouvrement fini B (a , 1/2p ) de B (ap−1 , 1/2p−1) et
un terme de ce recouvrement contenant une sous-suite de
la suite-extraite précédente (x𝜙0◦. . .◦𝜙p−1 (n ) ). On considère
l’extraction diagonale yn = x𝜙0◦. . .◦𝜙n (n ) . Vu que 𝜙i (n) ≥ n car
les 𝜙i sont strictement croissantes, 𝜓(n) = 𝜙0 ◦ . . . ◦ 𝜙n (n) ≥
𝜙0 ◦ . . . ◦ 𝜙n−1 (n) > 𝜙0 ◦ . . . ◦ 𝜙n−1 (n − 1) = 𝜓(n − 1) donc
yn = x𝜓 (n ) est bien une suite extraite telle que à partir du
rang n , (yk )k≥n extraite de (x𝜙0◦. . .◦𝜙n (k ) ) est dans la boule
B (an , 1/2n ). Donc yk est de Cauchy donc converge par
complétude.
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Théorème A.8: (de Tychonov)

Un produit ∏︁
i ∈I X i d’espaces topologiques compacts

est compact.

Comme le cas non-métrique, non-dénombrable utilise
l’axiome du choix sous la forme du lemme de Zorn, on
reverra cela plus loin.

Exercice A.2. Si I dénombrable, X i métriques,
montrer que ∏︁

i ∈I X i est un espace métrique compact.
(Indication utiliser le résultat précédent.)

5 Théorème d’approximation de
Weierstrass (niveau L3-M1)

Théorème A.9: (de Bernstein)

Soit f : [0, 1]n → C continue et définissons le
polynôme de Bernstein :

BN ( f ) (x1 , . . . , xn ) =
N∑︁

k1=0
· · ·

N∑︁
kn=0

C k1
N . . .C kn

N f (
k1
N , . . . , knN )x k1

1 (1 − x1)N−k1 . . .x knn (1 − xn )N−kn

Alors BN ( f ) converge uniformément sur [0, 1]n vers f
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Démonstrat ion. On interprète de façon probabiliste BN ( f ).
Soit Ω = {0, 1}Nn avec la mesure de probabilité

P (𝜔1 = i1 , . . . , 𝜔Nn = in )

= x k1
1 (1 − x1)N−k1 . . .x knn (1 − xn )N−kn

avec k i le nombre de 1 parmi iN ( i−1 )+1 , . . . , iNi . On note
S1 (𝜔) = 𝜔1+. . .+𝜔N

N , . . . , Sn (𝜔) =
𝜔N (n−1)+1+. . .+𝜔Nn

N , S = (S1 , . . . , Sn )
qui sont des variables de loi binomiales indépendantes du
point de vue probabiliste. Alors∫
dPf (S1 , . . . , Sn ) = BN ( f ) (x1 , . . . , xn ) , donc si

𝜔(h) = sup{| f (x ) − f (y ) | : |x − y | ≤ h} est le module
d’uniforme continuité de f , on a :

| f (x1 , . . . , xn ) − BN ( f ) (x1 , . . . , xn ) |

≤ | | f (x1 , . . . , xn ) − f (S) | |1
≤ 𝜔(𝛿) + 2 | | f | |∞P ( | (x1 , . . . , xn ) − S | ≥ 𝛿)

Or par union disjointe et l’inégalité de Markov :

P (| (x1 , . . . , xn ) − S | ≥ 𝛿) ≤
n∑︁
i=1
P (|x i − S i | ≥ 𝛿)

≤
n∑︁
i=1

E ( |x i − S i |2)
𝛿2

Or un calcul simple donne
E ( |x i − S i |2) = Var (S i ) = x i (1−x i )

N ≤ 1
4N donc

l im sup
N→∞

sup
(x1 , . . . ,xn ) ∈ [0,1 ]n

| f (x1 , . . . , xn ) − BN ( f ) (x1 , . . . , xn ) |

≤ l im sup
N→∞

𝜔(𝛿) + 2n | | f | |∞
4N𝛿2

= 𝜔(𝛿) →𝛿→0 0.
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Corollaire A.10: (Théorème d’approximation de
Weierstrass)

Soit K un compact de Rn les polynômes (à coefficients
complexes) sont denses dans C 0 (K , C). En
conséquence, C 0 (K , C) est séparable.

Démonstrat ion. Comme K est fermé borné, K ⊂ [−N , N ]n

et par le théorème de Tietze D.3, f continue sur K se
prolonge en une fonction continue sur [−N , N ]n , il suffit
donc du cas K = [−N , N ]n que l’on obtient par translation et
dilatation (qui conservent les polynômes) du résultat
précédent. Comme Q[ i ] := Q + iQ est dense dans C, on voit
facilement que les polynômes à coefficients dans Q[ i ] sont
aussi denses, et forment un ensemble dénombrable, comme
union dénombrable des polynomes de degré au plus m en
chaque variable (c’est plus simple à décrire qu’en terme de

degré total) qui s’écrivent sous la forme
m∑︁

i1 , . . . , in=0
𝜆 i x i11 . . .x inn

et qui s’identifient donc au produit Q[ i ]mn ≃ Q2mn , qui est
dénombrable comme produit fini d’ensembles
dénombrables.

Remarque A.1. Plus généralement, le théorème de
Stone Weierstrass indique que toute sous-algèbre A
(stable par conjugaison complexe) de C 0 (K , C) avec K
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compact qui contient les fonctions constantes et
sépare les points (au sens pour x ≠ y il existe P ∈ A
avec P (x ) ≠ P (y )) est dense pour la norme
uniforme :A = C 0 (K , C).

6 Un résultat de compacité : le
Théorème d’Ascoli (niveau L3
Math)

Les compacts sont difficiles à trouver en dimension
infinie, et la moitié viennent (ou sont des variantes) du
résultat suivant (l’autre moitié sont des conséquences du
Théorème de Tychonov), que l’on va déduire de la relation
entre complétude et compacité.

Remarque A.2. Soit (Y , d ) un espace métrique
borné, dy ∈ (C 0

b (Y , R)) , dy (x ) = d (y , x ) la distance à y .
| |dy − dz | | = supx ∈Y |d (y , x ) − d (z , x ) | = d (y , z ) (car ≤
par l’inégalité triangulaire inverse et ≥ en prenant
x = y ou x = z ) Donc d : Y → C 0

b (Y , R) est une
isométrie.

Définition A.5

Soient X , Y des espaces métriques, une partie
F ⊂ C 0 (X , Y ) est équicontinue si pour tout 𝜖 > 0, il
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existe 𝛿 = 𝛿(𝜖 ) > 0, tel que ∀x , y ∈ X , ∀f ∈ F , si
d (x , y ) ≤ 𝛿 alors d ( f (x ) , f (y )) ≤ 𝜖 .

Par exemple une famille d’application
K-lipschitziennes (comme une famille de la boule unité
fermé de rayon K des applications linéaires continues entre
espaces de Banach) forme une famille équicontinue.

Théorème A.11: (d’Ascoli)

Soient X , Y des espaces métriques compacts, si une
partie F est équicontinue alors F est compacte (pour
la topologie de la convergence uniforme donnée par
la distance d ( f , g) = supx ∈X d ( f (x ) , g (x ))).

Exercice A.3. Montrer la réciproque facile.

Démonstrat ion. Comme Y compact il est complet borné
donc d : Y → C 0

b (Y , R) est une isométrie et d (Y ) est complet
donc fermé. Elle induit une isométrie de
C 0 (X , Y ) → C 0 (X , C 0

b (Y , R)) qui est un espace de Banach.
Les équations f (x ) ∈ d (Y ) , x ∈ X montrent que l’image de
l’isométrie est fermé (comme intersection de fermés
∩x ∈X ev −1

x (d (Y )), evx ( f ) = f (x )) donc complet. Donc
C 0 (X , Y ) est aussi complet (on aurait aussi pu reprendre la
preuve du cas Y Banach) et F aussi.

Il reste à voir que F est précompact. Or en recouvrant
F par des boules de rayon 𝜖/2, F est recouvert par les
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boules de même centre et rayon 𝜖 , donc il suffit de voir F
précompact. Soit 𝜖 > 0, on fixe 𝛿(𝜖 ) > 0 donné par
l’équicontinuité et R les centres d’un recouvrement de X par
des boules de rayons 𝛿(𝜖 ) donné par sa précompacité.

Remarquons que si d ( f (r ) , g (r )) ≤ 𝜖 pour tout r ∈ R , en
prenant r avec d (x , r ) ≤ 𝛿(𝜖 ), on a par l’équicontinuité et
l’inégalité triangulaire :

d ( f (x ) , g (x ))

≤ d ( f (x ) , f (r )) + d ( f (r ) , g (r )) + d (g (r ) , g (x )) ≤ 3𝜖

⇒ d ( f , g) ≤ 3𝜖 .

Soit enfin S les centres des boules de rayon 𝜖/2 recouvrant
Y . Nous allons indicer les boules d’un 4𝜖 recouvrement par
les applications SR de R vers S en nombre fini. Pour 𝜙 ∈ SR ,
soit

F𝜙 = {f ∈ F , ∀r ∈ R , d (𝜙(r ) , f (r )) ≤ 𝜖/2}

Si f , g ∈ F𝜙 alors l’inégalité triangulaire donne,
d (g (r ) , f (r )) ≤ 𝜖 pour tout r donc d ( f , g) ≤ 3𝜖 et si F𝜙 est
non-vide il est inclus dans B (b𝜙 , 4𝜖 ).

Enfin, il suffit donc de voir que F ⊂ ∪𝜙∈SR F𝜙. Or chaque
valeur possible de f (r ) est à distance inférieure à 𝜖/2 d’un
s = 𝜙(r ) ∈ S pour un certain 𝜙, ce qui conclut.

Théorème A.12: (d’Ascoli)

Soient X un espace métrique compact et E un e.v.n.
de dimension finie, si une partie F est équicontinue et



Annexe A. Compléments facultat i fs au
chapitre 2 : Topologie des e.m. 287

bornée de C 0 (X , E ) alors F est compacte (pour la
topologie de la convergence uniforme donnée par la
norme | |. | |∞).

Démonstrat ion. Si M = sup{| | f | |∞ , f ∈ F },
F ⊂ C 0 (X , BF (0, M )) et Y = BF (0, M ) est fermé borné donc
compact comme E est de dimension finie. Le théorème
précédent conclut.
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1 Propriétés des Cônes
tangents et normaux dans Rn

En pratique, on peut utiliser le résultat suivant pour se
ramener à des cas plus simples :

Proposition B.1

Soient A , B des convexes de E .

1. Si A ⊂ B alors pour tout x ∈ A, TA (x ) ⊂ TB (x ) et
NA (x ) ⊃ NB (x ) .

2. Si a ∈ Int (A), TA (a) = E et NA (a) = {0}.
3. Si u1 , . . . , un ∈ NA (x ) alors

{
n∑︁
i=1

𝜆 i u i , 𝜆 i ≥ 0} ⊂ NA (x ) .

4. Si a ≠ b alors N [a ,b ] (a) = (R(b − a))⊥ + R+ (a − b)
et pour u ∈ [a , b] − {a , b} N [a ,b ] (u) = (R(b − a))⊥.

5. Pour x ∈ A, A ⊂ x + TA (x ) et Tx+TA (x ) = TA (x ) et
donc Nx+TA (x ) = NA (x ) .

Démonstrat ion. (1) TA (x ) = R∗
+ (A − x ) ⊂ TB (x ) est par

monotonie de l’adhérence. Si f ∈ NB (x ) alors pour tout
y ∈ TB (x ) (en particulier y ∈ TA (x ) on a ⟨f , x ⟩ ≤ 0 et donc
f ∈ NA (x ). Donc on a l’inclusion NA (x ) ⊃ NB (x ) .
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(2) a ∈ Int (A) il existe une boule donc un convexe
B (a , r ) ⊂ A r > 0 et donc par (1)
TA (a) ⊃ TB (a ,r ) (a) ⊃ R+ (B (a , r ) − a) = R+B (0, r ) = E par la
définition. Vu E⊥ = {0} le résultat sur le cône normal s’en
déduit.

(3) C’est la propriété de cône. Par hypothèse pour
x ∈ TA (x ) on a ⟨u i , x ⟩ ≤ 0 donc pour 𝜆 i ≥ 0

⟨
n∑︁
i=1

𝜆 i u i , x ⟩ =
n∑︁
i=1

𝜆 i ⟨u i , x ⟩ ≤ 0 et donc
n∑︁
i=1

𝜆 i u i ∈ NA (x ).

(4) Comme [a , b] est convexe, on obtient
Tu ( [a , b]) = R+ [a − u , b − u] et u = 𝜆a + (1 − 𝜆 )b donc
(a − u) = (1 − 𝜆 ) (a − b), b − u = 𝜆 (b − a) donc
Tu ( [a , b]) = R+ [a − u , b − u] = R(b − a) d’où le calcul du cône
normal par l’exo 3.2. De même Ta ( [a , b]) = R+ (b − a) donc
clairement f ∈ Na ( [a , b]) se décompose selon la somme
directe orthogonale R(b − a) ⊕ (R(b − a))⊥ f = 𝜆 (b − a) + v et
on ⟨f , b − a⟩ = 𝜆 | |b − a | |2 qui est négatif si et seulement si
𝜆 ≤ 0. Donc si et seulement si f ∈ (R(b − a))⊥ + R+ (a − b)
comme annoncé.

(5) Par la formule
x + TA (x ) = x + R∗

+ (A − x ) ⊃ x + (A − x ) = A. Par l’inclusion
Tx+TA (x ) ⊃ TA (x ). Mais x + TA (x ) − x = TA (x ) donc
Tx+TA (x ) = R∗

+TA (x ) = TA (x ) car TA (x ) est un cône fermé. On
déduit directement le cas des cônes normaux.
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Exemple B.1

Soit A = {(x , y ) ∈ R2 : x ≥ y ≥ 0, }. Calculons NA (0) le
cône normal en 0 = (0, 0).
D’abord on essaye de borner supérieurement
l’ensemble. En prenant [(0, 0) , (1, 1)] ⊂ A, on a

NA (0) ⊂ N [ (0,0 ) , (1,1 ) ] (0)

= (R(1, 1))⊥ + R+ (−1, −1)

= {𝜆 (1, −1) + 𝜇(−1, −1) , 𝜆 ∈ R, 𝜇 ≥ 0}

De même

NA (0) ⊂ N [ (0,0 ) , (1,0 ) ] (0)

= (R(1, 0))⊥ + R+ (−1, −1)

= {𝜆 ′ (0, 1) + 𝜇′ (−1, 0) , 𝜆 ′ ∈ R, 𝜇′ ≥ 0}

Donc NA (0) est inclus dans l’intersection, résolvons
le système (−𝜇′ , 𝜆 ′) = (𝜆 − 𝜇, −𝜆 − 𝜇) avec les
conditions ci-dessus ,𝜆 , 𝜆 ′ ∈ R, 𝜇, 𝜇′ ≥ 0 Il faut donc
−𝜆 − 𝜇 = −𝜆 + 𝜇 − 2𝜇 = 𝜇′ − 2𝜇 donc

N (0,0 ) (A) ⊂ {𝜇′ (−1, 1) + 𝜇(0, −2) , 𝜇, 𝜇′ ≥ 0}.

Montrons qu’il y a égalité en montrant que
(−1, 1) ∈ NA (0) et (0, −1) ∈ NA (0) (car on a alors
l’autre inclusion par le 3 de la précédente
proposition).
La formule du cas convexe donne TA (0) = A donc soit
(x , y ) ∈ A, on calcule ⟨(x , y ) , (−1, 1)⟩ = y − x ≤ 0
d’après l’équation de A donc (−1, 1) ∈ NA (0).



Annexe B. Compléments facultat i fs et hors
programme au chapitre 3 :Convexité 292

Enfin ⟨(x , y ) , (0, −1)⟩ = −y ≤ 0 donc (0, −1) ∈ NA (0)
comme voulu.
On a donc

NA (0) = R+ (−1, 1) + R+ (0, −2) .

On est maintenant prêt pour la :

Preuve du Théorème 3.6. On rappelle que

C = {x ∈ U : ∀i ∈ {1, .. . , n}, g i (x ) ≤ 0}.

On a supposé x0 ∈ Int (C ) ⊂ U existe. Soit x ∈ C tel que :

1. les l premières contraintes sont actives, c’est à dire :
g1 (x ) = . . . = g l (x ) = 0

2. les autres contraintes ne sont pas actives, c’est à dire
g l+1 (x ) < 0, .. .gn (x ) < 0

Si l = 0, on a

x ∈ Int (C ) = {x ∈ U : ∀i ∈ {1, .. . , n}, g i (x ) < 0}

donc NC (x ) = {0} par la proposition B.1.2. Sinon, le but est
de voir :

NC (x ) =
{︄ l∑︁
i=1

𝜆 i∇g i (x ) , 𝜆 i ≥ 0
}︄

.

Etape 1 : inclusion ⊃.

Par la proposition B.1.3. il suffit de voir que
∇g i (x ) ∈ NC (x ) pour 1 ≤ i ≤ l , soit autrement dit par
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définition de NC (x ), il faut voir :

⟨∇g i (x ) , u − x ⟩ ≤ 0, ∀u ∈ C

Or par le théorème 3.12, on a ∀u , x ∈ U

⟨∇g i (x ) , u − x ⟩ ≤ g i (u) − g i (x ) = g i (u) ≤ 0,

car u ∈ C .

Etape 2 : inclusion ⊂.

Soit f ∈ NC (x ).

On remarque d’abord que si on prend h0 = x0 − x on a
dg i (x ) (h0) ≤ g i (x0) − g i (x ) = g i (x0) < 0 pour tout i = 1, .. . , l .

Soit donc maintenant h tel que dg i (x ) (h) < 0, i = 1, .. . , l
(il en existe par la remarque), alors
g i (x + th) − g i (x ) = tdg i (x ) (h) + o ( t ) donc g i (x + th) < 0 pour
t > 0 petit, et i = 1, .. . l De plus pour t assez petit comme
g l+1 (x ) < 0, .. .gn (x ) < 0, on déduit par continuité
g l+1 (x + th) < 0, .. .gn (x + th) < 0 d’où x + th ∈ A pour tout t
assez petit.

Par définition de NC (x ), on a donc ⟨f , x + th − x ⟩ ≤ 0
donc en particulier ⟨−f , h⟩ ≥ 0 et on ne peut pas avoir
−⟨f , h⟩ < 0. Donc −f , dg1 (x ) , . . . , dg l (x ) vérifient la première
condition de la Proposition B.15 (avec E = Rn ) donc aussi la
seconde et sont donc positivement linéairement dépendants.
On a donc des 𝜆 i positifs non tous nuls tel que

−𝜆 0 f +
l∑︁
i=1

𝜆 i∇g i (x ) = 0.
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Montrons enfin que 𝜆 0 ≠ 0. Si on avait
l∑︁
i=1

𝜆 i∇g i (x ) = 0,

il n’y aurait pas de h tel que dg i (x ) (h) < 0 pour tout
i = 1, .. . , l ce qui contredit dg i (x ) (h0) < 0.

On conclut à l’égalité voulu :

f =
l∑︁
i=1

𝜆 i
𝜆 0

∇g i (x ) ∈
{︄ l∑︁
i=1

𝜆 i∇g i (x ) , 𝜆 i ≥ 0
}︄

2 Enveloppe convexe, cônes
tangents et cônes normaux
pour tout e.v.n. E (Niveau L3)

Comme pour les adhérences, la stabilité par
intersection garantit l’existence d’un plus petit convexe
contenant A.

Définition B.1

L’enveloppe convexe d’un ensemble A, notée
Conv (A) est le plus petit convexe contenant A.
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Lemme B.2

Conv (A)

=
⋃︂
n∈N∗

{
n∑︁
i=1
t i x i , x i ∈ A , avec

n∑︁
i=1
t i = 1, t i ≥ 0}

Démonstrat ion. Soit Conv ′ (A) le membre de droite.

Conv ′
n (A) = {

n∑︁
i=1
t i x i , x i ∈ A , avec

∑︁
t i = 1, t i ≥ 0} Le cas

n = 1 dans l’union est A donc A ⊂ Conv ′ (A). Si

y1 =

n∑︁
i=1
t i x i ∈ Conv ′

n (A) , y2 =

m∑︁
j=1
s j z j ∈ Conv ′

m (A) sont deux

points quelconques, alors pour 𝜆 ∈ [0, 1]

𝜆y1 + (1 − 𝜆 )y2 =

n∑︁
i=1

𝜆 t i x i +
m∑︁
j=1

(1 − 𝜆 )s j z j .

Comme
n∑︁
i=1

𝜆 t i +
m∑︁
j=1

(1 − 𝜆 )s j = 𝜆 + (1 − 𝜆 ) on déduit

𝜆 y1 + (1 − 𝜆 )y2 ∈ Conv ′
n+m (A). Ceci montre que Conv ′ (A) est

un convexe qui contient A.

Il est facile de voir que tout ensemble convexe est

stable par combinaison convexe
n∑︁
i=1
t i x i avec

∑︁
t i = 1, t i ≥ 0

par récurrence sur n et ainsi Con ′
n (A) ⊂ Conv (A). Si tn = 1,

les autres sont nuls et rien n’est à montrer. En écrivant
n∑︁
i=1
t i x i = (1 − tn ) (

1
1 − tn

n∑︁
i=1
t i x i ) + tn xn on a par l’hypothèse de

récurrence 1
1− tn

n∑︁
i=1
t i x i ∈ Conv (A) car
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yn := 1
1− tn

n∑︁
i=1
t i = (1 − tn )/(1 − tn ) = 1 (et les coefficients sont

positifs). Donc on a aussi la combinaison convexe
n∑︁
i=1
t i x i = (1 − tn )yn + tn xn ∈ Conv (A) .

Dans Rn il ne suffit que du barycentre de n + 1 points.

Théorème B.3: (de Carathéodory)

(admis) Si A ⊂ Rn , on a

Conv (A)

=
{︁ n+1∑︁
i=1
t i x i , x i ∈ A , avec

n+1∑︁
i=1
t i = 1, t i ≥ 0

}︁
.

Les deux ensembles suivant seront importants pour
formuler des conditions pour des problèmes de minimisation
sous contrainte.

Définition B.2

Le cône tangent de l’ensemble A ⊂ E e.v.n. au point
a ∈ A est

TA (a) := {b ∈ E :∃a i → a , a i ∈ A ,

t i > 0, t i → 0 : b = l im a i − a
t i

}

Le cône normal est son polaire, c’est à dire le cône
convexe fermé :

NA (a) := {f ∈ E ∗ : ∀x ∈ TA (a) , f (x ) ≤ 0}.
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Exemple B.2

TA (a) est toujours fermé. Si L est un s.e.v de E a ∈ L,
TL (a) = L et NL (a) = L⊥ . Si a ∈ Int (A), TA (a) = E et
NA (a) = {0}.

Le résultat montrer l’accord avec la définition du cas
E = Rn dans le cas convexe (avec l’identification usuelle de
E ′ à E comme pour tout espace de Hilbert.)

Proposition B.4

Si S est convexe et x ∈ S , alors Tx (S) est convexe et
S ⊂ x + Tx (S). De plus, on a

Tx (S) = { u − x
s , u ∈ S , s > 0},

Nx (S) = {f ∈ E ′ : ∀u ∈ S , f (u − x ) ≤ 0}

Démonstrat ion. R∗
+ (S − x ) est convexe comme S − x donc

en prenant l’adhérence, aussi l’ensemble W = R∗
+ (S − x ) que

l’on veut montrer être TS (x ). Si on a une suite
(xn − x )/tn → u ∈ TS (x ) comme tous les éléments sont dan
W , on obtient par fermeture aussi la limite, donc TS (x ) ⊂ W .
Réciproquement, pour t > 0,
xn := t

n (u − x ) + x = t
n u + (1 − t

n )x ∈ S pour n assez grand par
convexité et (xn − x )/tn = t (u − x ) si tn = 1/n → 0 donc
t (u − x ) ∈ TS (x ) comme voulu. Les autres relations sont
alors évidentes, car S − x ⊂ TS (x ) (car s = 1) et par la
définition de NS (x ) comme polaire.
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3 Points selles (Niveau L2-L3)
Les points critiques a qui ne sont pas des extrema

peuvent être de différents types. L’absence d’extrema peut
être visible sur une droite passant par a s’il y a un point
d’inflexion (comme pour x ↦→ x 3 dans R) et il peut y avoir des
points critiques qui sont des maxima dans certaines
directions et des minima dans d’autres. Ces points ont un
certain intérêt et seront nommés points selles.

Définition B.3

Soit U ⊂ Rn et f : U → R et a ∈ U .

1. Soient deux sous-espaces vectoriels F et G
supplémentaires Rn = F ⊕ G (c’est à dire
F ∩ G = {0} et Rn = F + G ) On dit que a est un
point selle (resp. point selle local) de f selon
la décomposition Rn = F ⊕ G si a est un
minimum (resp. minimum local) pour la
restriction f |a+F de f au sous espace affine a + F ,
et si a est un maximum (resp. maximum local)
pour la restriction f |a+G de f au sous espace
affine a + G . On parle de point selle si il existe
une telle décomposition.

2. Si f de classe C1 . Soit a un point critique de f ,
un sous espace vectoriel H ⊂ Rn est un plan
d’inflexion si pour toute droite ∆ passant par a
inclus dans a + H , f |∆ n’a pas d’extrema local en
a .
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Remarque B.1. La décomposition F ⊕ G d’un point
selle n’est pas forcément unique et on ne demande
rien en dehors (a + G) ∪ (F + a), en particulier, il peut y
avoir des plans d’inflexion en un point selle (ex
f (x , y ) = x 2 − y 2 + (x − y )3 , (0, 0) est un point selle
local dans la décomposition (R, 0) ⊕ (0, R) car x 2 + x 3

a un minimum local en 0 et −y 2 − y 3 un maximum
local, de même (0, 0) est un point selle dans la
décomposition R(1, 1/2) ⊕ R(1/2, 1) mais R(1, −1) est
une droite d’inflexion)

Proposition B.5

Soit f : U → R de classe C1

1. Si a est un point selle de f , c’est un point
critique de f .

2. Si f est C2 et a est un point critique de f . Si
D 2 f (a) est non-dégénérée, ni positive ni
négative, alors a est un point selle local de f .

3. Si a est un point critique de f H est un plan
d’inflexion en a de dimension dim (H ) > n/2
alors a n’est pas un point selle local. De plus si
f est C2 pour tout h ∈ H , D 2 f (a) (H , H ) = 0.

Démonstrat ion. Pour (1) on remarque qu’il suffit de
montrer df (a) = 0 ce qui ne dépend pas de la base de Rn on
peut donc supposer a point selle pour la décomposition
F = Rk × {0}, G = {0} × Rn−k . Comme f restreint à a + F à un
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minimum local, les k premières dérivées partielles
s’annulent, les n-k dernières s’annulent à cause du
maximum sur a + G , d’où df (a) = 0.

La preuve de (2) nécessite quelques bases d’algèbre
linéaire. Pour (2), comme D 2 f (a) est non dégénérée, les
valeurs propres de H ( f ) (a) (les racines du polynôme
X ↦→ det (H ( f ) (a) − Xid )) sont non nulles. Comme la matrice
D 2 f (a) n’est ni positive ni négative, il y a à la fois des
valeurs propres 𝜆 positives et négatives. Soit F l’espace
vectoriel engendré par les vecteurs propres u (les u ∈ Rn tels
que H ( f ) (a)u = 𝜆u qui existent car si det (H ( f ) (a) − 𝜆 id ) = 0,
H ( f ) (a) − 𝜆 id n’est pas injective donc a un noyau) des
valeurs propres 𝜆 strictement positives, et de même G avec
les négatives. D 2 f (a) restreint à F est positive donc f |a+F
admet un minimum local et de même pour G .

Pour (3), si dim (H ) > n/2 et supposons par l’absurde a
point selle, on a dim (F ) + dim (G) = n , on a soit
dim (F ) ≥ n/2, soit dim (G) ≥ n/2, disons qu’on se trouve
dans le premier cas, alors
n ≥ dim (H + F ) = dim (F ) + dim (H ) − dim (F ∩ H ) implique
dim (F ∩ H ) ≥ dim (F ) + dim (H ) − n > n/2 + n/2 − n = 0 donc
F ∩ H ≠ {0} une contradiction car la restriction de f à toute
droite dans a + F ∩ H devrait avoir un minimum local en a et
un point d’inflexion à la fois. Si D 2 f (a) (H , H ) ≠ 0, on a vu
que cela suffit à ce que f ait un extremum local sur la droite
a + RH , vu si 𝜙(𝜆 ) = f (a + 𝜆H ), 𝜙′′ (0) = D 2 f (a) (H , H ) .
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Théorème B.6

Soient A ⊂ Rn−k , B ⊂ Rk des compacts convexes et
K : C = A × B → R continue. Si pour tout
(a , b) ∈ C , a ∈ Rn−k , b ∈ Rk , x ↦→ K (x , b) est convexe et
y ↦→ K (a , y ) est concave, alors il existe un point de C
qui soit un point selle (x0 , y0) selon la décomposition
Rn−k × {0} ⊕ {0} × Rk autrement dit :

∀x ∈ A , y ∈ B K (x0 , y ) ≤ K (x0 , y0) ≤ K (x , y0) . (B.1)

De plus, (B.1) est équivalente à l’égalité :

Minx ∈AMaxy ∈BK (x , y ) = Maxy ∈BMinx ∈AK (x , y ) .
(B.2)

Remarque B.2. On a des Min et Max au lieu d’inf et
sup car des fonctions continues sur des compacts
atteignent leurs bornes (cf. la preuve pour la
continuité de x ↦→ Maxy ∈BK (x , y ) et de façon similaire
de y ↦→ Maxx ∈AK (x , y ).
Dans le cas où f est bilinéaire, ce résultat s’appelle
le théorème du min-max de von Neumann. Il a une
signification en théorie des jeux. Si f donne la valeur
que gagne un joueur A en position x ∈ U si f (x ) ≥ 0 et
−f (x ) la valeur que gagne le joueur B (et perd le
joueur A) si f (x ) ≤ 0. Si A ne peut influencer que la
direction {0} × Rk et B seulement la direction
Rn−k × {0}. Alors un point selle est un "équilibre de
Nash" c’est-à-dire un point où ni A ni B n’ont intérêt
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à changer leur stratégie, car si A change sa stratégie
celle de B étant constante, étant donné que le point
selle est un maximum, A va perdre en gain, et de
même si B change sa position avec celle de A
constante, le caractère de minimum dans la direction
du changement de B montre que B ne peut que perdre
plus.

Démonstrat ion. •
Maxy ∈BMinx ∈AK (x , y ) ≤ Minx ∈AMaxy ∈BK (x , y ) est
toujours vrai. Comme pour tout x ∈ A , y ∈ B ,
Minx ∈AK (x , y ) ≤ K (x , y ) ≤ Maxy ∈AK (x , y ), on déduit
en prenant le max :
Maxy ∈BMinx ∈AK (x , y ) ≤ Maxy ∈BK (x , y ) soit en
prenant un Min en x :

Maxy ∈BMinx ∈AK (x , y ) ≤ Minx ∈AMaxy ∈BK (x , y ) .

• (B .1) ⇒ (B .2)
De plus, en considérant (x0 , y0) de (B .1), on a :

K (x0 , y0) ≤ Minx ∈AK (x , y0)

≤ Maxy ∈BMinx ∈AK (x , y ) ,

K (x0 , y0) ≥ Maxy ∈BK (x0 , y )

≥ Minx ∈AMaxy ∈BK (x , y ) ,

d’où l’égalité complète en rassemblant les 3 dernières
inégalités.

• g : x ↦→ Maxy ∈BK (x , y ) est continue.
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Soit x , xn ∈ A, xn → x , soit yn (resp t ) atteignant le
max pour xn (resp x ) c’est à dire :
Maxy ∈BK (xn , y ) = K (xn , yn ) . Supposons que
g (xn ) = K (xn , yn ) ne converge pas vers g (x ). Par
compacité, on peut extraire une suite telle que
y𝜙(n ) → Y . Par continuité de K :

g (x𝜙(n ) ) = K (x𝜙(n ) , y𝜙(n ) ) →

K (x , Y ) < K (x , t ) = Maxy ∈BK (x , y ) = g (x ) .

Or K (x𝜙(n ) , t ) ≤ K (x𝜙(n ) , y𝜙(n ) ) donc en passant à la
limite par continuité de K , K (x , t ) ≤ K (x , Y ) < K (x , t ) ,
une contradiction.

• (B .1) ⇐ (B .2) On prend x0 ∈ A réalisant le minimum
c’est à dire tel que :

𝛼 = Minx ∈AMaxy ∈BK (x , y ) = Maxy ∈BK (x0 , y )

Il existe par la continuité du point précédent et par
compacité. De même, il existe y0 ∈ B réalisant le
maximum :

Minx ∈AK (x , y0) = Maxy ∈BMinx ∈AK (x , y ) = 𝛼.

Donc pour tout x ∈ A , y ∈ B , en utilisant (B.2) pour
l’égalité du milieu, on obtient :

K (x0 , y ) ≤ MaxY ∈BK (x0 , Y )

= 𝛼 = MinX ∈AK (X , y0) ≤ K (x , y0) .

En prenant x = x0 , y = y0 , on voit 𝛼 = K (x0 , y0), ce qui
dit donc que (x0 , y0) est un point selle.
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• Montrons (B.2). Considérons, pour 𝜖 > 0,

K𝜖 (x , y ) = K (x , y ) + 𝜖 | |x | |22 .

Comme x ↦→ 𝜖 | |x | |22 est strictement convexe, il en est
de même de K𝜖 (. , y ) pour tout y ∈ B (convexe plus
strictement convexe donne strictement convexe).
Montrons que pour tout y , la fonction K𝜖 (. , y ) a un
unique minimum. En effet, si x1 ≠ x2 sont deux
minima, par stricte convexité :
K𝜖 ((x + y )/2, y ) < K𝜖 (x1 , y )/2 + K𝜖 (x2 , y )/2 = K (x i , y ) en
contradiction avec le caractère de minimum. Donc on
a un unique E (y ) atteignant le minimum de K𝜖 (. , y )
Par le deuxième point (appliqué à −K𝜖 (y , x ))
f𝜖 (y ) = K𝜖 (E (y ) , y ) est continue, donc atteint son
maximum en y ∗. En conséquence, par la définition de
f𝜖 et le choix de y ∗

f𝜖 (y ∗) = Maxy ∈BMinx ∈AK𝜖 (x , y )

= K𝜖 (E (y ∗) , y ∗) = Minx ∈AK𝜖 (x , y ∗) .

Soit x ∈ A , y ∈ B , t ∈]0, 1 [, on a par concavité :

K𝜖 (x , (1 − t )y ∗ + ty ) ≥ (1 − t )K𝜖 (x , y ∗) + tK𝜖 (x , y )

≥ (1 − t ) f𝜖 (y ∗) + tK𝜖 (x , y ) .

En prenant x = E ((1 − t )y ∗ + ty ), on obtient
f𝜖 ((1 − t )y ∗ + ty ) ≥ (1 − t ) f𝜖 (y ∗) + tK𝜖 (E ((1 − t )y ∗ + ty ) , y ) .
Vu que y ∗ maximise f𝜖 , en soustrayant et divisant par
t , on a :

f𝜖 (y ∗) ≥ K𝜖 (E ((1 − t )y ∗ + ty ) , y ) (∗) .
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On veut prendre t → 0, voyons que y ↦→ E (y ) est
continue. Supposons yn → y , et supposons
E (yn ) ̸→ E (y ) par compacité, on a une suite extraite
y𝜙(n ) telle que E (y𝜙(n ) ) → Z ≠ E (y ). Par continuité
K𝜖 (E (y𝜙(n ) )) , y𝜙(n ) ) → K𝜖 (Z , y ) > K𝜖 (E (y ) , y ) ,
l’inégalité stricte venant de l’unicité du minimum d’une
fonction strictement convexe.
Or par définition K𝜖 (E (y )) , y𝜙(n ) ) ≥ K𝜖 (E (y𝜙(n ) )) , y𝜙(n ) )
donc en passant à la limite
K𝜖 (E (y ) , y ) ≥ K𝜖 (Z , y ) > K𝜖 (E (y ) , y ) , une
contradiction.
On a donc montré la continuité de y ↦→ E (y ).
Donc en passant à la limite dans l’inégalité (∗), on
obtient : f𝜖 (y ∗) ≥ K𝜖 (E (y ∗) , y ) et ce pour tout y ∈ B Par
ailleurs par définition de f𝜖 , f𝜖 (y ∗) ≤ K𝜖 (x , y ∗).
Autrement dit (E (y ∗) , y ∗) est un point selle de K𝜖 . Par
l’implication (B .1) ⇒ (B .2), on déduit, vu
K (x , y ) ≤ K𝜖 (x , y ) ≤ K (x , y ) + 𝜖D (avec
D = Maxx ∈A | |x | |22 < ∞ par compacité) :

Minx ∈AMaxy ∈BK (x , y )

≤ Minx ∈AMaxy ∈BK𝜖 (x , y )

= Maxy ∈BMinx ∈AK𝜖 (x , y )

≤ 𝜖C + Maxy ∈BMinx ∈AK (x , y ) .

En prenant 𝜖 → 0, on obtient l’inégalité qui manque
pour avoir (B .2) pour K .
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4 Jauge de Minkowski d’un
ensemble convexe (Niveau
M1)

L’un des objectifs principaux de ce chapitre est
d’utiliser le théorème de Hahn-Banach pour séparer des
convexes par des hyperplans fermés, lieu d’annulation
d’une forme linéaire continue. Pour cela, nous devons
associer à un convexe une fonction (qui sera souvent une
semi-norme) et que l’on pourra utiliser comme domination
dans le théorème d’Hahn-Banach.

Définition B.4

Soit E un R-e.v., un convexe C ⊂ E est dit absorbant
si pour tout x ∈ E , x ∈ 𝜆C pour un 𝜆 > 0.

Définition B.5

Soit E un R-e.v. et C un convexe absorbant. La jauge
de Minkowski de C est la fonction :

𝜇C (x ) := inf{𝜆 > 0 : 𝜆−1x ∈ C } ∈ [0, ∞)

Théorème B.7

Soit E un R-e.v. et C un convexe absorbant. Alors

1. 𝜇C (x + y ) ≤ 𝜇C (x ) + 𝜇C (y ) .
2. 𝜇C ( tx ) = t 𝜇C (x ) si t ≥ 0.
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3. Si −C = C , 𝜇C est une seminorme.
4. Si A = {x : 𝜇C (x ) < 1}, B = {x : 𝜇C (x ) ≤ 1} alors

A ⊂ C ⊂ B sont des convexes et 𝜇A = 𝜇B = 𝜇C

5. Si E est un e.v.n. et 0 ∈ Int (C ) (ce qui implique
C absorbant), 𝜇C est continue et de plus

A = Int (C ) , B = C .

Démonstrat ion. Soit t = 𝜇C (x ) + 𝜖 > 0, s = 𝜇C (y ) + 𝜖 > 0 de
sorte que x/t , y /s ∈ C . Or on peut écrire la combinaison
convexe suivante x+y

s+t = t
s+t

x
t +

s
s+t

y
s ∈ C et donc

𝜇C (x + y ) ≤ s + t . Comme 𝜖 > 0 est arbitraire, on déduit (1).

(2) est une conséquence directe de la définition. Si
−C = C 𝜇C (x ) = 𝜇C (−x ) d’où on déduit 𝜇C ( tx ) = | t |𝜇C (x ), la
seule relation manquante pour (3).

Les inclusions entre A , B , C viennent de la définition :
x ∈ C donne x/1 ∈ C et donc 𝜇C (x ) ≤ 1 et si 𝜇C (x ) < 1, alors
x/1 ∈ C . Elles impliquent 𝜇B ≤ 𝜇C ≤ 𝜇A . Si 𝜇B (x ) < s < t
alors x/s ∈ B donc 𝜇C (x/s) ≤ 1 donc 𝜇C (x/t ) ≤ s/t < 1 d’où
x/t ∈ A donc 𝜇A (x ) ≤ t soit en passant à l’infimum des t ,
𝜇A (x ) ≤ muB (x ) ce qui donne la dernière égalité de (4). A , B
convexes sont semblables à la convexité des boules en
utilisant (1) et (2).

Pour (5), on remarque qu’il existe B (0, 𝜖 ) ⊂ C donc
𝜇C (𝜖x/| |x | |) ≤ 1 soit 𝜇C (x ) ≤ ||x | |/𝜖 .
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De plus par l’inégalité triangulaire
𝜇C (x ) ≤ |𝜇C (x − y ) | + 𝜇C (y ) et de même en inversant x , y donc

|𝜇C (x ) − 𝜇C (y ) | ≤ |𝜇C (x − y ) | ≤ | |x − y | |/𝜖

donc 𝜇C est 1/𝜖-lipschitzienne donc continue. On déduit
que A est ouvert, B fermé et donc A ⊂ Int (C ),C ⊂ B . Or, soit
𝜖 , si x ∈ B x (1 − 1/n) ∈ C et converge vers x ∈ C donc B ⊂ C .
De même si x ∈ Ac , (1 + 𝜖 )x ∉ C donc x ∈ C c donc Ac ⊂ C c

d’où en prenant le complémentaire Int (C ) ⊂ A .

Vous pouvez aussi en exercice essayer de montrer le
résultat suivant directement.

Corollaire B.8

Soit C un convexe d’intérieur non vide d’un e.v.n.,
Int (C ) = Int (C ) et Int (C ) = C .

Démonstrat ion. En translatant, on peut supposer
0 ∈ Int (C ) ,, Alors comme 𝜇C = 𝜇Int (C ) = 𝜇C , par le (5)
ci-dessus, le calcul de l’intérieur/adhérence en terme de la
jauge donne que ces trois ensembles ont même intérieur et
même adhérence.
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5 Séparation des convexes
(Niveau M1)

Un élément f ∈ E ′ tel que f ≠ 0 permet de construire un
hyperplan fermé (translation de Ker (𝜙), voir lemma 2.30) :
{x ∈ E , f (x ) = c}. Les deux ensembles {x ∈ E , f (x ) ≤ c} et
{x ∈ E , f (x ) ≥ c} sont des demi-espaces. On dit que deux
ensembles sont séparés (par l’hyperplan) si chaque
ensemble est dans un des demi-espaces. On parle de
séparation stricte si C1 ⊂ {x ∈ E , f (x ) < c} et
C2 ⊂ {x ∈ E , f (x ) > d } pour d > c .

On va obtenir un résultat de séparation en utilisant un
résultat abstrait de prolongement :

Théorème B.9: (de prolongement de Hahn-Banach)
(admis)

Soient E un espace vectoriel, p : E → R une
application positivement homogène et sous-additive,
c’est-a-dire vérifiant :

⊲ p ( tx ) = tp (x )x ∈ E , t > 0
⊲ p (x + y ) ≤ p (x ) + p (y ) , x , y ∈ E .

Soient G ⊂ E un sous-espace vectoriel et g : G → R

une application linéaire dominée par p :

∀x ∈ G , g (x ) ≤ p (x ) .

Alors il existe une forme linéaire f sur E qui prolonge
g (c’est-à-dire ∀x ∈ G , g (x ) = f (x )) et encore dominée
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par p , c’est-à-dire telle que

∀x ∈ E , f (x ) ≤ p (x ) .

La version suivante du théorème de Hahn-Banach
permet de séparer des ensembles convexes bien choisis.

Théorème B.10: (de séparation de Hahn-Banach)

Soient A , B deux convexes non-vides disjoints d’un
e.v.n. E , ils sont séparés par un hyperplan dans les
deux cas suivants :

1. Si A est ouvert, alors il existe f ∈ E ′ et c ∈ R

telle que

∀x ∈ A , y ∈ B : f (x ) < c ≤ f (y ) .

2. Si A est compact et B est fermé, alors il existe
f ∈ E ′ et c < d ∈ R telle que

∀x ∈ A , y ∈ B : f (x ) < c < d < f (y ) .

Démonstrat ion. 1) Premier cas : B = {x0}.

On peut supposer que 0 ∈ A pour utiliser la
fonctionnelle 𝜇A comme fonctionnelle sous-additive et
positivement homogène p du théorème de Hahn Banach.
Soit G = Rx0 et g ( tx0) = t .
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On remarque que 𝜇A (x0) ≥ 1 car
A = Int (A) = {x : 𝜇A (x ) < 1} par le théorème B.7 et x0 ∉ A .

donc pour t>0 g ( tx0) = t ≤ t 𝜇A (x0) = 𝜇A ( tx0) et pour
t ≤ 0 g ( tx0) ≤ 0 ≤ 𝜇A ( tx0). Donc on obtient la domination
hypothèse de Hahn-Banach :

∀x ∈ G , g (x ) ≤ 𝜇A (x ) .

En appliquant le théorème, on obtient donc f linéaire
étendant g et telle que (en réutilisant la lipshitzianité
obtenue dans la preuve du théorème B.7 (5))

∀x ∈ E , f (x ) ≤ 𝜇A (x ) ≤ M | |x | |.

Ceci implique en particulier f ∈ E ∗ , f (x ) < 1 pour x ∈ A
et f (x ) = 1 sur B . Ce qui donne la séparation.

Second cas : B quelconque.

On pose C = A − B qui est convexe, ouvert (comme
union ∪y ∈BA − y ) et 0 ∉ C . Donc d’après le premier cas il
existe f ∈ E ′ telle que f (z ) < 0 pour z = a − b ∈ A − B soit
f (a) < f (b) pour a ∈ A, b ∈ B . En passant au sup on obtient :

Supx ∈A f (x ) ≤ Infy ∈B f (y ) := c .

De plus, comme A ouvert on obtient
A ⊂ Int ({x : f (x ) ≤ c}) = {x : f (x ) < c}.
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2)Vérifions qu’il existe 𝜖 > 0 tel que A + B (0, 𝜖 ) et
B + B (0, 𝜖 ) soient disjoints (ce sont aussi des convexes
ouverts comme au 1). Sinon, on trouve
xn ∈ A + B (0, 1/n) ∩ B + B (0, 1/n) donc yn ∈ A , zn ∈ B avec
| |yn − xn | |, | |zn − xn | | ≤ 1/n . En extrayant par compacité une
sous-suite ynk → y ∈ A on obtient znk → y ∈ B , une
contradiction.

Donc on peut appliquer le cas 1) à A + B (0, 𝜖 ) et
B + B (0, 𝜖 ) . On obtient f ∈ E ′ non-nulle telle que :

∀a ∈ A , ∀z ∈ B (0, 𝜖 ) , ∀b ∈ B :

f (a) + f (z ) ≤ 𝛼 ≤ f (b) + f (z ) .

En prenant des sup sur la boule unité :

∀a ∈ A , ∀b ∈ B : f (a) + | | f | |𝜖 ≤ 𝛼 ≤ f (b) − || f | |𝜖 .

Comme | | f | | ≠ 0, il suffit de prendre
c = 𝛼 − || f | |𝜖/2 < d = 𝛼 + || f | |𝜖/2.

Applications

Il vient de l’application directe au cas A = {x }, B = {y }
qui sont des compacts.

Proposition B.11: (separation des points)

E ′ sépare les points de E : Pour x ≠ y ∈ E il existe
f ∈ E ′ telle que f (x ) ≠ f (y ) .
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Le deuxième cas particulier permet de séparer un point
et un espace fermé F

Proposition B.12

Si F ⊂ E un sous-espace vectoriel de l’e.v.n. E . Si
x ∉ F alors il existe f ∈ E ′ telle que f (x ) = 1 et
F ⊂ Ker ( f ) .
En particulier, F ⊥ = 0 ssi F est dense dans E .

La proposition précédente a des conséquences
intéressantes pour comprendre l’injectivité et la surjectivité
(ou plutôt la densité de l’image) des applications linéaires
en dimension infinie.

On commence par un préliminaire algébrique sur
l’orthogonalité dans les espaces de Banach.

Définition B.6

Soit E un e.v.n. et F un sous-espace de E et N un
sous-espace de E ′. Les orthogonaux de F et N sont
les sous-espaces fermés :

F ⊥ := {f ∈ E ′ , f (x ) = 0x ∈ F },

⊥N := {x ∈ E , f (x ) = 0∀f ∈ N }.
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Proposition B.13

Soient X , Y des e.v.n et T ∈ L (X , Y ). Alors

Ker (T t ) = [Im (T )]⊥ Ker (T ) = ⊥ [Im (T t )] .

Démonstrat ion. En effet, y ∈ Ker (T t ) ssi pour tout x ∈ E ,
0 = [T t (y )] (x ) = y (T (x )) ssi y ∈ [Im (T )]⊥.

De même, y ∈ Ker (T ) ssi pour tout x ∈ E ∗,
0 = x [T (y )] = [T t (x ) (y ) ssi y ∈ ⊥ [Im (T t )] .

Proposition B.14

Soient X , Y des e.v.n et T ∈ L (X , Y ).

1. Im (T ) est dense dans Y si et seulement si T t

est injectif.
2. Si X ⊂ Y , ⊥ (X ⊥) = X est la fermeture normique

de X dans Y .

Démonstrat ion. Pour 1, T t est injectif si et seulement si
Im (T )⊥ = Ker (T t ) = 0 (proposition B.13) ssi Im (T ) est dense
par la proposition précédente.

Pour 2, X ⊂ ⊥ (X ⊥) donc comme le terme de droite est
fermé, l’adhérence est inclus. Réciproquement, soit x ∉ X
par la conséquence de Hahn-Banach ci-dessus, soit f ∈ E ′

telle que f (x ) = 1, et f ∈ X ⊥, on déduit que x ∉ ⊥ (X ⊥) .
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Le résultat suivant qu’on a utilisé pour les calculs de
cônes normaux est un exercice typique d’application de
Hahn-Banach.

Proposition B.15

Soit {f i : i = 1, 2, · · · , k} un ensemble fini dans E ′

(pour un e.v.n. E ). Les affirmations suivantes sont
équivalentes :

(1) Il n’y a aucun v ∈ E tel que f i (v ) < 0 pour tout
i ∈ [1, n] ;

(2) L’ensemble {f i : i = 1, 2, .. . , k} est positivement
linéairement dépendant : il existe un vecteur
non-nul 𝜆 = (𝜆 1 , · · · , 𝜆 k ) ≠ 0 avec 𝜆 k ≥ 0 tel que
k∑︁
i=1

𝜆 i f i = 0.

Démonstrat ion. Montrons premièrement le sens facile :
(2) ⇒ (1). A partir de 𝜆 i > 0, on obtient en appliquant à v ,
k∑︁
i=1

𝜆 i f i (v ) = 0, Or f i (v ) ≤ 0 pour tout i implique
k∑︁
i=1

𝜆 i f i (v ) < 0,

donc cela implique (1) par contraposée.

Dans l’autre sens (1) ⇒ (2), on utilise le théorème de
séparation de Hahn-Banach pour

K1 = {y ∈ Rk : y i < 0, ∀i ∈ {1, 2, .. . , k}},

K2 = {( f1 (v ) , f2 (v ) , . . . , fk (v )) : v ∈ E }.
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Vu que p i (y ) = y i est linéaire sur Rk de dimension finie,
donc convexe continue, on obtient que
K1 = ∩ki=1p

−1
i (] − ∞, 0 [) est une intersection finie de convexes

ouverts, donc un convexe ouvert.

K2 = Im ( f1 , · · · , fk ) ∋ 0 est un s.e.v de Rk , donc un
convexe non-vide. (1) indique qu’ils sont disjoints. Par
conséquent le cas 1 du théorème B.10 s’applique et donne
𝜆 = (𝜆 1 , · · · , 𝜆 k ) ∈ E ′ = Rk et c tels que :

∀x ∈ K1 , y ∈ K2 , ⟨𝜆 , x ⟩ < c ≤ ⟨𝜆 , y ⟩

.

Comme K2 est un s.e.v., pour t → 0 on a
c ≤ t ⟨𝜆 , y ⟩ → 0, donc c ≤ 0. De plus c ≤ ±n ⟨𝜆 , y ⟩ et donc
±n ⟨𝜆 , y ⟩ ≤ −c = |c | force |⟨𝜆 , y ⟩| ≤ |c |

n → 0 donc ⟨𝜆 , y ⟩ = 0.

De plus (− 1
n , · · · , −1, · · · , − 1

n ) ∈ K1 so
−𝜆 i − 1

n

∑︁
j≠i

𝜆 j < c ≤ 0. Donc en passant à la limite, n → ∞, on

obtient −𝜆 i ≤ 0, donc 𝜆 i ≥ 0. Et 𝜆 ≠ 0 vient de
⟨𝜆 , (1, · · · , 1)⟩ < 0.
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Compléments
facultatifs au
chapitre 4 :
Espaces
mesurés.

1 Lemme de classe monotone

Définitions
Au lemme 4.3 iii), on a vu comment on remplace les

unions dénombrables par des unions croissantes d’une suite

317
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d’unions finies. Cela suggère que la notion d’union
croissante pourrait remplacer utilement (pour la théorie)
celle d’union dénombrable et suggère la définition suivante
de classe monotone. 1

Définition C.1

Une classe monotone sur Ω est une famille M de
partie de Ω contenant Ω et stable par différence et
unions croissantes, c’est-à-dire M ⊂ P(Ω) telle que :

1. Ω ∈ M
2. Si A , B ∈ M avec B ⊂ A alors A − B ∈ M.
3. Si {An , n ≥ 0} ⊂ M est une suite croissante (i.e.

An ⊂ An+1 , alors
⋃︂
n≥0

An ∈ M.

Lemme C.1: (cf. TD)

1. Une tribu est une classe monotone.
2. Une classe monotone stable par intersection

finie est une tribu.
3. Si (M i ) i ∈I sont des classes monotones, alors

leur intersection
⋂︂
i ∈I

M i est une classe

monotone.

1. Comme dans le livre de Barbe-Ledoux [1], on suit la
tradition française pour cette définition (différente de la tradi-
tion anglo-saxone venant du livre de Durett de Probabilités).
Attention, ce n’est pas la même définition dans le cours du
MGA.
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On peut donc parler de la plus petite classe monotone
contenant une famille A ⊂ P(Ω), qui est l’intersection
de toutes les classes contenant A, elle est notée
M(A) et appelée la classe monotone engendrée par
A.

Le résultat principal
Théorème C.2: (Lemme de classe monotone)

Soit E une famille de partie de Ω stable par
intersection finie, alors la classe monotone et la tribu
engendrée par E coïncident : M(E) = 𝜎(E).

Démonstrat ion. Par le lemme C.1 1), 𝜎(E) est une classe
monotone contenant E , donc comme M(E) est la plus petite
telle classe, on a M(E) ⊂ 𝜎(E) .

M(E) est une tribu. Par le lemme C.1 2), il suffit de
voir que M := M(E) est stable par intersection binaire. On
pose

K = {A ∈ M : ∀B ∈ E , A ∩ B ∈ M}.

Comme E est stable par intersection finie, E ⊂ K . On a
Ω ∈ M et si A ⊂ C avec A , C ∈ K , B ∈ E , alors
(C − A) ∩ B = (C ∩ B) − (A ∩ B) ∈ M par différence
d’ensembles de M . Enfin, de même comme intersection
distribue sur les unions croissantes, K est stable par
intersection croissante et donc une classe monotone. Or
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elle contient E , comme ona vu, donc M(E) ⊂ K et comme par
définition K ⊂ M(E). on a égalité.

On est maintenant prêt à définir la classe qui va vérifier
la stabilité voulue par intersection :

L = {A ∈ M : ∀C ∈ M , A ∩ C ∈ M}.

On montre comme avant que L est une classe monotone
(exo). Montrons que E ⊂ L. Soit donc B ∈ E , alors C ∈ M ⊂ K
donc, par définition de K , pour B ∩ C ∈ M . Et comme c’est
vrai pour tout C ∈ M, on en déduit par définition de L que
B ∈ L, comme voulu.

Finalement, L est une classe monotone telle que
E ⊂ L ⊂ M(E) donc, par définition de la classe monotone
engendrée, L = M(E).

Inclusion réciproque. Comme M(E) est une tribu
contenant E et que 𝜎(E) est la plus petite telle tribu, on
obtient M(E) ⊃ 𝜎(E) .

Corollaire C.3: (au lemme de classe monotone)

Soient 𝜇 et 𝜈 des mesures finies de mêmes masses
(i.e. 𝜇(Ω) = 𝜈(Ω)) sur un espace mesurable (Ω , T).
Soit E une famille stable par intersection finie qui
engendre T . Si 𝜇 et 𝜈 coïncident sur E (i.e.
𝜇(E ) = 𝜈(E ) , ∀E ∈ E) alors 𝜇 et 𝜈 sont égales (i.e.
𝜇(B) = 𝜈(B) , ∀B ∈ T ).
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Démonstrat ion. Soit M = {B ⊂ E : 𝜇(B) = 𝜈(B)}. Par
l’hypothèse, M contient E . Vérifions que c’est une classe
monotone :

⊲ Ω ∈ M car 𝜇 et 𝜈 ont même masse.
⊲ Si A , B ∈ M , A ⊂ B , alors par la proposition 4.3 v) on a

𝜇(B − A) = 𝜇(B) − 𝜇(A) = 𝜈(B) − 𝜈(A) = 𝜈(B − A).
⊲ Si A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · , An ∈ M , est une suite

croissante, par la proposition 4.3 iii),

𝜇

(︂ ⋃︂
n≥1

An
)︂
= l im
n→∞

𝜇(An ) = l im
n→∞

𝜈(An ) = 𝜈

(︂ ⋃︂
n≥1

An
)︂
.

Bilan, M est une classe monotone qui contient E , donc
M(E) ⊂ M. Or par le lemme de classe monotone
M(E) = 𝜎(E) = T d’où le résultat.

Preuve du corollaire 4.19 au lemme de
classe monotone sur l’unicité des
mesures sigma-finie

On commence par le cas où la suite de parties An ∈ E
est croissante.

Notons 𝜇n , 𝜈n les mesures induites par 𝜇, 𝜈 sur An
respectivement. On a deux mesures finies avec
𝜇n (E ) = 𝜇(E ∩ An ) = 𝜈(E ∩ An ) = 𝜈n (E ) pour tout E ∈ E donc
par le corollaire au lemme de classe monotone pour les
mesures finies, on déduit 𝜇n = 𝜈n . Pour tout B ∈ T , on a
B = B ∩ (

⋃︂
n
An ) =

⋃︂
n
(B ∩ An ) donc par union croissante :

𝜇(B) = l im
n→∞

𝜇n (B) = l im
n→∞

𝜈n (B) = 𝜈(B) .
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Dans le cas où la suite An n’est pas croissante, on
utilise Bn = ∪ni=1A i qui est une suite croissante, mais pas
forcément dans E , donc il faut travailler plus pour vérifier
l’hypothèse pour la mesure induite sur Bn . D’abord, par la
formule de Poincaré :

𝜇(∪nk=1Ak ) =
n∑︁
k=1

(−1)k−1
∑︁

1≤ i1<· · ·<ik ≤n
𝜇(A i1 ∩ · · · ∩ A ik ) < +∞.

Et comme toutes les intersections sont dans E tous les
termes de la formule sont égaux aux termes correspondants
pour 𝜈 donc 𝜇(Bn ) = 𝜈(Bn ). On considère les mesures
induites pour B ∈ T (E ),𝜇n (B) = 𝜇(B ∩ Bn ) , 𝜈(B ∩ Bn ) = 𝜈n (B) .
On vient de voir que 𝜇n , 𝜈n sont finies. Montrons que pour
E ∈ E 𝜇n (E ) = 𝜈n (E ) En effet E ∩ Bn = ∪nk=1 (E ∩ Ak ) et en
appliquant la formule de Poincaré encore (en remarquant
que les intersections sont celles d’éléments de E .

𝜇(∪nk=1 (E ∩ Ak ))

=

n∑︁
k=1

(−1)k−1
∑︁

1≤ i1<· · ·<ik ≤n
𝜇(E ∩ A i1 ∩ · · · ∩ A ik )

=

n∑︁
k=1

(−1)k−1
∑︁

1≤ i1<· · ·<ik ≤n
𝜈(E ∩ A i1 ∩ · · · ∩ A ik ) = 𝜈(∪nk=1 (E ∩ Ak )) .

On conclut comme avant du corollaire au lemme de classe
monotone pour les mesures finies, que 𝜇n = 𝜈n . Puis pour
tout B ∈ T , on a B = B ∩ (

⋃︂
n
Bn ) =

⋃︂
n
(B ∩ Bn ) donc par union

croissante :

𝜇(B) = l im
n→∞

𝜇n (B) = l im
n→∞

𝜈n (B) = 𝜈(B) .
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2 Compléments sur les
Boréliens

On rappelle que la tribu des boréliens d’un espace
métrique (X , d ) est la tribu engendrée par l’ensemble des
ouverts T . (cf. définition 4.6). En pratique, il est difficile de
décrire tous les boréliens (les ouverts sont déjà difficiles à
décrire), mais on n’a pas besoin de description explicite
(juste de familles génératrices simples, et stables par
intersections finies).

Remarque C.1. Il existe des ensembles qui ne sont
pas boréliens sur R, et donc des fonctions
non-boréliennes. Ils ne sont pas si faciles à définir,
donc en pratique, tous les ensembles qu’on
rencontrera seront boréliens.

Espaces métriques séparables et leurs
boréliens

Définition C.2

Une partie A est dite dense dans E si Ā = E . Un
ensemble est dit séparable si il admet un
sous-ensemble au plus dénombrable dense (ou
autrement dit une suite dense).
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Lemme C.4

Un sous-ensemble F d’un espace métrique séparable
est séparable.

Démonstrat ion. On peut supposer F non-vide, sinon,
c’est évident (la partie vide donc finie est dense). On fixe
donc x0 ∈ F

Soit un une suite dénombrable dense. Soit
am ,n ∈ B (um , 1/n) ∩ F si cet ensemble est non-vide, et sinon
on pose am ,n = x0 . La famille {am ,n , m , n ∈ N} est finie ou
dénombrable et dense car si x ∈ F il existe d (um , x ) < 1/2n
donc am ,2n existe car B (um , 1/2n) ∩ F est non vide et par
inégalité triangulaire d (um , am ,2n ) < 1/n .

Proposition C.5

(Rn , | |. | |∞) est séparable.

Démonstrat ion. On a vu que Qn est dénombrable comme
produit d’ensembles dénombrables. Montrons qu’il est
dense dans Rn . En effet si x = (x1 , . . . , xn ) on pose
xp = ( ⌊px1 ⌋

p , . . . , ⌊pxn ⌋
p ) avec ⌊x ⌋ la partie entière de x . Donc

⌊px i ⌋ ≤ px i ≤ ⌊px i ⌋ + 1 et|︁|︁|︁ ⌊px i ⌋p − x i
|︁|︁|︁ ≤ 1

p

donc | |xp − x | |∞ ≤ 1/p →p→∞ 0. Donc vu xp ∈ Qn , x ∈ Qn .
Comme x est arbitraire. Rn ⊂ Qn CQFD.
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Exercice C.1. Montrer que Qc est dense dans R.

Proposition C.6

Soit (X , d ) un espace métrique séparable, alors la
tribu borélienne est engendrée par les boules
ouvertes B(X ) = 𝜎

(︂
B : Boule ouverte de X

)︂
.

Démonstrat ion. Toute boule ouverte est un ouvert donc
{B : Boule ouverte de X} ⊂ B(X ) et donc en passant à la
tribu engendrée : 𝜎

(︂
B : Boule ouverte de X

)︂
⊂ B(X ).

Le contenu de la proposition est la réciproque. Il suffit
de montrer que T ⊂ 𝜎

(︂
B : Boule ouverte de X

)︂
car alors, en

passant à la tribu engendré, on obtient
B(X ) ⊂ 𝜎

(︂
B : Boule ouverte de X

)︂
.

Montrons qu’en fait, tout ouvert U est union au pus
dénombrable de boules ouvertes. Comme X est séparable,
c’est aussi le cas de U . Soit D = {xn : n ∈ N} ⊂ U une suite
dense. Comme U est ouvert, il existe rn ∈ Q∩]0, +∞[ tel que
B (xn , rn ) ⊂ U . Soit donc
A = {(xn , rn ) : rn ∈ Q∩]0, +∞[, B (xn , rn ) ⊂ U } est donc a.p.d
comme sous-ensemble d’un produit d’ensembles
dénombrables. Donc en passant à l’union on
a :

⋃︂
(xn ,rn ) ∈A

B (xn , rn ) ⊂ U . Montrons que

U =
⋃︂

(xn ,rn ) ∈A
B (xn , rn ) ∈ 𝜎

(︂
B : Boule ouverte de X

)︂



Annexe C. Compléments facultat i fs au
chapitre 4 : Espaces mesurés. 326

Soit x ∈ U , il existe r > 0 avec B (x , r ) ⊂ U . Puis il
existe n tel que d (x , xn ) < r

3 et soit rn ∈ Q avec r /3 < rn < r /2
(par densité de Q dans R= donc
x ∈ B (xn , r /3) ⊂ B (xn , rn ) ⊂ B (xn , r /2) ⊂ B (x , r ) ⊂ U donc
(xn , rn ) ∈ A et x ∈

⋃︂
(xn ,rn ) ∈A

B (xn , rn ). Comme x est arbitraire,

on a l’insclusion réciproque qui conclut :
U ⊂

⋃︂
(xn ,rn ) ∈A

B (xn , rn ).

Preuve du Corollaire 4.17. Il suffit de remarquer que
B(R) = 𝜎

(︂
{{+∞}, {−∞}} ∪ {]a , b [: a < b < a + 2}

)︂
, car R est

séparable ({+∞, −∞} ∪ Q est dense car la densité sur R
coïncide avec la densité usuelle vu qu’on a les mêms
ouverts, cf TD 1) et que les ensembles de la partie
génératrice sont les boules ouvertes pour dR.

Il suffit de noter que
]a , b [=

⋂︂
n≥1

[︁
a − 1

n , b + 1
n

]︂
∈ 𝜎

(︂
{{+∞}, {−∞}} ∪ {[a , b] : a < b}

)︂
pour déduire que

B(R) = 𝜎

(︂
{{+∞}, {−∞}} ∪ {[a , b] : a < b}

)︂
Par le lemme 4.13, on a alors que f est mesurable si et
seulement si

1. f −1 ({∞}) ∈ T
2. f −1 ({−∞}) ∈ T
3. Pour tout a < b ∈ R, f −1 ( [a , b]) ∈ T

C’est exactement le résultat voulu (et on a vu que le dernier
point équivaut à la mesurabilité de la restrition de f à R.
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Preuve du lemme 4.6
Pour rappel, on veut montrer que

B(Rn ) = 𝜎

(︂ n∏︂
i=1

]a i , b i [, a i < b i ∈ R
)︂
.

Comme les produits d’intervalles ouverts sont des ouverts,
et que les boules ouvertes pour la norme infini sont des
boules ouvertes, on a

{B :Boule ouverte de Rn , | | · | |∞}

⊂
{︄ n∏︂
i=1

]a i , b i [, a i < b i ∈ R

}︄
⊂ T .

Donc en prenant la tribu engendrée et en appliquant la
proposition C.6 sachant que Rn est séparable par la
proposition C.5, on obtient :

B(Rn ) = 𝜎

(︂
{B : Boule ouverte de Rn , | | · | |∞}

)︂
⊂ 𝜎

(︂ n∏︂
i=1

]a i , b i [, a i < b i ∈ R
)︂
⊂ 𝜎

(︂
T

)︂
= B(Rn ) .
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3 Stabilité des fonctions
mesurables

Lemme C.7

Un supremum d’une suite fn : (Ω , T) → R de fonctions
mesurables est mesurable.

Démonstrat ion. On note f = supn≥1 fn et on remarque que

f −1 ( [−∞, a]) = {𝜔 ∈ Ω : sup
n≥1

fn (𝜔) ≤ a}

= ∩n≥1 f −1
n ( [−∞, a]) .

Or par le corollaire 4.17, on sait que f −1
n ({−∞} est dans T et

aussi f −1
n (] − ∞, a]) = ∪n≥1 f −1

n ( [−n , a]) ∈ T par union
dénombrable. Donc chaque f −1

n ( [−∞, a]) ∈ T et donc par
intersection dénombrable, on a f −1 ( [−∞, a]) ∈ T . Par le
corollaire 4.16, on déduit que la restriction de f à R est
mesurable et donc pour tout a < b , on a f −1 ( [a , b]) ∈ T .

Enfin, f −1 ({−∞}) = ∩n≥1 f −1
n ({−∞}) ∈ T et

f −1 ({+∞}) =
⋂︂
n≥1

f −1 (]n , +∞]) ∈ T . Or

f −1 (]n , +∞]) = f −1 ( [−∞, n])c ∈ T donc par intersection
dénombrable, on a bien f −1 ({+∞}) ∈ T . Par la réciproque du
corollaire 4.17, on déduit que f est mesurable.
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Lemme C.8

La l im sup, l im inf d’une suite fn : (Ω , T) → R de
fonctions mesurables est mesurable.

Démonstrat ion. Comme infn fn = − supn −fn , on déduit
qu’un infimum d’une suite de fonctions mesurables est
mesurable. Or, comme rappelé au chapitre précédent,

l im sup
n

fn = inf
n≥0

sup
k≥n

fk , l im inf
n

fn = sup
n≥0

inf
k≥n

fk

est donc mesurable en utilisant le résultat du lemme
précédent sur le suprémum (ou l’infinimum) de fonctions
mesurables.

Proposition C.9

Une limite simple d’une suite fn : (Ω , T) → R de
fonctions mesurables est mesurable.

Démonstrat ion. Si une suite converge simplement, on a
l imn→∞ fn = l im supn fn qui est donc mesurable par le lemme
précédent.
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4 Compléments sur la
construction de l’intégrale

Intégrale des fonctions étagées
La définition 4.11 est motivée par le résultat suivant :

Lemme C.10

L’intégrale
∫
B fd 𝜇 ne dépend pas de la décomposition

f (𝜔) =
n∑︁
i=1
a i 1A i (𝜔) en somme d’indicatrice

d’ensembles deux à deux disjoints mais seulement de
f .

Démonstrat ion. Pour f =
n∑︁
i=1
a i 1A i , il existe toujours une

(unique) représentation canonique de f en voyant
b1 < · · · < bm tel que l’image f (Ω) − {0} = {b1 , · · · , bm } et en
prenant B i = f −1 ({b i }) ∈ T car f est mesurable. Alors, on a

f (𝜔) =
n∑︁
i=1
b i 1B i (𝜔). Comme les A i sont 2 à deux disjoints, on

voit B j comme union disjointe de A i et donc
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𝜇(B i ∩ B) =
∑︁

{ j :a j=b i }
𝜇(A j ∩ B) donc, en regroupant par paquet :

∫
B
fd 𝜇 =

n∑︁
j=1
a i 𝜇(A j ∩ B)

=

m∑︁
i=1

∑︁
{ j :a j=b i }

b i 𝜇(A i ∩ B)

=

m∑︁
i=1
b i 𝜇(B i ∩ B) .

C’est la formule qui ne dépend que de f (comme sa
représentation canonique).

Preuve du lemme 4.20

1. Si f (𝜔) =
n∑︁
i=1
a i 1A i (𝜔) avec les A i deux à deux

disjoints, alors 1B f (𝜔) =
n∑︁
i=1
a i 1A i∩B (𝜔). Donc

∫
B fd 𝜇 =

n∑︁
i=1
a i 𝜇(A i ∩ B) =

∫
Ω

1B fd 𝜇.

2. De même, cf (𝜔) =
n∑︁
i=1
ca i 1A i (𝜔), alors

∫
B cfd 𝜇 =

n∑︁
i=1
ca i 𝜇(A i ∩ B) = c

∫
B
fd 𝜇.

3.Si de plus h =

m∑︁
j=1
b j 1B j (𝜔) avec les B j deux à deux

disjoints, et soit B0 = Ω −
m⋃︂
j=1
B j , A0 = Ω −

n⋃︂
i=1
A i , alors les
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A i ∩ B j deux à deux disjoints i = 0, · · · , n , j = 0, · · · , m . De

même, avec a0 = b0 = 0, f (𝜔) =
m∑︁
j=0

n∑︁
i=0
a i 1A i∩B j (𝜔),

h (𝜔) =
m∑︁
j=0

n∑︁
i=0
b j 1A i∩B j (𝜔). Donc

f (𝜔) + h (𝜔) =
m∑︁
j=0

n∑︁
i=0

(a i + b j )1A i∩B j (𝜔)

On obtient donc :∫
B
f + hd 𝜇 =

m∑︁
j=0

n∑︁
i=0

(a i + b j )𝜇(A i ∩ B j )

=

m∑︁
j=0

n∑︁
i=0
a i 𝜇(A i ∩ B j ) +

m∑︁
j=0

n∑︁
i=0
b j 𝜇(A i ∩ B j )

=

∫
B
fd 𝜇 +

∫
B
hd 𝜇.

4. Si 0 ≤ f ≤ h alors h = (h − f ) + f est la somme de deux
fonctions étagées positives et par le 3,∫
B fd 𝜇 ≤

∫
B fd 𝜇 +

∫
B (h − f )d 𝜇 =

∫
B hd 𝜇.

Preuve du lemme 4.22
On va utiliser que toutes les propriétés sont vraies si

f , h sont étagées par définition de l’intégrale dans ce cas.

1. Soit g étagée avec g ≤ f alors g ≤ h , donc par
définition 0 ≤

∫
B gd 𝜇 ≤

∫
B hd 𝜇. En passant au sup sur les g ,

on obtient 0 ≤
∫
B fd 𝜇 ≤

∫
B hd 𝜇.
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2. Soit g étagée avec g ≤ f , alors 1Bg ≤ 1B f . Or par le
cas étagé du lemme 4.20, on a

∫
B gd 𝜇 =

∫
Ω

1Bgd 𝜇 et donc
par définition :

∫
B gd 𝜇 =

∫
Ω

1Bgd 𝜇 ≤
∫
Ω

1B fd 𝜇. En passant au
sup, on obtient

∫
B fd 𝜇 ≤

∫
Ω

1B fd 𝜇.

En sens inverse, g étagée positive avec g ≤ 1B f ≤ f
vérifie donc g1B = g et par définition∫
Ω
gd 𝜇 =

∫
Ω
g1Bd 𝜇 =

∫
B gd 𝜇 ≤

∫
B fd 𝜇 soit en passant au sup∫

Ω
1B fd 𝜇 ≤

∫
B fd 𝜇.

Le cas particulier vient du 1. appliqué à l’inéaglité
1A f ≤ 1B f sous la forme :
0 ≤

∫
A fd 𝜇 =

∫
Ω

11 fd 𝜇 ≤
∫
Ω

1B fd 𝜇 =
∫
B fd 𝜇.

3. Si c = 0 c’est évident, on suppose donc c > 0. Alors
pour g ≤ f avec g étagée positive, on a cg ≤ cf donc par le
cas étagé du lemme 4.20, on a c

∫
B gd 𝜇 =

∫
B cgd 𝜇 ≤

∫
B cfd 𝜇.

En passant au sup, on a obtenu :

c
∫
B
fd 𝜇 ≤

∫
B
cfd 𝜇

mais en appliquant ) cf à la place de f et f = 1
c cf , on

obtient :
1
c

∫
B
cfd 𝜇 ≤

∫
B
c 1
c fd 𝜇 =

∫
B
fd 𝜇

d’où l’inégalité dans l’autre sens
∫
B cfd 𝜇 ≤ c

∫
B fd 𝜇 et donc

l’égalité.

4. Si f = 0 0 ≤ g ≤ f implique g = 0 et en passant au sup
de 0, on obtient le résultat.
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Si 𝜇(B) = 0,
∫
B gd 𝜇 =

∫
Ω

1Bgd 𝜇 et si g (𝜔) =
n∑︁
i=1
a i 1A i (𝜔),

on a
∫
Ω

1Bgd 𝜇 =

n∑︁
i=1
a i 𝜇(B ∩ A i ) = 0 car chaque

𝜇(B ∩ A i ) ≤ 𝜇(B) = 0.

5. Si on a 0 ≤ g ≤ f , 0 ≤ k ≤ h avec g , k mesurable
positive, alors g + k ≤ f + h est mesurable positive, donc∫
B f + hd 𝜇 ≥

∫
B g + kd 𝜇 =

∫
B gd 𝜇 +

∫
B kd 𝜇. En passant au sup,

on obtient le résultat.
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1 Formule alternative de la
norme (niveau L3)

On va en déduire l’expression alternative suivante dont
l’inégalité triangulaire se déduit facilement. Cette méthode
a l’avantage d’être utile pour le calcul du dual.

Proposition D.1

Soit 𝜇 𝜎-finie, p ∈ [1, ∞] , q tel que 1/p + 1/q = 1 le
coefficient conjugué, alors pour tout g mesurable

| |g | |q = sup
{︃|︁|︁|︁|︁∫ fgd 𝜇

|︁|︁|︁|︁ ; | | f | |p ≤ 1,

fg ∈ L1 (Ω , 𝜇) , f ∈ L1 (Ω , 𝜇) ∩ L∞ (Ω , 𝜇)
}︂

.

Démonstrat ion. Soit An croissant telle que
∪An = Ω , 𝜇(An ) < ∞. On commence par le cas g ∈ Lq (Ω , 𝜇) .

Par Hölder, fg ∈ L1 donc l’intégrale est définie (avec la
condition | | f | |p ≤ 1 seule) et|︁|︁|︁|︁∫ fgd 𝜇

|︁|︁|︁|︁ ≤ || fg | |1 ≤ || f | |p | |g | |q



Annexe D. Compléments facultat i fs et hors
programme au chapitre 6 : Espaces Lp 337

d’où | |g | |q est plus grand que le sup de l’énoncé. Mais, pour
p ∈]1, ∞[, si on prend f = g |g |q−2/| |g | |q−1

q on a
| f |p = |g |p (q−1 )/| |g | |p (q−1 )

q = |g |q/| |g | |qq car
p (q − 1) = qp (1 − 1/q) = q , donc f ∈ Lp et
| | f | |pp = E ( | f |p ) = | |g | |qq/| |g | |

q
q = 1. Donc | | f 1An | |

p
p ≤ || f | |pp ≤ 1

donc comme Lp (An , 𝜇) ⊂ L1 (An , 𝜇) car 𝜇(An ) < ∞ on a
f 1An ∈ L1 (Ω , 𝜇) et donc

gn ,m ( f ) = 1 { f 1An ≠0}
f 1An
| f 1An |

min (m , | f 1An |)

∈ L∞ (Ω , 𝜇) ∩ L1 (Ω , 𝜇)

d’où le sup est supérieur à|︁|︁|︁|︁∫ gn ,m ( f )gd 𝜇
|︁|︁|︁|︁ →m→∞

|︁|︁|︁|︁∫ f 1An gd 𝜇
|︁|︁|︁|︁ →n→∞

|︁|︁|︁|︁∫ fgd 𝜇
|︁|︁|︁|︁

(par convergence dominée par |gn ,m ( f )g | ≤ | fg |) et le sup est
supérieur à

|︁|︁∫ fgd 𝜇|︁|︁ = ∫
|g |qd 𝜇/| |g | |q−1

q = | |g | |q . On déduit
donc l’égalité énoncée.

Si p = 1, q = ∞, soit

C > sup
{︃|︁|︁|︁|︁∫ fgd 𝜇

|︁|︁|︁|︁ ; | | f | |1 ≤ 1 fg ∈ L1 (Ω , 𝜇) ,

f ∈ L1 (Ω , 𝜇) ∩ L∞ (Ω , 𝜇)
}︂

et A = {x : |g (x ) | > C }. Supposons par l’absurde que 𝜇(A) > 0
soit B ⊂ A avec 𝜇(B) ∈]0, ∞[. Alors f = 1B g

|g |𝜇 (B ) est dans L1

et | | f | |1 = 1 (et borné par 1/𝜇(B) donc dans L∞) mais|︁|︁∫ fgd 𝜇|︁|︁ = ∫
1B |g |

𝜇 (B ) ≥ C en contradiction avec le choix de C
donc 𝜇(A) = 0 ce qui implique | |g | |∞ ≤ C ce qui donne le
résultat en prenant l’inf des C .
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Si p = ∞, q = 1, il suffit de prendre f = 1g≠0
g
|g | ∈ L∞ (Ω)

et f 1An ∈ L∞ (Ω) ∩ L1 (Ω) de sorte que f 1An g = | f |1An et la
norme | | f 1An | |∞ ≤ 1. Donc le supremum, est supérieur à∫
| f |1An d 𝜇 → || f | |1 par convergence monotone.

Si on ne suppose plus g ∈ Lq (Ω , 𝜇) mais | |g | |q = ∞. Soit
alors gn ,m = 1 {g≠0}

g
|g |min (m , |g |)1An ∈ Lq (Ω , 𝜇) on obtient

fn ,m ,k ∈ L1 ∩ L∞ de norme ≤ 1 dans Lp tel que

|
∫
fn ,m ,kgn ,m | →k→∞ | |gn ,m | |q .

Comme on a l’inégalité par Hölder,|︁|︁|︁|︁∫ fn ,m ,k (gn ,m − g1An )
|︁|︁|︁|︁ ≤ || fn ,m ,k | |p | | (gn ,m − g1An ) | |q

≤ ||(gn ,m − g1An ) | |q →m→∞ 0

par convergence monotone car | min ( |g |, m) − |g | |q décroit
vers 0, on trouve une suite mk tel que

|
∫
fn ,mk ,kg1An | →k→∞ | |g1An | |q

(fini ou infini). Enfin comme par convergence monotone
| |g1An | |q → ||g | |q , on trouve une suite

|
∫
fnk ,mk ,kg1An | →k→∞ | |g | |q = ∞.

Comme | | fnk ,mk ,k1An | |p ≤ 1, et fnk ,mk ,k1An ∈ L1 ∩ L∞ et
fnk ,mk ,kg1An ∈ L1 cela donne la solution :

sup{
|︁|︁|︁|︁∫ fgd 𝜇

|︁|︁|︁|︁ ; | | f | |p ≤ 1, fg ∈ L1 (Ω) , f ∈ L1 ∩ L∞}

= ∞ = | |g | |q .
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Exemple D.1

Dans le cas où 𝜇 est la mesure de comptage sur I
(𝜎-finie si I dénombrable), 𝜇(A) = Card (A), on obtient
l’espace ℓ p (I , K) des suites indicées par I de
puissance p sommable, i.e. telles que∑︁

i ∈I
|x i |p < ∞

pour p ∈ [1, ∞[ et l’ensemble des suites bornées,
c’est-à-dire telles que

| |x | |∞ = sup
i ∈I

|x i | < ∞

pour p = ∞.

2 Premiers résultats de densité
(niveau M1)

On rappelle qu’une fonction étagée intégrable sur
(Ω , 𝜇, T) est une combinaison linéaire (finie) de fonctions
indicatrices 1A avec 𝜇(A) < ∞.

Lemme D.2

Soit (Ω , 𝜇, T) un espace 𝜎-fini. L’ensemble S des
fonctions étagées intégrables est dense dans tous les
Lp (Ω , 𝜇, T), 1 ≤ p < ∞. En particulier,
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L1 (Ω , 𝜇, T) ∩ L∞ (Ω , 𝜇, T) est dense dans Lp (Ω , 𝜇, T)
pour 1 ≤ p < ∞.

Démonstrat ion. Cela vient de la construction de
l’intégrale, et du fait que les fonctions étagées sont dans
L1 (Ω , 𝜇, T) ∩ L∞ (Ω , 𝜇, T), mais rappelons une preuve. En
décomposant en parties réelle et imaginaire puis parties
positive et négative, on se ramène à approcher f ∈ Lp avec
f ≥ 0. Si Ω = ∪An𝜇(An ) < ∞, on a | | f 1An − f | |p → 0 par
convergence dominée, donc on prend h = f 1Am .

On prend

hn (x ) =
4n∑︁
k=0

k
2n 1 [ k

2n , k+1
2n [ (h (x )) =

4n∑︁
k=0

k
2n 1h−1 ( [ k

2n , k+1
2n [ ) (x ) ≤ h (x )

Comme h mesurable, il est facile de voir que h ∈ S ,

| |h − hn | |p ≤ ||h1h (x )≥2n | |p + ||1h (x )≤2n 1Am | |p
1

2n

et le premier terme tend vers 0 par convergence dominée
(par |h |p ), le second car 𝜇(Am )1/p < ∞. Donc h puis f sont
dans l’adhérence.

Pour obtenir un résultat de densité des fonctions
continues, on a besoin d’un résultat de continuité sur un
grand ensemble pour les fonctions mesurables. On a besoin
d’une compatibilité entre théorie de la mesure et topologie
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qui fait l’objet de la définition suivante. L’essentiel est que
la mesure de Lebesgue sur Rn est un exemple de mesure de
Radon, ainsi que toutes les mesures à densité par rapport à
la mesure de Lebesgue (et aussi les mesures discrètes).

Définition D.1

Une mesure de Radon positive sur X localement
compact est une mesure positive définie sur une tribu
T contenant la tribu borélienne B et telle que :

1. 𝜇(K ) < ∞ pour K compact (on parle de mesure
de Borel).

2. 𝜇 est extérieurement régulière au sens où pour
tout E ∈ T , on a :

𝜇(E ) = inf{𝜇(V ) |E ⊂ V , V ouvert }

3. 𝜇 vérifie pour tout E ouvert et E ∈ T avec
𝜇(E ) < ∞, on a :

𝜇(E ) = sup{𝜇(K ) |E ⊃ K , K compact }

4. T est complète pour 𝜇 au sens où si E ∈ T ,
A ⊂ E et 𝜇(E ) = 0 alors A ∈ T .

On va utiliser deux lemmes topologiques (en fait
reliés) :
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Théorème D.3: (de prolongement de Tietze)

(exo en section A) Soit X un espace métrique, F un
fermé de X et f : F → R une fonction continue bornée
par C , alors il existe une fonction g : X → R bornée
par C et prolongeant f .

On rappelle qu’un espace topologique est dit
localement compact si tout point a un voisinage
(d’adhérence) compact. [Rmq : pour nous, un voisinage d’un
point n’est pas forcément ouvert, c’est seulement un
ensemble contenant un ouvert contenant le point] Par
exemple c’est le cas de X = Rn !

Lemme D.4: (d’Urysohn)

Si X est un espace métrique localement compact, V
un ouvert contenant un compact K , alors il existe f
continue à support compact tel que 1K ≤ f ≤ 1V .

Démonstrat ion. Pour tout x ∈ K , soit Ux voisinage ouvert
d’adhérence compact inclus dans V (pour voir que
l’adhérence peut être inclus dans V il suffit d’intersecter le
voisinage avec {y : d (y , V c ) > 𝜖/2} pour 𝜖 = d (x , V c )). On
recouvre K par un nombre fini de Ux , K ⊂ U := ∪ni=1Ux i et
U = ∪ni=1Ux i est compact et on trouve un ouvert d’adhérence
compact W , V ⊃ W ⊃ U et on pose F = W c ∪ K . On définit
g : F → R par g = 1K . Si xn ∈ F , xn → x ∈ K nécessairement
pour n grand xn ∈ U donc xn ∈ K donc g (xn ) = g (x ) = 1. De
même si x ∈ W c , pour n grand, xn ∈ (U )c , donc xn ∈ W c et
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g (xn ) = g (x ) = 0. Donc g est continue sur F et s’étend en une
fonction f : X → R continue par le théorème précédent et en
centrant on a même, 0 ≤ f ≤ 1 ( | f − 1/2 | ≤ 1/2). Donc le
support de f est dans W compact et 1K ≤ f ≤ 1W ≤ 1V ce qui
conclut.

Théorème D.5: (de Lusin)

Soit X un espace métrique localement compact. 𝜇 une
mesure de Radon positive. Soit f une fonction
complexe mesurable sur X s’annulant en dehors de A
avec 𝜇(A) < ∞. Alors, pour tout 𝜖 > 0, il existe g
continue à support compact avec
supx ∈X |g (x ) | ≤ supx ∈X | f (x ) | et telle que :

𝜇({x : f (x ) ≠ g (x )}) ≤ 𝜖 .

Démonstrat ion. Cas A compact, 0 ≤ f ≤ 1 . On pose

fn (x ) =
2n∑︁
k=0

k
2n 1 [ k

2n , k+1
2n [ ( f (x )) ≤ fn+1 (x ) ≤ f (x ) .

Remarquons que tn := fn+1 (x ) − fn (x ) =

1
2n+1

2n+1∑︁
k=0

1 [ 2k+1
2n+1 , 2k+2

2n+1 [ ( f (x )) =
1

2n+1 1Tn , ( f−1 := 0) avec Tn ⊂ A de

sorte que :

f (x ) =
∞∑︁

n=−1
tn (x ) .

Comme dans la preuve du lemme d’Urysohn, il existe un
ouvert A ⊂ V avec V compact, puis par régularité extérieure,
on trouve Vn ouvert avecTn ⊂ Vn ⊂ V et enfin par intérieure
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régularité sur les ensembles de mesures finies Kn ⊂ Tn avec
𝜇(Vn − Kn ) ≤ 2−n−2𝜖 . Par le lemme d’Urysohn, on trouve hn
continue à support compact avec 1Kn ≤ hn ≤ 1Vn . On pose

g (x ) =
∞∑︁

k=−1
2−n−1hn (x ) .

Par convergence uniforme (car normale) de la série, g est
continue, à support compact car inclus dans V . Enfin
2−n−1hn (x ) = tn (x ) sauf sur Vn − Kn donc f = g sauf sur
∪n (Vn − Kn ) qui est de mesure au plus 𝜖

Cas A quelconque, 0 ≤ f ≤ 1 . Par régularité, on prend
A ⊂ V ouvert, K ⊂ V compact avec
𝜇(A ∩ K c ) ≤ 𝜇(V ∩ K c ) ≤ 𝜖/2 et on applique à f 1K (vu
{f 1K ≠ f } ⊂ A ∩ K c ) le cas précédent en remplaçant 𝜖 par 𝜖/2.

Cas général Soit Bn = {x | f (x ) | > n} de sorte que
∩Bn = ∅, comme 𝜇(B1) < ∞ en utilisant le TCM sur 1B1 − 1Bn ,
𝜇(Bn ) → 0, on applique à (1 − 1Bn ) f en décomposant la
fonction en somme de 4n fonctions à valeur [0, 1] (4 pour
décompositions en parties positives, négatives des parties
imaginaires et réelles, et ces fonctions sont dans [0, n] d’où
la décomposition en somme de n fonctions à valeurs [0, 1]).
Enfin pour avoir l’inégalité on remplace g par 𝜙 ◦ g avec
𝜙(x ) = x , |x | ≤ R = supx ∈X | f (x ) | , 𝜙(x ) = Rx/|x |, |x | > R . On a
g (x ) = 𝜙 ◦ g (x ) pour tout x tel que f (x ) = g (x ), donc on
n’augmente pas l’ensemble sur lequel f et g diffèrent.
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Corollaire D.6

Soit (X , 𝜇, T) un espace métrique localement compact
avec 𝜇 mesure de Radon 𝜎-finie. L’ensemble Cc (X )
des fonctions continues à support compact est dense
dans tous les Lp (X , 𝜇, T), 1 ≤ p < ∞. De plus si
f ∈ Lp (X , 𝜇, T) et

∫
f 𝜙 = 0, pour tout 𝜙 ∈ Cc (X ) alors

f = 0 p .p .

Démonstrat ion. Par le lemme précédent, il suffit
d’approcher les éléments de S . Par le théorème de Lusin
D.5, pour chaque f ∈ S , 𝜖 > 0, on a g ∈ Cc (X ) avec
𝜇(g ≠ f ) ≤ 𝜖 et sup |g | ≤ sup | f | = C donc
| | f − g | |p ≤ 2C 𝜇(g ≠ f )1/p et cette quantité est arbitrairement
petite. Pour le résultat d’annulation, si p > 1, On utilise la
densité dans Lq , q exposant conjugué, pour obtenir

∫
fg = 0

pour g ∈ Lq , d’où on déduit | | f | |p = 0 par la proposition D.1.
Si p = 1, on remplace f par f |V avec V ouvert V compact,
qui couvrent X par locale compacité de sorte qu’on peut
supposer 𝜇(X ) < ∞. On peut supposer f réelle. Soit
f1 ∈ Cc (X ) avec | | f − f1 | |1 ≤ 𝜖 , K1 = f −1

1 ( [𝜖 , ∞[) et
K−1 = f −1

1 (] − ∞, 𝜖 ]) sont compacts, on prolonge par le
Théorème de Tietze D.3, u ∈ Cc (X ) valant 𝜖 sur K𝜖 et soit
K = K1 ∪ K−1 . Donc

| | f1 | |1 =

∫
K
f1u+

∫
X −K

| f1 | ≤
∫
X
f1u+2

∫
X −K

| f1 | ≤ 𝜖+
∫
X
fu+2𝜇(X−K )𝜖 ≤ 𝜖+2𝜇(X )𝜖

car | f1 | ≤ 𝜖 sur X − K . Donc | | f | |1 ≤ 2𝜖 + 2𝜇(X )𝜖 pour tout 𝜖 > 0
ce qui donne f = 0.
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Donnons une application.

Proposition D.7

Soit 1 ≤ p < ∞ et soit 𝜏h f (x ) := f (x + h) pour
h , x ∈ Rd , f ∈ Lp (Rd ) . La translation
𝜏h : Lp (Rd ) → Lp (Rd ) est isométrique et pour tout
f ∈ Lp (Rd ) h ↦→ 𝜏h ( f ) est continue de Rd → Lp (Rd ).

Démonstrat ion. L’isométrie est évidente par invariance de
la mesure de Lebesgue par translation. Montrons que
| |𝜏h f − f | |p →h→0 0. En effet pour 𝜖 > 0, par densité du lemme
D.6, on trouve f1 ∈ Cc (Rd ) avec | | f1 − f | |p ≤ 𝜖/3 donc comme
𝜏h est une isométrie : on obtient :

| |𝜏h f − f | |p ≤ ||𝜏h f1 − 𝜏h f | |p + ||𝜏h f1 − f1 | |p + || f1 − f | |p
≤ 2𝜖/3 + Leb (B (0, | |h | |) + Supp( f1))1/p | |𝜏h f1 − f1 | |∞

Pour h assez petit, comme f1 est uniformément
continue (car continue à support compact et par le
Théorème de Heine), on peut trouver 1 ≥ 𝛿 > 0 de sorte que
si | |h | | ≤ 𝛿, | |𝜏h f1 − f1 | |∞ = supx | f1 (x + h) − f1 (x ) | ≤
𝜖/[3Leb (B (0, 1) + Supp( f1))1/p ] ce qui conclut.
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3 Dualité des espaces de
Lebesgue Lp (Ω) (Niveau M1)

On rappelle que (Ω , 𝜇) est un espace mesuré 𝜎-fini. On
se souvient que pour p ∈ [1, ∞] , q tel que 1/p + 1/q = 1 la
proposition D.1 donne pour g mesurable :

| |g | |q = sup{
|︁|︁|︁|︁∫ fgd 𝜇

|︁|︁|︁|︁ ; | | f | |p ≤ 1,

f ∈ L1 (Ω , 𝜇) ∩ L∞ (Ω , 𝜇) , fg ∈ L1 (Ω , 𝜇)}.

On a même le théorème suivant (on notera que p < ∞
contrairement au cas de la formule pour la norme ) :

Théorème D.8: (de représentation de Riesz Lp )

Soit l’application définie grâce à l’inégalité de
Hölder :

I : f ∈ Lq (Ω , 𝜇) ↦→ (g ∈ Lp (Ω , 𝜇) ↦→
∫
fgd 𝜇)

Alors I : Lq (Ω , 𝜇) → (Lp (Ω , 𝜇))′ , réalise une isométrie
SURJECTIVE pour p ∈ [1, ∞[ et q exposant conjugué
c’est-à-dire tel que 1/p + 1/q = 1.

Attention le cas p = ∞ est EXCLU... L∞ (Ω)′ est un
espace très gros de mesures sur un espace stonien compact
X tel que L∞ (Ω) = C 0 (X ).

Démonstrat ion. Une première preuve classique utilise le
théorème de Radon-Nikodym qui est au programme du
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cours de Th de la mesure (cf. par exemple le cours de
Probabilités de Philippe Barbe et Michel Ledoux [1]). Il
existe aussi une preuve par l’uniforme convexité dans le
livre d’Haim Brezis d’analyse fonctionnelle pour p ≠ 1 et
avec une preuve directe n’utilisant que le cas p = 2 (cas
Hilbert simple) pour le cas p = 1. On donne ici une méthode
d’analyse fonctionnelle plus abstraite.

On a déjà montré l’isométrie, il reste à voir la
surjectivité.

On fixe An avec 𝜇(An ) < ∞ et
⋃︂
n∈N

An = Ω, An croissant.

Le cas p = 2 a été traité par le théorème de
représentation de Riesz.

(1) cas p = 1Soit 𝜙 ∈ (L1 (Ω , 𝜇))′ avec | |𝜙| | ≤ 1. D’abord
on définit T application linéaire continue sur L2 (Ω) (en fait à
valeur dans son dual identifié à lui même) par :

⟨Tx , y ⟩ = 𝜙(x y )

vu que x y ∈ L1 (Ω) par Hölder et on a

| |T | | := sup{| |Tx | |2 , | |x | |2 ≤ 1}

= sup{|⟨Tx , y ⟩|, | |x | |2 ≤ 1, | |y | |2 ≤ 1} ≤ ||𝜙| |L1 (Ω ) ′ .

La première égalité est la définition de la norme des
applications linéaires bornées, la deuxième est le résultat
de dualité du cas p = 2, la troisième utilise Hölder et la
définition de la norme du dual. Notons que si z ∈ L∞ (Ω) ,

⟨Tzx , y ⟩ = 𝜙(z x y ) = ⟨Tx , z y ⟩ = ⟨zTx , y ⟩
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la deuxième relation en utilisant la commutativité des
espaces de fonctions soit la relation z x y = x z y et la
seconde la définition du produit scalaire
⟨Tx , z y ⟩ =

∫
Tx z yd 𝜇. donc on déduit si mz est la

multiplication par z ∈ L∞, Tmz = mzT . Montrons que T = mg

pour g ∈ L∞ . (on dit que cette algèbre est son propre
commutant dans B (L2 (Ω)), ou qu’elle est maximale
commutative).

En effet, soit xn = T (1An ) ∈ L2 . On a | |T | | ≤ 1 car
| |𝜙| | ≤ 1.

Pour g ∈ L∞ avec | |g | |1 ≤ 1,|︁|︁|︁|︁∫ T (1)gd 𝜇
|︁|︁|︁|︁ = |︁|︁|︁|︁∫ ( |g |1/2T ) (1)g |g |−1/2d 𝜇

|︁|︁|︁|︁
=

|︁|︁|︁|︁∫ T ( |g |1/2)g |g |−1/2d 𝜇
|︁|︁|︁|︁

≤ || |g |1/2 | |2 | |g |g |−1/2 | |2 = | |g | |1 ≤ 1

où on a utilisé à la deuxième égalité la commutation avec
m |g |1/2 . On voit donc par la formule de la proposition D.1 que
| |T (1An ) | |∞ ≤ 1. Comme T (1Am ) = T (1Am 1An ) = 1Am T (1An )
donc on définit g (x ) = T (1An ) (x ) pour x ∈ An de façon
cohérente de sorte que g1An = T (1An ) d’où
| |g | |∞ = supn | |g1An | |∞ ≤ 1.

Et pour z ∈∈ L∞ ∩ L1 ⊂ L2 T (z1An ) = mg (z1An ) donc par
densité dans L2 T = mz . Enfin pour f ∈ L1 (Ω) f = | f |1/2g avec
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g ∈ L2 , on obtient

𝜙( f ) = 𝜙( | f |1/2g) = ⟨T ( | f |1/2) , g⟩

= ⟨z ( | f |1/2) , g⟩ = I (z ) ( | f |1/2g) = I (z ) ( f ) .

donc 𝜙 = I (z ) d’où la surjectivité de I .

(2) cas p > 1 𝜇(Ω) < ∞ utilisant les cas p = 1, 2 . (On
l’appliquera ensuite à Ω = An .) Après normalisation, on peut
supposer 𝜇(Ω) = 1.

On commence par montrer que via I , Lp (Ω)′ ⊂ L1 (Ω) . Si
p ≤ 2, c’est évident par l’inclusion L2 (Ω) ⊂ [Lp (Ω)] et par
restriction et théorème de representation de Riesz, on
obtient g ∈ L2 (Ω) ⊂ L1 (Ω) tel que

𝜙|L2 (Ω ) ( f ) = ⟨g , f ⟩

Si p > 2 pour x ∈ L∞ , et 𝜙 ∈ (Lp )′,

|𝜙(x ) |p ≤
∫

|x |pd 𝜇 ≤
∫

|x |2 | |x | |p−2
∞ d 𝜇 ≤ ||x | |22 | |x | |

p−2
∞ .

Par l’inégalité d’Young (cas particulier d’Holder utilisé
dans sa preuve) |ab | ≤ aP /P + bQ/Q utilisé avec
1/P + 1/Q = 1, P = p/2, Q = p/(p − 2),
a = | |x | |1/P2 /𝜖 1/Q , b = (𝜖 | |x | |∞)1/Q , on obtient :

|𝜙(x ) | ≤ 𝜖

Q | |x | |∞ + 1
P 𝜖P/Q

| |x | |2 .

En incluant {(x , x ) , x ∈ (L∞ (Ω))} ⊂ L∞ (Ω) × L2 (Ω) avec
norme | | (x , y ) | | = 𝜖

Q | |x | |∞ + 1
P 𝜖P/Q | |y | |2 on étend par Hahn
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Banach 𝜙 à L∞ (Ω) × L2 (Ω) donnant un élément de
(𝜙1 , 𝜙2) ∈ L∞ (Ω)′ × L2 (Ω) avec | |𝜙1 | | ≤ 𝜖/Q , | |𝜙2 | | ≤ 1

P 𝜖P/Q (car
en calculant la norme duale on a
max (Q | |𝜙1 | |/𝜖 , P 𝜖P/Q | |𝜙2 | |) ≤ 1) Donc
| |𝜙|L∞ (Ω ) − J (𝜙2) | | (L∞ (Ω ) ) ′ = | |𝜙1 | | (L∞ (Ω ) ) ′ ≤ 𝜖/Q et 𝜙2 ∈ L1 (Ω). Or
par le cas p = 1, (L1 (Ω))′′ = L∞ (Ω)′ et il contient L1 (Ω)
comme espace fermé isométriquement via J (comme tout
espace de Banach est inclus isométriquement comme
espace fermé dans son bidual). Comme le résultat
précédent indique 𝜙 ∈ L2 (Ω)

(L1 (Ω ) ) ′′
, on déduit 𝜙 ∈ J (L1 (Ω))

comme voulu. On a donc une fonction g telle que pour tout
f ∈ L∞ (Ω)

𝜙( f ) =
∫
Ω
gfd 𝜇

Soit donc g l’image dans L1 de 𝜙 (on revient au cas
général p ∈]1, ∞[). Or dans le cas d’un espace avec mesure
finie, l’équation de la proposition D.1 donne :

| |𝜙| | (Lp ) ′ = sup{|𝜙(x ) |, | |x | |p ≤ 1, x ∈ L∞}

= sup{|
∫
gxd 𝜇 |, | |x | |p ≤ 1, x ∈ L∞} = | |g | |q

On déduit donc g ∈ Lq comme on voulait et 𝜙 = T (g) (en
étendant la relation depuisL∞ (Ω) par densité dans Lp (Ω).

(3)cas 1 < p < ∞ et 𝜇 𝜎-fini. Soit 𝜙 ∈ (Lp (Ω , 𝜇))′, il faut
montrer qu’elle vient d’un élément de Lq (Ω , 𝜇). On pose
𝜙n ( f ) = 𝜙( f 1An ) pour f ∈ Lp (An , 𝜇) ⊂ Lp (Ω , 𝜇). Par le cas
précédent, il existe gn ∈ Lq (An , 𝜇) telle que

∀f ∈ Lp (An , 𝜇) ,
∫
gn fd 𝜇 = 𝜙( f 1An ) .
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et

| |gn | |q = sup{
|︁|︁𝜙( f 1An )

|︁|︁ ; | | f | |p ≤ 1, f ∈ L∞ (An , 𝜇)}

≤ ||𝜙| | (Lp ) ′ < ∞.

Or par unicité dans le cas (2) et vu les An croissant pour
n > m , gn1Am = gm et donc |gn | est croissant et g = sup |gn |
vérifie par convergence monotone | |g | |q ≤ ||𝜙| | (Lp ) ′ , vu
|gn | ≤ |g | et comme gn → g p.s., on déduit par convergence
dominée | |gn − g | |q → 0 et en passant à la limite gn = g1An .

Or f 1An → f dans Lp et donc par continuité la relation
𝜙( f 1An ) = T (g) ( f 1An ) devient 𝜙( f ) = T (g) ( f ) pour tout f ∈ Lp

donc 𝜙 = T (g) .

4 Convolution
Dans cette section, on considère l’espace mesuré

(Ω , 𝜇, T) = (Rd , Leb , B) muni de la tribu borélienne et de la
mesure de Lebesgue. On note alors Lp (Rd ) = Lp (Rd , Leb , B) .
Vu l’accord avec l’intégrale de Riemann, on note aussi
dy = d𝜆 (y ).

Théorème D.9: (définissant la Convolution)

Soient f ∈ L1 (Rd ) , g ∈ Lp (Rd ) , 1 ≤ p ≤ ∞. Pour presque
tout x ∈ Rd , y ↦→ f (x − y )g (y ) est dans L1 (Rd ). La
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convolution de f et g est la fonction f ∗ g définie par :

( f ∗ g) (x ) =
∫
Rd
f (x − y )g (y )dy .

Alors f ∗ g ∈ Lp (Rd ) et :

| | f ∗ g | |p ≤ || f | |1 | |g | |p .

Démonstrat ion. Si p = ∞, comme |g | ≤ | |g | |∞p .p .,
f (x − y )g (y ) ≤ ||g | |∞ | f (x − y ) | d’où l’intégrabilité et la borne
souhaitée en intégrant (comme la mesure de Lebesgue est
invariante par translation).

On suppose d’abord p = 1 et on utilise le Théorème de
Fubini Tonelli pour calculer :∫

dx | f | ∗ |g | (x ) =
∫
dx

∫
dy | f (x − y ) | |g (y ) |

=

∫
dy

∫
dx | f (x − y ) | |g (y ) |

= | | f | |1
∫
dy |g (y ) | = | | f | |1 | |g | |1 < ∞

On déduit du théorème de Fubini que pour presque tout x ,
y ↦→ f (x − y )g (y ) est intégrable et on obtient la borne
souhaitée

| | f ∗ g | |1 ≤ || f | |1 | |g | |1 .

Pour 1 < p < ∞, soit q l’exposant conjugué. Du cas
p = 1 on déduit y ↦→ | f (x − y ) | |g (y ) |p est dans L1 donc
y ↦→ | f (x − y ) |1/p |g (y ) | est dans Lp pour presque tout x . Or
y ↦→ | f (x − y ) |1/q ∈ Lq donc par Hölder,
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y ↦→ | f (x − y ) | |g (y ) | = | f (x − y ) |1/p |g (y ) |. | f (x − y ) |1/q est dans
L1 et

| ( f ∗ g) (x ) |p ≤
(︃∫

| f (x − y ) | |g (y ) |dy
)︃p

≤
(︃∫

| f (x − y ) | |g (y ) |pdy
)︃
| | f | |p/q1 .

Par l’inégalité précédente du cas p = 1, on obtient donc en
intégrant :

| | f ∗ g | |pp ≤ || f | |p/q1 | | | f | ∗ |g |p | |1
≤ || f | |p/q1 | |g | |pp | | f | |1 = | | f | |p1 | |g | |

p
p .

Exercice D.1. (cf TD) Soit f ∈ L1 , g ∈ Lp , h ∈ Lq ,
f̌ (x ) = f (−x ) Montrer que :∫

( f ∗ g)h =

∫
g ( f̌ ∗ h) .

5 Support de la convolution
Si f continue, Supp( f ) = {x : f (x ) ≠ 0}. Le résultat

suivant permet d’étendre la définition aux fonctions
mesurables.
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Lemme D.10

Pour f : Rd → K mesurable, soit (𝜔i ) i ∈I la famille de
tous les ouverts tels que, pour chaque i, f = 0 p.p sur
𝜔i . Si 𝜔 = ∪i ∈I𝜔i alors f = 0 p.p. sur 𝜔. De sorte que 𝜔

est le plus grand ouvert sur lequel f = 0 p.p.

Démonstrat ion. Il faut écrire 𝜔 comme union dénombrable
car I n’est pas forcément dénombrable. Soit
Kn = {x ∈ 𝜔 : | |x | | ≤ n , d (x , 𝜔c ) ≥ 1/n} comme la distance à
un fermé est continue, on voit que Kn fermé borné de Rn

(e.v.n de dimension finie) donc est compact et 𝜔 = ∪n∈NKn .
Par compacité, Kn , recouvert par une union finie
Kn ⊂ 𝜔in ,1 ∪ . . . ∪ 𝜔in ,rn . donc 𝜔 = ∪n∈N, j≤ rn𝜔i , j est union
dénombrable d’ouvert sur lesquels f = 0 p.p. d’où le
résultat.

Définition D.2

Soit f : Rd → K mesurable, On pose Supp( f ) = Rd − 𝜔

où 𝜔 est le plus grand ouvert sur lequel f = 0 p.p. Si
f ∈ Lp (Rd ), on pose Supp( f ) = Supp( f1) pour n’importe
quel représentant f1 ∈ f de la classe d’égalité presque
partout.

Proposition D.11

Si f ∈ L1 (Rd ) , g ∈ Lp (Rd ) alors :

Supp( f ∗ g) ⊂ Supp( f ) + Supp(g) .
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Démonstrat ion. On fixe x ∈ Rd avec y ↦→ f (x − y )g (y ) ∈ L1 .
Si x ∉ Supp( f ) + Supp(g), on a (x − Supp( f )) ∩ Supp(g) = ∅
donc en intégrant f ∗ g (x ) = 0 sur
Int ((Supp( f ) + Supp(g))c ) = (Supp( f ) + Supp(g))c . Donc f ∗ g
est 0, p.p. sur cet ouvert de sorte qu’il est inclus dans
Supp( f ∗ g)c .

6 Régularisation par
convolution

On étudiera plus systématiquement au chapitre suivant
certaines classes importantes de fonctions continues. Pour
Ω ⊂ Rd un ouvert. On note C k (Ω) l’ensemble des fonctions
k-fois différentiables avec leurs dérivées continues et
C k
c (Ω) les fonctions à support compact de C k (Ω). Pour

simplifier si 𝛼 ∈ Nd , on note

D 𝛼 f = 𝜕𝛼1

𝜕x𝛼1
1

· · · 𝜕𝛼d

𝜕x𝛼dd
f .

On note |𝛼 | = |𝛼1 | + . . . + |𝛼d |. On note

C∞ (Ω) = ∩k∈NC k (Ω) , C∞
c (Ω) = ∩k∈NC k

c (Ω) .

Proposition D.12

Soit 1 ≤ p ≤ ∞. Si f ∈ C k
c (Rd ) , g ∈ Lp (Rd ), k ∈ N ∪ {∞}

alors f ∗ g ∈ C k (Rd ) et si |𝛼 | ≤ k :

D 𝛼 ( f ∗ g) = D 𝛼 ( f ) ∗ g .
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De plus, si p < ∞, on a aussi la formule comprise
comme intégrale de Riemann à valeur Lp (Rd ), si
Supp(f) ⊂ [−C , C ]d :

f ∗ g =

∫
[−C ,C ]d

dyf (y )𝜏−y g .

Démonstrat ion. Par récurrence il suffit du cas k = 1. On
applique le théorème de dérivation avec condition de
domination. 𝜕

𝜕x i f (x − y )g (y ) = ( 𝜕
𝜕x i f ) (x − y )g (y ) .

Comme ( 𝜕
𝜕x i f ) est à support compact et continue, il est

borné par | | ( 𝜕
𝜕x i f ) | |∞ et

| 𝜕

𝜕x i
f (x − y )g (y ) | ≤ | | 𝜕

𝜕x i
f | |∞1K (x − y )g (y ) ,

avec K le compact support de f . Or par Hölder∫
1B−K (y ) |g | (y )dy ≤ Leb (B − K )1/q | |g | |p , donc on a une

domination par une fonction intégrable c1B−K g si x ∈ B avec
B compact. Le théorème de dérivation 4.39 conclut donc. De
plus, par changement de variables linéaire si
Supp(f) ⊂ [−C , C ]d , on a

f ∗ g (x ) =
∫
Rd
f (x − y )g (y )dy

=

∫
Rd
f (y )g (x − y )dy

=

∫
[−C ,C ]d

f (y ) (𝜏−y g) (x )dy

avec 𝜏h (g) (x ) = g (x + h) . On a vu à la proposition D.7 que
y ↦→ f (y ) (𝜏−y g) est continue à valeur Lp (Rd ) on peut donc
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parler de son intégrale de Riemann, sur [−C , C ]d (calculée
successivement variable par variable). On obtient une suite
(de sommes de Riemann) qui converge dans Lp (Rd ), donc
quitte à extraire une suite qui converge p.p. et donc p.p. la
limite

∫
[−C ,C ]d dyf (y ) (𝜏−y g) coïncide avec l’intégrale de

Riemann
∫
[−C ,C ]d dyf (y ) (𝜏−y g) (x ) par exemple si g est

continue à support compact et cette intégrale vaut
l’intégrale de Lebesgue donc f ∗ g (x ). On en déduit l’égalité
voulue dans Lp si g continue à support compact. Or par
densité, on a une suite de fonctions gn continues à support
compact convergeant dans Lp vers g . Et comme
supRd | |𝜏−y gn − 𝜏−y g | |p → 0, f (.) (𝜏−.gn ) converge
uniformément vers f (.) (𝜏−.g) et comme l’intégrale de
Riemann est continue pour la convergence uniforme∫
[−C ,C ]d dyf (y ) (𝜏−y g) est la limite de

∫
[−C ,C ]d dyf (y ) (𝜏−y gn )

dans Lp qu’on a déjà vu valoir f ∗ gn , qui a pour limite f ∗ g
donc

∫
[−C ,C ]d dyf (y ) (𝜏−y g) = f ∗ g .

7 Suites régularisantes et
densité par convolution

Définition D.3

Une suite régularisante est une suite de fonctions
𝜌n ∈ C∞

c (Rd ) avec
∫
Rd 𝜌n = 1, 𝜌n ≥ 0 et

Supp(𝜌n ) ⊂ B | | . | |2 (0, 1/n).
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Exercice D.2. Montrer que si 𝜌n (x ) = Cnd 𝜌(nx ) avec
C

∫
𝜌 = 1 et 𝜌(x ) = 1 { | |x | |2<1} exp ( 1

| |x | |22−1 ) alors 𝜌n est

une suite régularisante sur Rd .

Lemme D.13

Soit 𝜌n suite régularisante et f ∈ Lp (Rd ) pour
1 ≤ p < ∞. Alors | |𝜌n ∗ f − f | |p → 0.

Démonstrat ion. On a comme | |. | |p est une norme on a par
l’inégalité triangulaire (de l’intégrale de Riemann et la
proposition D.12) :

| |𝜌n ∗ f − f | |p = ∥
∫
dy 𝜌n (y ) (𝜏−y f − f )∥p

≤
∫
B (0,1/n )

dy 𝜌n (y ) | |𝜏−y f − f ) | |p

Or si n assez grand, on a vu à la proposition D.7 que
| |𝜏−y f − f ) | |p ≤ 𝜖 pour y ∈ B (0, 1/n) de sorte que la dernière
intégrale est bornée par 𝜖

∫
B (0,1/n ) dy 𝜌n (y ) = 𝜖 .

Proposition D.14

Soit Ω ⊂ Rd un ouvert, alors C∞
c (Ω) est dense dans

Lp (Ω) pour 1 ≤ p < ∞.

Démonstrat ion. Soit f ∈ Lp (Ω) et
Kn = {x ∈ Ω : | |x | |2 ≤ n , d (x , Ωc ) ≥ 1/n}. On a déjà remarqué
que Kn compact et ∪Kn = Ω donc f 1Kn → f p.p. et par la
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domination | f 1Kn − f | ≤ | f | on conclut par le TCD à
| | f 1Kn − f | |p → 0. Soit m > n , si on considère
𝜌m ∗ ( f 1Kn ) ∈ C∞ (Rd ), on a par la relation sur les supports
des convolution,

Supp(𝜌m ∗ f 1Kn ) ⊂ Supp(𝜌m ) + Supp( f 1Kn )

⊂ B (0, 1/m) + Kn ⊂ Ω

(vu que pour K , F compacts K + F est compact et en
comparant les distances pour la dernière inclusion). Donc
𝜌m ∗ ( f 1Kn ) ∈ C∞

c (Rd ). Mais on a vu
| |𝜌m ∗ ( f 1Kn ) − f 1Kn | |Lp (Ω ) = | |𝜌m ∗ ( f 1Kn ) − f 1Kn | |p →m→∞ 0.
Donc f 1Kn puis f sont dans l’adhérence de C∞

c (Ω).
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facultatifs et
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Le théorème des bases ne nécessite pas l’hypothèse I
dénombrable ou H séparable, voici la version générale.

Comme l’existence de base algébrique d’un espace
vectoriel de dimension infinie, elle requière un lemme
général de théorie des ensembles :

361
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1 Rappel sur le lemme de Zorn
Si on était en dimension finie, on voudrait faire une

récurrence sur le cardinal d’une famille orthonormale en
ajoutant un vecteur de plus pris dans un ensemble dense.
Une façon de rédiger la preuve est de considérer un
sous-espace de dimension maximale et d’obtenir une
contradiction en construisant une famille libre de cardinal 1
de plus.

Dans le cas de la dimension infinie on pourrait faire
une récurrence transfinie en complétant une base de G en
une base de E et mettant un “bon ordre" sur la base. En
analyse (ou en algèbre), on préfère souvent utiliser la
conséquence suivante de l’axiome du choix, le lemme de
Zorn, qui utilise une notion de maximalité pour obtenir une
contradiction comme dans la preuve par induction.

Soit P muni d’un ordre partiel ≤. Q ⊂ P est dit
totalement ordonné si tout a , b ∈ Q on a soit a ≤ b , soit
b ≤ a . c ∈ P est un majorant de Q si ∀a ∈ Q , a ≤ c .

m ∈ P est un élément maximal de P si tout x ∈ P tel que
m ≤ x on a x = m .

Enfin P est dit inductif si tout ensemble totalement
ordonné de P admet un majorant.



Annexe E. Compléments facultat i fs et hors
programme au chapitre 7 363

Lemme E.1: (de Zorn)

Tout ensemble ordonné, inductif, non vide admet un
élément maximal.

2 Théorème des bases dans le
cas général

Théorème E.2

Soit H un espace préhilbertien.

1. Une famille orthonormale (x i ) i ∈I est libre et
vérifie l’inégalité de Bessel, pour tout x ∈ H :∑︁

i ∈I
|⟨x , x i ⟩|2 ≤ ||x | |2

2. De plus une famille orthonormale (e i ) i ∈I est une
base hilbertienne si et seulement si on a
l’égalité de Bessel-Parseval :∑︁

i ∈I
|⟨x , x i ⟩|2 = | |x | |2

De plus, dans ce cas, pour tout x ∈ H , la série
suivante converge (dans H mais pas
absolument)

x =
∑︁
i ∈I
e i ⟨e i , x ⟩.

3. Si H est un espace de Hilbert, toute famille
orthonormale peut être complétée en une base
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hilbertienne de H et J : x ↦→ (⟨x , e i ⟩) i ∈I établit
alors une isométrie surjective J : H ≃ ℓ 2 (I ) .

Remarque E.1. De la formule pour x, on tire par
continuité la formule pour le produit scalaire (qui est
une série absolument convergente par
Cauchy-Schwarz) :

⟨y , x ⟩ =
∑︁
i ∈I

⟨y , e i ⟩⟨e i , x ⟩.

Démonstrat ion. (1) Si
∑︁
i ∈I

𝜆 i x i = 0, on calcule

𝜆 j = ⟨x j ,
∑︁
i ∈I

𝜆 i x i ⟩ = 0 donc x i est bien libre. Si F est une

partie finie de I , et V = VF = Vect (e i , i ∈ F ), on a déjà vu la
formule pour la projection orthogonale sur VF :

pV (x ) =
∑︁
i ∈F

e i ⟨e i , x ⟩.

Donc par la propriété de contraction de pF et
l’ortogonalité

| |pF (x ) | |2 =
⟨︁ ∑︁
i ∈F

e i ⟨e i , x ⟩,
∑︁
j ∈F

e j ⟨e j , x ⟩
⟩︁

=
∑︁
i ∈F

|⟨e i , x ⟩|2 ≤ ||x | |2

la famille est donc sommable et on a l’inégalité de Bessel
pour la somme (en passant au supremum) et on trouve en
particulier (⟨x , e i ⟩) i ∈I ∈ ℓ 2 (I ) .
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(2) Si (e i ) i ∈I est une base soit xn ∈ Vect (e i , i ∈ I )
convergeant vers x .

De plus, pour n assez grand | | |x | |2 − ||xn | |2 | ≤ 𝜖/2 et pour
tout J , |︁|︁|︁| |pVJ (x ) | |2 − ||pVJ (xn ) | |

2
|︁|︁|︁

≤ ||pVJ (xn − x ) | | ( | |xn | | + | |x | |)

≤ | | (xn − x ) | | ( | |xn | | + | |x | |) ≤ 𝜖/2

d’où en prenant J tel que pVJ (xn ) = xn on obtient|︁|︁|︁|︁|︁|︁∑︁i ∈J |⟨e j , x ⟩|2 − ||x | |2
|︁|︁|︁|︁|︁|︁ ≤ 𝜖

et donc la somme de la série est | |x | | d’où l’égalité de
Parseval.

Réciproquement, Si on a égalité, on trouve Jn tel que∑︁
j ∈Jn

|⟨e j , x ⟩|2 = | |pVJn (x ) | |
2 → ||x | |2

et ceci implique par le théorème de Pythagore :

| |pVJn (x ) − x | |
2
2 = | |x | |22 − ||pVJn (x ) | |

2
2 → 0

donc tout élément de H est limite d’éléments de
Vect (e i , i ∈ I ) d’où la propriété de base hilbertienne.

De plus un calcul donne la formule pour x :

| |x −
∑︁
i ∈F

e i ⟨e i , x ⟩| |2 =
∑︁
i∉F

|⟨e i , x ⟩|2 → 0.
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(3) Considérons l’ensemble des familles orthonormales
contenant une famille orthonormale donnée, et ordonné par
inclusion. C’est un ensemble non-vide. Si on a une famille
totalement ordonnée de familles orthonormales, l’union est
un majorant, donc l’ensemble ordonné est inductif, il admet
donc par le lemme de Zorn un élément maximal (e i ) i ∈I . Si ce
n’était pas une base (complétant la famille orthonormale de
départ), on aurait un x avec∑︁

i ∈I
|⟨x , e i ⟩|2 < | |x | |2 .

Comme H est complet la somme y =
∑︁
i ∈I
e i ⟨e i , x ⟩ converge

car si (In ) croissante telle que
∑︁
i ∈In

|⟨e i , x ⟩|2 →
∑︁
i ∈I

|⟨e i , x ⟩|2 la

suite yn =
∑︁
i ∈In

e i ⟨e i , x ⟩ est de Cauchy car pour q > p

| |yp − yq | |22 =
∑︁

i ∈Iq−Ip

|⟨e i , x ⟩|2 ≤
∑︁
i∉Ip

|⟨e i , x ⟩|2 → 0.

On déduit que y − x est orthogonal à tout e i car tout i tel
que ⟨e i , x ⟩ ≠ 0 est dans un In et que ⟨yn − x , e i ⟩ = 0 pour n
assez grand pour un tel i . Donc par orthogonalité

| |y − x | |22 = | |x | |2 −
∑︁
i ∈I

|⟨x , x i ⟩|2 > 0

donc ajouter (y − x )/| |y − x | | à la famille orthonormale
contredit la maximalité et conclut.

Une fois l’existence d’une base, l’isométrie est
évidente par le (2), et si on a une suite (𝜆 i ) i ∈I dans ℓ 2 (I ), on
voit que

∑︁
𝜆 i e i converge par complétude comme ci-dessus

et on obtient ainsi la surjectivité.
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3 Correction de l’exercice sur
les polynômes de Hermite

Soit H = L2 (R, 𝜇) l’espace de Hilbert réel des fonctions
de carrés intégrables pour la mesure gaussienne standard
𝜇(dx ) = 1√

2𝜋
e−x 2/2dx , muni de la norme usuelle :

| | f | |2 =

√︄∫
R
| f (x ) |2 e

−x 2/2
√

2𝜋
dx .

Soit

Hn (x ) = (−1)n e
x 2/2
√
n !

(︃
d
dx

)︃n
(e−x 2/2)

(et donc H0 (x ) = 1)

1. Montrons par récurrence que pour n ≥ 1, Hn est un
polynôme de la forme :

√
n !Hn (x ) = x n +

n−1∑︁
k=0

ak x k .

En effet H1 (x ) = (−1)e x 2/2 (−xe−x 2/2) = x et si on
suppose l’hypothèse au rang n√︁

(n + 1) !Hn+1 (x )

= −e x 2/2
(︃
d
dx

)︃
(e−x 2/2√n !Hn (x ))
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Or
(︂
d
dx

)︂
(e−x 2/2x k ) = −x k+1e−x 2/2 + kx k−1e−x 2/2 donc

l’hyp. de rec. donne√︁
(n + 1) !Hn+1 (x ) = −e x 2/2

(︃
d
dx

)︃
(e−x 2/2 (x n +

n−1∑︁
k=0

ak x k ))

= (x n+1 − nx n−1) +
n−1∑︁
k=0

ak (x k+1 − kx k−1)

qui a la forme souhaitée.
2. Montrons que (Hn )n≥0 est une famille orthonormale de

H .
On calcule pour m ≥ n :

⟨Hn , Hm ⟩

= (−1)m 1
√

2𝜋
√
m !

∫
Hn (x )

(︃
d
dx

)︃m
(e−x 2/2)dx

En intégrant par partie∫
Hn (x )

(︃
d
dx

)︃m
(e−x 2/2)dx

= [Hn (x )
(︃
d
dx

)︃m−1
(e−x 2/2)]∞−∞

−
∫
H ′
n (x )

(︃
d
dx

)︃m−1
(e−x 2/2)dx

le crochet est 0 vu que P (x )e−x 2/2 pour P polynome
tend vers 0 en ±∞.
Par induction si m > n

⟨Hn , Hm ⟩

=
(−1)m−n
√

2𝜋
√
m !

∫
H (n+1 )
n (x )

(︃
d
dx

)︃m−n+1
(e−x 2/2)dx

= 0
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et si m= n vu H (n )
n (x ) =

√
n ! en appliquant le 1.

⟨Hn , Hn ⟩

=
(−1)m−n
√

2𝜋
√
m !

∫
H (n )
n (x )

(︃
d
dx

)︃m−n
(e−x 2/2)dx

=
1

√
2𝜋

∫
e−x 2/2dx = 1

comme voulue.

4 Théorème d’injectivité de la
transformée de Fourier

Définition E.1

La fonction caractéristique (f.c. ou transformée de
Fourier) du v.a. (X1 , . . . , Xn ) : Ω → Rn est définie par

Φ (X1 , . . . ,Xn ) ( t1 , . . . , tn ) = E [e i ⟨ t ,X ⟩] ,

pour tout t = ( t1 , . . . , tn ) ∈ Rn et en notant le produit

scalaire ⟨t , X ⟩ :=
n∑︁
i=1
t iX i .

La fonction 𝜑X caractérise la loi de X par le théorème
d’injectivité de la transformée de Fourier/ théorème
d’inversion de la transformée de Fourier ci-dessous. On
utilisera aussi plus tard au chapitre 2 la fonction
caractéristique pour caractériser une notion de
convergence, au chapitre 3 pour l’introduction des vecteurs
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gaussiens qui seront la base du chapitre 5 sur le mouvement
brownien. C’est une notion FONDAMENTALE...

Lemme E.3

Soit X ∼ N(m , 𝜎2) de loi normale alors
ΦX ( t ) = exp (− t

2𝜎2

2 + imt ) .

Démonstrat ion. On a vu une preuve à l’exercice 8 du TD 3
de MASS 31 utilisant que la partie imaginaire est nulle par
parité et le calcul de la partie réelle en établissant une
équation différentielle par intégration dépendant d’un
paramètre.

On donne ici une autre preuve par prolongement
analytique. Par transfert, on doit montrer∫ 1

𝜎
√

2𝜋
e ixt −

(x−m )2

2𝜎2 = exp (− t 2𝜎2

2 + imt ) en faisant le changement
de variables u = (x − m)/𝜎 on se ramène au cas 𝜎 = 1, m = 0.

En prenant m = z dans le calcul de la densité, on a pour
z ∈ R ∫ ∞

−∞
dx 1

√
2𝜋
e− x 2+z2−2xz

2 =

∫ ∞

−∞
dx 1

√
2𝜋
e− (x−z )2

2 = 1.
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Pour z ∈ C, en appliquant le résultat précédent
∞∑︁
n=0

∫
R
dx 1

√
2𝜋

|zx |n
n ! e− x 2

2

= l im
N→∞

∫
R
dx 1

√
2𝜋

N∑︁
n=0

|zx |n
n ! e− x 2

2

≤
∫
R
dx 1

√
2𝜋
e− x 2

2 +|zx |

≤ exp ( |z |
2

2 ) < ∞

La première bornitude permet d’appliquer le TCD pour les
séries (ou Fubini pour la mesure discrète) et intervertir
somme et série :

∞∑︁
n=0

z n
∫
R
dx 1

√
2𝜋
x n
n ! e

− x 2
2 =

∫
R
dx 1

√
2𝜋
e− x 2

2 +zx

la fonction de droite est donc la somme d’une série entière
exp ( z 2

2 ) pour z ∈ R, donc par identification des coefficients,
elle vaut cette valeur pour tout z ∈ C, en particulier pour
z = i t et on trouve le résultat.

On démontrera le théorème suivant dans la prochaine
section puisque la preuve utilise des propriétés générales
de l’indépendance importante à noter pour elles-mêmes :

Théorème E.4: (Théorème d’injectivité de la trans-
formation de Fourier)

Deux v.a. (X1 , . . . , Xn ) , (Y1 , . . . , Yn ) tels que

Φ (X1 , . . . ,Xn ) ( t ) = Φ (Y1 , . . . ,Yn ) ( t )∀t ∈ Rn
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sont égales en loi, c’est à dire :

P (X1 , . . . ,Xn ) = P (Y1 , . . . ,Yn ) .

De plus, si ΦX ∈ L1 (Rn , Leb) alors P (X1 , . . . ,Xn ) a une
densité par rapport à la mesure de Lebesgue donnée
par (la transformée de Fourier inverse) qui est une
fonction continue :

f (X1 , . . . ,Xn ) (x )

=
1

(2𝜋)n
∫
Rn

Φ (X1 , . . . ,Xn ) ( t )exp (−i ⟨x , t ⟩)dt .

Sommes de variables aléatoires
indépendantes (Rappels)

Vous avez probablement vu en TD de théorie de la
mesure la définition de la convolution que l’on rappelle ici et
relie aux sommes de variables aléatoires indépendantes.

Définition E.2: (Convolution)

Soit 𝜇 une mesure de Proba sur S ⊂ Rd et f : R → R

une fonction mesurable telle que pour tout x ∈ S ,
y ↦→ f (x − y ) est dans L1 (Rd , 𝜇), la convolution de f et
𝜇 est la fonction f ∗ 𝜇 définie par :

( f ∗ 𝜇) (x ) =
∫
Rd
f (x − y )d 𝜇(y ) .
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Si 𝜇 est absolument continue par rapport à la mesure
de Lebesgue de densité g , on note aussi f ∗ g .

Proposition E.5

Soient X , Y : Ω → Rd des v.a. indépendantes :

3. ∀t ∈ Rd , ΦX +Y ( t ) = ΦX ( t )ΦY ( t )
4. Si X i , Y i sont dans L2 (Ω) ,

Cov (X i + Y i , X j + Y j ) = Cov (X i , X j ) + Cov (Y i , Y j ) .
5. Si PX (dx ) = f (x )dx , PY (dx ) = g (y )dy alors PX +Y

est absolument continue par rapport à Lebesgue
(sur Rd ) de densité f ∗ g définie Lebesgue p.p. :

PX +Y (dz ) = ( f ∗ g) (z )dz .

6. Si seulement X est de loi absolument continue
mais de densité continue bornée f , alors quel
que soit Y , PX +Y est absolument continue par
rapport à Lebesgue (sur Rd ) de densité f ∗ PY
(définie partout). De plus, pour tout h continue
bornée :

E ((h ∗ f ) (Y )) = E (h (X + Y )) .

Démonstrat ion. 1. On a ΦX +Y ( t ) = E [e i t (X +Y ) ] =
E [e i tX e i tY ] = E [e i tX ]E [e i tY ] = ΦX ( t )ΦY ( t ) l’avant dernière
égalité par indépendance car f (x ) = e i tx est bornée donc
intégrable (par rapport à une probabilité).
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2. En général par bilinéarité Cov (X i + Y i , X j + Y j ) =
Cov (X i , X j ) + Cov (Y i , Y j ) + Cov (Y i , X j ) + Cov (Y i , X j ) , mais
ici par indépendance les deux derniers termes sont nuls.

3.Il faut d’abord vérifier que f ∗ g est bien définie. Par
Fubini-Tonelli vu le caractère positif :∫

Rn
dx

∫
Rn
dy f (x − y )g (y )

=

∫
Rn
dy (

∫
Rn
dxf (x − y ))g (y )

=

∫
Rn
dyg (y ) = 1

donc
∫
Rn dyf (x − y )g (y ) existe et est fini p.p.

En prenant h mesurable positive et en appliquant le
transfert, on obtient par changement de variables z = x + y
dans l’intégrale sur y obtenue par Fubini :

E (h (X + Y )) =
∫
R2d

h (x + y ) f (x )dxPY (dy )

=

∫
R2d

h (z ) f (z − y )dzPY (dy )

=

∫
Rd
h (z ) ( f ∗ PY ) (z )dz

ce qui donne le calcul de densité (égalité de la loi avec
seulement le cas h = 1B ). Dans le cas de 4. on raisonne
pareil sauf que f continue bornée donne x ↦→ f (x − y )
intégrable par rapport à la proba PY directement.
L’application de Fubini vient de∫
R2d |h (z ) f (z − y ) |dzPY (dy ) ≤ ||h | |∞ . L’égalité intermédiaire

donne aussi E (h (X + Y )) =
∫
Rd (h ∗ f ) (y )PY (dy ) = E ((h ∗ f ) (Y ))

par transfert.
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Preuve [Facultative] du Thm
d’injectivité de la transformée de
Fourier

On va utiliser les lois gaussiennes pour se ramener au
cas avec densité tout en exploitant leurs propriétés de
stabilité par cette transformée.

Lemme E.6

Soit g𝜎 la densité sur Rn d’un n-uplet de variable
gaussienne i.i.d. N(0, 𝜎2) . Pour tout h : Rn → R

continue bornée, (h ∗ g𝜎) (x ) →𝜎→0 h (x ) . On a même
convergence uniforme sur tout compact.

En terme de convergence en loi, cela signifiera au
chapitre 2 que si (X1 (𝜎) , . . . , Xn (𝜎)) sont les variables de
densités g𝜎 , alors x + (X1 (𝜎) , . . . , Xn (𝜎)) →𝜎→0 x en loi en
utilisant la proposition E.5.(4) au cas Y = x .

Démonstrat ion. Par transfert et changement de variables

(h ∗ g𝜎) (x ) − h (x ) =
∫
Rd

(h (x − 𝜎z ) − h (x ))g1 (z )dz .

En prenant, en prenant le supremum sur un compact K :

sup
x ∈K

| (h ∗ g𝜎) (x ) − h (x ) |

≤
∫
Rd

sup
x ∈K

| (h (x − 𝜎z ) − h (x )) |g1 (z )dz

la limite vient de la convergence dominée par une constante
2 | |h | |∞ puisque une constante est intégrable par rapport à
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une probabilité comme g1 (z )dz , et la limite ponctuelle en z
vient de la continuité de h qui est donc uniformément
continue sur K + B (0, |z |) et donc pour |𝜎 | < 1, x − 𝜎z , x sont
dans ce compact de distance 𝜎 |z | tendant vers 0. Si h est
uniformément continue sur Rd on a même convergence
uniforme sur Rd .

On a aussi besoin de la conséquence suivante du
lemme de classe monotone :

Proposition E.7

Soient X , Y : Ω → Rn des variables aléatoires. Les
propriétés suivantes sont équivalentes

3. X , Y sont égales en loi : PX = PY .
4. Pour tout h : Rn → R, continue bornée,∫

h (X )dP =
∫
h (Y )dP

5. Pour tout ouvert O de Rn , PX (O ) = PY (O ) .
6. pour tout (x1 , . . . , xn ) ∈ Rn :

PX (] − ∞, x1] × . . .×] − ∞, xn ])

= PY (] − ∞, x1] × . . .×] − ∞, xn ]) .

La fonction FX (x1 , . . . , xn ) = PX (] −∞, x1] × . . .×] −∞, xn ])
appelée fonction de répartition caractérise donc la loi.

Démonstrat ion. Les produits d’intervalles
] − ∞, x1] × . . .×] − ∞, xn ] et les ouverts sont des familles
stables par intersection finie et engendrent la tribu des
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boréliens de Rn (car par intersection et complémentaire on
obtient les boules carrées de la norme infini et que tout
ouvert de Rn est union dénombrable de telles boules, de
centre un point de Qn par densité de Qn .) On applique donc
le lemme de classe monotone pour obtenir les 2 dernières
équivalences. 1 implique 2 vient du th de transfert plus bas
comme l’équivalence de 2 avec : Pour tout h : Rd → R,∫
Rd h (x )dPX (x ) =

∫
Rd h (x )dPY (x ) .

Pour montrer 3 à partir de 2 et conclure, il suffit de
remarquer que hn (x ) = max (1, nd (. , O c )) sont des fonctions
continues bornées par 1 (car la distance à un fermé
x ↦→ d (x , O c ) = inf{d (x , y ) , y ∈ O c } est continue, cf. MASS
31). Si x ∈ O c , hn (x ) = 0 et sinon, hn est une suite
croissante qui tend vers hn (x ) → 1O (x ) (car si x ∈ O ,
nd (. , O c ) → ∞ donc ≥ 1 pour n assez grand donc hn (x ) = 1
pour n assez grand). Donc par convergence monotone,∫
Rd hn (x )dPX (x ) → PX (O ) d’où l’égalité du 3. par celle du

2.

Preuve du Thm E.4. Pour montrer l’injectivité, par le
lemme E.7, il suffit de montrer que l’égalité des transformée
de Fourier implique égalité de E (h (X )) pour tout h continue
bornée.

Or par le lemme précédent, (h ∗ g𝜎) (x ) → h (x ) tout en
étant borné par | |h | |∞ donc par TCD :

E (h (X )) = l im
𝜎→0

E ((h ∗ g𝜎) (X )) = l im
𝜎→0

E (h (X + Y𝜎))
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la dernière égalité avec Y𝜎 de densité g𝜎 et indépendant de
X par la proposition E.5 (4) puisque la densité g𝜎 est
continue bornée. Or la transformée de Fourier de X + Y𝜎 est
ΦX +Y𝜎

( t ) = ΦX ( t )ΦY𝜎
( t ) par la proposition E.5 (2) et donc

ΦX +Y𝜎
( t ) = ΦX ( t )exp (−

|| t | |22𝜎
2

2 )

par le calcul du lemme E.3. Comme ceci est intégrable, on
s’attend à avoir la formule d’inversion de Fourier de la
deuxième partie qui va donner E (h (X + Y𝜎)) en fonction de
ΦX +Y𝜎

( t ), nous allons donc la montrer à la main dans ce cas
pour conclure la preuve.

Or en interprétant la densité comme une variante de la
transformée de Fourier dans le cas gaussien :

(g𝜎 ∗ PX ) (x )

=

∫
Rd

1
𝜎d (2𝜋)d/2 exp (−

||x − y | |22
2𝜎2 )PX (dy )

=

∫
R2d

PX (dy )dv
1

𝜎d (2𝜋)d
exp (− ||v | |2

2 + i ⟨ y − x
𝜎

, v ⟩))

soit par le changement de variables u = v /𝜎 de jacobien 𝜎−d

on obtient

E (h (X + Y𝜎)) =
∫
Rd
dxh (x ) (g𝜎 ∗ PX ) (x )

=

∫
R3d

dxPX (dy )dvh (x )

1
(2𝜋)d

exp (−𝜎2 | |v | |2
2 + i ⟨y − x , v ⟩))
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soit en appliquant Fubini sur les intégrales en y , v

E (h (X + Y𝜎))

=

∫
R2d

dxdv h (x )
(2𝜋)d

exp (−𝜎2 | |v | |2
2 − i ⟨x , v ⟩))ΦX (v )

=

∫
R2d

dxdv h (x )
(2𝜋)d

exp (−i ⟨x , v ⟩))ΦX +Y𝜎
(v )

qui est la formule souhaitée qui ne dépend bien que de la
transformée de Fourier ΦX et conclut l’injectivité.

Maintenant si ΦX est intégrable
|h (x )ΦX +Y𝜎

(v ) | ≤ h (x ) |ΦX (v ) | est une domination (si h est à
support compacte) et puisque ΦX +Y𝜎

(v ) →𝜎→0 ΦX (v ) par les
formules précédentes, on obtient par le TCD la formule
souhaitée pour la densité à la limite. La continuité de la
densité vient du Théorème de continuité des intégrales à
paramètres. On remarque qu’en utilisant
E (h (X ))) =

∫
Rd dxh (x ) fX (x ) pour tout h positive continue à

support compact, on déduit fX positive (sinon par continuité
elle est négative sur un ouvert dans lequel on peut prendre
le support de h pour contredire positivité de l’intégrale) et
par convergence monotone et faisant tendre h → 1, on
déduit fX intégrable et densité de proba. D’où on peut
utiliser E (h (X ))) =

∫
Rd dxh (x ) fX (x ) (maintenant valable pour

h continue bornée car fX peut servir de domination) pour
identifier PX (dx ) = fX (x )dx en utilisant le lemme E.7.
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5 Théorème de Radon-Nikodym
et Théorème de
Dunford-Pettis (Niveau
M1-M2)

Ce complément pourrait pour l’essentiel être ajouté
comme application du théorème de Riesz ou du théorème de
dualité des espaces Lp . Nous expliquons un théorème de
théorie de la mesure qui permet de dire quand une mesure
provient d’une densité dans L1 (Ω , 𝜇). On en déduit une
application à un théorème de compacité qui est utile pour la
preuve du cas uniformément continue du théorème de
convergence des martingale dans L1 , le théorème de
Dunford-Pettis E.9.

Définition E.3

Si 𝜇, 𝜈 sont des mesures de probabilités sur (Ω , T), on
dit que 𝜇 est absolument continue par rapport à 𝜈 et
on note 𝜇 ≪ 𝜈 si pour tout A ∈ T , 𝜈(A) = 0 implique que
𝜇(A) = 0

Définition E.4

Si 𝜇, 𝜈 sont des mesures de probabilités sur (Ω , T), on
dit que 𝜇 admet une densité h ∈ L1 (Ω , 𝜈) par rapport à



Annexe E. Compléments facultat i fs et hors
programme au chapitre 7 381

𝜈 et on note h =
d 𝜇
d 𝜈 , si h ≥ 0 p.s. et pour tout A ∈ T :∫

Ω
1Ahd 𝜈 = 𝜇(A) .

Les définitions s’étendent aux mesures 𝜎-finies, mais
on considère seulement ici le cas de probabilités.

Théorème E.8: (de Radon-Nikodym)

Pour toutes mesures de probabilités 𝜇, 𝜈 sur (Ω , T), il
y a équivalence entre 𝜇 ≪ 𝜈 et l’existence d’une
densité h =

d 𝜇
d 𝜈 ∈ L1 (Ω , 𝜈) de 𝜇 par rapport à 𝜈, et la

densité est alors unique 𝜈-p.s.

Démonstrat ion. Si on a deux densités h , k ,∫
Ω

1A (h − k)d 𝜈 = 0 pour tout A T mesurable, donc par la
construction de l’intégrale aussi

∫
Ω
fhd 𝜈 =

∫
Ω
fkd 𝜈 d’abord

pour f mesurable positive (par TCM) puis pour f mesurable
bornée donc par dualité h − k = 0 dans L1 (Ω , 𝜈) donc 𝜈-p.s.

De plus, si on a existence d’une densité et si 𝜈(A) = 0,
par TCM,

∫
Ω

1Ah = l imn→∞
∫
Ω

1A (h ∧ n) = 0 car
|
∫
Ω

1A (h ∧ n)d 𝜈 | ≤ | | (h ∧ n)∥ |2 | |1A | |2 ≤ n𝜈(A)1/2 = 0 par
Cauchy-Schwartz. Donc 𝜇(A) = 0 c’est à dire on a montré
𝜇 ≪ 𝜈.

La partie difficile est l’existence d’une densité si 𝜇 ≪ 𝜈.
On va utiliser le théorème de représentation de Riesz (ou sa
variante pour la dualité de L1 , le théorème D.8). Soit
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𝜇𝛼 = 𝜇 + 𝛼𝜈 avec 𝛼 > 0. L’idée est simple on s’attend à avoir
une densité d 𝜇𝛼

d 𝜈 = 𝛼 + h strictement positive et donc d 𝜈
d 𝜇𝛼 = 1

𝛼+h
bornée par 1/𝛼 donc dans L2 ensuite
𝛼(1 − 𝛼

𝛼+h ) = 𝛼 h
𝛼+h →𝛼→∞ h et on devrait pouvoir retrouver h

ainsi.

Appliquons cette idée, si f ∈ L1 (Ω , d 𝜇𝛼), on a∫
| f |d 𝜈 =

1
𝛼

∫
| f |d𝛼𝜈 ≤ 1

𝛼

∫
| f |d 𝜇𝛼

Donc f ∈ L1 (Ω , d 𝜈) et f ↦→
∫
fd 𝜈 définit une forme

linéaire continue sur L1 (Ω , d 𝜇𝛼), donc par le théorème D.8,
il existe h𝛼 ∈ L∞ (Ω , d 𝜇𝛼) telle que pour tout f ∈ L1 (Ω , d 𝜇𝛼) on
a ∫

fd 𝜈 =

∫
fh𝛼d 𝜇𝛼 .

Et de plus, on a | |h𝛼 | |L∞ (𝜇𝛼 ) ≤ 1/𝛼. Si f = 1 {h𝛼<0} , on
obtient

∫
max (0, h𝛼)d 𝜇𝛼 ≥ 0 donc vaut 0, donc

𝜈({h𝛼 < 0}) ≤ 1
𝛼
𝜇𝛼 ({h𝛼 < 0}) = 0

donc h𝛼 ≥ 0, 𝜈 p.s.

On montre maintenant la monotonie attendue pour h𝛼
(si on veut qu’elle soit égale à un 1

𝛼+h ) Si 𝛽 > 𝛼, on a pour f
positive bornée en utilisant 𝜇𝛼 (g) ≤ 𝜇𝛽 (g) pour g positive
𝜈-p.s, ∫

fh𝛽 d 𝜇𝛽 =

∫
fd 𝜈 =

∫
fh𝛼d 𝜇𝛼 ≤

∫
fh𝛼d 𝜇𝛽
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car fh𝛼 posivite 𝜈-p.s. par le résultat précédent, donc
comme c’est valable pour tout f ≥ 0, on a h𝛽 ≤ h𝛼𝜇𝛽 -p.s.
donc 𝜈-p.s.

Finalement, on a l’identité∫
fd 𝜇 =

∫
fd 𝜇𝛼 −

∫
f 𝛼d 𝜈 =

∫
f (1 − 𝛼h𝛼)d 𝜇𝛼

=

∫
f 𝛼(1 − 𝛼h𝛼)d 𝜈 +

∫
f (1 − 𝛼h𝛼)d 𝜇.

Par | |h𝛼 | |L∞ (𝜇𝛼 ) ≤ 1/𝛼. on a 1 − 𝛼h𝛼 ≥ 0 𝜇𝛼-p.s. donc
𝜈-p.s. En raisonnant comme avant on obtient
(1 − 𝛼h𝛼) ≥ (1 − 𝛽h𝛽 ) 𝜈-p.s. Donc, par l’égalité précédente,
après simplification de f (et toujours pour f positive en
utilisant la croissance de 𝛼 → 𝛼h𝛼 𝜈-p.s. par ce qu’on vient
de voir donc 𝜇-p.s. par l’hypothèse 𝜇 ≪ 𝜈) , on obtient∫

f 𝛼(1 − 𝛼h𝛼)d 𝜈 =

∫
f 𝛼h𝛼d 𝜇

≤
∫
f 𝛽h𝛽 d 𝜇 =

∫
f 𝛽 (1 − 𝛽h𝛽 )d 𝜈

soit 𝛼(1 − 𝛼h𝛼) ≤ 𝛽 (1 − 𝛽h𝛽 ), 𝜈-p.s. donc converge vers un h
en croissant et par convergence monotone et l’égalité avant
on obtient∫

fhd 𝜈 = l im
𝛼→∞

∫
f 𝛼(1 − 𝛼h𝛼)d 𝜈

= l im
𝛼→∞

∫
fd 𝜇 −

∫
f (1 − 𝛼h𝛼)d 𝜇 ≤

∫
fd 𝜇.

Donc pour f = 1 on trouve h ∈ L1 (Ω , d 𝜈). Or par la monotonie
de la limite définissant h , on a

(1 − 𝛼h𝛼) =
𝛼(1 − 𝛼h𝛼)

𝛼
≤ h

𝛼
→𝛼→∞ 0
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𝜈-p.s. puisque h est fini 𝜈-p.s. donc en utilisant encore
l’hypothèse, aussi 𝜇-p.s. Comme on a vu la monotonie en 𝛼

par convergence monotone, on déduit
∫
f (1 − 𝛼h𝛼)d 𝜇 → 0 et

donc finalement l’égalité attendue qui conclut la preuve :∫
fhd 𝜈 = l im

𝛼→∞

∫
fd 𝜇 −

∫
f (1 − 𝛼h𝛼)d 𝜇 =

∫
fd 𝜇.

On peut maintenant rappeler et prouver le théorème
E.9 :

Théorème E.9: (Dunford-Pettis)

Soit une suite (Xn ) dans L1 (Ω , T , P ) avec T une tribu
dénombrablement engendrée (donc T = T (E) avec E
dénombrable, en particulier T = B(Rn )). On a
l’équivalence entre

3. (Xn ) est uniformément intégrable
4. (Xn ) admet une sous-suite (Xnk ) ayant pour

limite faible X ∈ L1 , c’est-à-dire :

∀f ∈ L∞ (Ω) , E ((Xnk − X ) f ) → 0.

5. (Xn ) est bornée dans L1 et pour tout 𝜖 > 0, il
existe 𝜂 > 0 tel que si A ∈ T vérifie P (A) ≤ 𝜂

alors pour tout n , E (1A |Xn |) ≤ 𝜖 .

C’est surtout l’équivalence entre 1. et 2. qui est difficile
et porte le nom de théorème de Dunford-Pettis. L’hypothèse
“dénombrablement engendrée" n’est pas nécessaire (cf.
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Delacherie-Meyer Probabilités et Potentiel Vol 1 p 27)
mais nous la faisons pour simplifier.

Démonstrat ion. On commence par l’équivalence entre 1 et
3. Supposons 3. et fixons 𝜖 > 0, 𝜂 t.q. P (A) ≤ 𝜂 implique
E (1A |Xn |) ≤ 𝜖 . Par l’inégalité de Markov
P ( |Xn | ≥ c) ≤ supn∈N E ( |Xn | )

c ≤ 𝜂 dès que c ≥ supn∈N E ( |Xn | )
𝜂

, en
appliquant alors à A = {|Xn | ≥ c}, on déduit
supn E (1 { |Xn | ≥ c}|Xn |) ≤ 𝜖 . Et donc
l imc→∞ E (1 { |Xn | ≥ c}|Xn |) = 0 qui est l’uniforme intégrabilité
recherchée.

Réciproquement, pour 𝜖 < 0 fixé, on prend c > 0 tel que
supn E (1 { |Xn | ≥c } |Xn |) ≤ 𝜖/2, (en particulier

E ( |Xn |) = E (1 { |Xn | ≥c } |Xn |) + E (1 { |Xn |<c } |Xn |) ≤ c + 𝜖/2

donc Xn et bornée dans L1 , de sorte que

E (1A |Xn |) = E (1A1 { |Xn | ≥c } |Xn |) + E (1A1 { |Xn |<c } |Xn |)

≤ E (1 { |Xn | ≥c } |Xn |) + E (1A1 { |Xn |<c }c)

≤ 𝜖/2 + P (A)c

qui est borné par 𝜖 dès que P (A) ≤ 𝜂 = 𝜖/2c qui convient.

On suppose maintenant 3 et on montre 2. Si
T = 𝜎(An , n ∈ N), A l’algèbre engendré par les An c’est à
dire les unions finis d’intersections finis de An , Acn (qui n’est
en général pas une 𝜎 algèbres) qui est stable par,
complémentaire union finie et intersection finie. Il est facile
de voir que A est dénombrable.
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En séparant les parties positives,négatives, on peut
supposer Xn ≥ 0 et par extraction diagonale, on trouve nk
telle que E [Xnk 1A] → 𝜇(A) converge pour tout A ∈ A.

Il est facile de voir que 𝜇(Ω) < ∞ vu que (Xn ) est bornée
dans L1 (par 3.) 𝜇 est additive sur les unions disjointes
finies (par additivité de 1 ↦→ E [Xnk 1A] qui est une mesure et
passage à la limite). De plus, par 3., soit 𝜖 positive, on a un
𝜂 tel que P (A) ≤ 𝜂 implique E [Xnk 1A] ≤ 𝜖 donc 𝜇(A) ≤ 𝜖 .

En particulier si P (A) = 0, on a 𝜇(A) = 0.

Un résultat classique de théorie de la mesure dit que 𝜇

s’étend de façon unique sur 𝜎(A) en une mesure 𝜇∗ (cf. par
exemple Barbe-Ledoux [1, Thm 1.49]). Il est facile de voir
que l’on a encore si P (A) = 0, on a 𝜇∗ (A) = 0. Donc, 𝜇∗ ≪ P et
par le théorème de Radom-Nikodym, il existe X ∈ L1 telle
que E (X 1A) = 𝜇(A) = l imn→i nfty E [Xnk 1A] . Il en est donc de
même pour toute fonction étagée fm (resp. gm ) d’une suite
décroissante (resp. croissante) convergeant vers f
mesurable positive bornée

D’où on a les deux inégalités donnant l’égalité

l im sup
n→∞

E [Xnk f ] ≤ l im
n→∞

E [Xnk fm ] = E (Xfm ) → E (Xf )

l im inf
n→∞

E [Xnk f ] ≥ l im
n→∞

E [Xnk gm ] = E (Xgm ) → E (Xf ) .

On a donc obtenu 2.

On laisse en exercice l’implication de 3. vers 1. que
l’on n’a pas utilisé dans le cours.
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