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Ce polycopié de cours est issu d’un cours donné en 2019 puis
aussi de 2023 à 2025 à l’Université Claude Bernard Lyon 1. Il
a été rendu plus accessible aux lecteurs dyslexiques en utilisant
le travail décrit dans Making an Accessible Open Logic Textbook (for
Dyslexics) par Richard Zach 1.

Le code latex pour la présentation du livre forallx: Calgary
(Accessible) par P.D. Magnus, Tim Button, Robert Trueman et Ri-
chard Zach, a été utilisé sous licence CC BY 4.0 . Vu notre uti-
lisation systématique d’environnements pour énoncer des défini-
tions, Théorèmes, Lemmes, etc. comme il est d’usage en mathé-
matiques, nous avons en plus veillé à appliquer les mêmes usages
typographiques recommandés dans ces environnements dans les
versions accessibles de ce cours.

Certaines sections indiquées au cours du texte sont tirées
d’un polycopié du même cours de 2018-2019 de Thomas Blos-
sier, Maria Carrizosa et Julien Melleray avec permission.

L’auteur ne prétend bien sûr à aucune originalité mathéma-
tiques sur des sujets si classiques. Il espère cependant, après
quinze ans d’enseignements de l’analyse et des probabilités en
parcours mathématiques et économie, qu’il a atteint son objec-
tif pédagogique de permettre plusieurs niveaux de lecture à un
publique qui a principalment besoin des applications du sujet en
probabilité et modélisation. Au niveau minimum, il suffit d’ap-
prendre les définitions et résultats principaux avec ⋆ et de bien
comprendre les exemples qui seront la source d’exercices types in-
contournables. A un deuxième niveau, les étudiants hésitant avec
des études de mathématiques appliquées devraient comprendre
les résultats du corps du texte et leurs preuves. C’est l’enseigne-
ment que l’auteur donne en pratique au tableau pendant les 50
heures de ce cours. Enfin, les étudiants à l’aise qui se destinent
à la recherche mathématique, malgré leur parcours inhabituel,
auront tout intérêt à faire des excursions dans les compléments
en appendices, qui rassemblent des preuves supplémentaires et

1. Voir aussi du même auteur Accessible Open Textbooks in Math-Heavy
Disciplines The challenge

https://openlogicproject.org/2017/11/27/making-an-accessible-open-logic-textbook-for-dyslexics/
https://openlogicproject.org/2017/11/27/making-an-accessible-open-logic-textbook-for-dyslexics/
https://richardzach.org/
https://forallx.openlogicproject.org/forallxyyc-accessible.pdf
https://forallx.openlogicproject.org/forallxyyc-accessible.pdf
https://www.fecundity.com/job/
https://www.homepages.ucl.ac.uk/~uctytbu/
http://www.rtrueman.com/
https://creativecommons.org/licenses/by/4.0/
https://richardzach.org/2025/03/accessible-open-textbooks-in-math-heavy-disciplines/
https://richardzach.org/2025/03/accessible-open-textbooks-in-math-heavy-disciplines/
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des prolongements immédiats, le plus souvent nécessaires pour
les preuves supplémentaires de d’autres sections de l’appendices.
Ce sont des matériaux soit enseignées à d’autres niveaux, soit en-
seignées dans des versions précédentes de ce cours et qui ce sont
révélées trop ambitieuses pour le public visé.
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CHAPITRE 1

Ensembles
dénombrables
et Familles
sommables

Un espace de probabilité discret (disons dénombrable) associe des
nombres, les probabilités aux évènements de base {𝜔i }, correspondant
aux éléments 𝜔i de l’espace des réalisations et en sommant à des évène-
ments plus compliqués. Comme ces nombres vont être associés à des
ensembles, l’ordre de sommation de ces nombres ne doit pas impor-
ter. On va donc étudier une notion de sommation de série où l’ordre de
sommation n’importe pas. Le but est donc pour une famille de nombres
(ui )i ∈I , indicée par un ensemble infini I (le plus souvent dénombrable)
de définir la somme : ∑︁

i ∈I
ui ,

en conservant les propriétés de commutativité et d’associativité des
sommes finies.

Même dans le cas I = N, le but est d’obtenir une notion de som-
mation qui ne privilégie pas les sous-ensembles finis [[0,n]] comme la

10



CHAPITRE 1. ENSEMBLES DÉNOMBRABLES ET
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notion de somme de série usuelle. On verra que dans ce cas, cette
notion de sommation coïncide avec la convergence absolue que vous
connaissez déjà.

Le but de la Théorie de la mesure sera d’étendre cette construction
à des espaces dits mesurés (de probabilité ou de masse totale différente
de 1), incluant les espaces probabilités continues. Le principe de la
construction sera le même et généralisera le cas plus simple de ce cha-
pitre.

1 Ensembles (au plus)
dénombrables

Rappels sur les ensembles

Définition 1.1

La fonction indicatrice d’une partie A est l’application 1A : Ω →
{0; 1} définie par

1A (𝜔) =
{︄
1 si 𝜔 ∈ A
0 si 𝜔 ∉ A

On a admis en L1 l’existence de l’ensemble N des entiers naturels
et d’un ensemble constitué des parties de Ω (ce sont des axiomes de
base de la théorie des ensembles).

Définition 1.2

L’ensemble des parties de Ω est noté P(Ω). Une famille F de
parties de Ω est une partie de P(Ω) (soit F ⊂ P(Ω) ou F ∈
P(P(Ω)). Les éléments de F sont des parties de Ω.

Lemme 1.1

La fonction indicatrice A ↦→ 1A réalise une bijection entre P(Ω)
et {0,1}Ω (l’ensemble des applications de Ω dans {0,1}).
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Démonstration. L’inverse est h ↦→ h−1 ({1}). La vérification que c’est
bien un inverse est facile, et laissée en exercice.

Rappel 1.1. Si A et B sont deux parties de Ω (i.e. deux éléments
de P(Ω)).

1. On a les relations A ⊂ B ou B ⊂ A ou (A ⊄ B et B ⊄ A).
A ⊂ B s’écrit aussi B ⊃ A.

2. On a défini en L1 : A × B l’ensemble des couples (a,b)
a ∈ A,b ∈ B , l’intersection A∩B (ensemble des éléments
à la fois dans A et dans B), l’union A ∪B (ensemble des
éléments à la fois dans A ou dans B), le complémentaire
de B dans A :A − B = A ∩ B c = {x ∈ A : x ∉ B } et
la différence symétrique AΔB = (A − B) ∪ (B − A). On
remarquera la relation de ces opérations avec les connec-
teurs logiques de base.

3. Plus généralement on définit l’union d’une famille Ai ∈
P(Ω),i ∈ I :⋃︂

i ∈I
Ai = {x ∈ Ω : ∃i ∈ I : x ∈ Ai },

et de l’intersection d’une même famille :⋂︂
i ∈I
Ai = {x ∈ Ω : ∀i ∈ I : x ∈ Ai }.

qui vérifie les relations de distributivités :(︂⋃︂
i ∈I
Ai

)︂
∩C =

⋃︂
i ∈I

(Ai ∩C )

(︂⋂︂
i ∈I
Ai

)︂
∪C =

⋂︂
i ∈I

(Ai ∪C )

et plus généralement(︂⋃︂
i ∈I
Ai

)︂
∩

(︂ ⋃︂
j ∈ J

C j
)︂
=

⋃︂
i ∈I ,j ∈ J

(Ai ∩C j ).

(︂⋂︂
i ∈I
Ai

)︂
∪

(︂ ⋂︂
j ∈ J

C j
)︂
=

⋂︂
i ∈I ,j ∈ J

(Ai ∪C j ).
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4. A et B sont disjoints si A ∩ B = ∅.
5. On a les relations fondamentales du complémentaire

(Ac )c = A et pour le complémentaire des unions(︂⋃︂
i ∈I
Ai

)︂c
=

⋂︂
i ∈I
Aci

et (de façon équivalente) des intersections :(︂⋂︂
i ∈I
Ai

)︂c
=

⋃︂
i ∈I
Aci .

∗ Rappel 1.2. Soit A ⊂ E et f : Ω → E, on rappelle que l’image
réciproque f −1 (A) est définie par :

f −1 (A) = {𝜔 ∈ Ω : f (𝜔) ∈ A}.

On a vu en L1 les relations

f −1 (A ∪ B) = f −1 (A) ∪ f −1 (B),

f −1 (A ∩ B) = f −1 (A) ∩ f −1 (B),

f −1 (Ac ) = [ f −1 (A)]c ,

f −1
(︂⋃︂
i ∈I
Ai

)︂
=

⋃︂
i ∈I

f −1 (Ai ), (1.1)

f −1
(︂⋂︂
i ∈I
Ai

)︂
=

⋂︂
i ∈I

f −1 (Ai ).

Un ensemble A qui n’est pas fini est dit infini.
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Ensembles infinis dénombrables

⋆ Définition 1.3

Un ensemble infini A est dénombrable s’il existe une bijection
f : A → N.
Un ensemble A est au plus dénombrable s’il existe une injection
f : A → N.

Remarque 1.3. Certains auteurs disent dénombrable pour ce que
nous appelons au plus dénombrable et infini dénombrable avec
le sens de dénombrable ci-dessus.

On va utiliser librement le lemme suivant :

Lemme 1.2

1. Toute partie non-vide de N a un minimum.
2. Une application strictement croissante f : N → N (resp.

f : [[0,n]] → N) vérifie f (p) ≥ p pour tout p dans son
domaine.

Démonstration. 1. Si P est non-vide et donc, disons, contient n, alors
[[0,n]]∩P est aussi non-vide et FINI, donc a clairement un minimum. 2.
Il suffit de voir le deuxième cas (en restreignant aux segments initiaux),
on le montre par récurrence sur n. Si n = 0 , f (0) ∈ N donc c’est
évident. En supposant l’hypothèse vraie au rang n, on considère f :
[[0,n+1]] → N, la restriction à [[0,n]] vérifie l’hypothèse de récurrence,
donc f (p) ≥ p pour p ≤ n et f (n + 1) > f (n) ≥ n mais dans N cela
implique f (n + 1) ≥ n + 1 et conclut l’étape d’induction.

On peut représenter les éléments d’un ensemble dénombrable A à
l’aide d’une suite infinie en écrivant A = {xn ; n ≥ 1} (x est l’inverse de
la bijection f ).

⋆ Proposition 1.3

Les ensembles au plus dénombrables sont soit finis, soit dénom-
brables. De plus, pour une partie infinie P ⊂ N, il existe une
bijection strictement croissante et une seule de N → P .
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Démonstration. Les ensembles au plus dénombrables sont par définition
en bijection avec les parties de N. Dans le cas infini, il suffit de voir le
second point pour obtenir la bijection avec N. On définit par récurrence
la bijection f : N∗ → P . Plus précisément, on construit par récurrence
sur n une application strictement croissante fn : [[1,n]] → P telle que
pour tout x ∈ I m ( fn),y ∈ P − I m ( fn), x < y et fn | [[1,k ]] = fk . Comme
P , infini, il est non-vide donc admet un élément a0 = min(P ) On pose
f0 (0) = a0 d’où l’initialisation.

On suppose construit fn , et on prend an+1 = min (P − I m ( fn)) qui
existe car cette partie est infinie de N donc non vide (si elle n’était
pas infinie, P serait finie comme union finie de parties finies). On pose
fn+1 (k ) = fn (k ),k ≤ n, fn+1 (n + 1) = an+1 de sorte que par l’hyp de rec
sur fn , an+1 > fn (k ),k ≤ n ce qui donne la stricte croissance de fn+1 en
combinant avec celle de fn . Enfin, si y ∈ P − I m ( fn+1) ⊂ P − I m ( fn) on
a par hyp de rec y > fn (k )k ≤ n et y > an+1 car c’est le min donc ≥
et on a y ≠ an+1 par construction. Donc la relation demandée à l’étape
suivante est vérifiée.

On obtient f strictement croissante donc injective en rassemblant
les valeurs des fn qui s’accordent (f (n) = fn (n) = fm (n),m ≥ n).

Pour voir que f bijective, par l’absurde, sinon il existe b ∈ P −
I m ( f ) mais par stricte croissance d’entiers f (n) → ∞ donc il existe
n minimal tel que b < f (n) = fn (n) ce qui impose par minimalité b >

f (n − 1) et contredit fn (n) = Min (P − I m ( fn−1)) vu b ∈ P − I m ( fn−1).
Pour l’unicité, si g est une autre telle bijection g −1 ◦ f est une

bijection strictement croissante de N → N ainsi que sa réciproque et le
lemme 1.2 donne donc g −1 ◦ f (n) ≥ n, f −1 ◦ g (n) ≥ n et donc, d’où
par croissance de g , f appliquée encore à ces relations : f = g .

⋆ Proposition 1.4

Un ensemble P est au plus dénombrable si et seulement si il
existe une surjection f : N → P .

Démonstration. Pour l’implication directe, si P est dénombrable, la bi-
jection de la définition convient, si P est fini, en bijection avec [[0,n−1]]
alors le reste modulo n donne la surjection N → [[0,n − 1]] qui compo-
sée à la bijection donne la surjection cherchée. Réciproquement, l’en-
semble f −1 (p),p ∈ P est une partie de N qui a un plus petit element
ap : a : P → N est l’injection cherchée.
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On va obtenir des exemples d’ensembles dénombrables les plus
courants. Pour cela on a besoin de quelques méthodes de constructions.

Lemme 1.5

1. La réunion d’une suite (Xn)n≥0 d’ensembles finis 2 à 2
disjoints est au plus dénombrable.

2. Un ensemble X est au plus dénombrable si et seulement
si il admet une suite exhaustive de parties finies, c’est à
dire une suite croissante de parties finies dont l’union est
X .

3. Le produit cartésien d’un nombre fini d’ensembles au
plus dénombrables est au plus dénombrable.

Démonstration. 1. Soit an = Card (Xn) et An =

n∑︁
k=0

ak (A−1 = 0). On

a des bijections hn : [[An−1 + 1,An]] → [[1,an]] → Xn qui induisent
une application h : N∗ → ∪nXn dès qu’un nombre infini de Xi n’est
pas vide, ou h : [[1,Ap ]] → ∪nXn qui est par construction surjective.
L’injectivité des hn et le fait que les Xn sont disjoints donne l’injectivité
de h. 2. Si X est fini on prend la suite constante, sinon, pour une bi-
jection h : N → X on prend Xn = h ( [[0,n]]) comme suite croissante
cherchée. Réciproquement, la suite croissante Xn donne une suite dis-
jointe X0, Xn+1 − Xn de parties finies, donc 1 donne que l’union est au
plus dénombrable.

3. Une récurrence triviale ramène au cas du produit de 2 ensembles
A,B . Soit h : N → A, g : N → B des surjections données par la
proposition 1.4. f = h×g : N2 → A×B est une surjection qui ramène au
cas N2 qui admet pour suite exhaustive d’ensembles finis [[0,n]]2.

⋆ Proposition 1.6

Les ensembles Nk ,k ∈ N∗;Z et Q sont infinis dénombrables.

Démonstration. On a vu le cas du produit Nk au lemme précédent.
[[−n,n]] est une suite exhaustive d’ensemble fini pour Z qui est donc
au plus dénombrable par la proposition précédente, il est infini car il
contient N. Enfin (p ,q ) ↦→ p/q est une surjection de Z × N∗ → Q,
donc, par la proposition 1.4, Q est au plus dénombrable, et infini car il
contient N.
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Enfin, on améliore le lemme précédent.

Proposition 1.7

Une réunion au plus dénombrable d’ensembles au plus dénom-
brables est au plus dénombrable.

Démonstration. Soit (Xn)n≥0 une suite d’ensembles dénombrables (si
la suite est finie, on peut la prolonger en une suite infinie.). Soit fn :
N → Xn une surjection donnée par la proposition 1.4. Petite subtilité,
on a besoin de former une suite ( fn)n∈N, c’est à dire une application

de N →
(︄⋃︂
n∈N

Xn

)︄N
, ce qui n’est pas complètement anodin et utilise

l’axiome du choix dénombrable). On pose f : N2 →
⋃︂
n∈N

Xn défini

par f (n,p) = fn (p) et en composant avec une surjection N → N2, on
obtient le résultat par la réciproque dans la proposition juste citée.

Les ensembles au plus dénombrables serviront de base aux proba-
bilités discrètes.

Ensembles infinis non dénombrables
Les ensembles qui n’appartiennent pas aux catégories précédentes

(finis ou infinis dénombrables) sont dits infinis non dénombrables. On
va voir que par exemple, R et C, [a,b], a < b sont infinis non dénom-
brables.

Le résultat clef est toujours un argument diagonal :

⋆ Lemme 1.8: (Théorème de Cantor)

Il n’existe pas de surjection h : E → P(E) entre un ensemble E
et l’ensemble de ses parties.

Démonstration. En effet une application h : E → P(E) permet de consi-
dérer l’ensemble A = {x ∈ E : x ∉ h (x)}. Il n’existe pas de y tel que
h (y) = A car par l’absurde, si il existait, soit y ∈ A et alors y ∉ h (y) = A
une contradiction, soit y ∉ A et alors y ∈ h (y) = A encore une contra-
diction.
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Remarque 1.4. En conséquence de ce lemme et de la proposition
1.4, P(N) n’est pas dénombrable (il est infini à cause de l’injec-
tion x ↦→ {x} défini sur N), car sinon on aurait une surjection de
N → P(N). En conséquence {0,1}N, en bijection par la fonction
indicatrice n’est pas non-plus dénombrable.

⋆ Théorème 1.9

[0,1] et R ne sont pas dénombrables.

En conséquence un intervalle quelconque [a,b], pour a < b , en
bijection avec [0,1] ne l’est pas non plus. et un intervalle quelconque
contenant au moins deux points (qui contient donc aussi un [a,b]) est
aussi non-dénombrable.

Démonstration. On construit une injection 𝜑 : {0,1}N → [0,1] (le cas R
s’en déduit. (l’image de cette injection va être l’ensemble triadique de
Cantor). On fixe a = (an) ∈ {0,1}N on définit une suite de segments
emboîtés, on pose J0 = [0,1] et si Jn = [xn ,yn] alors on découpe l’inter-
valle en trois en posant un = (2xn + yn)/3 et vn = (xn +2yn)/3. Si an = 0,
on pose Jn+1 = [xn ,un], et si an = 1, on pose Jn+1 = [vn ,yn] . On obtient
par construction une suite de segments emboîtés, xn ,yn sont des suites
adjacentes et yn − xn ≤ 1/3n (récurrence facile) donc l’intersection est
un singleton ∩n Jn = {𝜑(a)}.

Pour voir que 𝜑 est injective on note que si a ≠ a′ sont deux suites
et n le premier indice avec an ≠ a′n , alors Jn ∩ J ′n = ∅ et les images sont
donc distinctes.

Remarque 1.5. L’ensemble triadique de Cantor a plein de pro-
priétés intéressantes. Topologiquement, il est fermé, totalement
disconnecté (les composantes connexes sont les singletons). Il
est de longueur nulle (car inclus dans l’union sur tous les cas
possibles des Jn dont la longueur perd un facteur 2/3 à chaque
n). Le sens de cette longueur sera vu au chapitre 3 (c’est la me-
sure de Lebesgue). Il est en fait fractal de dimension de Haus-
dorff ln(2)/ln(3) < 1 (ce qui réexplique la longueur nulle, mais
c’est un sujet beaucoup plus avancé des mesures intermédiaires
entre discret et continue).
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Exemple 1.1

L’ensemble des nombres irrationnels R − Q est non-
dénombrable, car sinon son union avec Q à savoir R serait dé-
nombrable, ce qui n’est pas le cas.

2 Familles sommables à termes
positifs

Rappels

Rappel 1.6. La somme x+y avec x ,y ∈ R, est définie à l’exception
du cas où x = ±∞ et y = −x .
Contrairement au cas des limites, on pose 0.+∞ = 0, t .+∞ = +∞
pour t > 0.

Pour un ensemble A non-vide (non-nécessairement borné), on uti-
lise supA pour le plus petit majorant M ∈ R de A et infA pour le plus
grand minorant m ∈ R de A.

On utilisera aussi inf ∅ = +∞, sup ∅ = −∞.
Si (ai )i=1,...,n est une suite finie (disons de nombres complexes) et

𝜎 : [[1,n]] → [[1,n]] une bijection.
La propriété de commutativité de la somme donne :

n∑︁
i=1

ai =
n∑︁
i=1

a𝜎 (i ) .

Démonstration. En voyant 𝜎 comme produit de transpositions, il suffit
de montrer le résultat pour 𝜎 = ( j k ) une transposition avec j < k .
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Mais par commutativité (a + b = b + a) et associativité ((a + b) + c =
a + (b + c )) de la somme :

n∑︁
i=1

a𝜎 (i ) =

j−1∑︁
i=1

a𝜎 (i ) + a𝜎 ( j ) +
k−1∑︁
i= j+1

a𝜎 (i ) + a𝜎 (k ) +
n∑︁

i=k+1

a𝜎 (i )

=

j−1∑︁
i=1

ai + ak +
k−1∑︁
i= j+1

ai + a j +
n∑︁

i=k+1

ai =
n∑︁
i=1

ai .

Corollaire 1.10

Si E est fini et e : [[1,n]] → E une bijection, f : E → C alors
n∑︁
i=1

f (ei ) ne dépend pas de la bijection e . On note

∑︁
e ∈E

f (e ) =
n∑︁
i=1

f (ei ).

Démonstration. Si on prend une autre bijection e ′ on considère la bijec-
tion 𝜎 = e −1 ◦ e ′ de sorte que e ◦ 𝜎 = e ′. La formule de commutativité
de la somme conclut :

n∑︁
i=1

f (ei ) =
n∑︁
i=1

f (e𝜎 (i ) ) =
n∑︁
i=1

f (e ′i ).

Le résultat suivant résume les propriétés de manipulation de ces
sommes :

Proposition 1.11

1. Si E fini, on a
Card (E) =

∑︁
e ∈E

1.

2. (Sommation par paquet) Si E fini est une union disjointe
finie E =

⋃︂
i ∈I

Ei (c’est à dire I fini et Ei ∩E j = ∅ si i ≠ j )
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et f : E → C alors :∑︁
e ∈E

f (e ) =
∑︁
i ∈I

∑︁
e ∈Ei

f (e ).

En particulier, on a Card (E) =
∑︁
i ∈I
Card (Ei ).

3. (interversion de sommes finies) Si E ,F sont finis et a :
E × F → C, alors :∑︁

e ∈E

∑︁
f ∈F

ae ,f =
∑︁

(e ,f ) ∈E×F
ae ,f =

∑︁
f ∈F

∑︁
e ∈E

ae ,f .

En particulier, on a Card (E × F ) = Card (E)Card (F ).

Démonstration. 1. Si Card (E) = n, E = {e1, ...,en} pour une bijection

e : [[1,n]] → E, on a donc
∑︁
e ∈E

1 =

n∑︁
i=1

1 = n par définition.

2. On pose j : [[1,m]] → I une bijection et ni = Card (E j (i ) ) On

note N0 = 0,Ni =
i∑︁
l=1

nl .

On a Ni −Ni−1 = ni ,i ≥ 1 donc on a une bijection (en composant la
soustraction de Ni−1 : [[Ni−1+1,Ni ]] → [[1,ni ]] avec la bijection donnée
par la définition du cardinal [[1,ni ]] → E j (i ) , gi : [[Ni−1 + 1,Ni ]] →
E j (i ) . On pose g (k ) = gi (k ), si k ∈ [[Ni−1 + 1,Ni ]]. Montrons que g
réalise une bijection de [[1,Nm]] → E . En effet, par hypothèse, E est
l’union des E j (i ) , dont tous les éléments sont atteints par gi , donc par
g qui est donc surjective. De plus, si g (k ) = g (l ) ∈ Ei , comme l’union
décrivant E est disjointe, on a k ,l ∈ [[Ni−1 + 1,Ni ]] et gi (k ) = gi (l )
et comme gi est injective, on déduit k = l et donc comme k ,l sont
arbitraires, on déduit que g est aussi injective.
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Donc par définition de la somme sur un ensemble (au début et aux
deux dernières lignes) :∑︁

e ∈E
f (e ) =

Nm∑︁
k=1

f (g (k ))

=

N1∑︁
k=1

f (g (k )) +
N2∑︁

k=N1+1

f (g (k )) + · · · +
Nm∑︁

k=Nm−1+1

f (g (k ))

=

m∑︁
l=1

Nl∑︁
k=Nl−1+1

f (g (k ))

=

m∑︁
l=1

Nl∑︁
k=Nl−1+1

f (gl (k ))

=

m∑︁
l=1

∑︁
e ∈E j (l )

f (e )

=
∑︁
i ∈I

∑︁
e ∈Ei

f (e )

Le résultat sur le cardinal est une application du 1. et de la sommation
par paquet pour la fonction f = 1 constante :

Card (E) =
∑︁
e ∈E

1 =
∑︁
i ∈I

∑︁
e ∈Ei

1 =
∑︁
i ∈I
Card (Ei ).

3. Il suffit d’appliquer la sommation par paquet aux unions dis-
jointes

E × F = ∪e ∈E {e } × F = ∪f ∈FE × { f }.

Pour le cardinal on a par le 1 et la distributivité de la multiplication
par rapport à l’addition :

Card (E × F ) =
∑︁

(e ,f ) ∈E×F
1 =

∑︁
e ∈E

∑︁
f ∈F

1

=
∑︁
e ∈E

Card (F ) = Card (F )
∑︁
e ∈E

1

= Card (E)Card (F ).
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Définition et premières propriétés

⋆ Définition 1.4

Une famille (ai )i ∈I de nombres réels positifs est dite sommable
si

sup

⎧⎪⎪⎨⎪⎪⎩
∑︁
j ∈ J

a j : J ⊂ I , fini

⎫⎪⎪⎬⎪⎪⎭ < ∞

et alors on note∑︁
i ∈I

ai = sup

⎧⎪⎪⎨⎪⎪⎩
∑︁
j ∈ J

a j : J ⊂ I , fini

⎫⎪⎪⎬⎪⎪⎭ .

Tout d’abord, le résultat simple suivant ramène au cas I dénom-
brable, ce que l’on supposera par la suite :

Lemme 1.12

Si (ai )i ∈I est une famille sommable, alors le support I0 = {i ∈
I : ai ≠ 0} est au plus dénombrable.

Démonstration. Si S =
∑︁
i ∈I

ai = 0, alors I0 = ∅. Sinon si S =
∑︁
i ∈I

ai > 0 et

si In = {i ∈ I : ai ≥ S /n}, alors I0 = ∪n≥1In est au plus dénombrable
comme union d’une suite d’ensembles finis car Card (In) ≤ n. En effet,
si j ∈ In , a j ≥ S /n donc si J ⊂ In fini S ≥

∑︁
j ∈ Jn

a j ≥ SCard ( J )/n donc

Card ( J ) ≤ n et donc Card (In) ≤ n .

On résume les propriétés générales dans l’énoncé suivant :

Proposition 1.13

1. (critère des suites exhaustives) Si ( Jn)n≥0 est une suite
exhaustive de parties finies de I , alors la famille (ai )i ∈I
est sommable si et seulement si la suite (

∑︁
i ∈ Jn

ai )n≥0 est
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bornée et alors on a∑︁
i ∈I

ai = sup
n∈N

∑︁
i ∈ Jn

ai = lim
n→∞

∑︁
i ∈ Jn

ai .

2. (lemme de domination) Si ai ≤ bi pour tout i et (bi )
sommable, alors (ai )i ∈I est sommable et alors

∑︁
i ∈I

ai ≤∑︁
i ∈I

bi .

3. (lemme de permutation) Si (ai )i ∈I est sommable et 𝜎 :
I → I est une bijection, alors (a𝜎 (i ) )i ∈I est sommable de
même somme.

Démonstration. 1/ La famille
∑︁
i ∈ Jn

ai étant inclus dans la famille des

sommes finies, il est clair qu’elle est majorée si la famille est sommable
(et on a en passant au sup la partie ≥ de l’égalité énoncée). Mais réci-
proquement toute famille finie est inclus dans un certain Jn , par défini-
tion d’une suite exhaustive, d’où la borne inverse et la réciproque.

2/ Il suffit de borner les sommes partielles finies
∑︁
i ∈ J

ai ≤
∑︁
i ∈ J

bi et

passer au sup.
3/ Pour tout J fini, 𝜎( J ) est fini donc

∑︁
i ∈ J

a𝜎 (i ) =
∑︁

i ∈𝜎 ( J )
ai ≤

∑︁
i ∈I

ai .

D’où la sommabilité et la première inégalité en passant au sup. En consi-
dérant la bijection réciproque 𝜎−1 on obtient de même l’autre inéga-
lité.

Le dernier résultat généralise la commutativité des sommes.

Corollaire 1.14

Une famille à termes positifs (an)n∈N est sommable si et seule-

ment si la série
∞∑︁
n=0

an est convergente.
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Sommation par paquet et applications

On conclut avec les deux résultats importants, le premier généralise
l’associativité des sommes finies. On rappelle qu’une partition (I𝜆 )𝜆 ∈Λ
de I est une famille d’ensembles 2 à 2 disjoints d’union égale à I .

⋆ Théorème 1.15: (de sommation par paquets - Cas Posi-
tif)

Soit (I𝜆 )𝜆 ∈Λ une partition de I . Une famille (ai )i ∈I est sommable
si et seulement si on a à la fois les deux propriétés suivantes :

1. pour chaque 𝜆 ∈ Λ, (ai )i ∈I𝜆 est sommable, disons de
somme 𝜎𝜆

2. et (𝜎𝜆 )𝜆 ∈Λ est sommable.

Dans tous les cas (même en l’absence de sommabilité), on a
l’égalité : ∑︁

i ∈I
ai =

∑︁
𝜆 ∈Λ

𝜎𝜆 ≡
∑︁
𝜆 ∈Λ

(︄∑︁
i ∈I𝜆

ai

)︄
.

Démonstration. Commençons par la condition nécessaire. Si (ai )i ∈I est
sommable alors les sommes finies d’une sous famille (ai )i ∈I𝜆 sont bor-
nées par les sommes de la famille totale donc on a la première condi-
tion de sommabilité et 𝜎𝜆 ≤

∑︁
i ∈I

ai . Plus si on a des sous ensembles

finis J1 ⊂ I𝜆1 , ..., Jn ⊂ I𝜆n pour des 𝜆 j distincts, ils sont disjoints et leur

union J =

n⋃︂
k=1

Jk est un sous-ensemble fini de I donc

n∑︁
k=1

∑︁
i ∈ Jk

ai =
∑︁
i ∈ J

ai ≤
∑︁
i ∈I

ai

Donc en passant successivement au sup sur les Jk fini, on obtient :

n∑︁
k=1

𝜎𝜆k ≤
∑︁
i ∈I

ai .

Donc la famille (𝜎𝜆 )𝜆 ∈Λ est sommable et on obtient la première inéga-
lité ≥ en passant au sup.
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Réciproquement, pour tout J partie finie de I on définit J𝜆 = J ∩I𝜆

et on obtient un nombre fini de 𝜆 tel que J =

n⋃︂
k=1

J𝜆k . On déduit

∑︁
i ∈ J

ai =
n∑︁
k=1

∑︁
i ∈ Jk

ai ≤
n∑︁
k=1

𝜎𝜆k ≤
∑︁
𝜆 ∈Λ

𝜎𝜆 .

D’où la bornitude sur J qui donne la sommabilité, et l’autre inégalité
en passant au sup.

Un cas particulier est la “version famille sommable” du théorème de
Fubini (qui se généralise à un théorème d’intégration). Le cas positif est
nommé théorème de Fubini-Tonelli. Il correspond à la décomposition

I × J = ∪i ∈I {i } × J = ∪ j ∈ J I × { j }.

Il donne un résultat d’interversion des sommes.

⋆ Théorème 1.16: (de Fubini-Tonelli)

Une famille double (ai ,j )i ∈I ,j ∈ J à termes positifs est sommable
si et seulement si on a l’une des deux propriétés équivalentes
suivantes :

1. pour tout i ∈ I , (ai ,j ) j ∈ J est sommable et la famille des

sommes (
∑︁
j ∈ J

ai ,j )i ∈I est sommable

2. pour tout j ∈ J , (ai ,j )i ∈I est sommable et la famille des

sommes (
∑︁
i ∈I

ai ,j ) j ∈ J est sommable

Dans tous les cas (même en l’absence de sommabilité), on a
l’égalité :

∑︁
(i ,j ) ∈I × J

ai ,j =
∑︁
i ∈I

⎛⎜⎝
∑︁
j ∈ J

ai ,j
⎞⎟⎠ =

∑︁
j ∈ J

(︄∑︁
i ∈I

ai ,j

)︄
.

Démonstration. C’est une application directe du résultat de sommation
par paquets avec les partitions ci-dessus.
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Exemple 1.2

Calculons la somme I =

∞∑︁
i=0

∞∑︁
j=0

1
(i + j + 1)2

.

Comme c’est une série à coefficient positifs, chaque somme est
somme d’une famille sommable, donc par Fubini-Tonelli, on ob-
tient une somme sur le produit :

I =
∑︁
i ∈N

∑︁
j ∈N

1
(i + j + 1)2

=
∑︁

(i ,j ) ∈N2

1
(i + j + 1)2

.

Comme chaque terme de la somme ne dépend que de n = i + j +
1, on a envie de considérer la partition de N2 = ∪n∈N∗Λn avec
Λn = {(i , j ) ∈ N2 : i + j + 1 = n}. Par le théorème de sommation
par paquet, on a :

I =

∞∑︁
n=1

∑︁
(i ,j ) ∈Λn

1
(i + j + 1)2

.

Il suffit donc de calculer
∑︁

(i ,j ) ∈Λn

1
(i + j + 1)2

Mais Λn est fini de

taille n vu Λn = {(i ,n − 1− i ) : 0 ≤ i ≤ n − 1} ≃ [[0,n − 1]], donc∑︁
(i ,j ) ∈Λn

1
(i + j + 1)2

=
Card(Λn)

n2
=

1
n
. C’est le terme d’une série

de Riemann divergente, donc I = +∞ et les familles ne sont pas
sommables.

3 Familles sommables à termes
scalaires

Comme pour les séries, on se ramène au cas à valeur positif en
prenant le module. On pourrait traiter de façon semblable le cas à
valeurs vectorielles (par exemple dans Rn ou dans ce qu’on appelera au
chapitre suivant un e.v.n. où toute suite de Cauchy converge, un e.v.n
dit complet) en prenant la norme à la place du module. On note K = R
ou K = C le corps de référence.
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⋆ Définition 1.5

Une famille (zi )i ∈I de nombres complexes ou réels est dite som-
mable si la famille ( |zi |)i ∈I est sommable. On note ℓ 1 (I ,K) l’en-
semble des familles sommables d’éléments de K indexées par
I .

On note
| |z | |1 =

∑︁
i ∈I

|zi |.

Lemme 1.17

ℓ 1 (I ,K) est un espace vectoriel et de plus on a pour u ,v ∈
ℓ 1 (I ,K), 𝜇, 𝜈 ∈ K :

| |𝜆u + 𝜇v | |1 ≤ |𝜆 | | |u | |1 + |𝜇 | | |v | |1.

Démonstration. On voit que c’est un sous-espace vectoriel de l’ensemble
des fonctions KI . D’abord, la famille nulle est sommable et de plus
si 𝜆, 𝜇 ∈ K, (ai ), (bi ) des familles sommables, pour J fini, on a par
l’inégalité triangulaire (des nombres) :∑︁

i ∈ J
|𝜆ai + 𝜇bi | ≤

∑︁
i ∈ J

|𝜆 | |ai | + |𝜇 | |bi |

= |𝜆 |
∑︁
i ∈ J

|ai | + |𝜇 |
∑︁
i ∈ J

|bi |

≤ |𝜆 | | |a | |1 + |𝜇 | | |b | |1

donc comme la valeur est bornée, on obtient, la sommabilité de la
famille (𝜆ai + 𝜇bi ), donc ℓ 1 (I ,K) est stable par combinaison linéaire
et est donc un sous-espace vectoriel de KI , puisqu’il contient aussi la
famille nulle (0).

De plus en passant au sup sur J on obtient | |𝜆a + 𝜇b | |1 ≤ |𝜆 | | |a | |1 +
|𝜇 | | |b | |1.

Comme d’habitude pour définir l’intégrale (ici on va définir de
même la somme), on sépare les parties positives, négatives des par-
ties réelles et imaginaires, pour définir la somme. On note donc (ai )+ =

max(ai ,0), (ai )− = max(−ai ,0) de sorte que

z j = (ℜz j )+ − (ℜz j )− + i (ℑz j )+ − i (ℑz j )−
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Comme (ℜz j )+ + (ℜz j )− , (ℑz j )+ + (ℑz j )− ≤ |z j | on déduit que si
(z j ) est sommable, alors ((ℜz j )+), ((ℜz j )− , ((ℑz j )+), ((ℑz j )−) le sont
aussi par domination.

Définition 1.6

La somme d’une famille sommable (zi )i ∈I est la valeur :∑︁
j ∈I

z j :=
∑︁
j ∈I

(ℜz j )+ −
∑︁
j ∈I

(ℜz j )−

+ i
∑︁
j ∈I

(ℑz j )+ − i
∑︁
j ∈I

(ℑz j )− .

Exercice 1.1. Vérifier que la somme d’une famille sommable est
une application linéaire. (indication : considérer une suite ex-
haustive de parties finies pour se ramener au cas des sommes
finies).

On a le résultat qui résume les propriétés élémentaires :

Proposition 1.18

1. Une famille (zi )i ∈I est sommable si et seulement si
(ℜzi )i ∈I et (ℑzi )i ∈I sont sommables.

2. (zi )i ∈I est sommable si et seulement si (zi )i ∈I est som-
mable et on a : ∑︁

j ∈I
z j =

∑︁
j ∈I

z j ,

3. Pour (zi )i ∈I sommable, on a l’inégalité triangulaire géné-
ralisée : |︁|︁|︁|︁|︁|︁∑︁j ∈I z j

|︁|︁|︁|︁|︁|︁ ≤ ∑︁
j ∈I

|z j |.

4. (lemme de permutation) Si (zi )i ∈I est sommable et 𝜎 :
I → I est une bijection, alors (z𝜎 (i ) )i ∈I est sommable
de même somme. En particulier, si

∑︁
an est une série

absolument convergente et 𝜎 une permutation de N alors∑︁
a𝜎 (n ) est absolument convergente de même somme.
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Démonstration. 1/ Les bornes |ℜzi | ≤ |zi | et |ℑzi | ≤ |zi | donnent
la condition nécessaire par domination. Réciproquement |zi | =√︁
|ℜzi |2 + |ℑzi |2 ≤ |ℜzi | + |ℑzi | et commeℓ 1 est un e.v, on a vu que l’hy-

pothèse implique ( |ℜzi | + |ℑzi |)i ∈I sommable d’où le résultat à nouveau
par domination.

2/ l’équivalence est évidente en utilisant 2 fois le 1. L’égalité vient
directement de la définition.

3/ On fixe une suite exhaustive Jn de I . D’après le critère des suites
exhaustives pour les quatre séries à termes positives intervenant dans la
somme,

∑︁
j ∈I

z j = lim
n→∞

∑︁
j ∈ Jn

z j ,
∑︁
j ∈I

|z j | = lim
n→∞

∑︁
j ∈ Jn

|z j | donc par l’inégalité

triangulaire pour les sommes finies (et continuité du module)|︁|︁|︁|︁|︁|︁∑︁j ∈I z j
|︁|︁|︁|︁|︁|︁ =

|︁|︁|︁|︁|︁|︁ limn→∞

∑︁
j ∈ Jn

z j

|︁|︁|︁|︁|︁|︁ = lim
n→∞

|︁|︁|︁|︁|︁|︁∑︁j ∈ Jn z j
|︁|︁|︁|︁|︁|︁

≤ lim
n→∞

∑︁
j ∈ Jn

|z j | =
∑︁
j ∈I

|z j |.

4/ Tout vient du cas positif, soit par la définition de sommabilité soit
par la définition de la somme en terme de somme de familles à termes
positifs. Le cas particulier vient du fait que si la famille est indicée par
N, le critère des suites exhaustives (appliqué à la suite [[0,n]]) implique
qu’être sommable équivaut à être absolument convergente.

Remarque 1.7. Une série
∑︁

an telle que pour tout 𝜎 permu-

tation de N on ait
∑︁

a𝜎 (n ) convergeant est dite incondition-
nellement convergente. Un résultat classique qu’on trouve par
exemple dans Bourbaki Topologie Générale IV.44 [2]dit qu’une
série numérique inconditionnellement convergente est absolu-
ment convergente. Il n’y a donc pas d’extension possible du
dernier énoncé.

On finit avec les résultats de sommation par paquets et de Fubini.
Dans les deux cas, on n’a plus d’équivalence comme dans le cas à terme
positif. On utilise alors souvent/toujours le cas à terme positif pour mon-
trer la sommabilité nécessaire à appliquer le cas avec signe/complexe.
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⋆ Théorème 1.19: (de sommation par paquets - Cas Géné-
ral)

Soit (I𝜆 )𝜆 ∈Λ une partition de I . Si une famille (zi )i ∈I est som-
mable alors on a les deux propriétés suivantes :

1. pour chaque 𝜆 ∈ Λ, (zi )i ∈I𝜆 est sommable, disons de
somme 𝜎𝜆

2. et (𝜎𝜆 )𝜆 ∈Λ est sommable.

De plus, on a l’égalité :∑︁
i ∈I

zi =
∑︁
𝜆 ∈Λ

𝜎𝜆 ≡
∑︁
𝜆 ∈Λ

(︄∑︁
i ∈I𝜆

zi

)︄
.

Démonstration. Comme ( |zi |)i ∈I , la sommabilité de ( |zi |)i ∈I𝜆 vient du
cas positif. De plus, par l’inégalité triangulaire des familles sommables
(proposition 1.18), |

∑︁
i ∈I𝜆

zi | ≤
∑︁
i ∈I𝜆

|zi | et le théorème de sommation par

paquets assure la sommabilité du membre de droite, donc par com-
paraison, celle de (𝜎𝜆 )𝜆 ∈Λ comme voulu. L’égalité vient du cas positif
appliqué aux parties positives et négatives des parties réelle et imagi-
naire.

En appliquant la sommation par paquets à la même partition que
dans le cas positif, on obtient :

⋆ Théorème 1.20: (de Fubini)

Si une famille double (zi ,j )i ∈I ,j ∈ J est sommable alors on a les
deux propriétés suivantes :

1. pour tout i ∈ I , (zi ,j ) j ∈ J est sommable et la famille des

sommes (
∑︁
j ∈ J

zi ,j )i ∈I est sommable

2. pour tout j ∈ J , (zi ,j )i ∈I est sommable et la famille des

sommes (
∑︁
i ∈I

zi ,j ) j ∈ J est sommable
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De plus, on a l’égalité :

∑︁
(i ,j ) ∈I × J

zi ,j =
∑︁
i ∈I

⎛⎜⎝
∑︁
j ∈ J

zi ,j
⎞⎟⎠ =

∑︁
j ∈ J

(︄∑︁
i ∈I

zi ,j

)︄
.



CHAPITRE 2

Introduction à
la Topologie
des Espaces
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Dans tout le cours, K = R, (le corps des nombres réels) ou C (le
corps des nombres complexes). |𝜆 | est la valeur absolue ou le module
de 𝜆 ∈ K.
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1 Distance et Norme sur un espace
vectoriel

⋆ Définition 2.1

Soit X un ensemble (en général supposé non-vide). Une distance
sur X est une application d : X × X → [0,+∞[ telle que :

i ∀x ,y ∈ X , d (x ,y) = d (y ,x) (symétrie)
ii ∀x ,y ,z ∈ X d (x ,z ) ≤ d (x ,y) + d (y ,z ) (inégalité triangu-

laire ou sous-additivité)
iii ∀x ,y ∈ X d (x ,y) = 0 ⇐⇒ x = y (séparation)

Un couple (X ,d ) est appelé espace métrique (em).

⋆ Définition 2.2

Soit E un K-e.v. Une norme sur E est une application n : E →
[0,+∞[ telle que :

i ∀x ∈ E , 𝜆 ∈ K n (𝜆x) = |𝜆 |n (x) (homogénéité)
ii ∀x ,y ∈ E n (x + y) ≤ n (x) +n (y) (inégalité triangulaire ou

sous-additivité)
iii ∀x ∈ E n (x) = 0 ⇐⇒ x = 0 (séparation)

Souvent on note n (x) = | |x | |, sauf dans l’exemple E = K,n (x) =
|x |. Un couple (E , | |.| |) est appelé espace vectoriel normé (evn).

Exemple 2.1

Soit X ⊂ E une partie (non-vide) avec d (x ,y) = | |x − y | |, alors
(X ,d ) est un espace métrique et tout espace métrique est de
cette forme.

Exemple 2.2

Si E = Rn on a trois normes classiques, si X = (x1, ...,xn) :

| |X | |1 =

n∑︁
i=1

|xi |
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| |X | |2 =

⌜⎷
n∑︁
i=1

|xi |2 (norme euclidienne)

| |X | |∞ = max
i=1...n

|xi |

Exercice 2.1. Montrer que ce sont des normes (cf. TD de L2).

⋆ Exemple 2.3

Si E = C 0 ( [a,b],R) l’ensemble des fonctions continues sur
[a,b], on a trois normes :

| | f | |1 =

∫ b

a
| f (t ) |dt

| | f | |2 =

√︄∫ b

a
| f (t ) |2dt

| | f | |∞ = sup
t ∈[a,b ]

| f (t ) |

Cette dernière norme est la norme de la convergence uniforme
(la convergence pour | |.| |∞ coïncidera avec la convergence uni-
forme)

Le lemme 1.17 se reformule en disant :

Lemme 2.1

(ℓ 1 (I ,K), | | · | |1) est un espace vectoriel normé.

Démonstration. | | · | |1 vérifie l’inégalité triangulaire (cas 𝜆 = 𝜇 = 1 du
lemme 1.17). De plus | | · | |1 est positif. Comme |ai | ≤ | |a | |1, ai = 0 si
| |a | |1 = 0, pour tout i donc a = 0 ce qui donne l’axiome de séparation.
Enfin

∑︁
i ∈ J

|𝜆ai | = |𝜆 |
∑︁
i ∈ J

|ai | donc en passant au sup : |𝜆 | | |a | |1 = | |𝜆a | |1

(d’où l’homogénéité).
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Exemple 2.4

Si Z = X ×Y avec (X ,dX ), (Y,dY ) des espaces métriques. On
définit :

dZ ((x ,y), (x ′,y ′)) = max(dX (x ,x ′),dY (y ,y ′)).

C’est une distance sur Z (exo) que l’on utilisera dans cette si-
tuation ultérieurement (distance produit).

Exemple 2.5

R = R ∪ {−∞,∞} est un espace métrique avec la distance

dR (x ,y) =⎧⎪⎪⎨⎪⎪⎩
min(1, |x − y |) si x ,y ∈ R
0 si x = y ∈ {−∞,+∞}
1 sinon

Proposition 2.2

(Inégalité triangulaire inverse) Soit (X ,d ) un espace métrique.

∀x ,y ,z ∈ X
|︁|︁ d (x ,z ) − d (y ,z ) |︁|︁ ≤ d (x ,y).

Démonstration. Cas d (x ,z ) ≥ d (y ,z ) : Comme d (x ,z ) ≤ d (x ,y) + d (y ,z )
par l’inégalité triangulaire, on en déduit

|︁|︁ d (x ,z ) − d (y ,z ) |︁|︁ = d (x ,z ) −
d (y ,z ) ≤ d (x ,y).

Dans le cas d (y ,z ) ≥ d (x ,z ), on échange x et y par symétrie.
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2 Métriques équivalentes

⋆ Définition 2.3

Soit X un ensemble. Deux distances d1 et d2 sur X sont dites
équivalentes si

∃c ,C > 0,∀x ,y ∈ X ,

cd1 (x ,y) ≤ d2 (x ,y) ≤ Cd1 (x ,y).

On note alors d1 ∼ d2. Des normes sont équivalentes si les dis-
tances induites le sont.

Remarque 2.1. L’équivalence des distances est une relation
d’équivalence, c’est à dire qu’elle est réflexive (d1 ∼ d1), symé-
trique (d1 ∼ d2 ⇒ d2 ∼ d1) et transitive (d1 ∼ d2,d2 ∼ d3 ⇒ d1 ∼
d3). Si deux normes sont équivalentes les notions d’analyses (li-
mite, continuité, ...) sont les mêmes pour les deux normes.

Exemple 2.6

Dans Rn , | |.| |1, | |.| |2, | |.| |∞ sont équivalentes (cf. TD de L2). On
verra plus tard qu’en dimension finie toutes les normes sont
équivalentes.

3 Boules dans un espace métrique

⋆ Définition 2.4

Soient a ∈ X et r ∈ [0,∞[.
On appelle boule ouverte de centre a et de rayon r de X la partie :

B (a,r ) = {x ∈ X , | d (x ,a) < r }.

et boule fermée de centre a et de rayon r de X la partie :

BF (a,r ) = {x ∈ X , | d (x ,a) ≤ r }.
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On appelle sphère de centre a et de rayon r de X la partie :

S (a,r ) = {x ∈ X , | d (x ,a) = r }.

Dans le cas r = 0, B (x ,0) = ∅,BF (x ,0) = {x}.

Exercice 2.2. Dessiner les boules de R2 pour | |.| |1, | |.| |2, | |.| |∞

Parties bornées
Définition 2.5

Un ensemble A ⊂ X est dit borné si ∃M ∈ [0,∞[,a ∈ X∀x ∈
A,d (x ,a) ≤ M , c’est à dire s’il est contenu dans une boule.

4 Suites dans un espace métrique
On rappelle qu’une suite de E est une application u : N → E notée

(un)n≥0.

Convergence

Définition 2.6: Convergence

Soit (un) une suite d’un espace métrique (X ,d ). On dit que un
converge vers l ∈ X (et on note l = limn→∞ un ou un →n→∞ l ) si
la suite numérique d (un ,l ) converge vers 0, c’est-à-dire :

∀𝜖 > 0,∃n0 ∈ N,∀n ≥ n0, d (un ,l ) ≤ 𝜖 .

Remarque 2.2. Ceci équivaut à ∀𝜖 > 0,∃n0 ∈ N,∀n ≥ n0, un ∈
B (l , 𝜖). Comme dans R on a unicité de la limite (justifiant la
notation). En effet si on a deux limites l1,l2 pour n grand
un ∈ B (l1, 𝜖) ∩B (l2, 𝜖) donc par inégalité triangulaire d (l1,l2) ≤
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d (l1,un) + d (un ,l2) ≤ 2𝜖 Comme 𝜖 > 0 arbitraire d (l1,l2) = 0,
soit par l’axiome de séparation l1 = l2.

Proposition 2.3

(i) Si un → u, alors pour tout x , d (un ,x) → d (u ,x).
(ii) Toute suite convergente est bornée (réciproque fausse).
(iii) Si E est un evn un → u ,vn → v alors pour toute suite

𝜆n ∈ K, tel que 𝜆n → 𝜆 on a 𝜆nun + vn → 𝜆u + v .

Démonstration. (i) Par l’inégalité triangulaire inverse |d (un ,x) −
d (u ,x) | ≤ d (un ,u)

(ii) Par (i) et le cas réel.
(iii) Vu 𝜆nun + vn − (𝜆u + v ) = 𝜆n (un − u) + (vn − v ) + (𝜆n − 𝜆 )u,

homogénéité et inégalité triangulaire implique :

| |𝜆nun + vn − (𝜆u + v ) | |
≤ |𝜆n | | |un − u | | + | |vn − v | | + |𝜆n − 𝜆 | | |u | | → 0.

Suite extraite, valeur d’adhérence

Définition 2.7

Soit (un) une suite de X on appelle suite extraite ou sous-suite une
suite de la forme vn = u𝜙(n ) , pour 𝜙 : N → N une application
strictement croissante

Définition 2.8

On appelle valeur d’adhérence d’une suite (un) toute limite d’une
suite extraite convergente.
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Proposition 2.4

Toute suite extraite d’une suite convergente converge vers la
même limite. (Autrement dit, toute suite convergente n’a qu’une
seule valeur d’adhérence, sa limite.)

Démonstration. Supposons un → l et si vn une suite extraite, d (vn ,l )
est extraite de d (un ,l ) ( le résultat est donc une conséquence du cas
réel).

5 Suite de Cauchy, Complétude

Définition 2.9

Une suite (un) de X est dite de Cauchy si :

∀𝜖 > 0,∃N ∈ N,∀(p ,q ) ∈ N2,p ≥ N et q ≥ N
⇒ d (up ,uq ) ≤ 𝜖 .

La proposition suivante est similaire au cas réel (cf. cours de L2).

Proposition 2.5

Toute suite convergente est de Cauchy. Toute suite de Cauchy
est bornée. Toute suite de Cauchy possédant une valeur d’adhé-
rence est convergente.

Définition 2.10

Un espace métrique X est dit complet si toute suite de Cauchy
de X converge dans X . Si un evn E est complet on dit que c’est
un espace de Banach.

On a vu en première année que K est complet (mais pas Q). Vous
avez vu en L2 que (Rn , | | · | |2) est complet. On verra que tout evn de
dimension finie est complet.
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⋆ Proposition 2.6

Un evn E est complet si et seulement si toute série absolument
convergente est convergente.

Démonstration. Si E est complet et (xi ) est absolument convergente,

la suite des sommes partielles Sp =

p∑︁
i=1

xi vérifie, pour q > p, | |Sp −

Sq | | ≤
q−1∑︁
k=p

| |xi | | donc comme
q∑︁
k=1

| |xi | | est convergente donc de Cauchy,

on déduit que (Sp ) est de Cauchy donc converge.
Réciproquement, si toute suite absolument convergente converge,

soit (xi ) une suite de Cauchy. Il suffit de montrer qu’elle admet une
sous-suite convergente pour voir qu’elle converge. Par la propriété de
Cauchy, on trouve par induction | |xnk+1 | | avec | |xnk+1 −xnk | | ≤ 1

2k
de sorte

que la série télescopique
∑︁

xnk+1−xnk est absolument convergente donc
converge, et donc la sous-suite (xnk ) converge.

Exemple 2.7

Dans le cadre de l’exemple 2.3, vous avez vu en L2 que toute sé-
rie normalement convergente de (C 0 ( [a,b],R), | |.| |∞) converge
uniformément. D’après le résultat précédent, c’est équivalent à
dire que (C 0 ( [a,b],R), | |.| |∞) est un espace de Banach (aussi vu
directement en L2 en analyse 2 Prop 7.6). Par contre ce n’est
pas le cas de (C 0 ( [a,b],R), | |.| |i ), i = 1,2. On verra qu’ils sont
denses dans les espaces de Lebesgue Li ( [a,b],R) qui seront eux
complets, et sont les constructions de base de la théorie de l’in-
tégration de Lebesgue.

Proposition 2.7

Si X ,Y sont des espaces métriques complets. Alors X ×Y (mu-
nie de la distance produit de l’exemple 2.4) est complet.

Démonstration. Si (un ,vn) est de Cauchy dans X ×Y , de même, (un) est
de Cauchy dans X , et (vn) dansY , donc par complétude (un) converge
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vers u et (vn) vers v . En conséquence (un ,vn) converge vers (u ,v ) vu
d ((un ,vn), (u ,v )) = max(d (un ,u),d (vn ,v )) → 0.

Théorème de Point fixe

⋆ Théorème 2.8: (du point fixe de Banach)

Soit (X ,d ) un espace métrique complet, et f : X → X une ap-
plication telle que

∃k < 1 ∀x ≠ y ∈ X d ( f (x), f (y)) ≤ kd (x ,y) .

Alors f admet un unique point fixe.

Démonstration. Soit x0 ∈ X on définit par récurrence xn = f (xn−1) =

f ◦n (x0). Donc

d (xn+1,xn) = d ( f (xn), f (xn−1)) ≤ kd (xn ,xn−1)
≤ knd (x1,x0). (2.1)

Montrons que xn est bornée en voyant par récurrence que

d (xn ,x0) ≤
n−1∑︁
i=0

k id (x1,x0). C’est évident pour n = 1. Et par l’inéga-

lité triangulaire et (2.1) :

d (xn+1,x0) ≤ d (xn+1,xn) + d (xn ,x0)

≤ knd (x1,x0) +
n−1∑︁
i=0

k id (x1,x0)

=

n∑︁
i=0

k id (x1,x0)

Or on reconnaît une série géométrique convergente, d’où la borne :
d (xn+1,x0) ≤ 1

1−k d (x1,x0).
Montrons que xn est de Cauchy. En effet, pour m > n,

d (xn ,xm) = d ( f ◦n (x0), f ◦n (xm−n))
≤ knd (x0,xm−n)

≤ kn 1
1 − k d (x1,x0)
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Comme kn 1
1−k → 0, on déduit que pour N grand et m > n ≥ N

d (xn ,xm) est arbitrairement petit, donc xn est de Cauchy. Par complé-
tude de X , on obtient donc que xn converge, disons vers x . Main-
tenant, en passant à la limite dans (2.1), on obtient d ( f (x),x) =

limn d ( f (xn),xn) ≤ lim supn d ( f (xn),xn) ≤ lim supn k
nd (x1,x0) = 0

donc par séparation f (x) = x et x est le point fixe cherché.

6 Ouverts dans un espace métrique
Soit (X ,d ) un espace métrique.

⋆ Définition 2.11

Une partie O ⊂ X est un ouvert (ou une partie ouverte) si

∀x ∈ O ,∃r > 0, B (x ,r ) ⊂ O .

Exemples d’ouverts et propriétés
X ,∅ sont des ouverts de X . [a,b], [a,b [ ne sont pas ouverts dans R

mais ]a,b [ l’est.

Proposition 2.9

Les boules ouvertes sont ouvertes.

On remarquera que le mot ouvert a deux sens dans "boules ou-
vertes" et "parties ouvertes" mais qu’ils sont cohérents grâce à la pro-
position (les boules fermées ne sont pas des ouverts, cf. TD).

Démonstration. Soit a ∈ X ,r > 0 montrons que B (a,r ) est un ouvert
(B (a,0) est vide donc ouvert). Soit x ∈ B (a,r ), r − d (x ,a) > 0, il suffit
donc de montrer que :

B (x ,r − d (x ,a)) ⊂ B (a,r ).

C’est une conséquence de l’inégalité triangulaire. En effet, si y ∈
B (x ,r −d (x ,a)), alors d (y ,a) ≤ d (y ,x)+d (x ,a) < (r −d (x ,a))+d (x ,a) =
r , donc y ∈ B (a,r ).
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⋆ Proposition 2.10

1. La partie vide ∅ et X sont des ouverts.
2. la réunion d’une famille d’ouverts est ouverte.
3. l’intersection d’une famille finie d’ouverts est ouverte.

Remarque 2.3. On appelle topologie une famille de parties d’un
ensemble, qui, comme la famille des ouverts d’un espace mé-
trique, vérifie ces trois propriétés. La famille des ouverts deX est
donc appelée topologie (métrique) de X . ∩n∈NB (a,1/n) = {a}
qui n’est pas ouvert dans X montre que l’hypothèse "finie" est
cruciale dans 3.

Démonstration. 1. évident.
2. Soit (Oi )i ∈I une famille d’ouverts. On peut supposer I non vide

(sinon l’union vide étant vide on est ramené à 1). Soit x ∈ O =

∪i ∈IOi , donc il existe j ∈ I , x ∈ O j . Comme O j est ouvert il
existe r > 0, B (x ,r ) ⊂ O j ⊂ O . Donc O est ouvert.

3. Soit O1, ...,On une famille finie d’ouverts. Soit x ∈ O = O1 ∩ · · · ∩
On . Comme x ∈ Oi , et Oi ouvert, il existe ri > 0,B (x ,ri ) ⊂ Oi .
Soit r = mini=1...n ri > 0. On déduit de la définition que B (x ,r ) ⊂
B (x ,ri ) ⊂ Oi donc B (x ,r ) ⊂ O , ce qui montre que O est ouvert.

Exemple 2.8

Soit O = {(x ,y),x > 0}. Montrons que c’est un ouvert de R2

pour la norme | |.| |∞. En effet

O =
⋃︂

(x ,y ) ∈O
]0,2x [×]y − x ,y + x [

=
⋃︂

(x ,y ) ∈O
B | | . | |∞ ((x ,y),x),

est ouvert comme union d’ouverts.
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⋆ Proposition 2.11: (Ouverts pour la métrique induite)

Soit A ⊂ (X ,d ) avec la métrique induite, O est un ouvert de A,
si et seulement si il existe un ouvert U de X tel que O = U ∩A.

Démonstration. On suppose O ouvert de A. Pour chaque x ∈ O , on fixe
rx > 0 tel que BA (x ,rx ) ⊂ O . On pose alors

U =
⋃︂
x∈O

BX (x ,rx )

qui est un ouvert de X par union de boules ouvertes. Or O ⊂ U ∩ A
car rx > 0 donc pour tout x ∈ O , x ∈ BX (x ,rx ) ⊂ U . Et U ∩ A =⋃︂
x∈O

BX (x ,rx ) ∩ A =
⋃︂
x∈O

BA (x ,rx ) ⊂ O . Donc U ∩ A = O .

Réciproquement, comme U est ouvert soit x ∈ O ⊂ U , il existe
r > 0, BX (x ,r ) ⊂ U donc BA (x ,r ) = BX (x ,r ) ∩A ⊂ U ∩A = O donc O
est ouvert dans A.

Intérieur
Définition 2.12

Soit A ⊂ X , on dit que x est intérieur à A (ou A est un voisinage
de x) si ∃r > 0,B (x ,r ) ⊂ A.
On note Int(A) ou Å l’ensemble des points intérieurs à A.

⋆ Proposition 2.12

Int(A) est le plus grand ouvert contenu dans A.

Démonstration. 1. Int(A) contient tous les ouverts inclus dans
A.
Soit U un ouvert contenu dans A. Soit x ∈ U , alors comme U
est ouvert, ∃r > 0,B (x ,r ) ⊂ U ⊂ A, donc x est intérieur à A.
Ainsi U ⊂ Int(A)

2. Int(A) est un ouvert. Soit x ∈ Int(A). Soit donc r > 0 tel que
B (x ,r ) ⊂ A. Comme B (x ,r ) est ouvert, tout y ∈ B (x ,r ) est in-
térieur à B (x ,r ) donc intérieur à A. En bilan, ∀x ∈ Int(A),∃r >

0, B (x ,r ) ⊂ Int(A), ce qui conclut.
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Corollaire 2.13: (exo, cf TD)

1. A ouvert si et seulement si A = Int(A).
2. A ⊂ B ⇒ Int(A) ⊂ Int(B)
3. Int(A) ∪ Int(B) ⊂ Int(A ∪ B)
4. Int(A) ∩ Int(B) = Int(A ∩ B)

Exemple 2.9

Soit F = {(x ,y),x ≥ 0}. Montrons que I nt (F ) = O := {(x ,y),x >

0}. On a vu à l’exemple 2.8 queO est ouvert, donc commeO ⊂ F,
on a O ⊂ I nt (F ). Il reste à voir que I nt (F ) ∩ {(x ,y),x = 0} = ∅
(car alors I nt (F ) ⊂ F − {(x ,y),x = 0} = O ). Mais soit (−𝜖 ,y) ∈
B | | . | |∞ ((0,y), 𝜖) ∩ F c pour tout 𝜖 > 0, donc B | | . | |∞ ((0,y), 𝜖) ⊄ F
donc (0,y) n’est pas intérieur à F , ce qu’il fallait démontrer.

7 Fermés dans un espace métrique.
Soit (X ,d ) un espace métrique.

Rappel 2.4. Soit A ⊂ X , on note Ac = {x ∈ X | x ∉ A} le
complémentaire de A. On rappelle que ∅c = X ,X c = ∅, (Ac )c =
A, A ∪ Ac = X ,A ∩ Ac = ∅. Les lois de De Morgan impliquent
que pour une famille (Ai )i ∈I(︄⋃︂

i ∈I
Ai

)︄c
=

⋂︂
i ∈I
Aci ,

(︄⋂︂
i ∈I
Ai

)︄c
=

⋃︂
i ∈I
Aci .
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Définition 2.13

Soit F ⊂ X . On dit que F est un fermé de X si F c est un ouvert
de X .

Le résultat suivant est obtenu en passant au complémentaire le
résultat sur les ouverts.

⋆ Proposition 2.14

1. La partie vide ∅ et X sont des fermés.
2. l’intersection d’une famille de fermés est fermée.
3. l’union d’une famille finie de fermés est fermée.

⋆ Proposition 2.15: (Caractérisation séquentielle des fer-
més)

Une partie F d’un espace métrique X est fermée si et seulement
si toute suite convergente (xn) d’éléments de F a sa limite dans
F .

Démonstration. Supposons F fermé. Soit (xn) une suite d’éléments de
F , convergente vers x . Soit y ∈ F c , comme F c est ouvert il existe 𝜖 > 0
B (y , 𝜖) ⊂ F c , d’où xn ∉ B (y , 𝜖) Donc d (xn ,y) ≥ 𝜖 . En passant à la limite
on déduit

d (x ,y) ≥ | d (xn ,x) − d (xn ,y) |
≥ 𝜖 − d (xn ,x) →n→∞ 𝜖 > 0,

Donc d (x ,y) ≥ 𝜖 donc x ≠ y . Comme y était arbitraire dans F c , x ∈ F .
Réciproquement, supposons que F n’est pas fermé et montrons

que la seconde caractérisation est fausse. Soit x ∈ F c montrant que
F c n’est pas ouvert, donc pour tout n ∈ N, B (x ,1/n) ∩ F ≠ ∅. Soit
xn ∈ B (x ,1/n) ∩ F d (xn ,x) ≤ 1/n →n→∞ 0, donc (xn) est une suite
d’éléments de F qui converge vers x ∈ F c .

Exemple 2.10

Montrons avec la caractérisation séquentielle que A =

{(x ,y),x > 0,y > 0} n’est pas fermé pour la norme | |.| |∞. En
effet A ∋ (1/n,1/n) → (0,0) ∉ A, ce qui contredirait l’hypothèse
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que A fermé. Montrons de même que B = {(x ,y),x ≥ 0,y ≥ 0}
est fermé. En effet, Soit (xn ,yn) ∈ B tel que (xn ,yn) → (x ,y) on
a xn → x ,yn → y donc comme xn ≥ 0, on déduit x ≥ 0, et de
même y ≥ 0 donc (x ,y) ∈ B . Ainsi, comme toute limite de suite
de B est dans B , on déduit que B est fermé.

Vous avez vu en L2 le résultat suivant :

Proposition 2.16: (Relations Fermé-Complet)

Soit E un espace métrique.

1. Si C ⊂ E est complet alors il est fermé.
2. Si C ⊂ E est complet et F ⊂ C est un fermé de E, alors
F est complet.

Démonstration. 1. Si C ⊂ E est complet alors si on considère une
suite (xn) convergente vers x dans E, elle est de Cauchy, donc
converge dans C , donc x ∈ C par unicité de la limite.

2. Si C ⊂ E est complet et F ⊂ C . Soit xn une suite de Cauchy de
F , elle converge dans C , donc comme F est fermé, la limite est
dans F , donc toute suite de Cauchy de F converge dans F .

En passant au complémentaire la proposition 2.11, on obtient :

Proposition 2.17: (Fermés pour la métrique induite)

Soit A ⊂ (X ,d ) avec la métrique induite, F est un fermé de A,
si et seulement si il existe un fermé C de X tel que F = C ∩ A.

Adhérence

Définition 2.14

SoitA ⊂ X . Un point x ∈ X est dit adhérent à A si ∀𝜖 > 0B (x , 𝜖)∩
A ≠ ∅.
On note A (ou Adh(A)) l’ensemble des points adhérents à A.
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Exemple 2.11

X = X ,∅ = ∅,A ⊂ A. Si r > 0, dans un e.v.n. E, on a
B (a,r ) = BF (a,r ). Si A = {xn}n∈N les valeurs d’adhérence de
la suite (xn) sont dans A qui est l’union de l’ensemble des va-
leurs d’adhérence et de A (exo).

Proposition 2.18

(Adh(A))c = Int(Ac ).

(Int(B))c = Adh(B c ).

Démonstration. Un point x ∈ X n’appartient pas à Adh(A) si et seule-
ment si ∃𝜖 > 0,B (x , 𝜖) ∩ A = ∅ ⇐⇒ ∃𝜖 > 0,B (x , 𝜖) ⊂ Ac . C’est par
définition équivalent à dire que x est un point adhérent à Ac .En appli-
quant le premier résultat à A = B c , on en déduit le second.

On en déduit toutes les propriétés en passant au complémentaire
celles de l’intérieur.

Corollaire 2.19

1. A est le plus petit fermé contenant A.
2. A fermé si et seulement si A = A.
3. A ⊂ B ⇒ A ⊂ B
4. A ∩ B ⊃ A ∩ B
5. A ∪ B = A ∪ B

Démonstration. 1. A est fermé vu que son complémentaire est l’ouvert
Int(Ac ). Si F est un fermé contenant A, F c est un ouvert contenu dans
Ac donc dans Int(Ac ) le plus grand ouvert contenant Ac . En passant
au complémentaire, F ⊃ A. Les résultats 2.3.4.5 sont analogues, par
passage au complémentaire, de résultats sur l’intérieur.
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⋆ Proposition 2.20: (Caractérisation séquentielle de
l’adhérence)

x ∈ A si et seulement si il existe une suite (an) d’éléments de A
vérifiant an → x .

Démonstration. Si x est adhérent à A pour tout entier n B (x ,1/n) ∩ A
est non vide donc contient un élément an . La suite (an) ∈ AN converge
vers x vu d (an ,x) ≤ 1/n → 0. La réciproque vient de la caractérisation
séquentielle des fermés vu A fermé.

⋆ Exemple 2.12

Montrons que si A = {(x ,y),x > 0,y > 0} alors A = B =

{(x ,y),x ≥ 0,y ≥ 0}. On a vu à l’exemple 2.10 que B est fermé,
donc comme A ⊂ B , on en déduit A ⊂ B
Il reste à montrer que B − A = {(x ,y),x = 0,y ≥ 0 ou y =

0,x ≥ 0} ⊂ A. Or (0,y) = limn→∞ (1/n,y + 1/n) et si y ≥ 0,
(1/n,y +1/n) ∈ A, donc (0,y) ∈ A. De même (x ,0) = limn→∞ (x+
1/n,1/n) ∈ A si x ≥ 0.

Densité, Frontière

Définition 2.15

Une partie A est dite dense dans X si A = X .

Exemple 2.13

Q et Qc sont denses dans R.

Définition 2.16

Un point x ∈ X est dit point frontière d’une partie A si pour tout
r > 0, B (x ,r ) est d’intersection non vide avec A et Ac . On note
Fr(A) l’ensemble des points frontières de A.
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Remarque 2.5. D’après la définition, Fr(A) = Fr(Ac ) = A ∩Ac est
un fermé.

Exercice 2.3. Montrer que Int(Ac ),Fr(A),Int(A) forment une par-
tition de X (i.e. sont disjoints deux à deux et leur union est X ).

8 Fonctions continues

Définitions équivalentes
On considère (X ,dX = d ) et (Y,dY = d ) deux espaces métriques.

⋆ Définition 2.17

Soient A ⊂ X ,Y des espaces métriques et f : A →Y .

1. Soit a ∈ A, f est dit continue en a si limx→a f (x) = f (a),
soit

∀𝜖 > 0,∃𝛿 > 0,∀x ∈ A
dX (x ,a) < 𝛿 ⇒ dY ( f (x), f (a)) < 𝜖 .

2. f est continue sur A si f est continue en tout point de A.
Autrement dit,

∀a ∈ A,∀𝜖 > 0,∃𝛿 > 0,

∀x ∈ AdX (x ,a) < 𝛿 ⇒ dY ( f (x), f (a)) < 𝜖 .

Remarque : 𝛿 = 𝛿(a, 𝜖) dépend à la fois de 𝜖 et de a. Vous avez vu
en L2, le résultat suivant.

⋆ Proposition 2.21: (Caractérisation séquentielle de la
continuité)

Soit f : X → Y . L’application f est continue en x ∈ X si
et seulement si pour toute suite (xn) d’éléments de X : si xn
converge vers x , alors f (xn) converge vers f (x).
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Démonstration. Supposons que f tend vers l = f (x) en x . Soit 𝜖 > 0 il
existe 𝜂 > 0 tel que f (B (x ,𝜂)) ⊂ B (l , 𝜖). Vu que xn → a il existe N , tel
que ∀n ≥ N ,d (xn ,a) ≤ 𝜂 donc ∀n ≥ N ,d ( f (xn),l ) ≤ 𝜖 . Ceci indique
que f (xn) → l .

Réciproquement, supposons par contraposition, qu’il existe 𝜖 > 0
tel que pour tout 𝜂 > 0 f (B (x ,𝜂)) ∩ B (l , 𝜖)c ≠ ∅. Donc, en prenant,
𝜂 = 1/n, on obtient xn ∈ B (x ,1/n), tel que d ( f (xn),l ) ≥ 𝜖 . Pour tout n,
donc xn → a et f (xn) ne converge pas vers l comme voulu.

⋆ Proposition 2.22: (Caractérisation topologique de la
continuité)

Soit f : X →Y . Les assertions suivantes sont équivalentes :

1. f est continue sur X .
2. Pour tout ouvert O de Y , l’image inverse f −1 (O ) est ou-

verte dans X .
3. Pour tout fermé F de Y , l’image inverse f −1 (F ) est fer-

mée dans X .

Démonstration. 2. ⇐⇒ 3. vient de ( f −1 (B))c = ( f −1 (B c )) et de la rela-
tion fermés/ouverts.

1. ⇒ 2. Soit O un ouvert de Y et x ∈ O , il existe et on choisit
𝜖 (x) > 0 tel que B (x , 𝜖 (x)) ⊂ O . Par continuité de f , soit y ∈ f −1 (O ),
f (y) = x ∈ O , il existe 𝛿(y) > 0 tel que f (B (y , 𝛿(y))) ⊂ B (x , 𝜖 ( f (y))) ⊂
O . Donc B (y , 𝛿(y)) ⊂ f −1 (O ) et comme y est arbitraire, f −1 (O ) est
ouvert.

2. ⇒ 1. Soit a ∈ A. Montrons que limx→a f (x) = f (a). Soit 𝜖 > 0.
Par 1. V = f −1 (B ( f (a), 𝜖)) est un ouvert X . Or a ∈ V donc ∃𝛿 > 0 tel
que B (a, 𝛿) ⊂ V . En conséquence

f (B (a, 𝛿)) ⊂ f (V ) = f ( f −1 (B ( f (a), 𝜖))) ⊂ B ( f (a), 𝜖),

ce qui conclut.

Corollaire 2.23: (Stabilité par composition de la continuité)

Si f : X →Y et g :Y → Z sont continues, alors g ◦ f : X → Z
est continue.

Démonstration. Pour tout ouvert U de Z , g −1 (U ) est ouvert de Y par
coninuité de g , puis f −1 (g −1 (U )) est ouvert par coninuité de f , mais
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f −1 (g −1 (U )) = (g ◦ f )−1 (U ). Comme c’est vrai pour tout ouvertU , on
déduit de nouveau du théorème précédent que g ◦ f est continue.

Exemple 2.14

1. f : X → R définit par f (x) = d (x ,z ) est continue sur
E car |d (x ,z ) −d (x0,z ) | ≤ d (x ,x0) (inégalité triangulaire
inverse).

2. Soit 0 ≤ p ≤ n = r + s , p : Rn → Rs définie par si
x = (y ,z ) ∈ Rn = Rr ×Rs , p (x) = z . On munit Rn et Rs des
normes | |.| |1, on voit | |p (x) | |1 ≤ ||x | |1, donc comme p est
linéaire, p est continue car | |p (x)−p (y) | |1 = | |p (x−y) | |1 ≤
||x − y | |1.

Remarque 2.6. Il résulte des théorèmes sur les limites que les
opérations algébriques usuelles (somme, produit, composition)
préservent la continuité. En particulier si P est une fonction
polynomiale P : Rn → R c’est à dire de la forme P (x) =∑︁
finie

ai1,...,inx
i1
1 . . . x inn est continue comme somme et produits des

projections (x1, ...,xn) ↦→ xi .

⋆ Théorème 2.24: (de prolongement des identités)

Si f , g : (X ,d ) → (Y,d ) sont deux applications continues et
D ⊂ X est dense. Si f et g sont égales sur D , alors elles sont
égales (sur tout X ).

Démonstration. Soit x ∈ X , on sait par caractérisation séquentielle de
l’adhérence qu’il existe an ∈ D avec an → x . Par continuité de f , g en x ,
et caractérisation séquentielle de la continuité : f (an) → f (x), g (an) →
g (x). Mais on sait que f (an) = g (an) par hypothèse, donc par unicité de
la limite dansY , f (x) = g (x). Comme x est arbitraire, on a f = g .
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Homéomorphismes, Continuité uniforme,
Lipschitzianité

Définition 2.18

Une application f : X →Y est dite un homéomorphisme (ou une
application bicontinue) si elle est bijective et si f : X → Y et
f −1 :Y → X sont continues.

⋆ Définition 2.19

Une application f : X →Y est uniformément continue si :

∀𝜖 > 0,∃𝛿 > 0 :(∀(x ,x ′) ∈ X 2,d (x ,x ′) ≤ 𝛿)
⇒ d ( f (x), f (x ′)) ≤ 𝜖 .

Une application f : X →Y est K-lipschitzienne avec K ∈ [0,+∞[
si :

∀(x ,y) ∈ X 2,d ( f (x), f (y)) ≤ Kd (x ,y).

Remarque : dans la continuité uniforme, 𝛿 = 𝛿(𝜖 ) ne dépend PAS
de x , contrairement au cas de la continuité.

Proposition 2.25

Une application uniformément continue est continue.

Proposition 2.26

Un application K-lipschitzienne est uniformément continue.

Démonstration. Pour 𝜖 > 0 dans la définition il suffit de prendre 𝛿 =

𝜖/K .

Exemple 2.15

f : R+ → R f (x) =
√
x est uniformément continue mais pas lip-

schitzienne (cf TD.). Toute application uniformément continue
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est continue mais la réciproque est fausse : g : R → R g (x) = x2

n’est pas uniformément continue sur R (cf TD.).
x ↦→ d (x ,z ) est 1-lipschitzienne X → R, (x ,y) ↦→ x + y est
2-lipschitzienne E × E → E .

Le résultat suivant ne doit pas être confondu avec le Théorème
2.24qui ne donne que l’unicité d’un prolongement mais pas son exis-
tence.

⋆ Théorème 2.27: (de prolongement des applications uni-
formément continues)

Si f : (D ,d ) → (Y,d ) est une application uniformément conti-
nue, D ⊂ (X ,d ) est dense et (Y,d ) est complet. Alors f admet
un unique prolongement continue g : (X ,d ) → (Y,d ) et celui-ci
est uniformément continue.

Démonstration. L’unicité vient du Théorème 2.24.
Soit x ∈ X , et par densité xn ∈ D , xn → x . Comme f est uni-

formément continue soit 𝜖 > 0 et 𝛿 > 0 tel que dX (x ,y) < 𝛿 ⇒
dY ( f (x), f (y) ≤ 𝜖 . Si on prend N tel que d (xn ,xm) < 𝛿, pour n,m ≥ N ,
on voit que dY ( f (xn), f (xm)) ≤ 𝜖 , donc comme 𝜖 est arbitraire, ( f (xn))
est de Cauchy. Donc ( f (xn)) converge vers z ∈Y par complétude.

Soit yn → x une autre telle suite, alors d ( f (yn),z ) ≤
d ( f (xn), f (yn)) + d ( f (xn),z ) → 0, car d ( f (xn), f (yn)) ≤ 𝜖 dès
que d (xn ,yn) ≤ 𝛿et on voit donc que d (xn ,yn) → 0 implique que
d ( f (xn), f (yn)) → 0. Donc la limite z ne dépend pas de la suite choisie.
On pose g (x) = z .

En particulier, g étend f (en considérant la suite constante).
Soit z ∈ X avec d (x ,z ) < 𝛿 et zn → z alors pour n assez grand
d (xn ,zn) < 𝛿 donc dY ( f (xn), f (zn) ≤ 𝜖 et on déduit en passant à la
limite dY (g (x), g (z )) ≤ 𝜖 . Donc g est uniformément continue (avec
même constantes que f ).
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Fonctions continues bornées
Exemple 2.16

Soit X un espace métrique, F un e.v.n. et Cb (X ,F ) l’ensemble
des fonctions continues bornées sur X à valeur dans F , on a la
norme uniforme (exo : vérifier que c’est bien une norme) :

| | f | |∞ = sup
x∈X

| | f (x) | |F

Le résultat suivant a été vu en L2 pour F = R.

⋆ Théorème 2.28

Les espaces (Cb (X ,F ), | |.| |∞), pour X espace métrique et F es-
pace de Banach est un espace de Banach.

Démonstration. On a vu que ce sont des espaces normés. Montrons
qu’ils sont complets. Soit fn une suite de Cauchy, donc comme | | fp (x) −
fq (x) | |F ≤ || fp − fq | |∞, pour tout x ∈ X , ( fp (x)) est de Cauchy, donc par
complétude de F , converge vers une valeur f (x). Soient p ,q tels que
pour tout x | | fp (x) − fq (x) | | ≤ 𝜖 en prenant la limite q → ∞, on déduit
| | fp (x) − f (x) | | ≤ 𝜖 donc | | fp − f | | ≤ 𝜖 . Donc fp converge uniformément
vers f , donc f est continue (résultat de L2 ou exo). De plus, | | fp | |∞ est
convergente, donc de Cauchy, donc bornée, disons par M . En passant
à la limite dans l’inégalité | | fp (x) | |F ≤ M , on obtient | | f (x) | |F ≤ M et
donc f est aussi bornée par M . Donc la limite f est continue bornée
et fp converge vers f dans Cb (X ,F ). Ce qui donne la complétude.

9 Applications linéaires continues
On considère (E , | |.| |) et (F, | |.| |) deux evn.

Rappel 2.7. Une application u : E → F est dite linéaire si :

(i) ∀x ,y ∈ E ,u (x + y) = u (x) + u (y)
(ii) ∀x ∈ E ,𝜆 ∈ K,u (𝜆x) = 𝜆u (x).
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Proposition 2.29

Si u : E → F est une application linéaire, les assertions sui-
vantes sont équivalentes :

1. u est lipschitzienne.
2. u est continue.
3. u est continue en 0.
4. u est continue en un point.
5. Il existe a ∈ E,𝜂 > 0 tel que u (B (a,𝜂)) ⊂ B (u (a),1).
6. u est bornée sur la boule unité fermée BE (0,1)

Démonstration. (Preuve facultative) 1. ⇒ 2., 2. ⇒ 3.,3. ⇒ 4.,4. ⇒ 5.
sont évidentes (et n’utilisent pas la linéarité). Si on suppose 5., il existe
𝜂 > 0 tel que si | |x − a | | ≤ 𝜂 alors | |u (x) − u (a) | | ≤ 1. Soit h ∈ E,
h ≠ 0, x = a + h𝜂/| |h | | de sorte que | |x − a | | ≤ 𝜂, on déduit donc
| |u (h) | |𝜂/| |h | | = | |u (x − a) | | ≤ 1 c’est-à-dire | |u (h) | | ≤ | |h | |/𝜂 (ce qui est
aussi vrai pour h = 0). En particulier, si | |h | | ≤ 1, on obtient donc 6.

Si on suppose 6., on montre finalement 1, on pose C =

sup | |h | | ≤1 | |u (h) | | < ∞ et on obtient de même pour h ≠ 0, | |u (h/| |h | |) | | ≤
C donc | |u (h) | | ≤ C | |h | | (ce qui est aussi vrai pour h = 0). Donc pour
tout x ,y en utilisant encore la linéarité u (x−y) = u (x)−u (y), on obtient :

| |u (x) − u (y) | | ≤ C | |x − y | |,

donc u est C -lipschitzienne.

Proposition 2.30

Si 𝜙 : E → K est une application linéaire (forme linéaire), 𝜙 est
continue si et seulement si son noyau H = Ker 𝜙 = 𝜙−1 ({0}) est
fermé.

Démonstration. Si 𝜙 est continue, 𝜙−1 ({0}) est fermé comme image in-
verse d’un singleton, qui est fermé. Réciproquement, supposons 𝜙 non
nulle, soit e tel que 𝜙(e ) = 1. Comme le complémentaire deH est ouvert
soit r > 0 tel que B (e ,r ) ⊂ H c .

Montrons par l’absurde que pour tout x ∈ B (e ,r ), 𝜙(x) ∈ B (1,1).
En effet, sinon soit x avec |𝜙(x) − 1| ≥ 1. Si t = −𝜙(x)/(1 − 𝜙(x)),
on 𝜙(te + (1 − t )x) = t1 + (1 − t )𝜙(x) = t (1 − 𝜙(x)) + 𝜙(x) = 0. Or
| |te + (1 − t )x − e | | = |1 − t | | |x − e | | = | |x − e | |/|𝜙(x) − 1| ≤ r une
contradiction car alors y = te + (1 − t )x ∈ B (e ,r ) ∩H .
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On a donc vu 𝜙(B (e ,r )) ⊂ B (𝜙(e ),1) d’où 𝜙 continue par la pro-
position précédente.

Définition 2.20

L’espace E ′ := L(E ,K) des formes linéaires continues sur un
e.v.n. E est munie de la norme duale

| | f | |E ′ := sup
x∈E ,| |x | |E≤1

| f (x) |.

⋆ Définition 2.21

L’espace L(E ,F ) des applications linéaires continues d’un e.v.n.
E vers un e.v.n. F est munie de la norme subordonnée (ou norme
d’opérateur) :

| | | f | | | := sup
x∈E ,| |x | |E≤1

| | f (x) | |F .

Remarque 2.8. La preuve de 6. implique 5. dans la proposi-
tion 2.29 montre en fait que si f ∈ L(E ,F ) alors f est | | | f | | |-
lipschitzienne.

Un espace dual est toujours complet par le résultat suivant :

Théorème 2.31

Si E est un e.v.n. et F un espace de Banach, alors (L(E ,F ), | | |.| | |)
est un espace de Banach.

Démonstration. Soit B la boule fermée de E de centre 0 et de rayon
1 et i : L(E ,F ) → Cb (B ,F ) la restriction à la boule. Par définition
des normes, c’est une isométrie qui identifie donc L(E ,F ) à un sous
espace de Cb (B ,F ). Montrons que ce sous espace est fermé (il sera
donc complet par complétude de Cb (B ,F ) par théorème 2.28).
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Montrons que

i (L(E ,F )) = {u ∈ Cb (B ,F ) :∀𝜆, 𝜇 ∈ K |𝜆 | + |𝜇 | ≤ 1,

∀x ,y ∈ B ,
u (𝜆x + 𝜇y) = 𝜆u (x) + 𝜇u (y)}.

Cela suffit car cela décrit i (L(E ,F )) comme une intersection de fermé
vu que u ↦→ u (y) est une application continue sur Cb (B ,F ). L’inclusion
⊂ est évidente. Réciproquement si u est continue sur B donc en 0 et
dans l’ensemble indiqué, pour x ∈ E\{0},on pose uE (x) = | |x | |Eu ( x

| |x | |E )
et uE (0) = 0. D’abord, si | |x | | ≤ 1 on remarque que uE étend la pré-
cédente valeure de u sur B (en prenant y = 0 dans la relation). De
même, uE est positivement homogène. Donc, si (x ,y) ≠ 0, on pose
x ′ = x/max( | |x | |, | |y | |),y ′ = y/max( | |x | |, | |y | |), 𝜆 ′ = 𝜆/(|𝜆 | + |𝜇 |), 𝜇′ =

𝜇/(|𝜆 | + |𝜇 |) pour obtenir par homogénéité et la relation appliquée à
x ′,y ′,𝜆 ′, 𝜇′ :

uE (𝜆x + 𝜇y) = ( |𝜆 | + |𝜇 |) max( | |x | |, | |y | |)u (𝜆 ′x ′ + 𝜇′y ′)
= ( |𝜆 | + |𝜇 |) max( | |x | |, | |y | |) [𝜆 ′u (x ′) + 𝜇′u (y ′)]
= 𝜆uE (x) + 𝜇uE (y)

Donc uE est linéaire continue en 0, donc linéaire continue et u = i (uE )
comme souhaité.

Définition 2.22

Une application linéaire u : E → F est une isométrie (linéaire)
si :

∀x ∈ E , | |u (x) | | = | |x | |.

Proposition 2.32

Une isométrie (linéaire) est toujours injective.

Une isométrie u : E → F identifie donc E au sous-espace vectoriel
u (E) ⊂ F avec la norme induite.

Démonstration. Si u (x) = 0 alors 0 = | |u (x) | | = | |x | | donc par séparation
x = 0.
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10 Propriétés particulières des evn
de dimension finie.

Complétude

⋆ Théorème 2.33

Tout evn de dimension finie est complet.

Démonstration. C’est bien connu en dimension 1. On montre donc le
résultat par récurrence sur la dimension. On suppose donc le résultat
acquis en dimension strictement inférieure à n, soit (E , | |.| |) de dimen-
sion n. Soit 𝜙 une forme linéaire non nulle sur E, son noyau F est de
dimension (n − 1), donc par hypothèse de récurrence (F, | |.| |) (muni
de la restriction de la norme de E) est complet. Par conséquent F est
fermé dans E, donc 𝜙 est continue.

Soit e ∈ E avec 𝜙(e ) = 1. L’isomorphisme linéaire u : (𝜆, f ) → 𝜆e +
f de K × F (avec la norme produit donc complet par la proposition 6)
sur E est continue ((1+||e | |)-lipschitzien). Son isomorphisme réciproque
est donné par :

∀x ∈ E , u−1 (x) = (𝜙(x),x − 𝜙(x)e ).

u−1 est donc aussi continue comme 𝜙 . u−1 étant lipschitzienne (car
linéaire continue et par la proposition 2.29 ), si (xn), suite de E, est de
Cauchy u−1 (xn) ∈ K × F l’est aussi donc converge par complétude de
K × F , d’où xn = u (u−1 (xn)) converge aussi par continuité de u−1.

Applications linéaires

Rappel 2.9. Si E de dimension n et F de dimension p . Soit
(e1, ...,en) une base de E, ( f1, ..., fp ) une base de F . Une appli-
cation linéaire u est décrite par sa matrice A = (ai j )i ∈[1,p ],j ∈[1,n ]

dans ces bases. Alors, si x =

n∑︁
j=1

x j e j et y = u (x) =
p∑︁
i=1

yi fi , on
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rappelle que :

yi =
n∑︁
j=1

ai j x j .

On définit aussi la base duale (e ∗1 , ...,e
∗
n) de l’ev des formes li-

néaires sur E caractérisés par e ∗j (ek ) = 1 si j = k et 0 sinon. En
conséquence, pour tout x ∈ E :

u (x) =
n∑︁
j=1

x ju (e j ) =
n∑︁
j=1

e ∗j (x)u (e j ).

⋆ Théorème 2.34

Toute application linéaire entre evn de dimensions finies est
continue (et même lipschitzienne).

Démonstration. En utilisant la représentation du rappel

u =

n∑︁
i=1

u (ei )e ∗i ,

il suffit de montrer que les formes linéaires e ∗i sont continues. Mais
Ker e ∗i est un sous-espace vectoriel de dimension fini donc complet
(Théorème 2.33), donc fermé (proposition 2.16) dans E, d’où la conti-
nuité voulue (proposition 2.30). La lipschitzianité vient de la proposi-
tion 2.29.

Équivalence des normes et conséquences.

⋆ Théorème 2.35

Toutes les normes d’un espace vectoriel normé de dimension
finie sont équivalentes.

Démonstration. Si | |.| |1 et | |.| |2 sont deux normes sur E, l’application
linéaire identité u = I dE vu de (E , | |.| |1) vers (E , | |.| |2) est continue
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ainsi que son inverse u−1 (théorème 2.34), donc elles sont C et 1/c -
lipschitzienne respectivement (proposition 2.29). On en déduit, pour
tout x ∈ E :

| |x | |2 = | |u (x) − u (0) | |2 ≤ C | |x | |1,

| |x | |1 = | |u−1 (x) − u−1 (0) | |1 ≤ 1
c
| |x | |2,

d’où l’équivalence des normes souhaitée.

Remarque 2.10. Sur Rn on peut donc parler de continuité, limite
etc. sans préciser la norme.

Proposition 2.36

Soient E un evn, A ⊂ E, f : A → Rn . Si x ∈ A, on note f (x) =
( f1 (x), ..., fn (x)) où les fi sont les fonctions composantes de f :
fi : A → R.
Soit x ∈ A et b = (b1, ...,bn) ∈ Rn , alors on a l’équivalence :

lim
x→a

f (x) = b ⇐⇒ ∀i = 1...n lim
x→a

fi (x) = bi .

Démonstration. On a fi = pi ◦ f , où pi est i-ème projection pi : Rn → R
définie par pi (x1, ...,xn) = xi . pi est continue d’après l’exemple 2.14.2.

Si limx→a f (x) = b , on déduit limx→a fi (x) = bi d’après le Théo-
rème de composition des limites.

Réciproquement, on munit Rn de la norme | |.| |∞. Si pour tout i
limx→a fi (x) = bi on a donc pour 𝜖 > 0, l’existence de 𝛿i > 0 tel que
si | |x − a | | ≤ 𝛿i , | | fi (x) − bi | | ≤ 𝜖 . On pose 𝛿 = mini=1...n (𝛿i ) > 0.
Donc si | |x − a | | ≤ 𝛿, pour tout i | | fi (x) − bi | | ≤ 𝜖 donc | | f (x) − b | |∞ =

max | | fi (x) − bi | | ≤ 𝜖 .

Corollaire 2.37

Soient E un evn, A ⊂ E, f : A → Rn . Si x ∈ A, on note f (x) =
( f1 (x), ..., fn (x)) où les fi sont les fonctions composantes de f :
fi : A → R. f est continue sur A (resp. en a ∈ A) si et seulement
si les fi sont continues sur A (en resp. a ∈ A).
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La preuve du résultat suivant est semblable et omise.

Proposition 2.38

Soit Xn = (x (1)n , ...,x (p )n ) une suite de Rp et soit L = (ℓ1, ...,ℓp ).
Alors Xn converge vers L si et seulement si pour tout i = 1...p
x (i )n → ℓi .

Proposition 2.39

Soient A ⊂ Rn , pi : Rn → R la i -ème projection définie par
pi (x1, ...,xn) = xi . Alors A est bornée dans Rn si et seulement si
pour tout i , pi (A) est bornée dans R.

11 Compacité dans les espaces
métriques

⋆ Définition 2.23

Soit K une partie de (X ,d ) espace métrique K est dite (séquen-
tiellement) compacte si elle possède la propriété suivante (dite de
Bolzano-Weierstrass) : De toute suite de K , on peut extraire une
suite convergente dans K .

Rappel 2.11. Dans R le théorème de Bolzano-Weierstrass indique
que toute suite bornée admet une sous-suite convergente et donc
que tout fermé borné est compact.

Proposition 2.40

Un compactK d’un espace métriqueX est un fermé borné deX .
Un sous-ensemble fermé d’un compact est compact. Le produit
de 2 espaces compacts est compact.
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Démonstration. 1. Un compact K est fermé, car si une suite (un)
converge vers l dans E, elle admet une sous-suite convergeant
vers k ∈ K , dont la limite est nécessairement l = k (proposition
2.4), donc l ∈ K .

2. On montre par contraposée qu’un ensemble non bornéA ne peut
pas être compact. Si A non-borné, soit xn ∈ A tel que d (xn ,y) ≥
n, si une suite extraite x𝜙(n ) → x convergeait, elle serait bornée,
ce qui n’est pas le cas car d (x𝜙(n ) ,y) ≥ 𝜙(n) →n→∞ ∞.

3. Si F ⊂ K avec K compact, F fermé, une suite de F admet une
sous suite convergeant dans K par compacité, donc sa limite est
dans F par fermeture, d’où F compacte.

4. Si K ,L sont compacts, pour une suite (xn ,yn) ∈ K ×L, on extrait
une suite (x𝜙(n ) ) convergente dans K , puis on réextrait (y𝜙(𝜓 (n ) ) )
convergente dans L (et a fortiori (x𝜙(𝜓 (n ) ) ) est aussi convergente)
donc (x𝜙(𝜓 (n ) ) ,y𝜙(𝜓 (n ) ) ) converge dans K × L.

Exemple 2.17

Soit F = {(x ,y) ∈ R2,xy = 1} est fermé mais pas compact. En
effet, si f (x ,y) = xy est polynomiale donc continue R2 → R
donc F = f −1 ({1}) est fermé comme image réciproque d’un
fermé par une application continue. Mais F n’est pas compact
car pas borné. xn = (1/n,n) ∈ F et | |xn | |∞ = n → ∞.

☡ Remarque 2.1. En général dans un evn un fermé borné
n’est PAS toujours compact. DansC 0 ( [0,1],R), montrons que
la boule unité fermée n’est pas compacte. fn (x) = xn vérifie
| | fn | |∞ = 1, mais comme fn (x) → f (x) (on dit converge simple-
ment vers f) avec f (x) = 0 si x < 1, f (1) = 1, donc f non conti-
nue. Toute suite extraite de f devrait converger vers cette limite
qui n’est pas continue, donc elle ne peut pas converger dans
C 0 ( [0,1],R) vers cette limite qui n’est pas dans C 0 ( [0,1],R). En
général, on peut montrer que les boules fermées d’evn sont com-
pactes si et seulement si l’evn est de dimension finie, on montre
une implication ci-dessous.
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⋆ Théorème 2.41

Si u : E → F est continue et K ⊂ E est compacte alors u (K )
est compacte.

Démonstration. Soit yn une suite de u (K ) donc yn = u (xn) ,avec (xn)
suite de K , on extrait donc une suite x𝜙(n ) convergeant vers x ∈ K . Par
continuité, la suite extraite y𝜙(n ) = u (x𝜙(n ) ) → u (x) ∈ u (K ).

⋆ Corollaire 2.42: (Thm. de Weierstrass)

Si K ⊂ X espaces métriques est compacte et f : K → R est
continue, alors la fonction f est bornée et atteint ses bornes :
∃x0,x1 ∈ K ,∀x ∈ K f (x0) ≤ f (x) ≤ f (x1).

Démonstration. f (K ) est compacte donc fermée et bornée. Donc f est
bornée, et le f (K ) contient son sup et son in f (par fermeture) c’est-à-
dire, il existe y0,y1 ∈ f (K ) y0 = infx∈K f (x), y1 = supx∈K f (x). Finale-
ment yi = f (xi ) avec xi ∈ K .

Corollaire 2.43

Soit X ,K deux espaces métriques avecK compact et f : K → X
une bijection continue, alors f est une homéomorphisme (c’est-
à-dire f −1 est continue et X est aussi compacte).

Démonstration. Comme f bijective, pour un fermé F ⊂ K , donc un
compact, ( f −1)−1 (F ) = f (F ) est l’image directe du compact F dans
X , donc est compact donc fermé. f −1 envoie donc un fermé sur un
fermé, donc est continue par caractérisation topologique de la conti-
nuité (Proposition 2.22).

⋆ Théorème 2.44

Dans un evn de dimension finie, les compacts sont exactement
les fermés bornés.

Démonstration. Il reste à montrer que les fermés bornés sont compacts.
D’après le théorème 2.34 un isomorphisme linéaire u de E sur Kn est
continu de (E , | |.| |) sur (K n , | |.| |∞), et u−1 également. u (K ) est fermé
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comme image réciproque d’un fermé par u−1 continue, u (K ) est borné
comme image d’un borné par une application lipschitzienne. Donc
L = u (K ) est un fermé borné de (K n , | |.| |∞). Il suffit de voir que c’est
un compact, car alors K = u−1 (L) est compact comme image continue
d’un compact (theorème 2.41). Soit (xp ) = (x (1)p , ...,x (n )p ) une suite de

L, par définition de la norme (x (i )p ) sont bornés, elles admettent donc,
par le théorème de Bolzano-Weierstrass dans K, une sous-suite simul-
tanément convergente. x (i )

𝜙(p ) → x (i ) Donc si x = (x (1) , ...,x (n ) ), on a

| |x𝜙(p ) − x | | = maxi=1...n |x (i )𝜙(p ) − x
(i ) | → 0 et comme L est fermé ; x ∈ L

ce qui conclut.

Exemple 2.18

Soit K = {(x ,y) ∈ R2x2 + y2/2 = 1} est compact. En effet, si
f (x ,y) = x2 + y2/2 est polynomiale donc continue R2 → R donc
F = f −1 ({1}) est fermé comme image réciproque d’un fermé
par une application continue. De plus K ⊂ B | | . | |∞,F (0,

√
2) donc

K est borné, donc fermé borné dans R2 de dimendion finie,
donc K est compact.

Exemple 2.19

Soit g : K → R définie par g (x ,y) = x2 + y2 g est continue
donc atteint ses bornes sur K compact. En effet g est la distance
euclidienne à l’origine, il est facile de voir qu’elle atteint son
maximum 2 en (0,±

√
2) sur K et son minimum 1 en (±1,0)

sur K . Le théorème des extremas liés permettra de retrouver ce
résultat pour des g et des K plus généraux.

⋆ Théorème 2.45: (de Heine)

Toute fonction continue f sur un compact K ⊂ X est uniformé-
ment continue.

Démonstration. Soit g : (x ,y) → d ( f (x), f (y)) de K 2 dans R elle est
continue (pour la distance produit sur X 2 par composition) donc g (K 2)
est compact. Soit 𝜖 > 0 reste à trouver un 𝛿 de continuité uniforme.

A = {(x ,y) ∈ K 2 | d ( f (x), f (y)) ≥ 𝜖 } = g −1 ( [𝜖 ,+∞[)
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est fermé dans K 2 donc compact. Donc l’application continue (x ,y) ↦→
d (x ,y) atteint sa borne inférieure m. On a m ≠ 0 car sinon on aurait un
(x ,x) ∈ A, ce qui n’est pas possible vu 𝜖 > 0.

Finalement si 𝛿 > 0 est tel que 𝛿 < m, si d (x ,y) ≤ 𝛿, on a (x ,y) ∉ A,
donc d ( f (x), f (y)) < 𝜖 .

Complément : un résultat reliant complétude
et compacité (facultatif)

Proposition 2.46

Tout espace métrique compact X est complet.

Démonstration. Soit (xn) une suite de Cauchy de X , elle admet par com-
pacité une suite extraite convergente, donc elle converge (proposition
2.5).

Définition 2.24

Un espace métrique (X ,d ) est précompact si pour tout 𝜖 > 0,
X peut être couvert par un nombre fini de boules ouvertes de
rayon 𝜖 .

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec [6, Th II.1
p135] ou Gourdon d’Analyse [5, p 32]) ou la proposition A.7.

Proposition 2.47

Un espace métrique X est compact si et seulement si il est pré-
compact et complet.

Complément : Compacité topologique
(facultatif)

On rappelle le résultat suivant (cf. e.g. Gourdon d’Analyse [5, Thm
1 p 28])
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Théorème 2.48: (Propriété de Borel-Lebesgue)

Pour un ensemble K d’un espace métrique X est compact, si et
seulement si, pour tout (Ui )i ∈I est un recouvrement de K par
des ouverts Ui de X , au sens où K ⊂

⋃︂
i ∈I
Ui alors K admet un

sous-recouvrement fini : il existe I0 ⊂ I fini tel que K ⊂
⋃︂
i ∈I0

Ui .

En passant au complémentaire et à la contraposée, on obtient aussi
la version équivalente :

Théorème 2.49

Pour un ensemble K d’un espace métrique X est compact, si et
seulement si, pour tout (Fi )i ∈I est un fermé de K , si pour toute
intersection finie (i.e. avec I0 fini) est non-vide

⋂︂
i ∈I0

Fi ≠ ∅ alors

l’intersection complète est aussi non-vide
⋂︂
i ∈I

Fi ≠ ∅.

12 Intégrale de Riemann à valeur
Espace de Banach

Nous référons par exemple au Gourdon d’Analyse [5] (chapitre 3
secion 1) pour cette section. Soit F un evn complet. Soit I = [a,b] ⊂ R
un segment. On rappelle les définitions :

Définition 2.25

Une subdivision de [a,b] est suite finie (ai )i=0,· · · ,n de la forme
a = a0 < a1 < · · · < an = b . Une fonction continue par morceaux
sur I est une fonction f : I → F telle qu’il existe une subdivi-
sion (ai )i=0,· · · ,n , telle que pour i ∈ [[0,n − 1]], chaque restriction
f ]ai ,ai+1 [ est continue et admette des limites en ai ,ai+1. Une fonc-
tion f : I → F est dite en escalier si il existe une subdivision
(ai )i=0,· · · ,n , telle que pour i ∈ [[0,n − 1]], f ]ai ,ai+1 [ est constante.
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On définit E = CM (I ,F ) l’ensemble des fonctions continues par
morceaux sur I à valeur F . Comme chaque prolongement par conti-
nuité de f ]ai ,ai+1 [ est continue sur un compact [ai ,ai+1], donc bornée,
les fonctions continues par morceaux sont bornées. On note D ⊂ E
l’ensemble des fonctions en escaliers.

E est donc un Evn (PAS complet) pour la norme de la convergence
uniforme, si f ∈ E :

| | f | |E = sup
t ∈I

| | f (t ) | |F .

On va utiliser le théorème suivant de prolongement des applica-
tions linéaires continues pour définir l’intégrale à valeur dans F . C’est
une application immédiate du Théorème 2.27 :

Proposition 2.50

Toute application linéaire continue u d’un sous-espace vectoriel
dense D d’un evn E vers un evn complet F se prolonge en une
unique application linéaire continue v : E → F , ayant la même
constante de lipschitzianité que u .

Démonstration. Comme u est continue donc K -lipschitzienne (par pro-
position 2.29) donc uniformément continue, l’unique prolongement est
donné par le Théorème 2.27.

Si xn → x ,yn → y en passant à la limite dans la relation u (𝛼xn +
𝛽yn) = 𝛼u (xn) + 𝛽u (yn), on déduit que v est linéaire et avec | |u (xn −
yn) | | ≤ K | |xn − yn | |, on déduit que v est K -lipschitzienne.

Pour une fonction en escalier 𝜙 : [a,b] → F de subdivision
(ai )i=0,· · · ,n . On définit

I (𝜙) =
∫
[a,b ]

𝜙(t )dt =
n∑︁
i=1

(ai − ai−1)𝜙
(︂ai−1 + ai

2

)︂
.

I est une application linéaire continue, car par l’inégalité triangulaire

| |I (𝜙) | | ≤
n∑︁
i=1

|ai − ai−1 |
∥︁∥︁∥︁𝜙(︂ai−1 + ai

2

)︂∥︁∥︁∥︁
F
≤ ||𝜙| |E |b − a |.

Comme les fonctions en escalier sont denses dans les fonctions conti-
nues par morceaux (exo. TD), la proposition précédente permet
d’étendre l’intégrale comme quand F = R et on a :
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Définition 2.26

L’intégrale des fonctions continues par morceaux CM (A,F ) est
l’unique prolongement linéaire continu de l’intégrale des fonc-

tions en escaliers, noté
∫ b
a dt f (t ) =

∫ b
a f (t )dt .

Proposition 2.51

(Inégalité triangulaire) | |
∫ b
a dt f (t ) | |F ≤

∫ b
a dt | | f (t ) | |F .

Démonstration.

| |I (𝜙) | |F ≤
n∑︁
i=1

|ai − ai−1 |
∥︁∥︁∥︁𝜙(︂ai−1 + ai

2

)︂∥︁∥︁∥︁
F
=

∫ b

a
| |𝜙(t ) | |F dt

pour 𝜙 en escalier et on prolonge par continuité.

On a toutes les propriétés usuelles, Chasles, linéarité, en particulier

si F = Rn et f = ( f1, ..., fn)
∫ b
a f (t )dt = (

∫ b
a f1 (t )dt , ...,

∫ b
a fn (t )dt ).

Rappel sur les Intégrales impropres

Définition 2.27

Pour une fonction f continue sur un intervalle I → R qui n’in-
clut pas toutes ses bornes ou qui n’est pas borné, on définit
l’intégrale impropre de la manière suivante :

1. Dans le cas I = [a,b [ avec a < b , b ∈ R ∪ {+∞}∫ b

a
f (x)dx = lim

c↗b

∫ c

a
f (x)dx

2. Dans le cas I =]a,b] avec a < b , a ∈ R ∪ {−∞}∫ b

a
f (x)dx = lim

c↘a

∫ b

c
f (x)dx
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3. Dans le cas I =]a,b [ avec a < b , a ∈ R ∪ {−∞}, b ∈
R ∪ {+∞} on prend a < c < b et on pose∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx .

Dans tous ces cas, on dit que l’intégrale est convergente si la limite
existe et est finie.

Dans tous les cas, on s’occupera surtout du cas I = [a,b [ puisque
le cas I =]a,b] est similaire en remplaçant f par x ↦→ f (−x)

Le cas le plus important est le cas suivant (car on va disposer de
théorèmes de comparaison avec des fonctions positives de références) :

Définition 2.28

Pour une fonction f continue sur un intervalle I (comme dans

la définition précédente) est dite intégrable sur I si
∫ b
a | f (x) |dx

converge. Dans ce cas on dit aussi que
∫ b
a f (x)dx est absolument

convergente.

Exercice 2.4. Convergence et valeur de∫ 1

0

1
√
x
dx .

La limite infinie est en 0. Donc Soit t > 0 on Calcule
∫ 1
t

1√
x
dx =

[2
√
x]1t = 2 − 2

√
t . La limite en t → 0 est finie donc l’intégrale

converge et vaut 2.

Exemples de référence (à connaître TRES
BIEN)

1.
∫ ∞
0 e −xdx converge et vaut 1. En effet,

∫ A
0 e −xdx = 1−e −A →A→∞

1.
Plus généralement,

∫ ∞
0 e −axdx converge si et seulement si a >

0, et vaut alors 1/a.
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2.
∫ ∞
1

1
t𝛼 dt converge si et seulement si 𝛼 > 1 (intégrale de Rie-

mann) et vaut ∫ ∞

1

1
t𝛼
dt =

1
𝛼 − 1

,𝛼 > 1,∫ ∞

1

1
t𝛼
dt = +∞,𝛼 ≤ 1.

En effet, si 𝛼 ≠ 0,
∫ A
1

1
t𝛼 dt = A−𝛼+1−1

−𝛼+1 et pour 𝛼 > 1,
A−𝛼+1 →A→+∞ 0, tandis que pour 𝛼 < 1 A−𝛼+1 →A→+∞ +∞
Si 𝛼 = 1,

∫ A
1

1
t dt = ln(A) →A→+∞ +∞

3.
∫ 1
0

1
t𝛼 dt converge si et seulement si 𝛼 < 1 (intégrale de Rie-

mann) et vaut ∫ 1

0

1
t𝛼
dt =

1
1 − 𝛼

,𝛼 < 1∫ 1

0

1
t𝛼
dt = +∞,𝛼 ≥ 1

.
En effet si 𝛼 ≠ 0,

∫ 1
a

1
t𝛼 dt =

1−a−𝛼+1

−𝛼+1 et pour 𝛼 > 1, a−𝛼+1 →a→0

+∞, tandis que pour 𝛼 < 1 a−𝛼+1 →a→0 0

Si 𝛼 = 1,
∫ 1
a

1
t dx = | ln(a) | →a→∞ ∞.

4.
∫ ∞
0

1
t𝛼 dt = +∞ diverge toujours pour tout 𝛼 ∈ R(en combinant

les 2 points précédents).

Théorèmes de comparaison
Le contexte est le suivant : on se donne une fonction continue f :

I = [a,b [→ R et on étudie la nature de l’intégrale impropre
∫ b
a f (x)dx

La méthode la plus simple consiste à chercher une fonction conve-
nable continue et positive g : I = [a,b [→ [0,∞[ et de comparer f à
g . Les trois résultats de base à utiliser sont les suivants (avec C>0 une
constante).
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Théorème 2.52

Théorème de comparaison .

5. Si | f (x) | ≤ C g (x), ∀x ∈ [a,b [, et si
∫ b
a g (x)dx converge,

alors
∫ b
a f (x)dx converge (absolument).

6. Si f (x) ≥ C g (x), ∀x ∈ [a,b [ et si
∫ b
a g (x)dx = +∞ alors∫ b

a f (x)dx = +∞.

13 Espaces métriques séparables

Définition 2.29

Une partie A est dite dense dans E si A = E . Un ensemble est
dit séparable si il admet un sous-ensemble au plus dénombrable
dense (ou autrement dit une suite dense).

Lemme 2.53

Un sous-ensemble F d’un espace métrique séparable est sépa-
rable.

Démonstration. On peut supposer F non-vide, sinon, c’est évident (la
partie vide donc finie est dense). On fixe donc x0 ∈ F

Soit un une suite dénombrable dense. Soit am,n ∈ B (um ,1/n) ∩ F
si cet ensemble est non-vide, et sinon on pose am,n = x0. La famille
{am,n ,m,n ∈ N} est finie ou dénombrable et dense car si x ∈ F il existe
d (um ,x) < 1/2n donc am,2n existe car B (um ,1/2n) ∩ F est non vide et
par inégalité triangulaire d (um ,am,2n) < 1/n .

Proposition 2.54

(Rn , | |.| |∞) est séparable.

Démonstration. On a vu que Qn est dénombrable comme produit d’en-
sembles dénombrables. Montrons qu’il est dense dans Rn . En effet si
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x = (x1, ...,xn) on pose xp = ( ⌊px1 ⌋
p , ...,

⌊pxn ⌋
p ) avec ⌊x⌋ la partie entière

de x . Donc ⌊pxi ⌋ ≤ pxi ≤ ⌊pxi ⌋ + 1 et|︁|︁|︁ ⌊pxi ⌋
p

− xi
|︁|︁|︁ ≤ 1

p

donc | |xp − x | |∞ ≤ 1/p →p→∞ 0. Donc vu xp ∈ Qn , x ∈ Qn . Comme x
est arbitraire. Rn ⊂ Qn CQFD.

Exercice 2.5. Montrer que Qc est dense dans R.
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Ensembles et
fonctions
convexes,
Introduction à
l’optimisation

Vous avez vu en L2 qu’une fonction C 1 f qui atteint un minimum
sur un ouvert en x satisfait une condition nécessaire du première ordre
∇f (x) = 0 et si f est C 2 on peut garantir que c’est un minimum local
si sa hessienne est définie positive.

Il reste les questions : comment avoir un minimum global ? com-
ment avoir unicité du minimum? Une réponse va être obtenue en étu-
diant une notion, qui, dans le cas des fonctions C 2, sera équivalente à
une positivité globale de la hessienne. L’avantage est qu’on peut trouver
une définition : la notion de fonction convexe, sans hypothèse de déri-
vabilité et qui va être robuste et permettre d’obtenir aussi des critères

75
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d’optimisation du premier ordre, sur des ensembles eux aussi convexes
(pas forcément ouverts).

On suppose donc que E est un espace vectoriel (e.v.) sur R.

1 Ensembles Convexes
Soit x ,y ∈ E, on appelle segment d’extrémité x et y la partie

[x ,y] = {𝜆x + (1 − 𝜆 )y ,𝜆 ∈ [0,1]}.

On retrouve bien sûr la définition usuelle du segment dans R. (avec
la notation inhabituelle [−1,−2] = [−2,−1])

⋆ Définition 3.1

Un ensemble C ⊂ E est dit convexe si ∀x ,y ∈ C , [x ,y] ⊂ C .

Par convention , C = ∅ est convexe même si les convexes intéres-
sants sont les convexes non-vides...

Proposition 3.1

Si E est un e.v.n., les boules (ouvertes et fermés) sont des
convexes.

Démonstration. Considérons le cas des boules ouvertes. Soient x ,y ∈
B (a,r ), z = 𝜆x + (1 − 𝜆 )y , 𝜆 ∈ [0,1].

Par l’inégalité triangulaire et homogénéité, on a :

| |z − a | | = | |𝜆 (x − a) + (1 − 𝜆 ) (y − a) | |
≤ |𝜆 | | |x − a | | + |1 − 𝜆 | | |y − a | |
< |𝜆 |r + |1 − 𝜆 |r = r .

Donc z ∈ B (a,r ). Le cas des boules fermées est similaire.

Exemple 3.1

On pose | | (x ,y) | |1/2 = ( |x |1/2+|y |1/2)2. On note B = {(x ,y) ∈ R2 :
| | (x ,y) | |1/2 ≤ 1}. On remarque que (1,0), (0,1) ∈ B , (1/4,1/4) ∈
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B mais (1/2,1/2) ∉ B donc B n’est pas convexe et | | · | |1/2 n’est
PAS une norme sur R2.

Exercice 3.1. Montrer que les ensembles convexes de R sont exac-
tement les intervalles.

Le résultat suivant est laissé en exercice.

Proposition 3.2

Si C est convexe, alors son adhérence C et son intérieur I nt (C )
sont convexes. Une intersection (finie ou infinie) d’ensembles
convexes est convexe. Si C1 ⊂ E ,C2 ⊂ F sont convexes, alors
C1 ×C2 est convexe dans E × F .

Cônes tangents et normaux dans Rn

On suppose E = Rn (ou un espace préhilbertien comme au dernier

chapitre pour avoir un produit scalaire). On rappelle ⟨f ,x⟩ =
n∑︁
i=1

fixi ,

pour f ,x ∈ E .
Les deux ensembles suivant seront importants pour formuler des

conditions pour des problèmes de minimisation sous contrainte. On
rappelle que pour A,B ⊂ E ,C ⊂ R,x ∈ E, A + B = {a + b : a ∈ A,b ∈
B },CA = {ca,c ∈ C ,a ∈ A},A−x = {a−x : a ∈ A},x+A = {a+x : a ∈ A}.

⋆ Définition 3.2

Le cône tangent (au sens de l’analyse convexe) du convexe S ⊂ E
e.v.n. au point x ∈ S est

TS (x) := {u − x
s

,u ∈ S ,s > 0} = R∗
+ (S − x),

Le cône normal est son polaire, c’est à dire le cône convexe
fermé :

NS (x) := { f ∈ E : ∀u ∈ S , ⟨f ,u − x⟩ ≤ 0}
= { f ∈ E : ∀v ∈ TS (x)⟨f ,v⟩ ≤ 0}.
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Exercice 3.2. Si L est un s.e.v de E (de dimension finie), a ∈ L.
Montrer que TL (a) = L et NL (a) = L⊥ = {y ∈ E : ⟨y ,ℓ ⟩ = 0∀ℓ ∈
L}, est l’orthogonal de L.

Exercice 3.3. Si S convexe et a ∈ I nt (S ). Montrer queTS (a) = E
et NL (a) = {0}.

2 Fonctions convexes
Il est pratique de considérer des fonctions f : E →] − ∞,+∞] =

R ∪ {+∞}. Dans ce cas on parle de domaine de f :

D ( f ) = {x ∈ E : f (x) < ∞}.

Les propriétés que l’on considère dans cette section vont être déter-
minées par l’ensemble des valeurs au dessus du graphe de f , que l’on
appelle épigraphe de f :

Epi( f ) = {(x ,𝜆 ) ∈ E × R : f (x) ≤ 𝜆 }.

On utilise les conventions ∞+∞ = ∞ et 𝜆 .∞ = ∞ si 𝜆 > 0, 0.∞ = 0.

⋆ Définition 3.3

Soit C un ensemble convexe.

1. Une fonction f : C →] − ∞,+∞] est dite convexe si pour
tout 𝜆 ∈]0,1[,x ,y ,∈ C ,

f (𝜆x + (1 − 𝜆 )y) ≤ 𝜆 f (x) + (1 − 𝜆 ) f (y).

2. Une fonction f : C →]−∞,+∞] est dite strictement convexe
si pour tout 𝜆 ∈]0,1[,x ,y ,∈ C , avec x ≠ y

f (𝜆x + (1 − 𝜆 )y) < 𝜆 f (x) + (1 − 𝜆 ) f (y).

3. Une fonction f : C → [−∞,+∞[ est dite concave si −f
est convexe.
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Exemple 3.2

Une fonction affine f (x1, ...,xn) =

n∑︁
i=1

aixi + b est convexe et

concave mais pas strictement convexe ! Une norme sur E est
convexe.

Remarque 3.1. Si f est convexe, alors C ∩D ( f ) est convexe car
si f (x) < +∞, f (y) < ∞ alors

f (𝜆x + (1 − 𝜆 )y) ≤ 𝜆 f (x) + (1 − 𝜆 ) f (y) < ∞.

On peut donc toujours remplacer soit C par E soit C par
C ∩ D ( f ) selon votre goût (pour les fonctions infinies ou les
ensembles convexes).

Proposition 3.3

Soit E un e.v. et f : C →] −∞,∞].
1. f est convexe si et seulement si Epi ( f ) est convexe
1’. Si f est convexe alors pour tout t ∈ R, f −1 (] −∞,t ]) est

convexe. La réciproque est fausse.
2. Si 𝜇 > 0, f , g convexes alors 𝜇f + g est convexe. De plus,

elle est aussi strictement convexe si f ou g l’est.
3. Si fi ,i ∈ I sont convexes alors l’enveloppe supérieure

f (x) = supi ∈I fi (x) est convexe.
4. (facultatif) f est convexe ssi g : E →] − ∞,+∞], définie

par g (x) = f (x) si x ∈ C et g (x) = +∞ sinon, est convexe.
5. Si f est strictement convexe, alors f a au plus un mini-

mum sur C .

Le dernier point donne la première relation simple des fonctions
convexes à l’optimisation.

Démonstration. Pour (1), l’énoncé est vide si f (x) ou f (y) = ∞. Soit
donc (x ,t1), (y ,t2) ∈ Epi ( f ) (comme on veut ti < ∞ cela utilise la
réduction précédente). On remarque que (𝜆x+(1−𝜆 )y ,𝜆t1+(1−𝜆 )t2) ∈
Epi ( f ) ssi f (𝜆x + (1 − 𝜆 )y) ≤ 𝜆t1 + (1 − 𝜆 )t2.



CHAPITRE 3. CONVEXITÉ 80

Si les épigraphes sont convexes, cette propriété est vérifiée et donc
en prenant l’infimum sur t1,t2 (qui donne f (x), f (y)) on a le résultat.
Si f vérifie l’inégalité, on utilise f (x) ≤ t1, f (y) ≤ t2 pour conclure :

f (𝜆x + (1 − 𝜆 )y) ≤ 𝜆 f (x) + (1 − 𝜆 ) f (y) ≤ 𝜆t1 + (1 − 𝜆 )t2.

(1)’ On montre la convexité deD = {x : f (x) ≤ t } comme ci-dessus.
Soit x ,y ∈ D alors pour 𝜆 ∈ [0,1] : f (𝜆x + (1 − 𝜆 )y) ≤ 𝜆 f (x) + (1 −
𝜆 ) f (y) ≤ 𝜆t+(1−𝜆 )t = t . Donc 𝜆x+(1−𝜆 )y ∈ D . Par contre si g = 1[0,∞[
alors si t < 0 , g −1 (] −∞,t ]) = ∅, si 0 ≤ t < 1 , g −1 (] −∞,t ]) =] −∞,0[
et sinon pour t ≥ 1, g −1 (] − ∞,t ]) = R et ce sont 3 intervalles donc 3
ensembles convexes. Mais g n’est pas convexe g (0) = 1 > 1/2g (−1) +
1/2g (1) = 1/2.

(2) est évident en utilisant l’inégalité :

𝜇f (𝜆x + (1 − 𝜆 )y) + g (𝜆x + (1 − 𝜆 )y)
≤ 𝜇(𝜆 f (x) + (1 − 𝜆 ) f (y)) + (𝜆 g (x) + (1 − 𝜆 )g (y))
= (𝜆 (𝜇f + g ) (x) + (1 − 𝜆 ) (𝜇f + g ) (y)).

(3) vient de la stabilité des convexes par intersection et de Epi ( f ) =
∩i ∈IEpi ( fi ).

(4) est évident car Epi ( f ) = Epi (g ).
(5) si x ≠ y sont deux points atteignant le minima, f ((x + y)/2) <

( f (x) + f (y))/2 contredisant la minimalité.

Une propriété importante des fonctions convexes est le fait qu’on
peut les caractériser en terme d’accroissements :

Proposition 3.4

Soit f : E →] − ∞,+∞] une fonction. f est convexe si et seule-
ment si pour tout x ,h ∈ E la fonction Δx ,h f (t ) := f (x+th )− f (x )

t
est croissante sur R∗

+.

Démonstration. Il suffit de noter que g (t ) = Δx ,h f (t ) = f (x+th )− f (x )
t est

croissante si et seulement si g (t ) ≤ g (s ) pour 0 < t < s si et seulement
si on a l’inégalité de convexité :

f (x + th) = f ( t
s
(x + sh) + x (1 − t

s
)) ≤ f (x + sh) t

s
+ f (x) (1 − t

s
).

Donc la convexité de f implique la croissance énoncée et réciproque-
ment en prenant s = 1 on écrit toute paire x ,y sous la forme y = x +h et
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l’inégalité ci-dessus se réécrit en l’inégalité définissant la convexité de
f :

f ((1 − t )x + t y) = f (x + th) ≤ f (x + h)t + f (x) (1 − t )
= f (y)t + f (x) (1 − t ).

Cela implique une régularité minimale des fonctions convexes :

Corollaire 3.5

Si f : E →] − ∞,∞] est convexe, pour tout x ∈ D ( f ) et tout
h ∈ E, la dérivée directionnelle D ′

h f (x) existe dans [−∞,∞] au
sens où la limite suivante existe et vaut :

D ′
h f (x) := lim

t→0+

f (x + th) − f (x)
t

= inf
t>0

f (x + th) − f (x)
t

.

Démonstration. Par la proposition précédente g (t ) =
f (x+th )− f (x )

t est
croissante donc admet une limite pour t → 0+ qui coïncide avec l’infi-
mum.

Calcul des cônes normaux courants
Soient g1, ..., gn des fonctions convexes C 1 définies U → R avec U

ouvert convexe tel qu’il existe x0 ∈ U avec gi (x0) < 0 pour tout i .
Soit la contrainte :

C = {x ∈ U : ∀i ∈ {1, ...,n}, gi (x) ≤ 0}.

On sait que chaque g −1
i (] − ∞,0]) est convexe comme image ré-

ciproque d’un intervalle borné supérieurement par une application
convexe. Par intersection, on sait donc que C = ∩ni=1g

−1
i (] −∞,0]) ⊂ U

est aussi convexe.
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⋆ Théorème 3.6: (admis, cf Section B.1)

Soit x ∈ C tel que :

1. les l premières contraintes sont actives, c’est à dire :
g1 (x) = ... = gl (x) = 0

2. les autres contraintes ne sont pas actives, c’est à dire
gl+1 (x) < 0, ...gn (x) < 0

Si l = 0, on a NC (x) = {0} et sinon, le cône normal à C en x est
donné par

NC (x) =
{︄

l∑︁
i=1

𝜆 i∇gi (x),𝜆 i ≥ 0

}︄
.

Exemple 3.3

Soit A = {(x ,y) ∈ R2 : x ≥ y ≥ 0, }. Si on pose g1 (x ,y) =

y −x , g2 (x ,y) = −y qui sont linéaires donc convexes et C 1, on a :

A = {(x ,y) ∈ R2 : g1 (x ,y) ≤ 0, g2 (x ,y) ≤ 0}

Calculons NA (0) le cône normal en 0 = (0,0).
On a g1 (0,0) = 0 = g2 (0,0) donc toutes les contraintes sont
actives.
On calcule donc ∇g1 (0,0) = (−1,1),∇g2 (0,0) = (0,−1). D’après
le théorème, on a :

NA (0) = R+ (−1,1) + R+ (0,−1).

Exercice 3.4. 1. Pour A de l’exemple précédent, si a = (x ,x)
pour x > 0. Montrer que NA (a) = R+ (−1,1).

2. Pour b = (x ,0), x > 0. Montrer que NA (b) = R+ (0,−1).
3. Y-a-t-il d’autres valeurs de NA (c ) et si oui, pour quels

points c ∈ A ?

Fonctions convexes sur R
Soit I un intervalle de R. Pour une fonction f : I → R et a ∈ I ,

on considère la fonction (taux d’accroissement de f en a) Δa f définie
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par Δa f (x) =
f (x) − f (a)

x − a pour tout x ∈ I \ {a}. La proposition 3.4 se

reformule sous la forme :

Proposition 3.7

Une fonction f : I → R est convexe si et seulement si pour tout
a ∈ I , la fonction Δa f est croissante sur I \ {a}.

On en déduit les inégalités suivantes (inégalité des pentes, cf dessin
en cours) sur une fonction f :

⋆ Proposition 3.8

Une fonction convexe f : I → R vérifie l’inégalité des pentes :

∀a, b , c ∈ I , a < b < c

⇒
f (b) − f (a)

b − a ≤
f (c ) − f (a)

c − a ≤
f (c ) − f (b)

c − b .

⋆ Théorème 3.9

Soit I un intervalle ouvert de R, et f : I → R une fonction
convexe. Alors pour tout a ∈ I , f admet des dérivées à droite
et à gauche en a. On a pour tout x ∈ I : f (x) ≥ f ′d (a) (x − a) +
f (a) et f (x) ≥ f ′g (a) (x − a) + f (a). En particulier, il existe une
fonction affine g telle que g (a) = f (a) et g (x) ≤ f (x) pour tout
x ∈ I . De plus, si a < b sont dans I , on a f ′g (a) ≤ f ′d (a) ≤ f ′g (b).

Démonstration. Soit a ∈ I . Dans le cas d’une fonction à une variable,
le corollaire 3.5 implique l’existence de dérivées à droites et à gauches
(pour l’instant peut-être infinies). Dans l’inégalité des pentes en faisant
c → b+ ou a → b−, on obtient :

−∞ <
f (b) − f (a)

b − a ≤ f ′d (b),

f ′g (b) ≤
f (c ) − f (b)

c − b < +∞.
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Pour a < b , 0 < 𝜖 i < (b − a)/2, l’inégalité des pentes appliquée aux
points a ≤ a + 𝜖1 < b − 𝜖2 < b donne :

f (a + 𝜖1) − f (a)
𝜖1

≤
f (b − 𝜖2) − f (a + 𝜖1)

(b − a − 𝜖1 − 𝜖2)

≤
f (b − 𝜖2) − f (b)

−𝜖2

et en passant à la limite 𝜖1 → 0+ ou 𝜖2 → 0+ puis les deux, on
obtient :

f ′d (a) ≤
f (b − 𝜖2) − f (b)

−𝜖2
,

f (a + 𝜖1) − f (a)
𝜖1

≤ f ′g (b),

f ′d (a) ≤ f ′g (b).

Donc f ′d (a) < +∞, f ′g (a) > −∞, ce qui termine la preuve des dérivabi-
lités à droite et à gauche, et on a l’inégalité attendue.

De plus, la formulation comme infimum, dans le corollaire 3.5,

montre que pour tout x > a que
f (x) − f (a)

x − a ≥ f ′d (a) et donc

f (x) ≥ f ′d (a) (x − a) + f (a). De même, pour tout x < a on a
f (x) − f (a)

x − a ≤ f ′g (a) ; en multipliant par x − a (qui est négatif !) on

a donc que pour tout x < a f (x) ≥ f (a) + f ′g (a) (x − a).
De plus, f ′g (b) ≤ f ′d (b) (en passant aux limites a → b− ,c → b+

dans l’inégalité des pentes) ; par conséquent, pour x < a f ′g (a) (x −a) ≥
f ′d (a) (x − a), et on voit finalement que l’inégalité f (x) ≥ f ′d (a) (x −
a) + f (a) est valide pour tout x ∈ R. Le même raisonnement s’applique
pour montrer que l’autre inégalité est vraie pour tout x ∈ R.

Corollaire 3.10

Soit I un intervalle ouvert de R, alors une fonction convexe
f : I → R est continue.

Exercice 3.5. Trouver une fonction convexe f : [0,1[→ R qui
n’est pas continue en {0}.
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Proposition 3.11

Si E = R et f est dérivable sur un ouvert convexeU ⊂ E (donc
un intervalle ouvert) alors f est convexe si et seulement si f ′

est croissante.

Démonstration. ⇒) Supposons f convexe, l’inégalité qu’on a montrée
au (2) du théorème précédent s’écrit ( f ′ (u) − f ′ (v )) (u − v ) ≥ 0 donc
( f ′ (u) − f ′ (v )), (u − v ) ont même signe et f ′ est croissante. On peut
alternativement utilisé pour a < b , f ′ (a) = f ′d (a) ≤ f ′g (b) = f ′ (b) grâce
à l’inégalité vue au théorème 3.9.

⇐) Réciproquement si f ′ croissante, montrons que f convexe, on
veut voir f (𝜆a+(1−𝜆 )b) ≤ 𝜆 f (a)+(1−𝜆 ) f (b) pour a < b ,𝜆 ∈]0,1[. Par
l’égalité des accroissements finis, la pente f (𝜆a+(1−𝜆 )b )− f (a )

(1−𝜆 ) (b−a ) est atteinte

par f ′ en un point de ]a,𝜆a + (1 − 𝜆 )b [, et de même f (b )− f (𝜆a+(1−𝜆 )b )
(𝜆 (b−a )

est atteinte par f ′ en un point de ]𝜆a + (1−𝜆 )b ,b [ donc par croissance
de la dérivée :

f (𝜆a + (1 − 𝜆 )b) − f (a)
(1 − 𝜆 ) (b − a) ≤

f (b) − f (𝜆a + (1 − 𝜆 )b)
𝜆 (b − a)

⇐⇒f (𝜆a + (1 − 𝜆 )b) ( 1
(1 − 𝜆 ) (b − a) +

1
𝜆 (b − a) )

≤
f (a)

(1 − 𝜆 ) (b − a) +
f (b)

𝜆 (b − a)

⇐⇒ f (𝜆a + (1 − 𝜆 )b) ( 1
𝜆 (1 − 𝜆 ) ) ≤

f (a)
(1 − 𝜆 ) +

f (b)
𝜆

.

Ceci conclut.
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3 Propriétés différentielles des
fonctions convexes.

Rappel sur la différentiabilité (au sens de
Fréchet)

On rappelle que pour E ,F des e.v.n. l’ensemble des applications
linéaires continues L(E ,F ) est un e.v.n. avec la norme d’opérateur (dite
aussi norme subordonnée) | | | f | | | = sup | |x | |E≤1 | | f (x) | |F .

Définition 3.4

Soit E ,F des e.v.n., U ⊂ E un ouvert, f : U → F est différen-
tiable (au sens de Fréchet) en x si il existe T ∈ L(E ,F ) notée
df (x) telle que

| | f (x + h) − f (x) − df (x) (h) | | = o ( | |h | |), s i | |h | | → 0.

f est C 1 (ou continuement différentiable) sur U si f est diffé-
rentiable en tout x ∈ U et df : U → L(E ,F ) est continue. On
note aussi Dh f (x) = df (x) (h)
f est C 2 si f est C 1 et df est aussi C 1. On note d 2 f (x) (h,k ) =
Dk (Dh f ) (x).

On rappelle que si g : U →V ⊂ F, f :V → Z sont différentiables,
alors f ◦ g aussi et d ( f ◦ g ) (x) = df (g (x)) ◦ dg (x). De plus si Z = R et
f a un minimum local en x ∈ V avec V ouvert, alors df (x) = 0.

Remarque 3.2. Il est important de noter que df (x) est une appli-
cation linéaire, donc df (x) (h) est linéaire en h, mais pas forcé-
ment en x . Pour insister sur ce point, on note parfois de façon
équivalente :

df (x) (h) ≡ df (x).h ≡ df (x).[h]

Dans le cas le plus fréquent pour nous où E = Rn ,F = R, si
f est différentiable, alors elle admet des dérivées partielles, le
gradient de f en a est noté ∇f (a) = ( 𝜕f

𝜕x1
(a), ..., 𝜕f

𝜕xn
(a)). Alors,
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on a :

df (a) (h) = ⟨∇f (a),h⟩ =
n∑︁
j=1

𝜕f
𝜕x j

(a)h j .

Caractérisations différentielles des fonctions
convexes

Le théorème suivant résume les 3 caractérisations principales de
la convexité en terme de différentiabilité, par la position relative des
plans tangents et du graphe, par la monotonie de la dérivée première
ou par la positivité de la dérivée seconde (le résultat n’est pas optimal,
il suffit en fait d’une dérivabilité directionnelle appelée dérivée au sens
de Gâteaux) :

⋆ Théorème 3.12

Soit E un e.v.n. etU un ouvert convexe, f : U → R une fonction
différentiable en tout point de U .

1. f est convexe ssi pour tout u ,v ∈ U :

f (u) − f (v ) ≥ df (v ).[u − v ]

2. f est convexe ssi pour tout u ,v ∈ U :

[df (u) − df (v )] .[u − v ] ≥ 0

3. Si f est en plus C 2, f est convexe ssi d 2 f (x) est posi-
tive pour tout x ∈ U au sens où d 2 f (x) (h,h) ≥ 0 pour
tout x ∈ U ,h ∈ E . De plus, si E = Rn avec la norme
euclidienne, ou plus généralement si E est préhilbertien
(cf. chapitre 5), si d 2 f (x) est définie positive, pour tout
x ∈ U (c’est-à-dire pour tout h ≠ 0, d 2 f (x) (h,h) > 0)
alors f est strictement convexe.

Remarque 3.3. (Rappel d’algèbre linéaire) Si E = Rn , alors
d 2 f (x) est positive si et seulement si la matrice hessienne
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H f (x) est positive (rappel (H f (x))i j = ( 𝜕2 f
𝜕xi𝜕x j

(x))). Comme
elle est toujours symétrique et donc diagonalisable en base or-
thonormale, cela équivaut à ce que ces valeurs propres soient

toutes positives. Dans le cas n = 2 H ( f ) (x) =
(︃
r s
s t

)︃
(c’est à

dire on prend les notations de Monge r = 𝜕2 f
𝜕x2 (x),s =

𝜕2 f
𝜕x𝜕y (x),t =

𝜕2 f
𝜕y2 (x)) alors H ( f ) (x) est positive si et seulement si r t − s 2 ≥ 0
et r ≥ 0. a

a. En effet D2 f (x) ((h1,h2), (h1,h2)) = rh2
1 + 2sh1h2 + th2

2 =

(h2
1)P (h2/h1) si h1 ≠ 0, avec P (𝜆 ) = r + 2s𝜆 + t𝜆2 le po-

lynôme de second degré de discriminant Δ = 4s 2 − 4r t . Si
Δ < 0 pas de racine et selon le signe de r , P est soit tou-
jours positif (cas D2 f (a) définie positive) soit toujours négative
(D2 f (a) définie négative). Si Δ = 0, il y a une racine double
et on a la même conclusion sur la positivité. Si h1 = 0, alors
D2 f (x) ((h1,h2), (h1,h2))) = 2sh1h2 n’est positive que si s = 0
car sinon en (h1,h2) = (s ,−1), on a la valeur strictement néga-
tive −2s 2 et c’est aussi le seule cas ou le déterminant r t − s 2 est
positif pour r = 0). Si Δ > 0 on a 2 racines réelles et P prend à
la fois des valeurs positives et négatives.

Remarque 3.4. Un cas particulier du (3) est le cas où il existe
c > 0 telle que d 2 f (x) (h,h) ≥ c | |h | |2 pour tout x ∈ U ,h ∈ E =

Rn . Le cas de stricte convexité se déduit donc en décomposant
f = g + c

2 | |x | |
2. L’inégalité donne que d 2g = d 2 f − c est positive

donc g convexe et on verra au dernier chapitre que l’identité du
parallélogramme implique que c

2 | |x | |
2 est strictement convexe,

donc par somme f est strictement convexe (de façon très uni-
forme). C’est une situation intéressante pour les problèmes de
minimisation qui permet d’obtenir la convergence de suites mi-
nimisantes et des stratégies algorithmiques de minimisation (cf.
cours de recherche opérationnelle au S6).
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Démonstration. (1) Si f convexe, l’inégalité vient du corollaire 3.5 en
comparant l’infimum à la valeur en t = 1 pour h = u − v :

df (v ).[u − v ] = inf
t>0

f (v + th) − f (v )
t

≤ f (u + h) − f (u) = f (u) − f (v ).

Réciproquement on applique l’inégalité en z = tx + (1 − t )y ∈ U par
convexité de U pour x ,y ∈ U d’où :

(A) f (x) − f (z ) ≥ df (z ) [x − z ],
(B) f (y) − f (z ) ≥ df (z ) [y − z ],

et t (A) + (1 − t ) (B) donne

t f (x) + (1 − t ) f (y) − f (z )
≥ df (z ) [t (x − z ) + (1 − t ) (y − z )] = df (z ) (0) = 0

ce qui donne l’inégalité de convexité.
(2) Si f convexe, on utilise de même les inégalités du corollaire

3.5 :

df (u) (v − u) ≤ f (v ) − f (u), df (v ) (u − v ) ≤ f (u) − f (v )

En sommant, on obtient l’inégalité (df (u) − df (v )) (v − u) ≤ 0. Réci-
proquement, on utilise 𝜙(t ) = f (tx + (1 − t )y) qui par composition est
dérivable de dérivée 𝜙′ (t ) = df (tx + (1 − t )y) (x − y). Or si t < s

𝜙′ (s ) − 𝜙′ (t ) = [df (y + s (x − y)) − df (y + t (x − y))] (x − y)

=
1

s − t [df (y + s (x − y)) − df (y + t (x − y))]

(y + s (x − y) − (y + t (x − y))) ≥ 0

Donc 𝜙′ est croissante et par un résultat à 1 variable (proposition 3.12)
𝜙 est convexe.

(3)Si f estC 2, on dérive en t la relation du (2) avec v = x , u = x+th
une fois divisée par t2 et on obtient d 2 f (x) (h,h) ≥ 0. Réciproquement,
en dérivant en t , la fonction g définie par g (t ) = df (v + t (u −v )) (u −v )
(qui est C 1 car df est C 1) et en appliquant le théorème fondamental
du calcul :

[df (u) − df (v )] [u − v ] = g (1) − g (0)

=

∫ 1

0
dtdf (v + t (u − v )) (u − v ,u − v ) ≥ 0
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et on retrouve le critère du (2).
Pour la stricte convexité, commençons par le cas E = R, doncU = I

un intervalle ouvert. Soit [a,b] ⊂ I il suffit de voir f strictement convexe
sur [a,b]. On fixe [a,b] ⊂]a′,b ′ [⊂ [a′,b ′] ⊂ I

On suppose dans ce cas f ′′ (x) > 0 pour tout x ∈ I et f ′′ continue
(vue f de classe C 2). Donc f ′′ atteint son minimum sur [a′,b ′] en x0
de sorte que f ′′ (x) ≥ c = f ′′ (x0) > 0 pour tout x ∈]a′,b ′ [⊂ [a′,b ′].
Donc comme à la remarque 3.4 implique f = g + c x2

2 avec g ′′ ≥ 0 donc
g convexe et donc f strictement convexe sur ]a′,b ′ [.

On pose ga,b (t ) = ta + (1 − t )b . Soit maintenant le cas général
E = Rn . Par définition, f est strictement convexe si et seulement si
pour tout segment [a,b] ⊂ U ,a ≠ b ,ha,b = f ◦ ga,b est strictement
convexe sur [0,1] (ou sur ]0,1[ en élargissant les intervalles comme
avant). Or h′′a,b (t ) = df 2 (ga,b (t )) (a − b ,a − b) > 0 pour tout t ∈]0,1[.
On déduit donc du premier cas que ha,b est strictement convexe sur
]0,1[ et donc aussi f . Comme U ouvert, on peut trouver a′,b ′ ∈ U
avec [a,b] ⊂ [a′,b ′] − {a′,b ′}, [a′,b ′] ⊂ U .

Pour montrer Comme ga′,b ′ est continue bijective de [0,1] →
[a′,b ′] si a′ ≠ b ′, [a′,b ′] est compact comme image direct du compact
[0,1] par une application continue.

t ↦→ h′′a,b (at + (1 − t ) (b − a)) = d 2 f (at + (1 − t ) (b − a)) (b − a,b −
a) est continue sur [a′,b ′] donc atteint son minimum en x0 ∈ [a′,b ′]
qui est donc h′′a,b (x) = d 2 f (x0) (b − a,b − a) ≥ cx0 (b − a,b − a). En
appliquant à l’intervalle ouvert ]a′,b ′ [ le premier cas, on déduit que
ha′,b ′ est strictement convexe sur ]a′,b ′ [, donc aussi par restriction ha,b .
Comme a ≠ b ∈ U arbitraires, f est aussi strictement convexe.

Exercice 3.6. Montrer que f (x) = x4 est strictement convexe sur
R mais que sa dérivée seconde n’est pas bornée inférieurement
par c > 0.

Convexité, Critère d’extremum global
On retrouve d’abord un critère d’optimisation du premier ordre



CHAPITRE 3. CONVEXITÉ 91

Proposition 3.13

Si f est de classe C1 sur un ouvert convexe U et f est convexe,
alors tout point a ∈ U est un minimum global de f si et seule-
ment si c’est un point critique de f (c’est à dire un point a tel
que df (a) = 0).

Démonstration. On sait déjà par le cours de L2 que si f a un minimum
local en a alors df (a) = 0. En effet, rappelons la preuve, pour tout h ∈
E, il existe 𝜖 > 0 : B (a, 𝜖 | |h | |) ⊂ U (car U ouvert) et f (a ± th) ≥ f (a)
pour tout t ∈] − 𝜖 , 𝜖 [. Donc, en divisant par t > 0 on obtient :

f (a + th) − f (a)
t

→t→0+ df (a) (h) ≥ 0

f (a − th) − f (a)
−t →t→0+ df (a) (h) ≤ 0

donc df (a) (h) = 0 pour tout h ce qui veut dire df (a) = 0.
La nouveauté est la réciproque, on suppose f convexe. Il suffit de

noter par le théorème 3.12 que pour c ∈ C , f (c )− f (a) ≥ df (a) (c−a) =
0 donc f (a) = infc ∈C f (c ) et a atteint l’infimum de f sur C .

On a un critère d’optimisation plus général sur un convexe C ⊂ Rn .
On rappelle que ∇f (a) = ( 𝜕f

𝜕x1
(a), ..., 𝜕f

𝜕xn
(a)).

⋆ Théorème 3.14

SoitC un convexe de Rn avecC ⊂ U un ouvert et f : U → R une
fonction de classe C1, convexe sur C . Alors a est un minimum
global de f sur C si et seulement si −∇f (a) ∈ NC (a) c’est à dire
si et seulement si

∀c ∈ C , ⟨∇f (a),c − a⟩ ≥ 0.

Démonstration. On rappelle la définition NC (a) = { f ∈ E : ∀c ∈
S , ⟨f ,c − a⟩ ≤ 0} ce qui donne la dernière reformulation. Si a est un
minimum global f (a) ≤ f (tc + (1 − t )a) pour c ∈ C ,t ∈]0,1[ vu que
par convexité tc + (1 − t )a ∈ C . En prenant la limite, on obtient

⟨∇f (a),c − a⟩ = lim
t→0+

f (t (c − a) + a) − f (a)
t

≥ 0
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Réciproquement, si l’inégalité est vérifiée donc on peut utiliser le
théorème 3.12 (dont la preuve du 1 s’applique même si C n’est pas
ouvert) et on obtient :

0 ≤ ⟨∇f (a),c − a⟩ = df (a) (c − a) ≤ f (c ) − f (a).

donc f (c ) ≥ f (a) pour tout c ∈ C et donc a est un minimum de f sur
C .

Exemple 3.4

On prend g (c ) = | | f − c | |22 le carré de la distance euclidienne à
f ∈ E . Alors ∇g (a) = −2( f − a) et donc on obtient que a ∈ C
minimise la distance de x à C si et seulement si :

∀c ∈ C , ⟨x − a,c − a⟩ ≤ 0.

Ce sera le critère du théorème de projection sur un convexe
fermé C où l’on verra l’existence d’un tel point a au dernier
chapitre. Dans Rn on peut aussi voir l’existence par compacité
de C ∩ B pour une boule fermée B assez grande pour qu’une
inégalité grossière permette d’assurer que tout minimum doive
s’y trouver. On obtient ainsi le résultat suivant.

⋆ Théorème 3.15: (théorème de projection sur un convexe
fermé de Rn)

Soit C ⊂ Rn = E un convexe fermé non-vide et | |.| |2 la norme
euclidienne. Pour tout f ∈ Rn , il existe un unique u = PC ( f ) tel
que

| | f − u | |2 = inf
v ∈C

| | f − v | |2.

De plus, c’est l’unique vecteur u ∈ C tel que :

∀v ∈ C , ⟨f − u ,v − u⟩ ≤ 0.

De plus, pour tout c ∈ C , c + NC (c ) = P −1
C ({c }) et forment une

partition de Rn .

La preuve suivante par compacité ne fonctionnera pas en dimen-
sion infinie, mais le résultat sera encore vrai dans un espace de Hilbert
(cf. chapitre 5).
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Démonstration. Comme C non vide r = infv ∈C | | f − v | |2 < ∞. Soit D =

C ∩ B ( f ,r + 1). Comme la boule fermé est un convexe fermé, D est un
convexe fermé comme intersection de convexes fermés, et il est aussi
borné par définition, donc c’est un compact de Rn . De plus, D ⊂ C ,
donc infv ∈C | | f − v | |2 ≤ infv ∈D | | f − v | |2 par définition de l’infimum.
Mais soit 1 > 𝜖 > 0 et v ∈ C tel que | | f −v | |2 ≤ r + 𝜖 alors par définition
v ∈ D et donc infd ∈D | | f − d | |2 ≤ || f − v | |2 ≤ r + 𝜖 . Donc en passant à
la limite 𝜖 → 0, on a obtenu :

inf
v ∈D

| | f − v | |2 ≤ r = inf
v ∈C

| | f − v | |2 ≤ inf
v ∈D

| | f − v | |2.

Or v ↦→ || f − v | |2 est continue sur le compact D , donc atteint son
infimum en u ∈ D ⊂ C . Par croissance du carré, c’est aussi le point où
| | f −v | |22 atteint son infimum. La hessienne de v ↦→ || f −v | |22 est l’identité,
donc cette application est strictement convexe, elle a donc un unique
minimum PC ( f ). La caractérisation du minimum a été vue à l’exemple
précédent. Enfin cette caractérisation donne (en retraduisant avec la
définition de NC (c )

P −1
C ({c }) = { f ∈ E : ∀v ∈ C , ⟨f − c ,v − c⟩ ≤ 0}

= { f ∈ E : f − c ∈ NC (c )} = c + NC (c ).

Le fait que PC : E → C est une application surjective (vu que PC (c ) = c
pour c ∈ C ) implique le résultat sur la partition.

4 Premières Inégalités de convexité
Citons un exemple important et simple.

Exercice 3.7. Soit f : [0,+∞[→ [0,+∞[ une fonction concave.
Montrer que pour tout x ,y ≥ 0 on a f (x + y) ≤ f (x) + f (y).

Démonstration. Fixons y ≥ 0 et considérons la fonction g : [0,+∞[→ R
définie par g (x) = f (x) + f (y) − f (x + y).

Alors, pour tout a < b ∈ [0,+∞[, on a

g (b) − g (a)
b − a =

f (b) − f (a)
b − a −

f (b + y) − f (a + y)
b − a .
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Puisque
f (b + y) − f (a + y)

b − a =
f (b + y) − f (a + y)
(b + y) − (a + y) est le taux d’accrois-

sement de f entre (b + y) et (a + y), l’inégalité des pentes nous donne

donc que
g (b) − g (a)
b − a ≥ 0, autrement dit g est croissante.

Par conséquent, on a pour tout x que g (x) ≥ g (0) = f (0), et donc
f (x) + f (y) − f (x + y) ≥ f (0) ≥ 0, ce qu’on voulait démontrer.

On verra au chapitre intégration section 5.2 l’inégalité la plus im-
portante, l’inégalité de Jensen, qu’on appliquera ensuite au chapitre
Espace Lp .

Voici en exercice un cas (très) particulier de l’inégalité de Jensen
(cf. Corollaire 5.6 pour une preuve).

Exercice 3.8. Soit I un intervalle de R, 𝛼1, . . . ,𝛼n des réels posi-

tifs tels que
n∑︁
i=1

𝛼i = 1, et 𝜑 une fonction convexe sur I . Alors,

pour tout x1, . . . ,xn ∈ I on a

𝜑

(︄
n∑︁
i=1

𝛼ixi

)︄
≤

n∑︁
i=1

𝛼i𝜑(xi ) .
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CHAPITRE 4

Intégration de
Lesbesgue :
Construction
de l’intégrale
et grands
théorèmes

Le but de ce chapitre “ Construction de l’intégrale et grands théo-
rèmes" est de donner le cadre pour votre cours de probabilité du second
semestre, en pensant l’espérance comme une intégrale, tout en généra-
lisant l’intégrale de Riemann et la somme de séries vues en L1 ou en L2.
Ce seront aussi les 2 exemples importants unifiés dans ce chapitre (qui
donnent les exemples des variables aléatoires continues et discrètes).

96
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On va se concentrer dans ce chapitre sur la construction de l’inté-
grale et les grands théorèmes qu’il faut apprendre à utiliser. On verra
le minimum des définitions requises pour formuler cette construction.
Pour cela, on va s’appuyer sur les similarités avec vos cours de pro-
babilités et avec le chapitre 1. Ce sont des constructions importantes
dont la démarche sera reprise par exemple au semestre prochain pour
la construction de l’espérance conditionnelle. On reporte au deux cha-
pitres suivants les résultats plus techniques dont il est moins important
de retenir une idée des preuves.

Dans ce chapitre, le corps est K = R ou K = C. Pour l’intégration,
on a aussi besoin de la droite réelle étendue : R = R∪{−∞,+∞} avec les
mêmes conventions qu’au chapitre précédent : ∞ +∞ = ∞ et 𝜆 .∞ = ∞
si 𝜆 > 0, 0.∞ = 0.

Rappels

Droite réelle étendue

Rappel 4.1. La somme x+y avec x ,y ∈ R, est définie à l’exception
du cas où x = ±∞ et y = −x . Contrairement au cas des limites,
on pose 0. + ∞ = 0, t . + ∞ = +∞ pour t > 0.

Pour un ensemble A non-vide (non-nécessairement borné), on uti-
lise supA pour le plus petit majorant M ∈ R de A et infA pour le plus
grand minorant m ∈ R de A.

On utilisera aussi inf ∅ = +∞, sup ∅ = −∞.

Exercice 4.1. Soient A,B parties non vides de R. Montrer que :

1. M = supA ssi M est un majorant de A et il existe une
suite (xn), avec xn ∈ A telle que xn → M . Caractérisation
analogue de inf A .

2. Tout A (non-vide) admet une borne supérieur supA ∈
] − ∞,∞] et une borne inférieur infA ∈ [−∞,∞[.

3. supA et infA sont uniques.
4. sup(−tA) = −t infA, ∀t ∈]0,∞[. Formules analogues

pour sup(tA), inf(tA), inf(−tA).
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5. sup(A + B) = supA + supB et inf(A + B) = infA + inf B
(avec la somme usuelle d’ensemble A + B = {a + b : a ∈
A,b ∈ B }.

6. Si A ⊂ B , alors inf B ≤ infA ≤ supA ≤ supB .
7. Si (xn)n≥0 est une suite croissante de réels, alors lim xn =

sup{xn ; n ≥ 0} = sup xn . Énoncé analogue pour une
suite décroissante.

8. Si supA > x ∈ R, alors il existe un y ∈ A tel que y > x .

Limites inférieures et supérieures

⋆ Définition 4.1

Pour une suite xn ∈ R, sa limite supérieure est le nombre :

lim sup
n

xn = inf
n≥1

sup
k≥n

xk = lim
n→∞

sup
k≥n

xk

(L’égalité vient de la décroissance de la suite des sup, et c’est
aussi la plus grande valeur d’adhérence :exo), sa limite inférieure
est le nombre :

lim inf
n

xn = sup
n≥1

inf
k≥n

xk = lim
n→∞

inf
k≥n

xk .

(c’est aussi la plus petite valeur d’adhérence exo)

Lemme 4.1

On a les formules suivantes (pour t > 0) :

lim sup−xn = − lim inf xn ,

lim inf −xn = − lim sup xn
lim sup txn = t lim sup xn ,

lim inf txn = t lim inf xn

lim sup xn + yn ≤ lim sup xn + lim sup yn

lim inf xn + yn ≥ lim inf xn + lim inf yn
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Enfin, lim sup xn = lim inf xn = ℓ ∈ R si et seulement si xn → ℓ .

Démonstration. Toutes les (in)égalités sont des conséquences des pro-
priétés des sup, inf puis un passage à la limite :

sup
k≥n

−xn = − inf
k≥n

xn , inf
k≥n

−xn = − sup
k≥n

xn

sup
k≥n

txn = t sup
k≥n

xn , inf
k≥n

txn = t inf
k≥n

xn

sup
k≥n

xn + yn ≤ sup
k≥n

xn + sup
k≥n

yn

inf
k≥n

xn + yn ≥ inf
k≥n

xn + inf
k≥n

yn

Enfin, le sens intéressant est celui où lim sup xn = lim inf xn = ℓ ∈ R
et alors Xn = infk≥n xk ≤ xn ≤ supk≥n xk = Yn et le théorème des
gendarmes permet de conclure que la limite commune de Xn ,Yn est
aussi la limite ℓ de xn . Réciproquement, si xn → ℓ , alors pour tout
𝜖 > 0, pour n grand, ℓ − 𝜖 ≤ xn ≤ ℓ + 𝜖 d’où on déduit ℓ − 𝜖 ≤
lim inf xn ≤ lim sup xn ≤ ℓ + 𝜖 et 𝜖 → 0 conclut.

1 Tribus, fonctions mesurables et
mesures

Tribus
Vous avez l’habitude de parler d’évènement d’un espace de pro-

babilité et de considérer la famille T ⊂ P(Ω) des évènements d’un
tel espace. Souvent (pour les probabilités discrètes), on peut prendre
T = P(Ω), l’ensemble de toutes les parties de Ω, mais cela ne sera
pas possible pour généraliser l’intégrale de Riemann, on ne pourra pas
définir l’intégrale de n’importe quel ensemble. La définition suivante re-
tient donc les propriétés essentielles de la famille des évènements que
l’on veut pour définir une probabilité sur une telle famille.
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⋆ Définition 4.2

Une tribu (ou 𝜎-algèbre) sur Ω est une famille T de partie de Ω,
soit T ⊂ P(Ω) telle que :

1. ∅ ∈ T
2. Si A ∈ T alors Ac ∈ T .
3. Pour toute suite infinie (dénombrable) (An)n≥1 de parties

de T , alors leur union est aussi dans la tribu
⋃︂
n≥1

An ∈ T .

Un ensembe A ∈ T est appelée partie T -mesurable ou simple-
ment mesurable.
Un espace mesurable est une paire (Ω,T) formée d’un ensemble
Ω et d’une tribu T sur Ω. Les enembles A ∈ T sont appelés
ensembles mesurables (pour la tribu T ou T -mesurables).

Le résultat suivant est assez évident

Lemme 4.2

Pour toute suite finie A1, · · · ,An de T , alors A1 ∪ · · · ∪ An ∈ T .

Pour toute suite infinie (dénombrable, resp. finie) (An)n≥1 (resp.
A1, · · · ,An) de parties de T , alors leur intersection

⋂︂
n≥1

An ∈ T

(resp.
n⋂︂
i=1

Ai ∈ T ).

Démonstration. Pour le premier, il suffit de prolonger la suite en Ak =

∅ ∈ T pour k ≥ n + 1 et alors A1 ∪ · · · ∪ An =
⋃︂
n≥1

An ∈ T

Pour l’intersection, il suffit de combiner union et complémentaire,

par exemple dans le cas dénombrable :
⋂︂
n≥1

An =

(︂ ⋃︂
n≥1

Acn
)︂c

∈ T .

Remarque 4.2. On verra au chapitre suivant la notion plus élé-
mentaire d’algèbre de parties (ou clan) où l’on demande seule-
ment la stabilité par union finie, mais elle ne suffira pas pour la
construction de l’intégrale. Il faut comparer la notion de tribu à
celle de topologie de la remarque 2.3, qui était l’axiomatisation
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des parties ouvertes d’un espace métrique. Comme une topolo-
gie, une tribu est stable par intersection finie, mais même plus
elle est stable par intersection dénombrable. Mais par contre,
elle n’est pas stable par union quelconque, mais seulement par
union dénombrable. Donc aucune des notions n’est plus géné-
rale que l’autre. Enfin, la nouveauté est la stabilité par complé-
mentaire, ou autrement dit par toutes les opérations logiques de
bases sur les ensembles (complémentaire, intersection et union
binaires), et c’est la clef pour son application en probabilité (on
veut aussi que les évènements soient stables par toutes les opé-
rations logiques). On va cependant traiter dans beaucoup d’as-
pect la notion de tribu comme la famille des ouverts d’un espace
métrique (ou plus généralement topologique).

Mesure et Probabilité sur une tribu
L’intégation va dépendre d’un objet de base qui permet la “me-

sure du volume" (ou en physique la “mesure de la masse" ou d’autres
grandeurs extensives) et qui va généraliser la notion de probabilité.

⋆ Définition 4.3: Définition d’une mesure

Soit (Ω,T) un espace mesurable.
On appelle mesure (positive) est une application 𝜇 : T → [0,+∞]
ayant les propriétés suivantes :

1. 𝜇(∅) = 0
2. (𝜎-additivité) Pour toute suite au plus dénombrable

(Ai )i ∈I a d’éléments de T deux à deux disjoints,

𝜇(
⋃︂
i ∈I
Ai ) =

∑︁
i ∈I

𝜇(Ai ).

Une mesure de probabilité P est une mesure positive P vérifiant
en plus P (Ω) = 1. Un espace mesuré (resp. de probabilité) est un
triplet (Ω,T , 𝜇) (resp. (Ω,T ,P )) formée d’une mesure positive
𝜇 (resp. une mesure de probabilité P ) sur un espace mesurable
(Ω,T).
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a. c’est à dire soit I = [[0,n]] et dans ce cas
∑︁
i ∈I

𝜇(Ai ) =

n∑︁
i=0

𝜇(Ai ), soit soit I = N et dans ce cas
∑︁
i ∈I

𝜇(Ai ) =

∞∑︁
i=0

𝜇(Ai )

est la somme de la série, finie ou +∞

Une mesure a des propriétés très similaires à celle d’une probabilité
dont vous avez l’habitude (exo).

⋆ Proposition 4.3

i) Si A ⊂ B alors 𝜇(A) ≤ 𝜇(B) (𝜇 est croissante).
ii) Pour toute suite au plus dénombrable (Ai )i ∈I ,

𝜇(
⋃︂
i ∈I
Ai ) ≤

∑︁
i ∈I

𝜇(Ai ) (𝜇 est sous-additive).

iii) Si (An)n≥1 est une suite croissante,

𝜇(
⋃︂
n≥1

An) = lim
n→∞

𝜇(An) = sup
n≥1

𝜇(An).

iv) Si (An)n≥1 est une suite décroissante avec 𝜇(A1) < ∞,

𝜇(
⋂︂
n≥1

An) = lim
n→∞

𝜇(An) = inf
n≥1

𝜇(An).

v) Si 𝜇(Ω) est finie : 𝜇(Ac ) = 𝜇(Ω) − 𝜇(A).

Ensembles 𝜇-négligeables

⋆ Définition 4.4

Soit (Ω,T , 𝜇) un espace mesuré, un ensemble A ⊂ Ω est 𝜇-
négligeable si il existe B ∈ T contenant A ⊂ B et avec 𝜇(B) = 0.

Attention, A n’est par forcément mesurable donc on ne peut PAS
déduire 𝜇(A) = 0. Mais la seule extension possible, si A devenait mesu-
rable, serait la valeur 0.
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Lemme 4.4

Une union au plus dénombrable d’ensembles 𝜇-négligeables est
𝜇-négligeable.

Démonstration. Si (An)n≥0 est 𝜇-négligeable, alors il existe une suite
Bn ∈ T avec 𝜇(Bn) = 0 et An ⊂ Bn , donc⋃︂

n≥0

An ⊂
⋃︂
n≥0

Bn ∈ T , 𝜇

(︂ ⋃︂
n≥0

Bn
)︂
≤

∑︁
n≥0

𝜇(Bn) = 0.

Exercice 4.2. Montrer que le seul ensemble 𝜈-négligeable pour la
mesure de comptage 𝜈 est l’ensemble vide.

Définition 4.5

Une propriété P (𝜔) des points 𝜔 ∈ Ω est dite vraie presque
partout (par rapport à 𝜇, ou 𝜇-presque partout, ou 𝜇-.p.p) si
{𝜔 ∈ Ω : ¬P (𝜔)} est 𝜇-négligeable. Autrement dit, si il existe
B ∈ T avec 𝜇(B) = 0 telle que P est vraie sur B c .

Exercice 4.3. Montrer que l’indicatrice de Q 1Q est nulle 𝜆 -p.p.

Un ensemble peut donc être dense et 𝜆 -négligeable.

Exemples de tribus

Exemple 4.1

T = P(Ω) est une tribu (appelée tribu discrète) et T = {∅,Ω} est
aussi une tribu (appelée tribu grossière).

Tribus engendrés par une famille d’ensembles

En pratique, on n’a pas besoin de connaître en détail, tous les élé-
ments contenus dans une tribu, il suffit de savoir qu’on a assez d’éle-
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ments voulus (les générateurs de la tribu). Ceci est permis par le lemme
suivant.

Lemme 4.5

Si (Ti )i ∈I est une famille de tribus, alors
⋂︁
i ∈I Ti est une tribu.

On peut donc parler de la plus petite tribu contenant une famille
A ⊂ P(Ω), qui est l’intersection de toutes les tribus contenant
A, elle est notée 𝜎(A) et appelée la tribu engendrée par A.

Démonstration. C’est une conséquence directe de la forme de la défini-
tion. ∅ ∈ Ti pour tout i , donc ∅ ∈ ⋂︁

i ∈I Ti .
De plus, si A ∈ ⋂︁

i ∈I Ti , alors A ∈ Ti pour tout i , donc comme Ti
est une tribu, Ac ∈ Ti pour chaque i et donc Ac ∈ ⋂︁

i ∈I Ti .
Enfin, si pour chaque n ≥ 1, An ∈ ⋂︁

i ∈I Ti , alors An ∈ Ti pour tout
i , donc comme Ti est une tribu,

⋃︂
n≥0

An ∈ Ti pour chaque i et donc⋃︂
n≥1

An ∈
⋂︂
i ∈I

Ti .

Exemple 4.2: (cf. TD)

Si A ⊂ Ω, la tribu engendrée par A est 𝜎({A}) = {A,Ac ,∅,Ω}.

Exemple 4.3: (cf. TD)

Si A1, · · · ,An ⊂ Ω forment une partition (c’est à dire sont 2 à
2 disjoints et d’union Ω), la tribu engendrée 𝜎({A1, · · · ,An}) =
{∪i ∈IAi : I ⊂ [[1,n]]}.

⋆ Définition 4.6

Pour (X ,d ) un espace métrique dont T est la topologie des
ouverts, on appelle tribu borélienne sur X , notée B(X ) = 𝜎(T )
la tribu engendrée par les ouverts de X .

Le résultat suivant est montré en annexe C en section 2.



CHAPITRE 4. INTÉGRATION DE LESBESGUE 105

⋆ Lemme 4.6

Sur Rn , la tribu borélienne a le système de générateurs :

B(Rn) = 𝜎

(︂ n∏︂
i=1

]ai ,bi [,ai < bi ∈ R
)︂

A partir de là, on obtiendra en TD les autres générateurs usuels.

⋆ Lemme 4.7: (cf. TD)

Sur Rn , la tribu borélienne a les différents systèmes de généra-
teurs :

B(Rn) = 𝜎

(︂ n∏︂
i=1

] − ∞,bi ],bi ∈ R
)︂

= 𝜎

(︂ n∏︂
i=1

[ai ,+∞[,ai ∈ R
)︂

= 𝜎

(︂ n∏︂
i=1

[ai ,bi ],ai < bi ∈ R
)︂

= 𝜎

(︂
F : F ferme� de Rn

)︂

Tribu engendrée par une fonction

Lemme 4.8

Soit f : Ω → (E ,B) une fonction, 𝜎( f ) := f −1 (B) =

{ f −1 (B),B ∈ B} ⊂ T est une tribu sur Ω. On l’appelle tribu
engendrée par f .

Démonstration. C’est essentiellement une application des rappels sur
l’image réciproque de fonctions (1.1). D’abord f −1 (∅) = ∅ ∈ 𝜎( f ),
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f −1 (E) = Ω ∈ 𝜎( f ). Pour A ∈ B (resp, An ∈ B,n ≥ 1) :

[ f −1 (A)]c = f −1 (Ac ) ∈ 𝜎( f ) car Ac ∈ B,⋃︂
n≥1

f −1 (An) = f −1
(︂ ⋃︂
n≥1

An
)︂
∈ 𝜎( f ) car

⋃︂
n≥1

An ∈ B

Exemples de mesures

Exemple 4.4: (Mesure de comptage)

Sur tout ensemble Ω, on définit sur P(Ω), la mesure suivante
(dite de comptage)

𝜈(A) =
{︃

Card(A) si A fini
+∞ sinon

Exemple 4.5: (Mesure discrète sur Ω fini)

Sur tout ensemble dénombrable Ω = {𝜔n ,n ∈ [[1,n]]}, pour
(𝜇i ) ∈ [0,+∞[n on définit sur P(Ω) :

𝜇(A) =
∑︁
𝜔i ∈A

𝜇i .

C’est une mesure sur P(Ω). Une fois connue l’intégration pour
la mesure de comptage (ou de façon équivalente si on connaît
la notion de famille sommable, on pourra généraliser cet exemple
au cas Ω dénombrable)

Enfin, l’exemple fondamental est le théorème donnant l’existence
de la mesure de Lebesgue (admis)
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⋆ Théorème 4.9: (définissant l’intégrale de Lebesgue)

(admis) Il existe une unique mesure 𝜆 sur (Rd ,B(Rd )) invariante
par translation a telle que

𝜆

(︂
[0,1]n

)︂
= 1.

Cette mesure est appelée mesure de Lebesgue sur Rd et notée 𝜆 ≡
𝜆d et elle vérifie pour ai < bi :

𝜆

(︂ n∏︂
i=1

[ai ,bi ]
)︂
= 𝜆

(︂ n∏︂
i=1

]ai ,bi [
)︂
=

n∏︂
i=1

(bi − ai ).

a. au sens ou pour tout a ∈ Rd , B ∈ B(Rd ), si on note
a + B = {a + b ,b ∈ B }, alors 𝜆 (a + B) = Λ(B)

Proposition 4.10: (définissant la mesure image)

Soit f : Ω → (E ,B)une fonction et (Ω,𝜎( f ), 𝜇) un espace me-
suré alors la formule 𝜇 f (B) = 𝜇( f −1 (B)) for B ∈ B est une
mesure sur T , appelée mesure image de 𝜇 par f .

Démonstration. Pour voir que 𝜇 f est une mesure sur B, il faut noter
𝜇 f (∅) = 𝜇(∅) = 0. Puis pour la 𝜎-additivité, pour Ai ∈ B,i ∈ I deux à
deux disjoints avec I au plus dénombrable, on a :

𝜇 f
(︂⋃︂
i ∈I
Ai

)︂
= 𝜇

(︂
f −1

(︂⋃︂
i ∈I
Ai

)︂)︂
= 𝜇

(︂⋃︂
i ∈I

f −1 (Ai )
)︂

=
∑︁
i ∈I

𝜇( f −1 (Ai )) =
∑︁
i ∈I

𝜇 f (Ai ),

vu que les f −1 (Ai ) ∈ 𝜎( f ) sont aussi deux à deux disjoints par (1.1),
on a pu utilisé à l’avant-dernière égalité la 𝜎-additivité de 𝜇.
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Fonctions mesurables
Il nous reste à spécifier les fonctions qu’on va pouvoir intégrer. Il

faut lire la définition suivante comme l’analogue de la définition topo-
logique de la continuité (proposition 2.22)

Définition 4.7

Une fonction f : (Ω,T) → (E ,B) entre espaces mesurables
est mesurable si f −1 (B) ⊂ T c’est à dire si pour tout B ∈
B, f −1 (B) ∈ T . Si (Ω,T) = (X ,B(X ), (E ,B) = (Y,B(Y )),
on appelle fonction borélienne une fonction mesurable f :
(X ,B(X )) → (Y,B(Y )).

On déduit immédiatement de la définition comme le corollaire
4.11 :

⋆ Lemme 4.11: (Stabilité par composition de la mesurabi-
lité)

Si f : (D ,A) → (E ,B) et g : (E ,B) → (F,C) sont mesurables,
alors, g ◦ f : D → F est mesurable.

Démonstration. Pour tout ensemble mesurable U ∈ C, g −1 (U ) ∈ B est
mesurable deY par mesurabilité de g , puis f −1 (g −1 (U )) ∈ T est mesu-
rable de X par mesurabilité de f , mais f −1 (g −1 (U )) = (g ◦ f )−1 (U ) ∈
A. Comme c’est vrai pour tout ensemble mesurable U , on déduit de
la définition précédente g ◦ f est mesurable.

Comme en probabilité, l’intérêt principal de la notion de mesura-
bilité est de permettre de définir la notion de mesure image (analogue
de la loi d’une variable aléatoire).

Proposition 4.12

Soit f : Ω → (E ,B) une fonction, la tribu engendrée par f du
lemme 4.8 𝜎( f ) := f −1 (B) = { f −1 (B),B ∈ B} est la plus petite
tribu rendant f mesurable. Autrement dit : Si T ⊂ P(Ω) est
une tribu, f : (Ω,T) → (E ,B) est mesurable si et seulement si
𝜎( f ) ⊂ T .
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Démonstration. On a vu au lemme 4.8 que 𝜎( f ) est une tribu. f :
(Ω,𝜎( f )) → (E ,B) est mesurable par définition, car pour tout B ∈ B,
on a f −1 (B) ∈ 𝜎( f ) par définition de 𝜎( f ), et cela veut dire f :
(Ω,𝜎( f )) → (E ,B) est mesurable par définition de la mesurabilité.
L’équivalence f : (Ω,T) → (E ,B) est mesurable si et seulement si
𝜎( f ) ⊂ T vient aussi directement des deux mêmes définitions. L’inclu-
sion 𝜎( f ) ⊂ T dit justement que 𝜎( f ) est plus petite (pour l’inclusion)
que toute tribu rendant f mesurable.

Exemple 4.6

Si A ∈ T , la fonction indicatrice 1A : (Ω,T) → (R,B(R)) est
mesurable, car 𝜎(1A) = 𝜎({A}) = {A,Ac ,∅,Ω} par l’exemple 4.2
et donc 𝜎(1A) ⊂ T par la définition d’une tribu.

En pratique, on a besoin d’une description en terme de parties
génératrices :

Lemme 4.13

Une fonction f : (Ω,T) → (E ,𝜎(A)), vers un espace mesurable
engendré par une famille A, est mesurable si et seulement si
f −1 (A) ⊂ T c’est à dire si pour tout A ∈ A, f −1 (A) ∈ T .

Démonstration. Si f mesurable, vu que A ⊂ 𝜎(A), le fait que f −1 (A) ∈
T est une conséquence directe de la définition. Le contenu du lemme
est donc la réciproque.

On introduit une fammille B (qui va se révéler être la plus grande
tribu de E rendant f mesurable, la preuve est donc très similaire à celle
sur 𝜎( f )) :

B = {B ∈ P(E) : f −1 (B) ∈ T }.

Par hypothèse A ⊂ B. Vérifions que B est une tribu (par la définition) :

⊲ ∅ ∈ B car f −1 (∅) = ∅ ∈ T
⊲ Si B ∈ B, alors f −1 (B c ) = f −1 (B)c ∈ T car T est une tribu

donc B c ∈ B
⊲ Si An ∈ B, n ≥ 1, alors f −1 (

⋃︂
n≥1

An) =
⋃︂
n≥1

f −1 (An) ∈ T car T

est une tribu donc
⋃︂
n≥1

An ∈ B
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En conséquence, B est une tribu qui contient A, donc 𝜎(A) ⊂ B ce
qui dit exactement : ∀B ∈ 𝜎(A) : f −1 (B) ∈ T soit la définition de f
mesurable.

Corollaire 4.14

Une fonction f : (Ω,T) → (Y,B(Y )) vers la tribu borélienne
d’un espace métrique est mesurable, si et seulement si pour
tout ouvert U (resp. tout fermé F ) on a f −1 (U ) ∈ T (resp.
f −1 (F ) ∈ T ). En particulier, si (Ω,T) = (X ,B(X )) pour un
espace métrique X , alors, toute fonction continue f est boré-
lienne.

Démonstration. Le premier résultat est une conséquence directe du

lemme vu que B(Y ) = 𝜎

(︂
{U ⊂ Y : U ouvert}

)︂
= 𝜎

(︂
{F ⊂ Y :

F ferme�}
)︂
. Par la proposition 2.22, f −1 (U ) est ouvert (resp. f −1 (F )

est fermé) donc dans B(X ) pour tout ouvert U deY , on déduit que la
continuité implique la mesurabilité.

En composant, avec les produits et sommes qui sont des applica-
tions continues, on obtient les mêmes stabilités algébriques que pour
les fonctions continues :

Corollaire 4.15

Les fonctions mesurables (Ω,T) → R sont stables par combi-
naisons linéaires, produits, fractions rationnelles à dénomina-
teur non nulle, passage à l’exponentielle (etc.)

On tire de même immédiatement des lemmes 4.6 et 4.7 :

Corollaire 4.16

Une fonction f = ( f1, · · · , fn) : (Ω,T) → (Rn ,B(Rn)) est mesu-
rable si et seulement si l’une des assertions suivantes est vérifiée :

1. Pour tout b1, · · · ,bn ∈ R, f −1
(︂ n∏︂
i=1

] − ∞,bi ]
)︂
∈ T
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2. Pour tout a1, · · · ,an ∈ R, f −1
(︂ n∏︂
i=1

[ai ,+∞[
)︂
∈ T

3. Pour tout a1 < b1, · · · ,an < bn ∈ R, f −1
(︂ n∏︂
i=1

[ai ,bi ]
)︂
∈ T

4. Pour tout a1 < b1, · · · ,an < bn ∈ R, f −1
(︂ n∏︂
i=1

]ai ,bi [
)︂
∈ T .

5. Pour tout i = 1, · · · ,n, f1, · · · , fn : (Ω,T) → (R,B(R))
sont toutes mesurables.

Corollaire 4.17

Une fonction f : (Ω,T) → (R,B(R)) (à valeur dans l’espace
métrique (R,dR) de l’exemple 2.5) est mesurable si et seulement
si les trois assertions suivantes sont vérifiées :

1. f −1 ({∞}) ∈ T
2. f −1 ({−∞}) ∈ T
3. Pour tout a < b ∈ R, f −1 ( [a,b]) ∈ T

On renvoie aussi à l’annexe section 3 pour le résultat important
suivant

⋆ Théorème 4.18

Les constructions suivantes sont mesurables :

1. Un supremum d’une suite fn : (Ω,T) → R de fonctions
mesurables

2. La lim sup, lim inf d’une suite fn : (Ω,T) → R de fonc-
tions mesurables

3. Une limite simple d’une suite fn : (Ω,T) → R de fonc-
tions mesurables
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Unicité des mesures 𝜎-finies

Définition 4.8

Soit (Ω,A, 𝜇) un espace mesuré. On dit que (X ,A, 𝜇) est 𝜎-
fini s’il existe une suite de parties mesurables (An)n∈N telle que
𝜇(An) < +∞ pour tout n, et Ω =

⋃︂
n

An .

Cette hypothèse est par exemple vérifiée quand 𝜇(Ω) < +∞ (donc
en particulier quand 𝜇 est une mesure de probabilité), quand Ω = N
muni de la mesure de comptage, ou quand Ω = Rn muni de la mesure
de Lebesgue.

On renvoie à l’annexe C en section 1 pour une preuve d’un corol-
laire très classique au lemme de classe monotone pour les mesures dans
le cas des mesures 𝜎-finies.

Corollaire 4.19: (au lemme de classe monotone)

Soient 𝜇 et 𝜈 des mesures sur un espace mesurable (Ω,T). Soit
E une famille stable par intersection finie qui engendre T . Si 𝜇
et 𝜈 coïncident sur E (i.e. 𝜇(E) = 𝜈(E),∀E ∈ E) et si il existe
une suite de parties An ∈ E telle que Ω = ∪nAn et 𝜇(An) =

𝜈(An) < +∞ alors 𝜇 et 𝜈 sont égales (i.e. 𝜇(B) = 𝜈(B),∀B ∈ T ).

2 Les fonctions étagées
(mesurables) et leur intégrale

Comme les fonctions en escalier sont la base pour l’intégrale de
Riemann, on considère ici la classe des fonctions étagées (mesurables)
qui sont la base de l’intégrale de Lebesgue. Les fonctions en esca-
liers sont les combinaisons linéaires des indicatrices d’intervalles 1]a,b ] .
On les prend pour base de l’intégrale de Riemann car on sait définit∫
R 1]a,b ] (x)dx = (b − a).

On fixe à partir de maintenant un espace mesuré (Ω,T , 𝜇).
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Maintenant, qu’on dispose d’une mesure 𝜇, on veut définir de même
pour A ∈ T : ∫

Ω

1Ad𝜇 ≡
∫
Ω

1A (𝜔)d𝜇(𝜔) = 𝜇(A).

Plus généralement, on définit :

Définition 4.9

Pour A,B ∈ T , l’intégrale de 1A sur B par rapport à 𝜇 est notée et
définie par :∫

B
1Ad𝜇 ≡

∫
B

1A (𝜔)d𝜇(𝜔) = 𝜇(A ∩ B).

Les combinaisons linéaires de fonctions indicatrices (mesurables)
vont donc être de même la base de l’intégrale de Lebesgue :

Définition 4.10

Soit (Ω,T) un espace mesurable, on appelle fonction étagée f :
(Ω,T) → Rd une fonction de la forme

f (𝜔) =
n∑︁
i=1

ai1Ai (𝜔)

pour ai ∈ Rd et Ai ∈ T . Pour d = 1, la représentation est dite
canonique si a1 < · · · < an , tous non nuls (∀i ,ai ≠ 0) et les
A1, · · · ,An sont deux à deux disjoints et non vides.

Exercice 4.4. Les fonctions étagées sur (Ω,T) forment un sous
espace vectoriel des fonctions Ω → Rd .

Comme on veut que l’intégrale soit linéaire, on est conduit à la
définition suivante :
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Définition 4.11

Soit f une fonction étagée positive f (𝜔) =

n∑︁
i=1

ai1Ai (𝜔) avec

Ai ∈ T des ensembles mesurables deux à deux disjoints (ai >
0), on définit l’intégrale de f sur B ∈ T par rapport à 𝜇 par :∫

B
f d𝜇 ≡

∫
B
f (𝜔)d𝜇(𝜔) =

n∑︁
i=1

ai 𝜇(Ai ∩ B).

On reporte à l’annexe C section 4 la preuve facile mais fastidieuse
du lemme suivant :

Lemme 4.20

Soit (Ω,T , 𝜇) un espace mesuré, et f ,h : (Ω,T) → [0,+∞]
étagées positives, B ∈ T :

1. Si f ≥ 0, alors
∫
B f d𝜇 =

∫
Ω

1B f d𝜇.
2. Si f ≥ 0, c > 0, alors

∫
B c f d𝜇 = c

∫
B f d𝜇.

3. (additivité)
∫
B f + hd𝜇 =

∫
B f d𝜇 +

∫
B hd𝜇.

4. (monotonie) Si 0 ≤ f ≤ h alors 0 ≤
∫
B f d𝜇 ≤

∫
B hd𝜇.

Le résultat crucial qui va permettre l’extension de l’intégrale est le
résultat suivant :

⋆ Lemme 4.21

Soit (Ω,T) un espace mesurable. Toute fonction mesurable po-
sitive f : (Ω,T) → (R,B(R)) est limite simple d’une suite crois-
sante de fonctions étagées positives.

Démonstration. On prend

fn (x) = 2n1{x :f (x )=+∞} +
4n−1∑︁
k=0

k
2n

1f −1 ( [ k2n ,
k+1
2n [ ) (x)

=

⎧⎪⎪⎨⎪⎪⎩
k
2n si k

2n ≤ f (x) < k+1
2n ,0 ≤ k < 4n

0 si 4n−1+1
2n = 2n ≤ f (x) < +∞

2n si f (x) = +∞
≤ f (x).
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1. Comme f mesurable, chacun des f −1 ( [ k2n ,
k+1
2n [) ∈ T et

f −1 ({+∞}) ∈ T et donc fn est étagée (comme combinaison li-
néaire de fonctions indicatrices mesurables).

2. La suite est croissante 0 ≤ fn ≤ fm pour n ≤ m. Sur f −1 ( [0,2n]),
on découpe chaque intervalle de définition de fn en 2m−n en-
sembles dans la définitions de fm . Si fm (x) = k

2m ≤ f (x) <
k+1
2m ,0 ≤ k < 2m+n , on trouve k = 𝜅2m−n+l pour 0 ≤ l < 2m−n ,0 ≤
𝜅 < 4n par division euclidienne et

fn (x) =
𝜅

2n
≤ fm (x) =

k
2m

=
𝜅

2n
+ l

2m

≤ f (x) < 𝜅

2n
+ l + 1

2m
≤ fn (x) +

l + 1
2m

Sur f −1 (]2n ,+∞[) on a fn (x) = 0 ≤ fm (x). Vu fn (x) ≤ f (x) ≤
fn (x) + 1

2n on en déduit f (x) − 1
2n ≤ fn (x) ≤ f (x) si f (x) ≤ 2n ,

on déduit la convergence simple.

3 Intégrale des fonctions
mesurables positives

On peut maintenant définir l’intégrale des fonctions mesurables
positives :

⋆ Définition 4.12

Soit f : Ω → [0,+∞] une fonction mesurable positive sur un
espace mesuré (Ω,T , 𝜇), on définit l’intégrale de f sur B ∈ T par
rapport à 𝜇 par :∫

B
f d𝜇 ≡

∫
B
f (𝜔)d𝜇(𝜔)

= sup
{︂ ∫

B
gd𝜇 : g e�tage�e, 0 ≤ g ≤ f

}︂
∈ [0,+∞] .
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Remarque 4.3. Pour la mesure de comptage 𝜈 sur I , toute suite
a : I → [0,+∞] est mesurable positive et l’intégrale correspond
à la définition de la somme d’une famille sommable :∫

I
f d𝜈 =

∑︁
i ∈I

ai = sup

⎧⎪⎪⎨⎪⎪⎩
∑︁
j ∈ J

a j : J ⊂ I , fini

⎫⎪⎪⎬⎪⎪⎭ .

Remarque 4.4. Si f est étagée positive, pour chaque g ≤ f étagée
positive, on a vu au lemme 4.20,

∫
B gd𝜇 ≤

∫
B f d𝜇 donc∫

B
f d𝜇 ≥ sup

{︂ ∫
B
gd𝜇 : g e�tage�e, 0 ≤ g ≤ f

}︂
.

Et comme f fait parti des g du sup, on a en fait égalité, et
la valeur de la définition du cas étagé positif coïncide avec la
nouvelle valeure.

Premières propriétés
On reporte à l’annexe C section 4 la preuve facile mais fastidieuse

du lemme suivant :

Lemme 4.22

Soit (Ω,T , 𝜇) un espace mesuré, et f ,h : (Ω,T) → [0,+∞]
mesurable positive, A,B ∈ T :

1. (monotonie) Si 0 ≤ f ≤ h alors 0 ≤
∫
B f d𝜇 ≤

∫
B hd𝜇.

2. Si f ≥ 0, alors
∫
B f d𝜇 =

∫
Ω

1B f d𝜇. En particulier, pour
A ⊂ B , 0 ≤

∫
A f d𝜇 ≤

∫
B f d𝜇.

3. Si f ≥ 0, c ≥ 0, alors
∫
B c f d𝜇 = c

∫
B f d𝜇.

4. Si f = 0 ou 𝜇(B) = 0, alors
∫
B f d𝜇 = 0.

5. (sur-additivité)
∫
B f + hd𝜇 ≥

∫
B f d𝜇 +

∫
B hd𝜇.

La dernière propriété n’est pas optimale, nous verrons l’additivité
en utilisant le théorème de convergence monotone. Nous la mention-
nons ici pour signaler que l’additivité n’est pas évidente à partir de la
définition.
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Théorème de convergence monotone de
Beppo Levi

⋆ Théorème 4.23: (Théorème de convergence monotone
ou TCM)

Soit Zn : (Ω,T) → [0,+∞], une suite croissante de fonctions
mesurables positives qui tend simplement vers Z . Alors Z est
mesurable et pour tout B ∈ T :

lim
n→∞

∫
B
Znd𝜇 =

∫
B
Zd𝜇 ≡

∫
B

lim
n→∞

Znd𝜇.

Démonstration. La mesurabilité de Z vient du théorème 4.18. Posons
𝛼 = supn

∫
B Znd𝜇.

Comme Zn ≤ Zm ≤ Z pour n ≤ m, la monotonie de l’intégrale (du
lemme 4.22) montre que∫

B
Znd𝜇 ≤

∫
B
Zmd𝜇 ≤

∫
B
Zd𝜇

Donc, comme la suite
∫
B Znd𝜇 est croissante, elle converge vers son sup

et :

lim
n→∞

∫
B
Znd𝜇 = 𝛼 ≤

∫
B
Zd𝜇.

Pour la réciproque, soit 1 > 𝜖 > 0 et une fonction étagée g (𝜔) =
m∑︁
i=1

bi1Bi (𝜔) ≤ Z (𝜔). On pose An = {𝜔 ∈ Ω : Zn (𝜔) ≥ Z (𝜔) − 𝜖Z (𝜔)}.

Par la monotonie de l’intégrale et la formule pour les fonctions étagées :∫
B
Znd𝜇 ≥

∫
B
Zn1And𝜇

≥ (1 − 𝜖 )
∫
B
g1And𝜇 (4.1)

= (1 − 𝜖 )
m∑︁
i=1

bi 𝜇(Bi ∩ An ∩ B).

Remarquons finalement que
⋃︂
n≥0

An = Ω vu que pour tout 𝜔 ∈ Ω,

Zn (𝜔) → Z (Ω) > Z (𝜔)−𝜖Z (𝜔). Comme Zn est croissante, An est aussi
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croissante donc par la proposition 4.3,

𝜇(Bi ∩ An ∩ B) → 𝜇(
⋃︂
n

Bi ∩ An ∩ B) = 𝜇(Bi ∩ B).

En passant à la limite dans (4.1), on obtient :

𝛼 ≥ (1 − 𝜖 )
m∑︁
i=1

bi 𝜇(Bi ∩ B) = (1 − 𝜖 )
∫
B
gd𝜇

soit en passant au sup sur g ≤ Z puis à la limite 𝜖 → 0, on obtient
l’inégalité voulue 𝛼 ≥

∫
B Zd𝜇.

On obtient un résultat concret d’approximation pour
∫
B f d𝜇.

Corollaire 4.24

Soit f mesurable positive. Pour toute suite croissante de fonc-
tions étagées telle que fn → f , on a

∫
B fnd𝜇 →

∫
B f d𝜇.

Corollaire 4.25: (Linéarité de l’intégrale : cas positif)

Soient f , g mesurables positives et 𝛼, 𝛽 > 0, on a :∫
B
𝛼 f + 𝛽 gd𝜇 = 𝛼

∫
B
f d𝜇 + 𝛽

∫
B
gd𝜇.

Démonstration. Par le lemme 4.21, on a des suites croissantes de fonc-
tions étagées fn → f , gn → g donc 𝛼 fn + 𝛽 gn est une suite croissante de
fonctions étagées et 𝛼 fn + 𝛽 gn → 𝛼 f + 𝛽 g . Par le TCM ou le corollaire
précédent, en passant à la limite dans l’égalité du lemme 4.20 :∫

B
𝛼 fn + 𝛽 gnd𝜇 = 𝛼

∫
B
fnd𝜇 + 𝛽

∫
B
gnd𝜇

→
∫
B
𝛼 f + 𝛽 gd𝜇 = 𝛼

∫
B
f d𝜇 + 𝛽

∫
B
gd𝜇.
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⋆ Corollaire 4.26: (Interversion Série-intégrale : cas posi-
tif)

Soient fn : Ω → [0,+∞] une suite de fonctions mesurables po-
sitives alors la somme

∑︁
n≥0

fn : Ω → [0,+∞] est mesurable et on

a pour tout B ∈ T :∫
B

∑︁
n≥0

fnd𝜇 =
∑︁
n≥0

∫
B
fnd𝜇.

Démonstration. La suite des sommes partielles Sn =

n∑︁
k=0

fk est croissante

mesurable (par somme finie). Le résultat est donc une application du
TCM.

Lemme de Fatou

⋆ Théorème 4.27: (Lemme de Fatou)

Soient B ∈ T et Xn : (Ω,T) → [0,+∞], une suite de fonctions
mesurables positives alors lim infn→∞ Xn est mesurable et∫

B
lim inf
n→∞

Xnd𝜇 ≤ lim inf
n→∞

∫
B
Xnd𝜇.

Démonstration. La mesurabilité de lim infn→∞ Xn vient du théorème
4.18.

Par définition, lim infn→∞ Xn = supm Zm pour la suite croissante
Zm = infn≥m Xn ≤ Xm . En particulier, par monotonie de l’intégrale,∫
B Zmd𝜇 ≤

∫
B Xnd𝜇 pour n ≥ m, donc en passant à l’infimum :∫

B Zmd𝜇 ≤ infn≥m
∫
B Xnd𝜇.

Par le théorème de convergence monotone, on obtient (en combi-
nant à l’inégalité ci-dessus) :∫

B
lim inf
n→∞

Xnd𝜇 = lim
m→∞

∫
B
Zmd𝜇 = sup

m

∫
B
Zmd𝜇

≤ sup
m

inf
n≥m

∫
B
Xnd𝜇 ≡ lim inf

n→∞

∫
B
Xnd𝜇.
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4 Intégrale des fonctions
intégrables

Comme pour les séries et les intégrales impropres en L2, le
deuxième cas après le cas positif est celui qu’on appelle “absoluement
convergent" pour les séries ou “intégrable" pour les intégrales. Ils ont
en commun de considérer la même opération (somme de série ou inté-
grale) pour la valeur absolue, et si la grandeur obtenue est finie, on peut
alors définir l’opération sans valeur absolue. On suit la même stratégie
pour l’intégrale de Lebesgue.

On aura besoin de la :

Remarque 4.5. Soit f : (Ω,T) → (R,B(R)) une fonction mesu-
rable, sa partie positive est f+ = max( f ,0) et sa partie négative
est f− = max(−f ,0). f+, f− et la valeur absolue | f | sont mesu-
rables par composée de f avec des applications continues. Elles
vérifient f = f+ − f− et | f | = f+ + f− .
De même, pour f : (Ω,T) → (C,B(C)) une fonction me-
surable, son module | f |, et ses parties réelles et imaginaires
ℜ( f ),ℑ( f ) sont mesurables et

f = ℜ( f ) + iℑ( f ) = ℜ( f )+ −ℜ( f )− + iℑ( f )+ − iℑ( f )− .

⋆ Définition 4.13

Soit (Ω,T , 𝜇) un espace mesuré, une fonction mesurable f :
(Ω,T) → R) est intégrale par rapport à 𝜇 sur B ∈ T si son module

| f | : (Ω,T) → [0,+∞] est d’intégrale finie sur B , i.e.
∫
B
| f |d𝜇 <

+∞. On note L1 (Ω,T , 𝜇) l’ensemble des fonctions intégrables à
valeur R.
Si f : (Ω,T) → (R,B(R)) est intégrable sur B , on a donc∫
B
f+d𝜇,

∫
B
f−d𝜇 ≤

∫
B
| f |d𝜇 < +∞ et on peut définir l’intégrale
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de f par rapport à 𝜇 sur B :∫
B
f d𝜇 =

∫
B
f+d𝜇 −

∫
B
f−d𝜇.

Si on dit f est intégrable, c’est qu’on veut implicitement dire sur
Ω, son ensemble de définition. Dans ce cas, on écrit aussi :

∫
f d𝜇 =∫

Ω
f d𝜇.

Définition 4.14

Soit (Ω,T , 𝜇) un espace mesuré, une fonction mesurable f :
(Ω,T) → C (resp. f = ( f1, · · · , fn) : (Ω,T) → Rn)) est in-
tégrale par rapport à 𝜇 sur B ∈ T si ses parties réelles et ima-
ginaire ℜf ,ℑf : (Ω,T) → R (resp. ses coordonnées fi ) sont

intégrables sur B , i.e. de façon équivalente si
∫
B
| f |d𝜇 < +∞.

On note L1 (Ω,T , 𝜇;C) l’ensemble des fonctions intégrables à
valeur C.
On pose alors :∫

B
f d𝜇 =

∫
B
ℜf d𝜇 + i

∫
B
ℑf d𝜇 ∈ C,

(r e s p .
∫
B
f d𝜇 =

(︂ ∫
B
f1d𝜇, · · · ,

∫
B
fnd𝜇

)︂
∈ Rn)

L’équivalence vient de
∫
B |ℜf |d𝜇,

∫
B |ℑf |d𝜇 ≤

∫
B | f |d𝜇 ≤∫

B |ℜf |d𝜇 +
∫
B |ℑf |d𝜇.

Premières propriétés

Lemme 4.28

Si f : (Ω,T , 𝜇) → R est intégrable (sur Ω), alors 𝜇({𝜔 :
| f | (𝜔) = +∞}) = 0
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Démonstration. En effet, si A = {𝜔 : | f | (𝜔) = +∞}, on a (+∞)1A ≤ | f |
et donc +∞𝜇(A) ≤

∫
B | f |d𝜇 < +∞ ce qui n’est possible que pour 𝜇(A) =

0.

⋆ Lemme 4.29

Soit (Ω,T , 𝜇) un espace mesuré, et f , g : (Ω,T) → K des fonc-
tions intégrables sur B ∈ T , alors

0. (monotonie) Si f ≤ g alors
∫
B f d𝜇 ≤

∫
B gd𝜇.

1. 1B f est intégrable sur Ω et
∫
B f d𝜇 =

∫
Ω

1B f d𝜇.
2. (linéarité) Si 𝛼, 𝛽 ∈ K alors 𝛼 f + 𝛽 g est intégrable sur B

et ∫
B
𝛼 f + 𝛽 gd𝜇 = 𝛼

∫
B
f d𝜇 + 𝛽

∫
B
gd𝜇.

3. (domination) Si h : (Ω,T) → K est mesurable et domi-
née par | f | au sens |h | ≤ | f | alors h est intégrable sur
B .

4. (inégalité triangulaire) Si K = R, on a :|︁|︁|︁|︁∫
B
f d𝜇

|︁|︁|︁|︁ ≤ ∫
B
| f |d𝜇.

On verra le cas complexe de l’inégalité triangulaire un peu plus
loin.

Démonstration. 1. Vu |1B f | = 1B | f |, en utilisant le cas positif du lemme
4.22, on a

∫
Ω
|1B f |d𝜇 =

∫
B | f |d𝜇 < +∞ d’où l’intégrabilité. Le calcul de

l’intégral se déduit alors du même résultat en prenant partie positive et
négative des parties réelles et imaginaires.

2. Par l’inégalité triangulaire |𝛼 f + 𝛽 g | ≤ |𝛼 | | f | + |𝛽 | |g |, donc en
passant à l’intégrale et utilisant le cas positif de la linéarité de l’intégrale
(Corollaire 4.25) :∫

B
|𝛼 f + 𝛽 g |d𝜇 ≤

∫
B
|𝛼 | | f | + |𝛽 | |g |d𝜇

= |𝛼 |
∫
B
| f |d𝜇 + |𝛽 |

∫
B
|g |d𝜇 < +∞.

De même, l’égalité des intégrales vient en prenant partie positive et
négative des parties réelles et imaginaires.
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3. Il suffit d’utiliser la monotonie de l’intégrale
∫
B |h |d𝜇 ≤∫

B | f |d𝜇 < +∞.

4. Dans le cas réel, on a utilise juste l’inégalité triangulaire :|︁|︁|︁|︁∫
B
f d𝜇

|︁|︁|︁|︁ = |︁|︁|︁|︁∫
B
f+d𝜇 −

∫
B
f−d𝜇

|︁|︁|︁|︁
≤

∫
B
f+d𝜇 +

∫
B
f−d𝜇 =

∫
B
| f |d𝜇.

Théorème de Convergence dominée de
Lebesgue

⋆ Théorème 4.30: (Théorème de Convergence dominée
ou TCD)

Soient Zn ,Z : (Ω,T , 𝜇) → K des fonctions mesurables et A ∈ T
avec 𝜇(Ac ) = 0 satisfaisant :

1. (Condition de domination) il existe une fonctionY inté-
grable (positive) telle que |Zn | ≤ Y ,

2. pour tout 𝜔 ∈ A, Zn (𝜔) → Z (𝜔)
alors on a :

3. Z est intégrable
4.

∫
Ω
|Zn − Z |d𝜇 → 0

5. on peut intervertir limite et intégrale

lim
n→∞

∫
Ω

Znd𝜇 =

∫
Ω

Zd𝜇 =

∫
A

lim
n→∞

Znd𝜇.

Définition 4.15

Si une propriété est vraie sur un ensembleA ∈ T avec 𝜇(Ac ) = 0,
on dit que A est vraie presque partout.

L’hypothèse 2. se formule en disant que Zn converge vers Z presque
partout. On étudiera cette notion avec plus de détail au chapitre sui-
vant.



CHAPITRE 4. INTÉGRATION DE LESBESGUE 124

Démonstration. En appliquant aux parties réelles et imaginaires, il suffit
de montrer le cas K = R.

1. L’inégalité |Zn | ≤ Y implique en passant à la limite |Z | ≤ Y sur
A, ou autrement dit par domination, Z est intégrable sur A. Comme
𝜇(Ac ) = 0, on a aussi |Z | ≤ Y + ∞1Ac et Y + ∞1Ac est aussi intégrable,
donc Z est même intégrable.

3. L’inégalité |Zn | ≤ Y se traduit aussi parY −Zn ,Zn +Y ≥ 0 et on
peut appliquer le lemme de Fatou 4.27 :∫

A
(Y − Z )d𝜇 =

∫
A

lim inf
n

(Y − Zn)d𝜇

≤ lim inf
n

∫
A
(Y − Zn)d𝜇

=

∫
A
Y d𝜇 − lim sup

n

∫
A
Znd𝜇,

∫
A
(Y + Z )d𝜇 =

∫
A

lim inf
n

(Y + Zn)d𝜇

≤ lim inf
n

∫
A
(Y + Zn)d𝜇

=

∫
A
Y d𝜇 + lim inf

n

∫
A
Znd𝜇,

donc en soustrayant le terme enY ,

∫
A
Zd𝜇 ≤ lim inf

n

∫
Znd𝜇 ≤ lim sup

n

∫
Znd𝜇 ≤

∫
A
Zd𝜇

et on en déduit donc l’égalité et la dernière convergence.
2. Enfin, par l’inégalité triangulaire, on déduit |Zn−Z | ≤ |Zn |+|Z | ≤

2Y sur A et il satisfait la même condition de domination et pour tout
𝜔 ∈ A, |Zn − Z | (𝜔) → 0. En appliquant le reste du résultat, on obtient
donc

∫
Ω
|Zn − Z |d𝜇 →

∫
Ω

0d𝜇 = 0



CHAPITRE 4. INTÉGRATION DE LESBESGUE 125

⋆ Corollaire 4.31: (Interversion Série-intégrale : cas géné-
ral)

Soient fn : Ω → K une suite de fonctions mesurables telle que∑︁
n≥0

∫
B
| fn |d𝜇 < ∞ pour B ∈ T , alors la somme

∑︁
n≥0

fn : Ω →

K converge (absolument) pour presque tout 𝜔 dans B et est
intégrable sur B et on a :∫

B

∑︁
n≥0

fnd𝜇 =
∑︁
n≥0

∫
B
fnd𝜇.

Démonstration. On considère la suite des sommes partielles Sn =

n∑︁
k=0

fk

qui vérifie, grâce à l’inégalité triangulaire, la condition de domination

|Sk | ≤
n∑︁
k=0

| fk | ≤
∞∑︁
k=0

| fk | =: Z . Or par le cas positif de l’interversion,∫
B
Zd𝜇 =

∑︁
n≥0

∫
B
| fn |d𝜇 < ∞ donc Z est intégrable sur B . Soit A =

{𝜔 ∈ B : Z (𝜔) < ∞}, de sorte que
∑︁
k

fk converge absolument sur A

donc Sn converge simplement vers la somme (qui est donc mesurable
par le théorème 4.18). Par le lemme 4.28 on a 𝜇(Ac ) = 0 donc le TCD
s’applique (sur B à la place de Ω) et donne le résultat.

5 Théorème de transfert

⋆ Théorème 4.32: (Théorème de transfert)

Soit f : (Ω,T , 𝜇) → (E ,E) une fonction mesurable de mesure
image 𝜇 f et h : (E ,E) → (R,B(R)) une autre fonction mesu-
rable. Alors, si h est à valeur positive :∫

(h ◦ f ) d𝜇 =

∫
E
h (x) d𝜇 f (x).
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De plus, si h n’est pas à valeur positive h ◦ f ∈ L1 (Ω,T , 𝜇) si
et seulement si h ∈ L1 (E ,E, 𝜇 f ) et on a encore

∫
(h ◦ f )d𝜇 =∫

h (x)d𝜇 f (x).

Autrement dit, on ramène une intégrale sur Ω à une intégrale sur
R : ∫

Ω

h ( f (𝜔))d𝜇(𝜔) =
∫
R
h (x)d𝜇 f (x).

Démonstration. On procède comme pour la construction de l’intégrale.
Si h = 1B avec B ∈ E, h ◦ f = 1f −1 (B ) et donc∫

h ◦ f d𝜇 = 𝜇( f −1 (B)) = 𝜇 f (B) =
∫
h (x)d𝜇 f (x).

Par linéarité, on obtient le cas de h étagé. Si h positive, h est la li-
mite croissante d’une suite de fonctions étagées hn (du lemme 4.21).
Comme hn (x) → h (x) par construction, on applique le théorème de
convergence monotone aux deux mesures :∫

h ◦ f d𝜇 = lim
n→∞

∫
(hn ◦ f )d𝜇

= lim
n→∞

∫
hn (x)d𝜇 f (x) =

∫
h (x)d𝜇 f (x).

Le dernier résultat du cas intégrable est évident par le cas positif
pour l’équivalence et par linéarité pour l’égalité.

Le résultat similaire suivant est important en probabilité. Nous
avons vu la tribu engendrée par f : 𝜎( f ) au lemme 4.8. Le résultat sui-
vant donne une interprétation concrète des fonctions 𝜎( f )-mesurables.

Proposition 4.33: (Lemme de Doob-Dynkin)

Soit f une fonction mesurable, f : (Ω,T , 𝜇) → (E ,E), et soit
𝜎( f ) = {A = f −1 (B),B ∈ E} la tribu engendrée par f . Alors
g : Ω → (Rn ,B(Rn)) est 𝜎( f )-mesurable si et seulement si il
existe h : (E ,E) → (Rn ,B(Rn)) mesurable telle que g = h ◦ f .

Démonstration. La condition suffisante est évidente car pour un borélien
A, (h ◦ f )−1 (A) = f −1 (h−1 (A)) qui est mesurable car h−1 (A) ∈ E car h
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borélienne et l’image inverse par f est alors par définition un élément
de 𝜎( f ).

Réciproquement, on raisonne comme pour le transfert par le cas
étagé g =

∑︁
i

𝜆 i1Ai et Ai = f −1 (Bi ) et alors h =
∑︁
i

𝜆 i1Bi convient.

Sinon, si g positive, on la prend pour limite simple de gn étagée de la
forme hn ◦ f par le cas étagé, et on pose

h (x) = lim inf
n→∞

hn (x).

h convient car mesurable positive (comme lim inf de fonctions mesu-
rables) et car g (𝜔) = limn hn ( f (𝜔)) = h ( f (𝜔)) vu qu’en f (𝜔) la suite
(hn) converge d’après le choix de gn . Le cas général se montre par
linéarité à partir du cas positif.

6 Comparaison aux constructions
de L2

Intégrale de Riemann des fonctions
continues par morceau

Comme on a vu au chapitre 2, la base de l’intégrale de Riemann
est la notion de fonction en escalier. Ce sont des combinaisons linéaires
d’indicatrices d’intervalles de forme 1]a,b [ et 1{c } . Or les intervalles sont
des boréliens, donc les fonctions en escalier sont boréliennes étagées.
On a ∫

1]a,b [d𝜆 = (b − a) =
∫

1]a,b [ (x)dx ,∫
1{c }d𝜆 = 0 =

∫
1{x } (x)dx ,

donc par combinaison linéaire, intégrale de Riemann et de Lebesgue
par rapport à la mesure de Lebesgue coïncident.

Soit f continue par morceau sur [a,b], l’intégrale de Riemann est
construite en choisissant fn en escalier convergent uniformément vers
f et donc simplement, donc f est borélienne comme limite simple de
fonctions boréliennes (cf. le théorème 4.18). De plus, elle est bornée
donc intégrable sur [a,b].
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Quitte à décomposer en partie réelle et imaginaire, on suppose f
réelle. Donc pour tout x ∈ [a,b] on a | f (x) − fn (x) | ≤ | | fn − f | |∞ soit

fn (x) − || fn − f | |∞ ≤ f (x) ≤ fn (x) + | | fn − f | |∞.

En intégrant au sens de Lebesgue, et en utilisant que les deux côtés
coïncident avec celle de Riemann, on obtient l’inégalité :∫ b

a
fn (x)dx − || fn − f | |∞ (b − a)

≤
∫
[a,b ]

f d𝜆 ≤
∫ b

a
fn (x)dx + || fn − f | |∞ (b − a).

En passant à la limite n → ∞, on a | | fn − f | |∞ → 0 et
∫ b
a fn (x)dx →∫ b

a f (x)dx par définition de l’intégrale de Riemann. On a donc obtenu
le point 1. du résultat suivant :

⋆ Théorème 4.34

1. Toute fonction continue par morceau sur un segment
[a,b] est intégrable par rapport à la mesure de Lebesgue
𝜆 et son intégrale de Riemann coïncide avec celle pour
la mesure de Lebesgue :∫ b

a
f (x)dx =

∫
[a,b ]

f d𝜆 .

2. Toute fonction continue positive sur un intervalle I
(]a,b], ]a,b [ ou [a,b [) admet une intégrale par rapport
à la mesure de Lebesgue 𝜆 et son intégrale de Riemann
coïncide avec celle pour la mesure de Lebesgue (finie ou

+∞) :
∫ b
a f (x)dx =

∫
I f d𝜆 .

3. Toute fonction continue intégrable sur un intervalle I
(]a,b], ]a,b [ ou [a,b [) est intégrable par rapport à la me-
sure de Lebesgue 𝜆 si et seulement si elle est intégrable
au sens de Riemann. Dans ce cas, son intégrale de Rie-
mann coïncide avec celle pour la mesure de Lebesgue :∫ b
a f (x)dx =

∫
I f d𝜆 .

Démonstration. On se place dans le cas I = [a,b [. On pose bn = b − 1/n
si b < +∞ et bn = a + n si b = +∞ 2. On pose fn = f 1[a,bn ] . Comme f
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positive, fn sont des suites croissantes qui convergent simplement vers
f (sont stationnaires égales à f ). On peut appliquer le théorème de
convergence monotone et

∫
I
f d𝜆 = lim

n→∞

∫
I
fnd𝜆 lim

n→∞

∫
[a,bn ]

f d𝜆 = lim
n→∞

∫ bn

a
f (x)dx =

∫ b

a
f (x)dx .

3. L’équivalence des intégrabilités vient du 2. appliqué à l’intégrale
de | f |. Pour l’égalité dans , on utilise la même suite qu’au 2 et on note
| fn | ≤ | f |, qui est une domination si f intégrable. La même limite est
maintenant valable par le TCD.

On pourra donc appliquer les théorèmes précédents aux intégrales (de
Riemann) usuelles vues en L2.

Remarque 4.6. Pour les fonctions f : [a,b] → R, on
peut définir une notion plus générale de fonction “Rie-
mann intégrable", elle même plus générale que l’intégrale
des fonctions continues par morceaux. L’intégrale de Le-
besgue généralise aussi cette version plus générale, cf.
e.g. http://math.univ-lyon1.fr/homes-www/mironescu/resources/
cours_mesure_integration.pdf section 6.8.1

Mesures à densité
Le résultat suivant est laissé en exercice

⋆ Proposition 4.35: (Mesures à densité (ou absolument
continue))

Soit f : X → [0,+∞] une fonction mesurable. On définit une
application 𝜈 : A → [0,+∞] par

𝜈(A) =
∫
A
f d𝜇 .

Alors, 𝜈 est une mesure sur X , appelée mesure de densité f par
rapport à 𝜇. De plus h est intégrable par rapport à 𝜈 si et seule-

http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
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ment si f h est intégrable par rapport à 𝜇 et :∫
X
hd𝜈 =

∫
X
f hd𝜇 .

Pour une mesure à densité 𝜈 par rapport à 𝜇, si 𝜇(A) = 0 alors
𝜈(A) = 0. En fait, cette propriété caractérise les mesures à densité (c’est
un théorème beaucoup plus dur, le théorème de Radon-Nikodym cf.
section 5)

Exemple 4.7

On peut définir une mesure de probabilité sur les boréliens de
R en posant

𝜇(A) = 1
√

2𝜋

∫
A
e −

x2
2 d𝜆 (x) .

Cette mesure s’appelle la mesure gaussienne. C’est un exemple de
probabilité à densité par rapport à la mesure de Lebesgue. Pour
vérifier qu’il s’agit bien d’une probabilité, il faut vérifier que :

𝜇(R) = 1
√

2𝜋

∫
R
e −

x2
2 d𝜆 (x) = 1.

On le vérifiera plus loin par changement de variable à la fin du
chapitre 5 à la formule (5.1)

Lien avec les Séries
Soit Ω un ensemble. On considère l’espace mesuré (Ω,P(Ω), 𝜈).

Tout fonction f : Ω → R est P(Ω)-mesurable. On peut donc ignorer la
mesurabilité pour le cas des séries.

Cas Ω = {𝜔1, · · · ,𝜔n} fini

Toute fonction s’écrit f =

n∑︁
k=1

f (𝜔k )1{𝜔k } et est donc étagée. On

déduit que
∫
Ω

f d𝜈 =

n∑︁
k=1

f (𝜔k ), d’abord pour les fonctions étagées,
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puis positives, puis quelconques (on peut prendre toutes les limites
constantes).

Cas Ω = N

Lemme 4.36

1. Si f ≥ 0 alors
∫
Ω

f d𝜈 =

∞∑︁
n=0

f (n)

2. f est intégrable si et seulement si
∑︁

f (n) est absolu-
ment convergente et encore∫

Ω

f d𝜈 =

∞∑︁
n=0

f (n).

Démonstration. 1) Soit fn =

n∑︁
k=1

f (k )1{k } est une suite croissante de

fonctions donc par le TCM
∫
Ω

f d𝜈 = lim
n

∫
Ω

fnd𝜈 = lim
n

n∑︁
k=0

f (k ) =

∞∑︁
n=0

f (n)

2) L’équivalence vient du 1) f est intégrable ssi | f | a une intégrale

fini, donc ssi
∞∑︁
n=0

| f (n) | c’est à dire ssi
∑︁

f (n) est absolument conver-

gente. La définition de l’intégrale et de la somme coïncident alors∫
Ω

f d𝜈 =

∫
Ω

f+d𝜈 −
∫
Ω

f−d𝜈

=

∞∑︁
n=0

f (n)+ −
∞∑︁
n=0

f (n)− =

∞∑︁
n=0

f (n).
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Cas Ω = {𝜔n ,n ∈ N} dénombrable

On a 𝜔 : N → Ω une bijection, donc la mesure image 𝜈𝜔 ({i }) =

𝜈({𝜔−1 (i )} = 1 = 𝜈({i }) est encore la mesure de comptage, le théorème
de transfert donne donc :

Lemme 4.37

Pour tout f : Ω → [0,+∞],∫
Ω

f d𝜈 =

∫
N
f (𝜔)d𝜈 =

∞∑︁
n=0

f (𝜔n)

En particulier, si 𝜎 : N → N est une bijection
∞∑︁
n=0

f (𝜎(n)) =

∞∑︁
n=0

f (n) et le même résultat est valide pour les séries absolu-

ment convergentes (on dit qu’elles sont commutativement conver-
gentes.) Aussi L1 (Ω, 𝜈) = ℓ 1 (Ω) est l’ensemble des familles som-
mables sur Ω avec la norme 1.

Probabilité discrète sur Ω = {𝜔n ,n ∈ N} dénombrable

C’est une densité f : Ω → [0,1] par rapport à la mesure de comp-

tage telle que
∫
Ω
f d𝜈 =

∞∑︁
n=0

f (𝜔n) = 1.

7 Intégrales dépendant d’un
paramètre

Soient (Ω,T , 𝜇) un espace mesuré, E un evn. Soit finalement A une
partie de E .
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Définition 4.16

Soit f : A × Ω → K. On suppose que pour tout x ∈ A, t ↦→
f (x ,t ) est intégrable (soit dans L1 (Ω,T , 𝜇)). Dans ce cas, on
peut poser :
F (x) =

∫
Ω
f (x ,t )d𝜇(t ). On définit ainsi une intégrale dépendant

d’un paramètre la fonction F : A → K.

⋆ Théorème 4.38: (Théorème de continuité avec hypo-
thèse de domination)

Soit f : A ×Ω → K. On suppose :

1. Pour tout x ∈ A, t ↦→ f (x ,t ), est mesurable sur Ω.
2. Pour tout presque tout t ∈ Ω, x ↦→ f (x ,t ) est continue

en x0 ∈ A.
3. (Hypothèse de domination) Il existe une fonction inté-

grable g : Ω → R+, g ∈ L1 (Ω,T , 𝜇) telle que

∀t ∈ Ω,∀x ∈ A, | f (x ,t ) | ≤ g (t ).

Alors la fonction x ↦→ F (x) =
∫
Ω
f (x ,t )d𝜇(t ) est continue en

x0.

On remarquera que dans l’hypothèse de domination, la fonction g
ne dépend PAS de x .

Démonstration. L’hypothèse de domination garantit que t ↦→ f (x ,t ) est
intégrable. Soit xn ∈ A tel que xn → x0. Par continuité de x ↦→ f (x ,t ),
pour chaque t , f (xn ,t ) → f (x0,t ). On peut donc appliquer le théorème
de convergence dominée (avec domination par g ) pour conclure

lim
n→∞

∫
Ω

f (xn ,t )d𝜇(t ) =
∫
Ω

f (x0,t )d𝜇(t ).

Exemple 4.8: (cf TD.)

Soit f : R → C intégrable sur R (par rapport à la mesure de
Lebesgue 𝜆). Sa transformée de Fourier est définie par :
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f̂ (x) =
∫
R
f (t )e itxdt .

Elle est continue sur R en utilisant une domination par | f |.

Théorème 4.39: (Théorème de dérivabilité avec hypothèse
de domination)

Soit f : U ×Ω → K avec U ⊂ Rn un ouvert.
On suppose :

1. Pour tout x ∈ U , t ↦→ f (x ,t ), est intégrable sur Ω.
2. Il existe N avec 𝜇(N c ) = 0, tel que pour tout t ∈ N , la

fonction x ↦→ f (x ,t ) admet une i-ème dérivée partielle
sur U .

3. (Hypothèse de domination) Pour tout compact K ⊂ U ,
il existe une fonction intégrable gK ∈ L1 (Ω) telle que

∀t ∈ N ,∀x ∈ K ,
|︁|︁|︁|︁ 𝜕f𝜕xi (x ,t )

|︁|︁|︁|︁ ≤ gK (t ).
Alors la fonction x ↦→ F (x) =

∫
Ω
f (x ,t )d𝜇(t ) admet une i-ème

dérivée partielle sur U , 𝜕f
𝜕xi

∈ L1 (Ω) et :

𝜕F
𝜕xi

(x) =
∫
Ω

𝜕f
𝜕xi

(x ,t )d𝜇(t ).

Remarque 4.7. Soit f = ( f1, ..., fm) : U ×Ω → Rm avecU ⊂ Rn un
ouvert. Si chaque fi (x , .) est intégrable sur Ω pour tout x ∈ U ,
on peut définir l’intégrale coordonnée par coordonnée :∫

Ω

f (x ,t )d𝜇(t )

= (
∫
Ω

f1 (x ,t )d𝜇(t ), · · · ,
∫
Ω

fn (x ,t )d𝜇(t )).

Alors le théorème s’applique en remplaçant la valeur absolue
par la norme dans la domination (et en appliquant le résultat
coordonnée par coordonnée.)
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Démonstration. On peut supposer n = m = 1 (car les dérivées partielles
se calculent coordonnée par coordonnée). On fixe x0 et montre la dé-
rivabilité en x0. On pose h (x ,t ) = 0 si t ∈ N c et pour t ∈ N

h (x ,t ) =
{︄
f (x ,t )− f (x0,t )

x−x0
, si x ≠ x0

𝜕f
𝜕x (x0,t ) sinon

.

Pour x ≠ x0,

F (x) − F (x0)
x − x0

=

∫
Ω

h (x ,t )d𝜇(t ).

Il suffit donc de prouver que x ↦→
∫
Ω
h (x ,t )d𝜇(t ) est continue en x0.

Par hypothèse, t ↦→ h (x ,t ) est mesurable pour x ≠ x0 et par exemple
en tant que lim inf (sur N ) aussi ex x0 et x ↦→ h (x ,t ) est continue pour
t ∈ N (par continuité d’une fonction dérivable d’une variable). Enfin
l’inégalité des accroissements finis à x ↦→ f (x ,t ) donne, pour x ≠ x0,
x ∈ K = [x0 − 𝜖 ,x0 + 𝜖 ] ⊂ U (un compact car fermé borné de R contenu
dans U pour 𝜖 assez petit) :

| |h (x ,t ) | | ≤ sup
u∈[x0,x ]

|︁|︁|︁|︁ 𝜕f𝜕xi (u ,t )
|︁|︁|︁|︁ ≤ gK (t ).

La même inégalité étant évidente en x0, on a la condition de domination
et le théorème de continuité appliqué à K conclut.

⋆ Corollaire 4.40: (Théorème de dérivation successive)

Soit f : U ×V → Rl avec U ⊂ Rn ,V ⊂ Rm des ouverts, une
fonction Ck (k ∈ N ∪ {∞}). Soit 𝜇 une mesure sur une tribu
T ⊃ B(V ).
On suppose qu’il existe 𝜙0, 𝜙1, ..., 𝜙k 𝜇-intégrables sur V telles
que | | f (x ,t ) | | ≤ 𝜙0 (t ) et

∀(i1, ...,in),i1 + ... + in = p ≤ k ,∀x ∈ U ,∀t ∈ V∥︁∥︁∥︁∥︁∥︁ 𝜕p f

𝜕x i11 ...𝜕x
in
n

(x ,t )
∥︁∥︁∥︁∥︁∥︁ ≤ 𝜙p (t ).
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Alors la fonction x ↦→ F (x) =
∫
V f (x ,t )d𝜇(t ) est de classe Ck

sur U et pour p = i1 + ... + in ≤ k :

𝜕pF

𝜕x i11 ...𝜕x
in
n

(x) =
∫
V

𝜕p f

𝜕x i11 ...𝜕x
in
n

(x ,t )d𝜇(t ).

Démonstration. Il suffit d’appliquer le théorème de dérivation avec
condition de domination par récurrence simple (coordonnées fi par co-
ordonnée f = ( f1, · · · , fn)) . La mesurabilité de f vient de sa continuité
vu que T contient les boréliens. Son intégrabilité vient de la domina-
tion | f (x ,t ) | ≤ 𝜙0 (t ) et sur les autres dérivées successives des autres
dominations. On peut prendre N = ∅.

Un exemple : la transformée de Fourier
d’une mesure avec moments d’ordre 2.

Soit 𝜇 une mesure (de masse) finie sur B(Rn) (par exemple une
probabilité à densité par rapport à 𝜆) tel que xi ,xix j ,i , j = 1, · · · ,n
sont intégrables c’est à dire :∫

Rn
|xi |d𝜇(x) < +∞,

∫
Rn

|xix j |d𝜇(x) < +∞.

On verra plus tard grâce à l’inégalité de Cauchy-Schwarz qu’il suffit de
supposer x2

i intégrable. On reprend la transformée de Fourier vu en TD
et à l’exemple 4.8 qui est définie par :

𝜇̂(𝜉) =
∫
Rn
e i ⟨𝜉,x ⟩d𝜇(x) =

∫
R
f (𝜉,x)d𝜇(x),

f (𝜉,x) = e i ⟨𝜉,x ⟩ .

f est C 2 (même C∞) sur R2n et vérifie les dominations :

| f (𝜉,x) | ≤ 1

𝜕

𝜕𝜉i
f (𝜉,x) = ixie i ⟨𝜉,x ⟩ ,

|︁|︁|︁|︁ 𝜕

𝜕𝜉i
f (𝜉,x)

|︁|︁|︁|︁ ≤ |xi |

𝜕2

𝜕𝜉i𝜕𝜉 j
f (𝜉,x) = −xix j e i ⟨𝜉,x ⟩ ,

|︁|︁|︁|︁ 𝜕2

𝜕𝜉i𝜕𝜉 j
f (𝜉,x)

|︁|︁|︁|︁ ≤ |xix j |
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et par l’hypothèse 𝜇 de masse finie, 1 est intégrable et par les hypo-
thèses d’intégrabilité, les autres membres de droite des dominations
sont intégrables aussi par rapport à 𝜇. Par le théorème de dérivation
avec condition de domination, on déduit donc que 𝜇̂ est C 2 et :

𝜕

𝜕𝜉i
𝜇̂(𝜉) = i

∫
Rn
xie i ⟨𝜉,x ⟩d𝜇(x)

𝜕2

𝜕𝜉i𝜕𝜉 j
𝜇̂(𝜉) = −

∫
Rn
xix j e i ⟨𝜉,x ⟩d𝜇(x).

Cet exemple sera utilisé au S6 pour montrer le Théorème centrale limite
dans Rn .
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1 Mesure produit et théorèmes de
Fubini

Tribus produits
La méthode de base pour calculer une intégrale d’une fonction de

2 variables est de se ramener à des intégrales de fonctions de 1 variable.
Pour cela il nous faut d’abord expliquer comment on peut munir X ×Y
d’une structure d’espace mesuré quand X ,Y sont tous les deux munis
d’une telle structure.

⋆ Définition 5.1

Soient (X ,A, 𝜇1) et (Y,B, 𝜇2) deux espaces mesurés 𝜎-finis. On
note A⊗B la tribu engendrée par les parties de la forme A×B ,
où A ∈ A, B ∈ B ; on l’appelle tribu produit des tribus A et B.

Lemme 5.1

Si A = 𝜎(E) et B = 𝜎(F ), on a A ⊗ B = 𝜎

(︂
{E × F,E ∈ E,F ∈

F }
)︂
.

En particulier, B(Rn+m) = B(Rn) ⊗ B(Rm). De plus, si f :
(X ,A) → (Z,C) et g : (Y,B) → (Z,D) sont mesurables, l’ap-
plication ( f , g ) : (X ×Y,A ⊗ B) → (Z ×T ,C ⊗ D) définie par
( f , g ) (x ,y) = ( f (x), g (y)) est mesurable.

Démonstration. Vu {E × F,E ∈ E,F ∈ F } ⊂ A ⊗ B, on obtient en

passant à la tribu engendrée G := 𝜎

(︂
{E × F,E ∈ E,F ∈ F }

)︂
⊂ A ⊗ B.

Réciproquement, on pose A′ = {A ∈ A : ∀F ∈ F ,A × F ∈ G}.
On a clairement que A′ contient E et on vérifie facilement que c’est
une tribu (vu que Ac × F = (Ω × F ) − (A × F ) ∈ G pour F ∈ F .) D’où
A′ = 𝜎(E) = A. De même, on pose ensuite, B′ = {B ∈ B : ∀A ∈
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A,A × B ∈ G} et on déduit du point précédent que F ⊂ B′ ⊂ B et
comme avant que B′ est une tribu d’où B = B′. Finalement, on a donc
A × B ⊂ G d’où l’inclusion complémentaire de tribus.

Le cas particulier B(Rn+m) = B(Rn) ⊗ B(Rm) est une conséquence
immédiate du Corollaire 4.16.

Pour le dernier point, comme C ⊗D = 𝜎

(︂
{E ×F,E ∈ C,F ∈ D}

)︂
il

suffit de noter que ( f , g )−1 (E×F ) = f −1 (E) × g −1 (F ) ∈ A×B ⊂ A⊗B
et le lemme 4.13 conclut.

Mesure produit

Théorème 5.2: (définissant la mesure produit)

Soient (Ω1,T1, 𝜇1) et (Ω2,T2, 𝜇2) deux espaces mesurés 𝜎-finis.
Alors il existe une unique mesure 𝜈 sur T1 ⊗ T2 vérifiant

𝜈(A × B) = 𝜇1 (A)𝜇2 (B)

pour tout A ∈ T1 et tout B ∈ T2 (avec la convention usuelle
0.(+∞) = 0). Cette mesure est notée 𝜇1 ⊗ 𝜇2 = 𝜈, et est 𝜎-finie.

Exemple 5.1

Si 𝜆n désigne la mesure de Lebesgue sur Rn , alors on a
toujours 𝜆n+m = 𝜆n ⊗ 𝜆m . On applique le corollaire 4.19
au lemme de classe monotone à l’ensemble des pavés E.
Par définition, 𝜆n+m ,𝜆n ⊗ 𝜆m coïncident sur les pavés. Or
∪M ∈N [−M ,M ]n+m = Rn+m et 𝜆n+m ( [−M ,M ]n+m) = (2M )n+m =

(𝜆n ⊗ 𝜆m) ( [−M ,M ]n+m) < +∞ donc on conclut à l’égalité vou-
lue.

La preuve va être basée sur le fait de montrer un cas particulier du
théorème de Fubini suivant pour les fonctions indicatrices.

Démonstration. Unicité On applique le même corollaire 4.19 au lemme
de classe monotone. ON prend E = {A×B ,A ∈ T1,B ∈ T2} qui engendre
T1 ⊗ T2 par définition. Deux mesures 𝜈1, 𝜈2 vérifiant le théorème coïn-
cident sur E. Or comme 𝜇1, 𝜇2 sont 𝜎-finies, on obtient Ωi = ∪nAi ,n
avec Ai ,n ∈ Ti et 𝜇i (Ai ,n) < +∞. Alors, on a A1,n × A2,n ∈ E et est
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de mesure 𝜇1 (A1,n)𝜇2 (A2,n) < +∞ pour 𝜈1, 𝜈2. Ceci donne la dernière
hypothèse du corollaire 4.19 qui conclut à 𝜇1 = 𝜇2.

Existence Pour C ∈ T1 ⊗ T2, on pose Cx = {y ∈ Ω2 : (x ,y) ∈ C }. On
cherche à voir que Cx ∈ T2. Supposons d’abord 𝜇2 finie. On considère

C = {C ∈T1 ⊗ T2 : ∀xCx ∈ T2

et x ↦→ 𝜇2 (Cx ) est T1 − mesurable}.

Alors on a
⊲ C contient les pavés mesurables C = A × B avec A ∈ T1,B ∈ T2

car (A × B)x ∈ {∅,B } en distinguant le cas x ∈ A,x ∉ A donc
𝜇2 (Cx ) = 1A (x)𝜇2 (B).

⊲ C est une classe monotone car si C ′ ⊂ C ,C ′ ∈ C (C \ C ′)x =

Cx \C ′
x d’où la mesurabilité et 𝜇2 (C \C ′)x = 𝜇2 (Cx ) − 𝜇2 (C ′

x ) par
finitude de 𝜇2 qui est mesurable par différence donc C \C ′ ∈ C.
De même si Cn est une suite croissante (∪nCn)x = ∪n (Cn)x qui
est dans T2 et 𝜇2 ((∪nCn)x ) = supn 𝜇2 ((Cn)x ) est bien mesurable.

Donc C contient la classe monotone engendrée par les pavés, donc (par
le lemme de classe monotone) est égale à T1 ⊗ T2.

Si 𝜇2 est 𝜎-finie, on regarde les mesures induites et déduit le même
résultat de mesurabilité de 𝜇2 (Cx ) par limite croissante.

On peut donc poser

𝜈(C ) =
∫
Ω1

𝜇2 (Cx )d𝜇1 (x).

Il faut voir que c’est une mesure en montrant la 𝜎-additivité : Soient
C n des ensembles mesurables disjoints, (en utilisant qu’alors lesC nx sont
disjoints), il suffit d’utiliser l’interversion série intégrale :

𝜈(
⋃︂
n

C n) =
∫
Ω1

𝜇2 (
⋃︂
n

C nx )d𝜇1 (x)

=

∫
Ω1

∑︁
n

𝜇2 (C nx )d𝜇1 (x)

=
∑︁
n

∫
Ω1

𝜇2 (C nx )d𝜇1 (x) =
∑︁
n

𝜈(C n).

Enfin, 𝜈 convient par le calcul précédent de 𝜇2 ((A × B)x ) :

𝜈(A × B) =
∫
Ω1

1A (x)𝜇2 (B)d𝜇1 (x) = 𝜇1 (A)𝜇2 (B).
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Théorème de Fubini-Tonelli et Fubini
(admis)

La mesure produit 𝜇1 ⊗ 𝜇2 étant définie à partir de 𝜇1 et 𝜇2, on
s’attend à ce qu’il en soit de même de l’intégrale d’une fonction me-
surable relativement à 𝜇1 ⊗ 𝜇2. 1 Et c’est effectivement le contenu des
théorèmes de Fubini. On commence par le cas positif.

⋆ Théorème 5.3: (Fubini–Tonelli)

Soient (Ω1,T1, 𝜇1) et (Ω2,T2, 𝜇2) deux espaces mesurés 𝜎-finis.
Soit f : Ω1×Ω2 → [0,+∞] une fonction T1⊗T2-mesurable. Alors :

1. y ↦→ f (x ,y) est une fonction mesurable (sur (Ω2,T2) dans

[0,+∞] ) pour tout x ∈ Ω1, et x ↦→
∫
Ω2

f (x ,y)d𝜇2 (y) est

une fonction mesurable (sur (Ω1,T1)).
2. x ↦→ f (x ,y) est une fonction mesurable (sur (Ω1,T1) dans

[0,+∞]) pour tout y ∈ Ω2, et y ↦→
∫
Ω1

f (x ,y)d𝜇1 (x) est

une fonction mesurable (sur (Ω2,T2)).
3. On a ∫

Ω1×Ω2

f (x ,y)d𝜇1 ⊗ 𝜇2 (x ,y)

=

∫
Ω1

(︃∫
Ω2

f (x ,y)d𝜇2 (y)
)︃
d𝜇1 (x)

=

∫
Ω2

(︃∫
Ω1

f (x ,y)d𝜇1 (x)
)︃
d𝜇2 (y) .

Exercice 5.1. Calculer l’aire du disque unité D = {(x ,y) ∈
R2 : x2 + y2 ≤ 1}.

Comme dans le cas des fonctions définies sur Rn , on en déduit
facilement un théorème qui s’applique à toutes les fonctions intégrables
(et pour vérifier qu’une fonction est intégrable, on peut commencer par
appliquer le théorème de Fubini–Tonelli à | f |).

1. Cette sous-section reprend le cours de 2018-2019 de T. Blossier,
M. Carrizosa et J. Melleray.
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⋆ Théorème 5.4: (Fubini)

Soient (Ω1,T1, 𝜇1) et (Ω2,T2, 𝜇2) deux espaces mesurés 𝜎-finis.
Soit f : Ω1 ×Ω2 → R une fonction intégrable. Alors :

1. y ↦→ f (x ,y) est une fonction intégrable (sur Ω2) pour

presque tout x ∈ Ω1, et x ↦→
∫
Ω2

f (x ,y)d𝜇2 (y) est une

fonction intégrable (sur Ω1).
2. x ↦→ f (x ,y) est une fonction intégrable (sur Ω1) pour

presque tout y ∈ Ω2, et y ↦→
∫
Ω1

f (x ,y)d𝜇1 (x) est une

fonction intégrable (sur Ω2)
3. On a ∫

Ω1×Ω2

f (x ,y)d𝜇1 ⊗ 𝜇2 (x ,y)

=

∫
Ω1

(︃∫
Ω2

f (x ,y)d𝜇2 (y)
)︃
d𝜇1 (x)

=

∫
Ω2

(︃∫
Ω1

f (x ,y)d𝜇1 (x)
)︃
d𝜇2 (y) .

Exercice 5.2. Soit f , g des fonctions mesurables positives sur R,
on définit la convolution de f , g par :

f ∗ g (x) =
∫
R
f (x − y)g (y)d𝜆 (y) ∈ [0,∞] .

On rappelle que

| | f | |1 =

∫
R
| f (x) |d𝜆 (x).

1. Montrer que f ∗ g est mesurable et que

| | f ∗ g | |1 = | | f | |1 | |g | |1.

2. Montrer que la définition de f ∗ g s’étend pour presque
tout x au f , g ∈ L1 (R,d𝜆 ) et que f ∗ g ∈ L1 (R,d𝜆 ).

3. Montrer que pour f , g ,h toutes mesurables positives ou
toutes intégrables, alors

f ∗ (g ∗ h) = ( f ∗ g ) ∗ h .
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2 Une Inégalité de convexité :

l’Inégalité de Jensen
La convexité (ou la concavité) est souvent utilisée pour établir des

inégalités. 2

Voyons maintenant l’inégalité de convexité la plus importante de
notre cours.

⋆ Théorème 5.5: (Inégalité de Jensen)

Soit (X ,A, 𝜇) un espace de probabilité, g une fonction 𝜇-
intégrable à valeurs dans un intervalle I , et 𝜑 : I → R une fonc-
tion convexe. Alors on a

𝜑

(︃∫
X
gd𝜇

)︃
≤

∫
X
𝜑 ◦ gd𝜇

(l’intégrale de droite peut être égale à +∞ !).

Démonstration. D’abord, par le théorème 3.9, 𝜑 est dérivable à droite et
à gauche, donc continue sur l’intérieur de I , donc borélienne sur I (exo)
donc la composée 𝜑◦ g est bien mesurable. Posons m =

∫
X gd𝜇. Notons

que m ∈ I . En effet I est définie par une ou deux inégalités, I = I1 ∩ I2
avec (I1 = {x : x ≥ a} ou I1 = {x : x > a} ou I1 = R) et de même
(I2 = {x : x ≤ b} ou I2 = {x : x < b} ou I2 = R). Expliquons d’abord que
si g est à valeur dans I1 = {x : x ≥ a}, alors comme l’intégrale préserve
les inégalités larges

∫
X gd𝜇 ≥

∫
X ad𝜇 = a car 𝜇(X ) = 1 et donc m ∈ I1.

De même si I1 = {x : x > a} si on n’avait pas
∫
X gd𝜇 > a, on aurait

donc
∫
X gd𝜇 = a =

∫
X ad𝜇 donc

∫
X (g − a)d𝜇 = 0 mais alors g − a serait

nulle 𝜇-presque partout, donc {x ∈ X : g (x) > a} = X serait de mesure
nulle, contredisant l’hypothèse que X est un espace de probabilité. On
conclut donc aussi dans ce cas

∫
X gd𝜇 ∈ I1. On raisonne pareil pour I2

(ou on applique le premier cas à −g pour changer le sens des inégalités).
Maintenant qu’on a vu que m ∈ I , on distingue 3 cas. Si jamais

m est le minimum de I (s’il existe !) alors on a
∫
X (g − m)d𝜇 = 0 et

2. Cette partie reprend le cours de 2018-2019 de T. Blossier, M.
Carrizosa et J. Melleray.
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g −m ≥ 0, donc g −m est nulle presque partout, par conséquent on a∫

X
𝜑 ◦ gd𝜇 =

∫
X
𝜑(m)d𝜇 = 𝜑(m) = 𝜑

(︃∫
X
gd𝜇

)︃
.

On traite de même le cas où m est le maximum de I ; finalement, le cas
qui nous reste est celui où m appartient à l’intérieur de I .

Alors, on sait que 𝜑′
g (m) existe et en posant 𝛼 = 𝜑′

g (m), le théorème
3.9 donne que

∀t ∈ I 𝜑(t ) − 𝜑(m) ≥ 𝛼(t −m) .

En particulier, pour tout x ∈ X on a 𝜑(g (x)) ≥ 𝜑(m) +𝛼(g (x) −m).
Comme g est intégrable et les fonctions constantes sont intégrables (car
𝜇 est finie), donc la borne inférieure est intégrable, et on en déduit que
la partie négative de 𝜑 ◦ g est d’intégrale finie ; et en intégrant cette
inégalité, on obtient aussi que∫

X
𝜑 ◦ gd𝜇 ≥

∫
X
𝜑(m)d𝜇 + 𝛼

∫
X
(g −m)d𝜇

= 𝜑(m) + 𝛼(
∫
X
gd𝜇 −m) = 𝜑(m) .

Le corollaire suivant est un cas (très) particulier de l’inégalité de
Jensen, qui peut se montrer élémentairement, sans théorie de la mesure.

Corollaire 5.6

Soit I un intervalle de R, 𝛼1, . . . ,𝛼n des réels positifs tels que
n∑︁
i=1

𝛼i = 1, et 𝜑 une fonction convexe sur I . Alors, pour tout

x1, . . . ,xn ∈ I on a

𝜑

(︄
n∑︁
i=1

𝛼ixi

)︄
≤

n∑︁
i=1

𝛼i𝜑(xi ) .

Démonstration. On fixe x1, . . . ,xn ∈ I et on considère l’espace mesuré
d’ensemble sous-jacent X = {x1, . . . ,xn}, où toutes les parties sont me-

surables et 𝜇 =

n∑︁
i=1

𝛼i 𝛿xi , où 𝛿xi désigne la mesure de Dirac en xi . Alors
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𝜇 est une mesure de probabilité ; de plus pour toute fonction g : X → R
on a ∫

X
gd𝜇 =

n∑︁
i=1

𝛼i g (xi ) .

En considérant pour g la fonction identité, on a donc
∫
X
𝜑 ◦ gd𝜇 =

n∑︁
i=1

𝛼i𝜑(xi ), et
∫
X
gd𝜇 =

n∑︁
i=1

𝛼ixi . L’inégalité de Jensen nous donne

donc comme attendu

𝜑

(︄
n∑︁
i=1

𝛼ixi

)︄
≤

n∑︁
i=1

𝛼i𝜑(xi ) .

Remarque 5.1. Dans le corollaire ci-dessus, le cas n = 2 corres-
pond exactement à la définition de la convexité. En particulier,
une application 𝜑 qui satisfait l’inégalité de Jensen pour toute
fonction intégrable sur un espace de probabilité, est nécessaire-
ment convexe.

3 Théorème de changement de
variables

En pratique, pour calculer une intégrale multiple, on est souvent
amené à faire un changement de variables pour se ramener à un do-
maine plus simple sur lequel appliquer le théorème de Fubini. On
énonce le théorème dans le cadre le plus courant où les fonctions que
l’on peut utiliser pour faire un changement de variables sont les difféo-
morphismes de classe C1.

Cas affine
On commence par montrer le cas des fonctions affines. Nous allons

baser la preuve sur une caractérisation de la mesure de Lebesgue :
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Théorème 5.7

(admis) La mesure de Lebesgue sur Rn est invariante par trans-
lation, au sens où pour tout A ∈ B(Rn) et tout x ∈ Rn , on a
𝜆n (x + A) = 𝜆n (A) avec x + A := {x + a,a ∈ A}.
Inversement, si 𝜇 est une mesure sur (Rn ,B(Rn)) finie sur les
parties bornées et invariante par translation, alors il existe une
constante c ≥ 0 telle que 𝜇 = c𝜆n .

Exercice 5.3. On cherche à montrer l’unicité. On pose c =

𝜇( [0,1[n). Montrer en utilisant des recouvrements par des trans-
lations d’un ensemble fixé que

1. 𝜇( [0, 1
m [

n) = c 1
mn

2. pour a1, ...,an ≥ 0, on a

𝜇(
n∏︂
i=1

[0, ⌊mai⌋
m

[) = c
∏︁n
i=1⌊mai⌋
mn

En déduire que 𝜇(∏︁n
i=1 [ai ,bi [) = c

∏︁n
i=1 (bi −ai ) et conclure (en

utilisant un corollaire du lemme de classe monotone).

Lemme 5.8

Soit b ∈ Rn et A ∈ Mn (R) une matrice inversible. On pose
f (x) = Ax + b avec f : Rn → Rn , alors pour tout borélien B de
Rn , on a :

𝜆n ( f (B)) = |det (A) |𝜆n (B).

Exercice 5.4. Si A n’est pas inversible montrer que 𝜆 ( f (B)) = 0.
(Indication : on pourra montrer que f (B) est inclus dans un
hyperplan affine, i.e. un sous-espace affine de dimension n − 1,
dans le cas b = 0 dans un s.e.v. de dimension n − 1).

Démonstration. f (B) = ( f −1)−1 (B) est bien borélien car f −1 est li-
néaire (en dimension finie donc) continue donc borélienne. De même
𝜆 ( f (·)) = f −1.𝜆 est la mesure image par f −1 donc c’est bien une me-
sure finie sur les parties bornées (car f (B) est borné pour tout borné
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B , cf chapitre 3 f (B (0,M )) ⊂ B (0, | |b | | +M | | | f | | |) avec | | | f | | | la norme
subordonnée de f ). Montrons qu’elle est invariante par translation.

On a pour a ∈ Rn 𝜆n ( f (a+B)) = 𝜆n (b+A(a+B)) = 𝜆n (Aa+ f (B)) =
𝜆n ( f (B)) par invariance par translation de la mesure de Lebesgue. Le
théorème précédent montre donc que 𝜆n ( f (B)) = c𝜆n (B) pour tout
borélien B . Il suffit donc de bien choisir le borélien pour chaque A
pour montrer que c = |det (A) |.

Par décomposition polaire, une matrice réelle s’écrit A = OS avec
O orthogonale et S symétrique. Cette matrice S peut se diagonaliser
en base orthogonale S = O t2DO2 donc, ensemble, cela donne une dé-
composition A = O1DO2 où O1 = OO t2,O2 sont orthogonales et D est
diagonale réelle.

Comme 𝜆n est invariante par translation, on est donc ramené au
cas b = 0.

On est donc ramener au deux cas A orthogonale et A diagonale
inversible.

Si A orthogonale, alors on choisit la boule unité euclidienne B =

Bn car une matrice orthogonale laisse invariante cette boule (c’est par
définition une isométrie pour la norme euclidienne) donc 𝜆n ( f (Bn)) =
𝜆n (Bn) et c = 1 = |det (A) | (vu AAt = I , det (A)2 = det (A)det (At ) =

det (I ) = 1).
Si A = diag (d1, ...,dn) alors on prend B = [0,1]n car A(B) =∏︁n

i=1 [0,di ] avec [0,di ] = [di ,0] si di < 0. Dans tous les cas 𝜆n (A(B)) =∏︁n
i=1 |di | = |det (A) |𝜆 (B) comme voulu.

Dans le cas général, A = O1SO2, par composition, on obtient :

𝜆 (A(B)) = |det (O1) | |det (D) | det(O2) |𝜆 (B)
= | det(A) |𝜆 (B).

Rappel (de L2) sur les difféomorphismes
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Définition 5.2

Soient U ⊂ Rn ,V ⊂ Rp . Une application f : U → V une
fonction différentiable. f est un difféomorphisme si f est bijective
et que f −1 est différentiable.
On dit que f est un Ck -difféomorphisme (k ∈ N∗ ∪ ∞) si de plus
f et f −1 sont de classe Ck .

Proposition 5.9

Soit f : U → V un difféomorphisme, alors ∀x ∈ U , df (x) :
Rn → Rp est un isomorphisme linéaire (en particulier nécessai-
rement n = p) et on a :

(df (x))−1 = df −1 ( f (x)).

Remarque 5.2. 1. Le résultat précédent montre que la di-
mension est invariante par difféomorphisme. De même
des ouverts de Rn et Rp ne peuvent être homéomorphes
que si n = p mais c’est beaucoup plus dur (Théo-
rème d’invariance du domaine de Brouwer). Par contre,
il existe des applications continues surjectives de [0,1]
dans [0,1]2.

2. Le théorème d’inversion locale va donner des conditions
pour la réciproque de la proposition précédente

Démonstration. Comme f −1 ◦ f (y) = y , en différenciant f −1 ◦ f par
le théorème des fonctions composées en x , on obtient : df −1 ( f (x)) ◦
df (x) = id .

De même en différenciant f ◦ f −1 (y) = y en z = f (x) on obtient :
df ( f −1 (z )) ◦ df −1 (z ) = I d . Donc df (x) et df −1 ( f (x)) sont inverses
l’une de l’autre, ce qui conclut.

Définition 5.3

Soit f : U → Rp une application différentiable sur un ouvert
U ⊂ Rn . f (x) = ( f1 (x), ..., fp (x)). La matrice de l’application
linéaire df (x) dans les bases canoniques de Rn et Rp est appelée,
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matrice jacobienne de f et notée J ( f ) (x) :

( J ( f ) (x))i j = (
𝜕fi
𝜕x j

(x)).

Remarque 5.3. Le théorème de dérivation des fonctions compo-
sées donne donc :

J (g ◦ f ) (x0) = J (g ) ( f (x0)) J ( f ) (x0),

et le résultat pour les inverses de la proposition précédente
s’écrit :

J ( f −1) (y0) = [ J ( f ) ( f −1 (y0))]−1.

Le théorème suivant avec k = 1 permettra de vérifier l’hypothèse
du théorème de changement de variable.

Théorème 5.10: (d’inversion globale)

Soit f : U → Rn une application de classe Ck (avec k ≥ 1)
injective et telle que pour tout x ∈ U , df (x) : Rn → Rn est
un isomorphisme linéaire, alors f (U ) est un ouvert de Rn et
f : U → f (U ) est un Ck -difféomorphisme.

Remarque 5.4. df (x) est un isomorphisme si et seulement si
det ( J f (x)) ≠ 0.

Cas général (admis)
Nous pouvons maintenant énoncer le théorème de changement de

variables. 3

3. Cette sous-section reprend le cours de 2018-2019 de T. Blossier,
M. Carrizosa et J. Melleray.
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⋆ Théorème 5.11: (Théorème de changement de va-
riables)

Soient U ,V deux ouverts de Rn , et 𝜑 : U → V un difféomor-
phisme de classe C1. Rappelons qu’on note 𝜆n la mesure de
Lebesgue sur Rn . Alors on a :

1. Pour toute partie B borélienne de U , 𝜆n (𝜑(B)) =∫
B
| det( J 𝜑(x)) |d𝜆n (x).

2. Si f : V → [0,+∞] est borélienne, alors∫
V
f (x)d𝜆n (x)

=

∫
U
f ◦ 𝜑(y) | det( J 𝜑(y)) |d𝜆n (y) .

3. Si f : V → R est intégrable, alors y ↦→ f ◦
𝜑(y) | det( J 𝜑(y)) | est intégrable sur U et on a∫

V
f (x)d𝜆n (x)

=

∫
U
f ◦ 𝜑(y) | det( J 𝜑(y)) |d𝜆n (y) .

Remarque 5.5. Le cas affine est une conséquence du lemme 5.8
et du théorème de transfert appliqué f = 𝜑−1 : (V,B(V ),𝜆n) →
(U ,B(U )). Le 1 du théorème ou le lemme 5.8 ci-dessus, s’in-
terprète comme le calcul de la mesure image de la mesure de
Lebesgue induite sur V : (𝜆n,V )X ayant une densité fX (x) =

| det( J 𝜑(x)) |1U (x) par rapport à 𝜆n . Le résultat correspond à
h = f ◦ 𝜑 de sorte que :∫

V
f d𝜆n =

∫
V
h (X )d𝜆n

=

∫
Rn
h (y) fX (y)d𝜆n (y)

=

∫
U
f ◦ 𝜑(y) | det( J 𝜑(y)) |d𝜆n (y).
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Exemple 5.2: (changement de variables en coordonnées po-
laires)

On considère l’application 𝜙 : U =]0,+∞[×]0,2𝜋[→ R2 définie
par 𝜙(r , 𝜃) = (r cos 𝜃,r sin 𝜃).

Alors, la matrice jacobienne de 𝜙 est
(︃
cos 𝜃 −r sin 𝜃

sin 𝜃 r cos 𝜃

)︃
, de dé-

terminant r .
De plus, 𝜙 est injective et 𝜙(U ) = R2 \ ([0,+∞[×{0}) =V .
Ainsi, 𝜙 est un C1-difféomorphisme deU surV . Comme 𝜆2 (R2\
V ) = 0, c’est-à-dire R2 \V est négligeable, il n’est pas gênant que
𝜙 ne soit pas un difféomorphisme de U sur R2 tout entier.
Par exemple, calculons

I =

∫
D
(x + y)2dxdy , où D = {(x ,y) : x2 + y2 < 1}.

En utilisant le théorème de changement de variables avec les
coordonnées polaires (et le théorème de Fubini), on obtient
𝜙−1 (D ∩V ) =]0,1[×]0,2𝜋[ et

I =

∫
D∩V

(x + y)2dxdy

=

∫
𝜙−1 (D∩V )

(r cos 𝜃 + r sin 𝜃)2r drd𝜃

=

∫ 1

0
dr(︃∫ 2𝜋

0
r 3 (cos2 𝜃 + sin2 𝜃 + 2 cos 𝜃 sin 𝜃)d𝜃

)︃
=

∫ 1

0
r 3

(︃∫ 2𝜋

0
d𝜃 (1 + sin 2𝜃)

)︃
dr

=

∫ 1

0
2𝜋r 3dr

=
𝜋

2
.
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Exemple 5.3

Calculons Γ( 1
2 ) =

∫ +∞
0 t−1/2e −tdt .

On commence par le changement de variable (pour les inté-
grales à une variable) u2 = t , dt = 2udu :

Γ( 1
2
) =

∫ +∞

0
t−1/2e −tdt

= 2
∫ +∞

0
e −u

2
du =

∫ +∞

−∞
e −u

2
du

avec la dernière égalité venant de la parité de la fonction u ↦→
e −u

2
.

Enfin, on calcule le carré de cette intégrale en utilisant d’abord
Fubini-Tonelli pour obtenir une intégrale double (on utilise R2 \
({0} × [0,+∞[) = V vérifiant 𝜆2 (V c ) = 0 comme à l’exemple
précédent).

(Γ( 1
2
))2 =

(︃∫ +∞

−∞
dx

∫ +∞

−∞
dy e −x

2−y2
)︃

=

∫
R2
dxdy e −x

2−y2
=

∫
V
dxdy e −x

2−y2

d’où par changement de variable en coordonnée polaire
(comme à l’exemple précédent on utilise 𝜙−1 (V ) = U pour le
domaine d’intégration) :

(Γ( 1
2
))2 =

(︃∫ 2𝜋

0
d𝜃

∫ +∞

0
dr e −r

2
2r /2

)︃
=

(︃∫ 2𝜋

0
d𝜃1

)︃ [︂
−e −r 2/2

]︂+∞
0

= (2𝜋).1
2
= 𝜋.

On a aussi vérifier que∫ +∞

−∞
e −u

2
du =

√
𝜋.

En faisant, le changement de variable linéaire u = x/
√

2, on
obtient :

1
√

2

∫ +∞

−∞
e −x

2/2dx =
√
𝜋. (5.1)
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CHAPITRE 6

Introduction
aux espaces Lp

Soit (Ω,T , 𝜇) un espace mesuré (T la tribu, 𝜇 la mesure). On va
travailler en identifiant les fonctions si elles coïncident 𝜇-presque par-
tout. Autrement dit, on écrira f = g quand 𝜇({x : f (x) ≠ g (x)}) = 0 ; en
particulier, f = 0 signifiera que f vaut 0 presque partout. Par exemple,
si f est la fonction caractéristique de Q, on pourra écrire f = 0. Ainsi,
dit en mots, on va en fait travailler avec les “classes d’équivalence de
fonctions à égalité 𝜇-presque partout près". K sera égale à R ou C.

1 L’espace L∞(Ω, 𝜇)
⋆ Définition 6.1

Soit f : Ω → K une fonction mesurable. On dit queM ∈ [0,+∞[
est une borne essentielle de f ou que f est essentiellement bornée
par M si 𝜇({x : | f (x) | > M }) = 0, autrement dit, si f ≤ M
𝜇-presque partout.

On définit leur ensemble :

L∞ (Ω,T , 𝜇;K) =
{ ḟ ; f : Ω → K, mesurable et ∃C < ∞ : | f | ≤ C 𝜇 − p .p .}

155



CHAPITRE 6. INTRODUCTION AUX ESPACES Lp 156

et la fonction (qui est une norme selon le lemme suivant) :

| | f | |∞ = inf{C : | f | ≤ C 𝜇 − p .p .} =: ess suppx∈Ω | f (x) |.

On note aussi plus brièvement L∞ (Ω;K) = L∞ (Ω, 𝜇;K) =

L∞ (Ω,T , 𝜇;K) et L∞ (Ω) = L∞ (Ω;R), si il n’y a pas de confusion pos-
sible.

Exercice 6.1. (cf TD) Montrer que | f | ≤ | | f | |∞p .p .

Lemme 6.1

(L∞ (Ω,T , 𝜇;K), | | · | |∞) est un espace vectoriel normé.

Démonstration. On montre qu’il s’agit d’un sous-espace vectoriel de l’es-
pace des classes d’équivalences de fonctions mesurables. Bien sûr 0 est
bornée donc essentiellement bornée.

Soient f , g ∈ L∞ (Ω,T , 𝜇;K), 𝜆 ∈ K. Par l’exo

𝜇({𝜔 : | f (𝜔) | > | | f | |∞}) = 0,

𝜇({𝜔 : |g (𝜔) | > | |g | |∞}) = 0.

Or par l’inégalité triangulaire des nombres on a :| (𝜆 f + g ) (𝜔) | ≤
|𝜆 | | f (𝜔) | + |g (𝜔) | donc

{𝜔 :| f (𝜔) | ≤ | | f | |∞} ∩ {𝜔 : |g (𝜔) | ≤ | |g | |∞}
⊂ {𝜔 : | (𝜆 f + g ) (𝜔) | ≤ |𝜆 | | | f | |∞ + ||g | |∞}

et en passant au complémentaire

𝜇({𝜔 : | (𝜆 f + g ) (𝜔) | > |𝜆 | | | f | |∞ + ||g | |∞})
≤ 𝜇({𝜔 : | f (𝜔) | > | | f | |∞}) + 𝜇({𝜔 : |g (𝜔) | > | |g | |∞}) = 0

Donc, par définition, 𝜆 f + g est essentiellement bornée et | |𝜆 f + g | |∞ ≤
|𝜆 | | | f | |∞+||g | |∞. On déduit que L∞ (Ω;K) est bien un espace vectoriel et
l’inégalité triangulaire. En fait 𝜇({𝜔 : | f (𝜔) | > C }) = 𝜇({𝜔 : |𝜆 f (𝜔) | >
|𝜆 |C }) donc en comparant les infima, | |𝜆 f | |∞ = |𝜆 | | | f | |∞ ce qui donne
la positive homogénéité. Enfin par définition, si | | f | |∞ = 0 alors f = 0
presque partout donc sa classe d’équivalence est nulle.
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Théorème 6.2

(L∞ (Ω,T , 𝜇;K), | | · | |∞) est un espace de Banach.

Démonstration. Il reste à montrer la complétude : Soit fn une suite
de Cauchy de fonctions mesurables essentiellement bornées. Mon-
trons que que fn converge vers f (𝜔) = lim supn→∞ fn (𝜔) qui est une
fonction mesurable comme lim sup de fonctions mesurables et dont
on va voir qu’elle est essentiellement bornée. Donc, par l’hypothèse
d’avoir une suite de Cauchy, pour n > 0, 𝜖 = 1/n il existe Nn tel que
∀p ,q ≥ Nn , | | fp − fq | |∞ ≤ 1

n . Par définition de la norme, on peut donc
fixer An,p ,q (pour p ,q ≥ Nn) avec 𝜇(Acn,p ,q ) = 0 tel que

sup
𝜔∈An,p ,q

| fp (𝜔) − fq (𝜔) | ≤
1
n
.

On va intersecter tous ces ensembles (une intersection dénom-
brable) pour avoir 𝜇-p.p. une suite de Cauchy. On prend donc A =

∩n>0 ∩p ,q≥Nn An,p ,q . On a 𝜇(Ac ) ≤
∑︁
n>0

∑︁
p ,q≥Nn

𝜇(Acn,p ,q ) = 0 (vu que Ac est

une union dénombrable).
De plus pour 𝜔 ∈ Ac , on a

∀n,∀p ,q ≥ Nn , | fp (𝜔) − fq (𝜔) | ≤
1
n

donc ( fn (𝜔)) est de Cauchy dans K donc converge. Sa limite est forcé-
ment f (𝜔) et en passant à la limite q → ∞ ci dessus, pour tout 𝜔 ∈ A :

∀n,∀p ≥ Nn , | fp (𝜔) − f (𝜔) | ≤
1
n
.

Comme 𝜇(Ac ) = 0 on déduit

∀n,∀p ≥ Nn , | | fp − f | |∞ ≤ 1
n
.

Ceci implique | | f | |∞ ≤ || fp | |∞ + || fp − f | |∞ donc f est dans
L∞ (Ω,T , 𝜇;K) et la convergence de fn vers f dans cet espace. Comme
toute suite de Cauchy converge, on a obtenu la complétude voulue.
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2 Définitions et propriétés
élémentaires des espaces Lp (Ω, 𝜇)

On définit les espaces :

Lp (Ω,T , 𝜇;K) = { f : Ω → K mesurable |
∫

| f |pd𝜇 < ∞},

pour p ∈ [1,∞[. Alors

| | f | |p = (
∫
d𝜇 | f |p )1/p .

n’est pas une norme (mais une seminorme sur Lp (Ω,T , 𝜇) car si
| | f | |p = 0 alors f est seulement nulle presque partout. On considère
donc l’espace des classes d’équivalences à égalité presque partout près
de fonctions ḟ et l’espace de Lebesgue :

⋆ Définition 6.2

Lp (Ω,T , 𝜇;K) =

{ ḟ ; f : Ω → K mesurable et
∫

| f |pd𝜇 < ∞},

pour p ∈ [1,∞[.

Comme pour le cas p = ∞, on on note aussi plus brièvement

Lp (Ω;K) = Lp (Ω, 𝜇;K) = Lp (Ω,T , 𝜇;K)

et Lp (Ω) = Lp (Ω;R), si il n’y a pas de confusion possible.
Par la suite, on identifie f à ḟ dans ce contexte, on répète que

les égalités sont des égalités 𝜇 − p .p ..
Montrons que | |.| |p est une norme sur Lp (Ω,T , 𝜇). La séparation

et l’homogénéité sont maintenant évidentes. On rappelle l’inégalité de
Hölder d’abord dans le cas le plus simple
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Proposition 6.3

Si f , g sont mesurables, ∥ f ∥p < +∞ et ∥g ∥∞ < +∞, alors f g ∈
Lp (Ω,T , 𝜇;K) et ∥ f g ∥p ≤ ∥ f ∥p ∥g ∥∞.

Démonstration. Il suffit de noter que, 𝜇-presque partout, on a |g (x) | ≤
∥g ∥∞, et donc | f (x)g (x) |p ≤ | f (x) |p ∥g ∥p∞. En intégrant cette inégalité,
on obtient bien

∥ f g ∥pp =
∫
Ω

| f (x)g (x) |pd𝜇

≤
∫
Ω

| f (x) |p ∥g ∥p∞d𝜇 = ∥ f ∥pp ∥g ∥
p
∞ .

La version générale est la suivante

⋆ Lemme 6.4: (inégalité de Hölder)

Si p ,q ∈ [1,∞[ tels que 1/p + 1/q = 1/r ≤ 1, f ∈
Lp (Ω,T , 𝜇;K), g ∈ Lq (Ω,T , 𝜇;K) alors f g ∈ Lr (Ω,T , 𝜇;K) et

| | f g | |r ≤ || f | |p | |g | |q .

Démonstration. En remplaçant f , g par | f |r , |g |r on se ramène au cas
r = 1.

Par hypothèse dans le cas r = 1, 1 < p < ∞, on remarque que par
concavité du logarithme, on a pour a,b > 0

log
(︁
ap/p + bq /q

)︁
≥ log

(︁
ap

)︁
/p + log (bq ) /q

= log (ab) .

Donc on obtient en exponentiant (et en vérifiant directement les
cas d’annulations), l’inégalité d’Young :

| f (x)g (x) | ≤
| f (x) |p
p

+
|g (x) |q
q

.

Donc en intégrant, on obtient f g ∈ L1 et appliquant à 𝜆 f , 𝜆 > 0 :

| | f g | |1 ≤ 𝜆 p−1

p
| | f | |pp +

𝜆−1

q
| |g | |qq .
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Comme le cas d’annulation | | f | |p = 0 ou | |g | |q = 0 sont évidents (car
alors f g = 0 𝜇 − p .p .), on conclut en supposant | | f | |p ≠ 0, | |g | |q ≠ 0 et

en prenant la valeur de 𝜆 donnant le minimum 𝜆 = | | f | |−1
p | |g | |q/pq .

Une conséquence importante est l’exercice suivant :

Exercice 6.2. Si 𝜇 est une mesure finie pour 1 ≤ p ≤ q ≤ ∞,
montrer que :

L∞ (Ω,T , 𝜇;K) ⊂ Lq (Ω,T , 𝜇;K)
⊂ Lp (Ω,T , 𝜇;K) ⊂ L1 (Ω,T , 𝜇;K).

On en déduit l’inégalité triangulaire :

⋆ Théorème 6.5: (Inégalité de Minkowski)

Soient p ∈ [1,+∞] et f , g ∈ Lp (Ω). Alors f + g ∈ Lp (Ω) et
∥ f + g ∥p ≤ ∥ f ∥p + ∥g ∥p .

Démonstration. On a déjà traité le cas p = +∞, et le cas p = 1 est sim-
plement l’inégalité triangulaire habituelle. Supposons donc p ∈]1,+∞[
et f , g ∈ Lp (Ω).

Commençons par montrer que ∥ f + g ∥p < +∞. Comme x ↦→ xp est
convexe et croissante, on a pour tout x que(︃|︁|︁|︁|︁12 f (x) + 1

2
g (x)

|︁|︁|︁|︁)︃p ≤ (︃|︁|︁|︁|︁12 f (x)|︁|︁|︁|︁ + |︁|︁|︁|︁12 g (x)|︁|︁|︁|︁)︃p
≤ 1

2
| f (x) |p + 1

2
|g (x) |p .

En intégrant cette inégalité, on obtient que

1
2p

∥ f + g ∥pp ≤
1
2
(∥ f ∥pp + ∥g ∥pp )) .

Ceci nous prouve que ∥ f + g ∥p < +∞.
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Maintenant, notons q =
p

p − 1
l’exposant conjugué de p . Ci-

dessous, on va utiliser l’inégalité de Hölder, et le fait que

∥︁∥︁| f + g |p−1
∥︁∥︁
q =

(︃∫
Ω

| f + g | (p−1)qd𝜇
)︃ 1
q

=

(︃∫
Ω

| f + g |p
)︃1− 1

p

= ∥ f + g ∥p−1
p .

Alors on a

∥ f + g ∥pp =

∫
Ω

| f + g |pd𝜇

≤
∫
Ω

( | f | + |g |) | f + g |p−1d𝜇

=

∫
Ω

| f | | f + g |p−1d𝜇 +
∫
Ω

|g | | f + g |p−1d𝜇

≤ ∥ f ∥p
∥︁∥︁| f + g |p−1

∥︁∥︁
q + ∥g ∥p

∥︁∥︁| f + g |p−1
∥︁∥︁
q

= (∥ f ∥p + ∥g ∥p )
∥︁∥︁| f + g |p−1

∥︁∥︁
q

= (∥ f ∥p + ∥g ∥p )∥ f + g ∥p−1
p

Si jamais ∥ f + g ∥p = 0 on n’a rien à démontrer ; sinon, en divisant

des deux côtés par ∥ f + g ∥p−1
p on obtient finalement ∥ f + g ∥p ≤ ∥ f ∥p +

∥g ∥p .

Exercice 6.3. Soit (Ω,T , 𝜇) un espace mesure 𝜎-fini. Soit f ≥ 0
une fonction mesurable positive, alors pour p ∈]0,∞[∫

f pd𝜇 =

∫ ∞

0
dtpt p−1𝜇({𝜔 : f (𝜔) > t }).

On rappelle d’abord la version Lp du théorème de convergence
dominée.

⋆ Théorème 6.6: (Théorème de convergence dominée Lp)

Soit p ∈ [1,+∞[. Soit (Ω, 𝜇) un espace mesuré, et fn une suite
de fonctions mesurables convergeant 𝜇-presque partout vers f ,
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et vérifiant la domination | fn | ≤ g avec g ∈ Lp (Ω, 𝜇). Alors,
fn , f ∈ Lp (Ω, 𝜇) et fn converge vers f dans Lp (Ω, 𝜇), c’est à
dire.

lim
n→∞

| | fn − f | |p = 0.

Démonstration. On a | fn − f |p → 0 𝜇-presque partout. De | fn | ≤ g on
déduit que fn ,inLp (Ω, 𝜇;K) en passant à la limite on obtient | f | ≤ g et
donc f ∈ Lp (Ω, 𝜇;K). De plus, on a la domination :

| fn − f |p ≤ (| fn | + | f |)p ≤ (2g )p = 2p g p

et comme g ∈ Lp (Ω, 𝜇) et positive, on déduit que g p = |g |p est 𝜇-
intégrable et sert donc de domination pour appliquer le théorème de
convergence dominée usuelle qui donne le résultat :

| | fn − f | |pp =
∫
Ω

| fn − f |pd𝜇 →n→∞

∫
Ω

0d𝜇 = 0.

⋆ Théorème 6.7: (de Riesz-Fischer)

Soit (Ω, 𝜇) un espace mesuré, les espaces Lp (Ω, 𝜇,K) pour p ∈
[1,∞] sont des espaces de Banach.

Démonstration. On vient de voir que Lp (Ω, 𝜇,K) est un espace vectoriel
normé, et même la complétude dans le cas p = ∞.

Il reste le cas p < ∞. En décomposant en partie réelle et imaginaire,
on peut supposer et donc on suppose K = R.

Pour la complétude, on utilise la proposition 2.6. Soit
∑︁

un qui
est absolument convergente, il faut montrer qu’elle converge dans Lp .

Soit gk =

k∑︁
n=1

|un |, | |gk | |p ≤
∑︁

| |un | |p et |gk |p est croissante, donc par

convergence monotone converge vers g avec | |g | |p ≤
∑︁

| |un | |p . Donc

|g |p ∈ L1 qui donne une domination pour |
∑︁

un |p et
∑︁

un est p.p.
absolument convergente, donc a p.p. une limite et par convergence do-
minée, converge donc dans Lp . .
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Résultats de convergences
En suivant le même raisonnement on obtient le résultat suivant :

⋆ Théorème 6.8

Soient (Ω,T , 𝜇) un espace mesuré, p ∈ [1,+∞[, et ( fn) une suite
d’éléments de Lp (Ω) qui converge vers f dans (Lp (Ω), ∥ · ∥p ).
Alors il existe une suite extraite ( fnk ) telle que ( fnk ) tend vers
f , 𝜇-presque partout et dans Lp (Ω).

Démonstration. On extrait ( fnk ) telle que | | fnk+1 − fnk | |p ≤ 1/2k . (c’est
possible car la suite est de Cauchy dans Lp donc on prend nk telle que
| | fq − fnk | |p ≤ 1/2k pour q ≥ nk .)

Donc on pose gn =

n∑︁
k=1

| fnk+1 − fnk | qui est une suite croissante avec

| |gk | |p ≤
∑︁
k

| | fnk+1 − fnk | |p ≤
∞∑︁
k=1

1/2k = 1.

On déduit donc en appliquant le théorème de convergence monotone

que gk a une limite g =

∞∑︁
k=1

| fnk+1 − fnk | telle que | |g | |p ≤ 1. On l’utilise

maintenant comme condition de domination. Donc
∑︁
k

( fnk+1 − fnk ) est

absolument convergente sur A = {𝜔 : g (𝜔) < ∞} et on a 𝜇(Ac ) = 0,
vu | |g | |p < ∞. Donc par série télescopique ( fnk (𝜔)) converge pour 𝜔 ∈
A. (et comme suite extraite elle converge aussi dans Lp mais en fait
elle est dominée par | fn0 | + g ∈ Lp et converge aussi par convergence
dominée).

Proposition 6.9

Soient (Ω,T , 𝜇) un espace de probabilité et f : Ω → [0,+∞]
une fonction mesurable. Alors on a

∥ f ∥∞ = lim
p→+∞

∥ f ∥p .
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Démonstration. Commençons par remarquer que l’on a toujours

∥ f ∥p =
(︃∫

Ω

| f |pd𝜇
)︃ 1
p

≤
(︂
∥ f ∥p∞𝜇(Ω)

)︂ 1
p
= ∥ f ∥∞ .

Par conséquent, si ∥ f ∥p → +∞ quand p → +∞ alors ∥ f ∥∞ = +∞.
Pour voir la réciproque, notons que pour t < ∥ f ∥∞ fixé, l’ensemble At =
{x ∈ Ω : | f (x) | > t } est de mesure strictement positive, par conséquent

∥ f ∥p ≥ (t p𝜇(At ))
1
p = t𝜇(At )

1
p → t quand p → +∞ .

Ceci montre que si ∥ f ∥∞ = +∞ alors ∥ f ∥p tend vers +∞ ; mais aussi
que, si ∥ f ∥∞ < +∞ on a pour tout 𝜀 > 0 que pour p suffisamment grand
∥ f ∥∞ − 𝜀 ≤ ∥ f ∥p ≤ ∥ f ∥∞.

Résultats de densité
On rappelle le résultat suivant qui se déduit de la construction de

l’intégrale (cf. lemme 4.21)

Lemme 6.10

Soit (Ω, 𝜇,T) un espace 𝜎-fini. L’ensemble S des fonctions éta-
gées intégrables est dense dans tous les Lp (Ω, 𝜇,T), 1 ≤ p <

∞. En particulier, L1 (Ω, 𝜇,T) ∩ L∞ (Ω, 𝜇,T) est dense dans
Lp (Ω, 𝜇,T) pour 1 ≤ p < ∞.

Lemme 6.11

Soit (Ω, 𝜇,T) un espace 𝜎-fini avec T = 𝜎(E) pour E une fa-
mille stable par intersection finie et de mesure finie pour 𝜇, et
contenant une suite An avec 𝜇(An) < ∞ et Ω = ∪nAn . Alors
l’espace vectoriel E = V ect {1A,A ∈ E} est dense dans tous les
Lp (Ω, 𝜇,T), 1 ≤ p < ∞. En particulier, si E est dénombrable,
alors Lp (Ω, 𝜇,T), 1 ≤ p < ∞ est séparable.

En général L∞ (Ω, 𝜇,T) n’est PAS séparable, sauf si Ω est un en-
semble fini, par exemple ℓ∞ (N) n’est pas séparable (c’est un exercice
plus dur de niveau M1).

Démonstration. Soit An ∈ E avec 𝜇(An) < ∞ et Ω = ∪nAn .
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Soit M := {A ∈ T : ∀n,1A∩An ∈ EL
p

}. Clairement E ⊂ M. On va
montrer que M est une classe monotone :

⊲ Ω ∈ M car 1An ∈ E
⊲ Si A ⊂ B et A,B ∈ M, on a 1(B\A)∩An = 1B∩An − 1A∩An par le TD

1 donc dans l’espace vectoriel E
Lp

.
⊲ Si Bm ∈ M suite croissante d’union B alors 1Bm∩An → 1B∩An par-

tout par le TD 1, Or on a domination par 1An ∈ Lp (Ω, 𝜇,T) donc
par convergence dominée 1Bm∩An → 1B∩An dans Lp (Ω, 𝜇,T) et

donc 1B∩An ∈ E
Lp

Le lemme de classe monotone implique M ⊃ T (E). Donc si B ∈
T (E) est de mesure finie, on a 1B∩An ∈ E

Lp
et par la même application

du théorème de convergence dominée (par 1B cette fois) on déduit 1B ∈
E
Lp

. Donc E
Lp

contient toute fonction étagée intégrable et le résultat
précédent conclut. La séparabilité vient de la densité de l’ensemble
dénombrable V ectQ (1A,A ∈ E).

Le support d’une fonction continue f est le fermé supp( f ) =

f −1 ({0})c . Un fonction sur Rn est donc à support compact quand elle
est nulle en dehors d’un ensemble borné. On note C 0

c (Ω) est l’ensemble
des fonctions à support compact sur un ouvert Ω.

⋆ Théorème 6.12

Soit Ω ⊂ Rn un ouvert et 𝜆 la mesure de Lebesgue sur la tribu
borélienne B(Ω) = B(Rn)Ω (tribu induite sur Ω). Alors l’en-
semble des fonctions continues à support compact C 0

c (Ω) est
dense dans Lp (Ω,B(Ω),𝜆 ) pour 1 ≤ p < ∞, qui est séparable.

Démonstration. Par le lemme précédent avec E = {A =
∏︁n
i=1 [ai ,bi ],ai ≤

bi } l’ensemble des pavés, il suffit de voir que les 1A sont approchés par
des fonctions continues à support compact pour A =

∏︁n
i=1 [ai ,bi ]. Par

produit de fonctions (de variables différentes), cela se ramène au cas
n = 1. Soit f = 1[a,b ] et fn (t ) = 1 si t ∈ [a,b], fn (t ) = 1−max (n (t−b),1)
si t > b , fn (t ) = 1−max (n (a−t ),1) si t < a. Alors il est facile de voir que
( fn)n≥1 est une suite dans C 0

c (Ω) qui converge ponctuellement vers f
(exo). Elle est dominée par 1[a−1,b+1] qui est dans Lp (Ω,B(Ω),𝜆 ) pour
1 ≤ p < ∞ donc par convergence dominée, | | fn − f | |p → 0. Donc on
peut appliquer le lemme précédent et conclure.
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3 Cas discret : espaces ℓ p (I ),
p ∈ [1,∞[ (cf. TD)

Définition 6.3

Soit p ∈ [1,∞[. Une famille (zi )i ∈I de nombres complexes ou
réels est dite p-sommable si la famille ( |zi |p )i ∈I est sommable.
On note ℓ p (I ,K) l’ensemble des familles d’éléments de K p -
sommable.

Un examen de la définition indique que ℓ p (I ,K) = Lp (I ,P(I ), 𝜈)
avec 𝜈 la mesure de comptage, c’est donc un espace de Banach. On a
aussi par définition (dans le cas positif puis le cas quelconque) :∑︁

i ∈I
ai =

∫
I
ad𝜈.

On note

| |z | |p =
(︄∑︁
i ∈I

|zi |p
)︄1/p

.

L’inégalité de Hölder s’écrit donc pour x ∈ ℓ q (I ),y ∈ ℓ p (I ) : avec
1/p + 1/q = 1,p ,q ∈]1,∞[ :|︁|︁|︁|︁|︁∑︁

i ∈I
xi yi

|︁|︁|︁|︁|︁ ≤
(︄∑︁
i ∈I

|xi |q
)︄1/q (︄∑︁

i ∈I
|yi |p

)︄1/p



CHAPITRE 7

Espaces de
Hilbert ; bases
hilbertiennes
1 Généralités

Soit H un espace vectoriel sur K = R ou C

⋆ Définition 7.1

Un produit scalaire sur H est une application

⟨., .⟩ : H ×H → K

telle que :

1. pour tout y ∈ H , ⟨y , .⟩ : H → K est linéaire
2. - Si K = R ∀x ,y ∈ H , ⟨x ,y⟩ = ⟨y ,x⟩ (symétrie)

- Si K = C ∀x ,y ∈ H , ⟨x ,y⟩ = ⟨y ,x⟩ (symétrie hermitienne)
3. pour x ∈ H , ⟨x ,x⟩ ∈ R+

4. pour x ∈ H , ⟨x ,x⟩ = 0 si et seulement si x = 0.

Un espace H avec un tel produit scalaire est un espace préhil-
bertien réel (si K = R) et complexe (si K = C).

167
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On remarque que dans le cas complexe, ⟨.,y⟩ est antilinéaire, c’est-
à-dire avec 𝜆 le conjugué complexe,

∀x ,y ,z ∈ H ,𝜆 ∈ C, ⟨𝜆x + z ,y⟩ = 𝜆 ⟨x ,y⟩ + ⟨z ,y⟩.

Exemple 7.1

Sur H = ℓ 2 (N,C) := L2 (N, 𝜈;C) (espace L2 avec la mesure de
comptage 𝜈) on a le produit scalaire (hermitien canonique) :

⟨x ,y⟩ =
∑︁
i ∈I

xi yi

Dans le cas réel, la même formule sans conjugaison complexe
fonctionne.

Exemple 7.2

Sur H = L2 (Ω, 𝜇;C) avec (Ω, 𝜇) un espace mesuré 𝜎-fini, on a
le produit scalaire (hermitien canonique) :

⟨f , g ⟩ =
∫
Ω

f (x)g (x)d𝜇(x).

Exemple 7.3

Sur H = C 0 ( [a,b],C) on a le produit scalaire :

⟨f , g ⟩ =
∫ b

a
f (x)g (x)dx).

Proposition 7.1

Si H est muni d’un produit scalaire on a l’inégalité de Cauchy-
Schwarz :

|⟨x ,y⟩|2 ≤ ⟨x ,x⟩⟨y ,y⟩
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avec égalité si et seulement si x ,y sont liés. De plus | |x | | =
√︁
⟨x ,x⟩

est une norme sur H vérifiant l’identité du parallélogramme :∥︁∥︁∥︁x + y
2

∥︁∥︁∥︁2
+

∥︁∥︁∥︁x − y
2

∥︁∥︁∥︁2
=

1
2
( | |x | |2 + ||y | |2).

Démonstration. On a

⟨x + t y ,x + t y⟩ = | |x | |2 + t2 | |y | |2 + 2tℜ(⟨x ,y⟩) ≥ 0

c’est un polynôme de degré 2 qui est toujours positif ou nul, donc
son discriminant Δ = 4ℜ(⟨x ,y⟩)2 − 4| |x | |2 | |y | |2 ≤ 0. En remplaçant y

par uy avec u =
⟨x ,y ⟩
| ⟨x ,y ⟩ | si ⟨x ,y⟩ ≠ 0 on obtient

ℜ(⟨x ,y⟩u) = |⟨x ,y⟩| ≤ | |x | |2⟨uy ,uy⟩
= | |x | |2 | |y | |2uu = | |x | |2 | |y | |2.

Le même calcul donne pour u de module 1 la norme de∥︁∥︁∥︁ | |y | |x − u | |x | |y
∥︁∥︁∥︁2

= 2| |y | |2 | |x | |2 − 2| |x | | | |y | |ℜ(⟨x ,uy⟩)

qui vaut 0 si on choisit u tel que ⟨x ,y⟩u = |⟨x ,y⟩| et que l’on est dans
le cas d’égalité de C-S, ce qui donne la relation de dépendance linéaire
cherchée | |y | |x − u | |x | |y = 0. (La réciproque, c’est à dire l’égalité en cas
de dépendance linéaire, est évidente).

Pour vérifier que l’on a une norme, la positivité vient de l’axiome
3, la séparation vient du dernier axiome, l’homogénéité vient de

⟨𝜆y ,𝜆y⟩ = 𝜆𝜆 ⟨y ,y⟩ = |𝜆 |2⟨y ,y⟩

et l’inégalité triangulaire vient d’une application de C-S :

⟨x + y ,x + y⟩ = | |x | |2 + ||y | |2 + 2ℜ⟨x ,y⟩
≤ ||x | |2 + ||y | |2 + 2| |x | | | |y | | = ( | |x | | + | |y | |)2.

Enfin, on a aussi la relation :

⟨x − y ,x − y⟩ = | |x | |2 + ||y | |2 − 2ℜ⟨x ,y⟩

soit en faisant la somme (avec l’égalité débutant le calcul pour l’inéga-
lité triangulaire), on obtient l’identité du parallélogramme.
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Remarque 7.1. L’identité du parallélogramme implique que∥︁∥︁ x+y
2

∥︁∥︁2 ≥ 1
2 ( | |x | |

2 + ||y | |2) avec égalité si et seulement si x = y
ce qui donne un résultat de convexité (en faite stricte car l’in-
égalité est stricte si x ≠ y). (On a vu en TD que par continuité
la convexité à mi point implique la convexité).
Une autre identité importante s’établit en prenant la différence
des égalités donnant la preuve de l’identité du parallélogramme
ci-dessus, c’est l’identité de polarisation :

ℜ⟨x ,y⟩ =
| |x + y | |2 − ||x − y | |2

4

On retrouve aussi

ℑ⟨y ,x⟩ = ℜ⟨i y ,x⟩ =
| |x + i y | |2 − ||x − i y | |2

4

d’où la formule de polarisation complexe :

⟨y ,x⟩

=
| |x + y | |2 − ||x − y | |2 + i | |x + i y | |2 − i | |x − i y | |2

4

ou encore en bref

⟨y ,x⟩ = 1
4

3∑︁
i=0

ik | |x + ik y | |2 (7.1)

⋆ Définition 7.2

Un espace pré-hilbertien complet est appelé espace de Hilbert.

⋆ Théorème 7.2

Soit (Ω,T , 𝜇) un espace mesuré. Alors H = L2 (Ω,T , 𝜇;K) est
un espace de Hilbert sur K avec le produit scalaire défini pour
f , g ∈ H par :

⟨f , g ⟩ =
∫
Ω

f g d𝜇.
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Démonstration. On ne traite que le cas K = C. Si f , g ∈ H , l’inégalité
de Hölder avec p = q = 2 donne f g ∈ L1 (Ω,T , 𝜇;K) et donc l’intégrale
définissant le produit scalaire est bien définie. On vérifie les axiomes
des produits scalaires : 1/ ⟨f , g ⟩ est linéaire en la deuxième variable g
par linéarité de l’intégrale.

2/ la symétrie hermitienne vient du calcul suivant :

⟨f , g ⟩ =
∫
Ω

f g d𝜇 =

∫
Ω

f g d𝜇 =

∫
Ω

f g d𝜇 = ⟨g , f ⟩.

3/

⟨f , f ⟩ =
∫
Ω

| f |2d𝜇 = | | f | |22 ∈ [0,+∞[

4/ Comme on sait déjà que | |.| |2 la séparation de la norme implique
que si || f | |2 = 0 alors f = 0 (𝜇-presque partout c’est à dire) dans
H = L2 (Ω,T , 𝜇;K).

On a donc bien un espace pré-hilbertien, et le Théorème de Riesz-
Fischer 6.7 dit que L2 (Ω,T , 𝜇;K) est complet, donc un espace de Hil-
bert.

Exemple 7.4

ℓ 2 (N;C) sont des espaces de Hilbert (cf. chapitre 6 pour la com-
plétude), mais pas C 0 ( [a,b],C) dont la complétion est l’espace
de Hilbert L2 ( [a,b],𝜆 ;C). La complétion d’un espace préhil-
bertien en tant qu’e.v.n. (cf. annexe A section 3) est toujours un
espace de Hilbert.

2 Projection sur un convexe fermé
On va généraliser l’existence de projection orthogonale sur un sous-

espace d’un espace euclidien d’abord au cas des convexes fermés et en
dimension infinie.

⋆ Théorème 7.3

Soit H un espace de Hilbert et C ⊂ H un convexe fermé non-
vide. Pour tout f ∈ H il existe un unique u = PC ( f ) ∈ C tel
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que
| | f − u | | = inf

v ∈C
| | f − v | |.

De plus c’est l’unique vecteur u ∈ C vérifiant la propriété carac-
téristique :

∀v ∈ C , ℜ(⟨f − u ,v − u⟩) ≤ 0

Enfin, PC est une application 1-lipschitzienne appelée projection
sur C .

Remarque 7.2. Un théorème de projection similaire sur un
convexe fermé est valide dans Lp (Ω,T , 𝜇) pour tout 1 < p < ∞
(et pas seulement p = 2), mais il n’y a pas de caractérisation
aussi simple de la projection PC (en l’absence de produit sca-
laire) et la projection PC est seulement uniformément continue
(et plus nécessairement Lipschitz). Mais ce résultat est beau-
coup plus dur (un exercice difficile de M1 Math).

Démonstration. On fait une preuve directe, utilisant l’identité du paral-
lélogramme.

Soit vn ∈ C tel que | | f − vn | | → d = infv ∈C | | f − v | |
En appliquant l’identité à a = f − vn ,b = f − vm , on trouve :∥︁∥︁∥︁f − vn + vm

2

∥︁∥︁∥︁2
+

∥︁∥︁∥︁vn − vm
2

∥︁∥︁∥︁2
=

1
2
( | | f − vn | |2 + || f − vm | |2) → d 2.

Or par convexité vn+vm
2 ∈ C donc

∥︁∥︁f − vn+vm
2

∥︁∥︁2 ≥ d 2 donc∥︁∥︁∥︁vn − vm
2

∥︁∥︁∥︁2
≤ 1

2
( | | f − vn | |2 + || f − vm | |2) − d 2 → 0.

On déduit donc que vn est de Cauchy, donc converge vers u et par
continuité de la norme d = | | f − u | |.

Soit g : v ↦→ || f − v | |22. On peut calculer la différentielle dg (u) =

ℜ(⟨f −u , .⟩). Or si g atteint son minimum en u, pour v ∈ C , t ∈ [0,1],

| | f − tv − (1 − t )u | |22
= | | f − u | |22 + t

2 | |v − u | |22 − 2tℜ(⟨f − u ,v − u⟩)
≥ || f − u | |22
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donc 2ℜ(⟨f − u ,t − u⟩) ≤ t | |v − u | |22 et la limite t → 0 donne l’inégalité
caractéristique. Réciproquement, on a en t = 1, l’inégalité qui conclut :

| | f − u | |22 − || f − v | |22 = 2ℜ(⟨f − u ,v − u⟩) − ||v − u | |22 ≤ 0.

Pour voir l’unicité, si u1,u2 ∈ C , on peut utiliser la convexité stricte
sous la forme de l’identité du parallélogramme, on a∥︁∥︁∥︁f − u1 + u2

2

∥︁∥︁∥︁2
+

∥︁∥︁∥︁u1 − u2

2

∥︁∥︁∥︁2
=

1
2
( | | f − u1 | |2 + || f − u2 | |2) = d 2

soit comme
∥︁∥︁f − u1+u2

2

∥︁∥︁2 ≥ d 2 on déduit
∥︁∥︁u1−u2

2

∥︁∥︁2 ≤ 0 donc u1 = u2.

Par l’unicité, PC est bien définie et il ne reste qu’à voir la lipschiti-
zianité. En appliquant la propriété caractéristique pour f1, f2 :

ℜ(⟨f1 − PC ( f1),PC ( f2) − PC ( f1)⟩) ≤ 0,

ℜ(⟨f2 − PC ( f2),PC ( f1) − PC ( f2)⟩) ≤ 0,

soit en additionnant :

ℜ(⟨f1 − f2 + PC ( f2) − PC ( f1),PC ( f2) − PC ( f1)⟩) ≤ 0

soit en utilisant Cauchy-Schwarz :

| |PC ( f2) − PC ( f1) | |2 ≤ ℜ(⟨f1 − f2,PC ( f2) − PC ( f1)⟩)
≤ || f1 − f2 | | | |PC ( f2) − PC ( f1) | |.

⋆ Théorème 7.4

Soit H un espace de Hilbert et K ⊂ H un sous espace vectoriel
fermé. Pour tout f ∈ H , il existe un unique u = PK ( f ) ∈ K tel
que

| | f − u | |2 = inf
v ∈K

| | f − g | |2.

De plus c’est l’unique vecteur u ∈ K tel que

∀v ∈ K , ⟨v , f − u⟩ = 0

Enfin, PK est une application linéaire bornée appelée projection
orthogonale sur K .
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Démonstration. Il reste à voir la nouvelle caractérisation équivalente
car celle-ci étant une relation linéaire, elle impose la linéarité de PK
(𝜆PK ( f ) + PK (g ) vérifie la relation pour 𝜆 f + g et doit donc être par
unicité PK (𝜆 f + g )). La nouvelle caractérisation est plus forte. Récipro-
quement, si ℜ(⟨f −u ,v −u⟩) ≤ 0, en prenant v = 2u et v = 0, on trouve
ℜ(⟨f −u ,u⟩) = 0 donc ℜ(⟨f −u ,v⟩) ≤ 0 pour tout v dans K donc aussi
pour −v par linéarité d’où l’égalité à 0.

Exemple 7.5

Si H = L2 (Ω, 𝜇,R)

C = { f ≥ 0 p .p .}.

Alors PC ( f ) = f 1{ f ≥0} . (exo) Trouver aussi de même la projec-
tion sur l’ensemble de f : Ω → [0,1] .

3 Applications : Orthogonalité et
Dualité

Orthogonalité
On peut définir dans un espace de Hilbert une notion d’orthogonal

comme en dimension finie.

⋆ Définition 7.3

Si F ⊂ H est un sous-espace, alors l’orthogonal de F est

F ⊥ = {x ∈ H ,∀y ∈ F, ⟨x ,y⟩ = 0}

On dit que x est orthogonal à F si x ∈ F ⊥. On remarque que

F ⊥ =
⋂︂
y∈F

(⟨y , ·⟩)−1 ({0})

est toujours un sous-espace fermé comme intersection de sous-espaces
fermé, comme image inverse d’un sous-espace fermé par une appli-
cation linéaire continue (le produit scalaire). La proposition suivante
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décrit la décomposition en somme directe orthogonale. Tout se passe
comme en dimension finie pour les sous-espaces fermés, et sinon, il faut
ajouter une adhérence.

⋆ Proposition 7.5

Si F est un sous-espace de l’espace de Hilbert H alors F ⊥⊥ = F ,
et on a la somme directe orthogonale

H = F ⊕ F ⊥

et alors pF et pF ⊥ = 1 − pF sont les projections associées à cette
décomposition.

Ici F ⊥⊥ = (F ⊥)⊥ est l’orthogonal de l’orthogonal.

Démonstration. 1. On remarque d’abord que F ⊂ F ⊥⊥. En effet par
définition de F ⊥ si x ∈ F,y ∈ F ⊥, ⟨x ,y⟩ = 0 et donc comme c’est
pour tout y ∈ F ⊥ la définition du biorthogonal donne x ∈ F ⊥⊥.

2. On remarque ensuite que F ⊥⊥∩F ⊥ = {0}. En effet, si x ∈ F ⊥⊥∩
F ⊥ alors ⟨x ,x⟩ = 0 donc x = 0 (par l’axiome de séparation).

3. Montrons ensuite que pF ⊥ = 1 − pF (les projections sont bien
définies car on a des sous-espaces fermés l’espace de Hilbert
H donc on peut utiliser le théorème de projection). En effet,
si y ∈ H la relation caractéristique de la projection othogonale
dit que y − pF (y) est orthogonal à F donc dans F ⊥ et comme
y − (y − pF (y)) = pF (y) est orthogonal à F ⊥, on doit avoir y −
pF (y) = pF ⊥ (y) par caractérisation de la projection.

4. On en déduit la somme H = F + F ⊥ (par l’inclusion du 1 et
l’intersection du 2, on sait que cette somme doit être directe).
Le point précédent donne la relation

y = pF ⊥ (y) + pF (y)

ce qui montre que tout vecteur H se décompose comme somme
d’un vecteur de F et d’un vecteur de F ⊥. L’énoncé sur les pro-
jections associées à la décomposition est évident à partir de là.

5. Il reste à voir que F ⊥⊥ ⊂ F ce qui donne l’égalité avec le point
1. Mais si y ∈ F ⊥⊥, y − PF (y) ∈ F ⊥⊥ par 1 et le fait fait que
F ⊥⊥ est un sous-espace vectoriel. Mais on vient de voir au 3 que
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y − PF (y) = pF ⊥ (y) ∈ F ⊥. Donc y − PF (y) ∈ F ⊥⊥ ∩ F ⊥ = {0} par
le 2. donc y = PF (y) ∈ F , ce qui conclut.

Dualité : le théorème de représentation de
Riesz

On en déduit maintenant le calcul du dual de H (voir sous-section
9 pour des rappels).

⋆ Théorème 7.6: (théorème de représentation de Riesz)

Soit 𝜙 une forme linéaire continue sur un espace de Hilbert H
alors il existe un unique f ∈ H tel que

∀v ∈ H , 𝜙(v ) = ⟨f ,v⟩.

De plus, on a l’expression duale pour la norme :

| | f | | = sup
| |v | | ≤1

|⟨f ,v⟩|.

Remarque 7.3. (facultative) Dans le cas complexe, f ↦→ ⟨f , .⟩ est
une isométrie antilinéaire identifiant H et H ′ (et donc identi-
fiant linéairement H’ au conjugué H ayant la même structure

normique et de groupe mais 𝜆 .v = 𝜆v si v ↦→ v est la bijec-
tion/identité de H → H notée . pour le caractère suggestif de la
relation à la conjugaison complexe). Dans la cas complexe on a
donc H ′ ≃ H et dans le cas réel H ′ ≃ H .

Démonstration. Soit K = 𝜙−1 ({0}) le noyau de 𝜙. Si K = H alors
f = 0 convient. On suppose donc K ≠ H . Soit donc g0 ∉ K et
g =

g0−PK (g0 )
| |g0−PK (g0 ) | |2 un vecteur de norme 1 et orthogonal à K . Comme

𝜙 est une forme linéaire, on s’attend à ce que K et g engendrent L2,
sorte de généralisation du théorème du rang (on va voir cela plus loin
en utilisant l’orthogonalité). En effet, soit v ∈ H , w = v − 𝜙(v )

𝜙(g ) g vérifie
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𝜙(w) = 𝜙(v ) − 𝜙(v )

𝜙(g ) 𝜙(g ) = 0 donc w ∈ K = Ker 𝜙 et v = 𝜆 g + w avec

𝜆 =
𝜙(v )
𝜙(g ) .

On montre donc que f = 𝜙(g )g convient, en montrant l’égalité sur
un v quelconque en utilisant la forme précédente :

⟨f ,v⟩ = 𝜙(g )⟨g ,v⟩ = 𝜙(g )⟨g ,𝜆 g +w⟩
= 𝜙(g )𝜆 | |g | |22 = 𝜙(g )𝜆 = 𝜙(v ).

L’égalité des normes vient de Cauchy Schwarz qui implique que ≥ avec
égalité en prenant v = f /| | f | | si f ≠ 0.

Remarque 7.4. (facultative) Il n’est parfois pas judicieux d’identi-
fier un espace de Hilbert à son dual, notamment quand plusieurs
espaces de Hilbert sont considérés et que les identifications sont
incompatibles à des relations de sous-espaces. Soit H = ℓ 2 (N)
et K = {u ∈ H ,

∑︁
n∈N

n2 |un |2 < ∞} Si on considère l’ensemble

des suites telles que L = {(un)
∑︁
n∈N

1
n2

|un |2 < ∞}. Il est facile de

voir que K ⊂ H ⊂ L et que La transposé de l’inclusion K ⊂ H
s’identifie à H ≃ H ′ ⊂ K ′ ≃ L. Il vaut alors mieux identifier K ′

à L (et pas K ) en ayant une identification compatible avec les
inclusions avec H .

4 Bases Hilbertiennes

⋆ Définition 7.4

Soit H un espace préhilbertien. Une famille (xi )i ∈I est dite or-
thogonale si pour tout i ≠ j , ⟨xi ,x j ⟩ = 0.
Si de plus | |xi | | = 1, elle est dite orthonormale.
Une base hilbertienne (ou base orthonormale) de H est une fa-
mille orthonormale (ei )i ∈I telle que V ect (ei ,i ∈ I ) est dense
dans H .
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Exemple 7.6

ei la suite dont la seule coordonnée non-nulle est la i-ème égale
à 1 donne une base hilbertienne de ℓ 2 (I ). (par construction de
ℓ 2 (I )) Les bases hilbertiennes vont permettre d’identifier tout
espace de Hilbert à cet exemple.

Procédé d’orthonormalisation de
Gram-Schmidt

Notons 1 tout d’abord que la projection d’un point sur un sous-
espace vectoriel de dimension finie se calcule facilement à l’aide d’une
base (de préférence orthonormale) de F :

Proposition 7.7

Soit H un espace de Hilbert et F un sous-espace vectoriel de
dimension finie avec (x1, . . . ,xn) une base de F (non nécessaire-
ment orthonormale). Soit Bi ,j = ⟨xi ,x j ⟩. Alors B est inversible
et pour tout x ∈ E, on a

pF (x) =
n∑︁

i ,j=1

(B−1) j ,i ⟨xi ,x⟩x j .

Démonstration. Pour voir que B est inversible, il suffit de montrer que les
vecteurs de ces lignes (⟨xi ,x j ⟩) j=1,...,n sont linéairement indépendants.

Si on a
n∑︁
i=1

𝜆 i (⟨xi ,x j ⟩) j=1,...,n = 0, on a ⟨
n∑︁
i=1

𝜆 ixi ,x j ⟩ = 0 pour tout j . En

prenant une combinaison linéaire

0 =

n∑︁
j=1

𝜆 j ⟨
n∑︁
i=1

𝜆 ixi ,x j ⟩ = | |
n∑︁
i=1

𝜆 ixi | |2,

1. Cette sous-section reprend le cours de 2018-2019 de T. Blossier,
M. Carrizosa et J. Melleray.
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donc
n∑︁
i=1

𝜆 ixi = 0 donc comme x1, ...,xn était une base, on obtient 𝜆 i = 0

pour tout i , ce qui donne la liberté voulue.
Pour x ∈ H , on a

⟨xk ,x −
n∑︁

i ,j=1

(B−1) j ,i ⟨xi ,x⟩x j ⟩

= ⟨xk ,x⟩ −
n∑︁

i ,j=1

(B−1) j ,i ⟨xi ,x⟩⟨xk ,x j ⟩

= ⟨xk ,x⟩ −
n∑︁

i ,j=1

(B−1) j ,i ⟨xi ,x⟩Bk ,j = 0

donc x −
n∑︁

i ,j=1

(B−1) j ,i ⟨xi ,x⟩x j ∈ F ⊥ donc par caractérisation de la pro-

jection orthogonale

pF (x) =
n∑︁

i ,j=1

(B−1) j ,i ⟨xi ,x⟩x j .

Remarque 7.5. Voici un cas particulier important du résultat pré-
cédent. Soit E un espace de Hilbert et F un sous-espace vectoriel
de dimension finie avec (e1, . . . ,en) une base orthonormale de
F . Alors pour tout x ∈ E, on a

pF (x) =
n∑︁
i=1

⟨ei ,x⟩ei .

Exemple 7.7

Soit H = L2 (Ω,T , 𝜇) et A ∈ T , on a vu en TD que T (A) =

{∅,A,Ac ,Ω}. F = L2 (Ω,T (A), 𝜇) et un espace de dimension au
plus 2 engendrée par e1 = 1A,e2 = 1Ac (du moins si A,Ω ont
mesures finis). Cette famille est orthogonale mais pas orthonor-
male. | |e1 | |2 =

∫
1Ad𝜇 = 𝜇(A), | |e2 | |2 = 𝜇(Ac ). Supposons ces
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deux nombres non nuls et finis de sorte que F a exactement
dimension 2. Alors la matrice de la proposition précédente est
B = diag (𝜇(A), 𝜇(Ac )) et B−1 = diag (1/𝜇(A),1/𝜇(Ac )), la for-
mule de projection donne donc pour f ∈ L2 (Ω,T , 𝜇) :

pL2 (Ω,T(A) ,𝜇) ( f ) (7.2)

=

(︃
1

𝜇(A)

∫
A
f d𝜇

)︃
1A +

(︃
1

𝜇(Ac )

∫
Ac
f d𝜇

)︃
1Ac .

Rappelons que le procédé de Gram-Schmidt permet de calculer une
base orthonormale d’un espace euclidien à partir d’une base donnée :

Proposition 7.8: (Procédé de Gram-Schmidt)

Soit E un espace euclidien et (e1, . . . ,en) une base (resp. une
famille libre) de E . Pour chaque 0 < i ≤ n, notons Fi le sous-
espace vectoriel Vec(e1, . . . ,ei ) engendré par e1, . . . ,ei . Alors, la
famille (e ′1, . . . ,e

′
n) définie de la manière suivante est une base

orthonormale (resp. une famille orthonormale) de E :

e ′1 =
e1
∥e1∥

e ′i =
ei − pFi−1 (ei )
∥ei − pFi−1 (ei )∥

=

ei −
i−1∑︁
k=1

⟨e ′k ,ei ⟩e
′
k

∥ei −
i−1∑︁
k=1

⟨e ′k ,ei ⟩e
′
k ∥

pour 1 < i ≤ n.

Exercice 7.1. Vérifier que les vecteurs e1 = (1,1,1), e2 = (1,1,−1)
et e3 = (0,1,1) forment une base de R3. Utiliser le procédé de
Gram-Schmidt sur cette base pour obtenir une base orthonor-
male.
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Théorème des bases

Exemple 7.8

en (x) = exp(inx),n ∈ Z définit une base hilbertienne de l’espace
pré-hilbertien C 0

2𝜋 (R,C) l’ensemble des fonctions continues 2𝜋
périodiques, muni du produit scalaire :

⟨f , g ⟩ = 1
2𝜋

∫ 2𝜋

0
f (t )g (t )dt .

C’est la base des décompositions en série de Fourier (on mon-
trera cela plus en détail dans la section suivante). Le but est de
décomposer de façon similaire tout vecteur deH comme somme
d’une série en fonction d’une base.

⋆ Théorème 7.9

Soit H un espace préhilbertien et I un ensemble dénombrable.

1. Une famille orthonormale (xi )i ∈I est libre et vérifie l’in-
égalité de Bessel, pour tout x ∈ H :∑︁

i ∈I
|⟨x ,xi ⟩|2 ≤ ||x | |2

2. De plus une famille orthonormale (ei )i ∈I est une base
hilbertienne si et seulement si on a l’égalité de Bessel-
Parseval, pour tout x ∈ H :∑︁

i ∈I
|⟨x ,ei ⟩|2 = | |x | |2

De plus, dans ce cas, pour tout x ∈ H , la série suivante
converge (dans H mais pas absolument)

x =
∑︁
i ∈I

ei ⟨ei ,x⟩.

3. Si H est un espace de Hilbert séparable, toute famille or-
thonormale peut être complétée en une base hilbertienne
au plus dénombrable (ei )i ∈I de H et J : x ↦→ (⟨ei ,x⟩)i ∈I
établit alors une isométrie surjective J : H ≃ ℓ 2 (I ).



CHAPITRE 7. ESPACES DE HILBERT ; BASES
HILBERTIENNES 182

Remarque 7.6. De la formule pour x, on tire par continuité la
formule pour le produit scalaire (qui est une série absolument
convergente par Cauchy-Schwarz) :

⟨y ,x⟩ =
∑︁
i ∈I

⟨y ,ei ⟩⟨ei ,x⟩.

Démonstration. Comme I est dénombrable, on peut supposer et on sup-
pose I = N.

(1) Si
∑︁

𝜆 ixi = 0, on calcule 𝜆 j = ⟨x j ,
∑︁

𝜆 ixi ⟩ = 0 donc xi est
bien libre. Soit Vn = V ect (ei ,i ∈ [[0,n]]), on a déjà vu la formule pour
la projection orthogonale sur Vn :

pn (x) =
n∑︁
i=0

ei ⟨ei ,x⟩.

Donc par la propriété de contraction de pn et l’orthogonalité

| |pn (x) | |2 =
⟨︁ n∑︁
i=0

ei ⟨ei ,x⟩,
n∑︁
j=0

e j ⟨e j ,x⟩
⟩︁

=

n∑︁
i=0

|⟨ei ,x⟩|2 ≤ ||x | |2

En passant à la limite n → ∞ on obtient l’inégalité de Bessel pour la
somme et on trouve en particulier (⟨x ,ei ⟩)i ∈N ∈ ℓ 2 (N).

(2) Si (ei )i ∈N est une base soit xn ∈ V ect (ei ,i ∈ I ) convergeant vers
x .

De plus, pour n assez grand | | |x | |2 − ||xn | |2 | ≤ 𝜖/2 et pour tout m,|︁|︁| |pm (x) | |2 − ||pm (xn) | |2
|︁|︁ ≤ ||pm (xn − x) | | ( | |xn | | + | |x | |)
≤ | | (xn − x) | | ( | |xn | | + | |x | |) ≤ 𝜖/2

(avec la dernière inégalité pour n assez grand) d’où en prenant m tel
que pm (xn) = xn (car xn est dans un certain Vm comme combinaison
linéaire finie des ei ), on obtient|︁|︁|︁|︁|︁ m∑︁

i=0

|⟨e j ,x⟩|2 − ||x | |2
|︁|︁|︁|︁|︁ ≤ 𝜖
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et donc la somme de la série est | |x | | d’où l’égalité de Parseval.

Réciproquement, Si on a égalité, on a la limite

n∑︁
j=0

|⟨e j ,x⟩|2 = | |pn (x) | |2 →n→∞ | |x | |2

et ceci implique par le théorème de Pythagore :

| |pn (x) − x | |22 = | |x | |22 − ||pn (x) | |22 →n→∞ 0

donc tout élément de H est limite d’éléments deV ect (ei ,i ∈ I ) d’où la
propriété de densité manquante pour obtenir une base hilbertienne.

De plus un calcul donne la formule pour x :

| |x −
n∑︁
i=0

ei ⟨ei ,x⟩| |2 =

∞∑︁
i=n+1

|⟨ei ,x⟩|2 → 0.

(3) Soit O la famille othonormale de départ. Soit K =V ect (O ), on
cherche une base orthonormale de K⊥ pour compléter O , il est bien
séparable comme sous espace de H . Soit (xn)n∈N une famille dénom-
brable dense de K⊥. Quitte à extraire une sous-suite, on peut supposer
que xn ∉V ect (x0, ...,xn−1) de sorte que (xn)n∈N est une famille libre.

On peut donc orthonormaliser (x0, ...,xn) et obtenir (e0, ...,en) tel
queV ect (x0, ....,xn) =V ect (e0, ....,en). Par la construction, on remarque
que l’orthonormalisation pour (x0, ...,xn+1) on commence par les mêmes
vecteurs et on obtient donc une famille orthonormale ( fn)n∈N. Comme

V ect (xn ,n ∈ N) = ∪∞
n=0V ect (x0, ....,xn)

= ∪∞
n=0V ect ( f0, ...., fn)

=V ect ( fn ,n ∈ N),

ces deux ensembles sont denses et donc ( fn)n∈N est une base de K⊥.
Maintenant, O et ( fn)n∈N forment une famille orthonormale de H et
tout O est une base de K par définition de K , donc la décomposition
orthogonale x = PK (x) + PK⊥ (x) permet d’approcher PK (x) par un
élément yn ∈ V ect (O ), PK⊥ (x) par un élément zn ∈ V ect ( fn ,n ∈ N) et
yn + zn ∈ V ect (O , fn ,n ∈ N) tend vers x , d’où la densité voulue pour que
{en ,n ∈ N} = O ∪ { fn ,n ∈ N} forme une base de H .

Une fois l’existence d’une base, l’isométrie est évidente par le (2),
et si on a une suite (𝜆 i )i ∈I dans ℓ 2 (I ), on voit que

∑︁
𝜆 iei converge

par complétude comme ci-dessus et on obtient ainsi la surjectivité.
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On vient de voir (en prolongeant la famille vide) qu’un espace de
Hilbert séparable a une base dénombrable. Réciproquement, un espace
de Hilbert à base dénombrable est isométrique à ℓ 2 (N) pour lequel
VectQ (en ,n ∈ N} donne une famille dénombrable dense.

Exemples de base 1 : Séries de Fourier
On va obtenir un premier exemple de base en utilisant le théorème

d’approximation de Weierstrass.
Vous pouvez voir dans la section de compléments le corollaire A.10

pour une preuve probabiliste basée sur la loi faible des grands nombres.

⋆ Théorème 7.10: (d’approximation de Weierstrass)

Soit K un compact de Rn , les fonctions polynômiales (à coeffi-
cients réels ou même rationnels) sont denses dans C 0 (K ,R).
En conséquence, (C 0 (K ,R), | |.| |∞) est séparable et sa tribu bo-
rélienne B(C 0 (K ,R)) est dénombrablement engendrée (c’est à
dire admet une partie génératrice au plus dénombrable).

Remarque 7.7. Le mouvement brownien sur [0,1], un objet pro-
babiliste important (vu en M1) peut être défini comme une pro-
babilité sur la tribu borélienne de (C 0 ( [0,1],R), | |.| |∞).

Exemple 7.9

Montrons que en (x) = exp(inx),n ∈ Z forme une base hilber-
tienne de L2 ( [0,2𝜋],C) :

⟨f , g ⟩ = 1
2𝜋

∫ 2𝜋

0
f (t )g (t )dt .

D’abord, on sait que C 0
b (]0,2𝜋[,C) est dense car il contient

C 0
c (]0,2𝜋[) qui est dense par le Théorème 6.12. Il s’agit donc

presque de la complétion de l’exemple précédent.
Ensuite on vérifie l’orthonormalité :

⟨en ,em⟩ =
1
2𝜋

∫ 2𝜋

0
exp (i (m − n)t )dt = 1{m=n} .
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Enfin, il reste à voir queV ect (en) est dense. Or, on aV ect (en) =
{P (e ix ,e −ix ),P ∈ C[X ,Y ]} = {P (cos(x),sin(x)),P ∈ C[X ,Y ]}.
Soit D = {(x ,y) ∈ R2,x2 + y2 = 1}, soit f ∈ C 0

2𝜋 (R,C) On définit
g : D → C par g (cos(x),sin(x)) = f (x). Il est facile de voir
que g est continue sur D (utiliser tan,cot selon le point comme
carte coordonnée) donc par le théorème d’approximation de
Weierstrass 7.10, il existe un polynôme P tel que | |P − g | |∞ ≤ 𝜖

donc, si Q = P (cos(.),sin(.)) ∈ V ect (en), on a | |Q − f | |2 ≤
||Q − f | |∞ ≤ ||P − g | |∞ ≤ 𝜖 . D’où la densité voulue.
C’est la base des décompositions en série de Fourier.

Exemple de base 2 : Polynômes d’Hermite
L’exercice suivant est corrigé à l’annexe E en section 3. Vérifier

qu’une famille est orthonormée est toujours un exercice calculatoire.

Exercice 7.2. Soit H = L2 (R,B(R), 𝛾) l’espace de Hilbert réel
des fonctions de carrés intégrables pour la mesure gaussienne
standard définie pour un borélien B par 𝛾(B) =

∫
B

1√
2𝜋
e −x

2/2dx .
H muni de la norme usuelle :

| | f | |2 =

√︄∫
R
| f (x) |2 e

−x2/2
√

2𝜋
dx .

Soit

Hn (x) = (−1)n e
x2/2
√
n!

(︃
d
dx

)︃n
(e −x2/2)

(et donc H0 (x) = 1). On appelle les Hn les polynômes d’Hermite.

1. Montrer que pour n ≥ 1, Hn est un polynôme de la
forme :

Hn (x) =
xn
√
n!

+
n−1∑︁
k=0

akx
k .

2. Montrer que (Hn)n≥0 est une famille orthonormale deH .

Montrer le résultat de densité sous-jacent pour obtenir une base
est souvent plus dur. Quand on ne peut pas utiliser un résultat connu,
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on utilise souvent la méthode qui consiste à montrer que l’orthogonale
est {0} en utilisant la proposition 7.5. On va donc déduire le résultat
suivant de cela et du théorème d’inversion de Fourier :

Théorème 7.11

Soit 𝛾 la mesure gaussienne standard sur R. Alors la famille des
polynômes d’Hermite (Hn)n≥0 est une base orthonormale de
L2 (R,B(R), 𝛾). En particulier, les polynômes sont denses dans
L2 (R,B(R), 𝛾) qui est séparable.

Démonstration. Montrons d’abord que la série exp(−t2/2)
∞∑︁
n=0

(it )n
√
n!
Hn

converge dans L2 (R,B(R), 𝛾).
On calcule la norme du terme général de la suite SN =

exp(−t2/2)
N∑︁
n=0

(it )n
√
n!
Hn par orthonormalité de s (Hn) :

| |SN | |22 = exp(−t2)
N∑︁
n=0

| (it )n |2
n!

= exp(−t2)
N∑︁
n=0

(t2)n
n!

≤ exp(t2 − t2) = 1

Donc pour p ≥ q ≥ N , | |Sp+1−Sq | |22 ≤ exp(−t2)
∞∑︁
n=N

(t2)n
n!

→N→∞ 0.

Donc Sn est de Cauchy et donc converge dans L2. Quitte à extraire on
sait qu’elle converge presque partout, donc sa limite ponctuelle sera
aussi sa limite dans L2. Concluons que Ft , définie par Ft (x) = exp (itx),
est la limite. Il suffit donc de voir que pour tout x ∈ R :

Ft (x) = exp(−t2/2)
∞∑︁
n=0

(−it )n
√
n!

Hn (x).

Ceci équivaut, vu la définition de Hn à

Ft (x) exp(t2/2 − x2/2) = exp (−(it − x)2/2)

=

∞∑︁
n=0

(−it )n
n!

(︃
d
dx

)︃n
(e −x2/2)
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ce qui est la somme de la série de Taylor en x évaluée en a = it de
f (x) = exp (−x2/2) (pour f somme de série entière sur C f (x + a) =
∞∑︁
n=0

an

n!
f (n ) (x). Ceci est bien vérifié car la fonction du milieu est ana-

lytique par composée de fonctions analytiques sur C (un polynôme et
exp sont sommes de séries entières sur C donc aussi leur composée).

Conclusion : on a Ft ∈ V ect (Hn ,n ∈ N).
On montre maintenant que toute fonction f ∈ L2 (R,B(R), 𝛾), or-

thogonale à K :=V ect (Hn ,n ∈ N) est nulle. On peut supposer f réelle
en prenant partie réelle et imaginaire. Si f orthogonale à tout Hn on a
⟨f ,Ft ⟩ = 0 et donc

u (t ) =
∫

f (x)exp (itx − x2/2) = 0.

Or si g (x) = f (x)exp (−x2/2) g ∈ L1 (R,𝜆 ) est équivalent à f ∈
L1 (R,B(R), 𝛾) ce qui est le cas car 𝛾 est une mesure de probabilité et
donc L2 (R,B(R), 𝛾) ⊂ L1 (R,B(R), 𝛾). Donc on a ĝ (t ) = 0 et par le
théorème d’inversion de Fourier, g (x) = 0 presque partout, soit f = 0
dans L2 (R,B(R), 𝛾).

Bilan pour K =V ect (Hn ,n ∈ N) K⊥ = {0} donc K = K⊥⊥ = {0}⊥ =

L2 (R,B(R), 𝛾), d’où la densité voulue.

On a utilisé le théorème suivant (peut-être vu en cours de probabi-
lité, cf. annexe E section 4 pour la variante sur les mesures de proba-
bilité, cf. aussi le livre de Rudin d’analyse réelle et complexe [7, Thm
9.11 et 9.12] pour n = 1)

Définition 7.5

Soit f ∈ L1 (Rn ,B(Rn),𝜆 ) la transformée de Fourier de f est la
fonction de t ∈ Rn :

f̂ (t ) =
∫
Rn
e i ⟨x ,t ⟩ f (x)𝜆 (dx).

On renvoie à la section E.4 pour une preuve du résultat fondamen-
tal suivant.
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⋆ Théorème 7.12: (Théorème d’injectivité de la transfor-
mation de Fourier (admis))

Soient deux fonctions f1, f2 ∈ L1 (Rn ,B(Rn),𝜆 ) On suppose que
pour tout t ∈ Rn les transformées de Fourier sont égales :

f1̂ (t ) = f2̂ (t ), ∀t ∈ Rn .

Alors f1 = f2 presque partout.
De plus, si f1̂ ∈ L1 (Rn ,𝜆 ) alors f1 est (égale presque partout à)
une fonction continue :

f1 (x) =
1

(2𝜋)n
∫
Rn
f̂ 1 (t )exp (−i ⟨x ,t⟩)dt .

5 Une Application : Le théorème
de convergence des martingales
bornées dans L2(Ω,T ,P )
(facultatif)

Dans cette section, on conclut par une application en probabilité.
On prend (Ω,T ,P ) un espace de probabilité. Une filtration est une
suite croissante de sous-tribu (Tn)n≥0. Un exemple de telle suite est Tn =

T ((X0, ...,Xn)) de la tribu engendrée par un vecteur aléatoire. On peut
considérer les espaces de Hilbert Hn = L2 (Ω,Tn ,P ) ⊂ L2 (Ω,T ,P ).
C’est un sous-espace fermé car siHn ∋ Xm →m→∞ X on a vu au chapitre
précédent, que quitte à extraire Xmk converge p.p. vers X et donc X est
aussi Tn -mesurable et donc est dansHn . Par caractérisation séquentielle
cela dit Hn fermé. On dispose donc de la projection orthogonale PHn .
EN probabilité, vous noterez PHn (X ) = E (X |Tn) et vous interpréterez
cette projection comme une espérance conditionnelle.

Définition 7.6

Une suite (Xn)n∈N est une martingale dans L2 (pour la filtration
(Tn)n≥0 si pour tout m ≥ n PHn (Xm) = Xn .
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Cette condition dit que la moyenne de la future variable Xm , condi-
tionnellement au présent Hn , est égale à Xn (si Xn est la valeur d’un
gain au temps n, en moyenne on n’a rien gagné à attendre le temps
m > n). Une somme de v.a. i.i.d. dans L2 d’espérance nulle est une
telle martingale. Par exemple, la somme des n premiers termes d’une
suite de variables gaussiennes centrées indépendantes donne une mar-
tingale dans L2. On va montrer un théorème de convergence pour les
martingales bornées dans L2.

Théorème 7.13

Soit (Tn)n≥0.Soit (Xn)n∈N est une martingale dans H =

L2 (Ω,T ,P ) qui est une suite bornée, c’est-à-dire, qu’il existe
M > 0 telle que supn | |Xn | |2 ≤ M . Alors Xn converge dans
L2 (Ω,T ,P ) vers une variable X et Xn = PHn (X ).

Ce théorème se généralise à un théorème de convergence des mar-
tingales bornées dans Lp , 1 < p < ∞. Il y a aussi une version pour
les martingales L1 mais il faut une hypothèse technique plus compli-
quée (dite d’uniforme intégrabilité). (On dit que Xn est une martingale
fermée quand Xn = PHn (X ) comme ci-dessus).

Démonstration. On considère la décomposition orthogonale Hn+1 =

Kn ⊕ Hn avec H0 = K0 On voudrait dire que L2 (Ω,T (∪n≥0Tn),P ) =

⊕n≥0Kn est une somme orthogonale infinie, mais comme on n’a pas
introduit la notion,on va donc faire une preuve directe.

Remarquez déjà que Xn+1 − Xn = Xn+1 − PHn (Xn+1) ∈ Kn par la
condition de martingale. Donc par le théorème de Pythagore et une
récurrence triviale, on obtient :

| |Xn+1 | |22 = | |Xn+1 − Xn | |22 + ||Xn | |22 = | |X0 | |22 +
n∑︁
k=0

| |Xk+1 − Xk | |22.

On déduit donc de la bornitude en prenant la limite | |X0 | |22+
∞∑︁
k=0

| |Xk+1−

Xk | |22 ≤ M 2 et donc la série est convergente. On déduit aussi que pour



CHAPITRE 7. ESPACES DE HILBERT ; BASES
HILBERTIENNES 190
p ≥ q ≥ N

| |Xp+1 − Xq | |22 =

p∑︁
k=q

| |Xk+1 − Xk | |22

≤
∞∑︁
k=N

| |Xk+1 − Xk | |22 →N→∞ 0.

Donc (Xn) est de Cauchy dans un espace de Hilbert donc converge vers
X . Comme PHn est 1-lipschitz donc continue, on déduit en passant à la
limite dans la relation Xn = PHn (Xm) →m→∞ PHn (X ) = Xn
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ANNEXE A

Compléments
facultatifs au
chapitre 2 :
Topologie des
espaces
métriques
1 Théorème de Tietze (niveau

L3-M1)
Comme jolie application de la complétude, on va donner en exer-

cice (corrigé), la preuve du théorème de Tietze
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Exercice A.1. Extension de Tietze-Urysohn
Soit F un fermé de X espace métrique. Soit E = C 0

b (X ,R) l’es-
pace des fonctions continues bornées et p : E → C 0

b (F,R) l’ap-
plication de restriction ( pour f : X → R, p ( f ) = f |F est la
restriction de f à F . On va montrer que p est surjective.

1. Est-ce que E est complet ?
2. Soit g ∈ C 0

b (F,R) avec | |g | |∞ ≤ 1. Soient K1 :=
g −1 ( [1/3,1]) et K2 := g −1 ( [−1,−1/3]). Soit :

f (x) = 1
3
d (x ,K2) − d (x ,K1)
d (x ,K2) + d (x ,K1)

,

d (x ,Ki ) := inf{d (x ,y),y ∈ Ki }.

(On comprend la valeur comme 0 si K1 et K2 vides et
sinon, −1/3 si K1 vide, 1/3 si K2 vide). Vérifier que f ∈ E

3. Montrer que | | f | |∞ ≤ 1/3 et | |p ( f ) − g | |∞ ≤ 𝛼 = 2/3..
4. Construire une suite fn par récurrence à partir du résultat

précédent telle que fn = F0 + ... + Fn et

n∑︁
k=0

| |Fk | |∞ ≤ 1
3
(1 + ... + 2n

3n
)

et

| |p ( fn) − g | |∞ ≤ 2n+1

3n+1
.

5. Montrer que fn converge. En déduire, qu’il existe F ∈ E ,
| |F | |∞ ≤ 1 telle que p (F ) = g .

Extension de Tietze-Urysohn (Correction)
Soit F un fermé de X espace métrique. Soit E = C 0

b (X ,R) et p :
E → C 0

b (F,R) l’application de restriction. On va montrer que p est
surjective (et un peu mieux).

1. Soit g ∈ C 0 (K ) avec | |g | |∞ ≤ 1. Soient K1 := g −1 ( [1/3,1]) et
K2 := g −1 ( [−1,−1/3]). Soit :

f (x) = 1
3
d (x ,K2) − d (x ,K1)
d (x ,K2) + d (x ,K1)

, .

Vérifions que f ∈ E , | | f | |∞ ≤ 1/3 et | |p ( f ) − g | |∞ ≤ 𝛼 = 2/3. (on
dit que p est presque surjective)
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f est continue car d (.,Ki ) est continue et le dénominateur est
non nul car K1 ∩ K2 = ∅ et d (.,Ki ) > 0 sur K c

i .
2. Or par l’inégalité triangulaire :

| f (x) | ≤ 1
3
d (x ,K2) + d (x ,K1)
d (x ,K2) + d (x ,K1)

=
1
3

donc f est bornée et | | f | |∞ ≤ 1/3.

|p ( f ) − g | = 1K1 |
1
3
− g | + 1K2 | −

1
3
− g |

+ (1K − 1K1 − 1K2 ) | f − g |
≤ (1K − 1K1 − 1K2 ) ( | | f | |∞ + ||g | |∞)

+ 1K1 | |1K1 (
1
3
− g ) | |∞ + 1K2 | |1K1 (−

1
3
− g ) | |∞

et tous les termes sont inférieurs à 2/3 par définition.
3. On construit construire une suite fn par récurrence à partir du

résultat précédent telle que fn = F0 + ... + Fn
n∑︁
k=0

| |Fk | |∞ ≤ 1
3
(1 + ... + 2n

3n
)

et

| |p ( fn) − g | |∞ ≤ 2n+1

3n+1
.

On prend f0 = F0 = f donné par 1 à partir de g . On
prend Fn/| |p ( fn−1) − g | |∞ donné par 1 à partir de −[p ( fn−1) −
g ]/| |p ( fn−1) − g | |∞ (si le dénominateur est 0 on s’arrête et on
prend la suite constante).
Donc on a les deux inégalités

| |Fn | |∞ ≤ 1
3
| |p ( fn−1) − g | |∞ ≤ 1

3
2n

3n

et

| |p (Fn) + p ( fn−1) − g | |∞ ≤ 2
3
| |p ( fn−1) − g | |∞ ≤ 2n+1

3n+1

La deuxième inégalité donne | |p ( fn) − g | |∞ ≤ 2n+1

3n+1 . La première
inégalité suit par l’hypothèse de récurrence.
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4. Déduisons qu’il existe F ∈ E , | |F | |∞ ≤ 1 telle que p (F ) = g .∑︁
Fn est donc absolument convergente dans E, donc par com-

plétude convergente, donc soit F =

∞∑︁
n=0

Fn = lim fn . En passant

à la limite on obtient (par la somme d’une série géométrique)

| |F | |∞ ≤
∞∑︁
n=0

| |Fn | |∞ ≤ 1
3

∞∑︁
n=0

2n+1

3n+1
≤ 1

3
1

1 − 2/3 = 1

et | |p (F ) − g | |∞ = 0 donc p (F ) = g par séparation.

2 Complément sur l’Espace dual
(niveau début de M1)

Définition A.1

L’espace E ′ := L(E ,K) des formes linéaires continues sur un
e.v.n. E est munie de la norme duale

| | f | |E ′ := sup
x∈E ,| |x | | ≤1

| f (x) |.

On a vu dans la section précédente que c’est toujours un espace
de Banach. Il sera très utile dans ce cours pour étudier E lui-même.

Le résultat suivant, conséquence de Hahn-Banach permet de dé-
crire réciproquement la norme de E en terme de celle de E ′ (cela res-
semble à la définition de | | f | |E ′ mais c’est un théorème difficile ! que
l’on exploitera pour relier E au dual du dual dans la section suivante) :

Proposition A.1

Soit (E , | |.| |E ) un e.v.n., alors

∥x ∥E = sup
f ∈E ′,| | f | |E′ ≤1

| f (x) | = max
f ∈E ′,| | f | |E′ ≤1

| f (x) |.

Démonstration. Par définition, on a

sup
f ∈E ′,| | f | |E′ ≤1

| f (x) | ≤ sup
f ∈E ′,| | f | |E′ ≤1

| | f | |E ′ ∥x ∥E = ∥x ∥E .
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Inversement, on applique le Théorème de Hahn-Banach B.9 à G =

Rx en posant g (tx) = t | |x | |E de sorte que g (tx) | | ≤ | |tx | |E . Donc, il
existe f ∈ E ′ tel que f (x) = g (x) = | |x | |E et f (y) ≤ ||y | |E c’est-à-
dire | | f | |E ′ ≤ 1. En particulier, le sup est atteint en f et est donc un
maximum.

On rappelle deux exemples d’espaces classiques.

Exemple A.1

c0 (I ) est l’ensemble des suites (xi )i ∈I qui tendent vers 0 dans le
sens où si 𝜖 > 0, il existe une partie F finie telle que |xi | ≤ 𝜖

pour tout i ∉ F. On munit c0 (I ) de la norme sup :

| |x | |∞ = sup
i ∈I

|xi | < ∞.

ℓ∞ (I ) est l’ensemble des suites bornée (xi )i ∈I avec la même
norme | |x | |∞.

Exemple A.2

ℓ 1 (I ) est l’ensemble des suites (xi )i ∈I sommables, tel qu’il existe
une constante C , tel que pour toute partie F finie telle que∑︁
i ∈F

|xi | ≤ C . On munit ℓ 1 (I ) de la norme :

| |x | |1 = sup
F

∑︁
i ∈F

|xi | =:
∑︁
i ∈I

|xi | < ∞.

On étudiera la dualité des espaces Lp dans un chapitre ultérieur.
Le résultat suivant donne un exemple de calcul de dual :

Proposition A.2

Le dual de c0 (I ) est isométrique à

ℓ 1 (I ) ≃ (c0 (I ))′.

Démonstration. On définit T : ℓ 1 (I ) → (c0 (I ))′ par :
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T ((ui )) [(vi )] =
∑︁
i ∈I

uivi .

Bien sûr, on a l’inégalité montrant que T est bien défini et contrac-
tant :

|T ((ui )) [(vi )] | ≤
∑︁
i ∈I

|ui | |vi | ≤ | |c ∥∞
∑︁
i ∈I

|ui |.

Montrons que T est isométrique. Comme les suites à support fini
sont denses dans ℓ 1 (I ) il suffit de montrer l’égalité dans ce cas, et
cela vient en posant (vi ) = 1{vi≠0}

vi
|vi | ∈ c0 (I ) si (ui ) à support fini

de T ((ui )) (vi ) = | | (ui ) | |ℓ 1 . Donc comme | | (vi ) | |c0 ≤ 1 on a l’inégalité
manquante :

| |T ((ui )) | | (c0 ) ′ ≥ ||(ui ) | |ℓ 1 .

Montrons que T est surjectif. Soit f ∈ (c0 (I ))′ et ei la suite valant
1 en i et 0 ailleurs. Soit ui = f (ei ), montrons que (ui ) ∈ ℓ 1 (N). Or par
l’isométrie

| | (ui1i ∈F ) | |ℓ 1 ≤ ||T ((ui1i ∈F )) | | (c0 ) ′ = | |T ((ui ))◦vF | | (c0 ) ′ = | | f ◦vF | | (c0 ) ′ ≤ || f | | (c0 ) ′

car vF ((xi )) = (1i ∈F xi ) est une contraction sur c0 pour F fini (et par le
calcul à support fini qui suit qui implique f ◦ vF = T ((ui )) ◦ vF ). Donc
pour tout F fini : ∑︁

i ∈F
|ui | ≤ | | f | | (c0 ) ′

ce qui donne la sommabilité u ∈ ℓ 1 (I ).
Montrons enfin que f = T ((ui )).
En effet, si v est à support fini, f (v ) = T ((ui )) (v ) par linéarité

mais comme les deux côtés sont continus en v et que (par définition)
les suites à support fini sont denses dans c0 (I ), on obtient f = T ((ui )).

Un autre résultat de base permet d’associer à une application conti-
nue u : E → F une application (dite transposée ou adjoint) entre les
duaux ut : F ′ → E ′.
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Proposition A.3

Si u : E → F est une application linéaire continue ut ( f ) = f ◦u
définie une application linéaire continue ut : F ′ → E ′ et on a

| | |ut | | | = | | |u | | |.

Démonstration. Par composition, si f ∈ F ′, u linéaire continue, f ◦u est
linéaire continue donc appartient à E ′. La linéarité en f est évidente.
de plus | |ut ( f ) (x) | | ≤ | | f | |F ′ | | |u | | | | |x | |E donc

| |ut ( f ) | |E ′ ≤ || f | |F ′ | | |u | | |.

Ceci donne | | |ut | | | ≤ | | |u | | |.
Réciproquement on utilise la proposition précédente pour obtenir :

| |u (x) | |F = sup
| | f | |F ′ ≤1

| (ut ( f ) (x)) | ≤ sup
| | f | |F ′ ≤1

| | (ut ( f ) | |E ′ | |x | |E ≤ || |ut | | | | |x | |E .

Ceci donne par définition de la norme subordonnée, l’autre inégalité :
| | |u | | | ≤ | | |ut | | |.

3 Bidual, Complété (niveau début
de M1)

Le dual du dual E ′′ = (E ′)′ est appelé bidual de E .

Définition A.2

L’application J : E → E ′′ qui envoie J (x) ( f ) = f (x) pour
f ∈ E ′ est appelée injection canonique de E dans E ′′.

Proposition A.4

L’injection canonique J : E → E ′′ est une isométrie (c’est pour
cela que c’est une injection).
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Démonstration. En appliquant la définition de la norme du dual puis
la conséquence de Hahn-Banach de la section précédente (proposition
A.1), on obtient :

| | J (x) | |E ′′ = sup
| | f | |E′ ≤1

| J (x) ( f ) | = sup
| | f | |E′ ≤1

| f (x) | = | |x | |E .

On donne un exemple :

Proposition A.5

(c0 (I ))′′ ≃ (ℓ 1 (I ))′ ≃ ℓ∞ (I ).

Démonstration. On définit T : ℓ∞ (I ) → (ℓ 1 (I ))′ par :

T ((ui )) [(vi )] =
∑︁
i ∈I

uivi .

Bien sûr, on a l’inégalité montrant que T est bien défini et contrac-
tant :

|T ((ui )) [(vi )] | ≤
∑︁
i ∈I

|ui | |vi | ≤ | |c ∥∞
∑︁
i ∈I

|ui |.

Montrons queT est surjectif. Soit f ∈ (ℓ 1 (I ))′ et ei la suite valant 1
en i et 0 ailleurs. Soit ui = f (ei ), alors |ui | ≤ | | f | |ℓ 1 donc (ui ) ∈ ℓ∞ (I ),
montrons que f = T ((ui )).

En effet, si v est à support fini, f (v ) = T ((ui )) (v ) par linéarité
mais comme les deux côtés sont continus en v et que (par définition)
les suites à support fini sont denses dans ℓ 1 (I ), on obtient f = T ((ui )).

Montrons queT est isométrique. Mais | |T (ui ) | | ≥ |T (ui ) (ei ) | = |ui |
donc | |T (ui ) | | ≥ | | (ui ) | |ℓ∞ (I ) et on obtient donc l’égalité.

Définition A.3

L’adhérence ˆ︁E := J (E)E
′′
E dans E ′′ est appelée complété de E .

Comme c’est un espace fermé d’un espace complet, c’est un espace
de Banach muni d’une injection i : E → ˆ︁E (qui est id si E est déjà n es-
pace de Banach). Il est caractérisé par la propriété universelle suivante.
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Contrairement à la compacité qui est dure à trouver en dimension in-
finie, la complétude est simple grâce à cette construction, car il suffit
de passer au complété (mais, dans des espaces de fonctions, il faut tra-
vailler pour décrire plus explicitement ce complété, comme espace de
fonctions concrètes).

Proposition A.6

Soit F un espace de Banach et u : E → F une application
linéaire continue, il existe une unique extension ˆ︁u : ˆ︁E → F telle
que û ◦ i = u . De plus, on a | | |û | | | = | | |u | | |.

Démonstration. pour l’existence on considère (ut )t : E ′′ → F ′′ et on
regarde sa restriction ˆ︁u à ˆ︁E . Sur E, ˆ︁u coincide avec u donc est à valeur
dans F . Par densité de E, l existe une suite un → u ∈ ˆ︁E et doncˆ︁u (ˆ︁E) ⊂ ˆ︁F . Or comme F est complet il est fermé dans son bidual doncˆ︁F = F . Cela donne l’existence. L’unicité vient de la densité de E dansˆ︁E . Par la construction on a | | |û | | | ≤ | | |u | | |. L’autre inégalité vient par
densité.

4 Compléments sur la compacité et
complétude (niveau L2-L3)

Définition A.4

Un espace métrique (X ,d ) est précompact si pour tout 𝜖 > 0,
X peut être couvert par un nombre fini de boules ouvertes de
rayon 𝜖 .

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec [6, Th II.1
p135] ou Gourdon d’Analyse [5, p 32]) :

Proposition A.7

Un espace métrique X est compact si et seulement si il est pré-
compact et complet.
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Démonstration. L’implication, compact implique précompact vient de la
définition. L’implication compact implique complet vient de Bolzano-
Weierstrass (vu qu’une suite de Cauchy ayant une sous-suite conver-
gente converge).

Réciproquement, on utilise aussi Bolzano-Weierstrass. On va
construire une suite extraite de Cauchy par extraction diagonale. Soit
(xn) suite de X .X est recouvert par un nombre fini de boules B (a,1)
donc par principe des tiroirs, il existe une sous-suite (x𝜙0 (n ) ) de (xn)
contenu dans une de ces boules B (a0,1). Par récurrence, on obtient
une suite extraite (x𝜙0◦...◦𝜙p (n ) ) contenu dans B (ap ,1/2p ) en ayant choisi
un recouvrement fini B (a,1/2p ) de B (ap−1,1/2p−1) et un terme de ce
recouvrement contenant une sous-suite de la suite-extraite précédente
(x𝜙0◦...◦𝜙p−1 (n ) ). On considère l’extraction diagonale yn = x𝜙0◦...◦𝜙n (n ) .
Vu que 𝜙i (n) ≥ n car les 𝜙i sont strictement croissantes, 𝜓(n) =

𝜙0 ◦ ... ◦ 𝜙n (n) ≥ 𝜙0 ◦ ... ◦ 𝜙n−1 (n) > 𝜙0 ◦ ... ◦ 𝜙n−1 (n − 1) = 𝜓(n − 1)
donc yn = x𝜓 (n ) est bien une suite extraite telle que à partir du rang n,
(yk )k≥n extraite de (x𝜙0◦...◦𝜙n (k ) ) est dans la boule B (an ,1/2n). Donc yk
est de Cauchy donc converge par complétude.

Théorème A.8: (de Tychonov)

Un produit
∏︁
i ∈I Xi d’espaces topologiques compacts est com-

pact.

Comme le cas non-métrique, non-dénombrable utilise l’axiome du
choix sous la forme du lemme de Zorn, on reverra cela plus loin.

Exercice A.2. Si I dénombrable, Xi métriques, montrer que∏︁
i ∈I Xi est un espace métrique compact. (Indication utiliser

le résultat précédent.)
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5 Théorème d’approximation de

Weierstrass (niveau L3-M1)

Théorème A.9: (de Bernstein)

Soit f : [0,1]n → C continue et définissons le polynôme de
Bernstein :

BN ( f ) (x1, ...,xn) =
N∑︁
k1=0

· · ·
N∑︁
kn=0

C k1
N ...C knN f (

k1

N
, ...,

kn
N

)xk1
1 (1 − x1)N −k1 ...xknn (1 − xn)N −kn

Alors BN ( f ) converge uniformément sur [0,1]n vers f

Démonstration. On interprète de façon probabiliste BN ( f ). Soit Ω =

{0,1}N n avec la mesure de probabilité

P (𝜔1 = i1,...,𝜔N n = in)
= xk1

1 (1 − x1)N −k1 ...xknn (1 − xn)N −kn

avec ki le nombre de 1 parmi iN (i−1)+1, ...,iN i . On note S1 (𝜔) =
𝜔1+...+𝜔N

N , ...,Sn (𝜔) =
𝜔N (n−1)+1+...+𝜔N n

N ,S = (S1, ...,Sn) qui sont des va-
riables de loi binomiales indépendantes du point de vue probabiliste.
Alors

∫
dP f (S1, ...,Sn) = BN ( f ) (x1, ...,xn), donc si 𝜔(h) = sup{| f (x) −

f (y) | : |x − y | ≤ h} est le module d’uniforme continuité de f , on a :

| f (x1, ...,xn) − BN ( f ) (x1, ...,xn) |
≤ | | f (x1, ...,xn) − f (S ) | |1
≤ 𝜔(𝛿) + 2| | f | |∞P (| (x1, ...,xn) − S | ≥ 𝛿)

Or par union disjointe et l’inégalité de Markov :

P ( | (x1, ...,xn) − S | ≥ 𝛿) ≤
n∑︁
i=1

P ( |xi − Si | ≥ 𝛿)

≤
n∑︁
i=1

E ( |xi − Si |2)
𝛿2
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Or un calcul simple donne E ( |xi − Si |2) = V ar (Si ) =

xi (1−xi )
N ≤ 1

4N
donc

lim sup
N→∞

sup
(x1,...,xn ) ∈ [0,1]n

| f (x1, ...,xn) − BN ( f ) (x1, ...,xn) |

≤ lim sup
N→∞

𝜔(𝛿) +
2n | | f | |∞

4N 𝛿2

= 𝜔(𝛿) →𝛿→0 0.

Corollaire A.10: (Théorème d’approximation de Weiers-
trass)

Soit K un compact de Rn les polynômes (à coefficients com-
plexes) sont denses dans C 0 (K ,C). En conséquence, C 0 (K ,C)
est séparable.

Démonstration. CommeK est fermé borné,K ⊂ [−N ,N ]n et par le théo-
rème de Tietze D.3, f continue sur K se prolonge en une fonction conti-
nue sur [−N ,N ]n , il suffit donc du cas K = [−N ,N ]n que l’on obtient
par translation et dilatation (qui conservent les polynômes) du résultat
précédent. Comme Q[i ] := Q + iQ est dense dans C, on voit facilement
que les polynômes à coefficients dans Q[i ] sont aussi denses, et forment
un ensemble dénombrable, comme union dénombrable des polynomes
de degré au plus m en chaque variable (c’est plus simple à décrire qu’en

terme de degré total) qui s’écrivent sous la forme
m∑︁

i1,...,in=0

𝜆 ix
i1
1 ...x

in
n et

qui s’identifient donc au produit Q[i ]mn ≃ Q2mn , qui est dénombrable
comme produit fini d’ensembles dénombrables.

Remarque A.1. Plus généralement, le théorème de Stone Weiers-
trass indique que toute sous-algèbre A (stable par conjugaison
complexe) de C 0 (K ,C) avec K compact qui contient les fonc-
tions constantes et sépare les points (au sens pour x ≠ y il
existe P ∈ A avec P (x) ≠ P (y)) est dense pour la norme uni-
forme :A = C 0 (K ,C).
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6 Un résultat de compacité : le

Théorème d’Ascoli (niveau L3
Math)

Les compacts sont difficiles à trouver en dimension infinie, et la
moitié viennent (ou sont des variantes) du résultat suivant (l’autre moi-
tié sont des conséquences du Théorème de Tychonov), que l’on va dé-
duire de la relation entre complétude et compacité.

Remarque A.2. Soit (Y,d ) un espace métrique borné, dy ∈
(C 0
b (Y,R)),dy (x) = d (y ,x) la distance à y . | |dy − dz | | =

supx∈Y |d (y ,x) − d (z ,x) | = d (y ,z ) (car ≤ par l’inégalité tri-
angulaire inverse et ≥ en prenant x = y ou x = z) Donc
d :Y → C 0

b (Y,R) est une isométrie.

Définition A.5

Soient X ,Y des espaces métriques, une partie F ⊂ C 0 (X ,Y ) est
équicontinue si pour tout 𝜖 > 0, il existe 𝛿 = 𝛿(𝜖 ) > 0, tel que
∀x ,y ∈ X ,∀f ∈ F , si d (x ,y) ≤ 𝛿 alors d ( f (x), f (y)) ≤ 𝜖 .

Par exemple une famille d’application K -lipschitziennes (comme
une famille de la boule unité fermé de rayonK des applications linéaires
continues entre espaces de Banach) forme une famille équicontinue.

Théorème A.11: (d’Ascoli)

Soient X ,Y des espaces métriques compacts, si une partie
F est équicontinue alors F est compacte (pour la topologie
de la convergence uniforme donnée par la distance d ( f , g ) =

supx∈X d ( f (x), g (x))).

Exercice A.3. Montrer la réciproque facile.

Démonstration. Comme Y compact il est complet borné donc d :Y →
C 0
b (Y,R) est une isométrie et d (Y ) est complet donc fermé. Elle induit
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une isométrie de C 0 (X ,Y ) → C 0 (X ,C 0

b (Y,R)) qui est un espace de
Banach. Les équations f (x) ∈ d (Y ),x ∈ X montrent que l’image de
l’isométrie est fermé (comme intersection de fermés ∩x∈X ev−1

x (d (Y )),
evx ( f ) = f (x)) donc complet. Donc C 0 (X ,Y ) est aussi complet (on
aurait aussi pu reprendre la preuve du casY Banach) et F aussi.

Il reste à voir que F est précompact. Or en recouvrant F par des
boules de rayon 𝜖/2, F est recouvert par les boules de même centre et
rayon 𝜖 , donc il suffit de voir F précompact. Soit 𝜖 > 0, on fixe 𝛿(𝜖 ) > 0
donné par l’équicontinuité et R les centres d’un recouvrement de X par
des boules de rayons 𝛿(𝜖 ) donné par sa précompacité.

Remarquons que si d ( f (r ), g (r )) ≤ 𝜖 pour tout r ∈ R, en prenant r
avec d (x ,r ) ≤ 𝛿(𝜖 ), on a par l’équicontinuité et l’inégalité triangulaire :

d ( f (x), g (x))
≤ d ( f (x), f (r )) + d ( f (r ), g (r )) + d (g (r ), g (x)) ≤ 3𝜖

⇒ d ( f , g ) ≤ 3𝜖 .

Soit enfin S les centres des boules de rayon 𝜖/2 recouvrant Y . Nous
allons indicer les boules d’un 4𝜖 recouvrement par les applications SR

de R vers S en nombre fini. Pour 𝜙 ∈ SR , soit

F𝜙 = { f ∈ F,∀r ∈ R,d (𝜙(r ), f (r )) ≤ 𝜖/2}

Si f , g ∈ F𝜙 alors l’inégalité triangulaire donne, d (g (r ), f (r )) ≤ 𝜖 pour
tout r donc d ( f , g ) ≤ 3𝜖 et si F𝜙 est non-vide il est inclus dans B (b𝜙,4𝜖 ).

Enfin, il suffit donc de voir que F ⊂ ∪𝜙∈SRF𝜙. Or chaque valeur
possible de f (r ) est à distance inférieure à 𝜖/2 d’un s = 𝜙(r ) ∈ S pour
un certain 𝜙, ce qui conclut.

Théorème A.12: (d’Ascoli)

Soient X un espace métrique compact et E un e.v.n. de dimen-
sion finie, si une partie F est équicontinue et bornée deC 0 (X ,E)
alors F est compacte (pour la topologie de la convergence uni-
forme donnée par la norme | |.| |∞).

Démonstration. Si M = sup{| | f | |∞, f ∈ F }, F ⊂ C 0 (X ,BF (0,M )) etY =

BF (0,M ) est fermé borné donc compact comme E est de dimension
finie. Le théorème précédent conclut.
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En pratique, on peut utiliser le résultat suivant pour se ramener à
des cas plus simples :
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Proposition B.1

Soient A,B des convexes de E .

1. SiA ⊂ B alors pour tout x ∈ A,TA (x) ⊂ TB (x) etNA (x) ⊃
NB (x).

2. Si a ∈ I nt (A), TA (a) = E et NA (a) = {0}.

3. Si u1, ...,un ∈ NA (x) alors {
n∑︁
i=1

𝜆 iui ,𝜆 i ≥ 0} ⊂ NA (x).

4. Si a ≠ b alors N [a,b ] (a) = (R(b − a))⊥ + R+ (a − b)
et pour u ∈ [a,b] − {a,b} N [a,b ] (u) = (R(b − a))⊥.

5. Pour x ∈ A, A ⊂ x + TA (x) et Tx+TA (x ) = TA (x) et donc
Nx+TA (x ) = NA (x).

Démonstration. (1) TA (x) = R∗
+ (A − x) ⊂ TB (x) est par monotonie de

l’adhérence. Si f ∈ NB (x) alors pour tout y ∈ TB (x) (en particulier
y ∈ TA (x) on a ⟨f ,x⟩ ≤ 0 et donc f ∈ NA (x). Donc on a l’inclusion
NA (x) ⊃ NB (x).

(2) a ∈ I nt (A) il existe une boule donc un convexe B (a,r ) ⊂ A r >
0 et donc par (1) TA (a) ⊃ TB (a,r ) (a) ⊃ R+ (B (a,r ) − a) = R+B (0,r ) = E
par la définition. Vu E⊥ = {0} le résultat sur le cône normal s’en déduit.

(3) C’est la propriété de cône. Par hypothèse pour x ∈ TA (x) on a

⟨ui ,x⟩ ≤ 0 donc pour 𝜆 i ≥ 0 ⟨
n∑︁
i=1

𝜆 iui ,x⟩ =

n∑︁
i=1

𝜆 i ⟨ui ,x⟩ ≤ 0 et donc

n∑︁
i=1

𝜆 iui ∈ NA (x).

(4) Comme [a,b] est convexe, on obtientTu ( [a,b]) = R+ [a−u ,b−u]
et u = 𝜆a + (1−𝜆 )b donc (a −u) = (1−𝜆 ) (a − b), b −u = 𝜆 (b − a) donc
Tu ( [a,b]) = R+ [a − u ,b − u] = R(b − a) d’où le calcul du cône normal
par l’exo 3.2. De même Ta ( [a,b]) = R+ (b − a) donc clairement f ∈
Na ( [a,b]) se décompose selon la somme directe orthogonale R(b −a) ⊕
(R(b −a))⊥ f = 𝜆 (b −a) +v et on ⟨f ,b −a⟩ = 𝜆 | |b −a | |2 qui est négatif si
et seulement si 𝜆 ≤ 0. Donc si et seulement si f ∈ (R(b−a))⊥+R+ (a−b)
comme annoncé.

(5) Par la formule x + TA (x) = x + R∗
+ (A − x) ⊃ x + (A − x) = A.

Par l’inclusion Tx+TA (x ) ⊃ TA (x). Mais x + TA (x) − x = TA (x) donc
Tx+TA (x ) = R∗

+TA (x) = TA (x) car TA (x) est un cône fermé. On déduit
directement le cas des cônes normaux.
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Exemple B.1

Soit A = {(x ,y) ∈ R2 : x ≥ y ≥ 0, }. Calculons NA (0) le cône
normal en 0 = (0,0).
D’abord on essaye de borner supérieurement l’ensemble. En
prenant [(0,0), (1,1)] ⊂ A, on a

NA (0) ⊂ N [ (0,0) ,(1,1) ] (0)
= (R(1,1))⊥ + R+ (−1,−1)
= {𝜆 (1,−1) + 𝜇(−1,−1),𝜆 ∈ R, 𝜇 ≥ 0}

De même

NA (0) ⊂ N [ (0,0) ,(1,0) ] (0)
= (R(1,0))⊥ + R+ (−1,−1)
= {𝜆 ′ (0,1) + 𝜇′ (−1,0),𝜆 ′ ∈ R, 𝜇′ ≥ 0}

Donc NA (0) est inclus dans l’intersection, résolvons le système
(−𝜇′,𝜆 ′) = (𝜆 − 𝜇,−𝜆 − 𝜇) avec les conditions ci-dessus ,𝜆,𝜆 ′ ∈
R, 𝜇, 𝜇′ ≥ 0 Il faut donc −𝜆 − 𝜇 = −𝜆 + 𝜇 − 2𝜇 = 𝜇′ − 2𝜇 donc

N (0,0) (A) ⊂ {𝜇′ (−1,1) + 𝜇(0,−2), 𝜇, 𝜇′ ≥ 0}.

Montrons qu’il y a égalité en montrant que (−1,1) ∈ NA (0) et
(0,−1) ∈ NA (0) (car on a alors l’autre inclusion par le 3 de la
précédente proposition).
La formule du cas convexe donneTA (0) = A donc soit (x ,y) ∈ A,
on calcule ⟨(x ,y), (−1,1)⟩ = y − x ≤ 0 d’après l’équation de A
donc (−1,1) ∈ NA (0).
Enfin ⟨(x ,y), (0,−1)⟩ = −y ≤ 0 donc (0,−1) ∈ NA (0) comme
voulu.
On a donc

NA (0) = R+ (−1,1) + R+ (0,−2).

On est maintenant prêt pour la :

Preuve du Théorème 3.6. On rappelle que

C = {x ∈ U : ∀i ∈ {1, ...,n}, gi (x) ≤ 0}.

On a supposé x0 ∈ I nt (C ) ⊂ U existe. Soit x ∈ C tel que :



ANNEXE B. COMPLÉMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 3 :CONVEXITÉ 210

1. les l premières contraintes sont actives, c’est à dire : g1 (x) = ... =

gl (x) = 0
2. les autres contraintes ne sont pas actives, c’est à dire gl+1 (x) <

0, ...gn (x) < 0

Si l = 0, on a

x ∈ I nt (C ) = {x ∈ U : ∀i ∈ {1, ...,n}, gi (x) < 0}

donc NC (x) = {0} par la proposition B.1.2. Sinon, le but est de voir :

NC (x) =
{︄

l∑︁
i=1

𝜆 i∇gi (x),𝜆 i ≥ 0

}︄
.

Etape 1 : inclusion ⊃.
Par la proposition B.1.3. il suffit de voir que ∇gi (x) ∈ NC (x) pour

1 ≤ i ≤ l , soit autrement dit par définition de NC (x), il faut voir :

⟨∇gi (x),u − x⟩ ≤ 0,∀u ∈ C

Or par le théorème 3.12, on a ∀u ,x ∈ U

⟨∇gi (x),u − x⟩ ≤ gi (u) − gi (x) = gi (u) ≤ 0,

car u ∈ C .
Etape 2 : inclusion ⊂.
Soit f ∈ NC (x).
On remarque d’abord que si on prend h0 = x0−x on a dgi (x) (h0) ≤

gi (x0) − gi (x) = gi (x0) < 0 pour tout i = 1, ...,l .
Soit donc maintenant h tel que dgi (x) (h) < 0,i = 1, ...,l (il en

existe par la remarque), alors gi (x + th) − gi (x) = tdgi (x) (h) + o (t )
donc gi (x + th) < 0 pour t > 0 petit, et i = 1, ...l De plus pour t
assez petit comme gl+1 (x) < 0, ...gn (x) < 0, on déduit par continuité
gl+1 (x + th) < 0, ...gn (x + th) < 0 d’où x + th ∈ A pour tout t assez petit.

Par définition de NC (x), on a donc ⟨f ,x + th − x⟩ ≤ 0 donc en
particulier ⟨−f ,h⟩ ≥ 0 et on ne peut pas avoir −⟨f ,h⟩ < 0. Donc
−f ,dg1 (x), ...,dgl (x) vérifient la première condition de la Proposition
B.15 (avec E = Rn) donc aussi la seconde et sont donc positivement
linéairement dépendants. On a donc des 𝜆 i positifs non tous nuls tel

que −𝜆0 f +
l∑︁
i=1

𝜆 i∇gi (x) = 0.



ANNEXE B. COMPLÉMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 3 :CONVEXITÉ 211

Montrons enfin que 𝜆0 ≠ 0. Si on avait
l∑︁
i=1

𝜆 i∇gi (x) = 0, il n’y aurait

pas de h tel que dgi (x) (h) < 0 pour tout i = 1, ...,l ce qui contredit
dgi (x) (h0) < 0.

On conclut à l’égalité voulu :

f =

l∑︁
i=1

𝜆 i

𝜆0
∇gi (x) ∈

{︄
l∑︁
i=1

𝜆 i∇gi (x),𝜆 i ≥ 0

}︄

2 Enveloppe convexe, cônes
tangents et cônes normaux pour
tout e.v.n. E (Niveau L3)

Comme pour les adhérences, la stabilité par intersection garantit
l’existence d’un plus petit convexe contenant A.

Définition B.1

L’enveloppe convexe d’un ensembleA, notéeConv (A) est le plus
petit convexe contenant A.

Lemme B.2

Conv (A)

=
⋃︂
n∈N∗

{
n∑︁
i=1

tixi ,xi ∈ A,avec
n∑︁
i=1

ti = 1,ti ≥ 0}

Démonstration. Soit Conv ′ (A) le membre de droite. Conv ′n (A) =

{
n∑︁
i=1

tixi ,xi ∈ A,avec
∑︁

ti = 1,ti ≥ 0} Le cas n = 1 dans l’union est

A donc A ⊂ Conv ′ (A). Si y1 =

n∑︁
i=1

tixi ∈ Conv ′n (A),y2 =

m∑︁
j=1

s j z j ∈
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Conv ′m (A) sont deux points quelconques, alors pour 𝜆 ∈ [0,1]

𝜆y1 + (1 − 𝜆 )y2 =

n∑︁
i=1

𝜆tixi +
m∑︁
j=1

(1 − 𝜆 )s j z j .

Comme
n∑︁
i=1

𝜆ti +
m∑︁
j=1

(1 − 𝜆 )s j = 𝜆 + (1 − 𝜆 ) on déduit 𝜆y1 + (1 − 𝜆 )y2 ∈

Conv ′n+m (A). Ceci montre que Conv ′ (A) est un convexe qui contient A.
Il est facile de voir que tout ensemble convexe est stable par com-

binaison convexe
n∑︁
i=1

tixi avec
∑︁

ti = 1,ti ≥ 0 par récurrence sur n et

ainsi Con′n (A) ⊂ Conv (A). Si tn = 1, les autres sont nuls et rien n’est à

montrer. En écrivant
n∑︁
i=1

tixi = (1 − tn) (
1

1 − tn

n∑︁
i=1

tixi ) + tnxn on a par

l’hypothèse de récurrence 1
1−tn

n∑︁
i=1

tixi ∈ Conv (A) car yn := 1
1−tn

n∑︁
i=1

ti =

(1 − tn)/(1 − tn) = 1 (et les coefficients sont positifs). Donc on a aussi

la combinaison convexe
n∑︁
i=1

tixi = (1 − tn)yn + tnxn ∈ Conv (A).

Dans Rn il ne suffit que du barycentre de n + 1 points.

Théorème B.3: (de Carathéodory)

(admis) Si A ⊂ Rn , on a

Conv (A)

=
{︁ n+1∑︁
i=1

tixi ,xi ∈ A,avec
n+1∑︁
i=1

ti = 1,ti ≥ 0
}︁
.

Les deux ensembles suivant seront importants pour formuler des
conditions pour des problèmes de minimisation sous contrainte.
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Définition B.2

Le cône tangent de l’ensemble A ⊂ E e.v.n. au point a ∈ A est

TA (a) := {b ∈ E :∃ai → a,ai ∈ A,

ti > 0,ti → 0 : b = lim
ai − a
ti

}

Le cône normal est son polaire, c’est à dire le cône convexe
fermé :

NA (a) := { f ∈ E∗ : ∀x ∈ TA (a), f (x) ≤ 0}.

Exemple B.2

TA (a) est toujours fermé. Si L est un s.e.v de E a ∈ L,TL (a) = L
et NL (a) = L⊥. Si a ∈ I nt (A), TA (a) = E et NA (a) = {0}.

Le résultat montrer l’accord avec la définition du cas E = Rn dans
le cas convexe (avec l’identification usuelle de E ′ à E comme pour tout
espace de Hilbert.)

Proposition B.4

Si S est convexe et x ∈ S , alors Tx (S ) est convexe et S ⊂ x +
Tx (S ). De plus, on a

Tx (S ) = {u − x
s

,u ∈ S ,s > 0},

Nx (S ) = { f ∈ E ′ : ∀u ∈ S , f (u − x) ≤ 0}

Démonstration. R∗
+ (S − x) est convexe comme S − x donc en prenant

l’adhérence, aussi l’ensemble W = R∗
+ (S − x) que l’on veut montrer

être TS (x). Si on a une suite (xn − x)/tn → u ∈ TS (x) comme tous les
éléments sont dan W , on obtient par fermeture aussi la limite, donc
TS (x) ⊂W. Réciproquement, pour t > 0, xn := t

n (u − x) + x = t
nu + (1−

t
n )x ∈ S pour n assez grand par convexité et (xn − x)/tn = t (u − x) si
tn = 1/n → 0 donc t (u − x) ∈ TS (x) comme voulu. Les autres relations
sont alors évidentes, car S − x ⊂ TS (x) (car s = 1) et par la définition
de NS (x) comme polaire.
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3 Points selles (Niveau L2-L3)

Les points critiques a qui ne sont pas des extrema peuvent être de
différents types. L’absence d’extrema peut être visible sur une droite
passant par a s’il y a un point d’inflexion (comme pour x ↦→ x3 dans
R) et il peut y avoir des points critiques qui sont des maxima dans
certaines directions et des minima dans d’autres. Ces points ont un
certain intérêt et seront nommés points selles.

Définition B.3

Soit U ⊂ Rn et f : U → R et a ∈ U .

1. Soient deux sous-espaces vectoriels F et G supplémen-
taires Rn = F ⊕G (c’est à dire F ∩G = {0} et Rn = F +G )
On dit que a est un point selle (resp. point selle local) de f
selon la décomposition Rn = F ⊕G si a est un minimum
(resp. minimum local) pour la restriction f |a+F de f au
sous espace affine a + F , et si a est un maximum (resp.
maximum local) pour la restriction f |a+G de f au sous
espace affine a + G . On parle de point selle si il existe
une telle décomposition.

2. Si f de classe C1. Soit a un point critique de f , un sous
espace vectoriel H ⊂ Rn est un plan d’inflexion si pour
toute droite Δ passant par a inclus dans a + H , f |Δ n’a
pas d’extrema local en a.

Remarque B.1. La décomposition F ⊕G d’un point selle n’est pas
forcément unique et on ne demande rien en dehors (a+G )∪(F +
a), en particulier, il peut y avoir des plans d’inflexion en un point
selle (ex f (x ,y) = x2 − y2 + (x − y)3, (0,0) est un point selle local
dans la décomposition (R,0) ⊕ (0,R) car x2 + x3 a un minimum
local en 0 et −y2 − y3 un maximum local, de même (0,0) est
un point selle dans la décomposition R(1,1/2) ⊕ R(1/2,1) mais
R(1,−1) est une droite d’inflexion)
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Proposition B.5

Soit f : U → R de classe C1

1. Si a est un point selle de f , c’est un point critique de f .
2. Si f est C2 et a est un point critique de f . Si D2 f (a)

est non-dégénérée, ni positive ni négative, alors a est un
point selle local de f .

3. Si a est un point critique de f H est un plan d’inflexion
en a de dimension dim (H ) > n/2 alors a n’est pas un
point selle local. De plus si f est C2 pour tout h ∈ H ,
D2 f (a) (H ,H ) = 0.

Démonstration. Pour (1) on remarque qu’il suffit de montrer df (a) = 0
ce qui ne dépend pas de la base de Rn on peut donc supposer a point
selle pour la décomposition F = Rk × {0}, G = {0} × Rn−k . Comme f
restreint à a+F à un minimum local, les k premières dérivées partielles
s’annulent, les n-k dernières s’annulent à cause du maximum sur a +G ,
d’où df (a) = 0.

La preuve de (2) nécessite quelques bases d’algèbre linéaire. Pour
(2), comme D2 f (a) est non dégénérée, les valeurs propres de H ( f ) (a)
(les racines du polynôme X ↦→ det (H ( f ) (a) − X id )) sont non nulles.
Comme la matrice D2 f (a) n’est ni positive ni négative, il y a à la fois
des valeurs propres 𝜆 positives et négatives. Soit F l’espace vectoriel
engendré par les vecteurs propres u (les u ∈ Rn tels que H ( f ) (a)u = 𝜆u
qui existent car si det (H ( f ) (a) − 𝜆id ) = 0, H ( f ) (a) − 𝜆id n’est pas
injective donc a un noyau) des valeurs propres 𝜆 strictement positives,
et de mêmeG avec les négatives. D2 f (a) restreint à F est positive donc
f |a+F admet un minimum local et de même pour G .

Pour (3), si dim (H ) > n/2 et supposons par l’absurde a point selle,
on a dim (F )+dim (G ) = n, on a soit dim (F ) ≥ n/2, soit dim (G ) ≥ n/2,
disons qu’on se trouve dans le premier cas, alors n ≥ dim (H + F ) =

dim (F ) + dim (H ) − dim (F ∩ H ) implique dim (F ∩ H ) ≥ dim (F ) +
dim (H )−n > n/2+n/2−n = 0 donc F∩H ≠ {0} une contradiction car la
restriction de f à toute droite dans a+F ∩H devrait avoir un minimum
local en a et un point d’inflexion à la fois. Si D2 f (a) (H ,H ) ≠ 0, on a
vu que cela suffit à ce que f ait un extremum local sur la droite a +RH ,

vu si 𝜙(𝜆 ) = f (a + 𝜆H ), 𝜙′′ (0) = D2 f (a) (H ,H ).
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Théorème B.6

Soient A ⊂ Rn−k ,B ⊂ Rk des compacts convexes et K : C =

A × B → R continue. Si pour tout (a,b) ∈ C ,a ∈ Rn−k ,b ∈
Rk , x ↦→ K (x ,b) est convexe et y ↦→ K (a,y) est concave, alors
il existe un point de C qui soit un point selle (x0,y0) selon la
décomposition Rn−k × {0} ⊕ {0} × Rk autrement dit :

∀x ∈ A,y ∈ B K (x0,y) ≤ K (x0,y0) ≤ K (x ,y0). (B.1)

De plus, (B.1) est équivalente à l’égalité :

Minx∈AMaxy∈BK (x ,y) = Maxy∈BMinx∈AK (x ,y). (B.2)

Remarque B.2. On a desMin etMax au lieu d’inf et sup car des
fonctions continues sur des compacts atteignent leurs bornes
(cf. la preuve pour la continuité de x ↦→ Maxy∈BK (x ,y) et de
façon similaire de y ↦→ Maxx∈AK (x ,y).
Dans le cas où f est bilinéaire, ce résultat s’appelle le théorème
du min-max de von Neumann. Il a une signification en théorie
des jeux. Si f donne la valeur que gagne un joueur A en position
x ∈ U si f (x) ≥ 0 et −f (x) la valeur que gagne le joueur B (et
perd le joueur A) si f (x) ≤ 0. Si A ne peut influencer que la
direction {0} ×Rk et B seulement la direction Rn−k × {0}. Alors
un point selle est un "équilibre de Nash" c’est-à-dire un point où
ni A ni B n’ont intérêt à changer leur stratégie, car si A change
sa stratégie celle de B étant constante, étant donné que le point
selle est un maximum, A va perdre en gain, et de même si B
change sa position avec celle de A constante, le caractère de
minimum dans la direction du changement de B montre que B
ne peut que perdre plus.

Démonstration. • Maxy∈BMinx∈AK (x ,y) ≤ Minx∈AMaxy∈BK (x ,y)
est toujours vrai. Comme pour tout x ∈ A,y ∈ B ,
Minx∈AK (x ,y) ≤ K (x ,y) ≤ Maxy∈AK (x ,y), on déduit en pre-
nant le max : Maxy∈BMinx∈AK (x ,y) ≤ Maxy∈BK (x ,y) soit en
prenant un Min en x :

Maxy∈BMinx∈AK (x ,y) ≤ Minx∈AMaxy∈BK (x ,y).

• (B .1) ⇒ (B .2)
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De plus, en considérant (x0,y0) de (B .1), on a :

K (x0,y0) ≤ Minx∈AK (x ,y0)
≤ Maxy∈BMinx∈AK (x ,y),

K (x0,y0) ≥ Maxy∈BK (x0,y)
≥ Minx∈AMaxy∈BK (x ,y),

d’où l’égalité complète en rassemblant les 3 dernières inégalités.
• g : x ↦→ Maxy∈BK (x ,y) est continue.

Soit x ,xn ∈ A, xn → x , soit yn (resp t) atteignant le max pour
xn (resp x) c’est à dire : Maxy∈BK (xn ,y) = K (xn ,yn). Supposons
que g (xn) = K (xn ,yn) ne converge pas vers g (x). Par compacité,
on peut extraire une suite telle que y𝜙(n ) →Y . Par continuité de
K :

g (x𝜙(n ) ) = K (x𝜙(n ) ,y𝜙(n ) ) →
K (x ,Y ) < K (x ,t ) = Maxy∈BK (x ,y) = g (x).

Or K (x𝜙(n ) ,t ) ≤ K (x𝜙(n ) ,y𝜙(n ) ) donc en passant à la limite par
continuité de K , K (x ,t ) ≤ K (x ,Y ) < K (x ,t ), une contradiction.

• (B .1) ⇐ (B .2) On prend x0 ∈ A réalisant le minimum c’est à
dire tel que :

𝛼 = Minx∈AMaxy∈BK (x ,y) = Maxy∈BK (x0,y)

Il existe par la continuité du point précédent et par compacité.
De même, il existe y0 ∈ B réalisant le maximum :

Minx∈AK (x ,y0) = Maxy∈BMinx∈AK (x ,y) = 𝛼.

Donc pour tout x ∈ A,y ∈ B , en utilisant (B.2) pour l’égalité du
milieu, on obtient :

K (x0,y) ≤ MaxY ∈BK (x0,Y )
= 𝛼 = MinX ∈AK (X ,y0) ≤ K (x ,y0).

En prenant x = x0, y = y0, on voit 𝛼 = K (x0,y0), ce qui dit donc
que (x0,y0) est un point selle.

• Montrons (B.2). Considérons, pour 𝜖 > 0,

K𝜖 (x ,y) = K (x ,y) + 𝜖 | |x | |22.
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Comme x ↦→ 𝜖 | |x | |22 est strictement convexe, il en est de même
de K𝜖 (.,y) pour tout y ∈ B (convexe plus strictement convexe
donne strictement convexe).
Montrons que pour tout y , la fonction K𝜖 (.,y) a un unique
minimum. En effet, si x1 ≠ x2 sont deux minima, par stricte
convexité : K𝜖 ((x + y)/2,y) < K𝜖 (x1,y)/2 +K𝜖 (x2,y)/2 = K (xi ,y)
en contradiction avec le caractère de minimum. Donc on a un
unique E (y) atteignant le minimum de K𝜖 (.,y) Par le deuxième
point (appliqué à −K𝜖 (y ,x)) f𝜖 (y) = K𝜖 (E (y),y) est continue,
donc atteint son maximum en y∗. En conséquence, par la défini-
tion de f𝜖 et le choix de y∗

f𝜖 (y∗) = Maxy∈BMinx∈AK𝜖 (x ,y)
= K𝜖 (E (y∗),y∗) = Minx∈AK𝜖 (x ,y∗).

Soit x ∈ A,y ∈ B ,t ∈]0,1[, on a par concavité :

K𝜖 (x , (1 − t )y∗ + t y) ≥ (1 − t )K𝜖 (x ,y∗) + tK𝜖 (x ,y)
≥ (1 − t ) f𝜖 (y∗) + tK𝜖 (x ,y).

En prenant x = E ((1 − t )y∗ + t y), on obtient f𝜖 ((1 − t )y∗ + t y) ≥
(1 − t ) f𝜖 (y∗) + tK𝜖 (E ((1 − t )y∗ + t y),y).
Vu que y∗ maximise f𝜖 , en soustrayant et divisant par t , on a :

f𝜖 (y∗) ≥ K𝜖 (E ((1 − t )y∗ + t y),y) (∗).

On veut prendre t → 0, voyons que y ↦→ E (y) est continue.
Supposons yn → y , et supposons E (yn) ̸→ E (y) par compacité,
on a une suite extraite y𝜙(n ) telle que E (y𝜙(n ) ) → Z ≠ E (y). Par
continuité K𝜖 (E (y𝜙(n ) )),y𝜙(n ) ) → K𝜖 (Z ,y) > K𝜖 (E (y),y),
l’inégalité stricte venant de l’unicité du minimum d’une fonction
strictement convexe.
Or par définition K𝜖 (E (y)),y𝜙(n ) ) ≥ K𝜖 (E (y𝜙(n ) )),y𝜙(n ) ) donc
en passant à la limite K𝜖 (E (y),y) ≥ K𝜖 (Z,y) > K𝜖 (E (y),y), une
contradiction.
On a donc montré la continuité de y ↦→ E (y).
Donc en passant à la limite dans l’inégalité (∗), on obtient :
f𝜖 (y∗) ≥ K𝜖 (E (y∗),y) et ce pour tout y ∈ B Par ailleurs par
définition de f𝜖 , f𝜖 (y∗) ≤ K𝜖 (x ,y∗). Autrement dit (E (y∗),y∗) est
un point selle de K𝜖 . Par l’implication (B .1) ⇒ (B .2), on déduit,
vu K (x ,y) ≤ K𝜖 (x ,y) ≤ K (x ,y)+𝜖D (avecD = Maxx∈A | |x | |22 < ∞
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par compacité) :

Minx∈AMaxy∈BK (x ,y)
≤ Minx∈AMaxy∈BK𝜖 (x ,y)
= Maxy∈BMinx∈AK𝜖 (x ,y)
≤ 𝜖C + Maxy∈BMinx∈AK (x ,y).

En prenant 𝜖 → 0, on obtient l’inégalité qui manque pour avoir
(B .2) pour K .

4 Jauge de Minkowski d’un
ensemble convexe (Niveau M1)

L’un des objectifs principaux de ce chapitre est d’utiliser le théo-
rème de Hahn-Banach pour séparer des convexes par des hyperplans
fermés, lieu d’annulation d’une forme linéaire continue. Pour cela, nous
devons associer à un convexe une fonction (qui sera souvent une semi-
norme) et que l’on pourra utiliser comme domination dans le théorème
d’Hahn-Banach.

Définition B.4

Soit E un R-e.v., un convexe C ⊂ E est dit absorbant si pour tout
x ∈ E ,x ∈ 𝜆C pour un 𝜆 > 0.

Définition B.5

Soit E un R-e.v. et C un convexe absorbant. La jauge de Min-
kowski de C est la fonction :

𝜇C (x) := inf{𝜆 > 0 : 𝜆−1x ∈ C } ∈ [0,∞)

Théorème B.7

Soit E un R-e.v. et C un convexe absorbant. Alors

1. 𝜇C (x + y) ≤ 𝜇C (x) + 𝜇C (y).
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2. 𝜇C (tx) = t𝜇C (x) si t ≥ 0.
3. Si −C = C , 𝜇C est une seminorme.
4. Si A = {x : 𝜇C (x) < 1},B = {x : 𝜇C (x) ≤ 1} alors
A ⊂ C ⊂ B sont des convexes et 𝜇A = 𝜇B = 𝜇C

5. Si E est un e.v.n. et 0 ∈ I nt (C ) (ce qui implique C ab-
sorbant), 𝜇C est continue et de plus

A = I nt (C ),B = C .

Démonstration. Soit t = 𝜇C (x) + 𝜖 > 0, s = 𝜇C (y) + 𝜖 > 0 de sorte
que x/t ,y/s ∈ C . Or on peut écrire la combinaison convexe suivante
x+y
s+t = t

s+t
x
t + s

s+t
y
s ∈ C et donc 𝜇C (x + y) ≤ s + t . Comme 𝜖 > 0 est

arbitraire, on déduit (1).
(2) est une conséquence directe de la définition. Si −C = C 𝜇C (x) =

𝜇C (−x) d’où on déduit 𝜇C (tx) = |t |𝜇C (x), la seule relation manquante
pour (3).

Les inclusions entre A,B ,C viennent de la définition : x ∈ C donne
x/1 ∈ C et donc 𝜇C (x) ≤ 1 et si 𝜇C (x) < 1, alors x/1 ∈ C . Elles
impliquent 𝜇B ≤ 𝜇C ≤ 𝜇A . Si 𝜇B (x) < s < t alors x/s ∈ B donc
𝜇C (x/s ) ≤ 1 donc 𝜇C (x/t ) ≤ s/t < 1 d’où x/t ∈ A donc 𝜇A (x) ≤ t soit
en passant à l’infimum des t , 𝜇A (x) ≤ muB (x) ce qui donne la dernière
égalité de (4). A,B convexes sont semblables à la convexité des boules
en utilisant (1) et (2).

Pour (5), on remarque qu’il existe B (0, 𝜖) ⊂ C donc 𝜇C (𝜖x/| |x | |) ≤
1 soit 𝜇C (x) ≤ ||x | |/𝜖 .

De plus par l’inégalité triangulaire 𝜇C (x) ≤ |𝜇C (x − y) | + 𝜇C (y) et
de même en inversant x ,y donc

|𝜇C (x) − 𝜇C (y) | ≤ |𝜇C (x − y) | ≤ | |x − y | |/𝜖

donc 𝜇C est 1/𝜖 -lipschitzienne donc continue. On déduit que A est
ouvert, B fermé et donc A ⊂ I nt (C ),C ⊂ B . Or, soit 𝜖 , si x ∈ B
x (1 − 1/n) ∈ C et converge vers x ∈ C donc B ⊂ C . De même si
x ∈ Ac , (1 + 𝜖 )x ∉ C donc x ∈ C c donc Ac ⊂ C c d’où en prenant le
complémentaire I nt (C ) ⊂ A.

Vous pouvez aussi en exercice essayer de montrer le résultat suivant
directement.
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Corollaire B.8

Soit C un convexe d’intérieur non vide d’un e.v.n., I nt (C ) =

I nt (C ) et I nt (C ) = C .

Démonstration. En translatant, on peut supposer 0 ∈ I nt (C ),, Alors
comme 𝜇C = 𝜇I nt (C ) = 𝜇C , par le (5) ci-dessus, le calcul de l’inté-
rieur/adhérence en terme de la jauge donne que ces trois ensembles
ont même intérieur et même adhérence.

5 Séparation des convexes (Niveau
M1)

Un élément f ∈ E ′ tel que f ≠ 0 permet de construire un hyperplan
fermé (translation de Ker (𝜙), voir lemma 2.30) : {x ∈ E , f (x) = c }. Les
deux ensembles {x ∈ E , f (x) ≤ c } et {x ∈ E , f (x) ≥ c } sont des demi-
espaces. On dit que deux ensembles sont séparés (par l’hyperplan) si
chaque ensemble est dans un des demi-espaces. On parle de séparation
stricte si C1 ⊂ {x ∈ E , f (x) < c } et C2 ⊂ {x ∈ E , f (x) > d } pour d > c .

On va obtenir un résultat de séparation en utilisant un résultat
abstrait de prolongement :

Théorème B.9: (de prolongement de Hahn-Banach) (ad-
mis)

Soient E un espace vectoriel, p : E → R une application positi-
vement homogène et sous-additive, c’est-a-dire vérifiant :

⊲ p (tx) = t p (x)x ∈ E ,t > 0
⊲ p (x + y) ≤ p (x) + p (y),x ,y ∈ E .

Soient G ⊂ E un sous-espace vectoriel et g : G → R une appli-
cation linéaire dominée par p :

∀x ∈ G , g (x) ≤ p (x).

Alors il existe une forme linéaire f sur E qui prolonge g (c’est-à-
dire ∀x ∈ G , g (x) = f (x)) et encore dominée par p, c’est-à-dire
telle que

∀x ∈ E , f (x) ≤ p (x).
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La version suivante du théorème de Hahn-Banach permet de sépa-
rer des ensembles convexes bien choisis.

Théorème B.10: (de séparation de Hahn-Banach)

Soient A,B deux convexes non-vides disjoints d’un e.v.n. E, ils
sont séparés par un hyperplan dans les deux cas suivants :

1. Si A est ouvert, alors il existe f ∈ E ′ et c ∈ R telle que

∀x ∈ A,y ∈ B : f (x) < c ≤ f (y).

2. Si A est compact et B est fermé, alors il existe f ∈ E ′ et
c < d ∈ R telle que

∀x ∈ A,y ∈ B : f (x) < c < d < f (y).

Démonstration. 1) Premier cas : B = {x0}.
On peut supposer que 0 ∈ A pour utiliser la fonctionnelle 𝜇A

comme fonctionnelle sous-additive et positivement homogène p du
théorème de Hahn Banach. Soit G = Rx0 et g (tx0) = t .

On remarque que 𝜇A (x0) ≥ 1 car A = I nt (A) = {x : 𝜇A (x) < 1} par
le théorème B.7 et x0 ∉ A.

donc pour t>0 g (tx0) = t ≤ t𝜇A (x0) = 𝜇A (tx0) et pour t ≤ 0
g (tx0) ≤ 0 ≤ 𝜇A (tx0). Donc on obtient la domination hypothèse de
Hahn-Banach :

∀x ∈ G , g (x) ≤ 𝜇A (x).
En appliquant le théorème, on obtient donc f linéaire étendant g

et telle que (en réutilisant la lipshitzianité obtenue dans la preuve du
théorème B.7 (5))

∀x ∈ E , f (x) ≤ 𝜇A (x) ≤ M | |x | |.

Ceci implique en particulier f ∈ E∗, f (x) < 1 pour x ∈ A et
f (x) = 1 sur B . Ce qui donne la séparation.

Second cas : B quelconque.
On poseC = A−B qui est convexe, ouvert (comme union ∪y∈BA−y)

et 0 ∉ C . Donc d’après le premier cas il existe f ∈ E ′ telle que f (z ) < 0
pour z = a − b ∈ A − B soit f (a) < f (b) pour a ∈ A, b ∈ B . En passant
au sup on obtient :

Supx∈A f (x) ≤ I n fy∈B f (y) := c .
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De plus, comme A ouvert on obtient A ⊂ I nt ({x : f (x) ≤ c }) = {x :
f (x) < c }.

2)Vérifions qu’il existe 𝜖 > 0 tel que A +B (0, 𝜖) et B +B (0, 𝜖) soient
disjoints (ce sont aussi des convexes ouverts comme au 1). Sinon, on
trouve xn ∈ A + B (0,1/n) ∩ B + B (0,1/n) donc yn ∈ A,zn ∈ B avec
| |yn − xn | |, | |zn − xn | | ≤ 1/n. En extrayant par compacité une sous-suite
ynk → y ∈ A on obtient znk → y ∈ B , une contradiction.

Donc on peut appliquer le cas 1) à A + B (0, 𝜖) et B + B (0, 𝜖) . On
obtient f ∈ E ′ non-nulle telle que :

∀a ∈ A,∀z ∈ B (0, 𝜖),∀b ∈ B :

f (a) + f (z ) ≤ 𝛼 ≤ f (b) + f (z ).

En prenant des sup sur la boule unité :

∀a ∈ A,∀b ∈ B : f (a) + | | f | |𝜖 ≤ 𝛼 ≤ f (b) − || f | |𝜖 .

Comme | | f | | ≠ 0, il suffit de prendre c = 𝛼 − || f | |𝜖/2 < d = 𝛼 +
|| f | |𝜖/2.

Applications

Il vient de l’application directe au cas A = {x}, B = {y} qui sont
des compacts.

Proposition B.11: (separation des points)

E ′ sépare les points de E : Pour x ≠ y ∈ E il existe f ∈ E ′ telle
que f (x) ≠ f (y).

Le deuxième cas particulier permet de séparer un point et un es-
pace fermé F

Proposition B.12

Si F ⊂ E un sous-espace vectoriel de l’e.v.n. E . Si x ∉ F alors il
existe f ∈ E ′ telle que f (x) = 1 et F ⊂ Ker ( f ).
En particulier, F ⊥ = 0 ssi F est dense dans E .

La proposition précédente a des conséquences intéressantes pour
comprendre l’injectivité et la surjectivité (ou plutôt la densité de
l’image) des applications linéaires en dimension infinie.



ANNEXE B. COMPLÉMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 3 :CONVEXITÉ 224

On commence par un préliminaire algébrique sur l’orthogonalité
dans les espaces de Banach.

Définition B.6

Soit E un e.v.n. et F un sous-espace de E et N un sous-espace
de E ′. Les orthogonaux de F et N sont les sous-espaces fermés :

F ⊥ := { f ∈ E ′, f (x) = 0x ∈ F },

⊥N := {x ∈ E , f (x) = 0∀f ∈ N }.

Proposition B.13

Soient X ,Y des e.v.n et T ∈ L(X ,Y ). Alors

Ker (T t ) = [I m (T )]⊥ Ker (T ) = ⊥ [I m (T t )] .

Démonstration. En effet, y ∈ Ker (T t ) ssi pour tout x ∈ E, 0 =

[T t (y)] (x) = y (T (x)) ssi y ∈ [I m (T )]⊥.
De même, y ∈ Ker (T ) ssi pour tout x ∈ E∗, 0 = x [T (y)] =

[T t (x) (y) ssi y ∈ ⊥ [I m (T t )].

Proposition B.14

Soient X ,Y des e.v.n et T ∈ L(X ,Y ).
1. I m (T ) est dense dansY si et seulement siT t est injectif.
2. Si X ⊂ Y , ⊥ (X ⊥) = X est la fermeture normique de X

dansY .

Démonstration. Pour 1, T t est injectif si et seulement si I m (T )⊥ =

Ker (T t ) = 0 (proposition B.13) ssi I m (T ) est dense par la proposi-
tion précédente.

Pour 2, X ⊂ ⊥ (X ⊥) donc comme le terme de droite est fermé,
l’adhérence est inclus. Réciproquement, soit x ∉ X par la conséquence
de Hahn-Banach ci-dessus, soit f ∈ E ′ telle que f (x) = 1, et f ∈ X ⊥,
on déduit que x ∉ ⊥ (X ⊥).

Le résultat suivant qu’on a utilisé pour les calculs de cônes normaux
est un exercice typique d’application de Hahn-Banach.
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Proposition B.15

Soit { fi : i = 1,2, · · · ,k } un ensemble fini dans E ′ (pour un
e.v.n. E). Les affirmations suivantes sont équivalentes :

(1) Il n’y a aucun v ∈ E tel que fi (v ) < 0 pour tout i ∈ [1,n] ;
(2) L’ensemble { fi : i = 1,2, ...,k } est positivement linéai-

rement dépendant : il existe un vecteur non-nul 𝜆 =

(𝜆1, · · · ,𝜆k ) ≠ 0 avec 𝜆k ≥ 0 tel que
k∑︁
i=1

𝜆 i fi = 0.

Démonstration. Montrons premièrement le sens facile : (2) ⇒ (1). A

partir de 𝜆 i > 0, on obtient en appliquant à v ,
k∑︁
i=1

𝜆 i fi (v ) = 0, Or

fi (v ) ≤ 0 pour tout i implique
k∑︁
i=1

𝜆 i fi (v ) < 0, donc cela implique (1)

par contraposée.
Dans l’autre sens (1) ⇒ (2), on utilise le théorème de séparation

de Hahn-Banach pour

K1 = {y ∈ Rk : yi < 0,∀i ∈ {1,2, ...,k }},
K2 = {( f1 (v ), f2 (v ), ..., fk (v )) : v ∈ E}.

Vu que pi (y) = yi est linéaire sur Rk de dimension finie, donc
convexe continue, on obtient que K1 = ∩ki=1p

−1
i (] −∞,0[) est une inter-

section finie de convexes ouverts, donc un convexe ouvert.
K2 = I m ( f1, · · · , fk ) ∋ 0 est un s.e.v de Rk , donc un convexe non-

vide. (1) indique qu’ils sont disjoints. Par conséquent le cas 1 du théo-
rème B.10 s’applique et donne 𝜆 = (𝜆1, · · · ,𝜆k ) ∈ E ′ = Rk et c tels
que :

∀x ∈ K1,y ∈ K2, ⟨𝜆,x⟩ < c ≤ ⟨𝜆,y⟩
.

Comme K2 est un s.e.v., pour t → 0 on a c ≤ t ⟨𝜆,y⟩ → 0, donc
c ≤ 0. De plus c ≤ ±n⟨𝜆,y⟩ et donc ±n⟨𝜆,y⟩ ≤ −c = |c | force |⟨𝜆,y⟩| ≤
|c |
n → 0 donc ⟨𝜆,y⟩ = 0.

De plus (− 1
n , · · · ,−1, · · · ,− 1

n ) ∈ K1 so −𝜆 i − 1
n

∑︁
j≠i

𝜆 j < c ≤ 0. Donc

en passant à la limite, n → ∞, on obtient −𝜆 i ≤ 0, donc 𝜆 i ≥ 0. Et
𝜆 ≠ 0 vient de ⟨𝜆, (1, · · · ,1)⟩ < 0.
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ANNEXE C

Compléments
facultatifs au
chapitre 4 :
Espaces
mesurés.
1 Lemme de classe monotone

Définitions
Au lemme 4.3 iii), on a vu comment on remplace les unions dé-

nombrables par des unions croissantes d’une suite d’unions finies. Cela
suggère que la notion d’union croissante pourrait remplacer utilement
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(pour la théorie) celle d’union dénombrable et suggère la définition
suivante de classe monotone. 1

Définition C.1

Une classe monotone sur Ω est une famille M de partie de Ω

contenant Ω et stable par différence et unions croissantes, c’est-
à-dire M ⊂ P(Ω) telle que :

1. Ω ∈ M
2. Si A,B ∈ M avec B ⊂ A alors A − B ∈ M.
3. Si {An ,n ≥ 0} ⊂ M est une suite croissante (i.e. An ⊂
An+1, alors

⋃︂
n≥0

An ∈ M.

Lemme C.1: (cf. TD)

1. Une tribu est une classe monotone.
2. Une classe monotone stable par intersection finie est une

tribu.
3. Si (Mi )i ∈I sont des classes monotones, alors leur inter-

section
⋂︂
i ∈I

Mi est une classe monotone.

On peut donc parler de la plus petite classe monotone contenant
une famille A ⊂ P(Ω), qui est l’intersection de toutes les classes
contenant A, elle est notée M(A) et appelée la classe monotone
engendrée par A.

1. Comme dans le livre de Barbe-Ledoux [1], on suit la tradition
française pour cette définition (différente de la tradition anglo-saxone
venant du livre de Durett de Probabilités). Attention, ce n’est pas la
même définition dans le cours du MGA.
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Le résultat principal

Théorème C.2: (Lemme de classe monotone)

Soit E une famille de partie de Ω stable par intersection finie,
alors la classe monotone et la tribu engendrée par E coïncident :
M(E) = 𝜎(E).

Démonstration. Par le lemme C.1 1), 𝜎(E) est une classe monotone
contenant E, donc comme M(E) est la plus petite telle classe, on a
M(E) ⊂ 𝜎(E).

M(E) est une tribu. Par le lemme C.1 2), il suffit de voir que
M := M(E) est stable par intersection binaire. On pose

K = {A ∈ M : ∀B ∈ E,A ∩ B ∈ M}.

Comme E est stable par intersection finie, E ⊂ K. On a Ω ∈ M et si
A ⊂ C avec A,C ∈ K,B ∈ E, alors (C −A) ∩B = (C ∩B) − (A∩B) ∈ M
par différence d’ensembles de M. Enfin, de même comme intersection
distribue sur les unions croissantes, K est stable par intersection crois-
sante et donc une classe monotone. Or elle contient E, comme ona vu,
donc M(E) ⊂ K et comme par définition K ⊂ M(E). on a égalité.

On est maintenant prêt à définir la classe qui va vérifier la stabilité
voulue par intersection :

L = {A ∈ M : ∀C ∈ M,A ∩C ∈ M}.

On montre comme avant que L est une classe monotone (exo). Mon-
trons que E ⊂ L. Soit donc B ∈ E, alors C ∈ M ⊂ K donc, par défini-
tion de K, pour B ∩C ∈ M . Et comme c’est vrai pour tout C ∈ M, on
en déduit par définition de L que B ∈ L, comme voulu.

Finalement, L est une classe monotone telle que E ⊂ L ⊂ M(E)
donc, par définition de la classe monotone engendrée, L = M(E).

Inclusion réciproque. Comme M(E) est une tribu contenant E et
que 𝜎(E) est la plus petite telle tribu, on obtient M(E) ⊃ 𝜎(E).

Corollaire C.3: (au lemme de classe monotone)

Soient 𝜇 et 𝜈 des mesures finies de mêmes masses (i.e. 𝜇(Ω) =
𝜈(Ω)) sur un espace mesurable (Ω,T). Soit E une famille stable
par intersection finie qui engendre T . Si 𝜇 et 𝜈 coïncident sur E
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(i.e. 𝜇(E) = 𝜈(E),∀E ∈ E) alors 𝜇 et 𝜈 sont égales (i.e. 𝜇(B) =
𝜈(B),∀B ∈ T ).

Démonstration. Soit M = {B ⊂ E : 𝜇(B) = 𝜈(B)}. Par l’hypothèse, M
contient E. Vérifions que c’est une classe monotone :

⊲ Ω ∈ M car 𝜇 et 𝜈 ont même masse.
⊲ Si A,B ∈ M,A ⊂ B , alors par la proposition 4.3 v) on a 𝜇(B −
A) = 𝜇(B) − 𝜇(A) = 𝜈(B) − 𝜈(A) = 𝜈(B − A).

⊲ Si A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · ,An ∈ M, est une suite croissante,
par la proposition 4.3 iii),

𝜇

(︂ ⋃︂
n≥1

An
)︂
= lim
n→∞

𝜇(An) = lim
n→∞

𝜈(An) = 𝜈

(︂ ⋃︂
n≥1

An
)︂
.

Bilan, M est une classe monotone qui contient E, donc M(E) ⊂ M. Or
par le lemme de classe monotone M(E) = 𝜎(E) = T d’où le résultat.

Preuve du corollaire 4.19 au lemme de classe
monotone sur l’unicité des mesures
sigma-finie

On commence par le cas où la suite de partiesAn ∈ E est croissante.
Notons 𝜇n , 𝜈n les mesures induites par 𝜇,𝜈 sur An respectivement.

On a deux mesures finies avec 𝜇n (E) = 𝜇(E ∩An) = 𝜈(E ∩An) = 𝜈n (E)
pour tout E ∈ E donc par le corollaire au lemme de classe monotone
pour les mesures finies, on déduit 𝜇n = 𝜈n . Pour tout B ∈ T , on a
B = B ∩ (

⋃︂
n

An) =
⋃︂
n

(B ∩ An) donc par union croissante :

𝜇(B) = lim
n→∞

𝜇n (B) = lim
n→∞

𝜈n (B) = 𝜈(B).

Dans le cas où la suiteAn n’est pas croissante, on utilise Bn = ∪ni=1Ai
qui est une suite croissante, mais pas forcément dans E, donc il faut
travailler plus pour vérifier l’hypothèse pour la mesure induite sur Bn .
D’abord, par la formule de Poincaré :

𝜇(∪nk=1Ak ) =
n∑︁
k=1

(−1)k−1
∑︁

1≤i1<· · ·<ik ≤n
𝜇(Ai1 ∩ · · · ∩ Aik ) < +∞.
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Et comme toutes les intersections sont dans E tous les termes de la
formule sont égaux aux termes correspondants pour 𝜈 donc 𝜇(Bn) =

𝜈(Bn). On considère les mesures induites pour B ∈ T (E),𝜇n (B) =

𝜇(B ∩ Bn), 𝜈(B ∩ Bn) = 𝜈n (B). On vient de voir que 𝜇n , 𝜈n sont finies.
Montrons que pour E ∈ E 𝜇n (E) = 𝜈n (E) En effet E∩Bn = ∪nk=1 (E∩Ak )
et en appliquant la formule de Poincaré encore (en remarquant que les
intersections sont celles d’éléments de E .

𝜇(∪nk=1 (E ∩ Ak ))

=

n∑︁
k=1

(−1)k−1
∑︁

1≤i1<· · ·<ik ≤n
𝜇(E ∩ Ai1 ∩ · · · ∩ Aik )

=

n∑︁
k=1

(−1)k−1
∑︁

1≤i1<· · ·<ik ≤n
𝜈(E ∩ Ai1 ∩ · · · ∩ Aik ) = 𝜈(∪nk=1 (E ∩ Ak )).

On conclut comme avant du corollaire au lemme de classe monotone
pour les mesures finies, que 𝜇n = 𝜈n . Puis pour tout B ∈ T , on a
B = B ∩ (

⋃︂
n

Bn) =
⋃︂
n

(B ∩ Bn) donc par union croissante :

𝜇(B) = lim
n→∞

𝜇n (B) = lim
n→∞

𝜈n (B) = 𝜈(B).

2 Compléments sur les Boréliens
On rappelle que la tribu des boréliens d’un espace métrique (X ,d )

est la tribu engendrée par l’ensemble des ouverts T . (cf. définition 4.6).
En pratique, il est difficile de décrire tous les boréliens (les ouverts sont
déjà difficiles à décrire), mais on n’a pas besoin de description expli-
cite (juste de familles génératrices simples, et stables par intersections
finies).

Remarque C.1. Il existe des ensembles qui ne sont pas boréliens
sur R, et donc des fonctions non-boréliennes. Ils ne sont pas
si faciles à définir, donc en pratique, tous les ensembles qu’on
rencontrera seront boréliens.
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Espaces métriques séparables et leurs
boréliens

Définition C.2

Une partie A est dite dense dans E si Ā = E . Un ensemble est
dit séparable si il admet un sous-ensemble au plus dénombrable
dense (ou autrement dit une suite dense).

Lemme C.4

Un sous-ensemble F d’un espace métrique séparable est sépa-
rable.

Démonstration. On peut supposer F non-vide, sinon, c’est évident (la
partie vide donc finie est dense). On fixe donc x0 ∈ F

Soit un une suite dénombrable dense. Soit am,n ∈ B (um ,1/n) ∩ F
si cet ensemble est non-vide, et sinon on pose am,n = x0. La famille
{am,n ,m,n ∈ N} est finie ou dénombrable et dense car si x ∈ F il existe
d (um ,x) < 1/2n donc am,2n existe car B (um ,1/2n) ∩ F est non vide et
par inégalité triangulaire d (um ,am,2n) < 1/n .

Proposition C.5

(Rn , | |.| |∞) est séparable.

Démonstration. On a vu que Qn est dénombrable comme produit d’en-
sembles dénombrables. Montrons qu’il est dense dans Rn . En effet si
x = (x1, ...,xn) on pose xp = ( ⌊px1 ⌋

p , ...,
⌊pxn ⌋
p ) avec ⌊x⌋ la partie entière

de x . Donc ⌊pxi ⌋ ≤ pxi ≤ ⌊pxi ⌋ + 1 et|︁|︁|︁ ⌊pxi ⌋
p

− xi
|︁|︁|︁ ≤ 1

p

donc | |xp − x | |∞ ≤ 1/p →p→∞ 0. Donc vu xp ∈ Qn , x ∈ Qn . Comme x
est arbitraire. Rn ⊂ Qn CQFD.

Exercice C.1. Montrer que Qc est dense dans R.
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Proposition C.6

Soit (X ,d ) un espace métrique séparable, alors la tribu boré-

lienne est engendrée par les boules ouvertes B(X ) = 𝜎

(︂
B :

Boule ouverte de X
)︂
.

Démonstration. Toute boule ouverte est un ouvert donc {B :
Boule ouverte de X} ⊂ B(X ) et donc en passant à la tribu engendrée :

𝜎

(︂
B : Boule ouverte de X

)︂
⊂ B(X ).

Le contenu de la proposition est la réciproque. Il suffit de montrer

que T ⊂ 𝜎

(︂
B : Boule ouverte de X

)︂
car alors, en passant à la tribu

engendré, on obtient B(X ) ⊂ 𝜎

(︂
B : Boule ouverte de X

)︂
.

Montrons qu’en fait, tout ouvert U est union au pus dénombrable
de boules ouvertes. Comme X est séparable, c’est aussi le cas de U .
Soit D = {xn : n ∈ N} ⊂ U une suite dense. Comme U est ouvert, il
existe rn ∈ Q∩]0,+∞[ tel que B (xn ,rn) ⊂ U . Soit donc A = {(xn ,rn) :
rn ∈ Q∩]0,+∞[,B (xn ,rn) ⊂ U } est donc a.p.d comme sous-ensemble
d’un produit d’ensembles dénombrables. Donc en passant à l’union on
a :

⋃︂
(xn ,rn ) ∈A

B (xn ,rn) ⊂ U . Montrons que

U =
⋃︂

(xn ,rn ) ∈A
B (xn ,rn) ∈ 𝜎

(︂
B : Boule ouverte de X

)︂
Soit x ∈ U , il existe r > 0 avec B (x ,r ) ⊂ U . Puis il existe n tel

que d (x ,xn) < r
3 et soit rn ∈ Q avec r /3 < rn < r /2 (par densité de Q

dans R= donc x ∈ B (xn ,r /3) ⊂ B (xn ,rn) ⊂ B (xn ,r /2) ⊂ B (x ,r ) ⊂ U
donc (xn ,rn) ∈ A et x ∈

⋃︂
(xn ,rn ) ∈A

B (xn ,rn). Comme x est arbitraire, on a

l’insclusion réciproque qui conclut : U ⊂
⋃︂

(xn ,rn ) ∈A
B (xn ,rn).

Preuve du Corollaire 4.17. Il suffit de remarquer que B(R) =

𝜎

(︂
{{+∞}, {−∞}} ∪ {]a,b [: a < b < a + 2}

)︂
, car R est séparable

({+∞,−∞} ∪ Q est dense car la densité sur R coïncide avec la densité
usuelle vu qu’on a les mêms ouverts, cf TD 1) et que les ensembles de
la partie génératrice sont les boules ouvertes pour dR.
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Il suffit de noter que ]a,b [=
⋂︂
n≥1

[︁
a − 1

n
,b + 1

n

]︂
∈ 𝜎

(︂
{{+∞}, {−∞}} ∪

{[a,b] : a < b}
)︂

pour déduire que

B(R) = 𝜎

(︂
{{+∞}, {−∞}} ∪ {[a,b] : a < b}

)︂
Par le lemme 4.13, on a alors que f est mesurable si et seulement si

1. f −1 ({∞}) ∈ T
2. f −1 ({−∞}) ∈ T
3. Pour tout a < b ∈ R, f −1 ( [a,b]) ∈ T

C’est exactement le résultat voulu (et on a vu que le dernier point
équivaut à la mesurabilité de la restrition de f à R.

Preuve du lemme 4.6
Pour rappel, on veut montrer que

B(Rn) = 𝜎

(︂ n∏︂
i=1

]ai ,bi [,ai < bi ∈ R
)︂
.

Comme les produits d’intervalles ouverts sont des ouverts, et que les
boules ouvertes pour la norme infini sont des boules ouvertes, on a

{B :Boule ouverte de Rn , | | · | |∞}

⊂
{︄

n∏︂
i=1

]ai ,bi [,ai < bi ∈ R

}︄
⊂ T .

Donc en prenant la tribu engendrée et en appliquant la proposition C.6
sachant que Rn est séparable par la proposition C.5, on obtient :

B(Rn) = 𝜎

(︂
{B : Boule ouverte de Rn , | | · | |∞}

)︂
⊂ 𝜎

(︂ n∏︂
i=1

]ai ,bi [,ai < bi ∈ R
)︂
⊂ 𝜎

(︂
T

)︂
= B(Rn).

3 Stabilité des fonctions mesurables
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Lemme C.7

Un supremum d’une suite fn : (Ω,T) → R de fonctions mesu-
rables est mesurable.

Démonstration. On note f = supn≥1 fn et on remarque que

f −1 ( [−∞,a]) = {𝜔 ∈ Ω : sup
n≥1

fn (𝜔) ≤ a}

= ∩n≥1 f −1
n ( [−∞,a]).

Or par le corollaire 4.17, on sait que f −1
n ({−∞} est dans T et aussi

f −1
n (] − ∞,a]) = ∪n≥1 f −1

n ( [−n,a]) ∈ T par union dénombrable. Donc
chaque f −1

n ( [−∞,a]) ∈ T et donc par intersection dénombrable, on a
f −1 ( [−∞,a]) ∈ T . Par le corollaire 4.16, on déduit que la restriction
de f à R est mesurable et donc pour tout a < b , on a f −1 ( [a,b]) ∈ T .

Enfin, f −1 ({−∞}) = ∩n≥1 f −1
n ({−∞}) ∈ T et f −1 ({+∞}) =⋂︂

n≥1

f −1 (]n,+∞]) ∈ T . Or f −1 (]n,+∞]) = f −1 ( [−∞,n])c ∈ T donc par

intersection dénombrable, on a bien f −1 ({+∞}) ∈ T . Par la réciproque
du corollaire 4.17, on déduit que f est mesurable.

Lemme C.8

La lim sup, lim inf d’une suite fn : (Ω,T) → R de fonctions
mesurables est mesurable.

Démonstration. Comme infn fn = − supn −fn , on déduit qu’un infimum
d’une suite de fonctions mesurables est mesurable. Or, comme rappelé
au chapitre précédent,

lim sup
n

fn = inf
n≥0

sup
k≥n

fk , lim inf
n

fn = sup
n≥0

inf
k≥n

fk

est donc mesurable en utilisant le résultat du lemme précédent sur le
suprémum (ou l’infinimum) de fonctions mesurables.

Proposition C.9

Une limite simple d’une suite fn : (Ω,T) → R de fonctions
mesurables est mesurable.



ANNEXE C. COMPLÉMENTS FACULTATIFS AU
CHAPITRE 4 : ESPACES MESURÉS. 236
Démonstration. Si une suite converge simplement, on a limn→∞ fn =

lim supn fn qui est donc mesurable par le lemme précédent.

4 Compléments sur la construction
de l’intégrale

Intégrale des fonctions étagées
La définition 4.11 est motivée par le résultat suivant :

Lemme C.10

L’intégrale
∫
B f d𝜇 ne dépend pas de la décomposition f (𝜔) =

n∑︁
i=1

ai1Ai (𝜔) en somme d’indicatrice d’ensembles deux à deux

disjoints mais seulement de f .

Démonstration. Pour f =

n∑︁
i=1

ai1Ai , il existe toujours une (unique) re-

présentation canonique de f en voyant b1 < · · · < bm tel que l’image
f (Ω) − {0} = {b1, · · · ,bm} et en prenant Bi = f −1 ({bi }) ∈ T car f

est mesurable. Alors, on a f (𝜔) =

n∑︁
i=1

bi1Bi (𝜔). Comme les Ai sont

2 à deux disjoints, on voit B j comme union disjointe de Ai et donc

𝜇(Bi ∩ B) =
∑︁

{ j :a j =bi }
𝜇(A j ∩ B) donc, en regroupant par paquet :

∫
B
f d𝜇 =

n∑︁
j=1

ai 𝜇(A j ∩ B)

=

m∑︁
i=1

∑︁
{ j :a j =bi }

bi 𝜇(Ai ∩ B)

=

m∑︁
i=1

bi 𝜇(Bi ∩ B).
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C’est la formule qui ne dépend que de f (comme sa représentation
canonique).

Preuve du lemme 4.20

1. Si f (𝜔) =
n∑︁
i=1

ai1Ai (𝜔) avec les Ai deux à deux disjoints, alors

1B f (𝜔) =
n∑︁
i=1

ai1Ai∩B (𝜔). Donc
∫
B f d𝜇 =

n∑︁
i=1

ai 𝜇(Ai ∩ B) =
∫
Ω

1B f d𝜇.

2. De même, c f (𝜔) =
n∑︁
i=1

cai1Ai (𝜔), alors
∫
B c f d𝜇 =

n∑︁
i=1

cai 𝜇(Ai ∩

B) = c
∫
B
f d𝜇.

3.Si de plus h =

m∑︁
j=1

b j 1B j (𝜔) avec les B j deux à deux disjoints, et

soit B0 = Ω −
m⋃︂
j=1

B j ,A0 = Ω −
n⋃︂
i=1

Ai , alors les Ai ∩ B j deux à deux

disjoints i = 0, · · · ,n, j = 0, · · · ,m. De même, avec a0 = b0 = 0, f (𝜔) =
m∑︁
j=0

n∑︁
i=0

ai1Ai∩B j (𝜔), h (𝜔) =
m∑︁
j=0

n∑︁
i=0

b j 1Ai∩B j (𝜔). Donc

f (𝜔) + h (𝜔) =
m∑︁
j=0

n∑︁
i=0

(ai + b j )1Ai∩B j (𝜔)

On obtient donc :∫
B
f + hd𝜇 =

m∑︁
j=0

n∑︁
i=0

(ai + b j )𝜇(Ai ∩ B j )

=

m∑︁
j=0

n∑︁
i=0

ai 𝜇(Ai ∩ B j ) +
m∑︁
j=0

n∑︁
i=0

b j 𝜇(Ai ∩ B j )

=

∫
B
f d𝜇 +

∫
B
hd𝜇.

4. Si 0 ≤ f ≤ h alors h = (h − f ) + f est la somme de deux fonctions
étagées positives et par le 3,

∫
B f d𝜇 ≤

∫
B f d𝜇 +

∫
B (h − f )d𝜇 =

∫
B hd𝜇.
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Preuve du lemme 4.22

On va utiliser que toutes les propriétés sont vraies si f ,h sont éta-
gées par définition de l’intégrale dans ce cas.

1. Soit g étagée avec g ≤ f alors g ≤ h, donc par définition 0 ≤∫
B gd𝜇 ≤

∫
B hd𝜇. En passant au sup sur les g , on obtient 0 ≤

∫
B f d𝜇 ≤∫

B hd𝜇.
2. Soit g étagée avec g ≤ f , alors 1B g ≤ 1B f . Or par le cas

étagé du lemme 4.20, on a
∫
B gd𝜇 =

∫
Ω

1B gd𝜇 et donc par défini-
tion :

∫
B gd𝜇 =

∫
Ω

1B gd𝜇 ≤
∫
Ω

1B f d𝜇. En passant au sup, on obtient∫
B f d𝜇 ≤

∫
Ω

1B f d𝜇.
En sens inverse, g étagée positive avec g ≤ 1B f ≤ f vérifie donc

g1B = g et par définition
∫
Ω
gd𝜇 =

∫
Ω
g1Bd𝜇 =

∫
B gd𝜇 ≤

∫
B f d𝜇 soit en

passant au sup
∫
Ω

1B f d𝜇 ≤
∫
B f d𝜇.

Le cas particulier vient du 1. appliqué à l’inéaglité 1A f ≤ 1B f sous
la forme : 0 ≤

∫
A f d𝜇 =

∫
Ω

11 f d𝜇 ≤
∫
Ω

1B f d𝜇 =
∫
B f d𝜇.

3. Si c = 0 c’est évident, on suppose donc c > 0. Alors pour g ≤ f
avec g étagée positive, on a c g ≤ c f donc par le cas étagé du lemme
4.20, on a c

∫
B gd𝜇 =

∫
B c gd𝜇 ≤

∫
B c f d𝜇. En passant au sup, on a

obtenu :

c
∫
B
f d𝜇 ≤

∫
B
c f d𝜇

mais en appliquant ) c f à la place de f et f = 1
c c f , on obtient :

1
c

∫
B
c f d𝜇 ≤

∫
B
c
1
c
f d𝜇 =

∫
B
f d𝜇

d’où l’inégalité dans l’autre sens
∫
B c f d𝜇 ≤ c

∫
B f d𝜇 et donc l’égalité.

4. Si f = 0 0 ≤ g ≤ f implique g = 0 et en passant au sup de 0, on
obtient le résultat.

Si 𝜇(B) = 0,
∫
B gd𝜇 =

∫
Ω

1B gd𝜇 et si g (𝜔) =

n∑︁
i=1

ai1Ai (𝜔), on a∫
Ω

1B gd𝜇 =

n∑︁
i=1

ai 𝜇(B ∩ Ai ) = 0 car chaque 𝜇(B ∩ Ai ) ≤ 𝜇(B) = 0.

5. Si on a 0 ≤ g ≤ f , 0 ≤ k ≤ h avec g ,k mesurable positive, alors
g + k ≤ f + h est mesurable positive, donc

∫
B f + hd𝜇 ≥

∫
B g + kd𝜇 =∫

B gd𝜇 +
∫
B kd𝜇. En passant au sup, on obtient le résultat.
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1 Formule alternative de la norme
(niveau L3)

On va en déduire l’expression alternative suivante dont l’inégalité
triangulaire se déduit facilement. Cette méthode a l’avantage d’être
utile pour le calcul du dual.

Proposition D.1

Soit 𝜇 𝜎-finie, p ∈ [1,∞], q tel que 1/p + 1/q = 1 le coefficient
conjugué, alors pour tout g mesurable

| |g | |q = sup
{︃|︁|︁|︁|︁∫ f g d𝜇

|︁|︁|︁|︁ ; | | f | |p ≤ 1,

f g ∈ L1 (Ω, 𝜇), f ∈ L1 (Ω, 𝜇) ∩ L∞ (Ω, 𝜇)
}︁
.

Démonstration. Soit An croissant telle que ∪An = Ω, 𝜇(An) < ∞. On
commence par le cas g ∈ Lq (Ω, 𝜇).

Par Hölder, f g ∈ L1 donc l’intégrale est définie (avec la condition
| | f | |p ≤ 1 seule) et |︁|︁|︁|︁∫ f g d𝜇

|︁|︁|︁|︁ ≤ || f g | |1 ≤ || f | |p | |g | |q

d’où | |g | |q est plus grand que le sup de l’énoncé. Mais, pour p ∈]1,∞[,
si on prend f = g |g |q−2/| |g | |q−1

q on a | f |p = |g |p (q−1)/| |g | |p (q−1)
q =

|g |q /| |g | |qq car p (q − 1) = q p (1 − 1/q ) = q , donc f ∈ Lp et | | f | |pp =

E ( | f |p ) = | |g | |qq /| |g | |
q
q = 1. Donc | | f 1An | |

p
p ≤ || f | |pp ≤ 1 donc comme

Lp (An , 𝜇) ⊂ L1 (An , 𝜇) car 𝜇(An) < ∞ on a f 1An ∈ L1 (Ω, 𝜇) et donc

gn,m ( f ) = 1{ f 1An≠0}
f 1An
| f 1An |

min (m, | f 1An |)

∈ L∞ (Ω, 𝜇) ∩ L1 (Ω, 𝜇)
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d’où le sup est supérieur à|︁|︁|︁|︁∫ gn,m ( f )gd𝜇

|︁|︁|︁|︁ →m→∞

|︁|︁|︁|︁∫ f 1An gd𝜇

|︁|︁|︁|︁ →n→∞

|︁|︁|︁|︁∫ f g d𝜇

|︁|︁|︁|︁
(par convergence dominée par |gn,m ( f )g | ≤ | f g |) et le sup est supé-
rieur à

|︁|︁∫ f g d𝜇
|︁|︁ = ∫

|g |qd𝜇/| |g | |q−1
q = | |g | |q . On déduit donc l’égalité

énoncée.
Si p = 1,q = ∞, soit

C > sup
{︃|︁|︁|︁|︁∫ f g d𝜇

|︁|︁|︁|︁ ; | | f | |1 ≤ 1f g ∈ L1 (Ω, 𝜇),

f ∈ L1 (Ω, 𝜇) ∩ L∞ (Ω, 𝜇)
}︁

et A = {x : |g (x) | > C }. Supposons par l’absurde que 𝜇(A) > 0 soit
B ⊂ A avec 𝜇(B) ∈]0,∞[. Alors f = 1B

g
|g |𝜇 (B ) est dans L1 et | | f | |1 = 1

(et borné par 1/𝜇(B) donc dans L∞) mais
|︁|︁∫ f g d𝜇

|︁|︁ = ∫
1B

|g |
𝜇 (B ) ≥ C

en contradiction avec le choix de C donc 𝜇(A) = 0 ce qui implique
| |g | |∞ ≤ C ce qui donne le résultat en prenant l’inf des C .

Si p = ∞,q = 1, il suffit de prendre f = 1g≠0
g
|g | ∈ L∞ (Ω) et

f 1An ∈ L∞ (Ω) ∩ L1 (Ω) de sorte que f 1An g = | f |1An et la norme
| | f 1An | |∞ ≤ 1. Donc le supremum, est supérieur à

∫
| f |1And𝜇 → || f | |1

par convergence monotone.
Si on ne suppose plus g ∈ Lq (Ω, 𝜇) mais | |g | |q = ∞. Soit alors

gn,m = 1{g≠0}
g
|g |min (m, |g |)1An ∈ Lq (Ω, 𝜇) on obtient fn,m,k ∈ L1 ∩ L∞

de norme ≤ 1 dans Lp tel que

|
∫

fn,m,k gn,m | →k→∞ | |gn,m | |q .

Comme on a l’inégalité par Hölder,|︁|︁|︁|︁∫ fn,m,k (gn,m − g1An )
|︁|︁|︁|︁ ≤ || fn,m,k | |p | | (gn,m − g1An ) | |q

≤ ||(gn,m − g1An ) | |q →m→∞ 0

par convergence monotone car | min( |g |,m) − |g | |q décroit vers 0, on
trouve une suite mk tel que

|
∫

fn,mk ,k g1An | →k→∞ | |g1An | |q
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(fini ou infini). Enfin comme par convergence monotone | |g1An | |q →
||g | |q , on trouve une suite

|
∫

fnk ,mk ,k g1An | →k→∞ | |g | |q = ∞.

Comme | | fnk ,mk ,k1An | |p ≤ 1, et fnk ,mk ,k1An ∈ L1 ∩ L∞ et fnk ,mk ,k g1An ∈ L1

cela donne la solution :

sup{
|︁|︁|︁|︁∫ f g d𝜇

|︁|︁|︁|︁ ; | | f | |p ≤ 1, f g ∈ L1 (Ω), f ∈ L1 ∩ L∞}

= ∞ = | |g | |q .

Exemple D.1

Dans le cas où 𝜇 est la mesure de comptage sur I (𝜎-finie si
I dénombrable), 𝜇(A) = Card (A), on obtient l’espace ℓ p (I ,K)
des suites indicées par I de puissance p sommable, i.e. telles
que ∑︁

i ∈I
|xi |p < ∞

pour p ∈ [1,∞[ et l’ensemble des suites bornées, c’est-à-dire
telles que

| |x | |∞ = sup
i ∈I

|xi | < ∞

pour p = ∞.

2 Premiers résultats de densité
(niveau M1)

On rappelle qu’une fonction étagée intégrable sur (Ω, 𝜇,T) est une
combinaison linéaire (finie) de fonctions indicatrices 1A avec 𝜇(A) < ∞.
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Lemme D.2

Soit (Ω, 𝜇,T) un espace 𝜎-fini. L’ensemble S des fonctions éta-
gées intégrables est dense dans tous les Lp (Ω, 𝜇,T), 1 ≤ p <

∞. En particulier, L1 (Ω, 𝜇,T) ∩ L∞ (Ω, 𝜇,T) est dense dans
Lp (Ω, 𝜇,T) pour 1 ≤ p < ∞.

Démonstration. Cela vient de la construction de l’intégrale, et du fait
que les fonctions étagées sont dans L1 (Ω, 𝜇,T) ∩ L∞ (Ω, 𝜇,T), mais
rappelons une preuve. En décomposant en parties réelle et imaginaire
puis parties positive et négative, on se ramène à approcher f ∈ Lp avec
f ≥ 0. Si Ω = ∪An𝜇(An) < ∞, on a | | f 1An − f | |p → 0 par convergence
dominée, donc on prend h = f 1Am .

On prend

hn (x) =
4n∑︁
k=0

k
2n

1[ k2n ,
k+1
2n [ (h (x)) =

4n∑︁
k=0

k
2n

1h−1 ( [ k2n ,
k+1
2n [ ) (x) ≤ h (x)

Comme h mesurable, il est facile de voir que h ∈ S ,

| |h − hn | |p ≤ ||h1h (x )≥2n | |p + ||1h (x )≤2n1Am | |p
1
2n

et le premier terme tend vers 0 par convergence dominée (par |h |p), le
second car 𝜇(Am)1/p < ∞. Donc h puis f sont dans l’adhérence.

Pour obtenir un résultat de densité des fonctions continues, on a
besoin d’un résultat de continuité sur un grand ensemble pour les fonc-
tions mesurables. On a besoin d’une compatibilité entre théorie de la
mesure et topologie qui fait l’objet de la définition suivante. L’essentiel
est que la mesure de Lebesgue sur Rn est un exemple de mesure de
Radon, ainsi que toutes les mesures à densité par rapport à la mesure
de Lebesgue (et aussi les mesures discrètes).

Définition D.1

Une mesure de Radon positive sur X localement compact est une
mesure positive définie sur une tribu T contenant la tribu boré-
lienne B et telle que :
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1. 𝜇(K ) < ∞ pour K compact (on parle de mesure de Bo-
rel).

2. 𝜇 est extérieurement régulière au sens où pour tout E ∈
T , on a :

𝜇(E) = inf{𝜇(V ) |E ⊂ V, V ouvert }

3. 𝜇 vérifie pour tout E ouvert et E ∈ T avec 𝜇(E) < ∞, on
a :

𝜇(E) = sup{𝜇(K ) |E ⊃ K , K compact }

4. T est complète pour 𝜇 au sens où si E ∈ T , A ⊂ E et
𝜇(E) = 0 alors A ∈ T .

On va utiliser deux lemmes topologiques (en fait reliés) :

Théorème D.3: (de prolongement de Tietze)

(exo en section A) Soit X un espace métrique, F un fermé de
X et f : F → R une fonction continue bornée par C , alors il
existe une fonction g : X → R bornée par C et prolongeant f .

On rappelle qu’un espace topologique est dit localement compact si
tout point a un voisinage (d’adhérence) compact. [Rmq : pour nous,
un voisinage d’un point n’est pas forcément ouvert, c’est seulement un
ensemble contenant un ouvert contenant le point] Par exemple c’est le
cas de X = Rn !

Lemme D.4: (d’Urysohn)

Si X est un espace métrique localement compact, V un ouvert
contenant un compact K , alors il existe f continue à support
compact tel que 1K ≤ f ≤ 1V .

Démonstration. Pour tout x ∈ K , soit Ux voisinage ouvert d’adhérence
compact inclus dansV (pour voir que l’adhérence peut être inclus dans
V il suffit d’intersecter le voisinage avec {y : d (y ,V c ) > 𝜖/2} pour 𝜖 =

d (x ,V c )). On recouvre K par un nombre fini de Ux , K ⊂ U := ∪ni=1Uxi
etU = ∪ni=1Uxi est compact et on trouve un ouvert d’adhérence compact
W , V ⊃ W ⊃ U et on pose F = W c ∪ K . On définit g : F → R par



ANNEXE D. COMPLÉMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 6 : ESPACES Lp 245
g = 1K . Si xn ∈ F , xn → x ∈ K nécessairement pour n grand xn ∈ U
donc xn ∈ K donc g (xn) = g (x) = 1. De même si x ∈W c , pour n grand,
xn ∈ (U )c , donc xn ∈W c et g (xn) = g (x) = 0. Donc g est continue sur
F et s’étend en une fonction f : X → R continue par le théorème
précédent et en centrant on a même, 0 ≤ f ≤ 1 (| f − 1/2| ≤ 1/2).
Donc le support de f est dans W compact et 1K ≤ f ≤ 1W ≤ 1V ce
qui conclut.

Théorème D.5: (de Lusin)

Soit X un espace métrique localement compact. 𝜇 une me-
sure de Radon positive. Soit f une fonction complexe mesu-
rable sur X s’annulant en dehors de A avec 𝜇(A) < ∞. Alors,
pour tout 𝜖 > 0, il existe g continue à support compact avec
supx∈X |g (x) | ≤ supx∈X | f (x) | et telle que :

𝜇({x : f (x) ≠ g (x)}) ≤ 𝜖 .

Démonstration. Cas A compact, 0 ≤ f ≤ 1. On pose

fn (x) =
2n∑︁
k=0

k
2n

1[ k2n ,
k+1
2n [ ( f (x)) ≤ fn+1 (x) ≤ f (x).

Remarquons que tn := fn+1 (x) − fn (x) = 1
2n+1

2n+1∑︁
k=0

1[ 2k+1
2n+1 ,

2k+2
2n+1 [

( f (x)) =

1
2n+1

1Tn , ( f−1 := 0) avec Tn ⊂ A de sorte que :

f (x) =
∞∑︁

n=−1

tn (x).

Comme dans la preuve du lemme d’Urysohn, il existe un ouvert A ⊂ V
avec V compact, puis par régularité extérieure, on trouve Vn ouvert
avecTn ⊂ Vn ⊂ V et enfin par intérieure régularité sur les ensembles
de mesures finies Kn ⊂ Tn avec 𝜇(Vn − Kn) ≤ 2−n−2𝜖 . Par le lemme
d’Urysohn, on trouve hn continue à support compact avec 1Kn ≤ hn ≤
1Vn . On pose

g (x) =
∞∑︁

k=−1

2−n−1hn (x).
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Par convergence uniforme (car normale) de la série, g est continue, à
support compact car inclus dans V . Enfin 2−n−1hn (x) = tn (x) sauf sur
Vn − Kn donc f = g sauf sur ∪n (Vn − Kn) qui est de mesure au plus 𝜖

Cas A quelconque, 0 ≤ f ≤ 1. Par régularité, on prend A ⊂
V ouvert, K ⊂ V compact avec 𝜇(A ∩ K c ) ≤ 𝜇(V ∩ K c ) ≤ 𝜖/2 et
on applique à f 1K (vu { f 1K ≠ f } ⊂ A ∩ K c ) le cas précédent en
remplaçant 𝜖 par 𝜖/2.

Cas général Soit Bn = {x | f (x) | > n} de sorte que ∩Bn = ∅, comme
𝜇(B1) < ∞ en utilisant le TCM sur 1B1 − 1Bn , 𝜇(Bn) → 0, on applique
à (1 − 1Bn ) f en décomposant la fonction en somme de 4n fonctions à
valeur [0,1] (4 pour décompositions en parties positives, négatives des
parties imaginaires et réelles, et ces fonctions sont dans [0,n] d’où la
décomposition en somme de n fonctions à valeurs [0,1]). Enfin pour
avoir l’inégalité on remplace g par 𝜙 ◦ g avec 𝜙(x) = x , |x | ≤ R =

supx∈X | f (x) | , 𝜙(x) = Rx/|x |, |x | > R. On a g (x) = 𝜙 ◦ g (x) pour tout
x tel que f (x) = g (x), donc on n’augmente pas l’ensemble sur lequel f
et g diffèrent.

Corollaire D.6

Soit (X , 𝜇,T) un espace métrique localement compact avec 𝜇

mesure de Radon 𝜎-finie. L’ensembleCc (X ) des fonctions conti-
nues à support compact est dense dans tous les Lp (X , 𝜇,T),
1 ≤ p < ∞. De plus si f ∈ Lp (X , 𝜇,T) et

∫
f 𝜙 = 0, pour tout

𝜙 ∈ Cc (X ) alors f = 0 p .p .

Démonstration. Par le lemme précédent, il suffit d’approcher les élé-
ments de S . Par le théorème de Lusin D.5, pour chaque f ∈ S , 𝜖 > 0,
on a g ∈ Cc (X ) avec 𝜇(g ≠ f ) ≤ 𝜖 et sup |g | ≤ sup | f | = C donc
| | f − g | |p ≤ 2C 𝜇(g ≠ f )1/p et cette quantité est arbitrairement petite.
Pour le résultat d’annulation, si p > 1, On utilise la densité dans Lq ,
q exposant conjugué, pour obtenir

∫
f g = 0 pour g ∈ Lq , d’où on

déduit | | f | |p = 0 par la proposition D.1. Si p = 1, on remplace f par
f |V avecV ouvertV compact, qui couvrent X par locale compacité de
sorte qu’on peut supposer 𝜇(X ) < ∞. On peut supposer f réelle. Soit
f1 ∈ Cc (X ) avec | | f − f1 | |1 ≤ 𝜖 , K1 = f −1

1 ( [𝜖 ,∞[) et K−1 = f −1
1 (]−∞, 𝜖])

sont compacts, on prolonge par le Théorème de Tietze D.3, u ∈ Cc (X )
valant 𝜖 sur K𝜖 et soit K = K1 ∪ K−1. Donc

| | f1 | |1 =

∫
K
f1u+

∫
X −K

| f1 | ≤
∫
X
f1u+2

∫
X −K

| f1 | ≤ 𝜖+
∫
X
f u+2𝜇(X −K )𝜖 ≤ 𝜖+2𝜇(X )𝜖
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car | f1 | ≤ 𝜖 sur X − K . Donc | | f | |1 ≤ 2𝜖 + 2𝜇(X )𝜖 pour tout 𝜖 > 0 ce
qui donne f = 0.

Donnons une application.

Proposition D.7

Soit 1 ≤ p < ∞ et soit 𝜏h f (x) := f (x + h) pour h,x ∈ Rd , f ∈
Lp (Rd ). La translation 𝜏h : Lp (Rd ) → Lp (Rd ) est isométrique et
pour tout f ∈ Lp (Rd ) h ↦→ 𝜏h ( f ) est continue de Rd → Lp (Rd ).

Démonstration. L’isométrie est évidente par invariance de la mesure de
Lebesgue par translation. Montrons que | |𝜏h f − f | |p →h→0 0. En effet
pour 𝜖 > 0, par densité du lemme D.6, on trouve f1 ∈ Cc (Rd ) avec
| | f1 − f | |p ≤ 𝜖/3 donc comme 𝜏h est une isométrie : on obtient :

| |𝜏h f − f | |p ≤ ||𝜏h f1 − 𝜏h f | |p + ||𝜏h f1 − f1 | |p + || f1 − f | |p
≤ 2𝜖/3 + Leb (B (0, | |h | |) + Supp( f1))1/p | |𝜏h f1 − f1 | |∞

Pour h assez petit, comme f1 est uniformément continue (car conti-
nue à support compact et par le Théorème de Heine), on peut trouver
1 ≥ 𝛿 > 0 de sorte que si | |h | | ≤ 𝛿, | |𝜏h f1−f1 | |∞ = supx | f1 (x+h)−f1 (x) | ≤
𝜖/[3Leb (B (0,1) + Supp( f1))1/p ] ce qui conclut.

3 Dualité des espaces de Lebesgue
Lp (Ω) (Niveau M1)

On rappelle que (Ω, 𝜇) est un espace mesuré 𝜎-fini. On se souvient
que pour p ∈ [1,∞], q tel que 1/p + 1/q = 1 la proposition D.1 donne
pour g mesurable :

| |g | |q = sup{
|︁|︁|︁|︁∫ f g d𝜇

|︁|︁|︁|︁ ; | | f | |p ≤ 1,

f ∈ L1 (Ω, 𝜇) ∩ L∞ (Ω, 𝜇), f g ∈ L1 (Ω, 𝜇)}.

On a même le théorème suivant (on notera que p < ∞ contraire-
ment au cas de la formule pour la norme ) :
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Théorème D.8: (de représentation de Riesz Lp)

Soit l’application définie grâce à l’inégalité de Hölder :

I : f ∈ Lq (Ω, 𝜇) ↦→ (g ∈ Lp (Ω, 𝜇) ↦→
∫

f g d𝜇)

Alors I : Lq (Ω, 𝜇) → (Lp (Ω, 𝜇))′, réalise une isométrie SUR-
JECTIVE pour p ∈ [1,∞[ et q exposant conjugué c’est-à-dire
tel que 1/p + 1/q = 1.

Attention le cas p = ∞ est EXCLU... L∞ (Ω)′ est un espace très gros
de mesures sur un espace stonien compact X tel que L∞ (Ω) = C 0 (X ).

Démonstration. Une première preuve classique utilise le théorème de
Radon-Nikodym qui est au programme du cours de Th de la mesure
(cf. par exemple le cours de Probabilités de Philippe Barbe et Michel
Ledoux [1]). Il existe aussi une preuve par l’uniforme convexité dans
le livre d’Haim Brezis d’analyse fonctionnelle pour p ≠ 1 et avec une
preuve directe n’utilisant que le cas p = 2 (cas Hilbert simple) pour
le cas p = 1. On donne ici une méthode d’analyse fonctionnelle plus
abstraite.

On a déjà montré l’isométrie, il reste à voir la surjectivité.
On fixe An avec 𝜇(An) < ∞ et

⋃︂
n∈N

An = Ω, An croissant.

Le cas p = 2 a été traité par le théorème de représentation de
Riesz.

(1) cas p = 1Soit 𝜙 ∈ (L1 (Ω, 𝜇))′ avec | |𝜙| | ≤ 1. D’abord on définit
T application linéaire continue sur L2 (Ω) (en fait à valeur dans son
dual identifié à lui même) par :

⟨T x ,y⟩ = 𝜙(xy)

vu que xy ∈ L1 (Ω) par Hölder et on a

| |T | | := sup{| |T x | |2, | |x | |2 ≤ 1}
= sup{|⟨T x ,y⟩|, | |x | |2 ≤ 1, | |y | |2 ≤ 1} ≤ ||𝜙| |L1 (Ω) ′ .

La première égalité est la définition de la norme des applications li-
néaires bornées, la deuxième est le résultat de dualité du cas p = 2, la
troisième utilise Hölder et la définition de la norme du dual. Notons
que si z ∈ L∞ (Ω),

⟨T zx ,y⟩ = 𝜙(zxy) = ⟨T x ,zy⟩ = ⟨zT x ,y⟩
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la deuxième relation en utilisant la commutativité des espaces de fonc-
tions soit la relation zxy = xzy et la seconde la définition du produit
scalaire ⟨T x ,zy⟩ =

∫
T xzyd𝜇. donc on déduit si mz est la multiplication

par z ∈ L∞, T mz = mzT . Montrons que T = mg pour g ∈ L∞. (on dit
que cette algèbre est son propre commutant dans B (L2 (Ω)), ou qu’elle
est maximale commutative).

En effet, soit xn = T (1An ) ∈ L2. On a | |T | | ≤ 1 car | |𝜙| | ≤ 1.
Pour g ∈ L∞ avec | |g | |1 ≤ 1,|︁|︁|︁|︁∫ T (1)gd𝜇

|︁|︁|︁|︁ = |︁|︁|︁|︁∫ ( |g |1/2T ) (1)g |g |−1/2d𝜇

|︁|︁|︁|︁
=

|︁|︁|︁|︁∫ T ( |g |1/2)g |g |−1/2d𝜇

|︁|︁|︁|︁
≤ || |g |1/2 | |2 | |g |g |−1/2 | |2 = | |g | |1 ≤ 1

où on a utilisé à la deuxième égalité la commutation avecm |g |1/2 . On voit
donc par la formule de la proposition D.1 que | |T (1An ) | |∞ ≤ 1. Comme
T (1Am ) = T (1Am1An ) = 1AmT (1An ) donc on définit g (x) = T (1An ) (x)
pour x ∈ An de façon cohérente de sorte que g1An = T (1An ) d’où
| |g | |∞ = supn | |g1An | |∞ ≤ 1.

Et pour z ∈∈ L∞ ∩ L1 ⊂ L2 T (z1An ) = mg (z1An ) donc par densité
dans L2 T = mz . Enfin pour f ∈ L1 (Ω) f = | f |1/2g avec g ∈ L2, on
obtient

𝜙( f ) = 𝜙( | f |1/2g ) = ⟨T ( | f |1/2), g ⟩
= ⟨z ( | f |1/2), g ⟩ = I (z ) ( | f |1/2g ) = I (z ) ( f ).

donc 𝜙 = I (z ) d’où la surjectivité de I .
(2) cas p > 1 𝜇(Ω) < ∞ utilisant les cas p = 1,2. (On l’appliquera

ensuite à Ω = An .) Après normalisation, on peut supposer 𝜇(Ω) = 1.
On commence par montrer que via I , Lp (Ω)′ ⊂ L1 (Ω). Si p ≤

2, c’est évident par l’inclusion L2 (Ω) ⊂ [Lp (Ω)] et par restriction et
théorème de representation de Riesz, on obtient g ∈ L2 (Ω) ⊂ L1 (Ω)
tel que

𝜙|L2 (Ω) ( f ) = ⟨g , f ⟩

Si p > 2 pour x ∈ L∞, et 𝜙 ∈ (Lp )′,

|𝜙(x) |p ≤
∫

|x |pd𝜇 ≤
∫

|x |2 | |x | |p−2
∞ d𝜇 ≤ ||x | |22 | |x | |

p−2
∞ .
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Par l’inégalité d’Young (cas particulier d’Holder utilisé dans sa
preuve) |ab | ≤ aP /P + bQ /Q utilisé avec 1/P + 1/Q = 1,P = p/2,Q =

p/(p − 2), a = | |x | |1/P2 /𝜖1/Q ,b = (𝜖 | |x | |∞)1/Q , on obtient :

|𝜙(x) | ≤ 𝜖

Q
| |x | |∞ + 1

P 𝜖P /Q
| |x | |2.

En incluant {(x ,x),x ∈ (L∞ (Ω))} ⊂ L∞ (Ω) × L2 (Ω) avec norme
| | (x ,y) | | = 𝜖

Q | |x | |∞ + 1
P 𝜖P /Q

| |y | |2 on étend par Hahn Banach 𝜙 à

L∞ (Ω) × L2 (Ω) donnant un élément de (𝜙1, 𝜙2) ∈ L∞ (Ω)′ × L2 (Ω)
avec | |𝜙1 | | ≤ 𝜖/Q , | |𝜙2 | | ≤ 1

P 𝜖P /Q
(car en calculant la norme duale on

a max(Q | |𝜙1 | |/𝜖 ,P 𝜖P /Q | |𝜙2 | |) ≤ 1) Donc | |𝜙|L∞ (Ω) − J (𝜙2) | | (L∞ (Ω) ) ′ =
| |𝜙1 | | (L∞ (Ω) ) ′ ≤ 𝜖/Q et 𝜙2 ∈ L1 (Ω). Or par le cas p = 1, (L1 (Ω))′′ =

L∞ (Ω)′ et il contient L1 (Ω) comme espace fermé isométriquement via
J (comme tout espace de Banach est inclus isométriquement comme
espace fermé dans son bidual). Comme le résultat précédent indique

𝜙 ∈ L2 (Ω)
(L1 (Ω) ) ′′

, on déduit 𝜙 ∈ J (L1 (Ω)) comme voulu. On a donc
une fonction g telle que pour tout f ∈ L∞ (Ω)

𝜙( f ) =
∫
Ω

g f d𝜇

Soit donc g l’image dans L1 de 𝜙 (on revient au cas général p ∈
]1,∞[). Or dans le cas d’un espace avec mesure finie, l’équation de la
proposition D.1 donne :

| |𝜙| | (Lp ) ′ = sup{|𝜙(x) |, | |x | |p ≤ 1,x ∈ L∞}

= sup{|
∫

g xd𝜇 |, | |x | |p ≤ 1,x ∈ L∞} = | |g | |q

On déduit donc g ∈ Lq comme on voulait et 𝜙 = T (g ) (en étendant la
relation depuisL∞ (Ω) par densité dans Lp (Ω).

(3)cas 1 < p < ∞ et 𝜇 𝜎-fini. Soit 𝜙 ∈ (Lp (Ω, 𝜇))′, il faut montrer
qu’elle vient d’un élément de Lq (Ω, 𝜇). On pose 𝜙n ( f ) = 𝜙( f 1An ) pour
f ∈ Lp (An , 𝜇) ⊂ Lp (Ω, 𝜇). Par le cas précédent, il existe gn ∈ Lq (An , 𝜇)
telle que

∀f ∈ Lp (An , 𝜇),
∫

gn f d𝜇 = 𝜙( f 1An ).

et

| |gn | |q = sup{
|︁|︁𝜙( f 1An )

|︁|︁ ; | | f | |p ≤ 1, f ∈ L∞ (An , 𝜇)}
≤ ||𝜙| | (Lp ) ′ < ∞.
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Or par unicité dans le cas (2) et vu les An croissant pour n >

m, gn1Am = gm et donc |gn | est croissant et g = sup |gn | vérifie par
convergence monotone | |g | |q ≤ ||𝜙| | (Lp ) ′ , vu |gn | ≤ |g | et comme gn →
g p.s., on déduit par convergence dominée | |gn − g | |q → 0 et en passant
à la limite gn = g1An .

Or f 1An → f dans Lp et donc par continuité la relation 𝜙( f 1An ) =
T (g ) ( f 1An ) devient 𝜙( f ) = T (g ) ( f ) pour tout f ∈ Lp donc 𝜙 = T (g ).

4 Convolution
Dans cette section, on considère l’espace mesuré (Ω, 𝜇,T) =

(Rd ,Leb ,B) muni de la tribu borélienne et de la mesure de Lebesgue.
On note alors Lp (Rd ) = Lp (Rd ,Leb ,B). Vu l’accord avec l’intégrale de
Riemann, on note aussi dy = d𝜆 (y).

Théorème D.9: (définissant la Convolution)

Soient f ∈ L1 (Rd ), g ∈ Lp (Rd ),1 ≤ p ≤ ∞. Pour presque tout
x ∈ Rd , y ↦→ f (x − y)g (y) est dans L1 (Rd ). La convolution de f
et g est la fonction f ∗ g définie par :

( f ∗ g ) (x) =
∫
Rd
f (x − y)g (y)dy .

Alors f ∗ g ∈ Lp (Rd ) et :

| | f ∗ g | |p ≤ || f | |1 | |g | |p .

Démonstration. Si p = ∞, comme |g | ≤ | |g | |∞p .p ., f (x − y)g (y) ≤
||g | |∞ | f (x − y) | d’où l’intégrabilité et la borne souhaitée en intégrant
(comme la mesure de Lebesgue est invariante par translation).
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On suppose d’abord p = 1 et on utilise le Théorème de Fubini
Tonelli pour calculer :∫

dx | f | ∗ |g | (x) =
∫
dx

∫
dy | f (x − y) | |g (y) |

=

∫
dy

∫
dx | f (x − y) | |g (y) |

= | | f | |1
∫
dy |g (y) | = | | f | |1 | |g | |1 < ∞

On déduit du théorème de Fubini que pour presque tout x , y ↦→ f (x −
y)g (y) est intégrable et on obtient la borne souhaitée

| | f ∗ g | |1 ≤ || f | |1 | |g | |1.

Pour 1 < p < ∞, soit q l’exposant conjugué. Du cas p = 1 on déduit
y ↦→ | f (x − y) | |g (y) |p est dans L1 donc y ↦→ | f (x − y) |1/p |g (y) | est dans
Lp pour presque tout x . Or y ↦→ | f (x − y) |1/q ∈ Lq donc par Hölder,
y ↦→ | f (x − y) | |g (y) | = | f (x − y) |1/p |g (y) |.| f (x − y) |1/q est dans L1 et

| ( f ∗ g ) (x) |p ≤
(︃∫

| f (x − y) | |g (y) |dy
)︃p

≤
(︃∫

| f (x − y) | |g (y) |pdy
)︃
| | f | |p/q1 .

Par l’inégalité précédente du cas p = 1, on obtient donc en intégrant :

| | f ∗ g | |pp ≤ || f | |p/q1 | | | f | ∗ |g |p | |1

≤ || f | |p/q1 | |g | |pp | | f | |1 = | | f | |p1 | |g | |
p
p .

Exercice D.1. (cf TD) Soit f ∈ L1, g ∈ Lp ,h ∈ Lq , f̌ (x) = f (−x)
Montrer que : ∫

( f ∗ g )h =

∫
g ( f̌ ∗ h).
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5 Support de la convolution

Si f continue, Supp( f ) = {x : f (x) ≠ 0}. Le résultat suivant permet
d’étendre la définition aux fonctions mesurables.

Lemme D.10

Pour f : Rd → K mesurable, soit (𝜔i )i ∈I la famille de tous les
ouverts tels que, pour chaque i, f = 0 p.p sur 𝜔i . Si 𝜔 = ∪i ∈I𝜔i
alors f = 0 p.p. sur 𝜔. De sorte que 𝜔 est le plus grand ouvert
sur lequel f = 0 p.p.

Démonstration. Il faut écrire 𝜔 comme union dénombrable car I n’est
pas forcément dénombrable. Soit Kn = {x ∈ 𝜔 : | |x | | ≤ n,d (x ,𝜔c ) ≥
1/n} comme la distance à un fermé est continue, on voit que Kn fermé
borné de Rn (e.v.n de dimension finie) donc est compact et 𝜔 = ∪n∈NKn .
Par compacité, Kn , recouvert par une union finie Kn ⊂ 𝜔in,1 ∪ ...∪𝜔in,rn .
donc 𝜔 = ∪n∈N,j ≤rn𝜔i ,j est union dénombrable d’ouvert sur lesquels
f = 0 p.p. d’où le résultat.

Définition D.2

Soit f : Rd → K mesurable, On pose Supp( f ) = Rd − 𝜔 où 𝜔

est le plus grand ouvert sur lequel f = 0 p.p. Si f ∈ Lp (Rd ),
on pose Supp( f ) = Supp( f1) pour n’importe quel représentant
f1 ∈ f de la classe d’égalité presque partout.

Proposition D.11

Si f ∈ L1 (Rd ), g ∈ Lp (Rd ) alors :

Supp( f ∗ g ) ⊂ Supp( f ) + Supp(g ).

Démonstration. On fixe x ∈ Rd avec y ↦→ f (x − y)g (y) ∈ L1. Si x ∉

Supp( f )+Supp(g ), on a (x−Supp( f ))∩Supp(g ) = ∅ donc en intégrant
f ∗ g (x) = 0 sur I nt ((Supp( f ) + Supp(g ))c ) = (Supp( f ) + Supp(g ))c .
Donc f ∗ g est 0, p.p. sur cet ouvert de sorte qu’il est inclus dans
Supp( f ∗ g )c .
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6 Régularisation par convolution

On étudiera plus systématiquement au chapitre suivant certaines
classes importantes de fonctions continues. Pour Ω ⊂ Rd un ouvert.
On noteC k (Ω) l’ensemble des fonctions k -fois différentiables avec leurs
dérivées continues et C kc (Ω) les fonctions à support compact de C k (Ω).
Pour simplifier si 𝛼 ∈ Nd , on note

D𝛼 f =
𝜕𝛼1

𝜕x𝛼1
1

· · · 𝜕𝛼d

𝜕x𝛼dd
f .

On note |𝛼 | = |𝛼1 | + ... + |𝛼d |. On note

C∞ (Ω) = ∩k ∈NC k (Ω), C∞
c (Ω) = ∩k ∈NC kc (Ω).

Proposition D.12

Soit 1 ≤ p ≤ ∞. Si f ∈ C kc (Rd ), g ∈ Lp (Rd ), k ∈ N ∪ {∞} alors
f ∗ g ∈ C k (Rd ) et si |𝛼 | ≤ k :

D𝛼 ( f ∗ g ) = D𝛼 ( f ) ∗ g .

De plus, si p < ∞, on a aussi la formule comprise comme inté-
grale de Riemann à valeur Lp (Rd ), si Supp(f) ⊂ [−C ,C ]d :

f ∗ g =

∫
[−C ,C ]d

dy f (y)𝜏−y g .

Démonstration. Par récurrence il suffit du cas k = 1. On applique le
théorème de dérivation avec condition de domination. 𝜕

𝜕xi
f (x−y)g (y) =

( 𝜕
𝜕xi
f ) (x − y)g (y).
Comme ( 𝜕

𝜕xi
f ) est à support compact et continue, il est borné par

| | ( 𝜕
𝜕xi
f ) | |∞ et

| 𝜕
𝜕xi

f (x − y)g (y) | ≤ | | 𝜕
𝜕xi

f | |∞1K (x − y)g (y),

avec K le compact support de f . Or par Hölder
∫

1B−K (y) |g | (y)dy ≤
Leb (B − K )1/q | |g | |p , donc on a une domination par une fonction inté-
grable c1B−K g si x ∈ B avec B compact. Le théorème de dérivation
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4.39 conclut donc. De plus, par changement de variables linéaire si
Supp(f) ⊂ [−C ,C ]d , on a

f ∗ g (x) =
∫
Rd
f (x − y)g (y)dy

=

∫
Rd
f (y)g (x − y)dy

=

∫
[−C ,C ]d

f (y) (𝜏−y g ) (x)dy

avec 𝜏h (g ) (x) = g (x + h). On a vu à la proposition D.7 que y ↦→
f (y) (𝜏−y g ) est continue à valeur Lp (Rd ) on peut donc parler de son
intégrale de Riemann, sur [−C ,C ]d (calculée successivement variable
par variable). On obtient une suite (de sommes de Riemann) qui
converge dans Lp (Rd ), donc quitte à extraire une suite qui converge
p.p. et donc p.p. la limite

∫
[−C ,C ]d dy f (y) (𝜏−y g ) coïncide avec l’in-

tégrale de Riemann
∫
[−C ,C ]d dy f (y) (𝜏−y g ) (x) par exemple si g est

continue à support compact et cette intégrale vaut l’intégrale de Le-
besgue donc f ∗ g (x). On en déduit l’égalité voulue dans Lp si g
continue à support compact. Or par densité, on a une suite de fonc-
tions gn continues à support compact convergeant dans Lp vers g .
Et comme supRd | |𝜏−y gn − 𝜏−y g | |p → 0, f (.) (𝜏−.gn) converge unifor-
mément vers f (.) (𝜏−.g ) et comme l’intégrale de Riemann est conti-
nue pour la convergence uniforme

∫
[−C ,C ]d dy f (y) (𝜏−y g ) est la limite

de
∫
[−C ,C ]d dy f (y) (𝜏−y gn) dans Lp qu’on a déjà vu valoir f ∗ gn , qui a

pour limite f ∗ g donc
∫
[−C ,C ]d dy f (y) (𝜏−y g ) = f ∗ g .

7 Suites régularisantes et densité
par convolution

Définition D.3

Une suite régularisante est une suite de fonctions 𝜌n ∈ C∞
c (Rd )

avec
∫
Rd 𝜌n = 1, 𝜌n ≥ 0 et Supp(𝜌n) ⊂ B | | . | |2 (0,1/n).
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Exercice D.2. Montrer que si 𝜌n (x) = Cnd 𝜌(nx) avec C
∫
𝜌 = 1

et 𝜌(x) = 1{ | |x | |2<1} exp( 1
| |x | |22−1

) alors 𝜌n est une suite régulari-

sante sur Rd .

Lemme D.13

Soit 𝜌n suite régularisante et f ∈ Lp (Rd ) pour 1 ≤ p < ∞. Alors
| |𝜌n ∗ f − f | |p → 0.

Démonstration. On a comme | |.| |p est une norme on a par l’inégalité
triangulaire (de l’intégrale de Riemann et la proposition D.12) :

| |𝜌n ∗ f − f | |p = ∥
∫
dy𝜌n (y) (𝜏−y f − f )∥p

≤
∫
B (0,1/n )

dy𝜌n (y) | |𝜏−y f − f ) | |p

Or si n assez grand, on a vu à la proposition D.7 que | |𝜏−y f − f ) | |p ≤ 𝜖

pour y ∈ B (0,1/n) de sorte que la dernière intégrale est bornée par
𝜖
∫
B (0,1/n ) dy𝜌n (y) = 𝜖 .

Proposition D.14

Soit Ω ⊂ Rd un ouvert, alors C∞
c (Ω) est dense dans Lp (Ω) pour

1 ≤ p < ∞.

Démonstration. Soit f ∈ Lp (Ω) et Kn = {x ∈ Ω : | |x | |2 ≤ n,d (x ,Ωc ) ≥
1/n}. On a déjà remarqué que Kn compact et ∪Kn = Ω donc f 1Kn → f
p.p. et par la domination | f 1Kn − f | ≤ | f | on conclut par le TCD à
| | f 1Kn − f | |p → 0. Soit m > n, si on considère 𝜌m ∗ ( f 1Kn ) ∈ C∞ (Rd ),
on a par la relation sur les supports des convolution,

Supp(𝜌m ∗ f 1Kn ) ⊂ Supp(𝜌m) + Supp( f 1Kn )
⊂ B (0,1/m) + Kn ⊂ Ω

(vu que pour K ,F compacts K + F est compact et en comparant les
distances pour la dernière inclusion). Donc 𝜌m∗( f 1Kn ) ∈ C∞

c (Rd ). Mais
on a vu | |𝜌m ∗ ( f 1Kn ) − f 1Kn | |Lp (Ω) = | |𝜌m ∗ ( f 1Kn ) − f 1Kn | |p →m→∞ 0.
Donc f 1Kn puis f sont dans l’adhérence de C∞

c (Ω).
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Le théorème des bases ne nécessite pas l’hypothèse I dénombrable
ou H séparable, voici la version générale.

Comme l’existence de base algébrique d’un espace vectoriel de
dimension infinie, elle requière un lemme général de théorie des en-
sembles :

1 Rappel sur le lemme de Zorn
Si on était en dimension finie, on voudrait faire une récurrence

sur le cardinal d’une famille orthonormale en ajoutant un vecteur de

257
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plus pris dans un ensemble dense. Une façon de rédiger la preuve est
de considérer un sous-espace de dimension maximale et d’obtenir une
contradiction en construisant une famille libre de cardinal 1 de plus.

Dans le cas de la dimension infinie on pourrait faire une récurrence
transfinie en complétant une base de G en une base de E et mettant
un “bon ordre" sur la base. En analyse (ou en algèbre), on préfère sou-
vent utiliser la conséquence suivante de l’axiome du choix, le lemme
de Zorn, qui utilise une notion de maximalité pour obtenir une contra-
diction comme dans la preuve par induction.

Soit P muni d’un ordre partiel ≤.Q ⊂ P est dit totalement ordonné
si tout a,b ∈ Q on a soit a ≤ b , soit b ≤ a. c ∈ P est un majorant de Q
si ∀a ∈ Q ,a ≤ c .

m ∈ P est un élément maximal de P si tout x ∈ P tel que m ≤ x on
a x = m.

Enfin P est dit inductif si tout ensemble totalement ordonné de P
admet un majorant.

Lemme E.1: (de Zorn)

Tout ensemble ordonné, inductif, non vide admet un élément
maximal.

2 Théorème des bases dans le cas
général

Théorème E.2

Soit H un espace préhilbertien.

1. Une famille orthonormale (xi )i ∈I est libre et vérifie l’in-
égalité de Bessel, pour tout x ∈ H :∑︁

i ∈I
|⟨x ,xi ⟩|2 ≤ ||x | |2

2. De plus une famille orthonormale (ei )i ∈I est une base
hilbertienne si et seulement si on a l’égalité de Bessel-
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Parseval : ∑︁
i ∈I

|⟨x ,xi ⟩|2 = | |x | |2

De plus, dans ce cas, pour tout x ∈ H , la série suivante
converge (dans H mais pas absolument)

x =
∑︁
i ∈I

ei ⟨ei ,x⟩.

3. SiH est un espace de Hilbert, toute famille orthonormale
peut être complétée en une base hilbertienne de H et
J : x ↦→ (⟨x ,ei ⟩)i ∈I établit alors une isométrie surjective
J : H ≃ ℓ 2 (I ).

Remarque E.1. De la formule pour x, on tire par continuité la
formule pour le produit scalaire (qui est une série absolument
convergente par Cauchy-Schwarz) :

⟨y ,x⟩ =
∑︁
i ∈I

⟨y ,ei ⟩⟨ei ,x⟩.

Démonstration. (1) Si
∑︁
i ∈I

𝜆 ixi = 0, on calcule 𝜆 j = ⟨x j ,
∑︁
i ∈I

𝜆 ixi ⟩ = 0

donc xi est bien libre. Si F est une partie finie de I , et V = VF =

V ect (ei ,i ∈ F ), on a déjà vu la formule pour la projection orthogonale
sur VF :

pV (x) =
∑︁
i ∈F

ei ⟨ei ,x⟩.

Donc par la propriété de contraction de pF et l’ortogonalité

| |pF (x) | |2 =
⟨︁∑︁
i ∈F

ei ⟨ei ,x⟩,
∑︁
j ∈F

e j ⟨e j ,x⟩
⟩︁

=
∑︁
i ∈F

|⟨ei ,x⟩|2 ≤ ||x | |2

la famille est donc sommable et on a l’inégalité de Bessel pour la somme
(en passant au supremum) et on trouve en particulier (⟨x ,ei ⟩)i ∈I ∈
ℓ 2 (I ).

(2) Si (ei )i ∈I est une base soit xn ∈ V ect (ei ,i ∈ I ) convergeant vers
x .
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De plus, pour n assez grand | | |x | |2 − ||xn | |2 | ≤ 𝜖/2 et pour tout J ,|︁|︁| |pV J (x) | |2 − ||pV J (xn) | |2
|︁|︁

≤ ||pV J (xn − x) | | ( | |xn | | + | |x | |)
≤ | | (xn − x) | | ( | |xn | | + | |x | |) ≤ 𝜖/2

d’où en prenant J tel que pV J (xn) = xn on obtient|︁|︁|︁|︁|︁|︁∑︁i ∈ J |⟨e j ,x⟩|2 − ||x | |2
|︁|︁|︁|︁|︁|︁ ≤ 𝜖

et donc la somme de la série est | |x | | d’où l’égalité de Parseval.
Réciproquement, Si on a égalité, on trouve Jn tel que∑︁

j ∈ Jn
|⟨e j ,x⟩|2 = | |pV Jn

(x) | |2 → ||x | |2

et ceci implique par le théorème de Pythagore :

| |pV Jn
(x) − x | |22 = | |x | |22 − ||pV Jn

(x) | |22 → 0

donc tout élément de H est limite d’éléments deV ect (ei ,i ∈ I ) d’où la
propriété de base hilbertienne.

De plus un calcul donne la formule pour x :

| |x −
∑︁
i ∈F

ei ⟨ei ,x⟩| |2 =
∑︁
i∉F

|⟨ei ,x⟩|2 → 0.

(3) Considérons l’ensemble des familles orthonormales contenant
une famille orthonormale donnée, et ordonné par inclusion. C’est un
ensemble non-vide. Si on a une famille totalement ordonnée de familles
orthonormales, l’union est un majorant, donc l’ensemble ordonné est
inductif, il admet donc par le lemme de Zorn un élément maximal
(ei )i ∈I . Si ce n’était pas une base (complétant la famille orthonormale
de départ), on aurait un x avec∑︁

i ∈I
|⟨x ,ei ⟩|2 < | |x | |2.

Comme H est complet la somme y =
∑︁
i ∈I

ei ⟨ei ,x⟩ converge car si (In)

croissante telle que
∑︁
i ∈In

|⟨ei ,x⟩|2 →
∑︁
i ∈I

|⟨ei ,x⟩|2 la suite yn =
∑︁
i ∈In

ei ⟨ei ,x⟩
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est de Cauchy car pour q > p

| |yp − yq | |22 =
∑︁

i ∈Iq −Ip
|⟨ei ,x⟩|2 ≤

∑︁
i∉Ip

|⟨ei ,x⟩|2 → 0.

On déduit que y − x est orthogonal à tout ei car tout i tel que
⟨ei ,x⟩ ≠ 0 est dans un In et que ⟨yn − x ,ei ⟩ = 0 pour n assez grand pour
un tel i . Donc par orthogonalité

| |y − x | |22 = | |x | |2 −
∑︁
i ∈I

|⟨x ,xi ⟩|2 > 0

donc ajouter (y − x)/| |y − x | | à la famille orthonormale contredit la
maximalité et conclut.

Une fois l’existence d’une base, l’isométrie est évidente par le (2),
et si on a une suite (𝜆 i )i ∈I dans ℓ 2 (I ), on voit que

∑︁
𝜆 iei converge

par complétude comme ci-dessus et on obtient ainsi la surjectivité.

3 Correction de l’exercice sur les
polynômes de Hermite

Soit H = L2 (R, 𝜇) l’espace de Hilbert réel des fonctions de carrés
intégrables pour la mesure gaussienne standard 𝜇(dx) = 1√

2𝜋
e −x

2/2dx ,
muni de la norme usuelle :

| | f | |2 =

√︄∫
R
| f (x) |2 e

−x2/2
√

2𝜋
dx .

Soit

Hn (x) = (−1)n e
x2/2
√
n!

(︃
d
dx

)︃n
(e −x2/2)

(et donc H0 (x) = 1)

1. Montrons par récurrence que pour n ≥ 1, Hn est un polynôme
de la forme :

√
n!Hn (x) = xn +

n−1∑︁
k=0

akx
k .
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En effet H1 (x) = (−1)e x2/2 (−xe −x2/2) = x et si on suppose l’hy-
pothèse au rang n√︁

(n + 1)!Hn+1 (x)

= −e x2/2
(︃
d
dx

)︃
(e −x2/2√n!Hn (x))

Or
(︂
d
dx

)︂
(e −x2/2xk ) = −xk+1e −x

2/2 + kxk−1e −x
2/2 donc l’hyp. de

rec. donne√︁
(n + 1)!Hn+1 (x) = −e x2/2

(︃
d
dx

)︃
(e −x2/2 (xn +

n−1∑︁
k=0

akx
k ))

= (xn+1 − nxn−1) +
n−1∑︁
k=0

ak (xk+1 − kxk−1)

qui a la forme souhaitée.
2. Montrons que (Hn)n≥0 est une famille orthonormale de H .

On calcule pour m ≥ n :

⟨Hn ,Hm⟩

= (−1)m 1
√

2𝜋
√
m!

∫
Hn (x)

(︃
d
dx

)︃m
(e −x2/2)dx

En intégrant par partie∫
Hn (x)

(︃
d
dx

)︃m
(e −x2/2)dx

= [Hn (x)
(︃
d
dx

)︃m−1

(e −x2/2)]∞−∞

−
∫
H ′
n (x)

(︃
d
dx

)︃m−1

(e −x2/2)dx

le crochet est 0 vu que P (x)e −x2/2 pour P polynome tend vers 0
en ±∞.
Par induction si m > n

⟨Hn ,Hm⟩

=
(−1)m−n
√

2𝜋
√
m!

∫
H (n+1)
n (x)

(︃
d
dx

)︃m−n+1

(e −x2/2)dx

= 0
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et si m= n vu H (n )
n (x) =

√
n! en appliquant le 1.

⟨Hn ,Hn⟩

=
(−1)m−n
√

2𝜋
√
m!

∫
H (n )
n (x)

(︃
d
dx

)︃m−n
(e −x2/2)dx

=
1

√
2𝜋

∫
e −x

2/2dx = 1

comme voulue.

4 Théorème d’injectivité de la
transformée de Fourier

Définition E.1

La fonction caractéristique (f.c. ou transformée de Fourier) du v.a.
(X1, ...,Xn) : Ω → Rn est définie par

Φ(X1,...,Xn ) (t1, ...,tn) = E[e i ⟨t ,X ⟩],

pour tout t = (t1, ...,tn) ∈ Rn et en notant le produit scalaire

⟨t ,X ⟩ :=
n∑︁
i=1

tiXi .

La fonction 𝜑X caractérise la loi de X par le théorème d’injectivité
de la transformée de Fourier/ théorème d’inversion de la transformée
de Fourier ci-dessous. On utilisera aussi plus tard au chapitre 2 la fonc-
tion caractéristique pour caractériser une notion de convergence, au
chapitre 3 pour l’introduction des vecteurs gaussiens qui seront la base
du chapitre 5 sur le mouvement brownien. C’est une notion FONDA-
MENTALE...

Lemme E.3

Soit X ∼ N(m,𝜎2) de loi normale alors ΦX (t ) = exp (− t2𝜎2

2 +
imt ).
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Démonstration. On a vu une preuve à l’exercice 8 du TD 3 de MASS 31
utilisant que la partie imaginaire est nulle par parité et le calcul de la
partie réelle en établissant une équation différentielle par intégration
dépendant d’un paramètre.

On donne ici une autre preuve par prolongement analytique. Par

transfert, on doit montrer
∫

1
𝜎
√

2𝜋
e ixt−

(x−m)2
2𝜎2 = exp (− t2𝜎2

2 + imt ) en fai-
sant le changement de variables u = (x − m)/𝜎 on se ramène au cas
𝜎 = 1,m = 0.

En prenant m = z dans le calcul de la densité, on a pour z ∈ R∫ ∞

−∞
dx

1
√

2𝜋
e −

x2+z2−2xz
2 =

∫ ∞

−∞
dx

1
√

2𝜋
e −

(x−z )2
2 = 1.

Pour z ∈ C, en appliquant le résultat précédent

∞∑︁
n=0

∫
R
dx

1
√

2𝜋

|zx |n
n!

e −
x2
2

= lim
N→∞

∫
R
dx

1
√

2𝜋

N∑︁
n=0

|zx |n
n!

e −
x2
2

≤
∫
R
dx

1
√

2𝜋
e −

x2
2 +|zx |

≤ exp ( |z |
2

2
) < ∞

La première bornitude permet d’appliquer le TCD pour les séries (ou
Fubini pour la mesure discrète) et intervertir somme et série :

∞∑︁
n=0

zn
∫
R
dx

1
√

2𝜋

xn

n!
e −

x2
2 =

∫
R
dx

1
√

2𝜋
e −

x2
2 +zx

la fonction de droite est donc la somme d’une série entière exp ( z 2

2 ) pour
z ∈ R, donc par identification des coefficients, elle vaut cette valeur
pour tout z ∈ C, en particulier pour z = it et on trouve le résultat.

On démontrera le théorème suivant dans la prochaine section
puisque la preuve utilise des propriétés générales de l’indépendance
importante à noter pour elles-mêmes :
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Théorème E.4: (Théorème d’injectivité de la transforma-
tion de Fourier)

Deux v.a. (X1, ...,Xn), (Y1, ...,Yn) tels que

Φ(X1,...,Xn ) (t ) = Φ(Y1,...,Yn ) (t )∀t ∈ Rn

sont égales en loi, c’est à dire :

P (X1,...,Xn ) = P (Y1,...,Yn ) .

De plus, si ΦX ∈ L1 (Rn ,Leb) alors P (X1,...,Xn ) a une densité par
rapport à la mesure de Lebesgue donnée par (la transformée de
Fourier inverse) qui est une fonction continue :

f (X1,...,Xn ) (x)

=
1

(2𝜋)n
∫
Rn

Φ(X1,...,Xn ) (t )exp (−i ⟨x ,t⟩)dt .

Sommes de variables aléatoires
indépendantes (Rappels)

Vous avez probablement vu en TD de théorie de la mesure la dé-
finition de la convolution que l’on rappelle ici et relie aux sommes de
variables aléatoires indépendantes.

Définition E.2: Convolution

Soit 𝜇 une mesure de Proba sur S ⊂ Rd et f : R → R une
fonction mesurable telle que pour tout x ∈ S , y ↦→ f (x − y) est
dans L1 (Rd , 𝜇), la convolution de f et 𝜇 est la fonction f ∗ 𝜇

définie par :

( f ∗ 𝜇) (x) =
∫
Rd
f (x − y)d𝜇(y).

Si 𝜇 est absolument continue par rapport à la mesure de Le-
besgue de densité g , on note aussi f ∗ g .
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Proposition E.5

Soient X ,Y : Ω → Rd des v.a. indépendantes :

3. ∀t ∈ Rd ,ΦX +Y (t ) = ΦX (t )ΦY (t )
4. Si Xi ,Yi sont dans L2 (Ω), Cov (Xi + Yi ,X j + Y j ) =

Cov (Xi ,X j ) +Cov (Yi ,Y j ).
5. Si PX (dx) = f (x)dx ,PY (dx) = g (y)dy alors PX +Y est

absolument continue par rapport à Lebesgue (sur Rd )
de densité f ∗ g définie Lebesgue p.p. :

PX +Y (dz ) = ( f ∗ g ) (z )dz .

6. Si seulement X est de loi absolument continue mais de
densité continue bornée f , alors quel que soit Y, PX +Y
est absolument continue par rapport à Lebesgue (sur Rd )
de densité f ∗ PY (définie partout). De plus, pour tout h
continue bornée :

E ((h ∗ f ) (Y )) = E (h (X +Y )).

Démonstration. 1. On a ΦX +Y (t ) = E[e it (X +Y ) ] = E[e itX e itY ] =

E[e itX ]E[e itY ] = ΦX (t )ΦY (t ) l’avant dernière égalité par indépen-
dance car f (x) = e itx est bornée donc intégrable (par rapport à une
probabilité).

2. En général par bilinéarité Cov (Xi +Yi ,X j +Y j ) = Cov (Xi ,X j ) +
Cov (Yi ,Y j ) + Cov (Yi ,X j ) + Cov (Yi ,X j ), mais ici par indépendance les
deux derniers termes sont nuls.

3.Il faut d’abord vérifier que f ∗g est bien définie. Par Fubini-Tonelli
vu le caractère positif :∫

Rn
dx

∫
Rn
dy f (x − y)g (y)

=

∫
Rn
dy (

∫
Rn
dx f (x − y))g (y)

=

∫
Rn
dy g (y) = 1

donc
∫
Rn dy f (x − y)g (y) existe et est fini p.p.

En prenant h mesurable positive et en appliquant le transfert, on
obtient par changement de variables z = x + y dans l’intégrale sur y
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obtenue par Fubini :

E (h (X +Y )) =
∫
R2d
h (x + y) f (x)dxPY (dy)

=

∫
R2d
h (z ) f (z − y)dzPY (dy)

=

∫
Rd
h (z ) ( f ∗ PY ) (z )dz

ce qui donne le calcul de densité (égalité de la loi avec seulement le cas
h = 1B ). Dans le cas de 4. on raisonne pareil sauf que f continue bornée
donne x ↦→ f (x − y) intégrable par rapport à la proba PY directement.
L’application de Fubini vient de

∫
R2d |h (z ) f (z − y) |dzPY (dy) ≤ ||h | |∞.

L’égalité intermédiaire donne aussi E (h (X +Y )) =
∫
Rd (h∗f ) (y)PY (dy) =

E ((h ∗ f ) (Y )) par transfert.

Preuve [Facultative] du Thm d’injectivité de
la transformée de Fourier

On va utiliser les lois gaussiennes pour se ramener au cas avec
densité tout en exploitant leurs propriétés de stabilité par cette trans-
formée.

Lemme E.6

Soit g𝜎 la densité sur Rn d’un n-uplet de variable gaussienne
i.i.d. N(0,𝜎2). Pour tout h : Rn → R continue bornée, (h ∗
g𝜎) (x) →𝜎→0 h (x). On a même convergence uniforme sur tout
compact.

En terme de convergence en loi, cela signifiera au chapitre 2
que si (X1 (𝜎), ...,Xn (𝜎)) sont les variables de densités g𝜎, alors x +
(X1 (𝜎), ...,Xn (𝜎)) →𝜎→0 x en loi en utilisant la proposition E.5.(4) au
casY = x .

Démonstration. Par transfert et changement de variables

(h ∗ g𝜎) (x) − h (x) =
∫
Rd
(h (x − 𝜎z ) − h (x))g1 (z )dz .
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En prenant, en prenant le supremum sur un compact K :

sup
x∈K

| (h ∗ g𝜎) (x) − h (x) |

≤
∫
Rd

sup
x∈K

| (h (x − 𝜎z ) − h (x)) |g1 (z )dz

la limite vient de la convergence dominée par une constante 2| |h | |∞
puisque une constante est intégrable par rapport à une probabilité
comme g1 (z )dz , et la limite ponctuelle en z vient de la continuité de
h qui est donc uniformément continue sur K + B (0, |z |) et donc pour
|𝜎 | < 1,x − 𝜎z ,x sont dans ce compact de distance 𝜎 |z | tendant vers
0. Si h est uniformément continue sur Rd on a même convergence uni-
forme sur Rd .

On a aussi besoin de la conséquence suivante du lemme de classe
monotone :

Proposition E.7

Soient X ,Y : Ω → Rn des variables aléatoires. Les propriétés
suivantes sont équivalentes

3. X ,Y sont égales en loi : PX = PY .
4. Pour tout h : Rn → R, continue bornée,

∫
h (X )dP =∫

h (Y )dP
5. Pour tout ouvert O de Rn , PX (O ) = PY (O ).
6. pour tout (x1, ...,xn) ∈ Rn :

PX (] − ∞,x1] × ...×] − ∞,xn])
= PY (] − ∞,x1] × ...×] − ∞,xn]).

La fonction FX (x1, ...,xn) = PX (] − ∞,x1] × ...×] − ∞,xn]) appelée
fonction de répartition caractérise donc la loi.

Démonstration. Les produits d’intervalles ] − ∞,x1] × ...×] − ∞,xn] et
les ouverts sont des familles stables par intersection finie et engendrent
la tribu des boréliens de Rn (car par intersection et complémentaire
on obtient les boules carrées de la norme infini et que tout ouvert de
Rn est union dénombrable de telles boules, de centre un point de Qn

par densité de Qn .) On applique donc le lemme de classe monotone
pour obtenir les 2 dernières équivalences. 1 implique 2 vient du th de
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transfert plus bas comme l’équivalence de 2 avec : Pour tout h : Rd → R,∫
Rd h (x)dPX (x) =

∫
Rd h (x)dPY (x).

Pour montrer 3 à partir de 2 et conclure, il suffit de remarquer que
hn (x) = max(1,nd (.,O c )) sont des fonctions continues bornées par 1
(car la distance à un fermé x ↦→ d (x ,O c ) = inf{d (x ,y),y ∈ O c } est
continue, cf. MASS 31). Si x ∈ O c , hn (x) = 0 et sinon, hn est une suite
croissante qui tend vers hn (x) → 1O (x) (car si x ∈ O , nd (.,O c ) → ∞
donc ≥ 1 pour n assez grand donc hn (x) = 1 pour n assez grand). Donc
par convergence monotone,

∫
Rd hn (x)dPX (x) → PX (O ) d’où l’égalité du

3. par celle du 2.

Preuve du Thm E.4. Pour montrer l’injectivité, par le lemme E.7, il suffit
de montrer que l’égalité des transformée de Fourier implique égalité de
E(h (X )) pour tout h continue bornée.

Or par le lemme précédent, (h ∗ g𝜎) (x) → h (x) tout en étant borné
par | |h | |∞ donc par TCD :

E(h (X )) = lim
𝜎→0

E((h ∗ g𝜎) (X )) = lim
𝜎→0

E(h (X +Y𝜎))

la dernière égalité avec Y𝜎 de densité g𝜎 et indépendant de X par la
proposition E.5 (4) puisque la densité g𝜎 est continue bornée. Or la
transformée de Fourier de X +Y𝜎 est ΦX +Y𝜎

(t ) = ΦX (t )ΦY𝜎
(t ) par la

proposition E.5 (2) et donc

ΦX +Y𝜎
(t ) = ΦX (t )exp (−

||t | |22𝜎
2

2
)

par le calcul du lemme E.3. Comme ceci est intégrable, on s’attend à
avoir la formule d’inversion de Fourier de la deuxième partie qui va
donner E(h (X + Y𝜎)) en fonction de ΦX +Y𝜎

(t ), nous allons donc la
montrer à la main dans ce cas pour conclure la preuve.

Or en interprétant la densité comme une variante de la transformée
de Fourier dans le cas gaussien :

(g𝜎 ∗ PX ) (x)

=

∫
Rd

1
𝜎d (2𝜋)d/2

exp (−
||x − y | |22

2𝜎2
)PX (dy)

=

∫
R2d
PX (dy)dv

1
𝜎d (2𝜋)d

exp (− ||v | |2
2

+ i ⟨
y − x
𝜎

,v⟩))
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soit par le changement de variables u = v/𝜎 de jacobien 𝜎−d on obtient

E(h (X +Y𝜎)) =
∫
Rd
dxh (x) (g𝜎 ∗ PX ) (x)

=

∫
R3d
dxPX (dy)dvh (x)

1
(2𝜋)d

exp (−𝜎2 | |v | |2
2

+ i ⟨y − x ,v⟩))

soit en appliquant Fubini sur les intégrales en y ,v

E(h (X +Y𝜎))

=

∫
R2d
dxdv

h (x)
(2𝜋)d

exp (−𝜎2 | |v | |2
2

− i ⟨x ,v⟩))ΦX (v )

=

∫
R2d
dxdv

h (x)
(2𝜋)d

exp (−i ⟨x ,v⟩))ΦX +Y𝜎
(v )

qui est la formule souhaitée qui ne dépend bien que de la transformée
de Fourier ΦX et conclut l’injectivité.

Maintenant si ΦX est intégrable |h (x)ΦX +Y𝜎
(v ) | ≤ h (x) |ΦX (v ) |

est une domination (si h est à support compacte) et puisque
ΦX +Y𝜎

(v ) →𝜎→0 ΦX (v ) par les formules précédentes, on obtient par
le TCD la formule souhaitée pour la densité à la limite. La continuité
de la densité vient du Théorème de continuité des intégrales à para-
mètres. On remarque qu’en utilisant E(h (X ))) =

∫
Rd dxh (x) fX (x) pour

tout h positive continue à support compact, on déduit fX positive (si-
non par continuité elle est négative sur un ouvert dans lequel on peut
prendre le support de h pour contredire positivité de l’intégrale) et par
convergence monotone et faisant tendre h → 1, on déduit fX intégrable
et densité de proba. D’où on peut utiliser E(h (X ))) =

∫
Rd dxh (x) fX (x)

(maintenant valable pour h continue bornée car fX peut servir de domi-
nation) pour identifier PX (dx) = fX (x)dx en utilisant le lemme E.7.

5 Théorème de Radon-Nikodym et
Théorème de Dunford-Pettis
(Niveau M1-M2)

Ce complément pourrait pour l’essentiel être ajouté comme appli-
cation du théorème de Riesz ou du théorème de dualité des espaces
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Lp . Nous expliquons un théorème de théorie de la mesure qui permet
de dire quand une mesure provient d’une densité dans L1 (Ω, 𝜇). On en
déduit une application à un théorème de compacité qui est utile pour
la preuve du cas uniformément continue du théorème de convergence
des martingale dans L1, le théorème de Dunford-Pettis E.9.

Définition E.3

Si 𝜇,𝜈 sont des mesures de probabilités sur (Ω,T), on dit que
𝜇 est absolument continue par rapport à 𝜈 et on note 𝜇 ≪ 𝜈 si
pour tout A ∈ T , 𝜈(A) = 0 implique que 𝜇(A) = 0

Définition E.4

Si 𝜇,𝜈 sont des mesures de probabilités sur (Ω,T), on dit que
𝜇 admet une densité h ∈ L1 (Ω, 𝜈) par rapport à 𝜈 et on note
h =

d𝜇
d𝜈 , si h ≥ 0 p.s. et pour tout A ∈ T :∫

Ω

1Ahd𝜈 = 𝜇(A).

Les définitions s’étendent aux mesures 𝜎-finies, mais on considère
seulement ici le cas de probabilités.

Théorème E.8: (de Radon-Nikodym)

Pour toutes mesures de probabilités 𝜇,𝜈 sur (Ω,T), il y a équiva-
lence entre 𝜇 ≪ 𝜈 et l’existence d’une densité h =

d𝜇
d𝜈 ∈ L1 (Ω, 𝜈)

de 𝜇 par rapport à 𝜈, et la densité est alors unique 𝜈-p.s.

Démonstration. Si on a deux densités h,k ,
∫
Ω

1A (h − k )d𝜈 = 0 pour tout
A T mesurable, donc par la construction de l’intégrale aussi

∫
Ω
f hd𝜈 =∫

Ω
f kd𝜈 d’abord pour f mesurable positive (par TCM) puis pour f

mesurable bornée donc par dualité h − k = 0 dans L1 (Ω, 𝜈) donc 𝜈-p.s.
De plus, si on a existence d’une densité et si 𝜈(A) = 0, par

TCM,
∫
Ω

1Ah = limn→∞
∫
Ω

1A (h ∧ n) = 0 car |
∫
Ω

1A (h ∧ n)d𝜈 | ≤
| | (h ∧ n)∥ |2 | |1A | |2 ≤ n𝜈(A)1/2 = 0 par Cauchy-Schwartz. Donc 𝜇(A) = 0
c’est à dire on a montré 𝜇 ≪ 𝜈.
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La partie difficile est l’existence d’une densité si 𝜇 ≪ 𝜈. On va
utiliser le théorème de représentation de Riesz (ou sa variante pour la
dualité de L1, le théorème D.8). Soit 𝜇𝛼 = 𝜇 + 𝛼𝜈 avec 𝛼 > 0. L’idée est
simple on s’attend à avoir une densité d𝜇𝛼

d𝜈 = 𝛼 + h strictement positive
et donc d𝜈

d𝜇𝛼
= 1

𝛼+h bornée par 1/𝛼 donc dans L2 ensuite 𝛼(1 − 𝛼
𝛼+h ) =

𝛼 h
𝛼+h →𝛼→∞ h et on devrait pouvoir retrouver h ainsi.

Appliquons cette idée, si f ∈ L1 (Ω,d𝜇𝛼), on a∫
| f |d𝜈 =

1
𝛼

∫
| f |d𝛼𝜈 ≤ 1

𝛼

∫
| f |d𝜇𝛼

Donc f ∈ L1 (Ω,d𝜈) et f ↦→
∫
f d𝜈 définit une forme linéaire conti-

nue sur L1 (Ω,d𝜇𝛼), donc par le théorème D.8, il existe h𝛼 ∈ L∞ (Ω,d𝜇𝛼)
telle que pour tout f ∈ L1 (Ω,d𝜇𝛼) on a∫

f d𝜈 =

∫
f h𝛼d𝜇𝛼 .

Et de plus, on a | |h𝛼 | |L∞ (𝜇𝛼 ) ≤ 1/𝛼. Si f = 1{h𝛼<0} , on obtient∫
max(0,h𝛼)d𝜇𝛼 ≥ 0 donc vaut 0, donc

𝜈({h𝛼 < 0}) ≤ 1
𝛼
𝜇𝛼 ({h𝛼 < 0}) = 0

donc h𝛼 ≥ 0, 𝜈 p.s.
On montre maintenant la monotonie attendue pour h𝛼 (si on veut

qu’elle soit égale à un 1
𝛼+h ) Si 𝛽 > 𝛼, on a pour f positive bornée en

utilisant 𝜇𝛼 (g ) ≤ 𝜇𝛽 (g ) pour g positive 𝜈-p.s,∫
f h𝛽d𝜇𝛽 =

∫
f d𝜈 =

∫
f h𝛼d𝜇𝛼 ≤

∫
f h𝛼d𝜇𝛽

car f h𝛼 posivite 𝜈-p.s. par le résultat précédent, donc comme c’est va-
lable pour tout f ≥ 0, on a h𝛽 ≤ h𝛼𝜇𝛽 -p.s. donc 𝜈-p.s.

Finalement, on a l’identité∫
f d𝜇 =

∫
f d𝜇𝛼 −

∫
f 𝛼d𝜈 =

∫
f (1 − 𝛼h𝛼)d𝜇𝛼

=

∫
f 𝛼(1 − 𝛼h𝛼)d𝜈 +

∫
f (1 − 𝛼h𝛼)d𝜇.

Par | |h𝛼 | |L∞ (𝜇𝛼 ) ≤ 1/𝛼. on a 1 − 𝛼h𝛼 ≥ 0 𝜇𝛼 -p.s. donc 𝜈-p.s. En
raisonnant comme avant on obtient (1− 𝛼h𝛼) ≥ (1− 𝛽h𝛽 ) 𝜈-p.s. Donc,
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par l’égalité précédente, après simplification de f (et toujours pour f
positive en utilisant la croissance de 𝛼 → 𝛼h𝛼 𝜈-p.s. par ce qu’on vient
de voir donc 𝜇-p.s. par l’hypothèse 𝜇 ≪ 𝜈) , on obtient∫

f 𝛼(1 − 𝛼h𝛼)d𝜈 =

∫
f 𝛼h𝛼d𝜇

≤
∫

f 𝛽h𝛽d𝜇 =

∫
f 𝛽 (1 − 𝛽h𝛽 )d𝜈

soit 𝛼(1−𝛼h𝛼) ≤ 𝛽 (1−𝛽h𝛽 ), 𝜈-p.s. donc converge vers un h en croissant
et par convergence monotone et l’égalité avant on obtient∫

f hd𝜈 = lim
𝛼→∞

∫
f 𝛼(1 − 𝛼h𝛼)d𝜈

= lim
𝛼→∞

∫
f d𝜇 −

∫
f (1 − 𝛼h𝛼)d𝜇 ≤

∫
f d𝜇.

Donc pour f = 1 on trouve h ∈ L1 (Ω,d𝜈). Or par la monotonie de la
limite définissant h, on a

(1 − 𝛼h𝛼) =
𝛼(1 − 𝛼h𝛼)

𝛼
≤ h

𝛼
→𝛼→∞ 0

𝜈-p.s. puisque h est fini 𝜈-p.s. donc en utilisant encore l’hypothèse, aussi
𝜇-p.s. Comme on a vu la monotonie en 𝛼 par convergence monotone,
on déduit

∫
f (1 − 𝛼h𝛼)d𝜇 → 0 et donc finalement l’égalité attendue

qui conclut la preuve :∫
f hd𝜈 = lim

𝛼→∞

∫
f d𝜇 −

∫
f (1 − 𝛼h𝛼)d𝜇 =

∫
f d𝜇.

On peut maintenant rappeler et prouver le théorème E.9 :

Théorème E.9: (Dunford-Pettis)

Soit une suite (Xn) dans L1 (Ω,T ,P ) avec T une tribu dénom-
brablement engendrée (donc T = T (E) avec E dénombrable,
en particulier T = B(Rn)). On a l’équivalence entre

3. (Xn) est uniformément intégrable
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4. (Xn) admet une sous-suite (Xnk ) ayant pour limite faible
X ∈ L1, c’est-à-dire :

∀f ∈ L∞ (Ω), E((Xnk − X ) f ) → 0.

5. (Xn) est bornée dans L1 et pour tout 𝜖 > 0, il existe
𝜂 > 0 tel que si A ∈ T vérifie P (A) ≤ 𝜂 alors pour tout
n, E(1A |Xn |) ≤ 𝜖 .

C’est surtout l’équivalence entre 1. et 2. qui est difficile et porte le
nom de théorème de Dunford-Pettis. L’hypothèse “dénombrablement
engendrée" n’est pas nécessaire (cf. Delacherie-Meyer Probabilités et Po-
tentiel Vol 1 p 27) mais nous la faisons pour simplifier.

Démonstration. On commence par l’équivalence entre 1 et 3. Suppo-
sons 3. et fixons 𝜖 > 0, 𝜂 t.q. P (A) ≤ 𝜂 implique E(1A |Xn |) ≤ 𝜖 .

Par l’inégalité de Markov P ( |Xn | ≥ c ) ≤ supn∈N E( |Xn | )
c ≤ 𝜂 dès que

c ≥ supn∈N E( |Xn | )
𝜂

, en appliquant alors à A = {|Xn | ≥ c }, on déduit
supn E(1{ |Xn | ≥ c }|Xn |) ≤ 𝜖 . Et donc limc→∞ E(1{ |Xn | ≥ c }|Xn |) = 0
qui est l’uniforme intégrabilité recherchée.

Réciproquement, pour 𝜖 < 0 fixé, on prend c > 0 tel que
supn E(1{ |Xn | ≥c } |Xn |) ≤ 𝜖/2, (en particulier

E( |Xn |) = E(1{ |Xn | ≥c } |Xn |) + E(1{ |Xn |<c } |Xn |) ≤ c + 𝜖/2

donc Xn et bornée dans L1, de sorte que

E(1A |Xn |) = E(1A1{ |Xn | ≥c } |Xn |) + E(1A1{ |Xn |<c } |Xn |)
≤ E(1{ |Xn | ≥c } |Xn |) + E(1A1{ |Xn |<c }c )
≤ 𝜖/2 + P (A)c

qui est borné par 𝜖 dès que P (A) ≤ 𝜂 = 𝜖/2c qui convient.
On suppose maintenant 3 et on montre 2. Si T = 𝜎(An ,n ∈ N), A

l’algèbre engendré par les An c’est à dire les unions finis d’intersections
finis de An ,Acn (qui n’est en général pas une 𝜎 algèbres) qui est stable
par, complémentaire union finie et intersection finie. Il est facile de voir
que A est dénombrable.

En séparant les parties positives,négatives, on peut supposer Xn ≥
0 et par extraction diagonale, on trouve nk telle que E[Xnk 1A] → 𝜇(A)
converge pour tout A ∈ A.
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Il est facile de voir que 𝜇(Ω) < ∞ vu que (Xn) est bornée dans L1

(par 3.) 𝜇 est additive sur les unions disjointes finies (par additivité de
1 ↦→ E[Xnk 1A] qui est une mesure et passage à la limite). De plus, par
3., soit 𝜖 positive, on a un 𝜂 tel que P (A) ≤ 𝜂 implique E[Xnk 1A] ≤ 𝜖

donc 𝜇(A) ≤ 𝜖 .
En particulier si P (A) = 0, on a 𝜇(A) = 0.
Un résultat classique de théorie de la mesure dit que 𝜇 s’étend

de façon unique sur 𝜎(A) en une mesure 𝜇∗ (cf. par exemple Barbe-
Ledoux [1, Thm 1.49]). Il est facile de voir que l’on a encore si P (A) = 0,
on a 𝜇∗ (A) = 0. Donc, 𝜇∗ ≪ P et par le théorème de Radom-Nikodym,
il existe X ∈ L1 telle que E(X 1A) = 𝜇(A) = limn→in f ty E[Xnk 1A] . Il en
est donc de même pour toute fonction étagée fm (resp. gm) d’une suite
décroissante (resp. croissante) convergeant vers f mesurable positive
bornée

D’où on a les deux inégalités donnant l’égalité

lim sup
n→∞

E[Xnk f ] ≤ lim
n→∞

E[Xnk fm] = E(X fm) → E(X f )

lim inf
n→∞

E[Xnk f ] ≥ lim
n→∞

E[Xnk gm] = E(X gm) → E(X f ).

On a donc obtenu 2.
On laisse en exercice l’implication de 3. vers 1. que l’on n’a pas

utilisé dans le cours.
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