Cours au Sj des parcours
Mathématiques-Informatique et
Mathématiques-économie :
Topologie et Théorie de la
mesure.

Yoann Dabrowski

15 novembre 2025



Ce polycopié de cours est issu d’un cours donné en 2019 puis
aussi de 2023 a 2025 a I'Université Claude Bernard Lyon 1. Il
a été rendu plus accessible aux lecteurs dyslexiques en utilisant
le travail décrit dans Making an Accessible Open Logic Textbook (for
Dyslexics) par Richard Zach .

Le code latex pour la présentation du livre forallx: Calgary
(Accessible) par P.D. Magnus, Tim Button, Robert Trueman et Ri-
chard Zach, a été utilisé sous licence CC BY 4.0 . Vu notre uti-
lisation systématique d’environnements pour énoncer des défini-
tions, Théorémes, Lemmes, etc. comme il est d’'usage en mathé-
matiques, nous avons en plus veillé a appliquer les mémes usages
typographiques recommandés dans ces environnements dans les
versions accessibles de ce cours.

Certaines sections indiquées au cours du texte sont tirées
d’un polycopié du méme cours de 2018-2019 de Thomas Blos-
sier, Maria Carrizosa et Julien Melleray avec permission.

Lauteur ne prétend bien siir & aucune originalité mathéma-
tiques sur des sujets si classiques. Il espére cependant, apreés
quinze ans d’enseignements de I’analyse et des probabilités en
parcours mathématiques et économie, qu’il a atteint son objec-
tif pédagogique de permettre plusieurs niveaux de lecture a un
publique qui a principalment besoin des applications du sujet en
probabilité et modélisation. Au niveau minimum, il suffit d’ap-
prendre les définitions et résultats principaux avec % et de bien
comprendre les exemples qui seront la source d’exercices types in-
contournables. A un deuxiéme niveau, les étudiants hésitant avec
des études de mathématiques appliquées devraient comprendre
les résultats du corps du texte et leurs preuves. C’est I’enseigne-
ment que 'auteur donne en pratique au tableau pendant les 50
heures de ce cours. Enfin, les étudiants a 'aise qui se destinent
a la recherche mathématique, malgré leur parcours inhabituel,
auront tout intérét a faire des excursions dans les compléments
en appendices, qui rassemblent des preuves supplémentaires et

1. Voir aussi du méme auteur Accessible Open Textbooks in Math-Heavy
Disciplines The challenge
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des prolongements immeédiats, le plus souvent nécessaires pour
les preuves supplémentaires de d’autres sections de ’appendices.
Ce sont des matériaux soit enseignées a d’autres niveaux, soit en-
seignées dans des versions précédentes de ce cours et qui ce sont
révélées trop ambitieuses pour le public visé.
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CHAPITRE 1

Ensembles
denombrables
et Familles
sommables

Un espace de probabilité discret (disons dénombrable) associe des
nombres, les probabilités aux événements de base {w;}, correspondant
aux €léments w; de ’espace des réalisations et en sommant a des événe-
ments plus compliqués. Comme ces nombres vont étre associés a des
ensembles, 'ordre de sommation de ces nombres ne doit pas impor-
ter. On va donc étudier une notion de sommation de série o I'ordre de
sommation n’importe pas. Le but est donc pour une famille de nombres
(#;)ier, indicée par un ensemble infini / (le plus souvent dénombrable)
de définir la somme :

Z Ui,

iel
en conservant les propriétés de commutativité et d’associativité des
sommes finies.
Méme dans le cas I = N, le but est d’obtenir une notion de som-
mation qui ne privilégie pas les sous-ensembles finis [[0,z]] comme la

10
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notion de somme de série usuelle. On verra que dans ce cas, cette
notion de sommation coincide avec la convergence absolue que vous
connaissez déja.

Le but de la Théorie de la mesure sera d’étendre cette construction
a des espaces dits mesurés (de probabilité ou de masse totale différente
de 1), incluant les espaces probabilités continues. Le principe de la
construction sera le méme et généralisera le cas plus simple de ce cha-
pitre.

1 Ensembles (au plus)
dénombrables

Rappels sur les ensembles

Définition 1.1

La fonction indicatrice d’une partie A est Papplication 14: Q —
{0;1} définie par

14(w) 1 siwed
w) =
4 0 siweg4d

On a admis en L1 Pexistence de ’ensemble N des entiers naturels
et d'un ensemble constitué des parties de Q (ce sont des axiomes de
base de la théorie des ensembles).

Définition 1.2

L’ensemble des parties de Q est noté P(Q). Une famille ¥ de
parties de Q est une partie de () (soit ¥ € P(Q) ou F €
P(P(£2)). Les éléments de ¥ sont des parties de Q.

Lemme 1.1

La fonction indicatrice 4 +— 14 réalise une bijection entre £ (Q)
et {0,1}** (Pensemble des applications de Q dans {0,1}).
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Démonstration. Linverse est & — h~1({1}). La vérification que c’est
bien un inverse est facile, et laissée en exercice.

12

O

1.

2.

Rappel 1.1. Si A et B sont deux parties de Q (i.e. deux éléments
de P(Q)).

On a les relations Ac BouBC Aou (A ¢ Bet B¢ A).
A C B s’écrit aussi B D A.

On a défini en L1 : 4 X B 'ensemble des couples (a,b)
a € A,b € B, 'intersection AN B (ensemble des éléments
a la fois dans 4 et dans B), 'union 4 U B (ensemble des
éléments a la fois dans 4 ou dans B), le complémentaire
de Bdans A:A—-B =ANB°  ={x € A: x ¢ B} et
la différence symétrique AAB = (4 — B) U (B — 4). On
remarquera la relation de ces opérations avec les connec-
teurs logiques de base.

Plus généralement on définit I'union d’une famille 4; €
P(Q),iel:

UAi:{xEQ:EliEIZxGAi}a

iel
et de lintersection d’'une méme famille :

ﬂAi:{xGQ:ViEI:xeAi}.

iel

qui vérifie les relations de distributivités :

(UA,»)HC:U(A,-HC)

iel iel
(ﬂA,») UC=()4u0)
iel iel

et plus généralement

(UAi)m(UCj) = U (4N C)).

iel jeJ iel,jej

(ﬂAi)u(ﬂcj) = () @ucy.

iel jeJ iel,jej
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4. A et B sont disjoints si AN B = 0.
5. On a les relations fondamentales du complémentaire
(A4°)° = A et pour le complémentaire des unions

() =)
iel iel
et (de fagon équivalente) des intersections :

(ﬂA,»)c = 4.

iel iel

* Rappel 1.2. Soit A C E et f : Q — E, on rappelle que I'image
réciproque f~1(A) est définie par :

F U ={weQ: f(w) € 4}.
On a vu en L1 les relations
fU4auB) = fA U B,
fYA4nB) = f 1) n f1B),
1A =11l

f_l( UA’) = Uf_l(Ai), (1.1)

iel iel
FH((4) =7,
iel iel

Un ensemble A qui n’est pas fini est dit infini.
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Ensembles infinis dénombrables

% Définition 1.3

Un ensemble infini A est dénombrable s’il existe une bijection
f:4—>N.
Un ensemble 4 est au plus dénombrable s’il existe une injection
f:4—-N

Remarque 1.3. Certains auteurs disent dénombrable pour ce que
nous appelons au plus dénombrable et infini dénombrable avec
le sens de dénombrable ci-dessus.

On va utiliser librement le lemme suivant :

1. Toute partie non-vide de N a un minimum.

2. Une application strictement croissante f : N — N (resp.
f : [[0,n]] — N) vérifie f(p) > p pour tout p dans son
domaine.

Démonstration. 1. Si P est non-vide et donc, disons, contient z, alors
[[0,z]] NP est aussi non-vide et FINI, donc a clairement un minimum. 2.
11 suffit de voir le deuxiéme cas (en restreignant aux segments initiaux),
on le montre par récurrence sur n. Si # = 0, f(0) € N donc c’est
évident. En supposant ’hypothése vraie au rang z, on considére f :
[[0,2+1]] — N, la restriction a [[0, z]] vérifie ’hypothése de récurrence,
donc f(p) = p pour p < met f(n+1) > f(n) = n mais dans N cela
implique f(n+1) > n+1 et conclut I'étape d’induction. O

On peut représenter les éléments d’un ensemble dénombrable A a
laide d’une suite infinie en écrivant 4 = {x,;n > 1} (x est 'inverse de
la bijection f).

% Proposition 1.3

Les ensembles au plus dénombrables sont soit finis, soit dénom-
brables. De plus, pour une partie infinie P C N, il existe une
bijection strictement croissante et une seule de N — P.
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Démonstration. Les ensembles au plus dénombrables sont par définition
en bijection avec les parties de N. Dans le cas infini, il suffit de voir le
second point pour obtenir la bijection avec N. On définit par récurrence
la bijection f : N* — P. Plus précisément, on construit par récurrence
sur n une application strictement croissante f, : [1,z]] — P telle que
pour tout x € Im(f,),y € P —Im(f,), x <y et fulj14) = fi- Comme
P, infinj, il est non-vide donc admet un élément @y = min(P) On pose
J0(0) = ap d’ou Iinitialisation.

On suppose construit f,, et on prend a,1 = min(P — Im(f,)) qui
existe car cette partie est infinie de N donc non vide (si elle n’était
pas infinie, P serait finie comme union finie de parties finies). On pose
Jor1(k) = fu(k).k < n, fri1(n +1) = ayy de sorte que par 'hyp de rec
sur f, apa1 > fu(k),k < n ce qui donne la stricte croissance de f,.1 en
combinant avec celle de f,. Enfin, si y € P —Im(fp1) € P —Im(f,) on
a par hyp de rec y > f,(k)k < n et y > ay1 car c’est le min donc >
et on a y # a,41 par construction. Donc la relation demandée a I’étape
suivante est vérifiée.

On obtient f strictement croissante donc injective en rassemblant
les valeurs des f, qui s’accordent (f(n) = f,(n) = fu(n),m > n).

Pour voir que f bijective, par I’absurde, sinon il existe 6 € P —
Im(f) mais par stricte croissance d’entiers f(n) — co donc il existe
n minimal tel que b < f(n) = f,(n) ce qui impose par minimalité b >
f(n—1) et contredit f,(n) = Min(P —Im(fp-1)) vu b € P —Im(fr-1).

Pour l'unicité, si g est une autre telle bijection g=! o f est une
bijection strictement croissante de N — N ainsi que sa réciproque et le
lemme 1.2 donne donc g™ o f(n) > n,f 1o g(n) > n et donc, dou
par croissance de g, f appliquée encore a ces relations : f = g. O

% Proposition 1.4

Un ensemble P est au plus dénombrable si et seulement si il
existe une surjection f : N — P.

Démonstration. Pour I'implication directe, si P est dénombrable, la bi-
jection de la définition convient, si P est fini, en bijection avec [[0,2—1]]
alors le reste modulo n donne la surjection N — [[0,7 —1]] qui compo-
sée a la bijection donne la surjection cherchée. Réciproquement, I’en-
semble f~1(p),p € P est une partie de N qui a un plus petit element
ay : a: P — N est injection cherchée. O
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On va obtenir des exemples d’ensembles dénombrables les plus
courants. Pour cela on a besoin de quelques méthodes de constructions.

1. La réunion d’une suite (X,),>0 d’ensembles finis 2 a 2
disjoints est au plus dénombrable.

2. Un ensemble X est au plus dénombrable si et seulement
si il admet une suite exhaustive de parties finies, c’est a
dire une suite croissante de parties finies dont I'union est
X.

3. Le produit cartésien d’un nombre fini d’ensembles au
plus dénombrables est au plus dénombrable.

n
Démonstration. 1. Soit a, = Card(X,) et 4, = Zak (A1 = 0). On
=0
a des bijections 4, : [[4,-1 + 1,4,]] — [[1,a,]] — X, qui induisent
une application £ : N* — U, X, dés qu'un nombre infini de X; n’est
pas vide, ou & : [[1,4,]] — U, X, qui est par construction surjective.
Linjectivité des £, et le fait que les X, sont disjoints donne I'injectivité
de k. 2. Si X est fini on prend la suite constante, sinon, pour une bi-
jection £ : N — X on prend X, = A([[0,#]]) comme suite croissante
cherchée. Réciproquement, la suite croissante X, donne une suite dis-
jointe Xy, X,+1 — X, de parties finies, donc 1 donne que I'union est au
plus dénombrable.

3. Une récurrence triviale raméne au cas du produit de 2 ensembles
A,B. Soit h : N — A4, ¢ : N — B des surjections données par la
proposition 1.4. f = Axg : N> — AXB est une surjection qui raméne au
cas N? qui admet pour suite exhaustive d’ensembles finis [[0,2]]2. [

% Proposition 1.6

Les ensembles N* k € N*; Z et Q sont infinis dénombrables.

Démonstration. On a vu le cas du produit N¥ au lemme précédent.
[[—7n, n]] est une suite exhaustive d’ensemble fini pour Z qui est donc
au plus dénombrable par la proposition précédente, il est infini car il
contient N. Enfin (p,¢q) — p/¢q est une surjection de Z X N* — Q,
donc, par la proposition 1.4, Q est au plus dénombrable, et infini car il
contient N. 0
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Enfin, on améliore le lemme précédent.

Proposition 1.7

Une réunion au plus dénombrable d’ensembles au plus dénom-
brables est au plus dénombrable.

Démonstration. Soit (X,),>0 une suite d’ensembles dénombrables (si
la suite est finie, on peut la prolonger en une suite infinie.). Soit f, :
N — X, une surjection donnée par la proposition 1.4. Petite subtilité,
on a besoin de former une suite (f),en, c’est & dire une application

N
de N — U Xn) , ce qui n’est pas complétement anodin et utilise
neN
laxiome du choix dénombrable). On pose f : N? — U X, défini

neN
par f(n,p) = f,(p) et en composant avec une surjection N — N2, on
obtient le résultat par la réciproque dans la proposition juste citée. [

Les ensembles au plus dénombrables serviront de base aux proba-
bilités discrétes.

Ensembles infinis non dénombrables

Les ensembles qui n’appartiennent pas aux catégories précédentes
(finis ou infinis dénombrables) sont dits infinis non dénombrables. On
va voir que par exemple, R et C, [a,4], a < b sont infinis non dénom-
brables.

Le résultat clef est toujours un argument diagonal :

% Lemme 1.8: (Théoréme de Cantor)

Il n’existe pas de surjection 4 : E — P (E) entre un ensemble £
et ’ensemble de ses parties.

Démonstration. En effet une application £ : £ — P (E) permet de consi-
dérer 'ensemble 4 = {x € E : x ¢ h(x)}. Il n’existe pas de y tel que
h(y) = A car par 'absurde, si il existait, soit y € A et alors y ¢ A(y) = 4
une contradiction, soit y ¢ A et alors y € £(y) = 4 encore une contra-
diction. O
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Remarque 1.4. En conséquence de ce lemme et de la proposition
1.4, P(N) n’est pas dénombrable (il est infini a cause de I'injec-
tion x = {x} défini sur N), car sinon on aurait une surjection de
N — P (N). En conséquence {0,1}", en bijection par la fonction
indicatrice n’est pas non-plus dénombrable.

% Théoréme 1.9

[0,1] et R ne sont pas dénombrables.

En conséquence un intervalle quelconque [a,b], pour a < b, en
bijection avec [0,1] ne I’est pas non plus. et un intervalle quelconque
contenant au moins deux points (qui contient donc aussi un [a,b]) est
aussi non-dénombrable.

Démonstration. On construit une injection ¢ : {0,1}*' — [0,1] (le cas R
s’en déduit. (I'image de cette injection va étre I’ensemble triadique de
Cantor). On fixe a = (a,) € {0,1}'' on définit une suite de segments
emboités, on pose Jy = [0,1] et si J, = [x,,9,] alors on découpe 'inter-
valle en trois en posant u, = (2x,+,)/3 et v, = (2, +2y,)/3. Si a, =0,
on pose Jy+1 = [Xy, uy,], et si a, =1, on pose Ju1 = [0, 9,]. On obtient
par construction une suite de segments emboités, x,,y, sont des suites
adjacentes et y, — x, < 1/3" (récurrence facile) donc l'intersection est
un singleton N, /, = {¢(a)}.

Pour voir que ¢ est injective on note que si a # a’ sont deux suites
et n le premier indice avec a, # a,, alors J, N J; = 0 et les images sont
donc distinctes. O

Remarque 1.5. Lensemble triadique de Cantor a plein de pro-
priétés intéressantes. Topologiquement, il est fermé, totalement
disconnecté (les composantes connexes sont les singletons). Il
est de longueur nulle (car inclus dans I'union sur tous les cas
possibles des /, dont la longueur perd un facteur 2/3 a chaque
n). Le sens de cette longueur sera vu au chapitre 3 (c’est la me-
sure de Lebesgue). Il est en fait fractal de dimension de Haus-
dorff In(2)/In(3) < 1 (ce qui réexplique la longueur nulle, mais
c’est un sujet beaucoup plus avancé des mesures intermédiaires
entre discret et continue).
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Exemple 1.1

L’ensemble des nombres irrationnels R — Q est non-
dénombrable, car sinon son union avec Q a savoir R serait dé-
nombrable, ce qui n’est pas le cas.

2 Familles sommables a termes
positifs

Rappels

Rappel 1.6. La somme x+y avec x,y € R, est définie a ’exception

du cas ou x = too et y = —x.
Contrairement au cas des limites, on pose 0.4+00 = 0, f.+00 = +00
pour ¢ > 0.

Pour un ensemble 4 non-vide (non-nécessairement borné), on uti-
lise sup 4 pour le plus petit majorant M € R de 4 et inf 4 pour le plus
grand minorant m € R de 4.

On utilisera aussi inf @ = +o0, sup @ = —co.

Si (a;)i=1,..n est une suite finie (disons de nombres complexes) et
o : [[1,z]] = [[1,z]] une bijection.

La propriété de commutativité de la somme donne :

n n

Z a; = Z Ao (i)-

i=1 i=1

Démonstration. En voyant oo comme produit de transpositions, il suffit
de montrer le résultat pour o = (jk) une transposition avec j < k.
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Mais par commutativité (a+b = b+ a) et associativité ((a+6b)+c¢ =
a+ (b+c)) de la somme :

n j-1 k-1
Dltey =D o) H ey + D Ao Ao + Z g (1)
i=1 i=1 i=j+1 i=k+1
_Za,+ak+ S a3 a=Ya
i=j+1 i=k+1 i=1

O
Si E est fini et ¢ : [[1,7]] — E une bijection, f : E — C alors
n

Z f(e;) ne dépend pas de la bijection ¢. On note
i=1

D fo)= Zﬂ@

eckE

Démonstration. Si on prend une autre bijection ¢’ on considére la bijec-
tion o = ¢71 o ¢’ de sorte que ¢ o o = ¢’. La formule de commutativité
de la somme conclut :

Difle) =) fleaw) = . f€).
i=1 i=1 i=1

O

Le résultat suivant résume les propriétés de manipulation de ces
sommes :

Proposition 1.11

1. Si E fini, on a

Card(E) = Z 1.

¢€E
2. (Sommation par paquet) Si E fini est une union disjointe
finie E = UE, (Cestadire [ finiet E;NE; =0 sii # j)

iel
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et f: E— Calors:

Df@ =33 fo.

eck i€l eckE;

En particulier, on a Card(E) = Z Card(E;).

iel
3. (interversion de sommes finies) Si E,F sont finis et a :
EXF — C, alors :

Z Z Gef = Z o f = Z Z oy

e€E feF (e.f)EEXF fEF ¢cE

En particulier, on a Card(E X F) = Card(E)Card(F).

Démonstration. 1. Si Card(E) = n, E = {e1,...,e,} pour une bijection

n
e:[[1,n]] — E, on a donc Z 1= Z 1 = n par définition.
33 i=1
2. On pose j : [[1,m]] — I une bijection et n; = Card(E;(;)) On

1
note Ny =0, N, = Z ny.

=1
Ona N;—N;_1 = n;,i > 1 donc on a une bijection (en composant la

soustraction de N;_1 : [[N;—1+1,N;]] — [[1,#;]] avec la bijection donnée
par la définition du cardinal [[1,7;]] — E;@u), g : [Ni-1 + LN —
E;i). On pose g(k) = gi(k), si k € [[N;-1 +1,N;]]. Montrons que g
réalise une bijection de [[1,N,]] — E. En effet, par hypothése, E est
'union des E;(;), dont tous les éléments sont atteints par g;, donc par
g qui est donc surjective. De plus, si g(k) = g(/) € E;, comme I'union
décrivant E est disjointe, on a £,/ € [[N;—1 + L N;]] et g;(k) = g:({)
et comme g; est injective, on déduit £ = [ et donc comme £,/ sont
arbitraires, on déduit que g est aussi injective.
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Donc par définition de la somme sur un ensemble (au début et aux
deux derniéres lignes) :

N
D= flgk)
eckE k=1
N Ny N
=D FN+ D flgtkn+-+ > fg(k)
k=1 k=Ni+1 k=Ny_1+1
m N
=, fg(h))
I=1 k=N;_1+1
m N
=2, @k
=1 k=N;_1+1
=2 D, f©
I=1 e€Ej(p
=2 >
i€l eckE;

Le résultat sur le cardinal est une application du 1. et de la sommation
par paquet pour la fonction f =1 constante :

Card(E) = Z 1= Z Z 1= Z Card(E;).

ecE iel eckE; iel

3. I suffit d’appliquer la sommation par paquet aux unions dis-
jointes
EXF =U,cp{e} X F=UrcprEX{f}.
Pour le cardinal on a par le 1 et la distributivité de la multiplication
par rapport a I’addition :

Card(E X F) = Z 1=ZZl

(e.f)EEXF e€k feF

= Card(F) = Card(F) Y 1

ecE eckE
= Card(E)Card(F).
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Définition et premiéres propriétés

% Définition 1.4

Une famille (a;);c; de nombres réels positifs est dite sommable
si

sup Zaj:jcl, fini } < o0
jeJ

et alors on note

Za,-:sup Zaj:jcl, fini

iel ieJ

Tout d’abord, le résultat simple suivant raméne au cas / dénom-
brable, ce que 'on supposera par la suite :

Lemme 1.12

Si (a;)ier est une famille sommable, alors le support I = {i €
I :a; # 0} est au plus dénombrable.

Démonstration. Si § = Z a; =0, alors Ih = 0. Sinon si § = Z a; >0 et
iel iel
sil,={i €l:a > 8/n}, alors Iy = U,>1I, est au plus dénombrable
comme union d’une suite d’ensembles finis car Card(l,) < n. En effet,
sij€ly,a; >28/ndoncsi J C I, fini§ > Z a; > SCard(J)/n donc
JEJn
Card(J) < n et donc Card(l,) < n. O

On résume les propriétés générales dans I’énoncé suivant :

Proposition 1.13

1. (critére des suites exhaustives) Si (/,)z>0 est une suite
exhaustive de parties finies de 7, alors la famille (a;);ez
est sommable si et seulement si la suite (Z a;)y>0 est

i€ ],
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bornée et alors on a

i€l neN je i€ ]y

2. (lemme de domination) Si a; < b; pour tout i et (5;)
sommable, alors (a;);c; est sommable et alors Z a; <

iel
Db
iel
3. (lemme de permutation) Si (a;);c; est sommable et o :
I — I est une bijection, alors (as(;))ics est sommable de
méme somme.

Démonstration. 1/ La famille Z a; étant inclus dans la famille des
i€ f,
sommes finies, il est clair qu’elle est majorée si la famille est sommable
(et on a en passant au sup la partie > de I’égalité énoncée). Mais réci-
proquement toute famille finie est inclus dans un certain J, par défini-
tion d’une suite exhaustive, d’ou la borne inverse et la réciproque.
o/ 11 suffit de borner les sommes partielles finies Z a; < Z b; et
ie] ie]
passer au sup.
3/ Pour tout J fini, o-(J) est fini donc Z Ay (i) = Z a; < Z a;.
ie] ico(J) iel
D’oui la sommabilité et la premiére inégalité en passant au sup. En consi-
dérant la bijection réciproque o' on obtient de méme lautre inéga-
lité. O

Le dernier résultat généralise la commutativité des sommes.

Corollaire 1.14

Une famille a termes positifs (a,)nen est sommable si et seule-

ment si la série Z a, est convergente.
n=0
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Sommation par paquet et applications
On conclut avec les deux résultats importants, le premier généralise

I’associativité des sommes finies. On rappelle qu’une partition (f;)ea
de I est une famille d’ensembles 2 a ¢ disjoints d’union égale a /.

% Théoréme 1.15: (de sommation par paquets - Cas Posi-

tif)

Soit (1) )e une partition de 7. Une famille (a;);c7 est sommable
si et seulement si on a a la fois les deux propriétés suivantes :

1. pour chaque 4 € A, (a;);e;, est sommable, disons de
somme o)
2. et (04)1en est sommable.

Dans tous les cas (méme en I’absence de sommabilité), on a

Pégalité : Te= Ton= T (Z ai) :

iel AEN AeA \iel)

Démonstration. Commencons par la condition nécessaire. Si (a;);es est
sommable alors les sommes finies d’une sous famille (a;);c;, sont bor-
nées par les sommes de la famille totale donc on a la premiére condi-

tion de sommabilité et o, < Z a;. Plus si on a des sous ensembles

iel
finis /1 C I, ..., Ju C I, pour des 4; distincts, ils sont disjoints et leur

n
union J = U]k est un sous-ensemble fini de 7 donc
k=1

n
PIDITEDITEPI
k=1iej; ief iel
Donc en passant successivement au sup sur les J; fini, on obtient :
n
DI
k=1 iel

Donc la famille (073) e est sommable et on obtient la premiére inéga-
lité > en passant au sup.
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Réciproquement, pour tout / partie finie de 7 on définit J; = JNI;
n

et on obtient un nombre fini de A tel que J = U Ja;- On déduit

k=1
DI Zwk 2,
ief k=1i€J; AeA

D’ou la bornitude sur J qui donne la sommabilité, et autre inégalité
en passant au sup. O

Un cas particulier est la “version famille sommable” du théoréme de
Fubini (qui se généralise a un théoréme d’intégration). Le cas positif est
nommé théoréme de Fubini-Tonelli. Il correspond a la décomposition

I'x J=Ver{i} X J =UjesI x{j}.

Il donne un résultat d’interversion des sommes.

% Théoréme 1.16: (de Fubini-Tonelli)

Une famille double (a,-‘]-),-elgjej a termes positifs est sommable
si et seulement si on a 'une des deux propriétés équivalentes
suivantes :
1. pour tout i € I, (a;;);c; est sommable et la famille des
sommes (Z aij)ies est sommable
i€
2. pour tout j € J, (a;;);c; est sommable et la famille des
sommes (Z a;;)je; est sommable
iel
Dans tous les cas (méme en ’absence de sommabilité), on a
Iégalité :

% a3 Sa)- %[5

(i,j)eIxj iel \jej jeJj \iel

Démonstration. C’est une application directe du résultat de sommation
par paquets avec les partitions ci-dessus. O
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Calculons la somme [ = Z Z ;2

pary ey (i+j+1)
Comme c’est une série a coefficient positifs, chaque somme est
somme d’une famille sommable, donc par Fubini-Tonelli, on ob-
tient une somme sur le produit :

1= =
é%(z+]+l)z ()ZNZ (z+j+1)l

Comme chaque terme de la somme ne dépend que de n =i+ j+
1, on a envie de considérer la partition de N2 = U,en+ A, avec
An ={(i,j) € N’ : i+ j+1 = n}. Par le théoréme de sommation
par paquet, on a :

1
172 A G

n=1 (i,j)eA,
1 . .
1l suffit donc de calculer Z ———— Mais A, est fini de
Ky (i+j+1)2
(i,j) €A
taille  vu A, = {(i,n—1-4i):0<i < n—-1} ~ [[0,z—1]], donc
1 Card(A
AT ar g ) = —. C’est le terme d’une série
(5o (i+j+1) n n
de Riemann divergente, donc / = +co et les familles ne sont pas
sommables.

3 Familles sommables a termes
scalaires

Comme pour les séries, on se raméne au cas a valeur positif en
prenant le module. On pourrait traiter de fagon semblable le cas a
valeurs vectorielles (par exemple dans R” ou dans ce qu’on appelera au
chapitre suivant un e.v.n. ou toute suite de Cauchy converge, un e.v.n
dit complet) en prenant la norme a la place du module. On note K = R
ou K = C le corps de référence.
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% Définition 1.5

Une famille (z;);c; de nombres complexes ou réels est dite som-
mable si la famille (|z;|);c; est sommable. On note £1(,K) I'en-
semble des familles sommables d’éléments de K indexées par
1.

On note

lzll = > lal.

iel

Lemme 1.17

¢Y(I1,K) est un espace vectoriel et de plus on a pour u,v €
(LK), u,veK:

1A + polly < |A{|ully + o]l

Démonstration. On voit que c’est un sous-espace vectoriel de ’ensemble
des fonctions K/. D’abord, la famille nulle est sommable et de plus
si A,u € K, (a;),(d;) des familles sommables, pour J fini, on a par
I'inégalité triangulaire (des nombres) :

D lAai+ byl < ) Alla + |l ]
ief ief
=121 ladl + 1l > 18]
ief ief
< [Alllally + |ull[8]l

donc comme la valeur est bornée, on obtient, la sommabilité de la
famille (1a; + ub;), donc £1(1,K) est stable par combinaison linéaire
et est donc un sous-espace vectoriel de K/, puisqu’il contient aussi la
famille nulle (0).

De plus en passant au sup sur / on obtient ||[1a+ub||1 < |1]||a||1+

|ul118]2- O

Comme d’habitude pour définir I'intégrale (ici on va définir de
méme la somme), on sépare les parties positives, négatives des par-
ties réelles et imaginaires, pour définir la somme. On note donc (a;)+ =
max(a;,0), (a;)- = max(—a;,0) de sorte que

Z] = (%Z])+ - (%Z]), + Z(SZJ)+ - Z(Sz])f
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Comme (Rz;), + (Rz;)-,(Iz)s + (Jz;)- < |z;| on déduit que si
(z;) est sommable, alors ((Rz;):),((Rz;)-,((Iz))+),((Iz;)-) le sont
aussi par domination.

Définition 1.6

La somme d’une famille sommable (z;);c; est la valeur :

Z zj = Z(‘sz)+ - Z(‘sz)_

Jel Jel jel

+1 ) (3z)r =i ) (52

Jel jel

Exercice 1.1. Vérifier que la somme d’une famille sommable est
une application linéaire. (indication : considérer une suite ex-
haustive de parties finies pour se ramener au cas des sommes
finies).

On a le résultat qui résume les propriétés élémentaires :

Proposition 1.18

1. Une famille (z;);c; est sommable si et seulement si
(Rz;)icr et (Iz;)ics sont sommables.
2. (2;);e7 est sommable si et seulement si (z;);c; est som-

mable et on a :
sz = Zz_/"

jel jel

3. Pour (z;);e; sommable, on a I'inégalité triangulaire géné-

ralisée :
IEDNL

jel jel
4. (lemme de permutation) Si (z;);c; est sommable et o :
I — I est une bijection, alors (Zs(;))ie; est sommable

de méme somme. En particulier, si E a, est une série
absolument convergente et o une permutation de N alors

Z a,(n) est absolument convergente de méme somme.
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Démonstration. 1/ Les bornes |Rz;| < |z] et |Jz;| < |z;] donnent
la condition nécessaire par domination. Réciproquement |z;| =
VIR 2|2 +132]? < |Rz|+|T2]| et comme ¢! est un e.v, on a vu que I’hy-
pothése implique (|Rz;|+|J2|);er sommable d’ou le résultat & nouveau
par domination.

o/ I'équivalence est évidente en utilisant 2 fois le 1. L’égalité vient
directement de la définition.

3/ On fixe une suite exhaustive J, de I. D’apreés le critére des suites
exhaustives pour les quatre séries a termes positives intervenant dans la

somme Zz = lim zZ zi| = lim Z z;| donc par 'inégalité

’ 7T e J 121 Pl |21 P 3
jel JE€n jel JE€n

triangulaire pour les sommes finies (et continuité du module)

zi| = [lim Zz = lim Zz
Z 7 n—oo 7 n—oo J

jel J€Jn J€Jn
3 1= Yo
—ngrolo |Z]| |Z]|

J€Jn jel

4/ Tout vient du cas positif, soit par la définition de sommabilité soit
par la définition de la somme en terme de somme de familles a termes
positifs. Le cas particulier vient du fait que si la famille est indicée par
N, le critére des suites exhaustives (appliqué a la suite [[0,z]]) implique
qu’étre sommable équivaut a étre absolument convergente. O

Remarque 1.7. Une série Z a, telle que pour tout o permu-

tation de N on ait Z as(») convergeant est dite incondition-
nellement convergente. Un résultat classique qu’on trouve par
exemple dans Bourbaki Topologie Générale IV.44 [2]dit qu'une
série numérique inconditionnellement convergente est absolu-
ment convergente. Il n’y a donc pas d’extension possible du
dernier énoncé.

On finit avec les résultats de sommation par paquets et de Fubini.
Dans les deux cas, on n’a plus d’équivalence comme dans le cas & terme
positif. On utilise alors souvent/toujours le cas a terme positif pour mon-
trer la sommabilité nécessaire a appliquer le cas avec signe/complexe.
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% Théoréme 1.19: (de sommation par paquets - Cas Géné-

ral)

Soit (I;)1ea une partition de 7. Si une famille (z;);c; est som-
mable alors on a les deux propriétés suivantes :

1. pour chaque 4 € A, (2;);er, est sommable, disons de
somme 07y
2. et (04)1en est sommable.

De plus, on a I’égalité :

Y= Yme (3]

iel AeN AeN \iely

Démonstration. Comme (|2;]);cr, la sommabilité de (|z;]);ez, vient du
cas positif. De plus, par 'inégalité triangulaire des familles sommables
(proposition 1.18), | Z zi| < Z |2;| et le théoréme de sommation par
iel) iel)
paquets assure la sommabilité du membre de droite, donc par com-
paraison, celle de (073)1ea comme voulu. I'égalité vient du cas positif
appliqué aux parties positives et négatives des parties réelle et imagi-
naire. (]

En appliquant la sommation par paquets a la méme partition que
dans le cas positif, on obtient :

% Théoréme 1.20: (de Fubini)

Si une famille double (z;;);cs,je; est sommable alors on a les
deux propriétés suivantes :
1. pour tout i € I, (2;);c; est sommable et la famille des
sommes (Z 2ij)ier est sommable
jeJ
2. pour tout j € J, (z;)ies est sommable et la famille des

sommes (Z zij)jej est sommable
iel
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De plus, on a I’égalité :

(ij)elx]

PINEEDY

iel

[z

JeJ

|

=2,

JeJ

|

S

iel

) .
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1 Distance et Norme sur un espace
vectoriel

% Définition 2.1

Soit X un ensemble (en général supposé non-vide). Une distance
sur X est une application d : X X X — [0,+oo[ telle que :
i Vx,9e€X, d(x,y) =d(y,x) (symétrie)
ii Vx,9,2 € X d(x,2) < d(x,9) +d(y,2z) (inégalité triangu-
laire ou sous-additivité)
iii Vx,9 € X d(x,y) =0 & x =y (séparation)

Un couple (X, d) est appelé espace métrique (em).

% Définition 2.2

Soit £ un K-e.v. Une norme sur E est une application n : £ —
[0,+co[ telle que :
i Vxe E, 1 e Kn(dx) = |1|n(x) (homogénéité)
ii Vx,y € En(x+y) < n(x)+n(y) (inégalité triangulaire ou
sous-additivité)

iii Vx € E n(x) =0 & x =0 (séparation)
Souvent on note n(x) = [|x||, sauf dans ’exemple E =K, z(x) =
|x|. Un couple (£,]||.||) est appelé espace vectoriel normé (evn).

Exemple 2.1

Soit X C E une partie (non-vide) avec d(x,y) = ||x — y||, alors
(X,d) est un espace métrique et tout espace métrique est de
cette forme.

Exemple 2.2

Si E =R”" on a trois normes classiques, si X = (¥1,...,%y) :

n
1X1h = |l
i=1
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[ XTl2 = 4 Z |x;|* (norme euclidienne)
=1

[[X]leo = max |x;]
i=l...n

Exercice 2.1. Montrer que ce sont des normes (cf. TD de L2).

% Exemple 2.3

Si E = C°([a,b],R) 'ensemble des fonctions continues sur
[a,b], on a trois normes :

b
£l = / £l

b
11l = / £ (0)2de

1flls = sup 1£(0)
telab]
Cette derniére norme est la norme de la convergence uniforme
(la convergence pour |[|.|| coincidera avec la convergence uni-
forme)

Le lemme 1.17 se reformule en disant :

Lemme 2.1

(£1(1,K),|| - |]1) est un espace vectoriel normé.
Démonstration. || - || vérifie 'inégalité triangulaire (cas 4 = ¢ = 1 du
lemme 1.17). De plus || - ||; est positif. Comme |a;| < [|al|]1, a; = O si

[lall1 = 0, pour tout i donc @ = 0 ce qui donne 'axiome de séparation.

Enfin Z |[da;| = || Z |a;| donc en passant au sup : |1]| ||a|]1 = [|4al1
ief ie]

(d’ot ’'homogénéité). O
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Exemple 2.4

SiZ =X XY avec (X,dx), (Y,dy) des espaces métriques. On
définit :

dz((x,),(x".y")) = max(dx (x,x"),dy (3.")).

C’est une distance sur Z (exo) que l'on utilisera dans cette si-
tuation ultérieurement (distance produit).

Exemple 2.5

R =RU{—00,00} est un espace métrique avec la distance

dg(x.y) =
min(1,[x — y|) si x,y€R
0 si x =9 € {—co,+o0}
1 sinon

Proposition 2.2
(Inégalité triangulaire inverse) Soit (X, d) un espace métrique.

Vx,9,2 € X| d(x,2) —d(y,2) | < d(x,y).

Démonstration. Cas d(x,z) > d(y,z) : Comme d(x,z) < d(x,y) +d(y,2)
par I'inégalité triangulaire, on en déduit \ d(x,z) —d(y,2) | =d(x,z)—

d(y,z) <d(x,y).
Dans le cas d(y,2) > d(x,z), on échange x et y par symétrie. [
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2 Meétriques équivalentes

% Définition 2.3

Soit X un ensemble. Deux distances d; et dy sur X sont dites
équivalentes si

d¢,C > 0Vx,y € X,
cdi(x,y) < da(x,y) < Cdyi(x,y).

On note alors d; ~ da. Des normes sont équivalentes si les dis-
tances induites le sont.

Remarque 2.1. L'équivalence des distances est une relation
d’équivalence, c’est a dire qu’elle est réflexive (d1 ~ d1), symé-
trique (d1 ~ do = dy ~ dq) et transitive (d1 ~ dy,dy ~ d3 = dq ~
d3). Si deux normes sont équivalentes les notions d’analyses (li-
mite, continuité, ...) sont les mémes pour les deux normes.

Exemple 2.6

Dans R”, ||.|[1,]].|l2,||-]|c sont équivalentes (cf. TD de L2). On
verra plus tard qu’en dimension finie toutes les normes sont
équivalentes.

3 Boules dans un espace métrique

% Définition 2.4

Soient a € X et r € [0,00].
On appelle boule ouverte de centre a et de rayon r de X la partie :

B(a,r) ={x e X, | d(x,a) <r}.
et boule fermée de centre a et de rayon r de X la partie :

Bp(a,r) ={x € X, | d(x,a) < r}.
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On appelle spheére de centre a et de rayon r de X la partie :

S(a,r)={xe X, | d(x,a) =r}.

Dans le cas r =0, B(x,0) = 0,Br(x,0) = {x}.

Exercice 2.2. Dessiner les boules de R? pour [|.||1,]].]|2, .||

Parties bornées

Définition 2.5

Un ensemble 4 C X est dit borné si AM € [0,00[,a € XVx €
A,d(x,a) < M, C’est a dire s’il est contenu dans une boule.

4 Suites dans un espace métrique

On rappelle qu’une suite de E est une application u : N — E notée
(n)n>0-

Convergence

Définition 2.6: Convergence

Soit (#,) une suite d’'un espace métrique (X,d). On dit que %,
converge vers | € X (et on note [ = lim,_,o %, OU %, =400 I) si
la suite numérique d(u,,/) converge vers o, c’est-a-dire :

Ve > 0,3dny € N,Vn > ng, d(u,,l) <e.

Remarque 2.2. Ceci équivaut a Ve > 0,3np € N,Vn > ng, u, €
B(l,e). Comme dans R on a unicité de la limite (justifiant la
notation). En effet si on a deux limites /;,/y pour z grand
u, € B(l1,€) N B(ly,€) donc par inégalité triangulaire d(/1,ly) <
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d(l,uy,) + d(uy,ly) < 2¢ Comme € > 0 arbitraire d(/1,l) = 0,
soit par ’axiome de séparation /j = ly.

Proposition 2.3

(i) Si u, — u, alors pour tout x, d(u,,x) — d(u,x).
(if) Toute suite convergente est bornée (réciproque fausse).
(iif) Si E est un evn u, — u,v, — v alors pour toute suite
An €K telque A, > A onadyu,+v, = Au+v.

Démonstration. (i) Par Dinégalité triangulaire inverse |d(u,,x) —
d(u,x)| < d(uy,u)
(ii) Par (i) et le cas réel.
(i) Vu Adgu, + v, — (AQu+v) = Ay(uy —u) + (v, —0) + (1, — Du,
homogénéité et inégalité triangulaire implique :

||/lnun+vn - (/lu+v)||
< |Anlllun = ull + |[on — ol| + [0 = A][[u|[ — 0.

O

Suite extraite, valeur d’adhérence

Définition 2.7

Soit (u#,) une suite de X on appelle suite extraite ou sous-suite une
suite de la forme v, = uy(,), pour ¢ : N — N une application
strictement croissante

On appelle valeur d’adhérence d’une suite (u,) toute limite d’une
suite extraite convergente.
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Proposition 2.4

Toute suite extraite d’une suite convergente converge vers la
méme limite. (Autrement dit, toute suite convergente n’a qu’une
seule valeur d’adhérence, sa limite.)

Démonstration. Supposons u, — [ et si v, une suite extraite, d(v,,/)
est extraite de d(u,,/) ( le résultat est donc une conséquence du cas
réel). O

5 Suite de Cauchy, Complétude

Définition 2.9

Une suite (#,) de X est dite de Cauchy si :

Ve > 03N e N,V(p,q) eN?.p>Netg>N
= d(up,uy) < €.

La proposition suivante est similaire au cas réel (cf. cours de Lg).

Proposition 2.5

Toute suite convergente est de Cauchy. Toute suite de Cauchy
est bornée. Toute suite de Cauchy possédant une valeur d’adhé-
rence est convergente.

Définition 2.10

Un espace métrique X est dit complet si toute suite de Cauchy
de X converge dans X. Si un evn E est complet on dit que c’est
un espace de Banach.

On a vu en premiére année que K est complet (mais pas Q). Vous
avez vu en L2 que (R”,[| - ||2) est complet. On verra que tout evn de
dimension finie est complet.
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% Proposition 2.6

Un evn E est complet si et seulement si toute série absolument
convergente est convergente.

Démonstration. Si E est complet et (x;) est absolument convergente,

?
la suite des sommes partielles S, = x; vérifie, pour ¢ > p, ||S) —
i=1
g-1 q
Syl < Z ||x:]] donc comme Z [|x;]| est convergente donc de Cauchy,
k=p )

on déduit que (S,) est de Cauchy donc converge.

Réciproquement, si toute suite absolument convergente converge,
soit (x;) une suite de Cauchy. Il suffit de montrer qu’elle admet une
sous-suite convergente pour voir qu’elle converge. Par la propriété de
Cauchy, on trouve par induction ||x,, || avec ||x,,,, =%, || < Zi,: de sorte

que la série télescopique E Xn,,, — %, est absolument convergente donc
converge, et donc la sous-suite (x,,) converge. O

Exemple 2.7

Dans le cadre de I’exemple 2.3, vous avez vu en L2 que toute sé-
rie normalement convergente de (C°([a,5],R),||.||~) converge
uniformément. D’aprés le résultat précédent, c’est équivalent a
dire que (C°([a,b],R),||.||) est un espace de Banach (aussi vu
directement en L2 en analyse 2 Prop 7.6). Par contre ce n’est
pas le cas de (C°([a,8],R),||.|l;), i = 1,2. On verra qu’ils sont
denses dans les espaces de Lebesgue L' ([a,5],R) qui seront eux
complets, et sont les constructions de base de la théorie de I'in-
tégration de Lebesgue.

Proposition 2.7

Si X,Y sont des espaces métriques complets. Alors X X Y (mu-
nie de la distance produit de ’exemple 2.4) est complet.

Démonstration. Si (u,,v,) est de Cauchy dans X XY, de méme, (u,) est
de Cauchy dans X, et (v,) dans Y, donc par complétude (u,) converge
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vers u et (v,) vers v. En conséquence (u,,v,) converge vers (u,v) vu

d((uy,v,),(u,0)) = max(d(uy,u),d(v,,v)) — 0. O

Théoréme de Point fixe

% Théoréme 2.8: (du point fixe de Banach)

Soit (X,d) un espace métrique complet, et f: X — X une ap-
plication telle que

Fk<1VxzyeX d(f(x),f() < kd(x,p) .

Alors f admet un unique point fixe.

Démonstration. Soit x) € X on définit par récurrence x, = f(x,-1) =
J°"(x0). Donc

d(xn41,%0) = d(f (%), f (x2-1)) < kd (%0, %0-1)

< k"d(xl,xo). (2.1)

Montrons que x, est bornée en voyant par récurrence que
n—1

d(xy,%0) < Zkid(xl,xo). C’est évident pour » = 1. Et par I'inéga-
i=0

lité triangulaire et (2.1) :

d(%n41,%0) < d(Xni1,%5) + d (%0, %0)
n—1

< K" (x1,%0) + ) K'd(x1,%)
i=0

=) Kd(x.x)
i=0

Or on reconnait une série géométrique convergente, d’oti la borne :
1
d(xn+1,%0) < 7 d(x1,%0).
Montrons que x, est de Cauchy. En effet, pour m > n,

d(xy,%p) = d(fon(xO)vfon(xm—n))

< knd(xo,xm—n)

. 1
< k md(Xl,X())
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Comme k”ﬁ — 0, on déduit que pour N grand et m > n > N
d(xy,xyp) est arbitrairement petit, donc x, est de Cauchy. Par complé-
tude de X, on obtient donc que x, converge, disons vers x. Main-
tenant, en passant a la limite dans (2.1), on obtient d(f(x),x) =
lim, d(f (%4),%,) < limsup, d(f(x,),%x,) < limsup, k"d(x1,%) = 0
donc par séparation f(x) = x et x est le point fixe cherché.

O

6 Ouverts dans un espace métrique

Soit (X,d) un espace métrique.

% Définition 2.11

Une partie O C X est un ouvert (ou une partie ouverte) si

Vx € 0,3r >0, B(x,r) CO.

Exemples d’ouverts et propriétés

X,0 sont des ouverts de X. [a,b],[a,b[ ne sont pas ouverts dans R
mais ]a,b[ Pest.

Proposition 2.9

Les boules ouvertes sont ouvertes.

On remarquera que le mot ouvert a deux sens dans "boules ou-
vertes” et "parties ouvertes” mais qu’ils sont cohérents grice a la pro-
position (les boules fermées ne sont pas des ouverts, cf. TD).

Démonstration. Soit a € X,r > 0 montrons que B(a,r) est un ouvert
(B(a,0) est vide donc ouvert). Soit x € B(a,r), r — d(x,a) > 0, il suffit
donc de montrer que :

B(x,r —d(x,a)) C B(a,r).

C’est une conséquence de 'inégalité triangulaire. En effet, si y €
B(x,r—d(x,a)), alors d(y,a) < d(y,x)+d(x,a) < (r—d(x,a))+d(x,a) =
7, donc y € B(a,r). O
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% Proposition 2.10

1. La partie vide () et X sont des ouverts.
2. la réunion d’une famille d’ouverts est ouverte.
3. lintersection d’une famille finie d’ouverts est ouverte.

Remarque 2.3. On appelle topologie une famille de parties d’un
ensemble, qui, comme la famille des ouverts d’un espace mé-
trique, vérifie ces trois propriétés. La famille des ouverts de X est
donc appelée topologie (métrique) de X. NyenB(a,1/n) = {a}
qui n’est pas ouvert dans X montre que ’hypothése "finie" est
cruciale dans 3.

Démonstration. 1. évident.

2. Soit (0;);er une famille d’ouverts. On peut supposer I non vide
(sinon l'union vide étant vide on est ramené a 1). Soit x € 0 =
Uier0;, donc il existe j € I, x € 0;. Comme 0O; est ouvert il
existe r > 0, B(x,7) € 0; C 0. Donc O est ouvert.

3. Soit 0y,...,0, une famille finie d’ouverts. Soit x € 0 =01 N---N
0,. Comme x € 0;, et O; ouvert, il existe r;, > 0,B(x,r;) C 0;.
Soit 7 = min;—1_, 7; > 0. On déduit de la définition que B(x,r) C
B(x,r;) € O0; donc B(x,7) C 0, ce qui montre que O est ouvert.

O

Exemple 2.8

Soit O = {(x,y),x > 0}. Montrons que c’est un ouvert de R?
pour la norme ||.||. En effet

0= U 10,2x[x]y — x5 + x[
(xp)€0

- U By ((x,9),%),

(x)€0

est ouvert comme union d’ouverts.
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% Proposition 2.11: (Ouverts pour la métrique induite)

Soit A C (X,d) avec la métrique induite, O est un ouvert de 4,
si et seulement si il existe un ouvert U de X tel que O = U N 4.

Démonstration. On suppose O ouvert de A. Pour chaque x € 0, on fixe
e > 0 tel que By(x,7,) C 0. On pose alors

U=|JBx(xrn)

x€0

qui est un ouvert de X par union de boules ouvertes. Or 0 € U N 4
car 7, > 0 donc pour tout x € 0, x € By(x,7,) C U. Et UNA4 =

U By(x,r) N A= U By(x,7,) € 0.Donc U NA=0.
x€0 x€0
Réciproquement, comme U est ouvert soit x € O C U, il existe

r >0, Bx(x,r) Cc U donc By(x,r) = Bx(x,r)NAc UNA=0 donc O
est ouvert dans 4. O

Intérieur

Définition 2.12

Soit A € X, on dit que x est intérieur 3 A (ou A est un voisinage
de x) si dr > 0,B(x,r) C A.
On note Int(4) ou 4 ’ensemble des points intérieurs a A.

% Proposition 2.12

Int(A) est le plus grand ouvert contenu dans A.

Démonstration. 1. Int(4) contient tous les ouverts inclus dans
A.
Soit U un ouvert contenu dans A. Soit x € U, alors comme U
est ouvert, Ir > 0,B(x,r) C U C A, donc x est intérieur a A.
Ainsi U c Int(4)

2. Int(4) est un ouvert. Soit x € Int(4). Soit donc r > 0 tel que
B(x,r) ¢ A. Comme B(x,r) est ouvert, tout y € B(x,r) est in-
térieur & B(x,r) donc intérieur a A. En bilan, Vx € Int(4),3r >
0, B(x,r) C Int(4), ce qui conclut.
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O
Corollaire 2.13: (exo, cf TD)

1. A ouvert si et seulement si 4 = Int(4).
2. AcC B = Int(4) c Int(B)

3. Int(A4) U Int(B) c Int(4 U B)

4. Int(4) N Int(B) = Int(4 N B)

46

Soit F' = {(x,7),x > 0}. Montrons que Int(F) = 0 := {(x,y),x >
0}. On a vu a’exemple 2.8 que O est ouvert, donc comme O C F,
ona O C Int(F). Il reste a voir que Int(F) N {(x,9),x =0} =0
(car alors Int(F) C F —{(x,y),x = 0} = 0). Mais soit (—¢,y) €
By 1. ((0,9),€) N F° pour tout € > 0, donc By .. ((0,9),€) ¢ F
donc (0,y) n’est pas intérieur a F, ce qu’il fallait démontrer.

Exemple 2.9

7 Fermés dans un espace métrique.

Soit (X,d) un espace métrique.

Rappel 2.4. Soit A c X, on note 4° = {x € X | x ¢ A} le
complémentaire de A. On rappelle que 0° = X, X* = 0,(4°)° =
A4, AU A° = X,AN A° = 0. Les lois de De Morgan impliquent
que pour une famille (4;);er

(Ua) -

iel iel
c
(4] =Y
iel iel
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Définition 2.13

Soit F' C X. On dit que F est un fermé de X si F* est un ouvert
de X.

Le résultat suivant est obtenu en passant au complémentaire le
résultat sur les ouverts.

% Proposition 2.14

1. La partie vide 0 et X sont des fermés.
2. Dintersection d’une famille de fermés est fermée.
3. P'union d’une famille finie de fermés est fermée.

% Proposition 2.15: (Caractérisation séquentielle des fer-

més)

Une partie ' d’'un espace métrique X est fermée si et seulement
si toute suite convergente (x,) d’éléments de F a sa limite dans
F.

Démonstration. Supposons F fermé. Soit (x,) une suite d’éléments de
F, convergente vers x. Soit y € F'°, comme F* est ouvert il existe € > 0
B(y,e) C F¢, d’ou x, ¢ B(y,€) Donc d(x,,y) > €. En passant a la limite
on déduit

\%

d(x,p) 2| d(xp,x) = d(x4,) |
2 €~ d(xn»x) —p—oeo € > 0,

Donc d(x,y) > € donc x # y. Comme y était arbitraire dans F°, x € F.

Réciproquement, supposons que F n’est pas fermé et montrons
que la seconde caractérisation est fausse. Soit x € F° montrant que
F° n’est pas ouvert, donc pour tout » € N, B(x,1/n) N F # 0. Soit
xn € B(x,1/n) N F d(x,,x) < 1/n -, 0, donc (x,) est une suite
d’éléments de F qui converge vers x € F*. O

Exemple 2.10

Montrons avec la caractérisation séquentielle que 4 =
{(x,9),x > 0,y > 0} n’est pas fermé pour la norme ||.||w. En
effet A3 (1/n,1/n) — (0,0) ¢ 4, ce qui contredirait I’hypothése
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que A fermé. Montrons de méme que B = {(x,y),x > 0,y > 0}
est fermé. En effet, Soit (x,,9,) € B tel que (x,,9,) — (x,7) on
a x, — X,9, — y donc comme x, > 0, on déduit x > 0, et de
méme y > 0 donc (x,y) € B . Ainsi, comme toute limite de suite
de B est dans B, on déduit que B est fermé.

Vous avez vu en Lg le résultat suivant :

Proposition 2.16: (Relations Fermé-Complet)

Soit £ un espace métrique.

1. Si C C E est complet alors il est fermé.
2. Si C C E est complet et F C C est un fermé de E, alors
F est complet.

Démonstration. 1. Si € C E est complet alors si on considére une
suite (x,) convergente vers x dans E, elle est de Cauchy, donc
converge dans C, donc x € C par unicité de la limite.

2. Si C C E est complet et F' C C. Soit x, une suite de Cauchy de
F, elle converge dans C, donc comme F est fermé, la limite est
dans F, donc toute suite de Cauchy de F converge dans F.

O

En passant au complémentaire la proposition 2.11, on obtient :

Proposition 2.17: (Fermés pour la métrique induite)

Soit A € (X,d) avec la métrique induite, F est un fermé de 4,
si et seulement si il existe un fermé C de X tel que F = C N A.

Adhérence

Définition 2.14

Soit A € X. Un point x € X est dit adhérent a A siVe > 0B(x,e)N
A+0.
On note 4 (ou Adh(4)) 'ensemble des points adhérents a 4.
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Exemple 2.11

X = X,ﬁ = 0,4 c A Sir > 0, dans un e.v.n. E, on a
B(a,r) = Br(a,r). Si A = {x,}nen les valeurs d’adhérence de
la suite (x,) sont dans 4 qui est 'union de ’ensemble des va-
leurs d’adhérence et de 4 (exo).

Proposition 2.18

(Adh(4))° = Int(4°).
(Int(B))° = Adh(B").

Démonstration. Un point x € X n’appartient pas & Adh(A4) si et seule-
ment si e > 0,B(x,e) N4 = 0 & Je > 0,B(x,e) c A°. C’est par
définition équivalent a dire que x est un point adhérent a A°.En appli-
quant le premier résultat & 4 = B, on en déduit le second. O

On en déduit toutes les propriétés en passant au complémentaire
celles de l'intérieur.

Corollaire 2.19

1. A est le plus petit fermé contenant 4.
2. A fermé si et seulement si 4 = A.

3. AcB=>ACB

4. ANB>ANB

5. AUB=AUB

Démonstration. 1. A est fermé vu que son complémentaire est 'ouvert
Int(A4°). Si F est un fermé contenant 4, F° est un ouvert contenu dans
A° donc dans Int(A4°) le plus grand ouvert contenant A°. En passant
au complémentaire, F D A. Les résultats 2.3.4.5 sont analogues, par
passage au complémentaire, de résultats sur I'intérieur. O
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% Proposition 2.20: (Caractérisation séquentielle de

I’adhérence)

x € A si et seulement si il existe une suite (a,) d’éléments de 4
vérifiant a, — x.

Démonstration. Si x est adhérent a 4 pour tout entier n B(x,1/2) N 4
est non vide donc contient un élément a,. La suite (a,) € 4" converge
vers x vu d(a,,x) < 1/n — 0. La réciproque vient de la caractérisation
séquentielle des fermés vu A fermé. O

% Exemple 2.12

Montrons que si 4 = {(x,y),x > 0,y > 0} alors A=B-=
{(x,9),x > 0,y > 0}. On a vu a 'exemple 2.10 que B est fermé¢,
donc comme 4 C B, on en déduit 4 C B

Il reste @ montrer que B — 4 = {(x,9),x = 0,y > O ou y =
0,x > 0} ¢ 4. Or (0,9) = lim,o(1/n,py +1/n) et si y > O,
(1/n,y+1/n) € A, donc (0,y) € A. De méme (x,0) = lim,_e0(x+
1/n,1/n) € Asix > 0.

Densité, Frontiére

Définition 2.15

Une partie 4 est dite dense dans X si 4= X.

Exemple 2.13

Q et Q° sont denses dans R.

Définition 2.16

Un point x € X est dit point frontiére d’une partie 4 si pour tout
r > 0, B(x,r) est d’intersection non vide avec 4 et A°. On note
Fr(A4) 'ensemble des points frontiéres de A.
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Remarque 2.5. D’apreés la définition, Fr(4) = Fr(4°) = AN A est
un fermé.

Exercice 2.3. Montrer que Int(A°),Fr(A4),Int(4) forment une par-
tition de X (i.e. sont disjoints deux a deux et leur union est X).

8 Fonctions continues

Définitions équivalentes

On considére (X,dx = d) et (Y,dy = d) deux espaces métriques.

% Définition 2.17

Soient 4 C X,Y des espaces métriques et f : 4 — Y.
1. Soit a € 4, f est dit continue en a si lim,_,, f(x) = f(a),
soit
Ve > 0,36 > 0,Vx € 4
dx(x,a) <6 = dy(f(x),f(a)) <e.

2. f est continue sur A si f est continue en tout point de 4.
Autrement dit,

Va € A,Ve > 0,36 > 0,
Vx € Adx(x,a) <6 = dy (f(x), f(a)) <e.

Remarque : 6 = 6(a,€) dépend a la fois de € et de a. Vous avez vu
en Lo, le résultat suivant.

% Proposition 2.21: (Caractérisation séquentielle de la

continuité)

Soit f : X — Y. Lapplication f est continue en x € X si
et seulement si pour toute suite (x,) d’éléments de X : si x,
converge vers X, alors f(x,) converge vers f(x).
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Démonstration. Supposons que f tend vers [ = f(x) en x. Soit € > 0 il
existe n > 0 tel que f(B(x,17)) C B(l,€). Vu que x, — a il existe N, tel
que Vn > N,d(x,,a) < 1 donc Vn > N,d(f(x,),l) < e. Ceci indique
que f(x,) — L.

Réciproquement, supposons par contraposition, qu’il existe € > 0
tel que pour tout n > 0 f(B(x,17)) N B({,e)° # 0. Donc, en prenant,
n =1/n, on obtient x, € B(x,1/n), tel que d(f(x,),l) > €. Pour tout n,
donc x, — a et f(x,) ne converge pas vers / comme voulu. O

% Proposition 2.22: (Caractérisation topologique de la

continuité)

Soit f : X — Y. Les assertions suivantes sont équivalentes :

1. f est continue sur X.

2. Pour tout ouvert O de Y, 'image inverse f~1(0) est ou-
verte dans X.

3. Pour tout fermé F de Y, 'image inverse f~1(F) est fer-
mée dans X.

Démonstration. 2. < 3. vient de (f~1(B))° = (f~1(B)) et de la rela-
tion fermés/ouverts.

1. = 2. Soit O un ouvert de Y et x € O, il existe et on choisit
€(x) > 0 tel que B(x,e(x)) C 0. Par continuité de f, soit y € f~1(0),
S () =x €0, il existe 6(y) > 0 tel que f(B(y,6(»))) € B(x,e(f(9))) C
0. Donc B(y,6(y)) € f~1(0) et comme y est arbitraire, f~1(0) est
ouvert.

2. = 1. Soit a € A. Montrons que lim,_,, f(x) = f(a). Soit € > 0.
Par 1. V = f~1(B(f(a),€)) est un ouvert X. Or a € V donc 36 > 0 tel
que B(a,0) C V. En conséquence

[(B(a,6)) € f(V) = f(f(B(f(a).€) € B(f(a)se),

ce qui conclut. O

Corollaire 2.23: (Stabilité par composition de la continuité)

Sif:X - Yetg:Y — Zsont continues, alors go f : X — Z
est continue.

Démonstration. Pour tout ouvert U de Z, g~1(U) est ouvert de Y par
coninuité de g, puis £ (g 1(U)) est ouvert par coninuité de f, mais
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(g1 (U)) = (gof)"1(U). Comme c’est vrai pour tout ouvert U, on
déduit de nouveau du théoréme précédent que g o f est continue. [J

Exemple 2.14

1. f : X — R définit par f(x) = d(x,2z) est continue sur
E car |d(x,2z) —d(x0,2)| < d(x,x%0) (inégalité triangulaire
inverse).

2. Soit 0 < p<m=r+s,p: R* — R° définie par si
x=(9,2) e R®* =R"XR’, p(x) = z. On munit R” et R* des
normes ||.||1, on voit ||p(x)||1 < ||*||1, donc comme p est
linéaire, p est continue car ||p(x)—p(p)||1 = |[p(x—p)|1 <
1% = plh.

Remarque 2.6. 11 résulte des théorémes sur les limites que les
opérations algébriques usuelles (somme, produit, composition)
préservent la continuité. En particulier si P est une fonction
polynomiale P : R* — R c’est a dire de la forme P(x) =

a,-l,,,,,,-nxil .. .xi,” est continue comme somme et produits des

finie
projections (x1,...,X,) — X;.

% Théoréme 2.24: (de prolongement des identités)

Si f,g : (X,d) — (Y.d) sont deux applications continues et
D c X est dense. Si f et g sont égales sur D, alors elles sont
égales (sur tout X).

Démonstration. Soit x € X, on sait par caractérisation séquentielle de
I’adhérence qu’il existe a, € D avec a, — x. Par continuité de f, g en x,
et caractérisation séquentielle de la continuité : f(a,) — f(x),g(a,) —
g(x). Mais on sait que f(a,) = g(a,) par hypothése, donc par unicité de
la limite dans Y, f(x) = g(x). Comme x est arbitraire, ona f =g. O
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Homéomorphismes, Continuité uniforme,
Lipschitzianité

Définition 2.18

Une application f : X — Y est dite un homéomorphisme (ou une
application bicontinue) si elle est bijective et si f : X — Y et
f~1:Y — X sont continues.

% Définition 2.19
Une application f : X — Y est uniformément continue si :

Ve > 0,35 > 0:(Y(x,x") € X2, d(x,%") < 6)
= d(f(x).f(x)) < e.
Une application f : X — Y est K-lipschitzienne avec K € [0,+oo

S1:

V(x.3) € X,d(f (%), f () < Kd(x.9).

Remarque : dans la continuité uniforme, 6 = §(¢) ne dépend PAS
de x, contrairement au cas de la continuité.

Proposition 2.25

Une application uniformément continue est continue.

Proposition 2.26

Un application K-lipschitzienne est uniformément continue.

Démonstration. Pour € > 0 dans la définition il suffit de prendre ¢ =
€/K. O

Exemple 2.15

f : Ry = R f(x) = vx est uniformément continue mais pas lip-
schitzienne (cf TD.). Toute application uniformément continue




CHAPITRE 2. INTRODUCTION 4 LA TOPOLOGIE 55

est continue mais la réciproque est fausse : g : R — R g(x) = x2
n’est pas uniformément continue sur R (cf TD.).

x +— d(x,z) est 1-lipschitzienne X — R, (x,9) — x + y est
o-lipschitzienne £ X E — E.

Le résultat suivant ne doit pas étre confondu avec le Théoréme
2.24qui ne donne que I'unicité d’un prolongement mais pas son exis-
tence.

% Théoréme 2.27: (de prolongement des applications uni-

formément continues)

Sif:(D,d) — (Y,d) est une application uniformément conti-
nue, D C (X,d) est dense et (Y,d) est complet. Alors f admet
un unique prolongement continue g : (X,d) — (¥,d) et celui-ci
est uniformément continue.

Démonstration. L'unicité vient du Théoréme 2.24.

Soit ¥ € X, et par densité x, € D, x, — x. Comme [ est uni-
formément continue soit € > 0 et & > 0 tel que dx(x,y) < § =
dy (f(x),f(y) <e.Sionprend N tel que d(x,,%,) <6, pour n,m > N,
on voit que dy (f (x,), f (xn)) < €, donc comme € est arbitraire, (f(xy,))
est de Cauchy. Donc (f(x,)) converge vers z € Y par complétude.

Soit y, — x une autre telle suite, alors d(f(y,),z) <
d(f ). fOn) + d(f(5),2) — 0, car d(f(x).f () < € des
que d(x,,y,) < det on voit donc que d(x,,y,) — O implique que
d(f (xn), f(yn)) — 0. Donc la limite z ne dépend pas de la suite choisie.
On pose g(x) = 2.

En particulier, g étend f (en considérant la suite constante).
Soit z € X avec d(x,z) < J et z, — =z alors pour n assez grand
d(xy,2,) < 6 donc dy (f(x,),f(2;) < € et on déduit en passant a la
limite dy(g(x),g(2)) < €. Donc g est uniformément continue (avec
méme constantes que f). O
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Fonctions continues bornées

Exemple 2.16

Soit X un espace métrique, F un e.v.n. et C3(X,F) ensemble
des fonctions continues bornées sur X a valeur dans F, on a la
norme uniforme (exo : vérifier que c’est bien une norme) :

1f1leo = sup || f (x)[|7
xeX

Le résultat suivant a été vu en L2 pour F' = R.

% Théoréme 2.28

Les espaces (Cy(X, F),||.||), pour X espace métrique et F' es-
pace de Banach est un espace de Banach.

Démonstration. On a vu que ce sont des espaces normés. Montrons
qu’ils sont complets. Soit f, une suite de Cauchy, donc comme ||f,(x) —
foF < 1fp = fylleo, pour tout x € X, (f,(x)) est de Cauchy, donc par
complétude de F, converge vers une valeur f(x). Soient p,q tels que
pour tout x || f5(x) — f;(x)|| < € en prenant la limite § — oo, on déduit
[1/p(x) = f(x)|| < € donc||f, - fI| < €. Donc f, converge uniformément
vers f, donc f est continue (résultat de L2 ou exo). De plus, || f5|[c est
convergente, donc de Cauchy, donc bornée, disons par M. En passant
a la limite dans 'inégalité || f,(x)|[r < M , on obtient ||f(x)||r < M et
donc f est aussi bornée par M. Donc la limite f est continue bornée
et f, converge vers f dans Cy(X,F). Ce qui donne la complétude. [J

9 Applications linéaires continues

On considére (E£,]|.||) et (F,]].]|) deux evn.

Rappel 2.7. Une application u : E — F est dite linéaire si :

(i) Va,y € E,u(x+y) =u(x) +u(y)
(i) Vx e E,LA e Kju(Ax) = Au(x).
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Proposition 2.29

Siu: E — F est une application linéaire, les assertions sui-
vantes sont équivalentes :

u est lipschitzienne.

u est continue.

u est continue en o.

u est continue en un point.

Il existe a € E,n > 0 tel que u(B(a,n)) C B(u(a),1).
u est bornée sur la boule unité fermée By (0,1)

S ® b K

Démonstration. (Preuve facultative) 1. = 2., 2. = 3.,3. = 4.,4. = 5.
sont évidentes (et n’utilisent pas la linéarité). Si on suppose 5., il existe
n > 0 tel que si |[|x — al| < 5 alors ||u(x) — u(a)|| < 1. Soit & € E,
h # 0, x = a+ hn/||k|| de sorte que ||x — a|| < n, on déduit donc
[lw(D)[|n/I1kI] = [lu(x — a)|| <1 Cest-a-dire [|u(h)|| < [|A][/n (ce qui est
aussi vrai pour £ = 0). En particulier, si ||%|| < 1, on obtient donc 6.
Si on suppose 6., on montre finalement 1, on pose C
SUP| |4 <1 [lu(k)|| < oo et on obtient de méme pour & # 0, ||u(4/||A]])]| <
C donc ||u(h)|| < C||&|| (ce qui est aussi vrai pour £ = 0). Donc pour
tout x, y en utilisant encore la linéarité u(x—y) = u(x)—u(y), on obtient :

|lu(x) —u(I < Cllx =yl

donc u est C-lipschitzienne. O

Al

Proposition 2.30

Si ¢ : E — K est une application linéaire (forme linéaire), ¢ est
continue si et seulement si son noyau H = Ker ¢ = »71({0}) est
fermé.

Démonstration. Si ¢ est continue, ¢~1({0}) est fermé comme image in-
verse d’un singleton, qui est fermé. Réciproquement, supposons ¢ non
nulle, soit ¢ tel que ¢(¢) = 1. Comme le complémentaire de H est ouvert
soit r > O tel que B(e,r) C H°.

Montrons par I’absurde que pour tout x € B(e,r), ¢(x) € B(1,1).
En effet, sinon soit x avec |¢(x) — 1| > 1. Si ¢t = —¢(x)/(1 - ¢(x)),
on ¢(te+ (1 —0Hx) =1+ (1 -8)p(x) = t(1 - ¢(x)) + ¢(x) = 0. Or
llte + (1 — t)x —el| = [1 = ¢lllx —ell = [lx —ell/|$(x) — 1] < 7 une
contradiction car alors y = te + (1 —¢)x € B(e,7r) N H.
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On a donc vu ¢(B(e,r)) € B(¢(e),1) d’ou ¢ continue par la pro-
position précédente.

O

Lespace E’ := L(E,K) des formes linéaires continues sur un
e.v.n. E est munie de la norme duale

Ifller = sup [f (%)l

x€E)||x||p<1

% Définition 2.21

Lespace L(E, F) des applications linéaires continues d’un e.v.n.
E vers un e.v.n. F est munie de la norme subordonnée (ou norme
dopérateur) :

WA= sup  JIf()llr

x€E,||x|[r<1

Remarque 2.8. La preuve de 6. implique 5. dans la proposi-
tion 2.29 montre en fait que si f € L(E,F) alors f est |[|f]|]-
lipschitzienne.

Un espace dual est toujours complet par le résultat suivant :

Théoréme 2.31

Si E est un e.v.n. et F un espace de Banach, alors (L(E,F),|||.[|])
est un espace de Banach.

Démonstration. Soit B la boule fermée de £ de centre o et de rayon
1eti: L(E,F) — Cy(B,F) la restriction a la boule. Par définition
des normes, c’est une isométrie qui identifie donc L(E,F) a un sous
espace de C,(B,F). Montrons que ce sous espace est fermé (il sera
donc complet par complétude de C; (B, F) par théoréme 2.28).
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Montrons que

i(L(E,F)) ={u € Cp(B,F) ¥, € K|A| +|u| <1,
Vx,y € B,
u(x + uy) = Au(x) + pu(y)}.

Cela suffit car cela décrit i(L(E,F)) comme une intersection de fermé
vu que z — u(y) est une application continue sur C(B,F). L'inclusion
C est évidente. Réciproquement si # est continue sur B donc en 0 et
dans I’ensemble indiqué, pour x € E\{0}, on pose ug(x) = ||x||Eu(m)
et up(0) = 0. D’abord, si ||x|| < 1 on remarque que ug étend la pré-
cédente valeure de # sur B (en prenant y = 0 dans la relation). De
méme, ug est positivement homogéne. Donc, si (x,y) # 0, on pose

x" = x/max(||x[].IlyID).y" = y/max(||x[[.llpl}), A" = /(4] + |uD),p" =
1/ (4] + |u|) pour obtenir par homogénéité et la relation appliquée a

x’,y’,/l',u’ .
up(Ax + py) = (|4 + [u]) max(||x|[, [[y]Du (25" + 1'y")
= (|1 + [p)) max(||x[[, [pID[A u(x") + ©'u(y")]
= Aug(x) + pug(y)

Donc uyg est linéaire continue en o, donc linéaire continue et u = i(ug)
comme souhaité. O

Définition 2.22

Une application linéaire u : E — F est une isométrie (linéaire)
si:

Vx € E,|lu(x)|| = [l%]].

Proposition 2.32

Une isométrie (linéaire) est toujours injective.

Une isométrie u : E — F identifie donc £ au sous-espace vectoriel
u(E) C F avec la norme induite.

Démonstration. Siu(x) =0 alors 0 = ||u(x)|| = ||x|| donc par séparation
x=0. [
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10 Propriétés particuliéres des evn
de dimension finie.

Complétude

% Théoréme 2.33

Tout evn de dimension finie est complet.

Démonstration. C’est bien connu en dimension 1. On montre donc le
résultat par récurrence sur la dimension. On suppose donc le résultat
acquis en dimension strictement inférieure a z, soit (£,||.||) de dimen-
sion n. Soit ¢ une forme linéaire non nulle sur E, son noyau F est de
dimension (# — 1), donc par hypothése de récurrence (F,||.||) (muni
de la restriction de la norme de E) est complet. Par conséquent F est
fermé dans E, donc ¢ est continue.

Soit ¢ € E avec ¢(¢) = 1. L'isomorphisme linéaire u : (1,f) — de+
f de KX F (avec la norme produit donc complet par la proposition 6)
sur E est continue ((1+]|¢]|)-lipschitzien). Son isomorphisme réciproque
est donné par :

Vx e E, u l(x) = (¢(x),x — d(x)e).

u~! est donc aussi continue comme ¢ . z~! étant lipschitzienne (car
linéaire continue et par la proposition 2.2q ), si (x,), suite de E, est de
Cauchy #71(x,) € K x F Pest aussi donc converge par complétude de
K x F, dott x, = u(u"1(x,)) converge aussi par continuité de z~!. [

Applications linéaires

Rappel 2.9. Si E de dimension n et F de dimension p. Soit
(e1,...,e,) une base de E, (ﬁ,...,ﬁ,) une base de F. Une appli-
cation linéaire u est décrite par sa matrice 4 = (a;;)ic[1p],je[1.]

n 4
dans ces bases. Alors, si x = ijej ety =u(x) = Zy,— 7, on
=1 i=1
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rappelle que :

n

yi = Z a,-jx]-.

A

On définit aussi la base duale (ef,...,e;;) de I’ev des formes li-
néaires sur E caractérisés par e;(ek) =1sij =k etOsinon. En
conséquence, pour tout x € E :

n n

u(x) = ) xjule)) = Y €5 (x)u(e)).

j=1 j=1

% Théoréme 2.34

Toute application linéaire entre evn de dimensions finies est
continue (et méme lipschitzienne).

Démonstration. En utilisant la représentation du rappel

n
u= Z u(e;)e],
i=1

il suffit de montrer que les formes linéaires ¢; sont continues. Mais
Kere; est un sous-espace vectoriel de dimension fini donc complet
(Théoréme 2.33), donc fermé (proposition 2.16) dans E, d’ou la conti-
nuité voulue (proposition 2.30). La lipschitzianité vient de la proposi-
tion 2.2q. O

Equivalence des normes et conséquences.

% Théoréme 2.35

Toutes les normes d’un espace vectoriel normé de dimension
finie sont équivalentes.

Démonstration. Si ||.||1 et ||.||2 sont deux normes sur E, 'application
linéaire identité u = Idr vu de (E,||.||1) vers (E,||.|l2) est continue
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ainsi que son inverse z~! (théoréme 2.34), donc elles sont C et 1/c-

lipschitzienne respectivement (proposition 2.29). On en déduit, pour
tout x € E :

|x[l2 = [lu(x) = u(0)]l2 < Cllx[l1,
_ _ 1
%l = lu™ (%) = a1 (0) |l < —[lxla,

d’ou I’équivalence des normes souhaitée. O

Remarque 2.10. Sur R" on peut donc parler de continuité, limite
etc. sans préciser la norme.

Proposition 2.36

Soient Eun evn, A C E, f : A - R". Si x € 4, on note f(x) =
(fi(x),..., fu(x)) ot les f; sont les fonctions composantes de f :
fi:4A—- R

Soitx € Aeth= (b1,...,b,) € R", alors on a I’équivalence :

lim f(x) = b & Vi=1...nlim fi(x) = b;.

Démonstration. On a f; = p; o f, ol p; est i-éme projection p; : R* —» R
définie par p;(x1,....%,) = X;. p; est continue d’aprés 'exemple 2.14.2.

Si lim,_,, f(x) = b, on déduit lim,_,, f;(x) = b; d’aprés le Théo-
réme de composition des limites.

Réciproquement, on munit R* de la norme ||.||e. Si pour tout i
lim,_,, fi(x) = b; on a donc pour € > 0, 'existence de §; > 0 tel que
si ||lx —al| < 6;, |1fi(x) = bi]| < €. On pose 6 = min;—;1,_,(5;) > 0.
Donc si ||x — a|| < 8, pour tout i ||f;(x) — b;|| < € donc ||f (%) — b]|e =
max || f;(x) — b;]| < e.

O

Corollaire 2.37

Soient Eunevn, ACE, f: A — R". Six € 4, on note f(x) =
(fi(x),..., fu(x)) o les f; sont les fonctions composantes de f :
Jfi : A > R. f est continue sur 4 (resp. en a € A) si et seulement
si les f; sont continues sur 4 (en resp. a € 4).
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La preuve du résultat suivant est semblable et omise.

Proposition 2.38

Soit X, = (x,(,l),...,x,(,p)) une suite de R? et soit L = (4,...,4).
Alors X, converge vers L si et seulement si pour tout i = 1...p

NG

n g,‘.

Proposition 2.39

Soient 4 ¢ R”, p; : R* — R la i-éme projection définie par
pi(x1,...,%,) = x;. Alors A est bornée dans R” si et seulement si
pour tout i, p;(A) est bornée dans R.

11 Compacité dans les espaces
métriques

% Définition 2.23

Soit K une partie de (X,d) espace métrique K est dite (séquen-
tiellement) compacte si elle posséde la propriété suivante (dite de
Bolzano-Weierstrass) : De toute suite de K, on peut extraire une
suite convergente dans K.

Rappel 2.11. Dans R le théoréme de Bolzano-Weierstrass indique
que toute suite bornée admet une sous-suite convergente et donc
que tout fermé borné est compact.

Proposition 2.40

Un compact K d’un espace métrique X est un fermé borné de X.
Un sous-ensemble fermé d’un compact est compact. Le produit
de 2 espaces compacts est compact.
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Démonstration. 1. Un compact K est fermé, car si une suite (u,)
converge vers [ dans E, elle admet une sous-suite convergeant
vers k € K, dont la limite est nécessairement [ = £ (proposition
2.4),donc [ € K.

2. On montre par contraposée qu’un ensemble non borné 4 ne peut
pas étre compact. Si 4 non-borné, soit x, € 4 tel que d(x,,y) >
n, si une suite extraite x4(,) — x convergeait, elle serait bornée,
ce qui n’est pas le cas car d(xg(»),y) = $(n) =400 .

3. Si F C K avec K compact, F fermé, une suite de ' admet une
sous suite convergeant dans K par compacité, donc sa limite est
dans F par fermeture, d’ot ' compacte.

4. Si K, L sont compacts, pour une suite (x,,y,) € K XL, on extrait
une suite (%4(,)) convergente dans K, puis on réextrait (y4(y(n)))
convergente dans L (et a fortiori (x4 (n))) est aussi convergente)
donc (%4(y(n))» Y@y (n))) converge dans K X L.

O

Exemple 2.17

Soit F = {(x,y) € R%,xy = 1} est fermé mais pas compact. En
effet, si f(x,y) = xy est polynomiale donc continue R? — R
donc F = f~1({1}) est fermé comme image réciproque d’un
fermé par une application continue. Mais F' n’est pas compact
car pas borné. x, = (1/n,n) € F et |[x,]||ec = n — oo.

2 Remarque 2.1. En général dans un evn un fermé borné
n’est PAS toujours compact. Dans C°([0,1],R), montrons que
la boule unité fermée n’est pas compacte. f,(x) = x”" vérifie
[|f2llc =1, mais comme f,(x) — f(x) (on dit converge simple-
ment vers f) avec f(x) =0six <1, f(1) =1, donc f non conti-
nue. Toute suite extraite de f devrait converger vers cette limite
qui n’est pas continue, donc elle ne peut pas converger dans
C°([0,1],R) vers cette limite qui n’est pas dans C°([0,1],R). En
général, on peut montrer que les boules fermées d’evn sont com-
pactes si et seulement si ’evn est de dimension finie, on montre
une implication ci-dessous.
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% Théoréme 2.41

Siu:E — F est continue et K C E est compacte alors u(K)
est compacte.

Démonstration. Soit y, une suite de u(K) donc y, = u(x,) ,avec (x,)
suite de K, on extrait donc une suite x4(,) convergeant vers x € K. Par
continuité, la suite extraite ys(,) = u(x4(n)) — u(x) € u(K). O

% Corollaire 2.42: (Thm. de Weierstrass)

Si K C X espaces métriques est compacte et f : K — R est
continue, alors la fonction f est bornée et atteint ses bornes :
xg,%1 € K,Vx € Kf (x0) < f(x) < f(x1).

Démonstration. f(K) est compacte donc fermée et bornée. Donc f est
bornée, et le f(K) contient son sup et son inf (par fermeture) c’est-a-
dire, il existe yo,y1 € f(K) yo = infrcg f(x), y1 = sup, g f(x). Finale-
ment y; = f(x;) avec x; € K. L]

Corollaire 2.43

Soit X, K deux espaces métriques avec K compactet f : K — X
une bijection continue, alors f est une homéomorphisme (c’est-
a-dire =1 est continue et X est aussi compacte).

Démonstration. Comme f bijective, pour un fermé F c K, donc un
compact, (f1)71(F) = f(F) est 'image directe du compact F dans
X, donc est compact donc fermé. f~! envoie donc un fermé sur un
fermé, donc est continue par caractérisation topologique de la conti-
nuité (Proposition 2.22). O]

% Théoréme 2.44

Dans un evn de dimension finie, les compacts sont exactement
les fermés bornés.

Démonstration. 1l reste & montrer que les fermés bornés sont compacts.
D’aprés le théoréme 2.34 un isomorphisme linéaire » de £ sur K" est
continu de (E,||.||) sur (K"||.||o), et ™! également. u(K) est fermé
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comme image réciproque d’un fermé par ™! continue, z(K) est borné
comme image d’un borné par une application lipschitzienne. Donc
L = u(K) est un fermé borné de (K", ||.||). Il suffit de voir que c’est
un compact, car alors K = u (L) est compact comme image continue
d’un compact (theoréme 2.41). Soit (x,) = (x(l),...,x[(,")) une suite de

L, par définition de la norme (x;i)) sont bornés, elles admettent donc,

par le théoréme de Bolzano-Weierstrass dans K, une sous-suite simul-
@)
o)
(@)
¢(p)
ce qui conclut. O

tanément convergente. x — x Donc si x = (x@,..,x™), on a

[1%p(p) — x|l = max;=1._n %, ,, — x| - 0 et comme L est fermé; x € L

Exemple 2.18

Soit K = {(x,y) € R%x? + y?/2 = 1} est compact. En effet, si
f(x,y) = x> +y%/2 est polynomiale donc continue R> — R donc
F = f71({1}) est fermé comme image réciproque d’'un fermé
par une application continue. De plus K c By ;.. (0, V2) donc
K est borné, donc fermé borné dans R? de dimendion finie,
donc K est compact.

Exemple 2.19

Soit g : K — R définie par g(x,y) = x> + y> g est continue
donc atteint ses bornes sur K compact. En effet g est la distance
euclidienne a lorigine, il est facile de voir qu’elle atteint son
maximum 2 en (0,+V2) sur K et son minimum 1 en (+1,0)
sur K. Le théoréme des extremas liés permettra de retrouver ce
résultat pour des g et des K plus généraux.

% Théoréme 2.45: (de Heine)

Toute fonction continue f sur un compact K € X est uniformé-
ment continue.

Démonstration. Soit g : (x,9) — d(f(x),f(y)) de K? dans R elle est
continue (pour la distance produit sur X? par composition) donc g(K?)
est compact. Soit € > 0 reste a trouver un ¢ de continuité uniforme.

A={(xy) € K* | d(f(x).f () > €} = g ([e,+o0[)
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est fermé dans K2 donc compact. Donc application continue (x,y) +—
d(x,y) atteint sa borne inférieure m. On a m # 0 car sinon on aurait un
(x,x) € 4, ce qui n’est pas possible vu € > 0.

Finalement si § > 0 est tel que § < m, si d(x,9) < d,ona (x,y) ¢ 4,

donc d(f(x), f(y)) < €. O

Complément : un résultat reliant complétude
et compacité (facultatif)

Proposition 2.46

Tout espace métrique compact X est complet.

Démonstration. Soit (x,) une suite de Cauchy de X, elle admet par com-
pacité une suite extraite convergente, donc elle converge (proposition

2.5).

Définition 2.24

Un espace métrique (X,d) est précompact si pour tout € > 0,
X peut étre couvert par un nombre fini de boules ouvertes de
rayon e.

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec [6, Th II.1
p135] ou Gourdon d’Analyse [5, p 32]) ou la proposition A.7.

Proposition 2.47

Un espace métrique X est compact si et seulement si il est pré-
compact et complet.

Complément : Compacité topologique
(facultatif)

On rappelle le résultat suivant (cf. e.g. Gourdon d’Analyse [5, Thm
1 p 28])
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Théoréme 2.48: (Propriété de Borel-Lebesgue)

Pour un ensemble K d’un espace métrique X est compact, si et

seulement si, pour tout (U;);c; est un recouvrement de K par

des ouverts U; de X, au sens ou K C U U; alors K admet un
iel

sous-recouvrement fini : il existe Zy C I fini tel que K C U U;.

iely

En passant au complémentaire et a la contraposée, on obtient aussi
la version équivalente :

Théoréme 2.49

Pour un ensemble K d’un espace métrique X est compact, si et
seulement si, pour tout (#;);c; est un fermé de K, si pour toute
intersection finie (i.e. avec [ fini) est non-vide ﬂ F; # 0 alors
i€l
I'intersection compléte est aussi non-vide ﬂ F; #0.
il

12 Intégrale de Riemann a valeur
Espace de Banach

Nous référons par exemple au Gourdon d’Analyse [5] (chapitre 3
secion 1) pour cette section. Soit  un evn complet. Soit / = [a,5] C R
un segment. On rappelle les définitions :

Définition 2.25

Une subdivision de [a,b] est suite finie (a;);=0... » de la forme
a=ay<a <---<a,=>. Une fonction continue par morceaux
sur I est une fonction f : I — F telle qu’il existe une subdivi-
sion (a;);=0... », telle que pour i € [[0,7 —1]], chaque restriction
flai.aia| €St continue et admette des limites en a;, a;41. Une fonc-
tion f : I — F est dite en escalier si il existe une subdivision
(@:)i=0,-. n, telle que pour i € [[0,7 —1]], fjs,.0,.,[ €St constante.
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On définit £ = CM (I, F) 'ensemble des fonctions continues par
morceaux sur / a valeur . Comme chaque prolongement par conti-
nuité de fj,, 4,1 est continue sur un compact [a;,a;41], donc bornée,
les fonctions continues par morceaux sont bornées. On note D C E
I’ensemble des fonctions en escaliers.

E est donc un Evn (PAS complet) pour la norme de la convergence
uniforme, si f € E :

1f1le = sup |lf(D)]lF
tel

On va utiliser le théoréme suivant de prolongement des applica-
tions linéaires continues pour définir I'intégrale a valeur dans F. C’est
une application immédiate du Théoréme 2.27 :

Proposition 2.50

Toute application linéaire continue # d’un sous-espace vectoriel
dense D d’un evn E vers un evn complet F se prolonge en une
unique application linéaire continue v : E — F, ayant la méme
constante de lipschitzianité que u.

Démonstration. Comme u est continue donc K-lipschitzienne (par pro-
position 2.29) donc uniformément continue, 'unique prolongement est
donné par le Théoréme 2.27.

Si x, — %,y, — »y en passant a la limite dans la relation u(ax, +
Byn) = au(x,) + Bu(y,), on déduit que v est linéaire et avec ||u(x, —
)|l < K||xy — yal|, on déduit que v est K-lipschitzienne. O

Pour une fonction en escalier ¢ : [a,b] — F de subdivision
(@i)i=0,.-. n- On définit

no=[ ¢(t>dt-2(al—al Do(“LE).

d

I est une application linéaire continue, car par 'inégalité triangulaire

HOIE Z las = ai-al o “=2)| < 1911818 - al.

Comme les fonctions en escalier sont denses dans les fonctions conti-
nues par morceaux (exo. TD), la proposition précédente permet
d’étendre I'intégrale comme quand F =R eton a:
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Définition 2.26

Lintégrale des fonctions continues par morceaux CM (4, F) est
I'unique prolongement linéaire continu de I'intégrale des fonc-

tions en escaliers, noté fab dif(¢) = /ab f(t)dt.

Proposition 2.51

(Inégalité triangulaire) || fab dif()||r < /ab dt||f ()|r.

Démonstration.
b
a; 1+a
||1<¢)||F<Z|a,—a, flo(“5= ), = [ nocoieas
F a

pour ¢ en escalier et on prolonge par continuité. O

On a toutes les propriétés usuelles, Chasles, linéarité, en particulier

SiF =R et f = (fion ) [ F ()AL= ([ fiD)dt,.... [] fu(t)d0).

Rappel sur les Intégrales impropres

|
.
.

Définition 2.27

Pour une fonction f continue sur un intervalle / — R qui n’in-
clut pas toutes ses bornes ou qui n’est pas borné, on définit
Uintégrale impropre de la maniére suivante :

1. Dansle cas I = [a,b[ avec a < b, b € RU {+o0}

b ¢
'/a]‘(x)dlel}ré'/a f(x)dx

2. Dans le cas I =]a,b] avec a < b, a € RU {—0}

‘/abf(x)dx:}i\r‘rtll/ff(x)dx
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3. Dans le cas I =]a,b[ avec a < b, a € RU {-o0}, b €
R U {+co} on prend a < ¢ < b et on pose

/abf(x)dx=/acf(x)dx+‘/[bf(x)dx.

Dans tous ces cas, on dit que I'intégrale est convergente sila limite
existe et est finie.

Dans tous les cas, on s’occupera surtout du cas I = [a,b[ puisque
le cas I =]a,b] est similaire en remplagant f par x — f(—x)

Le cas le plus important est le cas suivant (car on va disposer de
théorémes de comparaison avec des fonctions positives de références) :

Définition 2.28

Pour une fonction f continue sur un intervalle I (comme dans

la définition précédente) est dite intégrable sur I si fab |f(x)|dx

q g b
converge. Dans ce cas on dit aussi que fa f(x)dx est absolument
convergente.

Exercice 2.4. Convergence et valeur de

1
1
—dx.

L%

La limite infinie est en 0. Donc Soit ¢ > 0 on Calcule ftl ‘/%dx =

[2vx]} = 2 - 2v¢. La limite en ¢ — 0 est finie donc lintégrale
converge et vaut 2.

Exemples de référence (& connaitre TRES
BIEN)

_ A _ _
1. %)oo ¢ *dx converge et vaut 1. En effet,f0 edx=1-¢4 5, 0

: oo . .
Plus généralement, fo ¢~ “*dx converge si et seulement si a >
o, et vaut alors 1/a.
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2. /1 ;vdt converge si et seulement si @ > 1 (intégrale de Rie-

mann) et vaut
<1 1
[ a
1 t a-1

* 1
/ —dt = +oo,a < 1.
1

ta

A —a+l_
En effet, si @« # O, fl ldt = %etpoura > 1,
A=+l L 0, tandis que pour @ <1 A L +oo

Sia=1, [ 1dt = In(4) = 4se0 +00

1 . . L .
3. /0 +dt converge si et seulement si @ < 1 (intégrale de Rie-

mann) et vaut
1
1 1
[ wit= 1<t
0 & l1-«a

11
—adt=+00,a/21
o ¢
Eneffetsuy;tO/ ldt—l‘(’lg et pour @ > 1, a™ ! —,

+00, tandis que pour @ <1 a ! —, 40

Sia=1, [ 1dx = |In(a)| =4 .
4. /0 ;wdt = +oo diverge toujours pour tout @ € R(en combinant
les 2 points précédents).

Théorémes de comparaison

Le contexte est le suivant : on se donne une fonction continue f :

I =[a,b[— R et on étudie la nature de I'intégrale impropre fab f(x)dx

La méthode la plus simple consiste & chercher une fonction conve-
nable continue et positive g : I = [a,b[— [0,00[ et de comparer f a
g. Les trois résultats de base a utiliser sont les suivants (avec C>0 une
constante).
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Théoréme 2.52

Théoréme de comparaison .
5. Si|f(x)| < Cg(x), Vx € [a,b], et si fabg(x)dx converge,
alors fabf(x)dx converge (absolument).
6. Si f(x) > Cg(x),Vx € [a,b] et si fabg(x)dx = +oo alors
[! f(x)dx = +oo.

13 Espaces métriques séparables

Définition 2.29

Une partie 4 est dite dense dans E si 4 = E. Un ensemble est
dit séparable si il admet un sous-ensemble au plus dénombrable
dense (ou autrement dit une suite dense).

Lemme 2.53

Un sous-ensemble F d’un espace métrique séparable est sépa-
rable.

Démonstration. On peut supposer F non-vide, sinon, c’est évident (la
partie vide donc finie est dense). On fixe donc xp € F

Soit u, une suite dénombrable dense. Soit an, € B(uy,1/n) N F
si cet ensemble est non-vide, et sinon on pose a,, = xp. La famille
{amu,m,n € N} est finie ou dénombrable et dense car si x € F il existe
d(um,x) < 1/2n donc ayy9, existe car B(uy,1/2n) N F est non vide et
par inégalité triangulaire d(uy, amno,) < 1/n. O

Proposition 2.54

(R™,]].||s) est séparable.

Démonstration. On a vu que Q" est dénombrable comme produit d’en-
sembles dénombrables. Montrons qu’il est dense dans R”. En effet si
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x = (x1,...,X,) on pose x, = (%U’%J) avec | x| la partie entiére
de x. Donc [px;] < px; < [px;] +1 et
; 1
w2
p j4

donc [[x = ¥|lc < 1/p —p—c 0. Donc vu x, € Q", x € Q". Comme x
est arbitraire. R* c Q" CQFD. [

Exercice 2.5,. Montrer que Q° est dense dans R.




CHAPITRE 3

Ensembles et
fonctions
convexes,
Introduction a
l'optimisation

Vous avez vu en Le qu’une fonction C! f qui atteint un minimum
sur un ouvert en x satisfait une condition nécessaire du premiére ordre
Vf(x) =0etsif est C* on peut garantir que c’est un minimum local
si sa hessienne est définie positive.

Il reste les questions : comment avoir un minimum global? com-
ment avoir unicité du minimum ? Une réponse va étre obtenue en étu-
diant une notion, qui, dans le cas des fonctions C 2 sera équivalente a
une positivité globale de la hessienne. L’avantage est qu'on peut trouver
une définition : la notion de fonction convexe, sans hypothése de déri-
vabilité et qui va étre robuste et permettre d’obtenir aussi des critéres

75
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d’optimisation du premier ordre, sur des ensembles eux aussi convexes
(pas forcément ouverts).
On suppose donc que E est un espace vectoriel (e.v.) sur R.

1 Ensembles Convexes
Soit x,y € E, on appelle segment d’extrémité x et y la partie
[%,9] = {4x+ (1 -2)y,4 € [0,1]}.

On retrouve bien stir la définition usuelle du segment dans R. (avec
la notation inhabituelle [-1,-2] = [-2,-1])

% Définition 3.1

Un ensemble C C E est dit convexe si Vx,y € C,[x,y] c C.

Par convention , C = () est convexe méme si les convexes intéres-
sants sont les convexes non-vides...

Proposition 3.1

Si E est un e.v.n., les boules (ouvertes et fermés) sont des
convexes.

Démonstration. Considérons le cas des boules ouvertes. Soient x,y €
B(a,r), z=4x+(1-2)y, 1 € [0,1].
Par I'inégalité triangulaire et homogénéité, on a :

Iz —all =llA(x —a) + A =) (y — a)l
< |Allx —all+ 11— A|[ly - all
<|Alr+]1=-2Alr=r.

Donc z € B(a,r). Le cas des boules fermées est similaire. O

Exemple 3.1

On pose [[(x,»)ll1/2 = (|x[2+[y[1/2)%. On note B = {(x,y) € R? :
[[(x,9)|l1/2 < 1}. On remarque que (1,0),(0,1) € B, (1/4,1/4) €
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B mais (1/2,1/2) ¢ B donc B n’est pas convexe et || - ||{/9 n’est
PAS une norme sur R2.

Exercice 3.1. Montrer que les ensembles convexes de R sont exac-
tement les intervalles.

Le résultat suivant est laissé en exercice.

Proposition 3.2

Si C est convexe, alors son adhérence C et son intérieur In(C)
sont convexes. Une intersection (finie ou infinie) d’ensembles
convexes est convexe. Si (7 C E,Cy C F sont convexes, alors
(1 X Cy est convexe dans E X F.

Cones tangents et normaux dans R”

On suppose E = R” (ou un espace préhilbertien comme au dernier
n

chapitre pour avoir un produit scalaire). On rappelle (f,x) = Z Jixi,
i=1
pour f,x € E.

Les deux ensembles suivant seront importants pour formuler des
conditions pour des problémes de minimisation sous contrainte. On
rappelle que pour 4,B C E,C cRx € E,A+B={a+b:ac4be
B},CA={ca,c € C,ac A}, A—x ={a—x:a € A}, x+A={a+x:a € A}.

% Définition 3.2

Le cone tangent (au sens de I’analyse convexe) du convexe § C E
e.v.n. au point x € § est

u-—x

Ts(x) :={ ,u€e S, s >0} =Ri(S-x),

Le cone normal est son polaire, c’est a dire le cone convexe
fermé :

0

Ns(x) ={f €e E:Vue S,(f,u—x) <0}
={f € E:Vv e Ts(x)(f,v) <0}
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Exercice 3.2. Si L est un s.e.v de E (de dimension finie), a € L.
Montrer que T(a) = Let Np(a) =Lt ={y € E: (3,f) =0Vl €
L}, est I'orthogonal de L.

Exercice 3.3. Si S convexe et a € Int(S). Montrer que Ts(a) = E
et Nz(a) = {0}.

2 Fonctions convexes

Il est pratique de considérer des fonctions f : E —] — 00,+o0] =
R U {+co}. Dans ce cas on parle de domaine de f :

D(f)={x€E: f(x) < oo}.

Les propriétés que 'on considére dans cette section vont étre déter-
minées par I’ensemble des valeurs au dessus du graphe de f, que l'on

appelle épigraphe de f
Epi(f) = {(x,4) € ExR: f(x) < A}.
On utilise les conventions co+co =oco et 1.oo =0 sid > 0, 0.c0 = 0.

% Définition 3.3

Soit C un ensemble convexe.

1. Une fonction f : C —] — co,+00] est dite convexe si pour
tout 4 €]0,1[,x,9,€ C,

JAx+(Q-2)y) <Af(x)+ A=) f ().

2. Unefonction f : C —]—o0,+00] est dite striciement convexe
si pour tout A €]0,1[,x,y,€ C, avec x # y

fAx+A=2)y) <Af(x)+ A=) f(Q).

3. Une fonction f : C — [—oco,+oo[ est dite concave si —f
est convexe.
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Exemple 3.2

n
Une fonction affine f(x1,...,x,) = E a;x; + b est convexe et
i=1
concave mais pas strictement convexe! Une norme sur E est
convexe.

Remarque 3.1. Si f est convexe, alors C N D(f) est convexe car

si f(x) < +00, f(y) < oo alors
FAx+(1-2)y) <Af(x)+ (A=) f () < 0.

On peut donc toujours remplacer soit C par E soit C par
C N D(f) selon votre gout (pour les fonctions infinies ou les
ensembles convexes).

Proposition 3.3

Soit Eun e.v. et f: C —] —00,00].

1. f est convexe si et seulement si Epi(f) est convexe

1’. Si f est convexe alors pour tout ¢ € R, f~ (] = o0,t]) est
convexe. La réciproque est fausse.

2. Siu >0, f,g convexes alors uf + g est convexe. De plus,
elle est aussi strictement convexe si f ou g lest.

3. Si f;,i € I sont convexes alors I'enveloppe supérieure
f(x) =sup,.; fi(x) est convexe.

4. (facultatif) f est convexe ssi g : E —] — co,+0c0], définie
par g(x) = f(x)six € C et g(x) = +o0 sinon, est convexe.

5. Si f est strictement convexe, alors f a au plus un mini-
mum sur C.

Le dernier point donne la premiére relation simple des fonctions
convexes a I'optimisation.

Démonstration. Pour (1), ’énoncé est vide si f(x) ou f(y) = oo. Soit
donc (x,#),(y,te) € Epi(f) (comme on veut f; < oo cela utilise la
réduction précédente). On remarque que (Ax+(1-2)y,At1+(1-2)k) €
Epi(f)ssif(Ax+(1-A)y) <Ah+(1-2)te.
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Si les épigraphes sont convexes, cette propriété est vérifiée et donc
en prenant P'infimum sur #,# (qui donne f(x),f(y)) on a le résultat.
Si f vérifie 'inégalité, on utilise f(x) < #1, f(y) < & pour conclure :

FAx+ Q-2 <Af () +A=-D)f(H) <At + (1 - ).

(1)’ On montre la convexité de D = {x : f(x) < ¢} comme ci-dessus.
Soit x,y € D alors pour 4 € [0,1] : f(Ax+ (1 —2)y) < Af(x)+ (1 -
A)f () <At+(1-2)t = ¢. Donc Ax+(1-1)y € D.Par contre si g = 1[pcof
alorssit <0, g (]-00,t])=0,5i0<t <1, g71(]—00,t]) =] —0,0[
et sinon pour ¢ > 1, g71(] — o,¢]) = R et ce sont 3 intervalles donc 3
ensembles convexes. Mais g n’est pas convexe g(0) =1 > 1/2g(-1) +
1/2¢(1) =1/2.

(2) est évident en utilisant 'inégalité :

ufAx+(1-2)y) +g(Ax+(1-2)y)
Sp@f()+A-D)f () +(Agx) + (1 -1)g(y)
=Auf+2)x)+ A=) (uf +2) ).

(3) vient de la stabilité des convexes par intersection et de Epi(f) =
nieIE[?i(ﬁ)~

(4) est évident car Epi(f) = Epi(g).

(5) si x # y sont deux points atteignant le minima, f((x +y)/2) <
(f(x)+ f(y))/2 contredisant la minimalité. O

Une propriété importante des fonctions convexes est le fait qu’on
peut les caractériser en terme d’accroissements :

Proposition 3.4

Soit f : E —] — co,+00] une fonction. f est convexe si et seule-

ment si pour tout x,A € E la fonction A,,f () = M

est croissante sur R}.

Démonstration. 11 suffit de noter que g(¢) = A, f(t) = w est

croissante si et seulement si g() < g(s) pour 0 < ¢ < s si et seulement
si on a I'inégalité de convexité :

fltth) = fC(xtsh) +x(1-2) < fla+shs + f(A-5),

Donc la convexité de f implique la croissance énoncée et réciproque-
ment en prenant s = 1 on écrit toute paire ¥,y sous la forme y = x+/£ et



CHAPITRE 3. CONVEXITE 81

I'inégalité ci-dessus se réécrit en 'inégalité définissant la convexité de

f@A-x+ty)=f(x+th) < f(x+h)t+ f(x)(1-1)
=fOe+f(xA-0).

O

Cela implique une régularité minimale des fonctions convexes :

Corollaire 3.5

Si f : E =] — o0,00] est convexe, pour tout x € D(f) et tout
h € E, la dérivée directionnelle D; f (x) existe dans [—co,00] au
sens ou la limite suivante existe et vaut :

D;lf(x) = thr{)IJr f(x+t]lt) _f(x)

S =)

t>0 I3

Démonstration. Par la proposition précédente g(¢) = M est
croissante donc admet une limite pour ¢ — 0* qui coincide avec I'infi-
mum. O

Calcul des cones normaux courants

Soient g1, ..., g, des fonctions convexes C! définies U — R avec U
ouvert convexe tel qu’il existe xy € U avec g;(xp) < 0 pour tout i.
Soit la contrainte :

C={xeU:Vie{l,..,n},g(x) <0}

On sait que chaque g; (] — ©0,0]) est convexe comme image ré-
ciproque d’un intervalle borné supérieurement par une application
convexe. Par intersection, on sait donc que C = ﬂlegl._l (]=00,0]) cU
est aussi convexe.



CHAPITRE 3. CONVEXITE 82

% Théoréme 3.6: (admis, cf Section B.1)

Soit x € C tel que :

1. les / premiéres contraintes sont actives, c’est a dire :

a(x)=..=g(x)=0
2. les autres contraintes ne sont pas actives, c’est a dire

gi41(x) <0,...g,(x) <0
Sil =0, ona N¢(x) ={0} et sinon, le cone normal & C en x est
donné par

l
Ne(x) = {Z Vg (x),4; > o} .
i=1

Exemple 3.3

Soit 4 = {(x,9) € R? : x > y > 0,}. Si on pose g1(x,y) =

y—x,80(x,y) = —y qui sont linéaires donc convexes et Cl,ona:

A={(x,9) € R?: g1(x,9) <0,g(x,y) <0}

Calculons N4(0) le cone normal en 0 = (0,0).

On a £(0,0) = 0 = £(0,0) donc toutes les contraintes sont
actives.

On calcule donc Vg;1(0,0) = (-1,1),Vgy(0,0) = (0,-1). D’aprés
le théoréme, on a :

N4(0) = Ry (=1,1) + R, (0,-1).

Exercice 3.4. 1. Pour 4 de 'exemple précédent, si a = (x,x)
pour x > 0. Montrer que Nyg(a) = R, (-1,1).
2. Pour b = (x,0), x > 0. Montrer que Ny(5) = R;(0,-1).
3. Y-a-t-il d’autres valeurs de Ny(c) et si oui, pour quels
points ¢ € A?

Fonctions convexes sur R

Soit I un intervalle de R. Pour une fonction f : I - Reta € I,
on considére la fonction (taux d’accroissement de f en a) A, f définie
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pour tout x € I\ {a}. La proposition 3.4 se

par Ay f (x) = W

reformule sous la forme :

Proposition 3.7

Une fonction f : I — R est convexe si et seulement si pour tout
a € I, la fonction A, f est croissante sur I \ {a}.

On en déduit les inégalités suivantes (inégalité des pentes, cf dessin
en cours) sur une fonction f :

% Proposition 3.8

Une fonction convexe f : I — R vérifie ’inégalité des pentes :

Va,b,cel, a<b<c

_IO-f@ _fO-f@ _[©-[®)

b—a c—a c—b

% Théoréme 3.9

Soit 7 un intervalle ouvert de R, et f: I — R une fonction
convexe. Alors pour tout a € I, f admet des dérivées a droite
et a gauche en a. On a pour tout x € I : f(x) > f/(a)(x —a) +
f(a) et f(x) > f/(a)(x —a) + f (a). En particulier, il existe une
fonction affine g telle que g(a) = f(a) et g(x) < f(x) pour tout
x € I.Deplus,sia < bsontdans /,ona f/(a) < f/(a) < f; (b).

Démonstration. Soit a € I. Dans le cas d’une fonction a une variable,
le corollaire 3.5 implique I’existence de dérivées a droites et a gauches
(pour I'instant peut-étre infinies). Dans 'inégalité des pentes en faisant
¢ — b* oua— b, on obtient :

b —
—m<wﬁf;(b),

fO-1®) _,
c—b

THOE



CHAPITRE 3. CONVEXITE 84

Pour a < b, 0 < €; < (b — a)/2, 'inégalité des pentes appliquée aux
points a < a+€1 < b — €9 < b donne :

flare) - f(a) _flb-e)-flate)

€1 T (b-a-e€e1-¢€)
Sflb-e)-f(0)
ST,

et en passant a la limite e, — 0* ou €3 — 0% puis les deux, on

obtient : ® ) )
£l(a) < %

f(a+621_f(a) Sf:g’(b),

fi(a) < £ (B).

Donc f/(a) < +oo, jl,’(a) > —oo, ce qui termine la preuve des dérivabi-
lités a droite et a gauche, et on a I'inégalité attendue.
De plus, la formulation comme infimum, dans le corollaire 3.5,

[ - f(a) f(a)

montre que pour tout x > a que > f/(a) et donc
fx) =2 f/(a)(x — a) + f(a). De méme, pour tout x < a on a
f®) - f(@)

< f{(a); en multipliant par x — a (qui est négatif!) on
x—a

a donc que pour tout x < a f(x) > f(a) +fg (a)(x — a).

De plus, ]fg (b) < f/(b) (en passant aux limites @ — b7,c — b*
dans I'inégalité des pentes) ; par conséquent, pour x < a f/(a)(x—a) >
fj(a)(x — a), et on voit finalement que l'inégalité f(x) > f/(a)(x —
a) + f (a) est valide pour tout x € R. Le méme raisonnement s’applique
pour montrer que 'autre inégalité est vraie pour tout x € R. O

Corollaire 3.10

Soit 7 un intervalle ouvert de R, alors une fonction convexe
f: I — R est continue.

Exercice 3.5. Trouver une fonction convexe f : [0,1[— R qui
n’est pas continue en {0}.
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Proposition g.11

Si E =R et f est dérivable sur un ouvert convexe U C E (donc
un intervalle ouvert) alors f est convexe si et seulement si f”
est croissante.

Démonstration. =) Supposons f convexe, 'inégalité qu'on a montrée
au (2) du théoréme précédent s’écrit (f'(u) — f'(v))(z —v) > 0 donc
(f'(u) — f'(v)),(u — v) ont méme signe et f” est croissante. On peut
alternativement utilisé pour a < 4, f’(a) = f;(a) < f,(b) = f'(b) grace
a I'inégalité vue au théoréme 3.9.

&) Réciproquement si f’ croissante, montrons que f convexe, on
veut voir f(d1a+(1-1)b) < Af(a)+(1-2)f(b) pour a < b,A €]0,1[. Par

W est atteinte

par f’ en un point de Ja,da + (1 — 2)b[, et de méme W

est atteinte par f’ en un point de ]1a+(1—-2)b,5[ donc par croissance
de la dérivée :

fa+ Q-0 - f(a) _ [(B) - f(ha+(1-1)b)

I’égalité des accroissements finis, la pente

A-Db-ao (b~ a)
da+(1-2)b ! -
—f(la+(1- ))((1_/1)(b—d)+/l(b_“))

ORI
1-D)(-a) Ab-a)
= f(da+(1-2)b)( re L2

) <
A1-0)' " a-»" 2

Ceci conclut. O
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3 Propriétés différentielles des
fonctions convexes.

Rappel sur la différentiabilité (au sens de
Fréchet)

On rappelle que pour E,F des e.v.n. 'ensemble des applications
linéaires continues L(E, F') est un e.v.n. avec la norme d’opérateur (dite
aussi norme subordonnée) |||f]|| = SUP| ||z <1 [l (%)

Définition 3.4

Soit E,F des e.v.n.,, U C E un ouvert, f : U — F est différen-
tiable (au sens de Fréchet) en x si il existe T € L(E,F) notée
df (x) telle que

I1f (x+ ) = f(x) = df (£) ()| = o(l[A]]), si [[~]] = O.

f est C! (ou continuement différentiable) sur U si f est diffé-
rentiable en tout x € U et df : U — L(E,F) est continue. On
note aussi Dy f (x) = df (x)(h)

f est C?si f est C! et df est aussi C1. On note d2f (x)(h, k) =
D (Drf)(%).

On rappelle quesig: U — V C F,f : V — Z sont différentiables,
alors fogaussiet d(fog)(x) =df(g(x)) odg(x). Deplussi Z =Ret
J aun minimum local en x € V avec V ouvert, alors df (x) = 0.

Remargue 3.2. 1l est important de noter que df (x) est une appli-
cation linéaire, donc df (x)(%) est linéaire en 4, mais pas forcé-
ment en x. Pour insister sur ce point, on note parfois de facon
équivalente :

df (x)(k) = df (x).h = df (x).[h]

Dans le cas le plus fréquent pour nous o £ = R*,F = R, si
f est différentiable, alors elle admet des dérivées partielles, le

gradient de f en a est noté Vf(a) = (%(a),...,%(a)). Alors,
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ona:

> 0
S @W = @0 =Y L,
j=1

Caractérisations différentielles des fonctions
convexes

Le théoréme suivant résume les 3 caractérisations principales de
la convexité en terme de différentiabilité, par la position relative des
plans tangents et du graphe, par la monotonie de la dérivée premiére
ou par la positivité de la dérivée seconde (le résultat n’est pas optimal,
il suffit en fait d’une dérivabilité directionnelle appelée dérivée au sens
de Giteaux) :

% Théoréme 3.12

Soit £ un e.v.n. et U un ouvert convexe, f : U — R une fonction
différentiable en tout point de U.

1. f est convexe ssi pour tout u,v € U :

f(w) = f(0) 2 df (v).[u—v]

2. f est convexe ssi pour tout u,v € U :

[df (u) — df (v)].[u—2] 2 0

3. Si f est en plus C?, f est convexe ssi d?f(x) est posi-
tive pour tout x € U au sens ou df(x)(h,k) > 0 pour
tout x € U,h € E. De plus, si £ = R” avec la norme
euclidienne, ou plus généralement si £ est préhilbertien
(cf. chapitre 5), si d? f(x) est définie positive, pour tout
x € U (cest-a-dire pour tout & # 0, d*f(x)(k,k) > 0)
alors f est strictement convexe.

Remarque 3.3. (Rappel d’algébre linéaire) Si £ = R”, alors
d’f(x) est positive si et seulement si la matrice hessienne
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2
Hf(x) est positive (rappel (Hf(x));; = (%(x))). Comme
elle est toujours symétrique et donc diagonalisable en base or-
thonormale, cela équivaut a ce que ces valeurs propres soient

r s
) (Cest a

toutes positives. Dans le cas n =2 H(f)(x) = ( s 4

2 2
dire on prend les notations de Monge r = %(x),s = gxg; (x),t =

2
%(x)) alors H(f)(x) est positive si et seulement si r¢ — s2 > 0
etr>0.

a. En effet D?f (x)((h1,h2), (h1,hg)) = rhf + 2shihg + thg =
(h%)P(hg/hl) si b # 0, avec P(1) = r + 252 + tA1? le po-
lynéme de second degré de discriminant A = 4s% — 4r¢. Si
A < 0 pas de racine et selon le signe de r, P est soit tou-
jours positif (cas D?f (a) définie positive) soit toujours négative
(D?f (a) définie négative). Si A = 0, il y a une racine double
et on a la méme conclusion sur la positivité. Si 4; = 0, alors
D?f (x)((h1,h9), (h1,hg))) = 2shihy nest positive que si s = 0
car sinon en (41,4) = (s,—1), on a la valeur strictement néga-
tive —2s? et c’est aussi le seule cas ou le déterminant r¢ — s2 est
positif pour r = 0). Si A > 0 on a 2 racines réelles et P prend a
la fois des valeurs positives et négatives.

Remarque 3.4. Un cas particulier du (3) est le cas ou il existe
¢ > 0 telle que d%f (x)(h,k) > c||k||*> pour tout x € U,h € E =
R™. Le cas de stricte convexité se déduit donc en décomposant
f = g +5llx|/% Linégalité donne que d*g = d*f — ¢ est positive
donc g convexe et on verra au dernier chapitre que I'identité du
parallélogramme implique que §||x||* est strictement convexe,
donc par somme f est strictement convexe (de facon trés uni-
forme). C’est une situation intéressante pour les problémes de
minimisation qui permet d’obtenir la convergence de suites mi-
nimisantes et des stratégies algorithmiques de minimisation (cf.
cours de recherche opérationnelle au S6).
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Démonstration. (1) Si f convexe, 'inégalité vient du corollaire 3.5 en
comparant 'infimum a la valeuren t =1 pour A=u—v:

df (v).[u - 0] = inf w

S fluth) = f(u)=f(u) - f(o).
Réciproquement on applique I'inégalité en z = tx + (1 — £)y € U par
convexité de U pour %,y € U d’ou :
() f(x) - f(2) 2 df ()] - 21,
(B) f) = f(2) zdf (2)y - 2],
et t(A) + (1 —¢)(B) donne

tf(x)+1A=0f0) - f(2)
z2df (2)[t(x-2)+(A-)(p - 2)]=df ()(0) =0

ce qui donne I'inégalité de convexité.
(2) Si f convexe, on utilise de méme les inégalités du corollaire

35
df (u)(v—u) < f(v) = f(u), df (v)(u—-20) < f(u) - f(v)
En sommant, on obtient 'inégalité (df (u) — df (v))(v — u) < 0. Réci-

proquement, on utilise ¢(¢) = f(¢x + (1 — ¢)y) qui par composition est
dérivable de dérivée ¢’ (¢) =df (tx+ (1 —t)y)(x —y). Orsié <s

#(5) = () = 1df o+ 5(x = 3)) = df ( + 1(x = )k )
= (4 G +s(x=2) ~ df  + 1= )]
(y+s(x—p)—(p+t(x-y)) 20

Donc ¢’ est croissante et par un résultat a 1 variable (proposition 3.12)
¢ est convexe.

(3)Si f est C2, on dérive en ¢ la relation du (2) avec v = x, u = x+th
une fois divisée par ¢? et on obtient d2f (x)(k,k) > 0. Réciproquement,
en dérivant en ¢, la fonction g définie par g(¢) = df (v+t(u—0v))(u—v)
(qui est C1 car df est C!) et en appliquant le théoréme fondamental
du calcul :

[df (u) = df (v)][u—v] = g(1) — g(0)
1

=/ dtdf (v+t(u—v))(u—v,u—0v)20
0
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et on retrouve le critére du (2).

Pour la stricte convexité, commencons par le cas £ =R, donc U =1
un intervalle ouvert. Soit [a,d] c I il suffit de voir f strictement convexe
sur [a,b]. On fixe [a,b] C]a’,b’[C [a’,0'] C 1

On suppose dans ce cas f”(x) > 0 pour tout x € I et f” continue
(vue f de classe C2?). Donc f” atteint son minimum sur [a’,5’] en xo
de sorte que f”(x) = ¢ = f""(x9) > O pour tout x €]a’,d’[C [a’,0'].
Donc comme & la remarque 3.4 implique f = g + c% avec g’/ > 0 donc
g convexe et donc f strictement convexe sur |a’,5’'[.

On pose g,4(¢) = ta + (1 — t)b. Soit maintenant le cas général
E = R”. Par définition, f est strictement convexe si et seulement si
pour tout segment [a,b] C U,a # b,hp = [ o ggp est strictement
convexe sur [0,1] (ou sur ]0,1[ en élargissant les intervalles comme
avant). Or lz;”b(t) = df*(g.4(t))(a - b,a — b) > 0 pour tout ¢ €]0,1[.
On déduit donc du premier cas que £,; est strictement convexe sur
10,1[ et donc aussi f. Comme U ouvert, on peut trouver a’,b’ € U
avec [a,b] C [a’,b'] —{d’,b’},[a’,b'] C U.

Pour montrer Comme g, ; est continue bijective de [0,1] —
[a’,0'] sia’ # b, [a’,b] est compact comme image direct du compact
[0,1] par une application continue.

Lt h(at+ (1 -0)(b—-a) = A’ f(at+ 1 -t)(b—-a)(b—-ab-
a) est continue sur [a’,5’] donc atteint son minimum en xy € [a’,b’]
qui est donc h;”b(x) = d’f(x0)(b — a,b — a) > ¢y, (b — a,b — a). En
appliquant a l'intervalle ouvert ]a’,4’[ le premier cas, on déduit que
hg p est strictement convexe sur ]a’,5’[, donc aussi par restriction £, .
Comme a # b € U arbitraires, f est aussi strictement convexe. O

Exercice 3.6. Montrer que f(x) = x* est strictement convexe sur
R mais que sa dérivée seconde n’est pas bornée inférieurement
par ¢ > 0.

Convexité, Critére d’extremum global

On retrouve d’abord un critére d’optimisation du premier ordre
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Proposition 3.13

Si f est de classe C! sur un ouvert convexe U et f est convexe,
alors tout point ¢ € U est un minimum global de f si et seule-
ment si c’est un point critique de f (c’est a dire un point a tel

que df (a) = 0).

Démonstration. On sait déja par le cours de L2 que si f a un minimum
local en a alors df (a) = 0. En effet, rappelons la preuve, pour tout £ €
E, il existe € > 0 : B(a,€l||h||) € U (car U ouvert) et f(a £ th) > f(a)
pour tout ¢ €] — €,€[. Donc, en divisant par ¢ > 0 on obtient :

fla+ih) - f(a)
t

a—th)— f(a

f(_—if() =0+ df (a)(h) <0

donc df (a)(k) = 0 pour tout & ce qui veut dire df (a) =
La nouveauté est la réciproque, on suppose f convexe. Il suffit de
noter par le théoréme 3.12 que pour ¢ € C, f(¢c)—f(a) = df (a)(¢c—a) =
0 donc f(a) = inf.cc f(c) et a atteint 'infimum de f sur C. O

—0 df (a)(h) 2 0

On a un critére d’optimisation plus général sur un convexe C C R”".
On rappelle que Vf(a) = (ﬂf (a),.. ’ax ( ).

% Théoréme 3.14

Soit C un convexe de R” avec C C U un ouvertet f : U — Rune
fonction de classe C!, convexe sur C. Alors a est un minimum
global de f sur C si et seulement si —V f(a) € N¢(a) c’est a dire
si et seulement si

Ve e C,(Vf(a),c—a)=0.

Démonstration. On rappelle la définition Ng(a) = {f € E : V¢ €
S,{(f,¢c —a) < 0} ce qui donne la derniére reformulation. Si a est un
minimum global f(a) < f(tc+ (1 - ¢)a) pour ¢ € C,t €]0,1[ vu que
par convexité ¢¢c + (1 — ¢)a € C. En prenant la limite, on obtient

UL (U

t

(Vf(a),c—a)=
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Réciproquement, si 'inégalité est vérifiée donc on peut utiliser le
théoréme 3.12 (dont la preuve du 1 s’applique méme si C n’est pas
ouvert) et on obtient :

0<(Vf(a),c—a)=df (a)(c—a) < f(c)- f(a).

donc f(¢) > f(a) pour tout ¢ € C et donc a est un minimum de f sur
C. O

Exemple 3.4

On prend g(¢) = ||f - c||§ le carré de la distance euclidienne a
f € E. Alors Vg(a) = =2(f — a) et donc on obtient que a € C

minimise la distance de x a C si et seulement si :
Vee C,{x—a,c—a) <0.

Ce sera le critére du théoréme de projection sur un convexe
fermé C ou l'on verra Pexistence d’un tel point ¢ au dernier
chapitre. Dans R” on peut aussi voir I’existence par compacité
de C N B pour une boule fermée B assez grande pour qu’une
inégalité grossiére permette d’assurer que tout minimum doive
s’y trouver. On obtient ainsi le résultat suivant.

% Théoréme 3.15: (théoréme de projection sur un convexe

fermé de R")

Soit C ¢ R” = E un convexe fermé non-vide et ||.||2 la norme
euclidienne. Pour tout f € R”, il existe un unique u = P¢(f) tel
que
IIf = ullz = inf || f - o]lo.
veC

De plus, c’est 'unique vecteur z € C tel que :
Vv e C,{f —u,v—u) <O0.

De plus, pour tout ¢ € C, ¢ + N¢(c) = PCTl({c}) et forment une
partition de R”.

La preuve suivante par compacité ne fonctionnera pas en dimen-
sion infinie, mais le résultat sera encore vrai dans un espace de Hilbert

(cf. chapitre j5).
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Démonstration. Comme C non vide r = inf,e¢ ||f — 0|2 < 0. Soit D =
CNB(f,r+1). Comme la boule fermé est un convexe fermé, D est un
convexe fermé comme intersection de convexes fermés, et il est aussi
borné par définition, donc c’est un compact de R”. De plus, D c C,
donc inf,ec ||f = v|l2 < infyep ||f — v||2 par définition de I'infimum.
Mais soit1 > € > O et v € C tel que ||f —v||g < r+¢€ alors par définition
v € D et donc inf ep ||f — dl|l2 < ||f —v|l2 < r + €. Donc en passant &
la limite € — 0, on a obtenu :

inf —vl|lg <7 =inf —||g < inf - vl|o.
inf [|f = oll2 < 7 = inf ||f - ol < inf |If - o]l

Or v — ||f — v||2 est continue sur le compact D, donc atteint son
infimum en # € D C C. Par croissance du carré, c’est aussi le point ou
[|f—vl |3 atteint son infimum. La hessienne de v — ||f—v||§ est I'identiteé,
donc cette application est strictement convexe, elle a donc un unique
minimum P (f). La caractérisation du minimum a été vue a ’exemple
précédent. Enfin cette caractérisation donne (en retraduisant avec la
définition de N¢(¢)

P'({cH)={f €E:Voe C(f —c,o—c) <0}
={fe€eE:f-ceNc(c)} =c+N¢g(c).

Le fait que P¢ : E — C est une application surjective (vu que Pc(c) = ¢
pour ¢ € C) implique le résultat sur la partition. O

4 Premiéres Inégalités de convexité

Citons un exemple important et simple.

Exercice 3.7. Soit f: [0,+00[— [0,+co[ une fonction concave.
Montrer que pour tout x,y > 0ona f(x+y) < f(x) + f(9).

Démonstration. Fixons y > 0 et considérons la fonction g: [0,+c0[— R

définie par g(x) = f(x) + f(9) — f(x + ).

Alors, pour tout a < b € [0,+co[, on a

gb)—gla) f(b)-f(a) [f(b+y)—fla+y)
b-a b-a b—a ’
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flt+y) —flaty) _flb+y) - flaty)
b—a (b+y)—(a+y)
sement de f entre (b + y) et (a +y), 'inégalité des pentes nous donne
g(b) —g(a)
b—a
Par conséquent, on a pour tout x que g(x) > g(0) = £(0), et donc

fx)+f()—f(x+y) = f(0) =0, ce qu’on voulait démontrer. O

est le taux d’accrois-

Puisque

donc que > 0, autrement dit g est croissante.

On verra au chapitre intégration section 5.2 I'inégalité la plus im-
portante, 'inégalité de Jensen, quon appliquera ensuite au chapitre
Espace L?.

Voici en exercice un cas (trés) particulier de I'inégalité de Jensen
(cf. Corollaire 5.6 pour une preuve).

Exercice 3.8. Soit I un intervalle de R, a1,...,@, des réels posi-
n
tifs tels que Z a; =1, et ¢ une fonction convexe sur /. Alors,

i=1
pour tout x1,...,x, €/ ona

2 (i aixi) < i @;p(x;) .
i=1 i=1
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CHAPITRE 4

Intégration de
Lesbesgue :
Construction
de l’intégrale
et grands
théoremes

Le but de ce chapitre “ Construction de I'intégrale et grands théo-
rémes” est de donner le cadre pour votre cours de probabilité du second
semestre, en pensant ’espérance comme une intégrale, tout en généra-
lisant 'intégrale de Riemann et la somme de séries vues en L1 ou en Le.
Ce seront aussi les 2 exemples importants unifiés dans ce chapitre (qui
donnent les exemples des variables aléatoires continues et discrétes).

96
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On va se concentrer dans ce chapitre sur la construction de I'inté-
grale et les grands théorémes qu’il faut apprendre a utiliser. On verra
le minimum des définitions requises pour formuler cette construction.
Pour cela, on va s’appuyer sur les similarités avec vos cours de pro-
babilités et avec le chapitre 1. Ce sont des constructions importantes
dont la démarche sera reprise par exemple au semestre prochain pour
la construction de 'espérance conditionnelle. On reporte au deux cha-
pitres suivants les résultats plus techniques dont il est moins important
de retenir une idée des preuves.

Dans ce chapitre, le corps est K = R ou K = C. Pour I'intégration,
on a aussi besoin de la droite réelle étendue : R = RU{—00,+00} avec les
mémes conventions qu’au chapitre précédent : co + co = co et 1.00 = 00
sid >0,0.00=0.

Rappels

Droite réelle étendue

Rappel 4.1. La somme x+y avec x,y € R, est définie 4 I'exception
du cas ou x = +o0 et y = —x. Contrairement au cas des limites,
on pose 0.+ 00 =0, ¢. + 00 = 400 pour ¢ > 0.

Pour un ensemble 4 non-vide (non-nécessairement borné), on uti-
lise sup 4 pour le plus petit majorant M € R de 4 et inf 4 pour le plus
grand minorant m € R de 4.

On utilisera aussi inf @ = +oo, sup @ = —co.

Exercice 4.1. Soient A, B parties non vides de R. Montrer que :

1. M = sup A ssi M est un majorant de A et il existe une
suite (x,), avec x, € A telle que x, — M. Caractérisation
analogue de inf A .

2. Tout A (non-vide) admet une borne supérieur sup 4 €
] — o0, 00] et une borne inférieur inf 4 € [—o0,00].

3. sup 4 et inf 4 sont uniques.

4. sup(—tA) = —tinf A4, Vi €]0,00[. Formules analogues
pour sup(¢4),inf(tA4),inf(-t4).
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5. sup(4+ B) =supA4 +supB et inf(4+ B) = inf A +inf B
(avec la somme usuelle d’ensemble A+ B ={a+b:a €
A,b € B}.

6. Si A C B, alors inf B < inf4 < sup4 < sup B.

7. Si (x,)a>0 est une suite croissante de réels, alors lim x,, =
sup{x,;n > 0} = supx, . Enoncé analogue pour une
suite décroissante.

8. Sisup4 > x € R, alors il existe un y € 4 tel que y > x.

Limites inférieures et supérieures

% Définition 4.1

Pour une suite x, € R, sa limite supérieure est le nombre :

lim sup x,, = inf sup xx = lim sup x;
n n2l sy " kan

(L’égalité vient de la décroissance de la suite des sup, et c’est
aussi la plus grande valeur d’adhérence :exo), sa limite inférieure
est le nombre :

hm inf x, = sup inf x; = lim inf x;.
n>1k=n n— k>n

(c’est aussi la plus petite valeur d’adhérence exo)

On a les formules suivantes (pour ¢ > 0) :

lim sup —x, = —liminf x,,
liminf —x, = —limsup x,
lim sup ¢x, = ¢lim sup x,,

liminf ¢x, = ¢ liminf x,

lim sup x, + y, < limsup x, + limsup y,

liminf x, + y, > liminf x, + liminf y,
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Enfin, limsup x, = liminfx, =¢ € R si et seulement si x, — £.

Démonstration. Toutes les (in)égalités sont des conséquences des pro-
priétés des sup,inf puis un passage a la limite :

sup —x, = — inf x,, inf —x, = —sup x,
k>n kzn zn k>n

sup tx, = t sup x,, inf ¢x, = ¢ inf x,
k>n k>n kzn kzn

sup x, + y, < sup x, + sup y,
k>n k>n k>n

inf x, + y, > inf x, + inf y,
kzn k>n k>n

Enfin, le sens intéressant est celui ot lim sup x, = liminfx, =¢ € R
et alors X, = infzs, % < x, < sup,,,x; = Y, et le théoréme des
gendarmes permet de conclure que la limite commune de X,,Y, est
aussi la limite ¢ de x,. Réciproquement, si x, — ¢, alors pour tout
€ > 0, pour n grand, £ — € < x, < £+ € d’ot on déduit £ — € <

liminf x, <limsupx, < £+ € et € = 0 conclut. O

1 Tribus, fonctions mesurables et
mesures

Tribus

Vous avez I'habitude de parler d’événement d’un espace de pro-
babilité et de considérer la famille 7 c £ (Q) des événements d’un
tel espace. Souvent (pour les probabilités discrétes), on peut prendre
7 = P(Q), 'ensemble de toutes les parties de €, mais cela ne sera
pas possible pour généraliser I'intégrale de Riemann, on ne pourra pas
définir 'intégrale de n’importe quel ensemble. La définition suivante re-
tient donc les propriétés essentielles de la famille des événements que
l'on veut pour définir une probabilité sur une telle famille.
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% Définition 4.2

Une #ribu (ou o -algebre) sur Q est une famille 7 de partie de €,
soit 7~ C P (L) telle que :

1. 0T

2. SiAe€ 7 alors A € T .

3. Pour toute suite infinie (dénombrable) (4,),>1 de parties

de 7, alors leur union est aussi dans la tribu U A, eT.
n>1

Un ensembe 4 € 7 est appelée partie 7 -mesurable ou simple-
ment mesurable.
Un espace mesurable est une paire (Q,7") formée d’un ensemble
Q et d’une tribu 7 sur Q. Les enembles 4 € 7 sont appelés
ensembles mesurables (pour la tribu T ou T -mesurables).

Le résultat suivant est assez évident

Pour toute suite finie A1,--- ,4, de 7, alors 41 U---UA, € T.
Pour toute suite infinie (dénombrable, resp. finie) (4,),>1 (resp.

Ay,- -+ ,Ay) de parties de 7, alors leur intersection m A, €T

n>1

n
(resp. ﬂA,— €T).
i=1

Démonstration. Pour le premier, il suffit de prolonger la suite en 4; =
OeT pourk >n+letalors AyU---UA4, = UA,,G‘T

n>1
Pour I'intersection, il suffit de combiner union et complémentaire,

par exemple dans le cas dénombrable : ﬂ A, = ( U Aﬁ,) €eT. O

n>1 n>1

Remarque 4.2. On verra au chapitre suivant la notion plus élé-
mentaire d’algébre de parties (ou clan) ou 'on demande seule-
ment la stabilité par union finie, mais elle ne suffira pas pour la
construction de I'intégrale. Il faut comparer la notion de tribu a
celle de topologie de la remarque 2.3, qui était 'axiomatisation
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des parties ouvertes d’un espace métrique. Comme une topolo-
gie, une tribu est stable par intersection finie, mais méme plus
elle est stable par intersection dénombrable. Mais par contre,
elle n’est pas stable par union quelconque, mais seulement par
union dénombrable. Donc aucune des notions n’est plus géné-
rale que l'autre. Enfin, la nouveauté est la stabilité par complé-
mentaire, ou autrement dit par toutes les opérations logiques de
bases sur les ensembles (complémentaire, intersection et union
binaires), et c’est la clef pour son application en probabilité (on
veut aussi que les événements soient stables par toutes les opé-
rations logiques). On va cependant traiter dans beaucoup d’as-
pect la notion de tribu comme la famille des ouverts d’un espace
métrique (ou plus généralement topologique).

Mesure et Probabilité sur une tribu

Lintégation va dépendre d’un objet de base qui permet la “me-
sure du volume” (ou en physique la “mesure de la masse" ou d’autres
grandeurs extensives) et qui va généraliser la notion de probabilité.

% Définition 4.3: Définition d’une mesure

Soit (,7) un espace mesurable.
On appelle mesure (positive) est une application u : 7~ — [0,+00]
ayant les propriétés suivantes :
1. u(0)=0
2. (o-additivité) Pour toute suite au plus dénombrable
(4;i)ier © d’éléments de 7 deux a deux disjoints,

ulJ 40 =D ucan.

iel iel

Une mesure de probabilité P est une mesure positive P vérifiant
en plus P(Q) = 1. Un espace mesuré (resp. de probabilité) est un
triplet (2,7, 1) (resp. (2,7 ,P)) formée d’une mesure positive
{1 (resp. une mesure de probabilité P) sur un espace mesurable
(Q,7).
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a. c’est a dire soit I = [[0,z]] et dans ce cas Z,u(A,-) =
iel
n (o]
Z/J(Ai), soit soit / = N et dans ce cas Z,u(Ai) = Z,u(Ai)
i=0 iel i=0
est la somme de la série, finie ou +oo

Une mesure a des propriétés trés similaires a celle d’une probabilité
dont vous avez ’habitude (exo).

% Proposition 4.3

i) Si A c B alors u(4) < u(B) (u est croissante).
ii) Pour toute suite au plus dénombrable (4;);es,

/,l(U 4;) < Z,u(A,—) (u est sous-additive).
iel iel
iii) Si (4,),>1 est une suite croissante,

p(|J4n) = lim p(4,) = sup u(4,).

n>1 n>1

iv) Si (A4,),>1 est une suite décroissante avec u(4;) < oo,

p(() 4u) = lim u(4,) = inf p(4,).

n>1

v) Si u(Q) est finie : u(A4°) = u(Q) — u(4).

Ensembles p-négligeables

% Définition 4.4

Soit (2,7 ,u) un espace mesuré, un ensemble 4 C Q est u-
négligeable si il existe B € 7 contenant 4 C B et avec u(B) = 0.

Attention, 4 n’est par forcément mesurable donc on ne peut PAS
déduire p(A4) = 0. Mais la seule extension possible, si 4 devenait mesu-
rable, serait la valeur 0.
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Lemme 4.4

Une union au plus dénombrable d’ensembles p-négligeables est
p-négligeable.

Démonstration. Si (Ap)a>0 est p-négligeable, alors il existe une suite
B, € T avec u(B,) =0et A, C B,, donc

UA,,CUBneT,u(UBn)sZu(Bﬂ)zo.

n>0 n>0 n>0 n>0

Exercice 4.2. Montrer que le seul ensemble v-négligeable pour la
mesure de comptage v est 'ensemble vide.

Définition 4.5

Une propriété P(w) des points w € € est dite vraie presque
partout (par rapport a u, ou u-presque partout, ou u-.p.p) si
{w € Q: -P(w)} est unégligeable. Autrement dit, si il existe
B € T avec y(B) =0 telle que P est vraie sur B°.

Exercice 4.3. Montrer que I'indicatrice de Q 1g est nulle A-p.p.

Un ensemble peut donc étre dense et A-négligeable.

Exemples de tribus

Exemple 4.1

T = P(Q) est une tribu (appelée tribu discréte) et T = {0,Q} est
aussi une tribu (appelée tribu grossiére).

Tribus engendrés par une famille d’ensembles

En pratique, on n’a pas besoin de connaitre en détail, tous les élé-
ments contenus dans une tribu, il suffit de savoir qu’on a assez d’éle-
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ments voulus (les générateurs de la tribu). Ceci est permis par le lemme
suivant.

Lemme 4.5

Si (77)ies est une famille de tribus, alors ();c; 7; est une tribu.
On peut donc parler de la plus petite tribu contenant une famille
A C P(Q), qui est I'intersection de toutes les tribus contenant
A, elle est notée o (A) et appelée la tribu engendrée par A.

Démonstration. C’est une conséquence directe de la forme de la défini-
tion. 0 € 7; pour tout i, donc 0 € (,¢; 7;.

De plus, si 4 € (;¢; 7;, alors 4 € 7; pour tout i, donc comme 7;
est une tribu, 4° € 7; pour chaque i et donc 4° € ;<7 7;-

Enfin, si pour chaque n > 1, 4, € (\;¢; T, alors A, € 7; pour tout
i, donc comme 7; est une tribu, U A4, € 7J; pour chaque i et donc

n>0

-
&
D
S
0

Exemple 4.2: (cf. TD)

Si 4 c Q, la tribu engendrée par 4 est o ({4}) = {4,4°,0,Q}.

Exemple 4.3: (cf. TD)

Si A4;,---,4, C Q forment une partition (c’est & dire sont 2 a
2 disjoints et d’union Q), la tribu engendrée o ({41, - ,4,}) =
{Uiesd; : I C [[1,n]]}.

% Définition 4.6

Pour (X,d) un espace métrique dont 7 est la topologie des
ouverts, on appelle ¢ribu borélienne sur X, notée B(X) = o (7))
la tribu engendrée par les ouverts de X.

Le résultat suivant est montré en annexe C en section 2.
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% Lemme 4.6

Sur R”, la tribu borélienne a le systéme de générateurs :

n

B(R") = 0'( [ 1asbil.ai < b, € R)

i=1

A partir de 1a, on obtiendra en TD les autres générateurs usuels.

% Lemme 4.7: (cf. TD)

Sur R”, la tribu borélienne a les différents systémes de généra-
teurs :
n
B8®") = ([ |1-c0.b:1.8: < R)
i=1
n
=a’( [a;,+co[,a; GR)
i=1
n
=0'( [a,-,b,-],a,—<b,»€R)
i=1
= O'(F : F fermé de R")

Tribu engendrée par une fonction

Lemme 4.8

Soit f : Q — (E,B) une fonction, o(f) = f1B) =
{f~Y(B),B € B} C T est une tribu sur Q. On lappelle tribu

engendrée par f .

Démonstration. C’est essentiellement une application des rappels sur
I'image réciproque de fonctions (1.1). D’abord f~1(0) = 0 € o(f),
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fUE)=Qea(f). Pour 4 € B (resp, 4, € B,n > 1) :
[fH(A)] = fFHA) € o(f) car 4° € B,
4w =f‘1( UAn) co(f)car | Jd, €8

n>1 n>1 n>1

O

Exemples de mesures

Exemple 4.4: (Mesure de comptage)

Sur tout ensemble Q, on définit sur (), la mesure suivante
(dite de comptage)

Card(4) si A fini

+00 sinon

Exemple 4.5: (Mesure discréte sur Q fini)

Sur tout ensemble dénombrable Q = {w,,n € [[1,n]]}, pour
(ui) € [0,+c0[" on définit sur P(Q) :

pd) = )

w; €A

v(4) = {

C’est une mesure sur £ (). Une fois connue I'intégration pour
la mesure de comptage (ou de facon équivalente si on connait
la notion de famille sommable, on pourra généraliser cet exemple
au cas Q dénombrable)

Enfin, 'exemple fondamental est le théoréme donnant I’existence
de la mesure de Lebesgue (admis)
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% Théoréme 4.9: (définissant 'intégrale de Lebesgue)

(admis) Il existe une unique mesure A sur (R4, B(R?)) invariante
par translation “ telle que

/l([O,l]")zl

Cette mesure est appelée mesure de Lebesgue sur R? et notée A =
A4 et elle vérifie pour a; < b; :

n

/l(l_[[a,-,bi]) =/l(l_[ las, b [) l_[(b

i=1 i=1

a. au sens ou pour tout a € Rd, B € B(Rd), si on note
a+B={a+b,be B}, alors A(a +B) = A(B)

Proposition 4.10: (définissant la mesure image)

Soit f : Q — (E,B)une fonction et (Q,o(f),u) un espace me-
suré alors la formule u/ (B) = u(f~Y(B)) for B € B est une
mesure sur 7, appelée mesure image de y par f.

Démonstration. Pour voir que u/ est une mesure sur 8, il faut noter
uf (0) = u(0) = 0. Puis pour la o-additivité, pour 4; € B,i € I deux a
deux disjoints avec / au plus dénombrable, on a :

(U =l () = )
iel iel iel
= DT u( ) = D (4y),
iel il

vu que les f71(4;) € o(f) sont aussi deux & deux disjoints par (1.1),
on a pu utilisé a 'avant-derniére égalité la o-additivité de p.
O



CHAPITRE 4. INTEGRATION DE LESBESGUE 108

Fonctions mesurables

Il nous reste a spécifier les fonctions qu’on va pouvoir intégrer. 11
faut lire la définition suivante comme I’analogue de la définition topo-
logique de la continuité (proposition 2.22)

Définition 4.7

Une fonction f : (,7) — (E,B) entre espaces mesurables
est mesurable si f~1(8) C T clest a dire si pour tout B €
B, fY(B) € T.Si (QT) = (X,8(X),(E,B) = (V,8(Y)),
on appelle fonction borélienne une fonction mesurable f
(X,8(X)) — (Y,8(Y)).

On déduit immédiatement de la définition comme le corollaire
411 :

% Lemme 4.11: (Stabilité par composition de la mesurabi-

lité)

Sif:(D,A) — (E,B)etg: (E,B)— (FC) sont mesurables,
alors, g o f : D — F est mesurable.

Démonstration. Pour tout ensemble mesurable U € C, g }(U) € B est
mesurable de Y par mesurabilité de g, puis f =1 (g"2(U)) € 7 est mesu-
rable de X par mesurabilité de £, mais f (g 1(U)) = (go f)"1(U) €
A. Comme c’est vrai pour tout ensemble mesurable U, on déduit de
la définition précédente g o f est mesurable. O

Comme en probabilité, I'intérét principal de la notion de mesura-
bilité est de permettre de définir la notion de mesure image (analogue
de la loi d’une variable aléatoire).

Proposition 4.12

Soit f : Q — (E,B) une fonction, la tribu engendrée par f du
lemme 4.8 o (f) := £ 1(B) = {f 1(B),B € B} est la plus petite
tribu rendant f mesurable. Autrement dit : Si 7~ C P(Q) est
une tribu, f : (Q,7) — (E,B) est mesurable si et seulement si
o(f)cT.
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Démonstration. On a vu au lemme 4.8 que o (f) est une tribu. f :
(Q,0(f)) — (E,B) est mesurable par définition, car pour tout B € B,
on a f~1(B) € o(f) par définition de o (f), et cela veut dire f :
(Q,0(f)) — (E,B) est mesurable par définition de la mesurabilité.
Déquivalence f : (Q,7) — (E,B) est mesurable si et seulement si
o (f) c T vient aussi directement des deux mémes définitions. L'inclu-
sion o (f) € 7 dit justement que o (f) est plus petite (pour I'inclusion)
que toute tribu rendant f mesurable. O

Exemple 4.6

Si A € 7, la fonction indicatrice 14 : (Q,7) — (R,B(R)) est
mesurable, car o7(14) = o ({4}) = {4,4°,0,Q} par 'exemple 4.2
et donc 0(14) C 7 par la définition d’une tribu.

En pratique, on a besoin d’une description en terme de parties
génératrices :

Lemme 4.13

Une fonction f : (Q,7) — (E,0(A)), vers un espace mesurable
engendré par une famille A, est mesurable si et seulement si
f1(A) c T Cest a dire si pour tout 4 € A, f1(A) € T.

Démonstration. Si f mesurable, vu que A C o (A), le fait que £ ~1(4) €
7 est une conséquence directe de la définition. Le contenu du lemme
est donc la réciproque.

On introduit une fammille 8 (qui va se révéler étre la plus grande
tribu de E rendant f mesurable, la preuve est donc trés similaire a celle
sur o (f)) :

B={BePE): f 1B eT}
Par hypothése A C B. Vérifions que B est une tribu (par la définition) :
> QeBcar fL0)=0eT

> Si B € B, alors f71(B°) = f71(B)° € T car T est une tribu

donc B € B

> Sid, € B, n >1, alors f‘l(UA,,) = Uf_l(A,,) €T car T

n>1 nx1

est une tribu donc U A, eB

n>1
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En conséquence, 8 est une tribu qui contient A, donc o(A) C B ce
qui dit exactement : VB € o (A) : f~1(B) € T soit la définition de f
mesurable. O

Corollaire 4.14

Une fonction f : (Q,7) — (¥,8(Y)) vers la tribu borélienne
d’un espace métrique est mesurable, si et seulement si pour
tout ouvert U (resp. tout fermé F) on a i) eT (resp.
fY(F) € 7). En particulier, si (Q,7) = (X,8(X)) pour un
espace métrique X, alors, toute fonction continue f est boré-
lienne.

Démonstration. Le premier résultat est une conséquence directe du
lemme vu que B(Y) = a’({U cY: :U ouvert}) = o-({F cY.:

F fermé}). Par la proposition 2.22, f~1(U) est ouvert (resp. f~1(F)
est fermé) donc dans $B(X) pour tout ouvert U de Y, on déduit que la
continuité implique la mesurabilité. O

En composant, avec les produits et sommes qui sont des applica-
tions continues, on obtient les mémes stabilités algébriques que pour
les fonctions continues :

Corollaire 4.15

Les fonctions mesurables (£2,7) — R sont stables par combi-
naisons linéaires, produits, fractions rationnelles & dénomina-
teur non nulle, passage a I'exponentielle (etc.)

On tire de méme immédiatement des lemmes 4.6 et 4.7 :

Corollaire 4.16

Une fonction f = (f1,---,fa) : (,T) = (R*",B(R")) est mesu-

rable si et seulement si ’une des assertions suivantes est vérifiée :
n

1. Pour tout b1,--- ,b, € R, f_l(l—[] —oo,b,-]) eT
i=1
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4. Pourtout @y < by, -+ ,a, < b, € R,f_l( ]a,—,b,—[) €T.
i=1
5. Pour tout i =1,---,n, i, ,.fn : (QT) = (R, B(R))
sont toutes mesurables.

Corollaire 4.17

Une fonction f : (Q,7) — (R,8B(R)) (a valeur dans Pespace
métrique (R,d5) de exemple 2.5) est mesurable si et seulement
si les trois assertions suivantes sont vérifiées :

L f({w)) e T
2. fl({-o0}) e T
3. Pour tout a < b € R, f([a,b]) € T

On renvoie aussi a 'annexe section 3 pour le résultat important
suivant

% Théoréme 4.18

Les constructions suivantes sont mesurables :

1. Un supremum d’une suite f, : (Q,7) — R de fonctions
mesurables

2. La limsup,liminf d’une suite f, : (Q,7) — R de fonc-
tions mesurables

3. Une limite simple d’une suite f, : (,7) — R de fonc-
tions mesurables
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Unicité des mesures o-finies

Définition 4.8

Soit (Q,A,u) un espace mesuré. On dit que (X, A,u) est o-
fini §’il existe une suite de parties mesurables (4,),en telle que
1(4,) < +oo pour tout z, et Q = UA”‘

Cette hypothése est par exemple vérifiée quand u(Q) < +oo (donc
en particulier quand p est une mesure de probabilité), quand Q = N
muni de la mesure de comptage, ou quand Q = R” muni de la mesure
de Lebesgue.

On renvoie a 'annexe C en section 1 pour une preuve d’un corol-
laire trés classique au lemme de classe monotone pour les mesures dans
le cas des mesures o-finies.

Corollaire 4.19: (au lemme de classe monotone)

Soient i et v des mesures sur un espace mesurable (€,7"). Soit
& une famille stable par intersection finie qui engendre 7. Si u
et v coincident sur & (i.e. u(E) = v(E),VE € &) et si il existe
une suite de parties 4, € & telle que Q = U, 4, et u(4,) =
v(A,) < +oo alors p et v sont égales (i.e. u(B) =v(B),YB e T).

2 Les fonctions étagées
(mesurables) et leur intégrale

Comme les fonctions en escalier sont la base pour 'intégrale de
Riemann, on considére ici la classe des fonctions étagées (mesurables)
qui sont la base de l'intégrale de Lebesgue. Les fonctions en esca-
liers sont les combinaisons linéaires des indicatrices d’intervalles 1, ).
On les prend pour base de I'intégrale de Riemann car on sait définit
.AIIQ 1]a,b] (x)dx = (b - a).

On fixe a partir de maintenant un espace mesuré (2,7, u).
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Maintenant, qu'on dispose d’une mesure g, on veut définir de méme
pour A €7 :

[ 1d= [ 1a@)duto) = ().
Q Q
Plus généralement, on définit :

Définition 4.9

Pour A,B € T, Uintégrale de 14 sur B par rapport @ u est notée et
définie par :

/ 1ady = f 14(w)du(w) = (4N B).
B B

Les combinaisons linéaires de fonctions indicatrices (mesurables)
vont donc étre de méme la base de I'intégrale de Lebesgue :

Définition 4.10

Soit (£2,77) un espace mesurable, on appelle fonction étagée f :
(Q,7) — R? une fonction de la forme

n

f@)=) a4 ()

i=1

pour a; € Réetd; € T.Pourd =1, la représentation est dite
canonique si a1 < --- < a,, tous non nuls (Vi,a; # 0) et les
A, -+ , 4, sont deux a deux disjoints et non vides.

Exercice 4.4. Les fonctions étagées sur (Q,7") forment un sous
espace vectoriel des fonctions Q — R,

Comme on veut que l'intégrale soit linéaire, on est conduit a la
définition suivante :
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Définition 4.11

A

.

.
§ |

Soit f une fonction étagée positive f(w) = Za,-lAi (w) avec
i=1

A; € T des ensembles mesurables deux a deux disjoints (a; >

0), on définit ’intégrale de f sur B € T par rapport & u par :

/de,u = /Bf(w)d,u(w) = ZZ:‘ a;u(4; N B).

On reporte a 'annexe C section 4 la preuve facile mais fastidieuse
du lemme suivant :

Lemme 4.20

Soit (€,7,u) un espace mesuré, et f,h : (Q,7) — [0,+0]
étagées positives, B € 7 :

1. Si f >0, alors ﬁ;fdu = fglgfd,u.

2. Si f=0,c¢>0,alors /Bcfd,u = C/de,u.

3. (additivité) /Bf + hdu = fod,u + fB hdu.

4. (monotonie) Si0 < f < halors 0 < [, fdu < [, hdu.

Le résultat crucial qui va permettre I’extension de I'intégrale est le
résultat suivant :

% Lemme 4.21

Soit (,7) un espace mesurable. Toute fonction mesurable po-
sitive £ : (Q,7) — (R,B(R)) est limite simple d’une suite crois-
sante de fonctions étagées positives.

Démonstration. On prend

4"-1
k
Ja(%) = 2" f ()=o) + Z onlraagsn ™)

£ s £ _f(x) <Blo<k<y4
=4 0 si Lol - 9n < f(x) <400 < f(x).
2" si f(x) =+
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1. Comme f mesurable, chacun des f‘l([zi,,, k;;,l [) € 7 et
f1({+o0}) € T et donc f, est étagée (comme combinaison li-
néaire de fonctions indicatrices mesurables).

2. La suite est croissante 0 < f, < f,, pour # < m. Sur f~1([0,2"]),

on découpe chaque intervalle de définition de fn en 2"7" en-

sembles dans la définitions de f,. Si fu(x) = o= < f(x) <
k;ml,O < k < 2™™" ontrouve k = k2" "+ pour 0 S l < 2™ 0 <

Kk < 4" par d1v151on euclidienne et

K )
fn(x)— — < fu(x) = om = gntom
<ﬂM<i+ﬁl_M) ol

Sur f71(]2%,+c0[) on a f,(x) = 0 < fau(x). Vu fo(x) < f(x) <
Ja(x) + ﬁ on en déduit f(x) — Q—n < fu(x) < f(x)sif(x) <27,

on déduit la convergence simple.
O

3 Intégrale des fonctions
mesurables positives

On peut maintenant définir I'intégrale des fonctions mesurables
positives :

% Définition 4.12

Soit f : Q — [0,+c0] une fonction mesurable positive sur un
espace mesuré (Q,7,u), on définit lintégrale de f sur B € T par

rapport 4 yu par :

[ rin= [ rdnte)

:sup{/Bgdu:g étagée, 0 < g Sf} € [0,+c0].
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Remarque 4.3. Pour la mesure de comptage v sur /, toute suite
a: I — [0,4+00] est mesurable positive et I'intégrale correspond
a la définition de la somme d’une famille sommable :

/Ifdvzz:ai:sup Zaj:jCI, fini

iel JjeJ

Remarque 4.4. Si f est étagée positive, pour chaque g < f étagée
positive, on a vu au lemme 4.20, /B gdu < /de,u donc

/fd,uZsup{/gd/,t:gétagée,()ﬁgSf}.
B B

Et comme f fait parti des g du sup, on a en fait égalité, et
la valeur de la définition du cas étagé positif coincide avec la
nouvelle valeure.

Premiéres propriétés

On reporte a ’'annexe C section 4 la preuve facile mais fastidieuse
du lemme suivant :

Lemme 4.22

Soit (Q,7,u) un espace mesuré, et f,h : (Q,7) — [0,+c0]
mesurable positive, A,B € 7 :
1. (monotonie) Si 0 < f < halors 0 < [, fdu < [, hdp.
2. Si f >0, alors L;fdu = L} 1pfdu. En particulier, pour
ACB,OS/Afd/JS/dey.
3. Sif>0,¢>0,alors chfdp = chfdp.
Si f =0 ou u(B) =0, alors fody =0.
5. (sur-additivité) [, £ +hdu > [, fdu+ [, hdp.

G

La derniére propriété n’est pas optimale, nous verrons I’additivité
en utilisant le théoréme de convergence monotone. Nous la mention-
nons ici pour signaler que ’additivité n’est pas évidente a partir de la
définition.
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Théoréme de convergence monotone de
Beppo Levi

% Théoréme 4.23: (Théoréme de convergence monotone

ou TCM)

Soit Z, : (2,7) — [0,+], une suite croissante de fonctions
mesurables positives qui tend simplement vers Z. Alors Z est
mesurable et pour tout B € 7 :

lim Z,,d,u:/Zd,uE/ lim Z,du.
n—o Jp B B o™

Démonstration. La mesurabilité de Z vient du théoréme 4.18. Posons

@ =sup, fB Z,du.
Comme Z, < Z,, < Z pour n < m, la monotonie de I'intégrale (du
lemme 4.22) montre que

/anyS/Zmd,uS/Zdy
B B B

Donc, comme la suite fB Z,du est croissante, elle converge vers son sup
et:
lim [ Z,du=a < /Zd,u.
n—o Jp B
Pour la réciproque, soit 1 > € > 0 et une fonction étagée g(w) =
2;@1&@0SZXw)OnpmeAn:&UEQ:ZAw)ZZQ@—GZQQ}

i=1
Par la monotonie de I'intégrale et la formule pour les fonctions étagées :

/a@z/a%@
B B

> (1-e) /B el du (41)

=(1—@§;myugmAnty
i=1

Remarquons finalement que U A4, = Q vu que pour tout w € Q,
n>0
Zy(w) = Z(Q) > Z(w)—€eZ(w). Comme Z, est croissante, 4, est aussi
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croissante donc par la proposition 4.3,

u(B;NA4,NB) > ,u(UBi NA4,NnB) = u(B;NB).
En passant a la limite dans (4.1), on obtient :
a> (1—E)me(3im3) = (1—6)/gd,u
i=1 B

soit en passant au sup sur g < Z puis a la limite € — 0, on obtient
'inégalité voulue a > fB Zdu.
O

On obtient un résultat concret d’approximation pour fB fdu.

Corollaire 4.24

Soit f mesurable positive. Pour toute suite croissante de fonc-
tions étagées telle que f, — f, ona /Bfnd,u — /de,u.

Corollaire 4.25: (Linéarité de I’intégrale : cas positif)

Soient f,g mesurables positives et @,8 > 0, ona :

/Raf+ﬁgdﬂ=a[3fdu+ﬂ[9gdﬂ.

Démonstration. Par le lemme 4.21, on a des suites croissantes de fonc-
tions étagées f, — f,g, — g donc a f, +B g, est une suite croissante de
fonctions étagées et o f, + 8¢, — af +Bg. Par le TCM ou le corollaire
précédent, en passant a la limite dans I’égalité du lemme 4.20 :

afstBgdu=a | fadu+pB | gudu
J Jy s |
—>/Baf+ﬂgdy=a/3fdy+ﬁ/3gdy.
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% Corollaire 4.26: (Interversion Série-intégrale : cas posi-

tif)

Soient f, : Q — [0,+00] une suite de fonctions mesurables po-

sitives alors la somme Zf,, : Q — [0,+00] est mesurable et on
n>0

a pour tout B € 7 :

/Zﬁrdﬂ Z/fndu

n>0 n>0

Démonstration. La suite des sommes partielles .S, = Z Jx est croissante

k=0
mesurable (par somme finie). Le résultat est donc une application du

TCM. O

Lemme de Fatou

% Théoréme 4.27: (Lemme de Fatou)

Soient B € 7 et X, : (Q,7) — [0,+0], une suite de fonctions
mesurables positives alors lim inf,_,., X, est mesurable et

n—oo n—oo

/limianna’,u < liminf/Xndy.
B B

Démonstration. La mesurabilité de liminf, .., X, vient du théoréme
4.18.

Par définition, liminf, .., X, = sup, Z, pour la suite croissante
Zy = inf,>pn X, < X,. En particulier, par monotonie de l'intégrale,
fBZmd,u < L;X,Ldu pour # > m, donc en passant a 'infimum :
fB Zndu < infysp, /BXnd,u.

Par le théoréme de convergence monotone, on obtient (en combi-
nant a I'inégalité ci-dessus) :

/lim inf X,,du = lim Zmdu = sup/Zmdu
B B

n—oo m—oo

< sup 1nf /X du _liminf/Xnd,u.
B

n— oo
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4 Intégrale des fonctions
intégrables

Comme pour les séries et les intégrales impropres en Lg, le
deuxiéme cas aprés le cas positif est celui qu'on appelle “absoluement
convergent” pour les séries ou “intégrable” pour les intégrales. Ils ont
en commun de considérer la méme opération (somme de série ou inté-
grale) pour la valeur absolue, et sila grandeur obtenue est finie, on peut
alors définir 'opération sans valeur absolue. On suit la méme stratégie
pour l'intégrale de Lebesgue.

On aura besoin de la :

Remarque 4.5. Soit f: (Q,7) — (R,8B(R)) une fonction mesu-
rable, sa partie positive est fi = max(f,0) et sa partie négative
est f = max(—f,0). fi, f~ et la valeur absolue |f| sont mesu-
rables par composée de f avec des applications continues. Elles

vérifient f = f, — f~ et |[f| = fi + f-.
De méme, pour f : (2,7) — (C,8(C)) une fonction me-
surable, son module |f|, et ses parties réelles et imaginaires

R(f),I(f) sont mesurables et
F=R()+iI(f) =R(f)+ — R()-+iT()+ —iT(f)-.

% Définition 4.13

Soit (Q,7,u) un espace mesuré, une fonction mesurable f :
(Q,7) — R) est intégrale par rapport @ u sur B € T si son module

|f]:(Q,7) — [0,+00] est d’intégrale finie sur B, i.e. / |fldu <
B

+00. On note L1(Q, 7, 1) Pensemble des fonctions intégrables a
valeur R. _
Si f: (7) — (R,B(R)) est intégrable sur B, on a donc

/ﬁd,u,/f_d,u < /Ifld,u < +oo et on peut définir ['intégrale
B B B
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de f par rapport a p sur B :

[rau= [ fidu= | fan

Si on dit f est intégrable, c’est qu'on veut implicitement dire sur
Q, son ensemble de définition. Dans ce cas, on écrit aussi : ffd,u =

/Qfd,u.

Définition 4.14

Soit (Q,7,u) un espace mesuré, une fonction mesurable f :
(Q,7) — C (resp. [ = (fi.- . fu) : (&T) — R")) est in-
tégrale par rapport @ p sur B € T si ses parties réelles et ima-
ginaire Rf,Jf : (Q,7) — R (resp. ses coordonnées f;) sont

intégrables sur B, i.e. de facon équivalente si [ |f|dy < +co.
B

On note £}(Q,7,1;C) Pensemble des fonctions intégrables a
valeur C.
On pose alors :

/de/l=/39%fdu+t/38fdﬂec,

Gesp. [ o= [ fduo. [ fudu) e5)

L’équivalence vient de AI‘I’\f|d;1,/B|Sf|dﬂ < fB|f|d,u <
Jy IR fldu+ [, 15 ld

Premiéres propriétés

Lemme 4.28

Si f: (QT,n) — R est intégrable (sur Q), alors u({w :
|f1(w) =+o0}) =0
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Démonstration. En effet, si 4 = {w : |f]|(w) = +o0}, on a (+c0)1y < |f]
et donc +oou(A4) < fB | fldu < +co ce qui n’est possible que pour u(4) =
0. O

% Lemme 4.29

Soit (Q,7,u) un espace mesuré, et f,g : (,7) — K des fonc-
tions intégrables sur B € 7, alors
0. (monotonie) Si f < g alors foa'/J < fBgd,u.

1. 1pf est intégrable sur Q et fod,u = fglgfd,u.
2. (linéarité) Si @,B € K alors @ f + B8 ¢ est intégrable sur B

et
[af+pgdu=a [ rausp [ gdu.
B B B

3. (domination) Si 4 : (Q,7) — K est mesurable et domi-
née par |f| au sens |k < |f] alors £ est intégrable sur
B.

4. (inégalité triangulaire) Si K=R, on a:

‘ [ raul < [ irta

On verra le cas complexe de I'inégalité triangulaire un peu plus
loin.

Démonstration. 1. Vu |1gf| = 1p|f|, en utilisant le cas positif du lemme
4.22,0n a fg 1pf|du = fB |fldu < +oo d’ou I'intégrabilité. Le calcul de
I'intégral se déduit alors du méme résultat en prenant partie positive et
négative des parties réelles et imaginaires.

2. Par I'inégalité triangulaire |af + B8g| < |a||f]| + |B||g|, donc en
passant a 'intégrale et utilisant le cas positif de la linéarité de 'intégrale
(Corollaire 4.25) :

/Iaf+ﬁg|duS/Iallf|+|[>’llg|dﬂ
B B
=IGIL|f|dﬂ+|ﬁILIgldu<+m.

De méme, I’égalité des intégrales vient en prenant partie positive et
négative des parties réelles et imaginaires.
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3. Il suffit d’utiliser la monotonie de lintégrale ﬁ;|h|d,u <
[ fldu < +oo.

4. Dans le cas réel, on a utilise juste I'inégalité triangulaire :

[orl=|[ i [ 5
< [ fur [ sdu= [ 171dp.

Théoréme de Convergence dominée de
Lebesgue

% Théoréme 4.30: (Théoréme de Convergence dominée

ou TCD)

Soient Z,,Z : (Q,7 ,u) — K des fonctions mesurables et 4 € T~
avec u(A4°) = 0 satisfaisant :

1. (Condition de domination) il existe une fonction Y inté-
grable (positive) telle que [Z,| < Y,
2. pour tout w € 4, Z,(w) = Z(w)
alors on a :

3. Z est intégrable
4 JoZn—Zldu — 0
5. on peut intervertir limite et intégrale

lim Z,Ldyz/.dez'/. lim Z,du.
Q Q A

n—o0 n—oo

Définition 4.15

Si une propriété est vraie sur un ensemble 4 € 7 avec u(4°) =0,
on dit que 4 est vraie presque partout.

L’hypothése 2. se formule en disant que Z, converge vers Z presque
partout. On étudiera cette notion avec plus de détail au chapitre sui-
vant.
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Démonstration. En appliquant aux parties réelles et imaginaires, il suffit
de montrer le cas K =R.

1. L'inégalité |Z,| < Y implique en passant a la limite |Z| < Y sur
A, ou autrement dit par domination, Z est intégrable sur 4. Comme
1(A°) =0, onaaussi |[Z] <Y +00ly et Y +coly est aussi intégrable,
donc Z est méme intégrable.

3. L'inégalité | Z,| < Y se traduit aussipar Y - Z,,Z,+Y > O et on
peut appliquer le lemme de Fatou 4.27 :

/(Y—Z)du:/liminf(Y—Zn)d,u
A 4 "

< liminf/(Y - Zy)du
n A

=/de—1imsup/anu,
A n A

/(Y+Z)dy=/liminf(Y+Zn)dp
A A n

< 1iminf/(Y+Z,,)d,u
n A

:/Yd,u+1iminf/anu,
4 n 4

donc en soustrayant le terme en Y,

/Zd,uSliminf/anﬂSlimsup/Z,,duS/Zdy
A n n A

et on en déduit donc I’égalité et la derniére convergence.

2. Enfin, par 'inégalité triangulaire, on déduit | Z,—Z| < |Z,|+|Z]| <
2Y sur A et il satisfait la méme condition de domination et pour tout
we A, |Z, - Z|(w) — 0. En appliquant le reste du résultat, on obtient
donc fQIZ,l—Zld/J—>/QOdu=O O
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% Corollaire 4.31: (Interversion Série-intégrale : cas géné-

ral)

Soient f, : @ — K une suite de fonctions mesurables telle que

Z/|f,,|du < oo pour B € 7T, alors la somme Zf,, Q-
B

n>0 n>0
K converge (absolument) pour presque tout w dans B et est

intégrable sur B et on a :

[ pdu=Y, [ fuda.

n>0 n>0

n

Démonstration. On considére la suite des sommes partielles .S, = Z fr
k=0

qui vérifie, grace a 'inégalité triangulaire, la condition de domination

[Sk] < Z Ifx] < Z |fx] =t Z. Or par le cas positif de I'interversion,
k=0 k=0

/Zdu = Z/ |fzldu < oo donc Z est intégrable sur B. Soit 4 =
B B

n>0

{w € B : Z(w) < o}, de sorte que ka converge absolument sur 4
k

donc §, converge simplement vers la somme (qui est donc mesurable
par le théoréme 4.18). Par le lemme 4.28 on a u(4°) = 0 donc le TCD
s’applique (sur B a la place de Q) et donne le résultat. O

5 Théoréme de transfert

% Théoréme 4.32: (Théoréme de transfert)

Soit [ : (Q,7,u) — (£,8E) une fonction mesurable de mesure
image uy et & : (E,E) — (R,B8(R)) une autre fonction mesu-
rable. Alors, si £ est a valeur positive :

[ oy du= [ 1) duy o
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De plus, si £ n’est pas a valeur positive o f € L1(Q,7,u) si
et seulement si & € Ll(E,S,,uf) et on a encore f(h o fdu =

[ h(x)dus(x).

Autrement dit, on raméne une intégrale sur € a une intégrale sur

/h(f(w))dﬂ(w)=/h(x)d,uf(x)-
Q R

Démonstration. On procéde comme pour la construction de I'intégrale.
Sih=1pavec B€ &, ho f =1;-1(p) et donc

/hofdu=u(f—1(B)>=uf(B)=//z(x>duf<x>.

Par linéarité, on obtient le cas de 4 étagé. Si k& positive, £ est la li-
mite croissante d’une suite de fonctions étagées k£, (du lemme 4.21).
Comme #4,(x) — h(x) par construction, on applique le théoréme de
convergence monotone aux deux mesures :

[ o du=tim [ (o frau
= tim [ ey () = [ h0duy o)

Le dernier résultat du cas intégrable est évident par le cas positif
pour ’équivalence et par linéarité pour I’égalité. O

Le résultat similaire suivant est important en probabilité. Nous
avons vu la tribu engendrée par f : o(f) au lemme 4.8. Le résultat sui-
vant donne une interprétation concréte des fonctions o (f)-mesurables.

Proposition 4.33: (Lemme de Doob-Dynkin)

Soit f une fonction mesurable, f : (Q,7,u) — (E,8), et soit
o(f) = {4 = f~1(B),B € &} la tribu engendrée par f. Alors
g Q — (R*,B(R")) est o(f)-mesurable si et seulement si il
existe 4 : (E,E) — (R",B(R")) mesurable telle que g =k o f.

Démonstration. La condition suffisante est évidente car pour un borélien

A, (ko f)71(A) = f~1(h"1(4)) qui est mesurable car A~}(4) € & car k
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borélienne et I'image inverse par f est alors par définition un élément

de o (f).

Réciproquement, on raisonne comme pour le transfert par le cas
étagé g = Z/L-Lqi et A; = f‘l(B,-) et alors & = Z/l,—lBl. convient.

i i
Sinon, si g positive, on la prend pour limite simple de g, étagée de la
forme 4, o f par le cas étagé, et on pose

h(x) = liminf A, (x).

h convient car mesurable positive (comme liminf de fonctions mesu-
rables) et car g(w) = lim, &, (f (w)) = A(f(w)) vu qu'en f(w) la suite
(h,) converge d’apreés le choix de g,. Le cas général se montre par
linéarité a partir du cas positif. O

6 Comparaison aux constructions
de L2

Intégrale de Riemann des fonctions
continues par morceau

Comme on a vu au chapitre 2, la base de I'intégrale de Riemann
est la notion de fonction en escalier. Ce sont des combinaisons linéaires
d’indicatrices d’intervalles de forme 1}, et 1(,}. Or les intervalles sont
des boréliens, donc les fonctions en escalier sont boréliennes étagées.
On a

/1]a,b[d/1 = (b - a) = / l]a,b[(x)a'x,

/l{c}dﬂ:O:/l{x}(x)dx,

donc par combinaison linéaire, intégrale de Riemann et de Lebesgue
par rapport a la mesure de Lebesgue coincident.

Soit f continue par morceau sur [a,b], 'intégrale de Riemann est
construite en choisissant f, en escalier convergent uniformément vers
f et donc simplement, donc f est borélienne comme limite simple de
fonctions boréliennes (cf. le théoréme 4.18). De plus, elle est bornée
donc intégrable sur [a,d].



CHAPITRE 4. INTEGRATION DE LESBESGUE 128

Quitte a décomposer en partie réelle et imaginaire, on suppose f
réelle. Donc pour tout x € [a,b] on a [f(x) — fu(x)] < ||fu — [l soit

Jo(®) = 1o = fllo < f (%) < fu(x) + 1o = [l

En intégrant au sens de Lebesgue, et en utilisant que les deux cotés
coincident avec celle de Riemann, on obtient I'inégalité :

b
/fn(x)dx—llﬁz—flloo(b—a)
‘ b
< ]fdﬂs/ fu@)dx +11fo— fllo(b— a).

lab

En passant & la limite # — oo, on a ||f; — f|lo — O et fabf,,(x)dx —

/a ’ f (x)dx par définition de I'intégrale de Riemann. On a donc obtenu
le point 1. du résultat suivant :

% Théoréme 4.34

1. Toute fonction continue par morceau sur un segment
[a,b] est intégrable par rapport a la mesure de Lebesgue
A et son intégrale de Riemann coincide avec celle pour
la mesure de Lebesgue :

lbf(x)dxz ./[a,b] fda.

2. Toute fonction continue positive sur un intervalle 7
(Ja.b8],]a.b[ ou [a,b[) admet une intégrale par rapport
a la mesure de Lebesgue A et son intégrale de Riemann
coincide avec celle pour la mesure de Lebesgue (finie ou
+00) 1 [! f(x)dx = [, faA.

3. Toute fonction continue intégrable sur un intervalle /
(Ja,b],]a,b[ ou [a,b]) est intégrable par rapport a la me-
sure de Lebesgue A si et seulement si elle est intégrable
au sens de Riemann. Dans ce cas, son intégrale de Rie-
mann coincide avec celle pour la mesure de Lebesgue :

[ fxydx = [ fda.

Démonstration. On se place dans le cas / = [a,b[. On pose b, =b—1/n
sib<+coeth,=a+nsib=+c02 Onposef, = fl{,,]. Comme f
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positive, f, sont des suites croissantes qui convergent simplement vers
f (sont stationnaires égales a f). On peut appliquer le théoréme de
convergence monotone et

ba b
/fd/l = lim /f,,d/l lim/ fdal = lim/ f(x)dxz/ f(x)dx.
I n—o Jr n— 00 [ab,] n—o . a

3. L'équivalence des intégrabilités vient du 2. appliqué a I'intégrale
de |f|. Pour I’égalité dans , on utilise la méme suite qu’au 2 et on note
|72] < |f], qui est une domination si f intégrable. La méme limite est
maintenant valable par le TCD.

O

On pourra donc appliquer les théorémes précédents aux intégrales (de
Riemann) usuelles vues en Le.

Remarque 4.6. Pour les fonctions f : [a,0] — R, on
peut définir une notion plus générale de fonction “Rie-
mann intégrable”, elle méme plus générale que l'intégrale
des fonctions continues par morceaux. L'intégrale de Le-
besgue généralise aussi cette version plus générale, cf.
e.g. http:/math.univ-lyon1.fr/homes-www/mironescu/resources/
cours_mesure_integration.pdf section 6.8.1

Mesures a densité

Le résultat suivant est laissé en exercice

% Proposition 4.35: (Mesures a densité (ou absolument
continue))

Soit f: X — [0,+co] une fonction mesurable. On définit une
application v : A — [0,+c0] par

v(A) =/Afd,u.

Alors, v est une mesure sur X, appelée mesure de densité £ par
rapport a . De plus 4 est intégrable par rapport a v si et seule-



http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
http://math.univ-lyon1.fr/homes-www/mironescu/resources/cours_mesure_integration.pdf
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ment si f/ est intégrable par rapport a u et :

‘/thvz‘/Xf/zd,u.

Pour une mesure a densité v par rapport a u, si u(4) = 0 alors
v(4) = 0. En fait, cette propriété caractérise les mesures a densité (c’est
un théoréme beaucoup plus dur, le théoréme de Radon-Nikodym cf.
section 5)

Exemple 4.7

On peut définir une mesure de probabilité sur les boréliens de
R en posant

1 2

Cette mesure s’appelle la mesure gaussienne. C’est un exemple de
probabilité & densité par rapport a la mesure de Lebesgue. Pour
vérifier qu’il s’agit bien d’une probabilité, il faut vérifier que :

1 [ 2 _

On le vérifiera plus loin par changement de variable a la fin du
chapitre 5 a la formule (5.1)

Lien avec les Séries

Soit  un ensemble. On considére I'espace mesuré (Q,P(2),v).
Tout fonction f : Q — R est £ (£2)-mesurable. On peut donc ignorer la
mesurabilité pour le cas des séries.

Cas Q ={w1, - ,w,} fini

n
Toute fonction s’écrit f = Zf(wk)l{wk} et est donc étagée. On
k=1

n
déduit que /fdv = Zf(wk), d’abord pour les fonctions étagées,
Q k=1
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puis positives, puis quelconques (on peut prendre toutes les limites
constantes).

Cas Q=N

1. SifZOalors'/Qfdvzif(n)
n=0

2. f est intégrable si et seulement si Zf(n) est absolu-
ment convergente et encore

/Qfdvzgf(n).

n
Démonstration. 1) Soit f, = Zf(k)l{k} est une suite croissante de
k=1

fonctions donc par le TCM /fdv = lim/f,,dv = lime(k) =
Q n Q n =0

W
n=0

2) D’équivalence vient du 1) f est intégrable ssi |f| a une intégrale
fini, donc ssi Z |f(n)| c’est a dire ssi Zf(n) est absolument conver-

n=0
gente. La définition de 'intégrale et de la somme coincident alors

/Qfd"zfgﬁdv—/gf_dv
=if(”)+_if(”)—=if(n).
n=0 =0 ar
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Cas Q = {w,,n € N} dénombrable

On a w : N — Q une bijection, donc la mesure image v, ({i}) =
v({w (i)} =1 = v({i}) est encore la mesure de comptage, le théoréme
de transfert donne donc :

Lemme 4.37

Pour tout f : Q — [0,+00],
/Qfdvz /Nf(a))dv=n2=;)f(wn)

En particulier, si o : N — N est une bijection Zf(a'(n)) =
n=0

(o)
Zf(n) et le méme résultat est valide pour les séries absolu-

n=0
ment convergentes (on dit qu’elles sont commutativement conver-

gentes.) Aussi L'(Q,v) = £1(Q) est 'ensemble des familles som-
mables sur Q avec la norme 1.

Probabilité discréte sur Q = {w,,n € N} dénombrable

C’est une densité f : Q — [0,1] par rapport a la mesure de comp-

tage telle que Alfdv = Zf(wn) =1
n=0

7 Intégrales dépendant d’un
parameétre

Soient (£2,7, 1) un espace mesuré, £ un evn. Soit finalement 4 une
partie de E.
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Définition 4.16

Soit f : A xQ — K. On suppose que pour tout x € 4, ¢
f(x,t) est intégrable (soit dans L'(Q,7,u)). Dans ce cas, on
peut poser :

F(x) = /Qf(x,t)dp(t). On définit ainsi une intégrale dépendant
d’un paramétre la fonction F : 4 — K.

% Théoréme 4.38: (Théoréme de continuité avec hypo-

thése de domination)

Soit f : A x Q — K. On suppose :

1. Pour tout x € 4, ¢ — f(x,¢), est mesurable sur Q.

2. Pour tout presque tout ¢ € Q, x — f(x,¢) est continue
en xy € A.

3. (Hypothése de domination) Il existe une fonction inté-
grable g: Q > Ry, g € L}(Q, 7, ) telle que

Vie QVxed, |f(x,0)<g(?).

Alors la fonction x — F(x) = fgf(x,t)du(t) est continue en
X0

On remarquera que dans ’hypothése de domination, la fonction g
ne dépend PAS de x.

Démonstration. Lhypothése de domination garantit que ¢ — f(x,¢) est
intégrable. Soit x, € A4 tel que x, — x¢. Par continuité de x — f(x,¢),
pour chaque ¢, f(x,,¢) — f(x0,¢). On peut donc appliquer le théoréme
de convergence dominée (avec domination par g) pour conclure

lim /Q £ Cen)du(t) = /Q £ Geon ) 1),

Exemple 4.8: (cf TD.)

Soit f : R — C intégrable sur R (par rapport & la mesure de
Lebesgue A). Sa transformée de Fourier est définie par :
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fx)= /Rf(t)e”"dt.

Elle est continue sur R en utilisant une domination par |f].

Théoréme 4.39: (Théoréme de dérivabilité avec hypothése

de domination)

Soit f: U xQ — K avec U ¢ R” un ouvert.
On suppose :

1. Pour tout x € U, ¢t — f(x,t), est intégrable sur Q.

2. Il existe N avec u(N°) = 0, tel que pour tout £ € N, la
fonction x — f(x,¢t) admet une i-éme dérivée partielle
sur U.

3. (Hypothése de domination) Pour tout compact K c U,
il existe une fonction intégrable gx € L'(Q) telle que

0
Yte NVx € K, '—f(x,t)

o, < gK(t).

Alors la fonction x — F(x) = fgf(x,t)d,u(t) admet une i-éme
dérivée partielle sur U, g—{t e LY(Q) et :

OF [ of
)= /Q L (x.0)du(0).

Remarque 4.7. Soit f = (fi,..., fm) : UXQ — R™ avec U € R" un
ouvert. Si chaque f;(x,.) est intégrable sur Q pour tout x € U,
on peut définir 'intégrale coordonnée par coordonnée :

/Qf(x,t)du(t)
=(/Qﬁ(x,t)du(t),~-- ,/an(x,t)dp(t)).

Alors le théoréme s’applique en remplacant la valeur absolue
par la norme dans la domination (et en appliquant le résultat
coordonnée par coordonnée.)
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Démonstration. On peut supposer n = m =1 (car les dérivées partielles
se calculent coordonnée par coordonnée). On fixe x( et montre la dé-
rivabilité en xo. On pose A(x,£) =0sit € N° et pourt € N

f(xt)—=f (x0.t) .
—_— X # X
h(x,1) = { - 0

X—X0 4

%(xo,t) sinon
Pour x # xo,
F(x) - F(x) _ / h(x,t)du(2).
X — X0 Q

11 suffit donc de prouver que x — fQ h(x,t)du(t) est continue en x.
Par hypothése, ¢ — £(x,t) est mesurable pour x # x¢ et par exemple
en tant que liminf (sur N ) aussi ex xp et x — £(x,¢) est continue pour
t € N (par continuité d’une fonction dérivable d’une variable). Enfin
I'inégalité des accroissements finis a x — f(x,¢) donne, pour x # xp,
x € K =[xo—€,x+¢€] C U (un compact car fermé borné de R contenu
dans U pour € assez petit) :

gi(u,l)

<
el < sup |2

u€|[xo.x]

< gK(t).

La méme inégalité étant évidente en x¢, on a la condition de domination
et le théoréme de continuité appliqué a K conclut. O

% Corollaire 4.40: (Théoréme de dérivation successive)

Soit £ : U xV — R! avec U c R",V c R™ des ouverts, une
fonction C* (k € N U {c0}). Soit  une mesure sur une tribu
T 2 B(V).

On suppose qu’il existe @g, 1, ..., p-intégrables sur V7 telles
que || f(x,8)]] < po(2) et

V(i1,.eetn), i1+ ... +in=p < kNx e UVt eV
orf

Oxi'...0x;)

(%, 0)|| < ¢p(2).
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Alors la fonction x — F(x) = fo(x, t)du(t) est de classe C*
sur U etpour p=i1+...+i, < k:

FF S
()= [ 0 du)

i1 i i1 i
Ox]'...0xy %) ...0x,

Démonstration. 11 suffit d’appliquer le théoréme de dérivation avec
condition de domination par récurrence simple (coordonnées f; par co-
ordonnée f = (f1,--- , fz)) . La mesurabilité de f vient de sa continuité
vu que 7 contient les boréliens. Son intégrabilité vient de la domina-
tion |f(x,t)] < ¢o(2) et sur les autres dérivées successives des autres
dominations. On peut prendre N = 0. O

Un exemple : la transformée de Fourier
d’une mesure avec moments d’ordre 2.

Soit u une mesure (de masse) finie sur B(R") (par exemple une
probabilité a densité par rapport a 1) tel que Xi, XiXj,0,f = 1,0 ,m
sont intégrables c’est a dire :

/ |%i|dp(x) < +oo, / |xix ;| dp(x) < +oo.
R R~

On verra plus tard grace a I'inégalité de Cauchy-Schwarz qu’il suffit de
supposer x? intégrable. On reprend la transformée de Fourier vu en TD
et a Pexemple 4.8 qui est définie par :

A(E) = /R () = /R FEx)du(x).
f(&,x) =€),

f est C? (méme C™) sur R?" et vérifie les dominations :

lf(€.x)] <1
if(f %) = e 'if(é“ x)| < |l
0¢; ’ ! ’ 3¢ »X)| S X
—62 i(E%) o2
ag,‘agjf(f,x) = —xixje 7, 'Bfiafjf(‘g’x) < |xix;]
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et par ’hypothése ;4 de masse finie, 1 est intégrable et par les hypo-
théses d’intégrabilité, les autres membres de droite des dominations
sont intégrables aussi par rapport & u. Par le théoréme de dérivation
avec condition de domination, on déduit donc que ji est C? et :

0 .
G h© =1 [ ety

62
0§08 ;

1O == [ e .
Rﬂ

Cet exemple sera utilisé au S6 pour montrer le Théoréme centrale limite
dans R".
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1 Mesure produit et théorémes de
Fubini

Tribus produits

La méthode de base pour calculer une intégrale d’une fonction de
2 variables est de se ramener a des intégrales de fonctions de 1 variable.
Pour cela il nous faut d’abord expliquer comment on peut munir X XY
d’une structure d’espace mesuré quand X,Y sont tous les deux munis
d’une telle structure.

% Définition 5.1

Soient (X, A, u1) et (¥, B, ug) deux espaces mesurés o-finis. On
note A ® B la tribu engendrée par les parties de la forme 4 x B,
ou 4 € A, B € B; on lappelle tribu produit des tribus A et B.

SiA=0(8E)etB=0c(F), onaﬂ@Bza({ExF,Ee&FG
all

En particulier, B8(R™™) = B(R") ® B(R™). De plus, si f :
(X,A) = (Z,C) et g : (Y,8B) — (Z,D) sont mesurables, 'ap-
plication (f,g) : (X XY, A® B) - (Z x T,C ® D) définie par
(f,2)(x,9) = (f(x),g(y)) est mesurable.

Démonstration. Vu {E X F,E € §&,F € ¥} c A ® B, on obtient en
passant a la tribu engendrée G := 0'({E XF,Ee€&E,F € 7"}) CARB.

Réciproquement, on pose A’ = {A € A:VF € FLAXF € G}.
On a clairement que A’ contient & et on vérifie facilement que c’est
une tribu (vu que A° X F = (Q X F) - (AX F) € G pour F € ¥.) D’ou
A’ = 0(E) = A. De méme, on pose ensuite, B" = {B € B : V4 €
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A,AX B € G} et on déduit du point précédent que ¥ € B’ C B et
comme avant que B’ est une tribu d’out 8 = $’. Finalement, on a donc
A x B c G dou I'inclusion complémentaire de tribus.

Le cas particulier B(R"") = B(R") ® B(R™) est une conséquence
immédiate du Corollaire 4.16.

Pour le dernier point, comme C® D = U({EXF,E eC,F € Z)}) il

suffit de noter que (f,g) W(ExF) = fHE)xg \(F) e AXxB Cc A®B
et le lemme 4.13 conclut. O

Mesure produit

Théoréme 5.2: (définissant la mesure produit)

Soient (1,771, u1) et (9,72, 19) deux espaces mesurés o-finis.
Alors il existe une unique mesure v sur 71 ® 73 vérifiant

V(4% B) = u1(4)p2(B)

pour tout 4 € 771 et tout B € 73 (avec la convention usuelle
0.(4+00) = 0). Cette mesure est notée pj; ® uy = v, et est o-finie.

Exemple 5.1

Si A, désigne la mesure de Lebesgue sur R”, alors on a
toyjours Adpem = A, ® Ap. On applique le corollaire 4.19
au lemme de classe monotone a I’ensemble des pavés &.
Par définition, Apim.d, ® Ay coincident sur les pavés. Or
Unen[-M,M]™™ = R™™ et Adyin([-M,M]"™™) = 2M)"™ =
(Ay ® 1) ([-M,M]™"™) < +oo donc on conclut a I’égalité vou-
lue.

La preuve va étre basée sur le fait de montrer un cas particulier du
théoréme de Fubini suivant pour les fonctions indicatrices.

Démonstration. Unicité On applique le méme corollaire 4.19 au lemme
de classe monotone. ON prend & = {AXB,4 € 71, B € 73} qui engendre
71 ® T3 par définition. Deux mesures vq,vy vérifiant le théoréme coin-
cident sur & Or comme uj,p9 sont o-finies, on obtient Q; = U,4;,
avec A;, € T; et w;(Ain) < 400, Alors, on a 41, X 4o, € & et est
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de mesure p1(A41,)p2(As,) < +oo pour vi,vy. Ceci donne la derniére
hypothése du corollaire 4.19 qui conclut & u; = uy.

Existence Pour C € 71 ® 73, on pose Cy = {y € Qy: (x,9) € C}. On
cherche a voir que Cy € 7;. Supposons d’abord p9 finie. On considére

C={CeTL®T;:YxCy €Ty
et x — uo(Cy) est 71 — mesurable}.

Alors on a
> C contient les pavés mesurables C = 4 X B avec 4 € 71,B € 7
car (4 X B), € {0,B} en distinguant le cas x € A,x ¢ 4 donc
H2(Cx) = 14(x)ua(B).
> C est une classe monotone car si ¢’ ¢ C,C" € C (C\ C'), =
Cy\ C; d’ou la mesurabilité et uo(C\ C’), = ua(Cy) —ua(Cy) par
finitude de p9 qui est mesurable par différence donc C\ C’ € C.
De méme si C, est une suite croissante (U,Cy,), = U,(Cy), qui
est dans 73 et uo((U,Cy)x) = sup,, ua((Cy)x) est bien mesurable.
Donc C contient la classe monotone engendrée par les pavés, donc (par
le lemme de classe monotone) est égale a 71 ® 7s.
Si g est o-finie, on regarde les mesures induites et déduit le méme
résultat de mesurabilité de uy(C,) par limite croissante.
On peut donc poser

v(C) = /Q 1 (Co)dp ().

Il faut voir que c’est une mesure en montrant la o-additivité : Soient
C" des ensembles mesurables disjoints, (en utilisant qu’alors les C sont
disjoints), il suffit d’utiliser 'interversion série intégrale :

v(LJC”)=/Q M2(U Cdpa (x)
- /Q 3 us(Cldpn ()
-y /Q Ha(CHYdpa(x) = 3 V().

Enfin, v convient par le calcul précédent de p((4 X B),) :

V(A X B) = /g L ()pa(B)dyis (%) = p(D)pa(B).
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Théoréme de Fubini-Tonelli et Fubini

(admis)

La mesure produit p1 ® g étant définie a partir de uq et ug, on
s’attend a ce qu’il en soit de méme de I'intégrale d’une fonction me-
surable relativement a 3 ® us.' Et C’est effectivement le contenu des
théorémes de Fubini. On commence par le cas positif.

% Théoréme 5.3: (Fubini-Tonelli)

Soient (£21,71,11) et (9,73, 19) deux espaces mesurés o-finis.
Soit f: Q1xQy — [0,+00] une fonction 77®73-mesurable. Alors :

1. y — f(x,y) est une fonction mesurable (sur (Qg,73) dans
[0,4+0] ) pour tout x € Q;, et x — / f(x,9)dus(y) est
Qo

une fonction mesurable (sur (Q1,77)).
2. x — f(x,y) est une fonction mesurable (sur (£;,77) dans

[0,4+0]) pour tout y € Q9, et y / f(x,9)dp1(x) est
Q

une fonction mesurable (sur (Qg,73)).
3. Ona

/ f(x,p)duy ® pa(x,y)
Q1 xQ9

=/ (/ f(x,}’)dm(y))dﬂl(x)

(951 Qy

=/ (/ f(x,y)dﬂl(x))dﬂ2@)~
Q9 Q1

Exercice 5.1. Calculer l'aire du disque unité D = {(x,y) €
R%: x%+y% <1},

Comme dans le cas des fonctions définies sur R”, on en déduit
facilement un théoréme qui s’applique a toutes les fonctions intégrables
(et pour vérifier qu'une fonction est intégrable, on peut commencer par
appliquer le théoréme de Fubini-Tonelli a |f]).

1. Cette sous-section reprend le cours de 2018-2019 de T. Blossier,
M. Carrizosa et J. Melleray.
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% Théoréme 5.4: (Fubini)

Soient (21,771, u1) et (9,72, 1) deux espaces mesurés o-finis.
Soit f: £ X Q9 — R une fonction intégrable. Alors :

1. y — f(x,y) est une fonction intégrable (sur Qg) pour
presque tout x € €, et x — / f(x,9)dus(y) est une
Qo

fonction intégrable (sur 7).
2. x — f(x,y) est une fonction intégrable (sur Qi) pour

presque tout y € g, et y / S (x,9)dp1(x) est une
Q
fonction intégrable (sur Qj) '

3. On a

/ [ (x,p)dur ® po(x.,y)
Q1%xQ9

:/ (/ f(x,y)duz(y))dﬂl(x)
1 \JQy

-/ ( f(x,y>du1<x>)dm<y>.
Q \Ja,

Exercice 5.2. Soit f, g des fonctions mesurables positives sur R,
on définit la convolution de f,g par :

feg) = [ =2)g0)da0) € 0.1
R
On rappelle que

il = [ 17N,
1. Montrer que f * g est mesurable et que

I1f =+ gl =11f1llgll-

2. Montrer que la définition de f * g s’étend pour presque
tout x au f,g € L}*(R,d1) et que f + g € L(R,dA).

3. Montrer que pour f, g,k toutes mesurables positives ou
toutes intégrables, alors

[x(g=h)=(f*g)*h.
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2 Une Inégalité de convexité :
I’Inégalité de Jensen
La convexité (ou la concavité) est souvent utilisée pour établir des
inégalités.
Voyons maintenant ’inégalité de convexité la plus importante de
notre cours.

% Théoréme 5.5: (Inégalité de Jensen)

Soit (X, A,u) un espace de probabilité, ¢ une fonction u-
intégrable a valeurs dans un intervalle 7, et ¢: / — R une fonc-
tion convexe. Alors on a

so(/gdﬂ)S/wgdﬂ
X X

(I'intégrale de droite peut étre égale a +oo!).

Démonstration. D’abord, par le théoréme 3.9, ¢ est dérivable a droite et
a gauche, donc continue sur I'intérieur de 7, donc borélienne sur 7 (exo)
donc la composée po g est bien mesurable. Posons m = fX gdu. Notons
que m € I. En effet I est définie par une ou deux inégalités, I = I; N Iy
avec (1 ={x:x >a}ouli ={x:x > a} oul; =R) et de méme
(lp={x:x<b}ouly={x:x<b}ouly=R). Expliquons d’abord que
si g est a valeur dans I; = {x : x > a}, alors comme l'intégrale préserve
les inégalités larges fX gdu > /X adu = a car u(X) =1 et donc m € 1.
De méme si /1 = {x : x > a} si on n’avait pas fX gdy > a, on aurait
donc fX gdu=a= fX adyu donc fX(g —a)du = 0 mais alors g — a serait
nulle u-presque partout, donc {x € X : g(x) > a} = X serait de mesure
nulle, contredisant ’hypothése que X est un espace de probabilité. On
conclut donc aussi dans ce cas /X gdu € L. On raisonne pareil pour
(ou on applique le premier cas a —g pour changer le sens des inégalités).

Maintenant qu’on a vu que m € I, on distingue 3 cas. Si jamais
m est le minimum de 7 (s’il existe!) alors on a /X(g —m)du = 0 et

2. Cette partie reprend le cours de 20182019 de T. Blossier, M.
Carrizosa et J. Melleray.
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g—m >0, donc g — m est nulle presque partout, par conséquent on a

/){<ﬁogdﬂ=/)(¢(m)du=so(m)=so(/ngu),

On traite de méme le cas o m est le maximum de 7 ; finalement, le cas
qui nous reste est celui out m appartient a I'intérieur de /.

Alors, on sait que ¢, (m) existe et en posant @ = ¢, (m), le théoréme
3.9 donne que

Viel ¢(t)—¢(m)>a(t—m).

En particulier, pour tout x € X on a ¢(g(x)) > ¢(m)+a(g(x)—m).
Comme g est intégrable et les fonctions constantes sont intégrables (car
1 est finie), donc la borne inférieure est intégrable, et on en déduit que
la partie négative de ¢ o g est d’intégrale finie; et en intégrant cette
inégalité, on obtient aussi que

/XsoogduZ/X¢(fn)dﬂ+a/X(g—m)du
= d - = .
so(m)+0/(/Xgu m) = ¢(m)
O

Le corollaire suivant est un cas (trés) particulier de 'inégalité de
Jensen, qui peut se montrer élémentairement, sans théorie de la mesure.

Corollaire 5.6

Soit / un intervalle de R, a1,...,@, des réels positifs tels que
n

Z a; = 1, et ¢ une fonction convexe sur /. Alors, pour tout
i=1
X1,...,4, €l ona

2 (z": a/ixi) < 2"1 @;p(x;) .
i=1 i=1

Démonstration. On fixe x1,...,%, € I et on considére ’espace mesuré

d’ensemble sousjacent X = {x1,...,x,}, ol toutes les parties sont me-
n

surables et u = Z a;0y,, ol 0y, désigne la mesure de Dirac en x;. Alors
i=1
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(1 est une mesure de probabilité ; de plus pour toute fonction g: X — R

ona .
/gdﬁt:Zaig(xz) .
X i=1

En considérant pour g la fonction identité, on a donc / pogdu =
b'e

n

n
Zaigo(xi), et /gdy = Zaixi. Linégalité de Jensen nous donne
i=1 X i=1

donc comme attendu

2 (i a/ixi) < i @;p(x;) .
i=1 i=1

Remarque 5.1. Dans le corollaire ci-dessus, le cas n = 2 corres-
pond exactement a la définition de la convexité. En particulier,
une application ¢ qui satisfait 'inégalité de Jensen pour toute
fonction intégrable sur un espace de probabilité, est nécessaire-
ment convexe.

3 Théoréme de changement de
variables

En pratique, pour calculer une intégrale multiple, on est souvent
amené a faire un changement de variables pour se ramener a un do-
maine plus simple sur lequel appliquer le théoréme de Fubini. On
énonce le théoréme dans le cadre le plus courant ou les fonctions que
I'on peut utiliser pour faire un changement de variables sont les difféo-
morphismes de classe C'.

Cas affine

On commence par montrer le cas des fonctions affines. Nous allons
baser la preuve sur une caractérisation de la mesure de Lebesgue :
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Théoréme 5.7

(admis) La mesure de Lebesgue sur R” est invariante par trans-
lation, au sens ou pour tout 4 € B(R") et tout x € R” ,on a
Ap(x+A)=21,(4) avec x+ A :={x+a,a € A}.

Inversement, si u est une mesure sur (R",B(R")) finie sur les
parties bornées et invariante par translation, alors il existe une
constante ¢ > 0 telle que u = cA,.

Exercice 5.3. On cherche a montrer I'unicité. On pose ¢ =
1([0,1[™). Montrer en utilisant des recouvrements par des trans-
lations d’un ensemble fixé que
1 1
1Lop([0,5[") = ¢
2. pour aj,...,a, > 0,ona

”(H LmalJ _ iy Lmai]

mn

En déduire que u([1;_;[a:,b:[) = ¢ [1;2;(b; — a;) et conclure (en
utilisant un corollaire du lemme de classe monotone).

Soit & € R” et A € M,(R) une matrice inversible. On pose
f(x) =Ax+b avec f : R* — R", alors pour tout borélien B de
R", ona:

Au(f(B)) = |det(A)|A,(B).

Exercice 5.4. Si A n’est pas inversible montrer que A(f(B)) =0
(Indication : on pourra montrer que f(B) est inclus dans un
hyperplan affine, i.e. un sous-espace affine de dimension n — 1,
dans le cas b = 0 dans un s.e.v. de dimension n — 1).

Démonstration. f(B) = (f~1)71(B) est bien borélien car f~! est li-
néaire (en dimension finie donc) continue donc borélienne. De méme
A(f(-)) = f1.2 est la mesure image par f~! donc c’est bien une me-
sure finie sur les parties bornées (car f(B) est borné pour tout borné
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B, cf chapitre 3 f(B(0,M)) c B(0,]|5]| + M|[|£]]]) avec |||f]|| la norme
subordonnée de f). Montrons qu’elle est invariante par translation.

Onapoura € R" 1,(f(a+B)) = 1,(b+A(a+B)) = 1,(4a+f(B)) =
Aa(f (B)) par invariance par translation de la mesure de Lebesgue. Le
théoréme précédent montre donc que A,(f(B)) = ¢d,(B) pour tout
borélien B. Il suffit donc de bien choisir le borélien pour chaque 4
pour montrer que ¢ = |det(4)|.

Par décomposition polaire, une matrice réelle s’écrit 4 = 0. avec
O orthogonale et S symétrique. Cette matrice §' peut se diagonaliser
en base orthogonale S = OéDOQ donc, ensemble, cela donne une dé-
composition 4 = 01D0y ot 01 = 00},09 sont orthogonales et D est
diagonale réelle.

Comme A, est invariante par translation, on est donc ramené au
cas b = 0.

On est donc ramener au deux cas 4 orthogonale et 4 diagonale
inversible.

Si A orthogonale, alors on choisit la boule unité euclidienne B =
B, car une matrice orthogonale laisse invariante cette boule (c’est par
définition une isométrie pour la norme euclidienne) donc 4,(f (B,)) =
An(By) et ¢ =1 = |det(A)| (vu A4* = I, det(A)? = det(A)det(4") =
det(I) =1).

Si A = diag(ds,....d,) alors on prend B = [0,1]" car A(B) =

110,d;] avec [0,d;] = [d;,0] si d; < 0. Dans tous les cas 1,(4(B)) =

[T}, |di| = |det(A)|A(B) comme voulu.

Dans le cas général, 4 = 01509, par composition, on obtient :

A(A(B)) = |det(01)||det(D)| det(0q)|A(B)
= | det(4)|A(B).

Rappel (de L2) sur les difféomorphismes
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Définition 5.2

Soient U c R",¥V C Rf. Une application f : U — V une
fonction différentiable. f est un difféomorphisme si f est bijective
et que f ! est différentiable.

On dit que f est un C*-difféomorphisme (k € N* U o) si de plus
f et f~! sont de classe C*.

Proposition 5.9

Soit f : U — V un diffomorphisme, alors Vx € U, df (x) :
R™ — R? est un isomorphisme linéaire (en particulier nécessai-
rement # = p) et on a :

(df () = df 1 (f ().

Remarque 5.2. 1. Le résultat précédent montre que la di-
mension est invariante par difféomorphisme. De méme
des ouverts de R” et R? ne peuvent étre homéomorphes
que si # = p mais c’est beaucoup plus dur (Théo-
réme d’invariance du domaine de Brouwer). Par contre,
il existe des applications continues surjectives de [0,1]
dans [0,1]2.

2. Le théoréme d’inversion locale va donner des conditions
pour la réciproque de la proposition précédente

Démonstration. Comme f~'o f(y) = y, en différenciant f~! o f par
le théoréme des fonctions composées en x, on obtient : df ~1(f(x)) o
df (x) = id.

De méme en différenciant £ o f~1(y) = y en z = f(x) on obtient :
df (f 1(2)) o df "1(2) = Id. Donc df (x) et df ~1(f(x)) sont inverses

I'une de I'autre, ce qui conclut. O

Définition 5.3

Soit f : U — R’ une application différentiable sur un ouvert
U c R" f(x) = (fi(x),.... fp(x)). La matrice de I'application
linéaire df (x) dans les bases canoniques de R” et R? est appelée,
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matrice jacobienne de f et notée J(f)(x) :

of,
TN = (o).
J

Remarque 5.3. Le théoréme de dérivation des fonctions compo-
sées donne donc :

J (g0 f)(x0) = J(&)(f (x0))] (f)(x0),

et le résultat pour les inverses de la proposition précédente
s’écrit :

JE DG = TOGE oo™

Le théoréme suivant avec £ = 1 permettra de vérifier 'hypothése
du théoréme de changement de variable.

Théoréme 5.10: (d’inversion globale)

Soit f : U — R" une application de classe C* (avec k£ > 1)
injective et telle que pour tout x € U, df(x) : R* — R” est
un isomorphisme linéaire, alors f(U) est un ouvert de R” et
f:U — f(U) est un C*-difféomorphisme.

Remarque 5.4. df (x) est un isomorphisme si et seulement si

det( ] f(x)) # 0.

Cas général (admis)

Nous pouvons maintenant énoncer le théoréme de changement de
variables. 3

3. Cette sous-section reprend le cours de 2018-2019 de T. Blossier,
M. Carrizosa et J. Melleray.
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% Théoréme 5.11: (Théoréme de changement de va-

riables)

Soient U,V deux ouverts de R”*, et ¢: U — V un difféomor-
phisme de classe C'. Rappelons quon note 1, la mesure de
Lebesgue sur R”. Alors on a :

1. Pour toute partie B borélienne de U, A,(¢(B)) =
[ 1det( el o).

2. Si f:V — [0,+c0] est borélienne, alors

/V F®) A, (%)
- /U £ o el det(Jo()ldAa(y) -

3. 81 f: ¥V — R est intégrable, alors y — f o
w(p)| det( J¢(y))| est intégrable sur U et on a

Lf(x)dﬂ,,(x)
= [ 7000t o)l 0)

Remarque 5.5. Le cas affine est une conséquence du lemme 5.8
et du théoréme de transfert appliqué f = ¢! : (V,8(V),1,) —
(U,B(U)). Le 1 du théoréme ou le lemme 5.8 ci-dessus, s’in-
terpréte comme le calcul de la mesure image de la mesure de
Lebesgue induite sur V : (1,7)x ayant une densité fx(x) =
| det(/¢(x))|1y (%) par rapport & A,. Le résultat correspond a
h = f o ¢ de sorte que :

/Vfa’/l,,szh(X)dﬂn

- /R ) ()A)
- /U £ o ()] det(Jp())|dAa().
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Exemple 5.2: (changement de variables en coordonnées po-
laires)

On considére 'application ¢ : U =]0,+00[%]0,27[— R? définie
par ¢(r,0) = (r cos 6,7 sin ).
cosf —rsiné

Alors, la matrice jacobienne de ¢ est (sin@ rcos O

), de dé-

terminant 7.

De plus, ¢ est injective et ¢(U) = R? \ ([0,+00[x{0}) = V.
Ainsi, ¢ est un C'-difféomorphisme de U sur V. Comme 15 (R?\
V) =0, c’est-a-dire R?\ V' est négligeable, il n’est pas génant que
¢ ne soit pas un difféomorphisme de U sur R? tout entier.

Par exemple, calculons

1= /(x +y)2dxdy, ouD = {(x,9): x2+y2 <1}.
D

En utilisant le théoréme de changement de variables avec les
coordonnées polaires (et le théoréme de Fubini), on obtient
¢~ 1(DNV) =]0,1[x]0,27[ et

~
Il

/ (x +y)2dxdy
DV

/ (r cos 0+ rsin0)%rdrdo
¢~1(DV)

1
/a’r
0

2n
(/ r2(cos® 0 + sin26’+2c039sin9)d9)
0

1 2n
/ r3( d6(1+sin29)) dr
0 0

1
/ 2rridr
0

Nl N
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Exemple 5.3

Calculons I'(3) = 0+°° 1712074y,
On commence par le changement de variable (pour les inté-
grales a une variable) wr=1t, dt=2udu:

1 +00
;) = / Y2t dt
0

+00 5 +00 9
=2/ e " duz/ e “du
0 e

avec la derniére égalité venant de la parité de la fonction u —

_9
eu

Enfin, on calcule le carré de cette intégrale en utilisant d’abord
Fubini-Tonelli pour obtenir une intégrale double (on utilise R? \
({0} % [0,+00[) = V vérifiant 19(V°) = 0 comme a I'exemple
précédent).

1 +00 +00 29
(F(i))Q = (/ dx/ dy e ™7 )
= [ dxdy e = / dxdy e¥
R2 14

d’ou par changement de variable en coordonnée polaire
(comme & Pexemple précédent on utilise ¢~1(V) = U pour le
domaine d’intégration) :

(r(%))2 = (/2” d9/+oo dre_’22r/2)
0 0
_ (/02" d@l) [—e-”/z]gm

= (27r).% =7.

On a aussi vérifier que

+00 .
/ e du = \r.

00

En faisant, le changement de variable linéaire u = x/ V2, on
obtient :

+00
%/ e 12y = V. (5.1)
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CHAPITRE 6

Introduction
aux espaces L?

Soit (Q,7, 1) un espace mesuré (7 la tribu, u la mesure). On va
travailler en identifiant les fonctions si elles coincident u-presque par
tout. Autrement dit, on écrira f = g quand u({x: f(x) # g(x)}) =0;en
particulier, f = 0 signifiera que f vaut 0 presque partout. Par exemple,
si f est la fonction caractéristique de Q, on pourra écrire f = 0. Ainsi,
dit en mots, on va en fait travailler avec les “classes d’équivalence de
fonctions a égalité u-presque partout prés”. K sera égale a R ou C.

1 L'espace L™(Q,u)

% Définition 6.1

Soit f: Q — K une fonction mesurable. On dit que M € [0,+co[
est une borne essentielle de f ou que f est essentiellement bornée
par M si p({x: |f(x)| > M}) = 0, autrement dit, si f < M
p-presque partout.

On définit leur ensemble :

LOO(Q,T,/,L,K) =
{f;f:Q—)K, mesurable et 3C < co: |f| < Cu—p.p.}

155
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et la fonction (qui est une norme selon le lemme suivant) :

[ flleo =inf{C : |f| < Cu—p.p.} = ess supp,qlf (x)].

On note aussi plus briévement L*(Q;K) = L*(Q,u;K) =
L*(Q,7,u; K) et L*(R) = L*(€;R), si il n’y a pas de confusion pos-
sible.

Exercice 6.1. (cf TD) Montrer que |f| < || f]|eop-p-

(L=(Q, 7,1, K),|| - ||) est un espace vectoriel normé.

Démonstration. On montre qu’il s’agit d’un sous-espace vectoriel de I'es-
pace des classes d’équivalences de fonctions mesurables. Bien str 0 est
bornée donc essentiellement bornée.

Soient f,g € L*(Q,7,u;K), A € K. Par 'exo

pw: |f(@)] > Ifllo}) =0,
u{w : [g(w)] > [Iglle}) = 0.

Or par linégalité triangulaire des nombres on a :[(1f + g)(w)| <
[4]1f ()] +]g(w)| donc

{w:lf (@] <flle} N{w: |g(@)] < Igllo}
CHw:[(Af+ g ()] < Af 1o +lglleo}

et en passant au complémentaire

pw : [(Af + g (@) > ||l flleo +1lgle})
S u{{w:1f (@] >Iflle}) + u{w: |g(@)] > [Iglle}) =0

Donc, par définition, A f + g est essentiellement bornée et || f + g]]c <
[ f Nleo+]1g]lco. On déduit que L®(€2; K) est bien un espace vectoriel et
I'inégalité triangulaire. En fait y({w : |[f(w)| > C}) = p({w : |1 f(w)| >
|2|C}) donc en comparant les infima, || f||e = |1] || f]l ce qui donne
la positive homogénéité. Enfin par définition, si ||f||c = 0 alors f =0
presque partout donc sa classe d’équivalence est nulle. O
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Théoréme 6.2

(L=(Q, 7,1, K),|| - ||) est un espace de Banach.

Démonstration. 11 reste a montrer la complétude : Soit f, une suite
de Cauchy de fonctions mesurables essentiellement bornées. Mon-
trons que que f, converge vers f(w) = limsup, , fu(w) qui est une
fonction mesurable comme limsup de fonctions mesurables et dont
on va voir qu’elle est essentiellement bornée. Donc, par ’hypothése
d’avoir une suite de Cauchy, pour n > 0,e = 1/n il existe N, tel que
Vp.q 2 Nusllfp — felleo < % Par définition de la norme, on peut donc

fixer Aypg (pour p,g > N,) avec u(4;,,) =0 tel que

sup |fp(w) — fr(w)] < %

WEAypy

On va intersecter tous ces ensembles (une intersection dénom-
brable) pour avoir p-p.p. une suite de Cauchy. On prend donc 4 =

Nus0 Npg>N, Anpg- Ona u(4°) < Z Z ”(A;,ﬁ,q) =0 (vu que A4° est
n>0 p.g>N,
une union dénombrable).
De plus pour w € 4%, on a

1
VaVp.g 2 Nulfy(w) - f(w)] < ~

donc (f;(w)) est de Cauchy dans K donc converge. Sa limite est forcé-
ment f(w) et en passant a la limite ¢ — oo ci dessus, pour tout w € 4:

1

n .

Vu,Vp = Ny, | fp(w) = f(w)]| <
Comme u(A°) = 0 on déduit
1
Yu¥p 2 Nullfp = flls < —

Ceci implique |[|fllo < Ilfpllo + |Ifp = fllo donc f est dans
L*(Q,7,u; K) et la convergence de f, vers f dans cet espace. Comme
toute suite de Cauchy converge, on a obtenu la complétude voulue. [J
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2 Définitions et propriétés
élémentaires des espaces L’ (Q, u)
On définit les espaces :
L2(Q,T,u;K) = {f : Q — K mesurable |/ |fI1Pdu < o},

pour p € [1,00[. Alors

£l = ¢ / dulf 1),

n’est pas une norme (mais une seminorme sur L?(Q,7,u) car si
[If1lp = 0 alors f est seulement nulle presque partout. On considére
donc ’espace des classes d’équivalences a égalité presque partout prés
de fonctions f et I’espace de Lebesgue :

% Définition 6.2

LY (Q, 7,1 K) =

{f;f : Q@ = K mesurable et/lfll’dy<oo},

pour p € [1,00[.

Comme pour le cas p = co, on on note aussi plus briévement
L/(QK) = L(QuK) = LIN(Q.7 ., 1K)

et L?(Q) = L#(Q;R), si il n’y a pas de confusion possible.

Par la suite, on identifie f 4 f dans ce contexte, on répéte que
les égalités sont des égalités u —p.p..

Montrons que ||.||, est une norme sur L/(Q,7,u). La séparation
et ’homogénéité sont maintenant évidentes. On rappelle I'inégalité de
Hélder d’abord dans le cas le plus simple
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Proposition 6.3

Si f, g sont mesurables, |||, < +oo et |[g]lo < +0o, alors fg €
QT K) et lIfglly < 11 fllpllglle.

Démonstration. 1l suffit de noter que, u-presque partout, on a |g(x)| <
llgllso, et donc |f(x)g(x)|f < |f(x)|l"||g||ff<J En intégrant cette inégalité,
on obtient bien

17l = [ f@etoltdu
PNl du = Ll .
< [ 17l et = 171Nl

La version générale est la suivante

% Lemme 6.4: (inégalité de Holder)

Si p.g € [l,o0[ tels que 1/p + 1/¢ = 1/r < 1, f €
L (Q,T,u;K),g € LI(Q,T,1;K) alors fg € L"(Q,T,1;K) et

/gl < 11/ 1pllgllg-

Démonstration. En remplacant f,g par |f|",|g|” on se raméne au cas
r=1

Par hypothése dans le cas r =1, 1 < p < oo, on remarque que par
concavité du logarithme, on a pour a,5 > 0

log (a?/p +b7/q) > log (a’) /p +1log (87) /g
=log (ab).

Donc on obtient en exponentiant (et en vérifiant directement les
cas d’annulations), I'inégalité d’Young :

If(x)lf’ , le@l?

If (x)g(x)| < —— p

Donc en intégrant, on obtient fg € L! et appliquant a Af, 1 > 0 :

a1 a1
178l < == 11718, + =~ llellz.
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Comme le cas d’annulation [|f]|, = 0 ou [|g||; = 0 sont évidents (car
alors fg =0y~ p.p.), on conclut en supposant ||f][, # 0,[[gll, # O et

en prenant la valeur de A donnant le minimum A = || f| |/jl||g||g/p. O

Une conséquence importante est I'exercice suivant :

Exercice 6.2. Si u est une mesure finie pour 1 < p < ¢ < oo,
montrer que :

L®(Q, 7,1, K) ¢ L1(Q, 7T, u; K)
c LP(Q,7,1;K) ¢ LY(Q, T, 1;K).

On en déduit I'inégalité triangulaire :

% Théoréme 6.5: (Inégalité de Minkowski)

Soient p € [1,+o0] et f,g € LP(Q). Alors f + g € LP(Q) et
I +glly < UfHp+1gllp-

Démonstration. On a déja traité le cas p = 400, et le cas p = 1 est sim-
plement ’inégalité triangulaire habituelle. Supposons donc p €]1,+00[
et f,g € LP(Q).
Commencons par montrer que || f +¢|l, < +co. Comme x — x* est
convexe et croissante, on a pour tout x que
)ﬁ

J <

< S+ Slgl

+

1 1
5/ ()] +|5¢)

1 1
(‘Qf(x) +58()

En intégrant cette inégalité, on obtient que

1 1
17+ gl < S AL +lglp) -

Ceci nous prouve que ||f + g||, < +c0.
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Maintenant, notons ¢ = Ll Iexposant conjugué de p. Ci-

dessous, on va utiliser I'inégalité de Hélder, et le fait que
1
q
I+, = ( [ 17+ e

- (/Q |f+g|f’)1_}’ IS+ el

Alors on a

7+l = [17+gldu

/Q (11 + LeDIf + P~ dp

L1717 + gt s [ lgllf + gt
Q Q

< I 07 + 7, + lells I + 2122,
Uf 1+ gl I + g7,

(ISl + gIpIS + gl

Si jamais || + gll, = 0 on n’a rien & démontrer; sinon, en divisant

IA

A

des deux cOtés par ||f+g||§_1 on obtient finalement ||/ +g|l, < || fll, +
llgllp- O

Exercice 6.3. Soit (Q,7,u) un espace mesure o-fini. Soit f > 0
une fonction mesurable positive, alors pour p €]0, o[

[ rrau= [ aip it £@) > 0.

On rappelle d’abord la version L? du théoréme de convergence
dominée.

% Théoréme 6.6: (Théoréme de convergence dominée L?)

Soit p € [1,+oo[. Soit (,4) un espace mesuré, et f, une suite
de fonctions mesurables convergeant u-presque partout vers f,
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et vérifiant la domination |f,| < g avec g € L?(Q,u). Alors,
fusf € LP(Q,p) et f, converge vers f dans LP(Q,pu), c’est &
dire.

,}ggollﬁz—fllp =0.

Démonstration. On a |f, — f|P — 0 p-presque partout. De |f,;| < g on
déduit que f,,inl? (Q,u;K) en passant a la limite on obtient || < g et
donc f € L#(Q,u;K). De plus, on a la domination :

Ifu = FIP < (ful +1DF < (29)F =27 ¢
et comme g € LP(Q,u) et positive, on déduit que g? = |g|? est u-

intégrable et sert donc de domination pour appliquer le théoréme de
convergence dominée usuelle qui donne le résultat :

W= 11 = [ 1= ¥ = [ 0dui=0.

% Théoréme 6.7: (de Riesz-Fischer)

Soit (Q,4) un espace mesuré, les espaces L?(Q, u,K) pour p €
[1,00] sont des espaces de Banach.

Démonstration. On vient de voir que L?(Q, 1, K) est un espace vectoriel
normé, et méme la complétude dans le cas p = co.

Il reste le cas p < co. En décomposant en partie réelle et imaginaire,
on peut supposer et donc on suppose K = R.

Pour la complétude, on utilise la proposition 2.6. Soit Z u, qui
est absolument convergente, il faut montrer qu’elle converge dans L?.

k
Soit g = Z lunl, l1gellp < Z l|unllp et |gxl? est croissante, donc par
n=1

convergence monotone converge vers g avec ||g[[, < Z [lux||p. Donc
|gl? € L' qui donne une domination pour |Z uy|? et Z u, est p.p.
absolument convergente, donc a p.p. une limite et par convergence do-
minée, converge donc dans L?. . O
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Résultats de convergences

En suivant le méme raisonnement on obtient le résultat suivant :

% Théoréme 6.8

Soient (2,7, 1) un espace mesuré, p € [1,+oo[, et (f,) une suite
d’éléments de L?(Q) qui converge vers f dans (L (Q),]| - [I).
Alors il existe une suite extraite (f,,) telle que (f;,) tend vers
f» u-presque partout et dans L?(Q).

Démonstration. On extrait (fy,) telle que ||f;,,, — fu,llp < 1/2F. (Cest
possible car la suite est de Cauchy dans L? donc on prend n; telle que

1/ = fuellp < 1/2F pour ¢ > ny.)
n

Donc on pose g, = Z | f2,s — fu,| qui est une suite croissante avec
k=1

lgellp < D" M = faullp < > 1725 =1.
k k=1

On déduit donc en appliquant le théoréme de convergence monotone

que g a une limite g = Z | fugsr = fui| telle que |[g]], < 1. On Putilise
k=1
maintenant comme condition de domination. Donc Z( e — Jup) est

k
absolument convergente sur 4 = {w : g(w) < oo} et on a u(4°) =0,
vu ||g||, < o0. Donc par série télescopique ( f,, (w)) converge pour w €
A. (et comme suite extraite elle converge aussi dans L? mais en fait
elle est dominée par |f,,| + g € L? et converge aussi par convergence
dominée). O

Proposition 6.9

Soient (Q,7,u) un espace de probabilité et f: Q — [0,+o0]
une fonction mesurable. Alors on a

IFlle = Jlim £l




CHAPITRE 6. INTRODUCTION AUX ESPACES L? 164

Démonstration. Commencons par remarquer que I'on a toujours

11l = ( /Q |f|f'du)}' < (Ilfll‘f;u(Q))’% =1/l -

Par conséquent, si || f||, — +c0 quand p — +oo alors || flc = +00.
Pour voir la réciproque, notons que pour ¢ < || f||c fixé, Pensemble 4, =
{x € Q: |f(x)| > t} est de mesure strictement positive, par conséquent

1 1
I£1lp > (¢ u(40)? = tpu(4)? — ¢ quand p — +oo .

Ceci montre que si ||f|lc = +oo alors ||f]|, tend vers +co; mais aussi
que, si || f ]l < +0co on a pour tout &£ > 0 que pour p suffisamment grand

1flleo =& < N llp < M1 Moo O

Résultats de densité

On rappelle le résultat suivant qui se déduit de la construction de
I'intégrale (cf. lemme 4.21)

Soit (€, 1,7) un espace o-fini. L'ensemble S des fonctions éta-
gées intégrables est dense dans tous les L?(Q,u,7), 1 < p <
co. En particulier, L'(Q,u,7) N L®(Q,u,7) est dense dans
LA (Q,u,T) pour 1 < p < oo.

Lemme 6.11

Soit (Q,u,7) un espace o-fini avec 7 = o (&) pour & une fa-
mille stable par intersection finie et de mesure finie pour yu, et
contenant une suite 4, avec u(4,) < o et Q = U,4,. Alors
I’espace vectoriel E = Vect{14,4 € E} est dense dans tous les
L?(Q,u,7),1 < p < oo. En particulier, si & est dénombrable,
alors L#(Q,u,7), 1 < p < co est séparable.

En général L= (Q,u,7) n’est PAS séparable, sauf si Q est un en-
semble fini, par exemple ¢*(N) n’est pas séparable (c’est un exercice
plus dur de niveau M1).

Démonstration. Soit A, € & avec u(A4,) < co et Q =U,4,.
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—Lf
Soit M :={4 €T :Vn,14n4, € E }. Clairement & ¢ M. On va
montrer que M est une classe monotone :

> Qe Mcarly, € E
> SidC BetA,Be M,onalpang, =1Bna, —Llana, parle TD

1 donc dans I’espace vectoriel E .

> Si B, € M suite croissante d’union B alors 15,n4, — 1pn4, par
tout par le TD 1, Or on a domination par 14, € L#(Q,u,7) donc
par convergence dominée 1 n4, — 1png4, dans LP(Q,u, 7)) et
donc 1pn4, € E

Le lemme de classe monotone implique M > 7 (&). Donc si B €

—=L?
7 (&) est de mesure finie, on a 1zny4, € £ et par la méme application
du théoréme de convergence dominée (par 1p cette fois) on déduit 13 €

—Lf —Lf
E " . Donc E contient toute fonction étagée intégrable et le résultat

précédent conclut. La séparabilité vient de la densité de I’ensemble
dénombrable Vectg(14,4 € E). O

Le support d’une fonction continue f est le fermé supp(f) =
/~1({0})¢. Un fonction sur R" est donc a support compact quand elle
est nulle en dehors d’un ensemble borné. On note C°(Q) est ’ensemble
des fonctions a support compact sur un ouvert Q.

% Théoréme 6.12

Soit Q € R” un ouvert et A la mesure de Lebesgue sur la tribu
borélienne B(Q) = B(R")q (tribu induite sur Q). Alors 'en-
semble des fonctions continues & support compact C°(Q) est
dense dans L?(,B(Q),1) pour 1 < p < oo, qui est séparable.

Démonstration. Par le lemme précédent avec & = {4 =[]} [a;,bi],a; <
b;} ensemble des pavés, il suffit de voir que les 14 sont approchés par
des fonctions continues a support compact pour 4 = []}[a;,8;]. Par
produit de fonctions (de variables différentes), cela se raméne au cas
n =1 Soit f =14 et fo(¢t) =1sit € [a,b], fo(t) =1-max(n(t-b),1)
sit > b, f,(¢) =1-max(n(a—t),1) sit < a. Alors il est facile de voir que
(fu)n>1 est une suite dans C°(Q) qui converge ponctuellement vers f
(exo0). Elle est dominée par 1{,-1441] qui est dans L? (€, B(Q),1) pour
1 < p < oo donc par convergence dominée, ||f, — ||, — 0. Donc on
peut appliquer le lemme précédent et conclure. O
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g3 Cas discret : espaces ¢?(1),
b € [Loo[ (cf. TD)

Définition 6.3

Soit p € [1,00[. Une famille (2;);c; de nombres complexes ou
réels est dite p-sommable si la famille (|z;]?);c; est sommable.
On note ##(1,K) I'ensemble des familles d’éléments de K p-
sommable.

Un examen de la définition indique que ¢#(1,K) = L/ (I,P(1),v)
avec v la mesure de comptage, c’est donc un espace de Banach. On a
aussi par définition (dans le cas positif puis le cas quelconque) :

Zai :/aa’v.
iel 1
On note
1/p
121, = (Zw) :
iel

Linégalité de Holder s’écrit donc pour x € £9(I),y € (1) : avec
1/p+1/g=1,p,q €]1,00[ :

R (Z w)w (Z w)w

iel iel iel




CHAPITRE 7

Espaces de
Hilbert; bases

hilbertiennes

1 Généralités
Soit A un espace vectoriel sur K=R ou C

% Définition 7.1

Un produit scalaire sur A est une application
(,):HxH —>K

telle que :
1. pour tout y € H, (y,.) : H — K est linéaire
2. -SiK=RVx,y € H (x,9) = (y,x) (symétrie)
-SiK=CVx,y € H,(x,y) = (3,%) (symétrie hermitienne)
3. pour x € H , (x,x) e R*
4. pour x € H , (x,x) = 0 si et seulement si x = 0.

Un espace H avec un tel produit scalaire est un espace préhil-
bertien réel (si K = R) et complexe (si K = C).

167
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On remarque que dans le cas complexe, (., y) est antilinéaire, c’est-
a-dire avec A le conjugué complexe,

Vx,9,2 € HA€C, (Ax+2,y)= I(x,y} +(2,9).

Exemple 7.1

Sur H = ¢?(N,C) := L*(N,v;C) (espace L? avec la mesure de
comptage v) on a le produit scalaire (hermitien canonique) :

(x.3) = ) %oy
iel

Dans le cas réel, la méme formule sans conjugaison complexe
fonctionne.

Exemple 7.2

Sur H = L*(Q,u;C) avec (Q,u) un espace mesuré ofini, on a
le produit scalaire (hermitien canonique) :

<ﬁm=47®ymwuy

Exemple 7.3

Sur H = C°([a,5],C) on a le produit scalaire :

b_
<ﬁ@=/'ﬂmawmy

Proposition 7.1

Si H est muni d’un produit scalaire on a I'inégalité de Cauchy-
Schwarz :

(e )2 < (x,2) (9.9
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avec égalité si et seulement si x, y sont liés. De plus ||x|| = /(x, x)
est une norme sur H vérifiant 'identité du parallélogramme :

2 = g+
I521+ 172 = 50t + i

Démonstration. On a
(x+ty,x+ty) = [|x]|2 + 2{pl|> + 2R ((x,9)) = 0

c’est un polynéme de degré 2 qui est toujours positif ou nul, donc
son discriminant A = 4R ({x,9))? — 4/|x[1?||9/)*> < 0. En remplacant y

par uy avec u = Qii;‘

si (x,y) # 0 on obtient

R((xghu) = (x| < llxl*(uy, uy)
= 1% Pl Pz = 1% P11

Le méme calcul donne pour # de module 1 la norme de

2
[ 1l = sty || = 200210 = 2015101511 R (5,9

qui vaut 0 si on choisit  tel que (x,y)u = |[(x,y)| et que 'on est dans
le cas d’égalité de C-S, ce qui donne la relation de dépendance linéaire
cherchée ||y||x — u||x||y = 0. (La réciproque, c’est a dire I’égalité en cas
de dépendance linéaire, est évidente).

Pour vérifier que 'on a une norme, la positivité vient de ’axiome
3, la séparation vient du dernier axiome, ’homogénéité vient de

(19,49) = A4 (p.3) = 1112(.)
et 'inégalité triangulaire vient d’une application de C-S :
(x+y,x+9) =[x+ [Ipl|* + 2R (x,y)
< [IxIP + 1 + 2112111 = (1=l + 11D,
Enfin, on a aussi la relation :
(x=y.2 =) = llxlI” +|yII” — 2R<x.p)

soit en faisant la somme (avec I’égalité débutant le calcul pour I'inéga-
lité triangulaire), on obtient 'identité du parallélogramme. O
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Remarque 7.1. L'identité du parallélogramme implique que
H¥”2 > %(||x||2 +[|y]%) avec égalité si et seulement si x = y
ce qui donne un résultat de convexité (en faite stricte car I'in-
égalité est stricte si x # y). (On a vu en TD que par continuité
la convexité a mi point implique la convexité).

Une autre identité importante s’établit en prenant la différence
des égalités donnant la preuve de 'identité du parallélogramme
ci-dessus, c’est 'identité de polarisation :

|lx +y11” = Il = yI>

Rix,p) = 2

On retrouve aussi

|+ iyl|> = |lx — iy||?

5(p.x) = R(iy.x) = :

d’ou la formule de polarisation complexe :

0, x)
_ |2+ 9112 = 1% = plI* +dllx + iyl|* = dl|x — iyl |?
4
ou encore en bref
1$ 4 Eop2
<y,x>:1;z [lx + %yl (7.1)

% Définition 7.2

Un espace pré-hilbertien complet est appelé espace de Hilbert.

% Théoréme 7.2

Soit (Q,7,u) un espace mesuré. Alors H = L2(Q,7,u;K) est
un espace de Hilbert sur K avec le produit scalaire défini pour

f.g € H par :

(fog) = /Q Fadu.




CHAPITRE 7. ESPACES DE HILBERT; BASES
HILBERTIENNES 171

Démonstration. On ne traite que le cas K = C. Si f,g € H, I'inégalité
de Holder avec p = ¢ = 2 donne fg € L1(Q,7,14;K) et donc Pintégrale
définissant le produit scalaire est bien définie. On vérifie les axiomes
des produits scalaires : 1/ (f,g) est linéaire en la deuxiéme variable g
par linéarité de I’intégrale.

o/ la symétrie hermitienne vient du calcul suivant :

f.6)= [ Fedu= [ Fadu= [ fadu=Te

oS = /Q F12du = 1112 € [0, 400]

4/ Comme on sait déja que ||.||2 la séparation de la norme implique
que si l[f|l2 = 0 alors f = 0 (u-presque partout c’est a dire) dans
H=1*(Q,T,1;K).

On a donc bien un espace pré-hilbertien, et le Théoréme de Riesz-
Fischer 6.7 dit que Z?(Q,7,1;K) est complet, donc un espace de Hil-
bert. O

Exemple 7.4

¢2(N; C) sont des espaces de Hilbert (cf. chapitre 6 pour la com-
plétude), mais pas C°([a,4],C) dont la complétion est Pespace
de Hilbert L?([a,b],1;C). La complétion d’un espace préhil-
bertien en tant qu’e.v.n. (cf. annexe A section 3) est toujours un
espace de Hilbert.

2 Projection sur un convexe fermé

On va généraliser 'existence de projection orthogonale sur un sous-
espace d’un espace euclidien d’abord au cas des convexes fermés et en
dimension infinie.

% Théoréme 7.3

Soit H un espace de Hilbert et C c H un convexe fermé non-
vide. Pour tout f € H il existe un unique u = P¢(f) € C tel
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que

[lf = ull = inf [|f - o]|.
veC

De plus c’est 'unique vecteur « € C vérifiant la propriété carac-
téristique :

VoeC, REf-uv-—u))<0

Enfin, P¢ est une application 1-lipschitzienne appelée projection
sur C.

Remarque 7.2. Un théoréme de projection similaire sur un
convexe fermé est valide dans L? (2,7, u) pour tout 1 < p < oo
(et pas seulement p = 2), mais il n’y a pas de caractérisation
aussi simple de la projection P¢ (en 'absence de produit sca-
laire) et la projection P¢ est seulement uniformément continue
(et plus nécessairement Lipschitz). Mais ce résultat est beau-
coup plus dur (un exercice difficile de M1 Math).

Démonstration. On fait une preuve directe, utilisant ’identité du paral-
lélogramme.

Soit v, € C tel que ||f — v,|| = d = inf,ec ||f — 0|

En appliquant I'identité & a = f — v,,b = f — vy, on trouve :

Un+0n|2 ||On—Um|® 1 9 9 9
|7 = 222+ P2 = S 1 =l 11 = o) = .
2 2 2
Or par convexité 25 € C donc ||f — 252 ® > 4% donc

Un — Um

2

2 1 , g ’
| < 3017 =l +1f = omll®) - > 0.

On déduit donc que v, est de Cauchy, donc converge vers u et par
continuité de la norme d = || f — u]|.

Soit g : v > ||f - v||§. On peut calculer la différentielle dg(u) =
R({f —u,.)). Orsi g atteint son minimum en u, pour v € C, ¢ € [0,1],

If = to— (1= 0)ull;
= |If = ully + *llo = ull; = 20R(f = u,0 — w))
> |If = ully
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donc 2R ({f —u,t —u)) < t||v— u||§ et la limite £ — 0 donne I'inégalité
caractéristique. Réciproquement, on a en ¢ = 1, I'inégalité qui conclut :

1 = ull} = 11f = ol2 = 2R((f — w0 —u)) ~ ||o — ull} < 0.

Pour voir l'unicité, si u1,u9 € C, on peut utiliser la convexité stricte
sous la forme de I'identité du parallélogramme, on a

u1+u2“2 Hu1 - uy

-5 2 ”2:%(|'f—”1ll2+llf—u2||2>=d?

. 2 C 1s —uy ||2
soit comme ||f - @” > d? on déduit H”IQ"ZH < 0 donc u1 = uy.
Par I'unicité, P¢ est bien définie et il ne reste qu’a voir la lipschiti-
zianité. En appliquant la propriété caractéristique pour fi, f5 :

R((f1 = Pc(f1).Pe(f2) = Pe(f))) <0,
R({fa = Pc(f2). Pc(f1) = Pc(f2))) <0,

soit en additionnant :

R{A - Lo+ Pc(fo) = Pc(f1),Pc(fo) —Pc(f)) <0

soit en utilisant Cauchy-Schwarz :

1Pc(fo) = Pe(PI* < RUfi = fou Pe(fo) = Pe(f))
<A = Al 1Pc(f2) = Pe(AII

O

% Théoréme 7.4

Soit /' un espace de Hilbert et K C A un sous espace vectoriel
fermé. Pour tout f € H, il existe un unique u# = Pg(f) € K tel
que
IIf = ullz = inf ||/ - glla.
veEK

De plus c’est 'unique vecteur « € K tel que
Voe K, (v,f-u)y=0

Enfin, Px est une application linéaire bornée appelée projection
orthogonale sur K.
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Démonstration. 1l reste a voir la nouvelle caractérisation équivalente
car celle-ci étant une relation linéaire, elle impose la linéarité de Pg
(APg(f) + Pg(g) vérifie la relation pour A f + g et doit donc étre par
unicité Pg (A1 f +g)). La nouvelle caractérisation est plus forte. Récipro-
quement, si R({f —u,v—u)) <0, en prenant v = 2u et v = 0, on trouve
R((f —u,u)) =0donc R({f —u,v)) <0 pour tout v dans K donc aussi
pour —v par linéarité d’ou I’égalité a 0. O

Exemple 7.5
Si H=L*(Q,u,R)

C={f=20pp.}.

Alors Pc(f) = f1(f>0). (exo) Trouver aussi de méme la projec-
tion sur ’ensemble de f : Q — [0,1].

3 Applications : Orthogonalité et
Dualité

Orthogonalité

On peut définir dans un espace de Hilbert une notion d’orthogonal
comme en dimension finie.

% Définition 7.3

Si F c H est un sous-espace, alors I'orthogonal de F est

F'={xe€ HVy€ F{x,y) =0}

On dit que x est orthogonal & F si x € F*. On remarque que

Fr =)o) (o}

yeF

est toujours un sous-espace fermé comme intersection de sous-espaces
fermé, comme image inverse d’un sous-espace fermé par une appli-
cation linéaire continue (le produit scalaire). La proposition suivante
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décrit la décomposition en somme directe orthogonale. Tout se passe

comme en dimension finie pour les sous-espaces fermés, et sinon, il faut
ajouter une adhérence.

% Proposition 7.5

Si F est un sous-espace de ’espace de Hilbert H alors F** = F,
et on a la somme directe orthogonale

H=FoF*

et alors pr et ppr =1 — p sont les projections associées a cette
décomposition.

Ici F++ = (F*)* est Porthogonal de l'orthogonal.

Démonstration. 1. Onremarque d’abord que F Cc F**. En effet par
définition de F* six € F,y € F*, (x,y) = 0 et donc comme c’est
pour tout y € F* la définition du biorthogonal donne x € F+.

2. On remarque ensuite que F+*+NF* = {0}. En effet, si x € F*+ N
F* alors (x,x) =0 donc x = 0 (par axiome de séparation).

3. Montrons ensuite que prr = 1 — p5 (les projections sont bien
définies car on a des sous-espaces fermés I'espace de Hilbert
H donc on peut utiliser le théoréme de projection). En effet,
si y € H la relation caractéristique de la projection othogonale
dit que y — p(y) est orthogonal a F donc dans F* et comme
9 — (= p7() = p5(y) est orthogonal & F*, on doit avoir y —
p7(») = pr(p) par caractérisation de la projection.

4. On en déduit la somme H = F + F* (par Pinclusion du 1 et
I'intersection du 2, on sait que cette somme doit étre directe).
Le point précédent donne la relation

y = pr- () + ()

ce qui montre que tout vecteur /' se décompose comme somme
d’un vecteur de F et d’un vecteur de F*. L’énoncé sur les pro-
jections associées a la décomposition est évident a partir de la.
5. Il reste a voir que F**+ C F ce qui donne I’égalité avec le point
1. Mais si y € F**, y — Px(y) € F** par 1 et le fait fait que
F*+ est un sous-espace vectoriel. Mais on vient de voir au 3 que
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9 —Pr(y) = pr:(y) € F*. Donc y — Pi(y) € F~- N F*+ = {0} par

le 2. donc y = Pr(y) € F, ce qui conclut.
O

Dualité : le théoréme de représentation de
Riesz

On en déduit maintenant le calcul du dual de A (voir sous-section
g pour des rappels).

% Théoréme 7.6: (théoréme de représentation de Riesz)

Soit ¢ une forme linéaire continue sur un espace de Hilbert A
alors il existe un unique f € H tel que

Vv € H,$(v) = (f,0).
De plus, on a I’expression duale pour la norme :

/1l = sup [(f,0)].

[lo]]=<1

Remarque 7.3. (facultative) Dans le cas complexe, f — (f,.) est
une isométrie antilinéaire identifiant H et H’ (et donc identi-
fiant linéairement H’ au conjugué H ayant la méme structure

normique et de groupe mais 1.7 = Av si v + 7 est la bijec-
tion/identité de H — H notée - pour le caractére suggestif de la

relation a la conjugaison complexe). Dans la cas complexe on a
donc H' ~ H et dans le cas réel H' ~ H.

Démonstration. Soit K = ¢~1({0}) le noyau de ¢. Si K = H alors

J = 0 convient. On suppose donc K # H. Soit donc gy ¢ K et
g = % un vecteur de norme 1 et orthogonal a K. Comme

¢ est une forme linéaire, on s’attend & ce que K et g engendrent L2,

sorte de généralisation du théoréme du rang (on va voir cela plus loin

en utilisant 'orthogonalité). En effet, soit v € H, w = v — % g vérifie
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o(w) = ¢(v) — g((;;qﬁ(g) =0doncw e K = Kergp et v = Ag + w avec
A= #(v) .

#(g)

On montre donc que f = ¢(g)g convient, en montrant I’égalité sur
un v quelconque en utilisant la forme précédente :

(f.0) = p(g)(g.0) = p(g)(g.1g + w)
= ¢(9)Allgll; = p(&)A = ¢(v).

D’égalité des normes vient de Cauchy Schwarz qui implique que > avec
égalité en prenant v = f/||f|| si f # 0. O

Remarque 7.4. (facultative) Il n’est parfois pas judicieux d’identi-

fier un espace de Hilbert a son dual, notamment quand plusieurs

espaces de Hilbert sont considérés et que les identifications sont

incompatibles a des relations de sous-espaces. Soit H = ¢2(N)

et K = {u € H, Z n?|u,|?> < oo} Si on considére I’ensemble
neN

1 g
des suites telles que L = {(u,) Z —2|un|2 < oo}, Il est facile de
n

neN
voir que K € H C L et que La transposé de l'inclusion K ¢ H

s’identifie 8 H ~ H' ¢ K’ ~ L. 1l vaut alors mieux identifier K’
a L (et pas K) en ayant une identification compatible avec les
inclusions avec H.

4 Bases Hilbertiennes

% Définition 7.4

Soit H un espace préhilbertien. Une famille (x;);c; est dite or-
thogonale si pour tout i # j, (x;,x;) = 0.

Si de plus |[x;]| =1, elle est dite orthonormale.

Une base hilbertienne (ou base orthonormale) de H est une fa-
mille orthonormale (¢;);cs telle que Vect(e;,i € I) est dense
dans H.
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Exemple 7.6

¢; la suite dont la seule coordonnée non-nulle est la i-¢me égale
a 1 donne une base hilbertienne de £2(7). (par construction de
¢2(I)) Les bases hilbertiennes vont permettre d’identifier tout
espace de Hilbert a cet exemple.

Procédé d’orthonormalisation de
Gram-Schmidt

Notons ' tout d’abord que la projection d’un point sur un sous-
espace vectoriel de dimension finie se calcule facilement a I'aide d’une
base (de préférence orthonormale) de F :

Proposition 7.7

Soit A un espace de Hilbert et ' un sous-espace vectoriel de
dimension finie avec (x1,...,%,) une base de F' (non nécessaire-
ment orthonormale). Soit B;; = (x;,x;). Alors B est inversible
et pour tout x € £, on a

pr(x) = D (BT ixi %)%,

ij=1

Démonstration. Pour voir que B est inversible, il suffit de montrer que les
vecteurs de ces lignes ((x;,%;));=1...» sont linéairement indépendants.

Siona Z/l ((xi,%;))j=1... =0,0n a (Z Aix;,x;) = 0 pour tout j. En
i=1 i=1
prenant une combinaison linéaire

n n n
0= > T Tuxixp) =11 ) Liml
j=1 i=1 i=1

1. Cette sous-section reprend le cours de 20182019 de T. Blossier,
M. Carrizosa et J. Melleray.
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n
donc Z /l_,»x,» = 0 donc comme x1, ..., x, était une base, on obtient /l_, =0
i=1
pour tout i, ce qui donne la liberté voulue.
Pour x e H,on a

(oex = D" (BTl x)%;)

ij=1
= (o) = D (B7Y) 4w, ) g 1)
ij=1
n
= (x5 %) = D (B 4(x1,%)Br; = 0
i,j=1

n
donc x — Z (B_l)j,i(xi,x>xj € F* donc par caractérisation de la pro-
ij=1
jection orthogonale

pr(x) = Z (B™Y) (%, %) ;.

i,j=1

Remarque 7.5. Voici un cas particulier important du résultat pré-
cédent. Soit £ un espace de Hilbert et /' un sous-espace vectoriel
de dimension finie avec (ey,...,e,;) une base orthonormale de
F. Alors pour tout x € E, on a

pr(x) = ) (e x)er.
i=1

Exemple 7.7

Soit H = L*(Q,7,u) et A € 7, on a vu en TD que 7(4) =
{0,4,4°,Q}. F = LZ(Q,T(A),,u) et un espace de dimension au
plus 2 engendrée par ¢; = 14,69 = 14 (du moins si 4,Q ont
mesures finis). Cette famille est orthogonale mais pas orthonor-
male. ||e1]]? = /lAd,u = u(4),||ez]|> = u(A°). Supposons ces
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deux nombres non nuls et finis de sorte que F a exactement
dimension 2. Alors la matrice de la proposition précédente est
B =diag(u(A),u(4%)) et B! = diag(1/u(A),1/u(A°)), la for
mule de projection donne donc pour f € LQ(Q,‘T,,u) g

Pr2@.7a) ) () (7.2)
1 1
_(m_/Afd'u)lA-F(,u—(A‘) Acfd/,t)lAc.

Rappelons que le procédé de Gram-Schmidt permet de calculer une
base orthonormale d’un espace euclidien a partir d’une base donnée :

Proposition 7.8: (Procédé de Gram-Schmidt)

Soit E un espace euclidien et (eg,...,¢,) une base (resp. une
famille libre) de E. Pour chaque 0 < i < n, notons F; le sous-
espace vectoriel Vec(eq,. . .,¢;) engendré par eq,...,¢;. Alors, la
famille (ef,...,e,) définie de la maniére suivante est une base
orthonormale (resp. une famille orthonormale) de E :

€1

lleal]

4

€

i-1
e — Z<ellc’ei>€1’c
, e — pr,_, (e:) k=1

CT e = pra el o
lle = > ep-eide
k=1

pourl <i < .

Exercice 7.1. Vérifier que les vecteurs ¢; = (1,1,1), e2 = (1,1,-1)
et e3 = (0,1,1) forment une base de R®. Utiliser le procédé de
Gram-Schmidt sur cette base pour obtenir une base orthonor-
male.
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Théoréme des bases

Exemple 7.8

¢x(x) = exp(inx),n € Z définit une base hilbertienne de I’espace
pré-hilbertien Cé)ﬂ (R,C) ’ensemble des fonctions continues 27
périodiques, muni du produit scalaire :

1 2
(fre) =5 i f(t)g(t)dt.

C’est la base des décompositions en série de Fourier (on mon-
trera cela plus en détail dans la section suivante). Le but est de
décomposer de facon similaire tout vecteur de 4/ comme somme
d’une série en fonction d’une base.

% Théoréme 7.9

Soit A un espace préhilbertien et / un ensemble dénombrable.

1. Une famille orthonormale (x;);c; est libre et vérifie I'in-
égalité de Bessel, pour tout x € H :

2 2
D Kwxnl? < x|
iel

2. De plus une famille orthonormale (¢;);c; est une base
hilbertienne si et seulement si on a I’égalité de Bessel-
Parseval, pour tout x € H :

2 2
DK endl® = |1l
iel

De plus, dans ce cas, pour tout x € H, la série suivante
converge (dans A mais pas absolument)

= Z e;{ei,x).

iel

3. Si H est un espace de Hilbert séparable, toute famille or-
thonormale peut étre complétée en une base hilbertienne
au plus dénombrable (¢;);c; de H et [ : x — ({;,%))ier
établit alors une isométrie surjective J : H =~ £%(1).
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Remarque 7.6. De la formule pour x, on tire par continuité la
formule pour le produit scalaire (qui est une série absolument
convergente par Cauchy-Schwarz) :

(ox) = D e (en).

iel

Démonstration. Comme [ est dénombrable, on peut supposer et on sup-
pose I = N.

(1) Si Z/l,-x,- = 0, on calcule 1; = (xj,z/l,-x,-) = 0 donc x; est
bien libre. Soit V,, = Vect(e;,i € [[0,n]]), on a déja vu la formule pour
la projection orthogonale sur V, :

n

pu(x) =) eiler ).

i=0

Donc par la propriété de contraction de p, et l'orthogonalité

pa ()12 = () eidesx), D ej4e;,%))

i=0 7=0

n
2 2
= > e < 1]

i=0

En passant 4 la limite # — oo on obtient I'inégalité de Bessel pour la
somme et on trouve en particulier ({(x,¢;));cxr € £2(N).

(2) Si (€;);en est une base soit x, € Vect(e;,i € I) convergeant vers
X.

De plus, pour 7 assez grand |||x||? — ||x,||?| < €/2 et pour tout m,

120 NP = 11pm )] < [1pm (e = 0 Ulxall + 1211
< (& = )12l + [12]]) < €/2

(avec la derniére inégalité pour n assez grand) d’ou en prenant m tel
que pn(x,) = x, (car x, est dans un certain V, comme combinaison
linéaire finie des ¢;), on obtient

m

2 2
D eyl = sl
i=0

<e€
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et donc la somme de la série est ||x|| d’ou ’égalité de Parseval.
Réciproquement, Si on a égalité, on a la limite

Z (ejs )2 = [1pa (01 —neo [I2]1?

7=0
et ceci implique par le théoréme de Pythagore :

1w () = %115 = 112113 = 12 (%)]I3 =200 O

donc tout élément de H est limite d’éléments de Vecit(e;,i € I) d’ou la
propriété de densité manquante pour obtenir une base hilbertienne.
De plus un calcul donne la formule pour x :

n

lle = > e )= D" e m)* — 0.

i=0 i=n+1l

(3) Soit O la famille othonormale de départ. Soit K = Vect(0), on
cherche une base orthonormale de K+ pour compléter O, il est bien
séparable comme sous espace de H. Soit (x,),en une famille dénom-
brable dense de K*. Quitte & extraire une sous-suite, on peut supposer
que x, & Vect(xo,...,x,—1) de sorte que (x,),en est une famille libre.

On peut donc orthonormaliser (xo,...,x,) et obtenir (e, ...,¢,) tel
que Vect(xo,.....x,) = Vect(eo,....,e,). Par la construction, on remarque
que Porthonormalisation pour (g, ..., X,4+1) On commence par les mémes
vecteurs et on obtient donc une famille orthonormale (f;),en. Comme

Vect(xy,mn € N) = U (Vect(xo,...., %)

=Uy Vect(fo,..... fn)
=Vect(fy,n e N),

ces deux ensembles sont denses et donc (f;,),en est une base de K+*.
Maintenant, O et (f;)nen forment une famille orthonormale de H et
tout O est une base de K par définition de K, donc la décomposition
orthogonale ¥ = Pg(x) + Pg1(x) permet d’approcher Pg(x) par un
élément y, € Vect(0), Pg1(x) par un élément z, € Vect(f,,n € N) et
Ya+2y € Vect(0, f,,n € N) tend vers x, d’ou la densité voulue pour que
{en,n € N} = 0 U {f,,n € N} forme une base de H.

Une fois 'existence d’une base, 'isométrie est évidente par le (2),
et si on a une suite (1;);c; dans ¢£2(7), on voit que Z/liei converge
par complétude comme ci-dessus et on obtient ainsi la surjectivité.
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On vient de voir (en prolongeant la famille vide) qu’un espace de
Hilbert séparable a une base dénombrable. Réciproquement, un espace
de Hilbert a base dénombrable est isométrique a ¢2(N) pour lequel
Vectg(e,, n € N} donne une famille dénombrable dense. O

Exemples de base 1 : Séries de Fourier

On va obtenir un premier exemple de base en utilisant le théoréme
d’approximation de Weierstrass.

Vous pouvez voir dans la section de compléments le corollaire A.10
pour une preuve probabiliste basée sur la loi faible des grands nombres.

% Théoréme 7.10: (d’approximation de Weierstrass)

Soit K un compact de R”, les fonctions polynémiales (a coeffi-
cients réels ou méme rationnels) sont denses dans C°(K,R).
En conséquence, (C°(K,R),||.||«) est séparable et sa tribu bo-
rélienne B(C°(K,R)) est dénombrablement engendrée (c’est a
dire admet une partie génératrice au plus dénombrable).

Remarque 7.7. Le mouvement brownien sur [0,1], un objet pro-
babiliste important (vu en M1) peut étre défini comme une pro-
babilité sur la tribu borélienne de (C°([0,1],R),]|-||c)-

Exemple 7.9

Montrons que ¢,(x) = exp(inx),n € Z forme une base hilber-
tienne de L%([0,27],C) :

1 2n
<f,g>=§ a f(g(v)dt.

D’abord, on sait que Cg(]O,ZH[,C) est dense car il contient

€%(]0,27[) qui est dense par le Théoréme 6.12. Il s’agit donc
presque de la complétion de ’exemple précédent.
Ensuite on vérifie 'orthonormalité :

1 2n
(nsem) = §‘/0 exp(i(m—n)t)dt = 1(p_p).
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Enfin, il reste a voir que Vect(e,) est dense. Or, on a Vect(e,) =
{P(e™*,e7*),P € C[X,Y]} = {P(cos(x),sin(x)),P € C[X,Y]}.
Soit D = {(x,y) € R?,x? + y2 = 1}, soit f € CSH(R,C) On définit
g : D — C par g(cos(x),sin(x)) = f(x). Il est facile de voir
que g est continue sur D (utiliser tan,cot selon le point comme
carte coordonnée) donc par le théoréme d’approximation de
Weierstrass 7.10, il existe un polynéme P tel que ||P — g|| < €
donc, si Q = P(cos(.),sin(.)) € Vect(e,), on a ||Q — flla <
[1Q = flleo < ||P = g||le < €. D’ou la densité voulue.

C’est la base des décompositions en série de Fourier.

Exemple de base 2 : Polynéomes d’Hermite

Lexercice suivant est corrigé a 'annexe E en section 3. Vérifier
qu’une famille est orthonormée est toujours un exercice calculatoire.

Exercice 7.2. Soit H = L*(R,B(R),y) I'espace de Hilbert réel
des fonctions de carrés intégrables pour la mesure gaussienne

2Eg . _ 1 ,-x%/2
standard définie pour un borélien B par y(B) = /B World 12y,
H muni de la norme usuelle :

—x2/2
1f1lz = \//R PP = d.

2
¢’ 2 i ! (e*XZ/Q)
Vit \ax
(et donc Hy(x) =1). On appelle les H, les polynimes d’Hermite.

Soit

Hn(x) = (_1)71

1. Montrer que pour n > 1, H, est un polynéme de la
forme :

n—1
x" k
H, = + .
(x) = ké_o arx

2. Montrer que (H,),>0 est une famille orthonormale de H.

Montrer le résultat de densité sousjacent pour obtenir une base
est souvent plus dur. Quand on ne peut pas utiliser un résultat connu,
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on utilise souvent la méthode qui consiste 4 montrer que l'orthogonale

est {0} en utilisant la proposition 7.5. On va donc déduire le résultat
suivant de cela et du théoréme d’inversion de Fourier :

Théoréme 7.11

Soit y la mesure gaussienne standard sur R. Alors la famille des
polynémes d’Hermite (H,),>0 est une base orthonormale de
L%(R,B(R),y). En particulier, les polynomes sont denses dans
L%(R,B(R),y) qui est séparable.

Démonstration. Montrons d’abord que la série exp(—#2/2) Z (i) H,

SN

converge dans L2(R,B(R),y).
On calcule la norme du terme général de la suite Sy =

N

c it)"

exp(—t2/2) E @ )' H, par orthonormalité de s (H,) :
n=0 VY7:

N c
g g |(it)"|?
1Sn1l5 = eXp(—tl)Z —

= exp(— ) Z

Doncpourp > g 2 N, [[Sp11—-5, ||2 < exp(-1?) Z
n=N
Donc S, est de Cauchy et donc converge dans L2. Quitte & extraire on
sait qu’elle converge presque partout, donc sa limite ponctuelle sera
aussi sa limite dans L2. Concluons que F;, définie par F;(x) = exp(itx),

est la limite. Il suffit donc de voir que pour tout x € R :
O (—it)"

Fy(x) = exp(~£2/2)

Ceci équivaut, vu la définition de H, a

Fy(x) exp(£2/2 — x?/2) = exp(—(it — x)*/2)

_ S (_”)" i " -x2/2
_,,Z:(:) n! (dx) (e )

(Qn

< exp(t2 -tH=1

(¢ 2)"

—N—ooo 0

H,(x).
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ce qui est la somme de la série de Taylor en x évaluée en a = it de
f(x) = exp(—x?/2) (pour f somme de série entiére sur C f(x + a) =

Z f(”) (x). Ceci est bien vérifié car la fonction du milieu est ana-

n=0
lythue par composée de fonctions analytiques sur C (un polynéme et

exp sont sommes de séries entiéres sur C donc aussi leur composée).

Conclusion : on a F; € Vect(H,,n € N).

On montre maintenant que toute fonction f € L?(R,B(R),y), or-
thogonale a K := Vect(H,,n € N) est nulle. On peut supposer f réelle
en prenant partie réelle et imaginaire. Si f orthogonale a tout H, on a
(f,F;) =0 et donc

u(t) =/f(x)exp(itx—x2/2) =

Or si g(x) = f(x)exp(—x%/2) g € L}(R,A) est équivalent & f €
LY(R,B(R),y) ce qui est le cas car y est une mesure de probabilité et
donc L*(R,B(R),y) c L*(R,B(R),y). Donc on a z(t) = 0 et par le
théoréme d’inversion de Fourier, g(x) = 0 presque partout, soit f = 0
dans L*(R,B(R),y).

Bilan pour K = Vect(H,,n € N) K* = {0} donc K = K** = {0}* =
L*(R,B(R),y), d’ou la densité voulue. O

On a utilisé le théoréme suivant (peut-étre vu en cours de probabi-
lité, cf. annexe E section 4 pour la variante sur les mesures de proba-
bilité, cf. aussi le livre de Rudin d’analyse réelle et complexe [7, Thm
9.11 et g.12] pour z = 1)

Définition 7.5

Soit f € LY(R®, B(R"),1) la transformée de Fourier de f est la
fonction de ¢ € R” :

7= [ 0 pan.

On renvoie a la section E.4 pour une preuve du résultat fondamen-
tal suivant.
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% Théoréme 7.12: (Théoréme d’injectivité de la transfor-

mation de Fourier (admis))

Soient deux fonctions fi, f; € L*(R", B(R"),1) On suppose que
pour tout ¢ € R” les transformées de Fourier sont égales :

A = f(t), VieR™
Alors f1 = f5 presque partout.

De plus, si f; € L1(R",1) alors fi est (égale presque partout a)
une fonction continue :

1 &
filx) = W/R" f1()exp(—i(x,t))dt.

5 Une Application : Le théoréme
de convergence des martingales
bornées dans L*(Q,7,P)
(facultatif)

Dans cette section, on conclut par une application en probabilité.
On prend (2,7 ,P) un espace de probabilité. Une filtration est une
suite croissante de sous-tribu (7;),>0. Un exemple de telle suite est 7, =
7 ((Xo,...,X,)) de la tribu engendrée par un vecteur aléatoire. On peut
considérer les espaces de Hilbert H, = 12 (RQ,7,,P) cC L2(Q,‘T,P).
C’est un sous-espace fermé car si H, 3 X;, —m—o X onavuau chapitre
précédent, que quitte a extraire X,,, converge p.p. vers X et donc X est
aussi 7,-mesurable et donc est dans H,. Par caractérisation séquentielle
cela dit H, fermé. On dispose donc de la projection orthogonale Pg,.
EN probabilité, vous noterez Py, (X) = E(X|7,) et vous interpréterez
cette projection comme une espérance conditionnelle.

Définition 7.6

Une suite (X,)zen est une martingale dans L? (pour la filtration
(T2)uo0 si pour tout m > n Py, (X;) = X,.
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Cette condition dit que la moyenne de la future variable X,,, condi-
tionnellement au présent H,, est égale a X, (si X, est la valeur d’un
gain au temps 7, en moyenne on n’a rien gagné a attendre le temps
m > n). Une somme de v.a. i.i.d. dans L? d’espérance nulle est une
telle martingale. Par exemple, la somme des z premiers termes d’une
suite de variables gaussiennes centrées indépendantes donne une mar-
tingale dans Z2. On va montrer un théoréme de convergence pour les

martingales bornées dans L2,

Théoréme 7.13

Soit (7;)n=0.S0it (X,)zen est une martingale dans H =
LQ(Q,T,P) qui est une suite bornée, c’est-a-dire, qu’il existe
M > 0 telle que sup, ||X,|]s < M. Alors X, converge dans

L*(Q,7,P) vers une variable X et X, = Py, (X).

Ce théoréme se généralise a un théoréme de convergence des mar-
tingales bornées dans L, 1 < p < co. Il y a aussi une version pour
les martingales L' mais il faut une hypothése technique plus compli-
quée (dite d’uniforme intégrabilité). (On dit que X,, est une martingale
fermée quand X, = Py, (X) comme ci-dessus).

Démonstration. On considére la décomposition orthogonale H,;
K, ® H, avec Hy = Ky On voudrait dire que L*(Q,T (UpsoTy),P) =
®,>0K, est une somme orthogonale infinie, mais comme on n’a pas
introduit la notion,on va donc faire une preuve directe.

Remarquez déja que X, — X, = X411 — Py, (Xy41) € K, par la
condition de martingale. Donc par le théoréme de Pythagore et une
récurrence triviale, on obtient :

n
2 2 2 2 2
Xl = 11 X1 = Xal3 + 11Xal13 = [1Xoll3 + > 11 Xes - Xill3.
k=0

(o8]

On déduit donc de la bornitude en prenant la limite ||X0||§+Z [| Xps1—
k=0

Xk||§ < M? et donc la série est convergente. On déduit aussi que pour
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p=2q¢=>N

Y4
2 2
1Xp1 = X113 = > 11 Xesa — X I13
k=q

(o)
2
< U 1 Xkat = Xil3 = n 0.
k=N

Donc (X,) est de Cauchy dans un espace de Hilbert donc converge vers
X. Comme Py, est 1-lipschitz donc continue, on déduit en passant a la

limite dans la relation X, = Py, (Xp) = noeo Pu,(X) =X,
O
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PARTIE IV

Annexes :
compléments

facultatifs



Compléments
facultatifs au
chapitre 2 :
Topologie des
espaces
metriques

1 Théoréme de Tietze (niveau
L3-Ma1)

Comme _]01 e applicat'on de la complétude, on va donner en exer

cice (corrigé), la preuve du é¢me de Tietze
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Exercice A.1. Extension de Tietze-Urysohn

Soit F un fermé de X espace métrique. Soit £ = CS(X,R) les-
pace des fonctions continues bornées et p : £ — CI?(F,R) lap-
plication de restriction ( pour f : X — R, p(f) = f|r est la
restriction de f a . On va montrer que p est surjective.

1. Est-ce que E est complet?
2. Soit g € C’I?(F,R) avec ||g|le < 1. Soient K; :=

¢ 1([1/3,1]) et Ky := g~1([-1,-1/3]). Soit :

1d(x,Ky)—d(x,K1)

f®=3 dxKy) +d(x. K1)’

d(x,K;) =inf{d(x,y),y € K;}.

(On comprend la valeur comme 0 si K; et Ky vides et
sinon, —1/3 si K; vide, 1/3 si Ky vide). Vérifier que f € E
3. Montrer que |||l < 1/3 et [|p(f) — gllo < @ =2/3..
4. Construire une suite f, par récurrence a partir du résultat
précédent telle que f, = Fo + ... + F, et

n

1 2
D UllFls < @z —
k=0

et
n+1

2
16(£) = glloo < Ty

5. Montrer que f, converge. En déduire, qu’il existe F' € E,
[|F|le <1 telle que p(F) = g.

Extension de Tietze-Urysohn (Correction)
Soit F un fermé de X espace métrique. Soit E = C;)(X,R) et p:
E — CS(F,R) I'application de restriction. On va montrer que p est
surjective (et un peu mieux).
1. Soit g € C°(K) avec ||g|lo < 1. Soient K7 := g~1([1/3,1]) et
Ky := g71([-1,-1/3]). Soit :
Fx) = 1d(x,Ky) — d(x,K1)
C 3d(x.Ky) +d(x. K1)
Vérifions que f € E,||f |l < 1/3 et ||p(f) — glloo < @ =2/3. (on
dit que p est presque surjective)
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f est continue car d(.,K;) est continue et le dénominateur est

non nul car K1 N Ky =0 et d(.,K;) > 0 sur K;.
2. Or par 'inégalité triangulaire :

1d(x,K) +d(x, K1) 1

A Ty AP TN AR

donc f est bornée et ||f||o < 1/3.

1 1
p(f) - gl =1K1|§ - gl+1g| - 3 - gl

+(1g —1g = 1g)If - gl
< (g =1k = 1) (1 f lleo + g lle0)

1 1
+1K1||1K1(§ _g)||oo+1K2||1K1(_§ =l

et tous les termes sont inférieurs a 2/3 par définition.
3. On construit construire une suite f, par récurrence a partir du
résultat précédent telle que f, = Fo + ... + F,

- 1 2"
D lFlle < 5+ v
k=0

et
n+l

2
[p(fa) — glleo < preg

On prend fy = F = f donné par 1 a partir de g. On
prend F,/||p(fa-1) — gll donné par 1 a partir de —[p(fr-1) —
gl/1p(fa-1) — gllw (si le dénominateur est 0 on s’arréte et on
prend la suite constante).
Donc on a les deux inégalités
1 12"
Fn 0o S o n— - o S -
1Fulls < 5l1p(fim1) = gllo < 555
et

n+l

o (E) +p(fot) = glle < 31(1) ~ gl < iy

n+l
La deuxiéme inégalité donne |[p(f) — glle < % La premiére
inégalité suit par I’hypothése de récurrence.
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4. Déduisons qu’il existe F € E, ||F||o < 1 telle que p(F) = g.
Z F, est donc absolument convergente dans E, donc par com-

plétude convergente, donc soit F' = Z F, = lim f,. En passant

n=0
a la limite on obtient (par la somme d’une série géométrique)

2n+1 1 1
Fllo < Fille < <
I1E] Zn I 323n+1 3T=373 "

et ||p(F) — gllo = 0 donc p(F) = g par séparation.

2 Complément sur ’Espace dual
(niveau début de M1)

Définition A.1

Lespace E’ := L(E,K) des formes linéaires continues sur un
e.v.n. E est munie de la norme duale

Iflle == sup |f(x)].

xeE||x]|<1

On a vu dans la section précédente que c’est toujours un espace
de Banach. Il sera trés utile dans ce cours pour étudier £ lui-méme.

Le résultat suivant, conséquence de Hahn-Banach permet de dé-
crire réciproquement la norme de E en terme de celle de E’ (cela res-
semble & la définition de ||f||z mais c’est un théoréme difficile! que
I'on exploitera pour relier E au dual du dual dans la section suivante) :

Proposition A.1

Soit (E,||.||g) un e.v.n., alors

X = su X)| = max X)|.
lsle=  sp IfGl= max | 1fG)

Démonstration. Par définition, on a

sup  [f()l < sup [fllpllxlle = llxlle-
FeE IS llp <1 FeEIfllp <1
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Inversement, on applique le Théoréme de Hahn-Banach B.g a G =
Rx en posant g(¢x) = t||x||r de sorte que g(¢x)|| < ||¢x||g. Donc, il
existe f € E’ tel que f(x) = g(x) = ||x||g et f(») < |[pllg Cest-a-
dire ||f||z < 1. En particulier, le sup est atteint en f et est donc un
maximum. O

On rappelle deux exemples d’espaces classiques.

Exemple A.1

¢o(I) est 'ensemble des suites (x;);c7 qui tendent vers o dans le
sens ou si € > 0, il existe une partie F finie telle que |x;| < €
pour tout i ¢ /. On munit ¢y(/) de la norme sup :

l[%]leo = sup |x;] < eo.
iel

{2 (I) est ensemble des suites bornée (x;);c; avec la méme
norme ||x||c.

Exemple A .2

£1(I) est 'ensemble des suites (x;);e; sommables, tel qu’il existe
une constante C, tel que pour toute partie F finie telle que

Z |x;| < C. On munit £}(I) de la norme :

ieF
llally = sup ) lxil = > |xi] < oo,
F

ieF iel

On étudiera la dualité des espaces L? dans un chapitre ultérieur.
Le résultat suivant donne un exemple de calcul de dual :

Proposition A.2

Le dual de ¢y(/) est isométrique &

1) = (D))

Démonstration. On définit T : £*(1) — (¢o(I))’ par :
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T((u)[(@)] = ) wy.
iel

Bien sir, on a I'inégalité montrant que 7 est bien défini et contrac-

tant :
T (D[] < D sl Joal < llelloo D .
iel iel

Montrons que T est isométrique. Comme les suites a support fini
sont denses dans £1(7) il suffit de montrer I'égalité dans ce cas, et
cela vient en posant (v;) = 1{,,#0}';’—?‘ € ¢o(I) si (u;) a support fini
de T((u;))(v:) = ||(u;)||;n. Donc comme ||(;)||,, < 1 on a I'inégalité
manquante :

NT (i)l (o) = 1)l er-

Montrons que T est surjectif. Soit f € (¢o())’ et ¢; la suite valant
1 eni et o ailleurs. Soit u; = f(¢;), montrons que (u;) € £1(N). Or par
lisométrie

(udiep)llp < 1T ((uidier)ll ) = 1T ((w:))ovrlle) = 11fovrlle) < I1f

car vp((x;)) = (1;cFx;) est une contraction sur ¢y pour F fini (et par le
calcul a support fini qui suit qui implique f o vp = T'((;)) o vF). Donc

pour tout F fini :
sl < 1 oy
ieF
ce qui donne la sommabilité u € £1(7).
Montrons enfin que f = T ((u;)).
En effet, si v est & support fini, f(v) = T ((#;))(v) par linéarité
mais comme les deux c6tés sont continus en v et que (par définition)

les suites a support fini sont denses dans ¢y(7), on obtient f = T ((u;)).
O

Un autre résultat de base permet d’associer a une application conti-
nue z : £ — F une application (dite transposée ou adjoint) entre les
duaux u’ : F’ — E’.
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Proposition A.g

Siu: E — F est une application linéaire continue u’(f) = fou
définie une application linéaire continue u‘: F/ — E’ et on a

[l 111 = [l

Démonstration. Par composition, si f € F’, u linéaire continue, f ou est
linéaire continue donc appartient 3 £’. La linéarité en f est évidente.

de plus [[u’(f) () < [If 17 Ilullll|x]| donc
' (Ol < 1 1elall].

Ceci donne |||u!]]| < |||u]|].
Réciproquement on utilise la proposition précédente pour obtenir :

lu@)llr= sup | ()< sup (@ (Hllellxllz < Hu']llllx]le-

/11 <1 /1 <1

Ceci donne par définition de la norme subordonnée, 'autre inégalité :
alll < ] 11].
O

3 Bidual, Complété (niveau début
de M1)

Le dual du dual E” = (E’)’ est appelé bidual de E.

Définition A .2

Dapplication J : E — E” qui envoie J(x)(f) = f(x) pour
| € E’ est appelée injection canonique de E dans E”.

Proposition A .4

Linjection canonique J : E — E” est une isométrie (c’est pour
cela que c’est une injection).




ANNEXE A. COMPLEMENTS FACULTATIFS AU
CHAPITRE 2 : TOPOLOGIE DES E.M. 200

Démonstration. En appliquant la définition de la norme du dual puis
la conséquence de Hahn-Banach de la section précédente (proposition
A.1), on obtient :

IS Dller = sup |J)(I= sup [f (%)= Il*]|z.

Nf1e <1 [/ 1er <1

On donne un exemple :

Proposition A.5

(co(D))” = (1) = £2(I).

Démonstration. On définit T : £°(I) — (£1(1))’ par:

T((u)[(09)] = > uw;.
iel

Bien siir, on a 'inégalité montrant que 7" est bien défini et contrac-
tant :

T (D[] < D sl Joal < llelloo ) .
iel iel

Montrons que T est surjectif. Soit £ € (£1(I))’ et ¢; la suite valant 1
en i et o ailleurs. Soit u; = f(e;), alors |u;| < ||f||a donc (u;) € £°(1),
montrons que f = T ((u;)).

En effet, si v est & support fini, f(v) = T ((#;))(v) par linéarité
mais comme les deux c6tés sont continus en v et que (par définition)
les suites & support fini sont denses dans ¢1(7), on obtient f = T'((u;)).

Montrons que 7" est isométrique. Mais ||7"(u;)|| = |T (u;)(e;)| = |u;]
donc [|T (u;)|| = [|(u:)|l¢~(r) et on obtient donc I’égalité.

O

Définition A.3

—~ E//
L’adhérence E := J(E) E dans E” est appelée complété de E.

Comme c’est un espace fermé d’un espace complet, c’est un espace
de Banach muni d’une injection i : £ — E (qui est id si E est déja n es-
pace de Banach). Il est caractérisé par la propriété universelle suivante.
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Contrairement a la compacité qui est dure a trouver en dimension in-
finie, la complétude est simple grice a cette construction, car il suffit
de passer au complété (mais, dans des espaces de fonctions, il faut tra-
vailler pour décrire plus explicitement ce complété, comme espace de
fonctions concrétes).

Proposition A.6

Soit F un espace de Banach et # : £ — F une application
linéaire continue, il existe une unique extension # : E — F telle
que & o i = u. De plus, on a [||&]|| = |||u]]|.

Démonstration. pour 'existence on considére (u’)! : E” — F” et on
regarde sa restriction @ a E. Sur E, @ coincide avec « donc est a valeur
dans F. Par densité de E, ] existe une suite u, — u € E et donc
u(E) C F. Or comme F est complet il est fermé dans son bidual donc
F = F. Cela donne Pexistence. Lunicité vient de la densité de E dans
E. Par la construction on a [[l&||| < |||z]|||. L'autre inégalité vient par
densité. O

4 Compléments sur la compacité et
complétude (niveau Le2-L3)

Définition A .4

Un espace métrique (X,d) est précompact si pour tout € > 0,
X peut étre couvert par un nombre fini de boules ouvertes de
rayon €.

On rappelle le résultat suivant (cf. e.g. Zuily-Quéffelec [6, Th II.1
p135] ou Gourdon d’Analyse [5, p 32]) :

Proposition A.7

Un espace métrique X est compact si et seulement si il est pré-
compact et complet.
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Démonstration. L'implication, compact implique précompact vient de la
définition. L'implication compact implique complet vient de Bolzano-
Weierstrass (vu qu’une suite de Cauchy ayant une sous-suite conver-
gente converge).

Réciproquement, on utilise aussi Bolzano-Weierstrass. On va
construire une suite extraite de Cauchy par extraction diagonale. Soit
(x,) suite de X.X est recouvert par un nombre fini de boules B(a,1)
donc par principe des tiroirs, il existe une sous-suite (xg,(,)) de (x,)
contenu dans une de ces boules B(ap,1). Par récurrence, on obtient
une suite extraite (x¢oo_,_o¢p(")) contenu dans B(a[,,l/Zl’) en ayant choisi
un recouvrement fini B(a,1/2?) de B(a,-1,1/2?71) et un terme de ce
recouvrement contenant une sous-suite de la suite-extraite précédente
(x¢oomo¢p_1(,,)). On considére 'extraction diagonale y, = Xgo. og,(n)-
Vu que ¢;(n) > n car les ¢; sont strictement croissantes, ¥ (n) =
$oo...opu(n) = doo..0dy-1(n) > ¢oo...0o¢,.1(n—-1) =¢(n-1)
donc y, = xy () est bien une suite extraite telle que a partir du rang =,
(PE)ksa extraite de (x40 0¢, (%)) est dans la boule B(a,,1/2"). Donc y;
est de Cauchy donc converge par complétude. O

Théoréme A .8: (de Tychonov)

Un produit [],c; X; d’espaces topologiques compacts est com-
pact.

Comme le cas non-métrique, non-dénombrable utilise 'axiome du
choix sous la forme du lemme de Zorn, on reverra cela plus loin.

Exercice A.2. Si I dénombrable, X; métriques, montrer que
[1ic7 Xi est un espace métrique compact. (Indication utiliser
le résultat précédent.)
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5 Théoréme d’approximation de
Weierstrass (niveau L3-Ma1)

Théoréme A.g: (de Bernstein)

Soit f : [0,1]" — C continue et définissons le polynome de

Bernstein :
N N
Bn (f)(x1,..0%0) = Z Z
k1=0 ku=0

ko ky _ _
cj’y...cj’;ﬂf(ﬁl,...,ﬁ)xfl(1—xl)N b xkn(1 - x,) N

Alors By (f) converge uniformément sur [0,1]" vers f

Démonstration. On interpréte de facon probabiliste By (f). Soit Q
{0,1}¥" avec la mesure de probabilité

P(w1 = i1,..,wNy = in)

= x{q (1- xl)N_kl...xf" (1- xn)N_k"

avec k; le nombre de 1 parmi iy(;_1)41,....in;. On note S1(w)

w _ +...+w .
W,...,Sn(w) = W,S = (81,...,8,) qui sont des va-

riables de loi binomiales indépendantes du point de vue probabiliste.

Alors f dPf(81,....8:) = Bn(f)(x1,....%,), donc si w(h) = sup{|f(x) -
S| :|x —y| <k} est le module d’uniforme continuité de f, on a :

|f(%1,.cs%n) — BN (f) (%1, ..., %)
< f (%1 x0) = (S
< () +2[|flloP (|(%1,....%2) = S| = 6)

Or par union disjointe et 'inégalité de Markov :
P(|(31,0080) = 81 2 8) < 3P (18 = i 2 6)

i=1

- E(|x; - S1‘|2)
< le e

i=
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Or un calcul simple donne E(|x; — S;|?) = Var(S;) = @ < ﬁ
donc

lim sup sup lf (%1505 %) = By () (%1, ... %) |

N—oo  (x1,..%,)€[0,1]"
2n 0
< lim sup w(6) + 2201/ Nl
Nesco 4N 62

= 0.)(6) —6-0 0.

Corollaire A.10: (Théoréme d’approximation de Weiers-

trass)

Soit K un compact de R” les polynémes (a coefficients com-
plexes) sont denses dans C’(K,C). En conséquence, C°(K,C)
est séparable.

Démonstration. Comme K est fermé borné, K ¢ [-N,N]" et par le théo-
réme de Tietze D.3, f continue sur K se prolonge en une fonction conti-
nue sur [-N,N]", il suffit donc du cas K = [-N,N]" que l'on obtient
par translation et dilatation (qui conservent les polynomes) du résultat
précédent. Comme Q[i] := Q+iQ est dense dans C, on voit facilement
que les polynomes a coefficients dans Q[i] sont aussi denses, et forment
un ensemble dénombrable, comme union dénombrable des polynomes
de degré au plus m en chaque variable (c’est plus simple a décrire qu’en

m
terme de degré total) qui s’écrivent sous la forme Z /l,-xf X et
i1 500nsin=0
qui s’identifient donc au produit Q[i]™" =~ Q?™", qui est dénombrable
comme produit fini d’ensembles dénombrables. O

Remarque A.1. Plus généralement, le théoréme de Stone Weiers-
trass indique que toute sous-algébre 4 (stable par conjugaison
complexe) de C°(K,C) avec K compact qui contient les fonc-
tions constantes et sépare les points (au sens pour x # y il
existe P € A4 avec P(x) # P(y)) est dense pour la norme uni-
forme :4 = C°(K,C).
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6 Un résultat de compacité : le
Théoréme d’Ascoli (niveau L3
Math)

Les compacts sont difficiles a trouver en dimension infinie, et la
moitié viennent (ou sont des variantes) du résultat suivant (I’autre moi-
tié sont des conséquences du Théoréme de Tychonov), que I'on va dé-
duire de la relation entre complétude et compacité.

Remarque A.2. Soit (Y,d) un espace métrique borné, d, €
(C']?(Y,R)),dy(x) = d(y,x) la distance a y. ||d, — d,|| =
sup, .y |d(y,x) — d(z,x)| = d(y,z) (car < par linégalité tri-
angulaire inverse et > en prenant ¥ = y ou ¥ = z) Donc
d:Y — C;)(Y,R) est une isométrie.

Définition A.5

Soient X,Y des espaces métriques, une partie # ¢ C°(X,Y) est
équicontinue si pour tout € > 0, il existe § = §(e) > 0, tel que
Vx,y e X,Vf € F,sid(x,y) <6 alors d(f(x),f(y)) <e.

Par exemple une famille d’application K-lipschitziennes (comme
une famille de la boule unité fermé de rayon K des applications linéaires
continues entre espaces de Banach) forme une famille équicontinue.

Théoréme A.11: (d’Ascoli)

Soient X,Y des espaces métriques compacts, si une partie
F est équicontinue alors F est compacte (pour la topologie
de la convergence uniforme donnée par la distance d(f,g) =

sup,cx d(f (x),£(x))).

Exercice A.3. Montrer la réciproque facile.

Démonstration. Comme Y compact il est complet borné donc d : ¥ —
C’I?(Y,R) est une isométrie et d(Y) est complet donc fermé. Elle induit
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une isométrie de C°(X,Y) — C°(X, Cf(Y,R)) qui est un espace de
Banach. Les équations f(x) € d(Y),x € X montrent que I'image de
isométrie est fermé (comme intersection de fermés Nyexev;!(d(Y)),
evy(f) = f(x)) donc complet. Donc C°(X,Y) est aussi complet (on
aurait aussi pu reprendre la preuve du cas ¥ Banach) et F aussi.

Il reste a voir que F est précompact. Or en recouvrant F par des
boules de rayon €/2, F est recouvert par les boules de méme centre et
rayon €, donc il suffit de voir F précompact. Soit € > 0, on fixe §(¢) > 0
donné par I’équicontinuité et R les centres d’un recouvrement de X par
des boules de rayons §(e) donné par sa précompacité.

Remarquons que si d(f(r),g(r)) < € pour tout 7 € R, en prenant r
avec d(x,7) < d(€), on a par ’équicontinuité et I'inégalité triangulaire :

d(f(x).8(x))
<d(f(x),f(r) +d(f(r),g(r)) +d(g(r),g(x)) < 3e
=d(f.,g) < 3e.

Soit enfin § les centres des boules de rayon €/2 recouvrant Y. Nous
allons indicer les boules d’un 4€ recouvrement par les applications $%
de R vers S en nombre fini. Pour ¢ € S&, soit

Fy={f € F.¥r € RA($(r).f (1) < €/2)

Si f,g € Fy alors 'inégalité triangulaire donne, d(g(7),f(r)) < € pour
tout r donc d(f,g) < 3¢ et si Fy est non-vide il est inclus dans B(b4,4€).

Enfin, il suffit donc de voir que ¥ C UycgrFy. Or chaque valeur
possible de f(r) est a distance inférieure a €/2 d’un s = ¢(r) € § pour
un certain ¢, ce qui conclut. [

Théoréme A.12: (d’Ascoli)

Soient X un espace métrique compact et £ un e.v.n. de dimen-
sion finie, si une partie F est équicontinue et bornée de C°(X, E)
alors F est compacte (pour la topologie de la convergence uni-
forme donnée par la norme ||.||).

Démonstration. Si M = sup{||f]|c.f € F}, F ¢ C°(X,Brp(0,M)) et Y =
Br(0,M) est fermé borné donc compact comme E est de dimension
finie. Le théoréme précédent conclut. O
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facultatifs et
hors
programme au
chapitre

3 :Convexite

1 Propriétés des Cones tangents et
normaux dans R”

En pratique, on peut utiliser le résultat suivant pour se ramener a
des cas plus simples :
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Soient A4, B des convexes de E.
1. Sid c Balors pourtout x € 4, T4(x) C Tp(x) et Ny(x) D
NB(x)
2. Siae€Int(A), Ty(a) =E et Ny(a) = {0}.
n

3. Siug,...,u, € Ng(x) alors {Z Aui, A; = 0} C Ny(x).
i=1
4. Sia # b alors Ny (a) = (R(b—a))" +Ri(a—b)
et pour u € [a,b] — {a,b} Njgp)(u) = (R(b - a))*.

5. Pour x € A, 4 C x + Ty(x) et Tyir,(x) = Tu(x) et donc
NeiTy(x) = Na(x).

Démonstration. (1) T4(x) = Ri(4—-x) C Tp(x) est par monotonie de
I'adhérence. Si f € Np(x) alors pour tout y € Tg(x) (en particulier
y € Ty(x) ona (f,x) <0 et donc f € Ny(x). Donc on a I'inclusion
N4(x) > Np(x).

(2) a € Int(A) il existe une boule donc un convexe B(a,r) C Ar >
0 et donc par (1) T4(a) D Tg(as)(a) D Ri(B(a,r) —a) =R, B(0,r) = E
par la définition. Vu E+ = {0} le résultat sur le cone normal s’en déduit.

(3) C’est la propriété de cone. Par hypothése pour x € T4(x) on a

n n

(u;,x) < 0 donc pour 4; > 0 (Z/l,-u,-,x) = Z/li(u,-,x) < 0 et donc
i=1 i=1

Z/liui € Ny(x).
i=1

(4) Comme [a,b] est convexe, on obtient 7, ([a,b]) = Ry [a—u,b—u]
etu=Ada+(1-A)bdonc (a—u)=(1-2)(a—b),b—u=A1(b-a) donc
T.([a,b]) =Ri[a — u,b — u] = R(b — a) d’ou le calcul du cone normal
par 'exo 3.2. De méme 7,([a,b]) = R(b — a) donc clairement f €
N, ([a,b]) se décompose selon la somme directe orthogonale R(6—a) &
(R(b—a))* f =A(b—a)+veton (f,b—a) = ||b—a||* qui est négatif si
et seulement si 4 < 0. Donc si et seulement si f € (R(b—a))*+R,(a—b)
comme annonceé.

(5) Par la formule x + T4(x) = x +Ri(4d—x) D x+ (4 —x) = A.
Par Tinclusion Tyi7,x) D T4(x). Mais x + T4(x) — x = T4(x) donc

Teir 0 = RiTy(x) = T4(x) car T4(x) est un coéne fermé. On déduit
directement le cas des cones normaux. O
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Soit 4 = {(x,y) € R? : x > y > 0,}. Calculons Ny(0) le cone
normal en 0 = (0,0).

D’abord on essaye de borner supérieurement I’ensemble. En
prenant [(0,0),(1,1)] c 4, on a

N4(0) € Ni00),11)1(0)
= (R(1,1))* +R4(-1,-1)
={1(1,-1) + u(-1,-1),4 e R,u > 0}

De méme

N4(0) € Nj(00),10)(0)
= (R(1,0))* +R.(-1,-1)
= (1(0,1) + 1/ (-1,0),2’ € R, i > 0}

Donc Ny(0) est inclus dans 'intersection, résolvons le systéme
(=p’, A7) = (A = u,—A — u) avec les conditions ci-dessus ,1,1” €
R,u,pi’ > 01l faut donc -4 —pu=-A+u—2u =y’ —2u donc

Nog)(4) € {p'(=1,1) + p(0,=2), p, " = 0}

Montrons qu’il y a égalité en montrant que (—1,1) € N4(0) et
(0,-1) € N4(0) (car on a alors 'autre inclusion par le 3 de la
précédente proposition).
La formule du cas convexe donne 7,4(0) = 4 donc soit (x,y) € 4,
on calcule ((x,),(-1,1)) = y —x < 0 d’aprés 'équation de 4
donc (—1,1) € N4(0).
Enfin ((x,9),(0,-1)) = —y < 0 donc (0,-1) € N4(0) comme
voulu.
On a donc

N4(0) =R (-1,1) + R, (0,-2).

On est maintenant prét pour la :
Preuve du Théoréme 3.6. On rappelle que
C={xeU:Vie{l,..,n},g(x) <0}

On a supposé xy € Int(C) C U existe. Soit x € C tel que :
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1. les / premiéres contraintes sont actives, c’est a dire : g1(x) = ... =
gi(x)=0
2. les autres contraintes ne sont pas actives, c’est a dire gr41(x) <
0,..g.(x) <0
Sil=0,0ona

xelnt(C)={xeU:Vie{l,..,n},g(x) <0}

donc N¢(x) = {0} par la proposition B.1.2. Sinon, le but est de voir :

l
Ne(x) = {Z Vg (x),4; > o} .
i=1

Etape 1 : inclusion D.
Par la proposition B.1.3. il suffit de voir que Vg;(x) € N¢(x) pour
1 < i <[, soit autrement dit par définition de N¢(x), il faut voir :

(Vgi(x),u—x) <0,YueC
Or par le théoréme 3.12, on a Vu,x € U

(Vgi(x),u—x) < gi(u) — gi(x) = gi(u) <0,

caru € C.

Etape 2 : inclusion C.

Soit f € N¢(x).

On remarque d’abord que si on prend Ay = xo—x on a dg;(x) (k) <
gi(x0) — gi(x) = gi(x0) < 0 pour tout i =1,...,/.

Soit donc maintenant 4 tel que dg;(x)(h) < 0,i = 1,...,/ (il en
existe par la remarque), alors g;(x + th) — gi(x) = tdg;(x)(k) + o(t)
donc g;(x + th) < O pour ¢ > O petit, et i = 1,...] De plus pour ¢
assez petit comme gy,3(x) < 0,...g,(x) < 0, on déduit par continuité
gi1(x+th) <0,...g,(x+th) <0 dou x+th € A pour tout ¢ assez petit.

Par définition de N¢(x), on a donc (f,x + ¢h — x) < 0 donc en
particulier (—f,2) > 0 et on ne peut pas avoir —(f,4) < 0. Donc
—f,dgi(x),...,dg;(x) vérifient la premiére condition de la Proposition
B.15 (avec E = R") donc aussi la seconde et sont donc positivement
linéairement dépendants. On a donc des A; positifs non tous nuls tel

l
que —Aof + Z/l,»Vg,»(x) =0.
i=1
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l

Montrons enfin que 4¢ # 0. Si on avait Z A:Vgi(x) =0,iln’y aurait
i=1
pas de 4 tel que dg;(x)(h) < O pour tout i = 1,...,/ ce qui contredit
dgi(x)(ho) < 0.
On conclut a I’égalité voulu :

Zl: ;— gi(x) € {Zl:’livgi(x)’/li = 0}

i=1 i=1

O

2 Enveloppe convexe, cones
tangents et cOnes normaux pour
tout e.v.n. £ (Niveau L3)

Comme pour les adhérences, la stabilité par intersection garantit
I'existence d’un plus petit convexe contenant 4.

Définition B.1

|
.
.

L’enveloppe convexe d’un ensemble 4, notée Conv(A) est le plus
petit convexe contenant 4.

Lemme B.2

Conv(A)

U{th, x; € A, aveth =1,4 > 0}

neN* j=1

Démonstration. Soit Conv’(A) le membre de droite. Conuv,(4) =

n
{Z tixi,x; € A,avecz t; = 1,4; > 0} Le cas n = 1 dans 'union est

i=1
m

n
A4 donc A C Conv’'(4). Si y1 = Ztixi € Conv,(A4),ys = Zsjzj €
i=1 j=1
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Conv,,(A) sont deux points quelconques, alors pour A € [0,1]

n m
ﬂyl + (1 —/l)yz = Z/lt,-x,- +Z(1 —/l).YjZ]'.

i=1 j=1

n m
Comme Z/lt,» + Z(l —A)s; =A+(1-4) on déduit Ay; +(1-2A)y; €
i=1 j=1
Conv,,,,(A). Ceci montre que Conv’(A4) est un convexe qui contient 4.
I1 est facile de voir que tout ensemble convexe est stable par com-

binaison convexe Z lix; avec Z t; = 1,4 > 0 par récurrence sur n et
ainsi Con,,(4) C Conv(A) Si ¢, =1, les autres sont nuls et rien n’est &

montrer. En écrivant Z tix; = (11—t )(— Z LX) + tyx, on a par
i=1

hypothése de récurrence 3~ Z t;x; € Conv(A) car y, =
i=1
1-¢)/A—t,) =1 (et les coeflicients sont positifs). Donc on a aussi

la combinaison convexe Z tix; = (1 —ty)yn + tyxy € Conv(4). O
i=1

Dans R” il ne suffit que du barycentre de z + 1 points.

Théoréme B.3: (de Carathéodory)

(admis) Si 4 c R"”, on a

Conv(A)

n+l n+l

= {Z tix;, x; € A,avecz t; =14 > 0}.
i=1 i=1

Les deux ensembles suivant seront importants pour formuler des
conditions pour des problémes de minimisation sous contrainte.
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Définition B.2

Le cone tangent de 'ensemble 4 C E e.v.n. au point a € 4 est

Ty(a) :={be E:Ta;, — a,a; € A,
a; —

=3

tl->(),t,-—>():b=1im

i

Le cone normal est son polaire, c’est & dire le céne convexe
fermé :

Ny(a) ={f € E" :V¥x € Ty(a), f(x) < 0}.

Exemple B.2

T4(a) est toujours fermé. Si L estuns.evde Ea € L, T7(a) = L
et N (a)=L*. SiaecInt(A), Ty(a) = E et Ny(a) = {0}.

Le résultat montrer 'accord avec la définition du cas £ = R” dans
le cas convexe (avec 'identification usuelle de £’ & £ comme pour tout
espace de Hilbert.)

Proposition B.4

Si § est convexe et x € S, alors 7,(S) est convexe et § C x +
T¢(S). De plus, on a

u-—x

T.(S) ={ S ,u€ S,s >0},

N(S)={fe€E :YuesS f(u—x) <0}

Démonstration. Ri(S — x) est convexe comme § — x donc en prenant
I’adhérence, aussi 'ensemble W = R;(S —x) que l'on veut montrer
étre Tg(x). Si on a une suite (x, — x)/f, — u € Ts(x) comme tous les
éléments sont dan W, on obtient par fermeture aussi la limite, donc
Ts(x) C W. Réciproquement, pour ¢ > 0, £, == £ (u—x)+x = Lu+(1-
%)x € § pour n assez grand par convexité et (x, — x)/t, = t(u — x) si
t, =1/n — 0 donc {(u — x) € Ts(x) comme voulu. Les autres relations
sont alors évidentes, car § —x C Tg(x) (car s = 1) et par la définition
de Ng(x) comme polaire. O
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3 Points selles (Niveau Le2-L3)

Les points critiques a qui ne sont pas des extrema peuvent étre de
différents types. L’absence d’extrema peut étre visible sur une droite
passant par @ s’il y a un point d’inflexion (comme pour x — x® dans
R) et il peut y avoir des points critiques qui sont des maxima dans
certaines directions et des minima dans d’autres. Ces points ont un
certain intérét et seront nommeés points selles.

Définition B.3

Soit UcR"et f:U - Retael.

1. Soient deux sous-espaces vectoriels /' et G supplémen-
taires R" = F® G (c’est a dire FNG = {0} et R* = F+G)
On dit que a est un point selle (resp. point selle local) de f
selon la décomposition R” = F @ G si a est un minimum
(resp. minimum local) pour la restriction fj,.r de f au
sous espace affine a + F, et si ¢ est un maximum (resp.
maximum local) pour la restriction fj,.¢ de f au sous
espace affine a + G. On parle de point selle si il existe
une telle décomposition.

2. Si f de classe C!. Soit a un point critique de f, un sous
espace vectoriel H C R” est un plan d’inflexion si pour
toute droite A passant par a inclus dans a + H, fijs n’a
pas d’extrema local en a.

Remarque B.1. La décomposition F@®G d’un point selle n’est pas
forcément unique et on ne demande rien en dehors (a+G)U(F+
a), en particulier, il peut y avoir des plans d’inflexion en un point
selle (ex f(x,9) = x2 —y%+(x—y)%, (0,0) est un point selle local
dans la decomp051t10n (R,0) @ (0,R) car x? + x*> a un minimum
local en 0 et —y? — »3 un maximum local, de méme (0,0) est
un point selle dans la décomposition R(1,1/2) @ R(1/2,1) mais

R(1,—1) est une droite d’inflexion)
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Soit f : U — R de classe C!

1. Si a est un point selle de f, c’est un point critique de f.

2. Si f est C? et a est un point critique de f. Si D?f(a)
est non-dégénérée, ni positive ni négative, alors a est un
point selle local de f.

3. Si a est un point critique de f H est un plan d’inflexion
en a de dimension dim(H) > n/2 alors a n’est pas un
point selle local. De plus si f est C? pour tout & € H,
D%f(a)(H,H) = 0.

Démonstration. Pour (1) on remarque qu’il suffit de montrer df (a) = 0
ce qui ne dépend pas de la base de R” on peut donc supposer a point
selle pour la décomposition F' = RF x {0}, G = {0} x R**. Comme f
restreint & ¢+ F a un minimum local, les £ premiéres dérivées partielles
s’annulent, les n-k derniéres s’annulent a cause du maximum sur a +G,
d’ou df (a) = 0.

La preuve de (2) nécessite quelques bases d’algébre linéaire. Pour
(2), comme D?f (a) est non dégénérée, les valeurs propres de H(f)(a)
(les racines du polynéme X +— det(H(f)(a) — Xid)) sont non nulles.
Comme la matrice D?f(a) n’est ni positive ni négative, il y a a la fois
des valeurs propres A positives et négatives. Soit F ’espace vectoriel
engendré par les vecteurs propres « (les u € R” tels que H(f)(a)u = Au
qui existent car si det(H(f)(a) — 1id) = 0, H(f)(a) — 1id n’est pas
injective donc a un noyau) des valeurs propres A strictement positives,
et de méme G avec les négatives. D?f () restreint & F est positive donc
fla+r admet un minimum local et de méme pour G.

Pour (3), sidim(H) > n/2 et supposons par ’absurde a point selle,
onadim(F)+dim(G) = n,onasoitdim(F) > n/2,soitdim(G) > n/2,
disons qu’on se trouve dans le premier cas, alors n > dim(H + F) =
dim(F) +dim(H) — dim(F N H) implique dim(F N H) > dim(F) +
dim(H)—n > n/2+n/2—-n = 0 donc FNH # {0} une contradiction car la
restriction de f a toute droite dans a+F N H devrait avoir un minimum
local en a et un point d’inflexion a la fois. Si D2f(a) (H,H) # 0,0n a
vu que cela suffit a ce que f ait un extremum local sur la droite a + RH,
vusi ¢(1) = f(a+AH), ¢"'(0) = D*f (a)(H,H). O
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Soient 4 ¢ R"* B c R* des compacts convexes et K : C =
A X B — R continue. Si pour tout (a,b) € C,a € R** p €
R%, x — K(x,b) est convexe et y — K(a,y) est concave, alors
il existe un point de C qui soit un point selle (xo,79) selon la
décomposition R** x {0} ® {0} x R* autrement dit :

Vx e A,ye B K(xo,y) < K(x0,90) < K(x,90). (B.1)
De plus, (B.1) est équivalente a ’égalité :

Min,esMax,epK (x,y) = Max,ec gMin,c 4K (x,y). (B.2)

Remargue B.2. On a des Min et Max au lieu d’inf et sup car des
fonctions continues sur des compacts atteignent leurs bornes
(cf. la preuve pour la continuité de x — Max,cpK(x,y) et de
facon similaire de y — Maxye 4K (%,9).

Dans le cas ou f est bilinéaire, ce résultat s’appelle le théoréme
du min-max de von Neumann. Il a une signification en théorie
des jeux. Si f donne la valeur que gagne un joueur 4 en position
x € Usi f(x) >0 et —f(x) la valeur que gagne le joueur B (et
perd le joueur A) si f(x) < 0. Si 4 ne peut influencer que la
direction {0} x R* et B seulement la direction R** x {0}. Alors
un point selle est un "équilibre de Nash" c’est-a-dire un point ou
ni 4 ni B n’ont intérét & changer leur stratégie, car si 4 change
sa stratégie celle de B étant constante, étant donné que le point
selle est un maximum, A4 va perdre en gain, et de méme si B
change sa position avec celle de A constante, le caractére de
minimum dans la direction du changement de B montre que B
ne peut que perdre plus.

Démonstration. o Max,cgMin,c4K(x,y) < Minycg4Max,cpK(x,y)
est toujours vrai. Comme pour tout x € A4,y € B,
Min,e 4K (x,y) < K(x,9) < Max,esK(x,y), on déduit en pre-
nant le max : Max,cpMingesK (x,y) < Max,cpK(x,y) soit en
prenant un Min en x :

Max,cgMin,e 4K (x,y) < Minye4Max,cpK (,y).
e (B1)= (B2
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De plus, en considérant (xg,p) de (B.1),ona:

K (x0,y0) < MinyesK (x,0)

< MaxyegMingc 4K (%, ),
K(x0,90) = Max,cpK (x0,y)

= MinxeAMaXyeBK(x’_y)a

d’ou I’égalité compléte en rassemblant les 3 derniéres inégalités.
e gixP MaxyegK(x,y) est continue.

Soit x,x, € 4, x, — x, soit y, (resp ¢) atteignant le max pour

%, (resp x) c’est & dire : Max,ecpK (x4,y) = K(x4,9,). Supposons

que g(x,) = K(x,,y,) ne converge pas vers g(x). Par compacité,

on peut extraire une suite telle que y4(,) — Y. Par continuité de

K :

g(xp(n)) = K(Xp(n):Jp(n)) =
K(x,Y) < K(x,t) = Max,epK (x,y) = g(x).

Or K(%4(n)-t) < K(%4(n),Y4(n)) donc en passant a la limite par
continuité de K, K(x,t) < K(x,Y) < K(x,t), une contradiction.

e (B.1) & (B.2) On prend xy € A réalisant le minimum c’est a
dire tel que :

@ = Min, ¢ 4yMax,cpK (x,y) = Max,cpK (x0,))

Il existe par la continuité du point précédent et par compacité.
De méme, il existe yg € B réalisant le maximum :

Min,c 4K (x,0) = Max,epMin,c 4K (x,y) = a.

Donc pour tout x € 4,y € B, en utilisant (B.2) pour 'égalité du
milieu, on obtient :
K(xo,y) < MaxycgK (x,Y)
= a = Minye4K(X,y0) < K(x,y0).
En prenant x = x9, y = yo, on voit @ = K (xo,90), ce qui dit donc

que (xp,%0) est un point selle.
e Montrons (B.2). Considérons, pour € > 0,

K. (x,9) = K(x,9) + €l|x|3.
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Comme x +— e||x||§ est strictement convexe, il en est de méme
de K(.,y) pour tout y € B (convexe plus strictement convexe
donne strictement convexe).

Montrons que pour tout y, la fonction Kc(.,y) a un unique
minimum. En effet, si x; # x9 sont deux minima, par stricte
convexité : K. ((x+9)/2,y) < Kc(x1,9)/2+ Ke(x2,9)/2 = K(x;,9)
en contradiction avec le caractére de minimum. Donc on a un
unique E(y) atteignant le minimum de K.(.,y) Par le deuxiéme
point (appliqué & —K.(y,x)) fe(y) = K:(E(p),y) est continue,
donc atteint son maximum en y*. En conséquence, par la défini-
tion de f; et le choix de y*

f;(y*) = MaXyeBMinxeAKe(xa_y)
=K (E(y"),y") = Mingec 4K (%,9").

Soit x € A,y € B,t €]0,1[, on a par concavité :

K (x,(1-0)y"+ty) = (1 -)Kc(x,9") +tKc(x,y)
>(A-t)fe(y") + tKc(x,p).

En prenant x = E((1—¢)y* + ¢y), on obtient fe((1—¢)y* +¢y) >

(1= 0)fe(") + LE(E((1 = 1)y" + 19).9)-
Vu que y* maximise f;, en soustrayant et divisant par ¢, on a :

fO") 2 K(E((1 - 0)y" +ty),y) ().

On veut prendre ¢ — 0, voyons que y — E(y) est continue.
Supposons y, — y, et supposons E(y,) /> E(y) par compacité,
on a une suite extraite y,(,) telle que E(ygn)) — Z # E(y). Par
continuité Kc(E(yg(n)))sDon) — Ke(Z,y) > K (E(9).)),
I'inégalité stricte venant de I'unicité du minimum d’une fonction
strictement convexe.

Or par définition K (E£(9)),94(n)) = Ke(E(WYg(n)))>Ys(n)) donc
en passant a la limite K. (E(y),y) = K.(Z,y) > K. (E(y),»), une
contradiction.

On a donc montré la continuité de y — E(y).

Donc en passant a la limite dans I'inégalité (x), on obtient :
JeO") = K(E(y*),y) et ce pour tout y € B Par ailleurs par
définition de f;, f:(»*) < Kc(x,9"). Autrement dit (E(y*),y*) est
un point selle de K. Par I'implication (B.1) = (B.2), on déduit,
vu K (x,9) < K (x,9) < K(x,9)+€D (avec D = Maxx€A||x||§ < o0
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par compacité) :

MinxeAMaXyeBK(x’y)
< MinxeAMaXyEBKe(xv_y)
= Max,cpMinye 4 Kc (%, )
< €C + MaxyegMinye 4K (x,).
En prenant € — 0, on obtient 'inégalité qui manque pour avoir

(B.2) pour K.
O

4 Jauge de Minkowski d’un
ensemble convexe (Niveau M1)

L'un des objectifs principaux de ce chapitre est d’utiliser le théo-
réme de Hahn-Banach pour séparer des convexes par des hyperplans
fermés, lieu d’annulation d’une forme linéaire continue. Pour cela, nous
devons associer a un convexe une fonction (qui sera souvent une semi-
norme) et que ’on pourra utiliser comme domination dans le théoréme
d’Hahn-Banach.

Définition B.4

Soit £ un R-e.v., un convexe C C E est dit absorbant si pour tout
x€E,xe€AC pourund > 0.

Définition B.5

Soit £ un R-e.v. et C un convexe absorbant. La jauge de Min-
kowski de C est la fonction :

pc(x) ==inf{l >0: 17 x € C} € [0,00)

Théoréme B.7

Soit £ un R-e.v. et C un convexe absorbant. Alors

1. pc(x+y) < pc(x) +uc(y).
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2. uc(tx) =tuc(x)sit > 0.

3. Si —C = C, uc est une seminorme.

4. Si A = {x : pc(x) < 1},B = {x : puc(x) < 1} alors
A c C C B sont des convexes et uy = up = lc

5. Si E estun e.vn. et 0 € Int(C) (ce qui implique C ab-
sorbant), u¢ est continue et de plus

A=1nt(C),B=C.

Démonstration. Soit ¢t = uc(x) +e€ > 0, s = uc(y) + € > 0 de sorte
que x/t,y/s € C. Or on peut écrire la combinaison convexe suivante
% = $§+X“‘:% € C et donc pc(x+y) < s+¢. Comme € > 0 est
arbitraire, on déduit (1).

(2) est une conséquence directe de la définition. Si —C = C u¢(x) =
e (—x) d’out on déduit ¢ (tx) = |t|uc(x), la seule relation manquante
pour (3).

Les inclusions entre 4, B, C viennent de la définition : x € C donne
x/1 € C et donc uc(x) < 1 etsipuc(x) < 1, alors x/1 € C. Elles
impliquent up < pec < pg. Si pp(x) < s < ¢ alors x/s € B donc
uc(x/s) <1 donc uc(x/t) < s/t <1doux/t € Adonc uy(x) <t soit
en passant a I'infimum des ¢, u4(x) < mug(x) ce qui donne la derniére
égalité de (4). 4, B convexes sont semblables a la convexité des boules
en utilisant (1) et (2).

Pour (5), on remarque qu’il existe B(0,€) ¢ C donc uc¢(ex/||x]]) <
1 soit puc(x) < |[|x[|/€.

De plus par I'inégalité triangulaire p¢(x) < [uc(x — y)| + pc(y) et
de méme en inversant x,y donc

luc(x) —pc )| < luc(x =)l < [lx - yll/e

donc uc est 1/elipschitzienne donc continue. On déduit que A4 est
ouvert, B fermé et donc 4 C Int(C),a C B. Or, soit €, si x € B
x(1 —1/n) € C et converge vers x € C donc B c C. De méme si
x € A°, (1+€)x ¢ C donc x € C° donc A° c C¢ d’ou en prenant le
complémentaire /n¢(C) C 4. O

Vous pouvez aussi en exercice essayer de montrer le résultat suivant
directement.



ANNEXE B. COMPLEMENTS FACULTATIFS ET HORS

PROGRAMME AU CHAPITRE 3 :CONVEXITE 221
Corollaire B.8

Soit C un convexe d’intérieur non vide d’un e.v.n., In¢(C) =

Int(C) et Int(C) =C.

Démonstration. En translatant, on peut supposer 0 € Int(C),, Alors
comme U¢ = Urn(c) = Mg, par le (5) ci-dessus, le calcul de l'inté-
rieur/adhérence en terme de la jauge donne que ces trois ensembles
ont méme intérieur et méme adhérence. O

5 Séparation des convexes (Niveau
Ma)

Un élément f € E’ tel que f # 0 permet de construire un hyperplan
fermé (translation de Ker(¢), voir lemma 2.30) : {x € E, f(x) = c}. Les
deux ensembles {x € E, f(x) < ¢} et {x € E, f(x) > ¢} sont des demi-
espaces. On dit que deux ensembles sont séparés (par 'hyperplan) si
chaque ensemble est dans un des demi-espaces. On parle de séparation
stricte si C1 C{x € E,f(x) <c} et Co Cc {x € E,f(x) > d} pourd > c.

On va obtenir un résultat de séparation en utilisant un résultat
abstrait de prolongement :

Théoréme B.g: (de prolongement de Hahn-Banach) (ad-
mis)

Soient £ un espace vectoriel, p : E — R une application positi-
vement homogeéne et sous-additive, c’est-a-dire vérifiant :

> p(tx) =tp(x)x € E;t >0

> p(x+y) < p(x) +p(y),x.y € E.
Soient G C E un sous-espace vectoriel et g : G — R une appli-
cation linéaire dominée par p :

Vx e G,g(x) < p(x).

Alors il existe une forme linéaire f sur E qui prolonge g (c’est-a-
dire Vx € G,g(x) = f(x)) et encore dominée par p, c’est-d-dire
telle que

Vx € E,f(x) < p(x).




ANNEXE B. COMPLEMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 3 :CONVEXITE 222

La version suivante du théoréme de Hahn-Banach permet de sépa-
rer des ensembles convexes bien choisis.

Théoréme B.10: (de séparation de Hahn-Banach)

Soient 4,B deux convexes non-vides disjoints d’'un e.v.n. E, ils
sont séparés par un hyperplan dans les deux cas suivants :

1. Si A est ouvert, alors il existe f € E’ et ¢ € R telle que

VxeAd,yeB: f(x)<c< f(y).

2. Si A est compact et B est fermé, alors il existe f € E’ et
¢ < d e R telle que

VxedyeB:f(x)<c<d<f(y).

Démonstration. 1) Premier cas : B = {xo}.

On peut supposer que 0 € A pour utiliser la fonctionnelle p4
comme fonctionnelle sous-additive et positivement homogéne p du
théoréme de Hahn Banach. Soit G = Rxj et g(txo) = ¢.

On remarque que py(xg) =1 car A= Int(A) = {x : ua(x) <1} par
le théoréme B.7 et xy ¢ A.

donc pour t>0 g(txg) = ¢t < tua(xo) = pa(txp) et pour ¢ < 0
g(tx9) < 0 < uy(txp). Donc on obtient la domination hypothése de
Hahn-Banach :

Vx e G,g(x) < pua(x).

En appliquant le théoréme, on obtient donc f linéaire étendant g
et telle que (en réutilisant la lipshitzianité obtenue dans la preuve du
théoréme B.7 (5))

Vx e E, f(x) < ua(x) < M||x]|.

Ceci implique en particulier f € E*, f(x) < 1 pour x € 4 et

f(x) =1 sur B. Ce qui donne la séparation.
Second cas : B quelconque.

On pose € = A-B qui est convexe, ouvert (comme union Uycg4—y)
et 0 ¢ C. Donc d’aprés le premier cas il existe f € E’ telle que f(z) <0
pour z=a—b € A—Bsoit f(a) < f(b) pour a € 4, b € B. En passant
au sup on obtient :

Supycaf (x) < Infyepf(y) =c.
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De plus, comme A4 ouvert on obtient 4 C Int({x : f(x) < ¢}) ={x:
f(x) <c}.

2) Vérifions qu’il existe € > 0 tel que A+ B(0,€) et B+ B(0,¢) soient
disjoints (ce sont aussi des convexes ouverts comme au 1). Sinon, on
trouve x, € A+ B(0,1/n) N B + B(0,1/n) donc y, € 4,2, € B avec
[lyn = %2||,||zn — %] < 1/n. En extrayant par compacité une sous-suite
Yn, — y € A on obtient z,, — y € B, une contradiction.

Donc on peut appliquer le cas 1) a 4+ B(0,¢) et B+ B(0,€) . On
obtient f € E’ non-nulle telle que :

Va € ANz € B(0,¢),Yb e B :
f@+f(2) sa< f(b)+[(2)
En prenant des sup sur la boule unité :
VaecANbeB: f(a)+|lflle<a<f(®)—Ilflle.

Comme ||f]|| # 0, il suffit de prendre ¢ = @ — ||f]|le/2 < d = a +
1/ 1le/2. O

Applications

Il vient de l'application directe au cas 4 = {x}, B = {y} qui sont
des compacts.

Proposition B.11: (separation des points)

E’ sépare les points de £ : Pour x # y € E il existe f € E’ telle

que f(x) # f(9).

Le deuxiéme cas particulier permet de séparer un point et un es-
pace fermé F

Proposition B.12

Si F C E un sous-espace vectoriel de 'e.v.n. E. Si x ¢ F alors il
existe f € E’ telle que f(x) =1et F C Ker(f).
En particulier, F* = 0 ssi F est dense dans E.

La proposition précédente a des conséquences intéressantes pour
comprendre l'injectivité et la surjectivité (ou plutét la densité de
I'image) des applications linéaires en dimension infinie.
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On commence par un préliminaire algébrique sur 'orthogonalité
dans les espaces de Banach.

Définition B.6

Soit E un e.v.n. et F un sous-espace de E et N un sous-espace
de E’. Les orthogonaux de F et N sont les sous-espaces fermés :

Ft={f €FE f(x)=0x€ F},

N :={x€E f(x)=0Vf € N}.

Proposition B.13

Soient X,Y des ewvanet T € L(X,Y). Alors

Ker(TH = [Im(T)]* Ker(T) =*[Im(TH)].

Démonstration. En effet, y € Ker(T"?) ssi pour tout x € E, 0 =
[T'(y)](x) = y(T (x)) ssiy € [Im(T)]*.

De méme, y € Ker(T) ssi pour tout x € E*, 0 = x[T(y)] =
[T(x)(y) ssiy € *[Im(T")]. O

Proposition B.14

Soient X,Y desewvnetT € L(X,Y).

1. Im(T) est dense dans Y si et seulement si 7'* est injectif.
2. SiX Y, (X') =X est la fermeture normique de X
dans Y.

Démonstration. Pour 1, T* est injectif si et seulement si Im(T)* =
Ker(T') = 0 (proposition B.13) ssi Im(7T) est dense par la proposi-
tion précédente.

Pour 2, X c 1(X') donc comme le terme de droite est fermé,
Padhérence est inclus. Réciproquement, soit x ¢ X par la conséquence
de Hahn-Banach ci-dessus, soit f € E’ telle que f(x) =1, et f € X+,
on déduit que x ¢ ~(X™). O

Le résultat suivant qu’on a utilisé pour les calculs de cones normaux
est un exercice typique d’application de Hahn-Banach.
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Soit {f; : i = 1,2,--- ,k} un ensemble fini dans E’ (pour un
e.v.n. E). Les affirmations suivantes sont équivalentes :
(1) II'n’y aaucun v € E tel que f;(v) < 0 pour tout i € [1,2];
(2) Lensemble {f; : i = 1,2,...,k} est positivement linéai-
rement dépendant : il existe un vecteur nonnul 4 =

k
(A1, ,A%) # 0 avec A > 0 tel que Z/l,-ﬁ =0.
i=1

Démonstration. Montrons premiérement le sens facile : (2) = (1). A

k
partir de A; > 0, on obtient en appliquant a v, Z/l,»ﬁ(v) =0, Or
i=1

k
Ji(v) < 0 pour tout i implique Z/l,—ﬁ(v) < 0, donc cela implique (1)
=1
par contraposée. l
Dans l'autre sens (1) = (2), on utilise le théoréme de séparation
de Hahn-Banach pour

Ki={yeR:y <0,Vie{1,2,..,k}},
Ky = {(/1(0). f2(0), ... fr (v)) : v € E}.

Vu que p;(y) = y; est linéaire sur R* de dimension finie, donc
convexe continue, on obtient que K = ﬂf.‘zlpi_l(] —00,0[) est une inter-
section finie de convexes ouverts, donc un convexe ouvert.

Ky =Im(f1,- - ,fr) 2 0 est un s.e.v de Rk, donc un convexe non-
vide. (1) indique qu’ils sont disjoints. Par conséquent le cas 1 du théo-
réme B.10 s’applique et donne 1 = (d1,---,1;) € E' = R et ¢ tels
que :

Vx € K1,y € Ky, (A,x) < ¢ <{A,y)

Comme Ky est un s.e.v.,, pour ¢ — O on a ¢ < £{(1,y) — 0, donc
¢ < 0. De plus ¢ < £n(d,y) et donc £n(d,y) < —¢ = |¢| force [{1,y)| <
l—;‘ — 0 donc (1,y) =0.

De plus (—%,~ e =1, ,—%) € K3 so —/l,-—%z/lj < ¢ <0.Donc
J#
en passant a la limite, # — oo, on obtient —4; < 0, donc 4; > 0. Et
A # 0 vient de (1,(1,---,1)) <O.
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Compléments
facultatifs au
chapitre 4 :
Espaces
MESUTES.

1 Lemme de classe monotone

Définitions

Au lemme 4.3 iii), on a vu comment on remplace les unions dé-
nombrables par des unions croissantes d’une suite d’unions finies. Cela
suggére que la notion d’union croissante pourrait remplacer utilement

297
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(pour la théorie) celle d’union dénombrable et suggére la définition
suivante de classe monotone. '

Une classe monotone sur Q est une famille M de partie de Q
contenant Q et stable par différence et unions croissantes, c’est-
a-dire M C P(Q) telle que :

1. QeM

2. SiA,Be Mavec BC Aalors A—Be M.

3. Si {4,,n > 0} € M est une suite croissante (i.e. 4, C

Ay, alors U A, e M.

n>0

Lemme C.1: (cf. TD)

1. Une tribu est une classe monotone.
2. Une classe monotone stable par intersection finie est une
tribu.
3. Si (M;);er sont des classes monotones, alors leur inter-
section ﬂ M; est une classe monotone.
iel
On peut donc parler de la plus petite classe monotone contenant
une famille A C P (L), qui est Pintersection de toutes les classes
contenant A, elle est notée M(A) et appelée la classe monotone
engendrée par A.

1. Comme dans le livre de Barbe-Ledoux [1], on suit la tradition
francaise pour cette définition (différente de la tradition anglo-saxone
venant du livre de Durett de Probabilités). Attention, ce n’est pas la
méme définition dans le cours du MGA.
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Le résultat principal

Théoréme C.2: (Lemme de classe monotone)

Soit & une famille de partie de Q stable par intersection finie,

alors la classe monotone et la tribu engendrée par & coincident :
M(E) =0 (E).

Démonstration. Par le lemme C.1 1), 0(E) est une classe monotone
contenant &, donc comme M(E) est la plus petite telle classe, on a
M(E) co(E).

M(E) est une tribu. Par le lemme C.1 2), il suffit de voir que
M := M(E) est stable par intersection binaire. On pose

K={Ade M:YVBeE,ANB e M}.

Comme £ est stable par intersection finie, & C K. On a Q € M et si
Ac Cavec A,C e K,Be &E,alors (C-A)NB=(CNB)—-(ANnB) e M
par différence d’ensembles de M. Enfin, de méme comme intersection
distribue sur les unions croissantes, K est stable par intersection crois-
sante et donc une classe monotone. Or elle contient &, comme ona vu,
donc M(E) € K et comme par définition K c M(E). on a égalité.

On est maintenant prét a définir la classe qui va vérifier la stabilité
voulue par intersection :

L={AeM:¥C e M,ANC € M}.

On montre comme avant que L est une classe monotone (exo). Mon-
trons que & C L. Soit donc B € &, alors C € M c K donc, par défini-
tion de K, pour BN C € M. Et comme c’est vrai pour tout C € M, on
en déduit par définition de £ que B € £, comme voulu.

Finalement, £ est une classe monotone telle que & ¢ £ ¢ M(E)
donc, par définition de la classe monotone engendrée, £ = M(E).

Inclusion réciproque. Comme M(E) est une tribu contenant & et
que o (&) est la plus petite telle tribu, on obtient M(&) > o (&). O

Corollaire C.3: (au lemme de classe monotone)

Soient u et v des mesures finies de mémes masses (i.e. u(Q) =
v(Q)) sur un espace mesurable (Q, 7). Soit & une famille stable
par intersection finie qui engendre 7. Si u et v coincident sur &
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(i.e. u(E) = v(E),VE € &) alors u et v sont égales (i.e. u(B) =
v(B),YB € T).

Démonstration. Soit M = {B C E : u(B) = v(B)}. Par I’hypothése, M
contient &. Vérifions que c’est une classe monotone :
> Q€ M car u et v ont méme masse.
> Si 4,B € M,A C B, alors par la proposition 4.3 v) on a u(B -
A) = u(B) = p(A) = v(B) - v(4) = v(B - A).
> SidycAyc---Cc A, C---,A, € M, est une suite croissante,
par la proposition 4.3 iii),

i ) = Jim ) = Jim vido) = (| 4.)

n>1 n>1

Bilan, M est une classe monotone qui contient &, donc M(E) € M. Or
par le lemme de classe monotone M(E) = (&) = 7 d’ou le résultat.
O

Preuve du corollaire 4.19 au lemme de classe
monotone sur 'unicité des mesures
sigma-finie

On commence par le cas ot la suite de parties 4, € & est croissante.
Notons pi,,v, les mesures induites par yu,v sur 4, respectivement.
On a deux mesures finies avec u,(E) = uy(ENA4,) =v(ENA,) = v,(E)
pour tout £ € & donc par le corollaire au lemme de classe monotone
pour les mesures finies, on déduit u, = v,. Pour tout B € 7, on a

B=Bn (U Ay) = U(B N A,) donc par union croissante :

#(B) = lim p,(B) = lim v,(B) = v(B).

Dans le cas ot la suite 4, n’est pas croissante, on utilise B, = U7 | 4;
qui est une suite croissante, mais pas forcément dans &, donc il faut
travailler plus pour vérifier I’hypothése pour la mesure induite sur B,.
D’abord, par la formule de Poincaré :

pU 4 = 3 (DT Ny 00 dy) < oo,

k=1 1<ij<--<ip<n
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Et comme toutes les intersections sont dans & tous les termes de la
formule sont égaux aux termes correspondants pour v donc u(B,) =
v(B,). On considére les mesures induites pour B € 7 (E),u,(B) =
u(BNBy,),v(BN By,) =v,(B). On vient de voir que u,,v, sont finies.
Montrons que pour E € & pi,(E) = v, (E) En effet ENB, = U;_, (ENA4y)
et en appliquant la formule de Poincaré encore (en remarquant que les
intersections sont celles d’éléments de E.

(U (E N 4p)

-3 (-1)Ft HENAy NN 4y)
k=1

1<ii<---<ip<n

=Z"1(—1)k-1 Z VIEN Ay NN A4y) =v(Ur_ (E N 4y)).
k=1

1<i<--<ip<n

On conclut comme avant du corollaire au lemme de classe monotone
pour les mesures finies, que u, = v,. Puis pour tout B € 7, on a
B=Bn (U B,) = U(B N B,) donc par union croissante :

n

n

u(B) = lim y1,(B) = lim v, (B) = v(B).

2 Compléments sur les Boréliens

On rappelle que la tribu des boréliens d’un espace métrique (X, d)
est la tribu engendrée par ’ensemble des ouverts 7. (cf. définition 4.6).
En pratique, il est difficile de décrire tous les boréliens (les ouverts sont
déja difficiles a décrire), mais on n’a pas besoin de description expli-
cite (juste de familles génératrices simples, et stables par intersections
finies).

Remarque C.1. 11 existe des ensembles qui ne sont pas boréliens
sur R, et donc des fonctions non-boréliennes. Ils ne sont pas
si faciles a définir, donc en pratique, tous les ensembles qu’on
rencontrera seront boréliens.
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Espaces métriques séparables et leurs

boréliens

Définition C.2

Une partie 4 est dite dense dans E si A = E. Un ensemble est
dit séparable si il admet un sous-ensemble au plus dénombrable
dense (ou autrement dit une suite dense).

Lemme C.4

Un sous-ensemble F d’un espace métrique séparable est sépa-
rable.

Démonstration. On peut supposer F' non-vide, sinon, c’est évident (la
partie vide donc finie est dense). On fixe donc xy € F

Soit u, une suite dénombrable dense. Soit a,,, € B(up,1/n) N F
si cet ensemble est non-vide, et sinon on pose a,, = xo. La famille
{amn,m,n € N} est finie ou dénombrable et dense car si x € F il existe
d(um,x) < 1/2n donc ap9, existe car B(uy,1/2n) N F est non vide et
par inégalité triangulaire d(uy, an2,) < 1/n. O

Proposition C.5

(R™,]].||s) est séparable.

Démonstration. On a vu que Q" est dénombrable comme produit d’en-
sembles dénombrables. Montrons qu’il est dense dans R”. En effet si
Lpxal

x = (x1,...,X,) on pose x, = (U”%J,..., y

de x. Donc | px;] < px; < [px;] +1et

) avec |x] la partie entiére

besd )1
b b

donc [|xp — *||lec £ 1/p —p00 0. Donc vu x, € Q", x € Q". Comme x
est arbitraire. R” c Q" CQFD. O

Exercice C.1. Montrer que Q° est dense dans R.
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Proposition C.6

Soit (X,d) un espace métrique séparable, alors la tribu boré-

lienne est engendrée par les boules ouvertes B(X) = O’(B :

Boule ouverte de X).

Démonstration. Toute boule ouverte est un ouvert donc {B
Boule ouverte de X} c B(X) et donc en passant a la tribu engendrée :
(T(B : Boule ouverte de X) Cc B(X).

Le contenu de la proposition est la réciproque. Il suffit de montrer

que 7 C (T(B : Boule ouverte de X) car alors, en passant a la tribu

engendré, on obtient B(X) C O'(B : Boule ouverte de X].

Montrons qu’en fait, tout ouvert U est union au pus dénombrable
de boules ouvertes. Comme X est séparable, c’est aussi le cas de U.
Soit D = {x, : » € N} C U une suite dense. Comme U est ouvert, il
existe r, € QN]0,+oo[ tel que B(x,,7,) C U. Soit donc 4 = {(xy,7,) :
7, € QN]0,+00[,B(%xy,,7,) C U} est donc a.p.d comme sous-ensemble
d’un produit d’ensembles dénombrables. Donc en passant a 'union on
a: U B(x,,1,) C U. Montrons que

(xn,m0) €A

U= U B(xy,,1,) € O’(B : Boule ouverte de X)
(xn,rn) €4

Soit x € U, il existe r > 0 avec B(x,r) C U. Puis il existe n tel
que d(x,x,) < g et soit r, € Q avec r/3 < r, < r/2 (par densité de Q
dans R= donc x € B(x,,7/3) C B(xy,1,) C B(x,,7/2) C B(x,r) c U
donc (x,,7,) € Aetx € U B(xy,7,). Comme x est arbitraire, on a

(%n.1n) €4
I'insclusion réciproque qui conclut : U C U B(xy,14). O
(xn.1n) €4

Preuve du Corollaire 4.77. Tl suffit de remarquer que B(R) =
0'({{+00},{—<>0}} U{la,b[: a < b < a+ 2}), car R est séparable

({+00,—c0} U Q est dense car la densité sur R coincide avec la densité
usuelle vu qu’on a les méms ouverts, cf TD 1) et que les ensembles de
la partie génératrice sont les boules ouvertes pour dg.
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1 1
11 suffit de noter que ]a,b[= Q [a - ;,b+ ;] € 0'({{"‘00},{—00}} U

{[a,b] :a < b}) pour déduire que

B(R) = 0'({{+oo},{—oo}} U{[a,b]:a< b})

Par le lemme 4.13, on a alors que f est mesurable si et seulement si

1. fl{eoh) e T
2. fl({-o0}) e T
3. Pourtouta < b €R, f1([a,b]) €T

C’est exactement le résultat voulu (et on a vu que le dernier point
équivaut a la mesurabilité de la restrition de f a R.
O

Preuve du lemme 4.6

Pour rappel, on veut montrer que

n

BR") = 0'( [ 1asbil.ai < b, € R).

i=1

Comme les produits d’intervalles ouverts sont des ouverts, et que les
boules ouvertes pour la norme infini sont des boules ouvertes, on a

{B :Boule ouverte de R", || - ||}

C {l_[]dl',bl'[,ai < bl € R} cT.

i=1

Donc en prenant la tribu engendrée et en appliquant la proposition C.6
sachant que R" est séparable par la proposition C.j5, on obtient :

B(R") = o'({B : Boule ouverte de R”,|| - ||m})

c o-(ﬁ]ai,bi[,a,» <b; € R) c o-(’/") = B(R").

i=

3 Stabilité des fonctions mesurables
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Lemme C.7

Un supremum d’une suite f, : (Q,7) — R de fonctions mesu-
rables est mesurable.

Démonstration. On note [ = sup,,»1 fa et on remarque que

fH([~c0,a]) = {w € Q: sup fy(w) < a}

n>1

= Naz1f, ' ([~o0,a]).

Or par le corollaire 4.17, on sait que f, !({—co} est dans 7 et aussi
. 1] - ,a]) = n>1fn_1([—n,a]) € 7 par union dénombrable. Donc
chaque f,~ 1( [—o0,a]) € T et donc par intersection dénombrable, on a
fY([~0,a]) € T. Par le corollaire 4.16, on déduit que la restriction
de f a R est mesurable et donc pour tout @ < b, on a f~1([a,b]) € T
Enfin, f7'({-c0}) = Nu1fy '({—e0}) € T et f7l({#+eo}) =
ﬂ F Y (n.+o0]) € 7. Or f1(Jn,+00]) = £~1([—o0,n])¢ € T donc par
n>1
intersection dénombrable, on a bien f~1({+c0}) € 7. Par la réciproque
du corollaire 4.17, on déduit que f est mesurable. O

Lemme C.8

La limsup,liminf d’une suite f, : (Q,7) — R de fonctions
mesurables est mesurable.

Démonstration. Comme inf, f, = —sup, —f,, on déduit qu’un infimum
d’une suite de fonctions mesurables est mesurable. Or, comme rappelé
au chapitre précédent,

limsup f, = 1nf supfk lim mffn = sup | inf f;
n

n>0 kzn

est donc mesurable en utilisant le résultat du lemme précédent sur le
suprémum (ou I'infinimum) de fonctions mesurables. O

Proposition C.g

Une limite simple d’une suite f, : (Q,7) — R de fonctions
mesurables est mesurable.
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Démonstration. Si une suite converge simplement, on a lim,_. f, =
limsup, f, qui est donc mesurable par le lemme précédent. O

4 Compléments sur la construction
de l’intégrale

Intégrale des fonctions étagées

La définition 4.11 est motivée par le résultat suivant :

Lemme C.10

Lintégrale /de,u ne dépend pas de la décomposition f(w) =
Z a;14,(w) en somme d’indicatrice d’ensembles deux a deux
i=1

disjoints mais seulement de f.

n
Démonstration. Pour f = ZailAu il existe toujours une (unique) re-
i=1
présentation canonique de f en voyant b; < --- < by, tel que 'image
f(Q) — {0} = {b1,--- ,by} et en prenant B; = f1({h;}) € T car f

est mesurable. Alors, on a f(w) = ZbilBi (w). Comme les 4; sont
i=1
2 a deux disjoints, on voit B; comme union disjointe de A4; et donc

u(B;NB) = Z u(4; N B) donc, en regroupant par paquet :

{j:a;=b;}
n
[ rau=Y, ant;0)
B ‘a
m
=), D, bul4nB
=1 {jia=bi}

= Zm: b;u(B; N B).
i=1
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C’est la formule qui ne dépend que de f (comme sa représentation
canonique). O

Preuve du lemme 4.20

1. Si f(w) = Z a;14,(w) avec les 4; deux a deux disjoints, alors

i=1
n n

1sf (w) = Z a:14,08(w). Donc [, fdu = Z aip(4; N B) = / 1sfdu.

i=1 i=1 Q
n n

2. De méme, ¢f(w) = Z ca;1,,(w), alors fB cfdu = Z ca;u(4; N
i=1 i=1
B) = c/fdu.
B m

3.51 de plus 4 = Z b;1p,(w) avec les B; deux a deux disjoints, et
j=1

m n
soit By = Q — UB]-,AO =Q- UA,—, alors les 4; N B; deux a deux
j=1 i=1

disjoints i = 0,--- ,n,j =0,--- ,m. De méme, avec ap = by =0, f(w) =
m n m n

D0 adunn, (@), k(@) = > > bil4as, (w). Donc

7=0 i=0 7=0 i=0

F@)+hw) =" > (e +b) 1408, ()

7=0 =0

On obtient donc :

'/Bf +hdp = Zmlznl(ai +b;)u(4; N B;)

720 =0
= Zm: Zn: aip(4; N B;) + Zm: z”: b;u(4; N Bj)
i=0 i=0 j=0i=0

J
=/fdu+//zd,u.
B B

4.510< f <halorsh=(h—- f)+f estla somme de deux fonctions
étagées positives et par le 3, fodu < fody +/B(h - fdu = thdM.
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Preuve du lemme 4.22

On va utiliser que toutes les propriétés sont vraies si f,4 sont éta-
gées par définition de I'intégrale dans ce cas.

1. Soit g étagée avec g < f alors g < A, donc par définition 0 <
/B gdu < fB hdu. En passant au sup sur les g, on obtient 0 < fod,u <
/B hdy.

2. Soit g étagée avec g < f, alors 1gg < 1pf. Or par le cas
étagé du lemme 4.20, on a fBgd,u = /nggd,u et donc par défini-
tion : /Bgdy = fg 1pgdu < /ngfdy. En passant au sup, on obtient
Jofdu < [, 1fdp.

En sens inverse, g étagée positive avec g < 1zf < f vérifie donc
glp = g et par définition fg gdu = /legdp = /Bga’,u < fodu soit en
passant au sup /Q 1gfdu < fod,u.

Le cas particulier vient du 1. appliqué a I'inéaglité 1,f < 1pf sous
la forme : 0 < /Afdy =/911fd,u < /ngfdy = fody.

3. Si ¢ = 0 c’est évident, on suppose donc ¢ > 0. Alors pour g < f
avec g étagée positive, on a ¢g < ¢f donc par le cas étagé du lemme
4.20, on a eﬁggd,u = ﬁgcgd,u < chfd/,t. En passant au sup, on a

obtenu :
c/fduﬁ/cfd,u
B B

mais en appliquant ) ¢/ a la place de f et f = 1¢cf, on obtient :

+ [odus [ rau= [ rau

d’ou I'inégalité dans I'autre sens ./B cfdu < chfdy et donc I’égalité.
4.8i f =00 < g < f implique g = 0 et en passant au sup de 0, on

obtient le résultat.
n

Si u(B) =0, fBgd,u = fglggdu et si g(w) = ZdilA,»(w), on a
i=1
n

/Q lpgdu = Z a;u(BNA4;) =0 car chaque u(BNA4;) < u(B) =0.
i=1
5.Siona0<g<f,0<k <havec g,k mesurable positive, alors
g +k < f +h est mesurable positive, donc fo + hdu > /Bg + kdu =

fB gdu + fB kdu. En passant au sup, on obtient le résultat.
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1 Formule alternative de la norme
(niveau L3)

On va en déduire I’expression alternative suivante dont 'inégalité
triangulaire se déduit facilement. Cette méthode a I'avantage d’étre
utile pour le calcul du dual.

Proposition D.1

Soit y o-finie, p € [1,00], ¢ tel que 1/p +1/¢g =1 le coefficient
conjugué, alors pour tout ¢ mesurable

ety =sup | [ Seausiiri <

feg e LNQu),f e LNQuNLY(Qu)}.

Démonstration. Soit A, croissant telle que UA, = Q,u(4,) < . On
commence par le cas g € LI1(Q, u).

Par Holder, fg € L! donc lintégrale est définie (avec la condition
[1f1l, <1 seule) et

’/fgdu

d’ou ||g]l, est plus grand que le sup de I’énoncé. Mais, pour p €]1, 00,
si on prend f = Zlgl'/|lgllf " on a |fIf = |glP V) |lglh "V =
lg1?/llgll§ car p(g —1) = gp(1 - 1/q) = g, donc f € L et ||f]l}
E(f1#) = llgll§/llgly = 1. Donc |If14,Il5 < lIf1l; < 1 donc comme
L (A, p) © L}(Ay,p) car p(4,) <ooona fly, € LY(Q,u) et donc

< |Ifegll < Iflpllgllg

1y
gum () = 1(f1,, 20} I}rl min(m,|f1y,])

€ L™(Qu) N Ll(sz,m
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d’ou le sup est supérieur a
/ f gdﬂ‘

(par convergence dominée par |g,,(f)g| < |fgl) et le sup est supé-
rieur a |ffgd/1| = f |g|qd,u/||g||371 = |Igllg- On déduit donc I’égalité
énoncée.

Sip=1,¢q = oo, soit

e s

et A= {x :|g(x)| > C}. Supposons par liabsurde que pu(A) > 0 soit
B c A avec u(B) €]0,00[. Alors f = 13@“4% est dans Ll et ||f]]1 = 1

(et borné par 1/u(B) donc dans L™) mais |ffgd;1| = flgl% >C
en contradiction avec le choix de C donc u(4) = 0 ce qui implique

llglleo < C ce qui donne le résultat en prenant I'inf des C.

Sip = co,¢ =1, il suffit de prendre f = lg;&o% € L¥(Q) et
fly, € L¥(Q) N LY(Q) de sorte que fly,g = |f|l4, et la norme
[lf14,llc <1. Donc le supremum, est supérieur a f |11, du — |1f11
par convergence monotone.

Si on ne suppose plus g € LI(Q,u) mais ||g||, = co. Soit alors
Gum = 1{g¢0}%min(m,|g|)1‘4n € L1(Q,u) on obtient f, 4 € L'nL®

de norme < 1 dans L? tel que

' / gn,m<f>gdu' | [ flAnga’,u‘ -

Il < 1fg € LNQ, ),

fe LN QunL®Qu}

| / Fomsitnm] —ime l1gumllg-

Comme on a I'inégalité par Holder,

< N fumallpll(gnm = 14,1y

'/ ﬁt,m,k(gn,m - glA,,)
< (gnm = glA")”q —m—oo 0

par convergence monotone car [min(|g|,m) — |g]|? décroit vers 0, on
trouve une suite my tel que

| / Fomidla| =i llelally
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(fini ou infini). Enfin comme par convergence monotone ||gly,|l, —
llgll4, on trouve une suite

| / Frmr&las] =i llglly = o0,

Comme || fy, mi1a,llp <1, et fo,mepla, € LXONL® et fo, m, 1814, € L
cela donne la solution :

Sup{‘/ fgd#';llfllp <1,fgell(Q).fel'nL™}
= oo =||gll,-

O

Exemple D.1

Dans le cas ou u est la mesure de comptage sur / (o-finie si
I dénombrable), u(A) = Card(A), on obtient 'espace ¢#(1,K)
des suites indicées par / de puissance p sommable, i.e. telles

que
Dlxl < o
iel
pour p € [1,00[ et 'ensemble des suites bornées, c’est-a-dire
telles que
[[#]loo = sup [x;] < oo
iel

pour p = co.

2 Premiers résultats de densité
(niveau M1)

On rappelle qu’une fonction étagée intégrable sur (Q,u,7") est une
combinaison linéaire (finie) de fonctions indicatrices 14 avec u(4) < oo.
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Lemme D.2

Soit (Q,4,7) un espace o-fini. Uensemble S des fonctions éta-
gées intégrables est dense dans tous les L/(Q,u,7),1 < p <
co. En particulier, L'(Q,u,7) N L¥(Q,u,7) est dense dans
LP(Q,u,T) pour 1 < p < oo.

Démonstration. Cela vient de la construction de I'intégrale, et du fait
que les fonctions étagées sont dans L'(Q,u,7) N L®(Q,u,7), mais
rappelons une preuve. En décomposant en parties réelle et imaginaire
puis parties positive et négative, on se rameéne a approcher f € L? avec
f20.81Q=ud,u(Ad,) <oo,onallfly, - fll, — 0 par convergence
dominée, donc on prend & = f1,,.

On prend
4" k
hn(x) = kZO gl ki () = Z SiLit (1 ) () < B(x)

Comme £ mesurable, il est facile de voir que % € S,

1
15 = Rallp < [1ALg )220 lp + ||1h(x)s2n1Am||p§

et le premier terme tend vers o par convergence dominée (par |£|?), le
second car u(Ay,)Y? < co. Donc 4 puis f sont dans 'adhérence.
O

Pour obtenir un résultat de densité des fonctions continues, on a
besoin d’un résultat de continuité sur un grand ensemble pour les fonc-
tions mesurables. On a besoin d’une compatibilité entre théorie de la
mesure et topologie qui fait I'objet de la définition suivante. L’essentiel
est que la mesure de Lebesgue sur R” est un exemple de mesure de
Radon, ainsi que toutes les mesures a densité par rapport a la mesure
de Lebesgue (et aussi les mesures discrétes).

Définition D.1

Une mesure de Radon positive sur X localement compact est une
mesure positive définie sur une tribu 7~ contenant la tribu boré-
lienne B et telle que :
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1. u(K) < oo pour K compact (on parle de mesure de Bo-
rel).

2. u est extérieurement réguliére au sens ou pour tout £ €
J,ona:

u(E) =inf{u(V)|E c V, V ouvert }

3. u vérifie pour tout E ouvert et E € 7 avec u(E) < oo, on
a:
H(E) =sup{u(K)|E D K, K compact }

4. T est compléte pour y au sens ou si £ € 7,4 C E et
u(E)=0alors 4 € 7.

On va utiliser deux lemmes topologiques (en fait reliés) :

Théoréme D.3: (de prolongement de Tietze)

(exo en section A) Soit X un espace métrique, F un fermé de
X et f : F — R une fonction continue bornée par C, alors il
existe une fonction g : X — R bornée par C et prolongeant f.

On rappelle qu'un espace topologique est dit localement compact si
tout point a un voisinage (d’adhérence) compact. [Rmq : pour nous,
un voisinage d’un point n’est pas forcément ouvert, c’est seulement un
ensemble contenant un ouvert contenant le point] Par exemple c’est le
cas de X =R"!

Lemme D.4: (d’Urysohn)

Si X est un espace métrique localement compact, V' un ouvert
contenant un compact KX, alors il existe f continue a support
compact tel que 1x < f < 1yp.

Démonstration. Pour tout x € K, soit U, voisinage ouvert d’adhérence
compact inclus dans V' (pour voir que I’adhérence peut étre inclus dans
V il suffit d’intersecter le voisinage avec {y : d(y,V°) > €/2} pour € =
d(x,V°)). On recouvre K par un nombre fini de Uy, K C U := U} | U,
etU = Ul’.‘le_xi est compact et on trouve un ouvert d’adhérence compact

W,V > W > U et onpose F=W°UK. On définit g : F — R par
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g =1k. Six, € F, x, — x € K nécessairement pour n grand x, € U
donc x, € K donc g(x,) = g(x) = 1. De méme si x € W°, pour n grand,
x, € (U)°, donc x, € W° et g(x,) = g(x) = 0. Donc g est continue sur
F et s’étend en une fonction f : X — R continue par le théoréme
précédent et en centrant on a méme, 0 < f < 1 (|f —1/2| < 1/2).
Donc le support de f est dans W compact et 1x < f < 1y < 1y ce
qui conclut. O

Théoréme D.5: (de Lusin)

Soit X un espace métrique localement compact. 4 une me-
sure de Radon positive. Soit f une fonction complexe mesu-
rable sur X s’annulant en dehors de 4 avec u(A4) < co. Alors,
pour tout € > 0, il existe g continue a support compact avec

sup, .y |g(x)| < sup,.x |f(x)] et telle que :

p({x: f(x) # g(0))) < e.

Démonstration. Cas A compact, 0 < f < 1. On pose

9n

L) =Y i1 b () < fon () < £ (),

k=0

2n+1

Remarquons que ¢, = fi1(x) — fu(x) = 2,%Z:l[zm 242 (f(x))
=0

Jon+l

1

Jnrl 17,,(f~1:=0) avec 7, C 4 de sorte que :

00

)= talx).

n=—1

Comme dans la preuve du lemme d’Urysohn, il existe un ouvert 4 c V
avec V compact, puis par régularité extérieure, on trouve V, ouvert
avecT, C V, C V et enfin par intérieure régularité sur les ensembles
de mesures finies K, c T, avec u(V, — K,) < 27" 2¢. Par le lemme
d’Urysohn, on trouve /%, continue a support compact avec 1x, < &, <
1y,. On pose

gx)= > 27" (),
k=-1
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Par convergence uniforme (car normale) de la série, g est continue, a
support compact car inclus dans V. Enfin 27" 14, (x) = t,(x) sauf sur
V, — K, donc f = g sauf sur U,(V, — K,) qui est de mesure au plus €

Cas A quelconque, 0 < f < 1. Par régularité, on prend 4 C
V ouvert, K C V compact avec (A N K°) < u(V N K°) < €/2 et
on applique & flg (vu {flg # f} € AN K°) le cas précédent en
remplacant € par €/2.

Cas général Soit B, = {x|f (x)| > n} de sorte que NB, = 0, comme
H#(B1) < oo en utilisant le TCM sur 1 — 1p,, ((B,) — 0, on applique
a (1-1p,)f en décomposant la fonction en somme de 4n fonctions a
valeur [0,1] (4 pour décompositions en parties positives, négatives des
parties imaginaires et réelles, et ces fonctions sont dans [0,z] d’ou la
décomposition en somme de z fonctions a valeurs [0,1]). Enfin pour
avoir I'inégalité on remplace g par ¢ o g avec ¢(x) = x,|x| < R =
sup, .y I/ (x)| , #(x) = Rx/|x|,|x|] > R. On a g(x) = ¢ o g(x) pour tout
x tel que f(x) = g(x), donc on n’augmente pas ’ensemble sur lequel f
et g différent. O

Corollaire D.6

Soit (X,u,7) un espace métrique localement compact avec y
mesure de Radon o-finie. ’ensemble C,(X) des fonctions conti-
nues a support compact est dense dans tous les L?(X,u,T),
1<p <o DeplussifeLl(X,u,T) et ff¢ = 0, pour tout
¢ € C,(X) alors f =0 p.p.

Démonstration. Par le lemme précédent, il suffit d’approcher les élé-
ments de S. Par le théoréme de Lusin D.5, pour chaque f € §, € > 0,
onag € C/(X) avec u(g # f) < € et sup|g| < sup|f| = C donc
[If —glly <2Cu(g # )P et cette quantité est arbitrairement petite.
Pour le résultat d’annulation, si p > 1, On utilise la densité dans L?,
q exposant conjugué, pour obtenir ffg = 0 pour g € L7, dou on
déduit ||f]|, = 0 par la proposition D.1. Si p = 1, on remplace f par
fly avec V ouvert ¥V compact, qui couvrent X par locale compacité de
sorte qu'on peut supposer u(X) < co. On peut supposer f réelle. Soit
fi e C(X)avec|lf—fill < & K1 = £ M ([e,00]) et K1 = £ (]=co,€])
sont compacts, on prolonge par le Théoréme de Tietze D.3, u € C,(X)
valant € sur K, et soit K = K13 U K_1. Donc

||f1||1=/Kf1u+/X7K Al S‘/Xflu+2/X7K | Al Se+/Xfu+2;1(X—K)6§€+2
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car |fi| < € sur X — K. Donc ||f||1 < 2€ +2u(X)e pour tout € > 0 ce
qui donne f = 0. O

Donnons une application.

Proposition D.7

Soit 1 < p < oo et soit 7, f(x) := f(x+ k) pour h,x € R f e
L?(R?). La translation 75, : L#(R?%) — L?(R?) est isométrique et
pour tout f € L#(R%) h > 1,(f) est continue de R — L?(R?).

Démonstration. Lisométrie est évidente par invariance de la mesure de
Lebesgue par translation. Montrons que ||7,f — f||, =40 0. En effet
pour € > 0, par densité du lemme D.6, on trouve f; € C,(R?) avec
[1/1 = fll, < €/3 donc comme 7} est une isométrie : on obtient :

e = fllp < lltfi = fllp + llmafs = Allp + 1A = fllp
< 2¢/3 + Leb(B(0,|])) + Supp(fD))ll7a fi = fills
Pour 4 assez petit, comme f; est uniformément continue (car conti-
nue a support compact et par le Théoréme de Heine), on peut trouver

1> 6 > Odesorte quesi||Z|| <6, || fi—fillo = sup, |fA(x+h)—fi(x)] <
€/[3Leb(B(0,1) + Supp(fl))l/ﬁ] ce qui conclut. O

3 Dualité des espaces de Lebesgue
L’ (Q) (Niveau Ma1)

On rappelle que (Q, i) est un espace mesuré o-fini. On se souvient
que pour p € [1,00], ¢ tel que 1/p+1/¢ =1 la proposition D.1 donne
pour g mesurable :

lglly = Sup{‘/ fadu;1Ifll, <1,
[elNQunL™(Qu),fge LN(Qup}.

On a méme le théoréme suivant (on notera que p < co contraire-
ment au cas de la formule pour la norme ) :
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Théoréme D.8: (de représentation de Riesz L?)

Soit ’application définie grace a I'inégalité de Holder :
Iif @ (ge ' @u o [ fedu
Alors I : LI(Q,u) — (LP(Q,u))’, réalise une isométrie SUR-

JECTIVE pour p € [1,0[ et ¢ exposant conjugué c’est-a-dire
telquel/p+1/q=1.

Attention le cas p = co est EXCLU... L*(£2)’ est un espace trés gros
de mesures sur un espace stonien compact X tel que L*(Q) = C’(X).

Démonstration. Une premiére preuve classique utilise le théoréme de
Radon-Nikodym qui est au programme du cours de Th de la mesure
(cf. par exemple le cours de Probabilités de Philippe Barbe et Michel
Ledoux [1]). Il existe aussi une preuve par I'uniforme convexité dans
le livre d’Haim Brezis d’analyse fonctionnelle pour p # 1 et avec une
preuve directe n’utilisant que le cas p = 2 (cas Hilbert simple) pour
le cas p = 1. On donne ici une méthode d’analyse fonctionnelle plus
abstraite.

On a déja montré 'isométrie, il reste a voir la surjectivité.

On fixe 4, avec u(4,) < c et U A, = Q, A, croissant.

neN
Le cas p = 2 a été traité par le théoréme de représentation de

Riesz.

(1) cas p = 1Soit ¢ € (L}(Q, )" avec ||¢|| < 1. D’abord on définit
T application linéaire continue sur L2(Q) (en fait & valeur dans son
dual identifié a lui méme) par :

(Tx.y) = ¢(xy)
vu que xy € L1(Q) par Holder et on a
17| := sup{||T x[l2, ]| < 1}
= sup{[{Tx. )| lxll2 < LIyl <1} < [18llz1 (-

La premiére égalité est la définition de la norme des applications li-
néaires bornées, la deuxiéme est le résultat de dualité du cas p =2, la

troisiéme utilise Hoélder et la définition de la norme du dual. Notons
que si z € L*(Q),

(Tzx,y) = ¢(zxy) = (Tx,zy) = (2T x,y)
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la deuxiéme relation en utilisant la commutativité des espaces de fonc-
tions soit la relation zxy = xzy et la seconde la définition du produit
scalaire (T'x,zy) = fT_xEydy. donc on déduit si m, est la multiplication
par z € L*, T'm, = m,T. Montrons que 7" = m, pour g € L*. (on dit
que cette algébre est son propre commutant dans B(Z?(Q)), ou qu’elle
est maximale commutative).

En effet, soit x, = T(14,) € L2. Ona ||T|| < 1 car ||¢|| < 1.

Pour g € L™ avec ||g|l1 <1,

‘ / T(l)gdy‘ - ‘ / <|g|1/2r><1>g|g|-1/2du‘

- ‘ / T(|g|1/2)g|g|_1/2d#’
< gllallglel ™11z = llglh <1

ou on a utilisé a la deuxiéme égalité la commutation avec m,1/2. On voit
donc par la formule de la proposition D.1 que [|7(14,)|| < 1. Comme
T(1y,) = T(Ay,14,) = 14,7T(1,,) donc on définit g(x) = T(14,)(x)
pour x € A, de facon cohérente de sorte que gly, = 7(14,) d’ou
l1g]leo = sup,, [|g14,lle < 1.

Et pour z €€ L® N L' ¢ L? T(z1y,) = my(214,) donc par densité
dans L? T = m,. Enfin pour f € LY(Q) f = |f|/?g avec g € L?, on
obtient

o(f) = o(If ") =(T(If1"*).g)
= (I f1"?),8) = 1) (IfV?g) = 1) (f).

donc ¢ = I(z) d’ou la surjectivité de 1.
(2) cas p > 1 u(Q) < oo utilisant les cas p = 1,2. (On l'appliquera
ensuite a Q = 4,.) Aprés normalisation, on peut supposer u(€2) = 1.
On commence par montrer que via I, L/(Q)’ ¢ LY(Q). Si p <
2, c’est évident par linclusion L2(Q) c [L?(Q)] et par restriction et
théoréme de representation de Riesz, on obtient g € L*(Q) c LY(Q)
tel que

Pl (f) =<&g.f)
Sip>2pourxelL™ et¢e (L),

-2 -2
()P < / xlf d < / 21l 2 < 1] 211157
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Par l'inégalité d’Young (cas particulier d’Holder utilisé dans sa
preuve) |ab| < af/P + 52/Q utilisé avec 1/P +1/Q = 1,P = p/2,Q =

pl(p—2),a= ||x||;/P/61/Q,b = (€||x||e0) 2, on obtient :

€

1
lp(x)] < 0 [1%]]oo + Pe—P/Q“xHQ'

En incluant {(x,x),x € (L°(Q))} c L®(Q) x L*(Q) avec norme
(%, 0]l = §||x||oo + ﬁ”_ylb on étend par Hahn Banach ¢ a
L®(Q) x L*(Q) donnant un élément de (¢1,¢9) € L*(Q)" x L2(Q)
avec ||@1]| < €/Q,||¢a]| < PEIT/Q (car en calculant la norme duale on
a max(Ql|¢1]|/e, Pe’/2||¢sll) < 1) Donc ||¢|1=@) = J($2)l(z=(@)y =
1911l (z=()y < €/Q et po € LY(Q). Or par le cas p = 1, (L}(Q))” =
L>(Q)’ et il contient L!(Q) comme espace fermé isométriquement via
J (comme tout espace de Banach est inclus isométriquement comme

espace fermé dans son bidual). Comme le résultat précédent indique
Ll Q)"
¢ € LQ(Q)( @y , on déduit ¢ € J(L'(Q)) comme voulu. On a donc

une fonction g telle que pour tout f € L*()

o(f) = /Q of du

Soit donc g I'image dans L! de ¢ (on revient au cas général p €
]1,00[). Or dans le cas d’un espace avec mesure finie, ’équation de la
proposition D.1 donne :

1611 (2sy = sup{l(x)|.||xll, < 1,x € L™}

=sup{|/gxdu|,||x||,, <LxeLl®) =l

On déduit donc g € LY comme on voulait et ¢ = 7'(g) (en étendant la
relation depuisZ™(Q) par densité dans L?(Q).

(3)cas 1 < p < oo et p o-fini. Soit ¢ € (LP(Q,u))’, il faut montrer
qu’elle vient d’un élément de L7 (L, ). On pose ¢,(f) = ¢(f14,) pour
f € LP(Ay,u) C LP(Q,p). Par le cas précédent, il existe g, € L1(A,, 1)
telle que

vf el np). [ afdu=o(710).

et

||gn||q = Sup{|¢(f1An)
< el (zry < oo.

Wl < 1. f € L% (4n, 1)}
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Or par unicité dans le cas (2) et vu les 4, croissant pour n >
m, gyly, = gn et donc |g,| est croissant et g = sup|g,| vérifie par
convergence monotone ||g|l; < ||#]|(zs) , vu |g,] < |g| et comme g, —
g p-S., on déduit par convergence dominée ||g, — g||, — O et en passant
a la limite g, = gly,.

Or f1,, — f dans L? et donc par continuité la relation ¢(f1y4,) =

T(g)(f14,) devient ¢(f) = T'(g)(f) pour tout f € L? donc ¢ = T'(g).
O

4 Convolution

Dans cette section, on considére I'espace mesuré (Q,u,7) =
(R, Leb,B) muni de la tribu borélienne et de la mesure de Lebesgue.
On note alors L/ (R?) = L# (R, Leb, B). Vu I'accord avec l'intégrale de
Riemann, on note aussi dy = dA ().

Théoréme D.g: (définissant la Convolution)

Soient f € LY(R?),g € L#(R?%),1 < p < co. Pour presque tout
xeRY, y > f(x—y)g(y) est dans L' (R?). La convolution de f
et g est la fonction f * g définie par :

(700 = [ Fs=ng0y
Alors f + g € L?(RY) et :

11+ gllp < 11 11llgllp-

Démonstration. Si p = oo, comme |g| < [|gllop-p., f(x —p)g(y) <
llglleol|f (x — y)| d’ou Vintégrabilité et la borne souhaitée en intégrant
(comme la mesure de Lebesgue est invariante par translation).
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On suppose d’abord p = 1 et on utilise le Théoréme de Fubini
Tonelli pour calculer :

/ dx|f] * |g](x) = / dx / HIf - lgH)l
= [ & [ asire-ligo
=|If||1/dylg(y)l=llf||1 gl < oo

On déduit du théoréme de Fubini que pour presque tout x, y — f(x —
9)g(p) est intégrable et on obtient la borne souhaitée

I1f gl < 11 fTlllgll

Pour 1 < p < o0, soit ¢ 'exposant conjugué. Du cas p =1 on déduit

5 1F (x=plligI est dans L donc y > |f (x - y)[V7]g(y)| est dans
L? pour presque tout x. Or y — |f(x — y)|['/¢ € L donc par Hoélder,

3o L5 =g = 1F (e = ) [MP1g()IL1F (x - )1 est dans L1 et
b
(F* NP < (/ fx —y>||g<y>|dy)
< ( e —y>||g(y>|/’dy) A1,

Par I'inégalité précédente du cas p = 1, on obtient donc en intégrant :

Wf =gl < WAL 1171+ gl 1
< A gl I = 1111811

Exercice D.1. (cf TD) Soit f € L',g € L,k € LY, f(x) = f(~x)
Montrer que :

[Ton= [z .
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5 Support de la convolution

Si f continue, Supp(f) = {x : f(x) # 0}. Le résultat suivant permet
d’étendre la définition aux fonctions mesurables.

Lemme D.10

Pour f : R? — K mesurable, soit (w;);c; la famille de tous les
ouverts tels que, pour chaque i, f =0 p.p sur w;. Si W = U;cw;
alors f = 0 p.p. sur w. De sorte que w est le plus grand ouvert
sur lequel f =0 p.p.

Démonstration. 1l faut écrire w comme union dénombrable car I n’est
pas forcément dénombrable. Soit K, = {x € w : ||x]| < n,d(x,0°) =
1/n} comme la distance & un fermé est continue, on voit que K, fermé
borné de R” (e.v.n de dimension finie) donc est compact et w = Uyen K.
Par compacité, K,, recouvert par une union finie K, C w;,; U...U Wiy, -
donc w = Upenj<s,w;,; est union dénombrable d’ouvert sur lesquels
J =0 p.p. d’ot le résultat. O

Soit f : R — K mesurable, On pose Supp(f) = R? — w ot w
est le plus grand ouvert sur lequel £ = 0 p.p. Si f € L/(RY),
on pose Supp(f) = Supp(f1) pour n’importe quel représentant
/1 € f dela classe d’égalité presque partout.

Proposition D.11

Si f € LY(R?),g € L*(R?) alors :

Supp(f * g) € Supp(f) + Supp(g)-

Démonstration. On fixe x € R? avec y — f(x — y)g(y) € L'. Six ¢
Supp(f)+Supp(g), ona (x—Supp(f))NSupp(g) = 0 donc en intégrant

[ xg(x) = 0 sur Int((Supp(f) + Supp(g))) = (Supp(f) + Supp(g))°.
Donc f * g est o, p.p. sur cet ouvert de sorte qu’il est inclus dans

Supp(f * g)°. O
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6 Régularisation par convolution

On étudiera plus systématiquement au chapitre suivant certaines
classes importantes de fonctions continues. Pour Q c R? un ouvert.
On note C*(Q) 'ensemble des fonctions k-fois différentiables avec leurs
dérivées continues et C*(Q) les fonctions a support compact de CH(Q).
Pour simplifier si @ € N%, on note

ot 0%
prr=Y ... Y% r
/ ox)" ng” s

On note |a| = |a1| + ... + |ag|. On note

C™(Q) = NkenCH(Q),  C(Q) = NkenCH(Q).

Proposition D.12

Soit 1 < p < 0. Si f € CH(RY),g € LP(R?), k € N U {0} alors
frgeCtRY etsila| <k:

D(f «g) =D(f) g

De plus, si p < o, on a aussi la formule comprise comme inté-
grale de Riemann a valeur L (RY), si Supp(f) c [-C, cl?:

fxg= /[ con dyf()T-y8.

Démonstration. Par récurrence il suffit du cas £ = 1. On applique le
théoréme de dérivation avec condition de domination. a% flx—y)g(y) =

(&) (x=2)g0).

Comme ((%f) est & support compact et continue, il est borné par

HGE Pl et

9 d
lﬁ_x,-f(x -»gWI < IIa—xifIIoolx(x -0EW),

avec K le compact support de f. Or par Holder le_K(y)IgI(y)dy <
Leb(B - K)1/9||g||l,, donc on a une domination par une fonction inté-
grable ¢lp_gg si x € B avec B compact. Le théoréme de dérivation



ANNEXE D. COMPLEMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 6 : ESPACES LY 255

4.39 conclut donc. De plus, par changement de variables linéaire si
Supp(f) ¢ [-C,C]% ona

fee = [ Fs=ne0d
- [ 100 -0y
- [ roEe @
[-ccle

avec T;(g)(x) = g(x + £). On a vu a la proposition D.7 que y
f () (1_,g) est continue a valeur L#(R?) on peut donc parler de son
intégrale de Riemann, sur [-C,C 14 (calculée successivement variable
par variable). On obtient une suite (de sommes de Riemann) qui
converge dans L (R?), donc quitte & extraire une suite qui converge
p.p. et donc p.p. la limite /[—0,de dyf(y)(r_,g) coincide avec I'in-
tégrale de Riemann f[—C,C]d dyf(»)(7-,g)(x) par exemple si g est
continue a support compact et cette intégrale vaut I'intégrale de Le-
besgue donc f * g(x). On en déduit ’égalité voulue dans L si g
continue a support compact. Or par densité, on a une suite de fonc-
tions g, continues a support compact convergeant dans L? vers g.
Et comme supg. ||7-,8, — 7-ygll, — 0, f(.)(7-.gs) converge unifor-
mément vers f(.)(7_ g) et comme l'intégrale de Riemann est conti-
nue pour la convergence uniforme f[—C,C]d dyf (9)(7-,g) est la limite

de /[—C,C]d d)’f()’)(T—yg,,) dans L? qu'on a déja vu valoir f * g,, qui a
pour limite f = g donc A_C’C]d d)’f(}’)(ﬂyg) =f=g O

7 Suites régularisantes et densité
par convolution

Définition D.3

Une suite régularisante est une suite de fonctions p, € C®(R?)
avec ‘/]Rd pn =1, pp 20 et Supp(p,) C B ,(0,1/n).
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Exercice D.2. Montrer que si p,(x) = Cn’p(nx) avec Cfp =1
et p(x) = 1q|x|]p<1} exp(HxH+_1) alors p, est une suite régulari-
2

sante sur R?.

Soit p, suite régularisante et f € L#(R?) pour 1 < p < co. Alors
o f = fllp = 0.

Démonstration. On a comme ||.||, est une norme on a par I'inégalité
triangulaire (de I'intégrale de Riemann et la proposition D.12) :

lpws £ = Fllp = / Do)y f ~ )l
< / Boullef ~ Pl
B(0,1/n)

Or si n assez grand, on a vu a la proposition D.7 que |[7_, f — f)|[, < €
pour y € B(0,1/xn) de sorte que la derniére intégrale est bornée par

6./3(0,1/71) dypn(y) = €. O

Proposition D.14

Soit Q c R? un ouvert, alors C(Q) est dense dans L?(Q) pour
1<p<oo.

Démonstration. Soit f € L#(Q) et K, = {x € Q : ||x]|lg < n,d(x,Q°) >
1/n}. On a déja remarqué que K, compact et UK, = Q donc flg, — f
p.p. et par la domination |f1g, — f| < |f| on conclut par le TCD a
[|f1k, = fllp — 0. Soit m > =, si on considére p, * (f1g,) € C®(RY),

on a par la relation sur les supports des convolution,

Supp(pm * f1k,) € Supp(pm) + Supp(f1k,)
c B(0,1/m)+ K, Cc Q

(vu que pour K,F compacts K + F est compact et en comparant les
distances pour la derniére inclusion). Donc p,,*(f1g,) € C° (R?). Mais

onavu ||lpn *(flk,) = flk,|lr @) = llom * (f1k,) — f1k,|lp 2mn—oe 0.
Donc f1g, puis f sont dans ’adhérence de C°(Q). O
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Le théoréme des bases ne nécessite pas 'hypothése / dénombrable
ou H séparable, voici la version générale.

Comme l’existence de base algébrique d’un espace vectoriel de
dimension infinie, elle requiére un lemme général de théorie des en-
sembles :

1 Rappel sur le lemme de Zorn

Si on était en dimension finie, on voudrait faire une récurrence
sur le cardinal d’une famille orthonormale en ajoutant un vecteur de

257
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plus pris dans un ensemble dense. Une facon de rédiger la preuve est
de considérer un sous-espace de dimension maximale et d’obtenir une
contradiction en construisant une famille libre de cardinal 1 de plus.

Dans le cas de la dimension infinie on pourrait faire une récurrence
transfinie en complétant une base de G en une base de E et mettant
un “bon ordre” sur la base. En analyse (ou en algébre), on préfére sou-
vent utiliser la conséquence suivante de I'axiome du choix, le lemme
de Zorn, qui utilise une notion de maximalité pour obtenir une contra-
diction comme dans la preuve par induction.

Soit P muni d’un ordre partiel <. Q C P est dit totalement ordonné
si tout a,b € Q on a soit a < b, soit b < a. ¢ € P est un majorant de Q
siVae Q,a <c.

m € P est un élément maximal de P si tout x € P tel que m < x on
ax=m.

Enfin P est dit inductif si tout ensemble totalement ordonné de P
admet un majorant.

Lemme E.1: (de Zorn)

Tout ensemble ordonné, inductif, non vide admet un élément
maximal.

2 Théoréme des bases dans le cas
général

Soit H un espace préhilbertien.

1. Une famille orthonormale (x;);c; est libre et vérifie I'in-
égalité de Bessel, pour tout x € H :

2 2
D Kxxl? < x|
iel

2. De plus une famille orthonormale (¢;);c; est une base
hilbertienne si et seulement si on a I’égalité de Bessel-
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Parseval :
DK x)l? = 11211
iel

De plus, dans ce cas, pour tout x € H, la série suivante
converge (dans H mais pas absolument)

X = Z e;{e;,x).

iel

3. Si H estun espace de Hilbert, toute famille orthonormale
peut étre complétée en une base hilbertienne de H et
J 1 x = ({x,e;))ics établit alors une isométrie surjective
JH =~ t%(I).

Remarque E.1. De la formule pour x, on tire par continuité la
formule pour le produit scalaire (qui est une série absolument
convergente par Cauchy-Schwarz) :

(%) = ) () Cern ).

iel

Démonstration. (1) Si Z/l,-xl- = 0, on calcule 4; = (xj,Z/lix,-) =0
iel iel

donc x; est bien libre. Si F' est une partie finie de I, et V = Vp =

Vect(e;,i € F), on a déja vu la formule pour la projection orthogonale

sur Vg :
pr(x) = eilen ).
ieF
Donc par la propriété de contraction de pr et l'ortogonalité

pr(I? = () eilenxd, D e(e;.x))

ieF JEF
2 2
= > Kenx) 2 < 1l
ieF

la famille est donc sommable et on a I'inégalité de Bessel pour la somme
(en passant au supremum) et on trouve en particulier ({x,¢;));c; €
22(1).

(2) Si (¢é;);ecr est une base soit x, € Vect(e;,i € I) convergeant vers
X.
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De plus, pour 7 assez grand |||x||> — ||x,||?| < €/2 et pour tout J,

11w, COI® = 1y, (xa) 12|
< 11w, (ta = D)1 (Alxall + 121D
< 11Cxn = D)1l + [I]]) < €/2

d’ou en prenant J tel que py, (x,) = x, on obtient

D ey w2 = lxll?| <
ief

et donc la somme de la série est ||x|| d’ou I’égalité de Parseval.
Réciproquement, Si on a égalité, on trouve J, tel que

D7 Kep o) = lpy, (0112 = |11
JE€Jn

et ceci implique par le théoréme de Pythagore :

l1pw,, () = 112 = 112112 = llpw, ()12 = 0

donc tout élément de H est limite d’éléments de Vect(e;,i € I) d’ou la
propriété de base hilbertienne.
De plus un calcul donne la formule pour x :

e = > enden )2 = D" Kewx)|* = 0.

ieF igF

(3) Considérons ’ensemble des familles orthonormales contenant
une famille orthonormale donnée, et ordonné par inclusion. C’est un
ensemble non-vide. Si on a une famille totalement ordonnée de familles
orthonormales, I'union est un majorant, donc I’ensemble ordonné est
inductif, il admet donc par le lemme de Zorn un élément maximal
(ei)ier. Si ce n’était pas une base (complétant la famille orthonormale
de départ), on aurait un x avec

DK enl” < Il

iel
Comme H est complet la somme y = Z ¢;{e;,x) converge car si (Z,)
iel

croissante telle que Z [{e;, x)|* — Z [{e;, x)|? la suite Y = Z e;{e;,x)

iel, iel iel,
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est de Cauchy car pour ¢ > p

s =2all3 = > Kewt)* < D" Kenm)* — 0.

i€l ~1, i¢l,

On déduit que y — x est orthogonal a tout ¢; car tout i tel que
(ei,x) # 0 est dans un 7, et que (y, — x,¢;) = 0 pour n assez grand pour
un tel i. Donc par orthogonalité

2 2 2
Iy = 2113 = 121> = )" Kwx))* > 0

iel

donc ajouter (y — x)/||y — x|| a la famille orthonormale contredit la
maximalité et conclut.
Une fois 'existence d’une base, 'isométrie est évidente par le (2),

et si on a une suite (1;);c; dans £2(I), on voit que Z/liei converge
par complétude comme ci-dessus et on obtient ainsi la surjectivité. [J

3 Correction de ’exercice sur les
polynémes de Hermite

Soit H = L?(R,u) 'espace de Hilbert réel des fonctions de carrés

1 ,-x%/2
e dx
Vor ’

intégrables pour la mesure gaussienne standard u(dx) = =

muni de la norme usuelle :

—-x2/2
1£1lz = \//R |f(x>|2‘fm i,

N ALY
Hy(x) = (D" = (a) ()

Soit

(et donc Hy(x) =1)

1. Montrons par récurrence que pour n > 1, H, est un polynéme
de la forme :

n—1
\/HHn(x) =x"+ Z apx®.

k=0
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En effet Hy(x) = (—1)e"2/2(—xe"‘2/2) = x et si on suppose I’hy-
pothése au rang n

(n+ 1) Hy 41 (x)
S (i) (e /*Nul H, (x))
dx

Or (%) (e”‘z/zxk) = —xtpm¥)2 o fak=1,-%"/2 donc Ihyp. de

rec. donne

n—1
(1 + Dl Hyon (x) = =/ (%) (P4 ) a))
k=0

n—1
— (xn+1 _ nxn—l) + Z ak(xk+1 _ /ka_l)
k=0

qui a la forme souhaitée.
2. Montrons que (Hy),>0 est une famille orthonormale de H.
On calcule pour m > n :

<Hn,Hm>
_(_1\m 1 i " e—x2/2
- == [ () e

En intégrant par partie

/ H, () (%)m (1% dx

m—1
= [H () (d%) ()

m—-1 y
- [Ee(5) e

le crochet est o vu que P(x)e /2 pour P polynome tend vers o
en +oo.
Par induction si m > n
<HnsHm>
(_1)m—n (n+1) d m—n+1 2
= — H — x°/ d
e Il vl B GR

=0
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et sim=n vu H." (x) = Va! en appliquant le 1.

(Hy, Hy)
_ (=1)m-n
V2rVm!

1 / —x2/2
=—— [ ¢ dx =1
Vo

comme voulue.

m-—n

H" (x) (d%) (7% dx

4 Théoréme d’injectivité de la
transformée de Fourier

Définition E.1

La fonction caractéristique (f.c. ou transformée de Fourier) du v.a.
(X1,....,X,) : Q — R” est définie par

®(x,..x,) (ts .o ty) = E[e"H50],

pour tout ¢ = (4,...,4,) € R" et en notant le produit scalaire
n

(¢, X) ::Zti)(i.

i=1

La fonction ¢y caractérise la loi de X par le théoréme d’injectivité
de la transformée de Fourier/ théoréme d’inversion de la transformée
de Fourier ci-dessous. On utilisera aussi plus tard au chapitre 2 la fonc-
tion caractéristique pour caractériser une notion de convergence, au
chapitre 3 pour I'introduction des vecteurs gaussiens qui seront la base
du chapitre 5 sur le mouvement brownien. C’est une notion FONDA-
MENTALE...

Lemme E.3

Soit X ~ N (m,c?) de loi normale alors ®x(¢) = exp(—% +
imt).
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Démonstration. On a vu une preuve a I'exercice 8 du TD 3 de MASS 31
utilisant que la partie imaginaire est nulle par parité et le calcul de la
partie réelle en établissant une équation différentielle par intégration
dépendant d’un parameétre.

On donne ici une autre preuve par prolongement analytique. Par

(x=m)

20k = exp(—— + imt) en fai-

transfert, on doit montrer / \}Tem_
(on

sant le changement de variables # = (x — m)/o on se raméne au cas
oc=1m=0.
En prenant m = z dans le calcul de la densité, on a pour z € R

e 1 x2+2272xz e 1 (X*Z)z
dx——e~ 2 = dx——e 2 =1
/ V27T —00 V27T

Pour z € C, en appliquant le résultat précédent

/ \/1_ |zx| 2

|zx|" Jf
= lim dx— 2
N—>oo ”QJT Z

/ dx_e—7+|zx|

IZI

< exp(T) < o

ol

La premiére bornitude permet d’appliquer le TCD pour les séries (ou
Fubini pour la mesure discréte) et intervertir somme et série :

dx—— XT /dx— e
Z / \/ﬂﬂ' Vor

2
la fonction de droite est donc la somme d’une série entiére exp( %) pour
z € R, donc par identification des coefficients, elle vaut cette valeur
pour tout z € C, en particulier pour z = it et on trouve le résultat. [J

On démontrera le théoréme suivant dans la prochaine section
puisque la preuve utilise des propriétés générales de 'indépendance
importante a noter pour elles-mémes :
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Théoréme E.4: (Théoréme d’injectivité de la transforma-

tion de Fourier)
Deux va. (Xi,...,X), (171, ....Y3) tels que

Dy, x,)(t) =D, v, (H)Vt € R"

sont égales en loi, c’est a dire :

Pix..x,) = Pn..v,)-

De plus, si ®x € LY (R",Leb) alors P(x,. . x,) aune densité par
rapport a la mesure de Lebesgue donnée par (la transformée de
Fourier inverse) qui est une fonction continue :

ﬂXLm,Xn)(x)

1
= W /Rn dD(Xl,___,Xn)(t)ex[)(—z'(x,t))dt.

Sommes de variables aléatoires
indépendantes (Rappels)

Vous avez probablement vu en TD de théorie de la mesure la dé-
finition de la convolution que 'on rappelle ici et relie aux sommes de
variables aléatoires indépendantes.

Définition E.2: Convolution

Soit 4 une mesure de Proba sur § ¢ R? et f : R — R une
fonction mesurable telle que pour tout x € S, y — f(x — y) est
dans L'(R?, ), la convolution de f et u est la fonction f * u
définie par :

(F+wG) = [ Fs=ndut).

Si p est absolument continue par rapport a la mesure de Le-
besgue de densité g, on note aussi f * g.
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Proposition E.5

Soient X,Y : Q — R¥ des v.a. indépendantes :

3. VYt e RE Dy y (1) = Dy (1) Dy (2)

4. Si X..Y; sont dans L*(Q), Cou(X; + Y., X; + ¥;) =
Cov(X;,X;) + Cov(Y;,Y)).

5. Si Px(dx) = f(x)dx,Py(dx) = g(y)dy alors Px,y est
absolument continue par rapport a Lebesgue (sur R?)
de densité f * g définie Lebesgue p.p. :

Pyay (d2) = (f * g)(2)dz.

6. Si seulement X est de loi absolument continue mais de
densité continue bornée f, alors quel que soit Y, Px,y
est absolument continue par rapport a Lebesgue (sur R?)
de densité f x Py (définie partout). De plus, pour tout £
continue bornée :

E((h* f)(Y)) = E(h(X +Y)).

Démonstration. 1. On a ®x,.y(¢) = E[/X+)] = E[/XeY] =
E[¢"X]|E[¢""Y] = ®x(¢)@y(t) Pavant derniére égalité par indépen-
dance car f(x) = ¢'"* est bornée donc intégrable (par rapport & une
probabilité).

2. En général par bilinéarité Cov(X; +Y;,X; +Y;) = Cov(X;, X;) +
Cov(Y;,Y;) + Cov(Y;,X;) + Cov(Y;,X;), mais ici par indépendance les
deux derniers termes sont nuls.

3.1l faut d’abord vérifier que f *g est bien définie. Par Fubini-Tonelli
vu le caractére positif :

/Rn dx/Rn dyf(x-)g()
_ /R Ly /R dxf (x = y)g0)
= .[R” dyg(y) =1

donc /]K” dyf(x —y)g(y) existe et est fini p.p.

En prenant £ mesurable positive et en appliquant le transfert, on
obtient par changement de variables z = x + y dans l'intégrale sur y
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obtenue par Fubini :
EGX+Y) = [ b f(0)dsPy ()
= [ Hf = )dzpr (@)

. /R hE)(f + Pr)(2)dz

ce qui donne le calcul de densité (égalité de la loi avec seulement le cas
h =1p). Dans le cas de 4. on raisonne pareil sauf que f continue bornée
donne x — f(x —y) intégrable par rapport a la proba Py directement.
Dapplication de Fubini vient de fRM |h(2) f(z — y)|dzPy (dy) < ||h]|co-
Légalité intermédiaire donne aussi E(A(X+Y)) = /Rd (hxf)(y) Py (dy) =
E((h= f)(Y)) par transfert. O

Preuve [Facultative] du Thm d’injectivité de
la transformée de Fourier

On va utiliser les lois gaussiennes pour se ramener au cas avec
densité tout en exploitant leurs propriétés de stabilité par cette trans-
formée.

Lemme E.6

Soit g, la densité sur R* d’un n-uplet de variable gaussienne
iid. N(0,0%). Pour tout £ : R* — R continue bornée, (% *
go)(x) =550 £(x). On a méme convergence uniforme sur tout
compact.

En terme de convergence en loi, cela signifiera au chapitre 2
que si (X1(0),...,Xn(0)) sont les variables de densités g, alors x +
(X1(0),....Xu(0)) =50 x en loi en utilisant la proposition E.5.(4) au
cas ¥ = x.

Démonstration. Par transfert et changement de variables

()0 = h0) = [ (i = 2) = h(w)gs (2.
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En prenant, en prenant le supremum sur un compact K :

sup|(h * go)(x) — h(x)|
xeK

< / sup |(h(x — 0z) — h(x))|g1(2)dz
R

xeK

la limite vient de la convergence dominée par une constante 2||%||
puisque une constante est intégrable par rapport a une probabilité
comme g1(z)dz, et la limite ponctuelle en z vient de la continuité de
h qui est donc uniformément continue sur K + B(0,|z]) et donc pour
|o| < 1,x — oz,x sont dans ce compact de distance o |z| tendant vers
0. Si 4 est uniformément continue sur R? on a méme convergence uni-
forme sur R?. O

On a aussi besoin de la conséquence suivante du lemme de classe
monotone :

Proposition E.7

Soient X,Y : Q — R” des variables aléatoires. Les propriétés
suivantes sont équivalentes
3. X,Y sont égales en loi : Py = Py.
4. Pour tout 2 : R® — R, continue bornée, /h(X)dP =
[ h(Y)dP
5. Pour tout ouvert O de R”, Px(0) = Py (0).
6. pour tout (x1,...,x,) € R* :

Px (] — 0, x1] X ...X] = 0, x,])
=Py (] —oo,xm] X ..x] = 00, x,]).

La fonction Fy(x1,...,%,) = Px(] — co,x1] X ...x] — c0,%,]) appelée
fonction de répartition caractérise donc la loi.

Démonstration. Les produits d’intervalles | — oo, x1] X ...X] — 00,%,] et
les ouverts sont des familles stables par intersection finie et engendrent
la tribu des boréliens de R” (car par intersection et complémentaire
on obtient les boules carrées de la norme infini et que tout ouvert de
R” est union dénombrable de telles boules, de centre un point de Q"
par densité de Q".) On applique donc le lemme de classe monotone
pour obtenir les 2 derniéres équivalences. 1 implique 2 vient du th de
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transfert plus bas comme I’équivalence de 2 avec : Pour tout £ : R? — R,
Joa h(0)dPx (x) = [, h(x)dPy (x).

Pour montrer 3 a partir de 2 et conclure, il suffit de remarquer que
hy(x) = max(1,nd(.,0°)) sont des fonctions continues bornées par 1
(car la distance a un fermé x — d(x,0°) = inf{d(x,y),y € O°} est
continue, cf. MASS 31). Si x € 0°, k,(x) = 0 et sinon, 4, est une suite
croissante qui tend vers £,(x) — 1o(x) (car si x € 0, nd(.,0°) — o
donc > 1 pour 7 assez grand donc 4,(x) = 1 pour z assez grand). Donc
par convergence monotone, /Rd hy(x)dPx (x) — Px(0) d’oul’égalité du
3. par celle du 2. O

Prewve du Thm E.4. Pour montrer 'injectivité, par le lemme E.7, il suffit
de montrer que I’égalité des transformée de Fourier implique égalité de
E(4(X)) pour tout / continue bornée.

Or par le lemme précédent, (& g,)(x) — h(x) tout en étant borné
par ||£|| donc par TCD :

E(A(X)) = lim E((% * £7)(X)) = lim E(A(X + ¥;))

la derniére égalité avec Y, de densité g, et indépendant de X par la
proposition E.5 (4) puisque la densité g, est continue bornée. Or la
transformée de Fourier de X + Y, est Ox,y, (t) = Px(¢)Py, (¢) par la
proposition E.5 (2) et donc

|l2 ||2 §

Dx.y, (1) = Dy (t)exp(— )
par le calcul du lemme E.3. Comme ceci est intégrable, on s’attend a
avoir la formule d’inversion de Fourier de la deuxiéme partie qui va
donner E(4(X + Y;)) en fonction de ®x.y, (), nous allons donc la
montrer a la main dans ce cas pour conclure la preuve.

Or en interprétant la densité comme une variante de la transformée
de Fourier dans le cas gaussien :

(g * PO) (%)
2
- /R ;Ml’(—u)f’x(d)

¢ o4 (2m)d/2
llo ||2

_ / Py (dy)do exp(-20 i =E )
R2d o

od(2m)d
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d

soit par le changement de variables u = v/o de jacobien o-~“ on obtient

E(h(X +Y;)) = /Rd dxh(x)(gr * Px)(x)

= / dxPx (dy)dvh(x)
R3d

a?lfol?

exp(— 9 +i{(y — x,0)))

(2m)?
soit en appliquant Fubini sur les intégrales en y,v
E(A(X +75))

a?llol?

= /R?d dxdv (];(:))d exp(— 9 i(x,0)))Dx (v)
h

= dxdv (%)

R24d (2m)4

qui est la formule souhaitée qui ne dépend bien que de la transformée
de Fourier @y et conclut injectivité.

Maintenant si ®x est intégrable |A(x)Dx.y, (v)] < h(x)|Dx(v)]
est une domination (si 4 est a support compacte) et puisque
Dx.y, (1) =5—0 Px(v) par les formules précédentes, on obtient par
le TCD la formule souhaitée pour la densité a la limite. La continuité
de la densité vient du Théoréme de continuité des intégrales & para-
métres. On remarque qu’en utilisant E(4(X))) = /Rd dxh(x) fx(x) pour
tout £ positive continue a support compact, on déduit fx positive (si-
non par continuité elle est négative sur un ouvert dans lequel on peut
prendre le support de £ pour contredire positivité de I'intégrale) et par
convergence monotone et faisant tendre £# — 1, on déduit fx intégrable
et densité de proba. D’ou on peut utiliser E(4(X))) = /Rd dxh(x) fx (x)
(maintenant valable pour / continue bornée car fy peut servir de domi-
nation) pour identifier Px (dx) = fx(x)dx en utilisant le lemme E.7. O

exp(—i(x,0)))Px+v, (v)

5 Théoréme de Radon-Nikodym et
Théoréme de Dunford-Pettis
(Niveau M1-Mzg2)

Ce complément pourrait pour I'essentiel étre ajouté comme appli-
cation du théoréme de Riesz ou du théoréme de dualité des espaces
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L?. Nous expliquons un théoréme de théorie de la mesure qui permet
de dire quand une mesure provient d’une densité dans L1 (Q, ). On en
déduit une application a un théoréme de compacité qui est utile pour
la preuve du cas uniformément continue du théoréme de convergence
des martingale dans Z!, le théoréme de Dunford-Pettis E.g.

Définition E.3

Si u,v sont des mesures de probabilités sur (£2,7), on dit que
[ est absolument continue par rapport a v et on note u < v si

pour tout 4 € 7, v(4) = 0 implique que u(4) =0

Définition E.4

Si u,v sont des mesures de probabilités sur (€,7), on dit que
u admet une densité & € L1(Q,v) par rapport 4 v et on note

hz%,sihZOp.s.etpourtoutAeT:

/ 14hdv = u(A).
Q

Les définitions s’étendent aux mesures o-finies, mais on considére
seulement ici le cas de probabilités.

Théoréme E.8: (de Radon-Nikodym)

Pour toutes mesures de probabilités u,v sur (Q,7), il y a équiva-
lence entre u < v et 'existence d’une densité 4 = % e LY(Q,v)
de u par rapport a v, et la densité est alors unique v-p.s.

Démonstration. Sion a deux densités 4, k, /Q 14(h—k)dv =0 pour tout
A 7 mesurable, donc par la construction de I'intégrale aussi fgfhdv =
Aszdv d’abord pour f mesurable positive (par TCM) puis pour f
mesurable bornée donc par dualité 4 — k£ = 0 dans L1(Q,v) donc v-p.s.

De plus, si on a existence d’une densité et si v(4) = 0, par
TCM, /QlA/L = limn_mfglA(h An) = 0 car |/91A(/z A n)dv| <
(& A n)|l|21alle < nv(4)V2 =0 par Cauchy-Schwartz. Donc u(4) =0
c’est & dire on a montré u < v.
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La partie difficile est I'existence d’une densité si u < v. On va

utiliser le théoréme de représentation de Riesz (ou sa variante pour la
dualité de L1, le théoréme D.8). Soit y, = +av avec @ > 0. Lidée est

simple on s’attend a avoir une densité ”Z‘;’ = @ + h strictement positive
v _ 1 5 2 i @y =
et donc dne = T bornée par 1/a donc dans L* ensuite a(1 - -55) =

aaﬁ —¢—co I et on devrait pouvoir retrouver % ainsi.
Appliquons cette idée, si f € L1(Q,du,), on a

[iriav=3 [iiaar < 2 [ 171d,

Donc f € L} (Q,dv) et f / [ dv définit une forme linéaire conti-
nue sur L(Q, du, ), donc par le théoréme D.8, il existe £, € L¥(Q,du,)
telle que pour tout f € L(Q,du,) on a

/fdvz/f/zad,ua.

Et de plus, on a ||Ay||z=,) < 1/a. Si f = 1{,<0), on obtient
/ max(0,A,)du, > 0 donc vaut 0, donc

V({ < 0) <~ pta({(h < 0)) =0

donc 4, > 0, v p.s.

On montre maintenant la monotonie attendue pour /4, (si on veut
qu’elle soit égale 4 un ﬁ) Si B > a, on a pour f positive bornée en
utilisant 1, (g) < ug(g) pour g positive v-p.s,

/fhﬁdyﬁz/fdvsz/zadua S‘/f/laduﬁ

car fh, posivite v-p.s. par le résultat précédent, donc comme c’est va-
lable pour tout f > 0, on a &g < h,pug-p.s. donc v-p.s.
Finalement, on a l’identité

[ rau= [ fana- [ faav= [ ra-ahydu,

:/fa'(l—aha)dv+/f(1—afha)dﬂ.

Par ||ho|lzo(u,) < 1/@. ona 1l - ahy > 0 pe-p.s. donc v-p.s. En
raisonnant comme avant on obtient (1-ah,) > (1-hg) v-p.s. Donc,



ANNEXE E. COMPLEMENTS FACULTATIFS ET HORS
PROGRAMME AU CHAPITRE 7 273

par ’égalité précédente, aprés simplification de f (et toujours pour f
positive en utilisant la croissance de @ — @/, v-p.s. par ce qu'on vient
de voir donc p-p.s. par ’hypothése 4 < v) , on obtient

/fa(l—ah(,)dvz/fahadu
S/fﬁhﬁd#=/fﬂ(1—ﬁﬁﬁ)dv

soit a(1-ah,) < B(1-Bhg), v-p.s. donc converge vers un £ en croissant
et par convergence monotone et I’égalité avant on obtient

/fizdvznlgrgo/foz(l—alza)dv
= 1in30/fdﬂ-/f(1—aha)dus/fd#.

a—
Donc pour f =1 on trouve & € L}(Q,dv). Or par la monotonie de la
limite définissant %, on a

a(l-ahy)
a

h
S - _>(l—>oo 0
a

(1-ahy) =

v-p.s. puisque /4 est fini v-p.s. donc en utilisant encore I’hypothése, aussi
p#-p.s. Comme on a vu la monotonie en @ par convergence monotone,
on déduit / f (@ - a@hy)du — 0 et donc finalement 1’égalité attendue
qui conclut la preuve :

[ rnav=tim [ pau- [ ra-abau= [ sag.

On peut maintenant rappeler et prouver le théoréme E.qg :

Théoréme E.g: (Dunford-Pettis)

Soit une suite (X,) dans L'(Q,7,P) avec 7 une tribu dénom-
brablement engendrée (donc 7 = 7 (&) avec & dénombrable,
en particulier 7 = 8(R")). On a I’équivalence entre

3. (X,) est uniformément intégrable
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4. (X,) admet une sous-suite (X,,) ayant pour limite faible
X e L, c’est-a-dire :

Vf € L(Q), E((Xy - X)f) — 0.

5. (X,) est bornée dans L! et pour tout € > 0, il existe
n > 0 tel que si 4 € T vérifie P(4) < n alors pour tout
n, E(141X,]) < e.

C’est surtout ’équivalence entre 1. et 2. qui est difficile et porte le
nom de théoréme de Dunford-Pettis. L'hypothése “dénombrablement
engendrée” n’est pas nécessaire (cf. Delacherie-Meyer Probabilités et Po-
tentiel Vol 1 p 27) mais nous la faisons pour simplifier.

Démonstration. On commence par I’équivalence entre 1 et 3. Suppo-
sons 3. et fixons € > 0, n t.q. P(4) < n implique E(14]|X,|) < €.

Par l'inégalité de Markov P(|X,| = ¢) < SuanNf:(IXnI)
sup, e E(1Xa])

< n dés que
c = p , en appliquant alors a 4 = {|X,| > ¢}, on déduit
sup, E(1(|Xy| > ¢}|X,|) < €. Et donc lim,_,co E(1{|X,| > ¢}|X,]) =0
qui est 'uniforme intégrabilité recherchée.

Réciproquement, pour ¢ < 0 fixé, on prend ¢ > 0 tel que

sup, E(1{|x,|5¢}1Xal) < €/2, (en particulier
E(1Xa]) = E(Qqx, |20} [ Xnl) + E(Qyix, <} [ Xa]) < ¢ +€/2
donc X, et bornée dans L!, de sorte que

E(141X,)) = EQal(x, e} Xal) + E(Qal(x, <o) | Xal)
< E(1{|Xn|26}|Xn|) + E(1A1{|Xn|<f}c)
<e€/2+P(A)c

qui est borné par € dés que P(4) <71 = €/2¢ qui convient.

On suppose maintenant 3 et on montre 2. Si 7 = 0 (4,,n € N), A
’algébre engendré par les 4, c’est a dire les unions finis d’intersections
finis de A4,,4¢ (qui n’est en général pas une o algébres) qui est stable
par, complémentaire union finie et intersection finie. Il est facile de voir
que A est dénombrable.

En séparant les parties positives,négatives, on peut supposer X, >
0 et par extraction diagonale, on trouve z; telle que E[ X, 14] — u(4)
converge pour tout 4 € A.
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Il est facile de voir que u(Q) < oo vu que (X,) est bornée dans L'
(par 3.) u est additive sur les unions disjointes finies (par additivité de
1 E[X,,14] qui est une mesure et passage a la limite). De plus, par
3., soit € positive, on a un 7 tel que P(A4) < n implique E[X,, 14] < €
donc u(4) < e.

En particulier si P(4) =0, on a u(4) =0.

Un résultat classique de théorie de la mesure dit que u s’étend
de facon unique sur o (A) en une mesure u* (cf. par exemple Barbe-
Ledoux [1, Thm 1.49]). Il est facile de voir que I'on a encore si P(4) =0,
ona u*(4) =0.Donc, u* < P et par le théoréme de Radom-Nikodym,
il existe X € L! telle que E(X1,) = u(4) = lim,,, 1y E[ Xy, 14]. Il en
est donc de méme pour toute fonction étagée f,, (resp. g,) d’une suite
décroissante (resp. croissante) convergeant vers f mesurable positive
bornée

D’oti on a les deux inégalités donnant I’égalité

limsup E[X,,,f] < lim E[X,, fu] = E(X o) = E(X)

n—oo
liminf E[X,, f] > lim E[X, g,] = E(Xg,) — E(Xf).
n—oo n—oo

On a donc obtenu 2.
On laisse en exercice I'implication de 3. vers 1. que 'on n’a pas
utilisé dans le cours.

O
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