Université Claude Bernard

Mathématiques

L3 Topologie et Théorie de la Mesure

2025-2026

Feuille d'exercices numéro 2 Correction partielle

Exercice 1 Norme produit (cf. TD)

Exercice 2 (cf. TD)

Exercice 3 (cf. TD)

Exercice 4 (cf. TD)

Exercice 5 (*) Correction de 2021-2022 exercice 8

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Exercice 6

(cf TD.)

Ouverts, fermés.

Exercice 7 (cf TD.)

Exercice 8

1. Donnons un exemple d'une intersection d'ouverts qui n'est pas un ouvert.

Correction : Les ouverts] -1/n, 1/n[= B(0, 1/n) ont pour intersection $\bigcap_{n\geq 1} -1/n$, 1/n[= $\{0\}$ qui est un fermé non vide du connexe $\mathbf{R} \neq \{0\}$ donc n'est pas ouvert.

2. Donnons un exemple d'une union de fermés qui n'est pas un fermé.

Correction:

 $]0,1[=\bigcup_{x\in]0,1[}\{x\}$ est une union de singleton (boules fermés de rayons 0) donc de fermés, mais]0,1[est un ouvert non-vide du connexe $\mathbf{R}\neq]0,1[$ donc]0,1[est n'est pas fermé.

Exercice 9 (*)

Correction de 2021-2022 exercice 12

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Exercice 10 (cf TD.)

Exercice 11

1. Calculer l'adhérence et l'intérieure de $A = \mathbf{Q} \cap [0, 1]$. Correction: Montrons que $\overline{A} = [0, 1]$. En effet, pour $x \in]0, 1[$ on prend $x_n = \frac{\lfloor nx \rfloor}{n}$. Or la partie entière vérifie $nx \leq \lfloor nx \rfloor < nx + 1$, donc $x \leq x_n < x + 1/n$ donc par le théorème des gendarmes $x_n \to x$. Or $x_n \in \mathbf{Q}$ pour tout n et pour n assez grand, $x_n \in]0, 1[$, donc $x_n \in A$. Par caractérisation séquentielle de l'adhérence, on déduit $x \in \overline{A}$. Donc

 $\overline{A} \supset A \cup]0, 1[=[0,1].$ De plus [0,1] fermé, et contient A donc comme \overline{A} est le plus petit fermé contenant A, on a $\overline{A} \subset [0,1]$. En bilan, $\overline{A} = [0,1]$.

Montrons que $\overline{A^c} = \mathbf{R}$ donc $Int(A) = \emptyset$. Il suffit de voir $A \subset \overline{A^c}$. IL suffit d'utiliser que $\mathbf{R} - \mathbf{Q}$ est dense dans \mathbf{R} donc aussi A^c qui le contient.

Remontrons le. Pour $x \in A$, on a $x + \frac{\sqrt{2}}{n} \notin \mathbf{Q}$ (car $\sqrt{2}$ est irrationnel, on peut aussi le remplacer par n'importe quel irrationnel, par exemple π). On a $x + \frac{\sqrt{2}}{n} \to x$ donc par caractérisation séquentielle de l'adhérence, on déduit $x \in \overline{A^c}$.

2. Donner un exemple de partie A de R tel que les 7 ensembles :

 $A, \overline{A}, \operatorname{Int}(A), \operatorname{Int}(\overline{A}), \overline{\operatorname{Int}(A)}, \operatorname{Int}(\overline{\operatorname{Int}(A)}), \overline{\operatorname{Int}(\overline{A})}$

soient tous distincts

Correction: On prend

 $A =]-1, 0[\cup]0, 1[\cup(\mathbf{Q}\cap]3, 4[)\cup\{2\}.$ On l'a construit en

prenant 3 zones, une zone dense d'intérieur vide grâce à l'intersection avec **Q**, une valeur isolée du complémentaire {0} qui va aussi être ajouté de l'adhérence, une valeur isolé {2} qui va disparaître de l'intérieur tout en restant identique dans l'adhérence. ON va voir que ses 3 comportements différents suffisent à avoir les 7 ensembles distincts.

Montrons

 $\overline{A} = [-1, 1] \cup [3, 4] \cup \{2\} = A \cup \{-1, 0, 1\} \cup [3, 4]$. C'est clairement un fermé (union finie de boules fermées) qui contient A (d'où \subset). De plus, A contient -1 + 1/n to $-1 \in \overline{A}$, $1/n \to 0 \in \overline{A}$ et $1 - 1/n \to 1 \in \overline{A}$, $3 + 1/n \to 3 \in \overline{A}$, $4 - 1/n \to 4 \in \overline{A}$. De même soit $\lambda \in]3$, 4[, on a $\lambda_n \in \mathbf{Q}$ tendant vers λ (par densité de \mathbf{Q} dans \mathbf{R}) d'où comme]3, 4[ouvert, $\lambda_n \in]3$, $4[\cap \mathbf{Q} \subset A]$ pour [n] assez grand.

Montrons Int(A) =]-1, $0[\cup]0$, 1[. c'est un ouvert (union de boules ouvertes) contenue dans A donc il suffit de voir $Int(A) \subset]-1$, $0[\cup]0$, $1[\Longleftrightarrow \overline{A^c} \supset]-\infty$, $-1]\cup\{0\}\cup[1,\infty[=A^c\cup\{2\}\cup(\mathbf{Q}\cap]3,4[) \text{ Or } A^c \text{ contient } 2+1/n\to 2\in\overline{A^c} \text{ et si } p\in]3q$, $4q[p,q\in\mathbf{N}p/q+\sqrt{2}/n\in\mathbf{R}-\mathbf{Q}\cap]3$, $\infty[\subset A^c \text{ et donc } p/q+\sqrt{2}/n\to p/q\in\overline{A^c}$. On a de même, $\overline{Int(A)}=[-1,1]$, $Int(\overline{A})=[-1,1[\cup]3,4[$, $Int(\overline{Int(A)})=[-1,1[$,

 $Int(\overline{A}) = [-1, 1] \cup [3, 4].$

Tous les ensembles voulus sont différents. (pour expliquer, on a utiliser les \mathbf{Q} pour que tous les ensembles commençant par un intérieur ne contienne par]3, 4[et ceux commençant par un adhérence le contienne. On a utiliser $\{2\}$ (resp $\{0\}$) dans A (resp. A^c) pour différencier \overline{A} et quelqu'un passé par un intérieur $\overline{Int(\overline{A})}$ (resp Int(A) et quelqu'un passé par une adhérence $Int(\overline{Int(A)}) =]-1, 1[)$

Que dire du rapport de Int(A), et Int(Int(A))? De même, que dire du rapport de Int(A) et Int(Int(A))?
 Correction: Montrons que Int(A) = Int(Int(A)).
 (l'autre égalité Int(A) = Int(Int(A)) se montre en prenant A = B^c et en appliquant la première à B)
 Par les résultats généraux Int(A) ⊂ Int(A) donc c'est un ouvert contenu dans Int(A) donc Int(A) ⊂ Int(Int(A)).
 Il s'agit de vérifier l'inclusion réciproque. Or Int(A) ⊂ A donc en prenant l'adhérence (Int(A) ⊂ A Enfin en prenant l'intérieur:

Exercice 12

 $\operatorname{Int}(\operatorname{Int}(\overline{A})) \subset \operatorname{Int}(\overline{A}).$

Soient (E, ||.||) un espace vectoriel normé, A et B deux parties non vides de E. On suppose que A est ouvert. Montrons que $A \cap \overline{B} \subset \overline{A \cap B}$ et que cette inclusion

peut ne pas être vrai si A n'est pas ouvert.

Correction: Soit $x \in A \cap \overline{B}$, par caractérisation séquentielle $x_n \in B$ avec $x_n \to x$. Or A ouvert, donc $B(x,\epsilon) \subset A$ pour un certain $\epsilon > 0$. et pour n assez grand, $x_n \in B(x,\epsilon)$ donc $x \in A \cap B$. Encore par caractérisation séquentielle, on en déduit que $x \in \overline{A \cap B}$.

Par exemple, $A = \{1\}$, B =]0, 1[, $\overline{B} = [0, 1]$ donc $A \cap \overline{B} = \{1\}$ mais $A \cap B = \emptyset = \overline{A \cap B}$

Exercice 13

Soient (E, ||.||) un espace vectoriel normé, A et B deux parties denses dans E. On suppose que A est ouvert. Montrons que $A \cap B$ est dense dans E.

Correction : On a $\overline{B}=E$. On utilise l'exo précédent : $A=A\cap \overline{B}\subset \overline{A\cap B}$

donc en passant à l'adhérence : $E = \overline{A} \subset \overline{A \cap B} \subset E$ d'où égalité.

Exercice 14

Montrons que dans un espace vectoriel normé, un sous espace vectoriel propre n'est jamais ouvert.

Correction: Un sev $F \subset E$ contient 0, si F est ouvert,

alors $B(x, r) \subset F$ pour r > 0. mais pour tout $x \neq 0$ $y = \frac{xr}{2||x||} \in B(x, r) \subset F$ donc par stabilité des e.v. par multiplication par un scalaire, on a :

 $x = \frac{2||x||y}{x} \in F$ donc E = F. Par contraposée, si $F \neq E$, alors F n'est pas ouvert.

Continuité uniforme

Exercice 15 (cf. TD)

Exercice 16 (cf. TD)

Exercice 17 (cf. TD)

Exercice 18 (cf. TD)

Exercice 19 Soit $(E, \|\cdot\|)$ un espace vectoriel normé, X une partie de E et $f, g: X \to \mathbf{R}$ deux fonctions continues. Montrer que la somme f+g et le produit fg sont également des fonctions continues.

Correction de 2021-2022 exercice 21

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Cela montre que somme et produit sont continues, et en composant avec (f, g) on obtient la continuité de la somme f + g et du produit fg.

Exercice 20 Montrer que la composée de deux fonctions uniformément continues est uniformément continue.

Correction de 2021-2022 exercice 23

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Exercice 21 Montrer qu'une limite uniforme de fonctions uniformément continues est uniformément continue.

Correction de 2021-2022 exercice 25

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Exercice 22 Soit (X, d) un espace métrique. On désigne par E l'espace vectoriel formé par toutes les fonctions $f: X \to \mathbf{R}$ qui sont **bornées**, c'est-à-dire qu'il existe $M \in \mathbf{R}$ tel que $|f(x)| \le M$ pour tout $x \in X$.

Pour $f \in E$, on pose

$$||f||_{\infty} = \sup\{|f(x)|: x \in X\}$$
.

- 1. Vérifier que $\|\cdot\|_{\infty}$ est une norme sur E.
- 2. Montrer que pour toute suite (f_n) d'éléments de E et $f \in E$, on a l'équivalence

 $((f_n)$ converge uniformément vers $f)\Leftrightarrow \|f_n-f\|_\infty o 0$.

3. Montrer que les fonctions continues appartenant à E forment un fermé de E. Que dire des fonctions uniformément continues appartenant à E?
Correction de 2021-2022 exercice 26

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Exercice 23 Soit (X, d) un espace métrique. Soit A une partie non-vide et $d(x, A) = \inf\{d(x, a) : a \in A\}$.

1. Montrer que d(x,A)=0 si et seulement si $x\in \overline{A}$. Solution: Si d(x,A)=0, par définition de l'inf, il existe $a_n\in A$ $d(x,a_n)\leq 1/n$, c'est à dire $a_n\to x$, donc $x\in \overline{A}$.

Réciproquement on a vu en cours que si $x \in \overline{A}$ il existe une suite vérifiant la même propriété, et ceci montre $d(x, A) = \emptyset$.

- 2. Montrer que $x\mapsto d(x,A)$ est 1-lipshitzienne. (cf TD 2 ex 5.2)
- 3. Est-elle uniformément continue? (Oui par 2 et le cours)

Exercice 24 Soit E l'espace vectoriel normé $(\mathcal{C}([0,1],\mathbf{R}),\|\cdot\|_1)$. On considère l'application $\mu:E\to E$ définie par

$$\mu(f)(x) = \int_0^x f(t) dt \text{ pour } f \in E \text{ et } x \in [0, 1].$$

- 1. Montrer que μ est bien définie et que μ est une application linéaire continue.
- 2. On considère la suite de fonctions $(f_n)_{n\geq 1}$ définie par

$$f_n(t) = n(1-t)^{n-1} \text{ pour } n \ge 1 \text{ et } t \in [0, 1].$$

Pour chaque $n \geq 1$, calculer $||f_n||_1$ et $||\mu(f_n)||_1$.

3. En déduire la norme de μ .

Exercices supplémentaires.

Exercice 25

On considère le R-espace vectoriel R^2 (ou R^3) muni de la norme $||.||_2$. Parmi les ensembles suivants, lesquels sont ouverts, lesquels sont fermés? Calculer les intérieurs, adhérences, frontières.

- 1. $D = \mathbf{Q}^2 \cap ([0, 1] \times]1, 2[),$
- 2. $E = \{(x, y) \in \mathbb{R}^2 : xy < 1\},$
- 3. $F = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ne 0\},$
- 4. $G = \{(x, y) \in \mathbb{R}^2 : x = 1/n, y = 1/m, n > 0, m > 0\},$
- 5. $H = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 0\},\$
- 6. $I = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y \ge 0, z \in]1, 2[\cup \{-1/n, n \in \mathbb{N}\}\},$
- 7. $J = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{Q} : x > 0, y \ge 0\},$

Correction:

1. $D = \mathbf{Q}^2 \cap ([0, 1] \times]1, 2[)$ n'est ni ouvert ni fermé. Mq $\overline{D} = D_2 := [0, 1] \times [1, 2].$

D'abord $D_2 = \overline{B_{||.||_{\infty}}((1/2, 3/2), 1/2)}$ est une boule fermée donc un fermé contenant D donc $\overline{D} \subset D_2$.

Soit $D_1 = \mathbf{Q}^2 \cap (]0, 1[\times]1, 2[)$ est l'intersection d'un ensemble dense et de l'ouvert

 $]0,1[\times]1,2[=B_{||.||_{\infty}}((1/2,3/2),1/2).$ Par l'exercice 12, on a $]0,1[\times]1,2[=\overline{{f Q}^2}\cap(]0,1[\times]1,2[)\subset\overline{D_1}.$

Il reste donc à voir que la frontière

 $\{0,1\} \times [1,2] \cup [0,1] \times \{1,2\} \subset \overline{D}$ comme à l'exo 10.3 $D \ni (x,1+\frac{1}{n}) \to (x,1), D \ni (x,2-\frac{1}{n}) \to (x,2)$ pour $x \in [0,1]$ donc par caractérisation séquentielle $[0,1] \times \{1,2\} \subset \overline{D}$.

 $D\ni (1-\frac{1}{n},y)\to (1,y), D\ni (\frac{1}{n},y)\to (\emptyset,y)$ pour $y\in]1,2]$ donc par caractérisation séquentielle $\{\emptyset,1\}\times]1,2[\subset \overline{D}.$ On a donc

$$\{\emptyset,1\}\times[1,2]\cup[\emptyset,1]\times\{1,2\}=\{\emptyset,1\}\times]1,2[\cup[\emptyset,1]\times\{1,2\}\subset\overline{L}$$

En bilan, on a bien $D_2 \subset \overline{D}$ et donc $D_2 = \overline{D}$.

 $Int(D) = \emptyset$ car D^c est dense dans \mathbb{R}^2 car il contient $(\sqrt{2} + \mathbb{Q})^2$ qui est dense. La frontière est $\overline{D} - Int(D) = [0, 1] \times [1, 2]$.

2. $E = \{(x, y) \in \mathbb{R}^2 : xy < 1\} = f^{-1}(] - \infty, 1[)$ est ouvert car $f:(x, y) \to xy$ est continue comme polynôme et car $]-\infty, 1[$ est ouvert. De même,

 $\{(x,y)\in \mathbf{R}^2: xy\leq 1\}=f^{-1}(]-\infty,1]$) est un fermé qui contient E, donc aussi le plus petit fermé \overline{E} qui contient $E:\overline{E}\subset\{(x,y)\in\mathbf{R}^2: xy\leq 1\}$

Réciproquement $w_n = (x, (1 - 1/n)1/x) \in E$ et $w_n \to (x, 1/x) \ (x \neq 0) \ \mathsf{donc}$

 $\{(x,y)\in \mathbf{R}^2: xy\leq 1\}=E\cup\{(x,y)\in \mathbf{R}^2: xy=1\}\subset \overline{E}$ d'où égalité. Fr(E) est donc l'hyperbole d'équation xy=1.

3. $F = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ne 0\}$ (la boule unité pour la norme 2 privée de l'axe des ordonnés) n'est pas fermé car soit $x \in [-1, 1]$

$$u_n = (1/n, x(1-1/n)) \in F (\text{car } (1/n)^2 + (x-x/n)^2 \le (1-1/n)^2 + (1/n)^2 = 1 + 2/n^2 - 2/n \le 1 \text{ vu } n^2 \ge n \text{ pour } n \text{ entier}) \text{ et } u_n \to (0, x) \notin F. \text{ On n'a donc de plus}$$

 $\{0\} \times [-1,1] \subset \overline{F}$. Or $F \cup \{0\} \times [-1,1] = \{(x,y) \in \mathbf{R}^2 : x^2 + y^2 \le 1\} = B_{F,2}(0,1)$ est un fermé contenant F donc contenant \overline{F} . C'est donc $\overline{F} = B_{F,2}(0,1)$ vu l'autre inclusion juste montrée.

Par ailleurs F n'est pas ouvert car pour tout x, y tel que $x \neq 0$ et $x^2 + y^2 = 1$, $u_n = (x(1 + /n), y(1 + /n)) \not\in F$ (car $(x(1 + /n))^2 + (y(1 + /n))^2 = (1 + /n)^2 > 1$) mais $u_n \to (x, y) \in F$. Ainsi $(x, y) \in \overline{F^c} \cap F$ donc F^c n'est pas fermé et F n'est pas ouvert. De plus $F - \{(x, y) : x^2 + y^2 = 1, x \neq 0\} = B_2(0, 1) \cap \{(x, y), x \neq 0\}$ est l'intersection de deux ouverts donc est ouvert et est contenu dans F donc est contenu dans l'intérieur de F. Or On vient de voir que $\{(x, y) : x^2 + y^2 = 1, x \neq 0\}$ n'est pas dans l'intérieur de F d'où $Int(F) = F - \{(x, y) : x^2 + y^2 = 1, x \neq 0\}$. Enfin, On peut déduire $Fr(F) = \overline{F} - Int(F) = \{(x, y) : x^2 + y^2 = 1\} \cup \{(x, y) : x = 0\}$.

4. $G = \{(x, y) \in \mathbb{R}^2 : x = 1/n, y = 1/m, n \in \mathbb{N}, m \in \mathbb{N}\},$ $Int(G) = \emptyset$ car $G^c \supset (\mathbb{Q}^2)^c \ni (1/n + \sqrt{2}/p, 1/m) \to_{p \to \infty} (1/n, 1/m)$ donc G^c est dense dans \mathbb{R}^2 .

Montrons que $\overline{G} = (\{0\} \cup \{(1/n)n \in \mathbb{N}\})^2$ En effet, $T := \{0\} \cup \{(1/n)n \in \mathbb{N}\}$ est fermé dans \mathbb{R} (même compact par le TD 2 exo 5) car son complémentaire est $]-\infty$, $0[\cup]1$, $\infty[\cup\bigcup_{n\in\mathbb{N}^*}]1/(n+1)$, 1/n[est ouvert

comme union d'ouverts. Donc T^2 est fermé dans $\mathbf{R}^{2\,1}$ On a donc T^2 est un fermé contenant G on a donc montré $\overline{G}\subset T^2$. Pour l'inclusion inverse, il suffit de remarquer, par caractérisation séquentielle de l'adhérence, que les suites suivantes de G converge vers les éléments de T^2 non dans G:

$$(1/n, 1/m) o_{n o \infty} (\emptyset, 1/m), m \in \mathbf{N}, (1/n, 1/m) o_{m o \infty} \ (1/n, \emptyset), n \in \mathbf{N}, (1/n, 1/n) o (\emptyset, \emptyset).$$

- 5. $H = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 0\}$ est fermé car f(x, y, z) = x + y + z est continue car linéaire et $H = f^{-1}([0, +\infty[)]$. On montre comme pour B, $Int(H) = \{(x, y, z) \in \mathbb{R}^3 : x + y + z > 0\}$.
- 6. $I = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y \ge 0, z \in]1, 2[\cup \{-1/n, n \in \mathbb{N}\}\},$ n'est pas fermé car pour $y_0 \ge 0, z_0 \in [1, 2] \cup \{-1/n, n \in \mathbb{N}\}\}$ $u_m = (1/m, y_0, 1_{R_+}(z)(z_0 3/2)(1 1/m) + 3/2 + 1_{R_-}(z_0)z_0) \in I$ et $u_m \to (0, y_0, z_0) \not\in I$. On obtient de plus par caractérisation séquentielle que $\{0\} \times \mathbb{R}_+ \times [1, 2] \cup \{-1/n, n \in \mathbb{N}\} \subset \overline{I}$. De même, pour $x_0 \ge 0, y_0 \ge 0$ $(x_0 + 1/n, y_0, 1 + 1/n), (x_0 + 1/n, y_0, 2 1/n), (x_0 + 1/n, y_0, -1/n)$ sont dans I et tendent respectivement vers

 $(x_0, y_0, 1), (x_0, y_0, 2), (x_0, y_0, 0)$ qui ne sont pas dans

I. En bilan on a donc obtenu $Z := \{(x, y, z) \in \mathbb{R}^3 :$

^{1.} En effet, on rappelle la preuve du cours : soit $(u_n, v_n) \in T^2$ quelconque tendant vers (u, v), vu T fermé, on a donc $u_n \to u \in T$, $v_n \to v \in T$, donc $(u, v) \in T^2$ c'est à dire T^2 fermé par caractérisation séquentielle.

 $x \ge 0, y \ge 0, z \in [1, 2] \cup \{0\} \cup \{-1/n, n \in N\}\} \subset \overline{I}$. En fait on a égalité, car $Z = p_X^{-1}([0,\infty[) \cap p_V^{-1}([0,\infty[) \cap$ $p_z^{-1}([1,2] \cup \{0\} \cup \{-1/n, n \in \mathbb{N}\})$ est fermé comme intersection de trois fermé, chacun fermé comme image inverse par des applications continues (les projections p_x , p_y , p_z de fermés $(([1,2] \cup \{0\} \cup \{-1/n, n \in \mathbb{N}\})^c =$]2, $+\infty[\cup]0$, $1[\cup\bigcup_{n\in\mathbb{N}^*}]-1/n$, $-1/(n+1)[\cup]-\infty$, -1[est

ouvert comme union d'ouverts).

7. $J = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{Q} : x > 0, y \ge 0\}$ n'est ni ouvert ni fermé. Son adhérence est $\overline{J} = \mathbb{R}^2_+ \times \mathbb{R}$ (qui est un fermé contenant J tel que pour tout $(x, y, z) \in \mathbb{R}^2_+ \times \mathbb{R}$ on trouve une suite de rationnel $z_n \rightarrow z$ par densité de **Q** dans **R** et on obtient $(x + 1/n, y, z_n) \in J$ qui tend vers (x, y, z)

 $Int(J) = \emptyset$ car pour $(x, y, z) \in J$, $(x, y, z + \sqrt{2}/n) \notin J$ (car $\sqrt{2}$ non rationnel) et tend vers (x, y, z) donc J^c est dense dans \mathbf{R}^3 .

Exercice 26 Soit E un espace vectoriel et soient $||.||_1$ et $||.||_2$ deux normes sur E. On note $B_i(a, r)$ (resp. $B_{Fi}(a, r)$) la boule ouverte (resp. fermée) pour la norme $||.||_i$.

1. Montrer que:

 $B_{F1}(0, 1) = B_{F2}(0, 1) \iff (\forall x \in E, ||x||_1 = ||x||_2)$ ← est évidente, mêmes normes implique mêmes boules.

 \Rightarrow Si x=0 l'égalité est évidente puisque le vecteur nul a toujours norme 0. Si $x\neq 0$, par séparation $||x||_1\neq 0$ et $\frac{x}{||x||_1}\in B_{F1}(0,1)=B_{F2}(0,1)$, donc

$$\left\| \frac{x}{||x||_1} \right\|_2 = \frac{||x||_2}{||x||_1} \le 1$$

donc $||x||_2 \le ||x||_1$ et par symmétrie $||x||_1 \le ||x||_2$ d'où égalité.

2. Montrer que:

$$B_1(0, 1) = B_2(0, 1) \iff (\forall x \in E, ||x||_1 = ||x||_2)$$

← est évidente, mêmes normes implique mêmes boules.

⇒ en passant à l'adhérence par l'exercice 28, on obtient l'hypothèse du 1.

Exercice 27

Soit $X := \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}^*\}$. L'ensemble X est-il un ouvert de \mathbb{R} ? Déterminer \overline{X} .

Exercice 28

Correction de 2021-2022 exercice 13

https://math.univ-lyon1.fr/parcours_matheco/lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf