Université Claude Bernard

Mathématiques

L3 Topologie et Théorie de la Mesure

2025-2026

Feuille d'exercices numéro 3

Complétude.

Exercice 1

(cf TD.)

Exercice 2

(cf TD.)

Exercice 3

(cf TD.)

Exercice 4 On considère l'espace

 $E=\ell^1(\mathbf{N})=\{a=(a_i)\in \mathbf{K^N}: ||a||_1=\sum_{i=0}^\infty |a_i|<\infty\}.$ On sait que $(E,||\cdot||_1)$ est un espace vectoriel normé (cf TD 1 ex 3). Soit $a_n=(a_{n,m})_{m\geq 0}\in E$ la suite des coefficients d'une série absolument convergente dans E, c'est à dire : $\sum_{n=0}^\infty ||a_n||_1<+\infty.$

On rappelle la version série du théorème de Fubini-Tonelli, pour toute série double (à coefficients

positifs comme $|a_{n,m}|$), on peut intervertir les sommes :

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |a_{n,m}| = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |a_{n,m}| \in [0, +\infty].$$

1. Montrer que pour chaque $m \in \mathbb{N}$, la série $\sum_n a_{n,m}$ converge dans \mathbb{K} , disons vers $b_m = \sum_{n=0}^{\infty} a_{n,m}$.

Solution: Il suffit de voir que la série est absolument convergente (ce qui implique sa convergence vu **R** complet). Or

$$\left|\sum_{n} a_{n,m}\right| \leq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |a_{n,m}| = \sum_{n=0}^{\infty} ||a_{n}||_{1} < +\infty.$$

2. Montrer que $b = (b_m)_{m \ge 0} \in E$. Solution : Par l'inégalité triangulaire des séries :

$$||b||_1 = \sum_{m=0}^{\infty} |b_m| \le \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |a_{n,m}| = \sum_{n=0}^{\infty} ||a_n||_1 < +\infty.$$

3. Montrer que $\left\|\sum_{i=0}^n a_i - b\right\|_1 \le \sum_{i=n+1}^\infty \sum_{m=0}^\infty |a_{i,m}|$. En déduire que $\left\|\sum_{i=0}^n a_i - b\right\|_1 \to_{n\to\infty} 0$.

Solution : Par l'inégalité triangulaire des séries, puis l'interversion des sommes :

$$||\sum_{i=0}^{n} a_{i} - b||_{1} = \sum_{m=0}^{\infty} |\sum_{i=0}^{n} a_{i,m} - b_{m}| = \sum_{m=0}^{\infty} |\sum_{i=n+1}^{\infty} a_{i,m}|$$

$$\leq \sum_{m=0}^{\infty} \sum_{i=n+1}^{\infty} |a_{i,m}| = \sum_{i=n+1}^{\infty} ||a_{i}||_{1}.$$

Comme reste d'une série convergente, la dernière somme tend vers 0, d'où le résultat.

4. En déduire que E est complet.

Solution: Le 3 dit que les sommes partielles de la série des (a_n) converge vers $b \in E$, et comme la série absolument convergente était arbitraire, toute série absolument convergente converge. C'est le critère de complétude par série qui indique donc que E est complet.

Exercice 5 (cf TD.)

Exercice 6

(cf TD.)

Compacité

Exercice 7

(cf TD.)

Exercice 8 (cf TD.)

Exercice 9 (cf TD.)

Exercice 10 Correction de 2021-2022 exercice 32

https://math.univ-lyon1.fr/parcours_matheco/
lib/exe/fetch.php?media=programmes_ue_13:
topologie-mesure:feuille2-matheco_2021-2022_
correctionpartiellemas.pdf

Exercice 11 Soit $K = \{x_n : n \in \mathbb{N}\} \cup \{x\}$ où (x_n) est une suite convergente vers $x \in X$.

On montre que toute suite (y_n) de K admet une sous suite convergente en séparant deux cas

- 1. Soit (y_n) ne prend qu'un nombre fini de valeurs, donc par le principe des tiroirs, elle prend une valeur un nombre infini de fois, elle admet donc une sous-suite constante (donc convergente).
- 2. Soit (y_n) prend un nombre infini de valeurs, (et donc aussi (x_n)) on va montrer qu'il existe une sous-suite de y, aussi extraite de x. On pose $\phi(0) = \inf\{n \in \mathbb{N} : y_n \neq x\}$ (qui existe car y n'est pas constante égale à x) et $\psi(0) = \inf\{m \in \mathbb{N} : x_m = y_{\phi(0)}\}$ (qui existe par choix de $\phi(0)$).

On définit alors par récurrence

$$\phi(n+1) = \inf\{m > \phi(n) : y_m \notin \{x, x_1, \dots, x_{\psi(n)}\}\}$$

$$\psi(n+1) = \inf\{m > \psi(n) : x_m = y_{\phi(n+1)}\}$$

L'ensemble dont on prend l'inf pour obtenir $\phi(n+1)$ est non-vide car y prend un nombre infini de

valeurs. Celui pour obtenir $\psi(n+1)$ est non-vide car $y_{\phi(n+1)} \neq x$ donc appartient aux valeurs de x. On a par construction ψ et ϕ strictement croissante et $y_{\phi(n)} = x_{\psi(n)}$ donc la suite extraite $(y_{\phi(n)})$ est aussi extraite de (x_n) donc converge vers x.

Exercice 12

- 1. Comme f est continue sur le compact [0,1], par le Théorème de Heine, elle est uniformément continue, donc, soit $\epsilon > 0$, il existe $\eta = 1/n$ tel que $|x-y| \leq 1/n$ implique $|f(x) f(y)| \leq \epsilon$. Or $|\frac{\lfloor xn \rfloor}{n} x| \leq 1/n$, donc $|f_n(x) f(x)| = |f\left(\frac{\lfloor xn \rfloor}{n}\right) f(x)| \leq \epsilon$. Comme ceci est uniforme en x, $||f_n f||_{\infty} \leq \epsilon$, c'est à dire f_n converge uniformément vers f.
- 2. On remarque que f_n ci-dessus est en escalier, et le 1 s'applique autant à [a,b] qu'à [0,1]. Cela conclut le cas f continue. Pour f, continue par morceau, on a une subdivision $x_0 = 0 < x_1 < \cdots < x_n = 1$ et chaque $f|_{]x_i,x_{i+1}[}$ admet un prolongement continue f_i à $[x_i,x_{i+1}]$ à qui on peut appliquer le 1, donnant $f_{i,n}$. On approche f par f_n tel que $f_n(x_i) = f(x_i)$ et $f_n(x) = f_{i,n}(x)$ si $x_i < x < x_{i+1}$. On voit que $||f_n f||_{\infty} \le \max_i (||f_{i,n} f_i||_{\infty}) \to 0$.