Feuille d'exercices numéro 3

Complétude

Exercice 1 Soit $(E, ||\cdot||)$ un e.v.n., et $F \subseteq E$ un sous-espace de dimension finie. Montrer que F est fermé dans E.

Exercice 2

Soit E un espace de Banach. Soit $A=(L(E,E),|||\cdot|||)$ l'espace de Banach des applications linéaires continues sur E (munie de la norme subordonnée). Soit $f\in A$ vérifiant |||f|||<1.

- 1. Soit $x \in A$, on pose $F_x(y) = f(y) + x$. Montrer que l'application F_x a un unique point fixe.
- 2. Vérifier que la norme subordonnée est sous-multiplicative, c'est à dire que pour tout $f,g\in A: |||f\circ g|||\leq |||f|||\ |||g|||$
- 3. On considère la série $\sum_n f^n$ des composées de f définies par $f^0 = \mathrm{id}_E$ (l'application identité), $f^{n+1}(x) = f(f^n(x))$. Montrer que cette série est absoluement convergente dans A.
- 4. En déduire que id_E-f admet un inverse de composition dans A, c'est à dire $g\in A$ tel que

$$g \circ (\mathrm{id}_E - f) = (\mathrm{id}_E - f) \circ g = \mathrm{id}_E$$

Quel est le lien entre g(x) et le point fixe de F_x ?

Exercice 3

Soit E un espace de Banach. Soit $C=C_b^1(]0,+\infty[,\mathbf{R})$ l'espace des applications C^1 bornées et de dérivées bornées $f:]0,+\infty[\to\mathbf{R}.$

- 1. Soit $D: (C_b^1(]0, +\infty[, \mathbf{R}), ||\cdot||_{\infty}) \to (C_b^0(]0, +\infty[, \mathbf{R}), ||\cdot||_{\infty})$ défini par D(f)(x) = f'(x). Montrer que D est une application linéaire non-continue. (Indication : considérer $f_n(x) = e^{-nx}$)
- 2. Pour rendre D continue, on considère la norme $||f||_{C^1} = \max(||f||_{\infty}, ||D(f)||_{\infty})$. Montrer que cela définit une norme sur C et que $D: (C, ||\cdot||_{C^1}) \to (C_b^0(]0, +\infty[, \mathbf{R}), ||\cdot||_{\infty})$ est continue.
- 3. On pose i(f) = (f, D(f)) Montrer que $i: C \to (C_b^0(]0, +\infty[, \mathbf{R}), ||\cdot||_{\infty})^2$ définit une isométrie. En déduire que $(C, ||\cdot||_{C^1})$ est complet.

Exercice 4 On considère l'espace $E = \ell^1(\mathbf{N}) = \{a = (a_i) \in \mathbf{K}^{\mathbf{N}} : ||a||_1 = \sum_{i=0}^{\infty} |a_i| < \infty\}$. On sait que $(E, ||\cdot||_1)$ est un espace vectoriel normé. Soit $a_n = (a_{n,m})_{m \geq 0} \in E$ la suite des coefficients d'une série absolument convergente dans E, c'est à dire : $\sum_{n=0}^{\infty} ||a_n||_1 < +\infty$.

On rappelle la version série du théorème de Fubini-Tonelli, pour toute série double (à coefficients positifs comme $|a_{n,m}|$), on peut intervertir les sommes :

$$\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}|a_{n,m}|=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}|a_{n,m}|\in[0,+\infty].$$

- 1. Montrer que pour chaque $m \in \mathbf{N}$, la série $\sum_n a_{n,m}$ converge dans \mathbf{K} .
- 2. On note $b_m = \sum_{n=0}^{\infty} a_{n,m}$ la somme de la série. Montrer que $b = (b_m)_{m \ge 0} \in E$.

- 3. Montrer que $\left\|\sum_{i=0}^n a_i b\right\|_1 \le \sum_{i=n+1}^\infty \sum_{m=0}^\infty |a_{i,m}|$. En déduire que $\left\|\sum_{i=0}^n a_i b\right\|_1 \to_{n\to\infty} 0$.
- 4. En déduire que E est complet.

Exercice 5 On considère le système d'équations

$$\begin{cases} 4x = \sin(x+y), & (x,y) \in \mathbb{R}^2 \\ 3y = 3 + 2 \arctan(x-y). \end{cases}$$
 (1)

- 1. Déterminer une fonction $f: \mathbf{R}^2 \to \mathbf{R}^2$ telle que $(x, y) \in \mathbf{R}^2$ soit solution de (1) si et seulement si (x, y) est un point fixe de f.
- 2. Montrer que f est contractante de $\mathbf{R}^2 \to \mathbf{R}^2$. On commencera par montrer les deux inégalités suivantes : pour tout $a, b \in \mathbf{R}, |\sin(a) \sin(b)| \le |a b|$ et $|\arctan(a) \arctan(b)| \le |a b|$.
- 3. Montrer que le système (1) admet une unique solution dans \mathbb{R}^2 .

Exercice 6 On considère l'espace $E = \mathcal{C}^0([0,1], \mathbf{R}) = \{f : [0,1] \to \mathbf{R}; \ f \text{ continue}\}$ muni de la norme $||f||_1 = \int_0^1 |f(x)| dx$ (cf TD 1 ex 5)

- 1. Montrer que $f_n(x) = x^n$ définit une suite de Cauchy de E.
- 2. E est-il complet?

Compacité

Exercice 7 Déterminer si les ensembles suivants sont, ou ne sont pas, compacts dans \mathbb{R}^2 :

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^4 = 1\}, \quad B = \{(x, y) \in \mathbb{R}^2 : y^2 = x^3\}$$

 $C = \{(\cos t, \sin t) : t \in [\emptyset, 1]\}, \quad D = \{(\cos t, \sin t) : t \in]\emptyset, 1]\}, \quad E = \{(\cos t, \sin t) : t \in]\emptyset, 2\pi]\}.$

Exercice 8 On se place dans l'espace vectoriel $\mathbf{R}[X]$ muni de la norme n_{∞} . Montrer que la boule fermée de centre 0 et rayon 1 n'est pas compacte. (Indication : on pourra démontrer que la suite (X^n) n'admet pas de sous-suite convergente.)

Exercice 9 Soit A une partie compacte d'un espace vectoriel normé. On suppose que A est contenue dans la boule unité ouverte B(0,1). Montrer qu'il existe r < 1 tel que A soit contenue dans $B_F(0,r)$.

Exercice 10 On se place dans \mathbf{R}^n muni d'une norme $\|\cdot\|$ et on considère une partie non vide A de \mathbf{R}^n . Pour, $x \in \mathbf{R}^n$ on définit $d(x, A) = \inf\{\|x - a\| \colon a \in A\}$.

- 1. Montrer que pour tout $x, y \in \mathbb{R}^n$, $d(x, A) \leq d(y, A) + ||y x||$
- 2. En déduire que $x \mapsto d(x, A)$ est une fonction continue.
- 3. Soit F un fermé non vide de \mathbb{R}^n . Montrer que dans ce cas, d(x, F) = 0 si et seulement si $x \in F$.
- 4. Pour une partie non vide B de \mathbb{R}^n , on définit $d(A, B) = \inf\{\|b a\| : a \in A, b \in B\}$. Montrer que $d(A, B) = \inf\{d(a, B) : a \in A\}$.
- 5. Soit K un compact non vide de \mathbf{R}^n . Montrer qu'il existe $a \in K$ et $b \in F$ tels que d(K, F) = ||b a||.
- 6. Ce dernier résultat est-il encore vrai si l'on suppose simplement K fermé? (Indication : on pourra considérer les parties $A = \{(t, e^t) : t \in \mathbb{R}\}$ et $B = \{(t, -e^t) : t \in \mathbb{R}\}$ de \mathbb{R}^2 .)

Exercice 11 Soit (X, d) un espace métrique, et (x_n) une suite d'éléments de X qui converge vers $x \in X$. Montrer que l'ensemble $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ est compact.

Exercice 12 Soit $f:[0,1] \to \mathbf{R}$ une fonction continue. Soit f_n la fonction définie par $f_n(x) = f\left(\frac{\lfloor xn \rfloor}{n}\right)$. Montrer que f_n converge uniformément vers f. En déduire que les fonctions en escalier sont denses dans l'ensemble des fonctions continues par morceaux $\mathcal{CM}([0,1],\mathbf{R})$.