Feuille d'exercices numéro 4

Ensembles et fonctions convexes

Exercice 1 Montrer que les ensembles C_i suivants sont convexes et trouver les cônes normaux $N_{C_i}(0)$ en 0 = (0, 0):

1.
$$C_1 = [0, +\infty[\times \mathbb{R}, 2. C_2 = [0, +\infty[^2, 3. C_3 = [-1, 1]^2, 4. C_4 = \{(x, y) \in [0, 1]^2 : x \le y\}.$$

Exercice 2

- 1. Soient A, B deux convexes. Montrer que $A \cap B$ est convexe. Est-ce que $A \cup B$ est convexe?
- 2. Soit $A = \{0\} \cup]0$, $+\infty[^2$. Montrer que A est convexe dans \mathbb{R}^2 et calculer $T_A(0)$
- 3. Soit $B =]-\infty, 0] \times \mathbb{R}$, calculer $T_B(0)$ et $T_{A \cap B}(0)$.
- 4. Soient A, B deux convexes généraux avec $c \in A \cap B$, trouver une relation entre $T_{A \cap B}(c)$ et $T_A(c) \cap T_B(c)$. (Pour une meilleure relation dans un cas particulier on pourra voir aussi l'exercice 20. 2)

Exercice 3 Montrer les inégalités suivantes, à l'aide de raisonnements de convexité :

- 1. $\forall x \in \mathbb{R}, e^x \geq 1 + x$.
- 2. $\forall x > 0$, $ln(x) \le x 1$.
- 3. $\forall x \in [0, \frac{\pi}{2}], \frac{2}{\pi}x \leq \sin(x) \leq x$.
- 4. $\forall x > -1$, $\sqrt{1+x} \le 1 + \frac{x}{2}$.

Exercice 4 Montrer que la fonction suivante croissante sur $\mathbb R$:

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

Exercice 5 Soit f la fonction définie par la formule $f(x) = x^{2k}$, pour $k \in \mathbb{N}^*$.

- 1. En calculant la dérivée seconde, montrer que f est strictement convexe sur $]-\infty,0[$ et sur $]0,+\infty[$.
- 2. Montrer que f est strictement convexe sur \mathbb{R} .

Exercice 6 Soient E, F des e.v. sur \mathbb{R} et I un intervalle.

- 1. Soient $f: E \to I$, $g: I \to \mathbb{R}$ deux fonctions telles que f est convexe et g est convexe et croissante. Montrer que $g \circ f$ est convexe.
- 2. Si $f: E \to \mathbb{R}$ est convexe et $A: F \to E$ linéaire, montrer que $f \circ A$ est convexe.
- 3. Montrer que $f(x, y) = (|2x + 3y| + |x y|)^p$ est convexe sur \mathbb{R}^2 pour $p \in [1, +\infty[$.

Exercice 7

- 1. Prouver que la fonction f définie par f(x, y) = xy n'est pas convexe sur \mathbb{R}^2 , mais que les fonctions g, h définies par $g(x, y) = x^2 + y^2$ et $h(x, y) = x^2 + y^2 + xy$ le sont.
- 2. Montrer que les trois fonctions suivantes sont séparément convexes en x (pour chaque y) et en y (pour chaque x).

$$i(x, y) = exp(x + y), j(x, y) = exp(xy), k(x, y) = exp(x) + exp(y).$$

Lesquelles sont des fonctions convexes sur \mathbb{R}^2 ?

Exercice 8 Lesquels parmi les fonctions suivantes sont convexes sur $[-1, 1]^2$:

$$h_1(x,y)=\frac{x^3+y^3}{6},\,h_2(x,y)=\frac{x^4+y^4}{12},\,\,h_3(x,y)=x^2+y^2+\frac{x^3}{3},\,\,h_4(x,y)=x^4+y^4-4xy.$$

Exercice 9 Soit $f(x, y, z) = (2x + y)^2 + (2x + z)^2 - x^2$.

1. Montrer que les restrictions de f aux sous-espaces :

$$C_1 = \{(x, y, \emptyset), (x, y) \in \mathbb{R}^2\}, C_2 = \{(x, \emptyset, z), (x, z) \in \mathbb{R}^2\}, C_3 = \{(\emptyset, y, z), (y, z) \in \mathbb{R}^2\}$$
 sont convexes.

2. Est-ce que f est convexe sur \mathbb{R}^3 ?

Exercice 10 (Tiré de l'examen 2025) On fixe $p, q, r \in [1, +\infty[$ vérifiant $p \ge q$ et :

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q}.\tag{1}$$

On pose s = p - r et on fixe des constantes $C, D \in [0, +\infty[$. On remarque que (1) équivaut à

$$\frac{r}{q} = \frac{s}{p}. (2)$$

et donc $p \geq q$, $r \geq 1$ impliquent $s \geq 1$ (qu'on pourra utiliser librement).

On définit

$$A = \{(x, y) \in]0, +\infty[^2: y \ge \frac{1}{x}\},$$

et $g:A \to \mathbb{R}$ par $g(x,y) = Cx^s + Dy^r$.

- Montrer que A est convexe.
- 2. Montrer que g est convexe sur A.
- 3. Calculer le cône normal $N_A((x, y))$ en un point de la frontière

$$F = \{(x, y) \in]0, +\infty[^2: y = \frac{1}{x}\}$$

de A (on ne demande PAS de vérifier que F est la frontière de A).

4. Montrer que g atteint son minimum sur A en un point de F et que ce minimum vaut :

$$m = C \left(\frac{rD}{sC}\right)^{s/(r+s)} + D \left(\frac{sC}{rD}\right)^{r/(r+s)}.$$

Exercice 11 On s'intéresse au problème de minimiser la fonction

$$f(x,y) = \frac{x^4}{12} + \frac{x^2y^3}{12} + \frac{x^2}{2} + \frac{y^2}{2} + 4$$

sur le pavé $A := \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}.$

- 1. Prouver que f est strictement convexe sur A.
- 2. Montrer qu'il existe une solution unique du problème.
- 3. Trouver la solution.

Exercice 12 Soit C un convexe et $f:C\to\mathbb{R}$ une fonction, montrer que f est convexe sur C si et seulement si pour tout intervalle $[a,b]\subset C$, la restriction $f_{[a,b]}$ est convexe.

Exercices d'entraînements

Exercice 13 Montrer que les C_i sont convexes et trouver les cônes normaux $N_{C_i}(a_j)$:

- 1. $C_5 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ en $a_1 = (0, 0)$ et en $a_2 = (0, 1)$.
- 2. $C_6 = \{(x, y) \in \mathbb{R}^2 : |x 1| + |y| \le 1\}$ en $a_1 = (0, 0)$, en $a_3 = (1, 0)$ et en $a_4 = (1/2, 1/2)$.

Exercice 14 On s'intéresse au problème de minimiser la fonction

$$f(x, y) = x^4 + x^2y^3 + 9x^2 + 8y^2 + 4$$

sur le pavé $A := \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}.$

- 1. Prouver que f est strictement convexe sur A.
- 2. Montrer qu'il existe une solution unique du problème (Indication : rappeler pourquoi A est compact)
- 3. Trouver la solution.

Exercice 15 Lesquels parmi les fonctions suivantes sont convexes sur \mathbb{R}^2 .

$$f_0(x, y) = x^2 + y^2 + x^4, \ f_1(x, y) = x^2 + y^2 + x^3, \ f_2(x, y) = x^4 + y^4 - 4xy, \ f_3(x, y) = \cos(x + y),$$

$$f_4(x, y) = xe^y + ye^x, \ f_5(x, y) = |x + 1| + |y|, \ f_6(x, y) = (|x + 1| + |y|)^2.$$

Exercice 16 Lesquels parmi les fonctions suivantes sont convexes sur $[0, 1]^2$:

$$g_1(x,y) = \frac{x^3 + y^3}{6}, \ g_2(x,y) = \frac{x^4 + y^6}{12}, \ g_3(x,y) = -\sqrt{2 - (x^2 + y^2)}$$
$$g_4(x,y) = \frac{x^2 y^2}{2}, \ g_5(x,y) = \cos(xy), \ g_6(x,y) = x^2 + y^2 + \frac{x^3}{6}.$$

Exercices plus difficiles

Exercice 17

- 1. Soit C une partie fermée dans E e.v.n. telle que si $x, y \in C$ alors $\frac{x+y}{2} \in C$. Prouver que C est convexe.
- 2. Soit C convexe fermé de E. Soit $f:C \to \mathbb{R}$ une fonction continue telle que

$$\forall x, y \in C$$
 $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$.

Montrer que f est convexe.

3. Même question C est juste convexe mais pas fermé. (Indication : utiliser l'ex. 12)

Exercice 18

- 1. Montrer que la fonction $x \mapsto e^{2x-\cos(x)}$ est convexe sur \mathbb{R} .
- 2. Soit $f: I \to]0, +\infty[$, où I est un intervalle de \mathbb{R} . Montrer que si ln(f) est convexe alors f est convexe. Réciproque?
- 3. Application: Montrer que $x \mapsto (1+x)^x$ est convexe sur $]-1,+\infty[$.

Exercice 19 Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est convexe et tend vers 0 quand x tend vers $+\infty$ alors f est à valeurs positives (on pourra commencer par justifier le fait que f est décroissante).

Exercice 20 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1. Montrer que si f est à valeurs négatives alors f est constante.
- 2. Montrer que s'il existe a, b tels que $f(x) \le ax + b$ pour tout $x \in \mathbb{R}$ alors f est une fonction affine.

Exercice 21 Soit $f: [0, +\infty[\rightarrow [0, +\infty[$ une fonction concave.

- 1. Montrer que pour tout $x, y \ge 0$ on a $f(x + y) \le f(x) + f(y)$.
- 2. On suppose en plus que f est continue en 0 et vaut f(0) = 0. Montrer que f est uniformément continue.

Exercice 22 Soit f une fonction de $[0, +\infty[$ dans \mathbb{R} , majorée, de classe C^2 . On suppose qu'il existe a > 0 tel que

$$\forall x \geq 0 \ f''(x) \geq af(x) \geq 0 \ .$$

- 1. Montrer que f est décroissante.
- 2. Déterminer la limite de f'(x) quand x tend vers $+\infty$.
- 3. Montrer que f(x) tend vers 0 quand x tend vers $+\infty$.
- 4. Montrer que pour tout $x \geq 0$ on a $f(x) \leq f(0)e^{-x\sqrt{a}}$. (Indication : en posant $\varphi(x) = f(0)e^{-x\sqrt{a}}$ on pourra montrer que $g = \frac{f}{\varphi}$ est décroissante en écrivant $g'(x) = \frac{\omega(x)}{\varphi(x)^2}$ et étudiant les variations de ω pour trouver son signe.)

Exercice 23 Montrer que pour S une partie fermé non-vide de E e.v.n. alors la fonction distance $d_S(x) := d(x, S) = \inf_{s \in S} ||x - s||$ est convexe si et seulement si S est convexe.

Exercice 24 Soient $g_1, ..., g_n$ des fonctions convexes C^1 définies sur \mathbb{R}^m tel qu'il existe x_0 avec $g_i(x_0) < 0$ pour tout i. Soit la contrainte : $A = \{x \in \mathbb{R}^m : \forall i \in \{1, ..., n\}, g_i(x) \leq 0\}$. On rappelle que soit $x \in A$ avec $g_1(x) = ... = g_l(x) = 0$ (contraintes actives en x) et $g_{l+1}(x) < 0, ..., g_n(x) < 0$, on a :

$$N_A(x) = \{\sum_{i=1}^l \lambda_i \nabla g_i(x), \lambda_i \geq \emptyset\}.$$

- 1. Soit $I \subset \{1, ..., n\}$, $B = \{x \in \mathbb{R}^m : \forall i \in I, g_i(x) \leq 0\}$ et $C = \{x \in \mathbb{R}^m : \forall i \in \{1, ..., n\} \setminus I, g_i(x) \leq 0\}$ et $x \in B \cap C$. En déduire que $N_{B \cap C}(x) = N_B(x) + N_C(x)$ et $T_{A \cap B}(c) = T_A(c) \cap T_B(c)$.
- 2. Si x minimise une fonction convexe f sur A. Montrer que x vérifie $\nabla f(x) + \sum_{i=1}^n \lambda_i \nabla g_i(x) = 0$ pour $\lambda_i \geq 0$ (et $\lambda_i = 0$ si la i-ème contrainte n'est pas active)
- 3. On considère le problème de minimiser $f(x, y) := (x 3)^2 + (y 2)^2$ sous les contraintes $x^2 + y^2 \le 5$, $-x + 2y \le 4$, $x \ge 0$, $y \ge 0$.

Prouver qu'une solution existe qui n'est pas (0,0) et en déduire que la solution satisfait f(x,y) < 13.

Trouver la solution (en se guidant graphiquement et en utilisant les conditions nécessaires). (Indication : Graphiquement, on se doute que la contrainte saturée au minimiseur va être $x^2 + y^2 = 5$)