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Feuille d’exercices numéro 5

Boréliens, fonctions mesurables

Exercice 1 On travaille avec la tribu borélienne B(IRn).
Prouver ou réfuter les assertions suivantes.
1. Un ouvert est un borélien.
2. Un fermé est un borélien.
3. Un borélien est un ouvert ou un fermé.
4. Un intervalle est dans B(IR).

Exercice 2 Prouver ou réfuter les assertions suivantes.
1. L’ensemble [2, 3[∩lQ est un borélien de IR.
2. L’ensemble {x ∈ IR : sin(x) = cos(tan(x))} est un borélien de IR.
3. Si B ∈ B(IR) et si A ⊂ B alors A ∈ B(IR).

Exercice 3 Soit (Ω, T ) un espace mesurable. Prouver ou réfuter les assertions suivantes.
1. Une fonction f : Ω → IR qui ne prend qu’un nombre fini de valeurs est étagée.
2. Si f : Ω → IRn est mesurable et si g : IRn → IR est borélienne étagée alors g ◦ f est étagée.
3. Si f : Ω → IR est telle que f−1(F ) ∈ T pour tout F ⊂ IR fermé alors f est mesurable.
4. Si f : IR → IR est borélienne et ne s’annule pas alors 1

f
est borélienne.

5. La fonction f : Ω → IR est mesurable si est seulement si |f | est mesurable.

Intégration

Exercice 4 (⋆) Soit (Ω, T , µ) un espace mesuré. Prouver ou réfuter les assertions suivantes :
1. si f = 1A avec A ∈ T alors

∫
fdµ = µ(A) ;

2. si f = a1A + b1B avec a, b ∈ IR et A,B ∈ T alors
∫
fdµ = aµ(A) + bµ(B) ;

3. si f : Ω → [0,∞] est mesurable et vérifie µ(f−1({∞})) = 0 alors f est intégrable ;
4. si f : Ω → [0,∞] est intégrable alors µ(f−1({∞})) = 0 ;
5. si f : Ω → [0,∞] est mesurable et vérifie

∫
fdµ = 0 alors f = 0 ;

6. si f : Ω → [0,∞] est mesurable et satisfait
∫
fdµ = 0 alors f = 0 µ-p.p. ;

7. si f : Ω → [0,∞] est mesurable et satisfait f = 0 µ-p.p. alors
∫
fdµ = 0 ;

8. si f : Ω → [0,∞] est mesurable et
∫
Ω

fdµ < ∞ alors f < ∞ µ-p.p.

9. le produit de deux fonctions intégrables est intégrable.
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Exercice 5 Pour tout n ∈ IN soit fn : IR → IR la fonction définie par :

fn(x) =

{
x− n si x ≥ n
0 si x < n

Montrer que
1. chaque fn admet une intégrale sur IR pour la mesure de Lebesgue. Est-elle intégrable ?
2. fn(x) ↘ 0 pour tout x ∈ IR ;
3.
∫
fndλ ne converge pas vers

∫
lim
n→∞

fndλ.

Théorèmes de convergence

Exercice 6

1. Montrer que
∫ 1

0

(
+∞∑
n=0

x2n(1− x)

)
dx = ln(2).

2. En déduire la valeur de
+∞∑
n=1

(−1)n

n
.

Exercice 7

1. Pour x ∈ ]0,+∞[, on pose f(x) =
+∞∑
n=0

e−nx. Calculer f(x).

2. En déduire que
∫ +∞

0

x

ex − 1
dx =

+∞∑
n=1

1

n2
, et

∫ +∞

0

sin(x)

ex − 1
dx =

+∞∑
n=1

1

n2 + 1
.

Exercice 8 Soit α ∈ IR. Montrer que pour tout n ∈ IN,
∫ 1

0

(
xα +

ex

n

)−1

dx < +∞.

En fonction de la valeur de α, déterminer, si elle existe, la limite suivante :

lim
n→∞

∫ 1

0

(
xα +

ex

n

)−1

dx.

Exercice 9 Pour n ∈ IN, on définit fn : [0, 1] → [0,+∞[ par fn(x) = (n+ 1)xn.

1. Déterminer la limite simple de la suite (fn)n∈IN.

2. Déterminer, si elle existe, la limite de la suite
(∫ 1

0

fn(x)dx

)
n∈IN

.

3. Commenter ce résultat.

Exercice 10 Pour n ∈ IN et x ∈ IR, on pose fn(x) =
(sinπx)n

1 + x2
. Montrer que chaque fonction fn

est intégrable sur IR. Vérifier que la suite
(∫

IR
fndλ

)
n∈IN

a une limite et déterminer cette limite.
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Exercice 11 Pour tout entier n ≥ 1 et tout réel x, on pose fn(x) = e−nx − 2e−2nx.

1. Montrer que pour tout x > 0, la série
+∞∑
n=1

fn(x) est convergente et calculer sa somme f(x).

2. Comparer
∫ +∞

0

f(x)dx et
∞∑
n=1

∫ +∞

0

fn(x)dx. Expliquer.

Exercice 12 Soit (fn)n∈IN une suite décroissante de fonctions positives intégrables sur IR conver-
gente vers 0 presque partout.

1. Montrer que la série
+∞∑
n=0

(−1)nfn converge presque partout vers une fonction positive f inté-

grable sur IR.

2. Montrer que la série
+∞∑
n=0

(−1)n
∫
IR

fndλ est convergente et que

+∞∑
n=0

(−1)n
∫
IR

fndλ =

∫
IR

(
+∞∑
n=0

(−1)nfn

)
dλ.

Intégrales à paramètres

Exercice 13 Soient f : IR → IR une fonction intégrable et µ une mesure finie sur (IR,B(IR)).
Montrer que leurs transformées de Fourier f̂ et µ̂ sont continues sur IR :

f̂(x) =

∫ ∞

−∞
f(t)eitxdt, µ̂(x) =

∫ ∞

−∞
eitxdµ(t)

Exercice 14 Soient f(x) = (
∫ x

0
e−t2dt)2 et g(x) =

∫ 1

0
e−x2(1+t2)

1+t2
dt.

1. Montrer que f et g sont C1 et calculer f ′(x) et g′(x).
2. Montrer que f ′(x) + g′(x) = 0 pour tout x ∈ IR, en déduire la valeure de f(x) + g(x).

3. En déduire que
∫∞
0

e−t2dt =
√
π
2

Exercice 15
On pose F (x) =

∫∞
0

e−t2 cos(tx)dt.
1. Montrer que F est bien définie sur IR.
2. Montrer que F est continûment dérivable. Donner une expression de F ′(x).
3. Montrer que pour tout x ∈ IR, on a F ′(x) + x

2
F (x) = 0

En déduire que la fonction G(x) = e
x2

4 F (x) est constante.
4. Donner l’expression de F (x) pour x ∈ IR en utilisant le résultat de l’exercice 1.3
5. En déduire la transformée de Fourier d’une variable gaussienne standard

Φ(x) =
1√
2π

∫ ∞

−∞
e−t2/2eitxdt.
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Exercice 16 On pose F (x) =
∫∞
0

e−tx sin(t)
t

dt.
1. Montrer que F est bien définie et continue sur ]0,∞[

2. Montrer que F est continûment dérivable sur ]0,∞[.
3. Montrer que F est aussi bien définie en 0 comme intégrale de Riemann semi-convergente :F (0) =

limK→∞
∫ K

0
sin(t)

t
dt. (Indication : utiliser une intégration par partie).

4. Montrer que F est continue en 0. (Indication : il faut utiliser une méthode standard pour les
intégrales semi-convergentes. On pourra décomposer F (x) = F0(x)+F1(x) pour les intégrales
sur ]0, 1], ]1,+∞[, et utiliser une intégration par partie v′(t) = sin(t), u(t) = e−tx/t sur F1 pour
obtenir la formule alternative suivante :

F0(x) =

∫ 1

0

e−tx sin(t)

t
dt, F1(x) =

∫ ∞

1

e−tx sin(t)

t
dt = e−x cos(1) +

∫ ∞

1

(xt+ 1)e−tx cos(t)

t2
dt.)

Exercice 17 Pour x > 0, on pose φ(x) =

∫ 1

0

e−x/t dt.

Montrer que φ est de classe C2 sur ]0,+∞[ et que φ′′(x) =
e−x

x
pour x > 0.

Exercices supplémentaires

Exercice 18 Calculer lim
n→∞

∫ 1

0

ex

1 + xn
dx, lim

n→∞

∫ 1

0

e−nx

1 + x
dx et lim

n→∞

∫ +∞

−∞
exp(−|x|

n
)dx.

Exercice 19 Calculer lim
n→∞

∫ n

0

(
1− x

n

)n
dx et lim

n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx.

Exercice 20 Calculer lim
n→+∞

∫ +∞

0

e−x (sin(x))n dx et lim
n→+∞

∫ +∞

1

n sin
(
x
n

)
x3

dx .

Exercice 21 Pour n ∈ IN, on définit une fonction fn : [0, 1] → [0,+∞[ par fn(x) = n(1 −
x)n sin2(nx).

1. Déterminer la limite simple de la suite (fn)n∈IN. On notera cette limite simple f .
2. Montrer que pour chaque n ∈ IN,∫ 1

0

fn(x)dx =

∫ n

0

(
1−

x

n

)n

sin2(x)dx.

3. Vérifier que pour tout x ≥ 0, on a 1− x ≤ e−x.

4. En déduire que la suite
(∫ 1

0

fn(x)dx

)
n∈IN

converge.

5. Montrer que

lim
n→∞

∫ 1

0

fn(x)dx ̸=
∫ 1

0

f(x)dx.

6. Calculer lim
n→∞

∫ 1

0

fn(x)dx.
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