L3 Topologie et Théorie de la Mesure

2025-2026

Feuille d'exercices numéro 5

Boréliens, fonctions mesurables

Exercice 1 On travaille avec la tribu borélienne $\mathcal{B}(\mathbb{R}^n)$.

Prouver ou réfuter les assertions suivantes.

- 1. Un ouvert est un borélien.
- 2. Un fermé est un borélien.
- 3. Un borélien est un ouvert ou un fermé.
- 4. Un intervalle est dans $\mathcal{B}(\mathbb{R})$.

Exercice 2 Prouver ou réfuter les assertions suivantes.

- 1. L'ensemble $[2, 3] \cap \mathbb{Q}$ est un borélien de \mathbb{R} .
- 2. L'ensemble $\{x \in \mathbb{R} : \sin(x) = \cos(\tan(x))\}$ est un borélien de \mathbb{R} .
- 3. Si $B \in \mathcal{B}(\mathbb{R})$ et si $A \subset B$ alors $A \in \mathcal{B}(\mathbb{R})$.

Exercice 3 Soit (Ω, \mathcal{T}) un espace mesurable. Prouver ou réfuter les assertions suivantes.

1. Une fonction $f:\Omega \to \mathbb{R}$ qui ne prend qu'un nombre fini de valeurs est étagée.

- 2. Si $f: \Omega \to \mathbb{R}^n$ est mesurable et si $g: \mathbb{R}^n \to \mathbb{R}$ est borélienne étagée alors $g \circ f$ est étagée.
- 3. Si $f:\Omega\to\mathbb{R}$ est telle que $f^{-1}(F)\in\mathcal{T}$ pour tout $F\subset\mathbb{R}$ fermé alors f est mesurable.
- 4. Si $f: \mathbb{R} \to \mathbb{R}$ est borélienne et ne s'annule pas alors $\frac{1}{f}$ est borélienne.
- 5. La fonction $f:\Omega \to \mathbb{R}$ est mesurable si est seulement si |f| est mesurable.

Intégration

Exercice 4 (*) Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré. Prouver ou réfuter les assertions suivantes :

- 1. si $f = 1_A$ avec $A \in \mathcal{T}$ alors $\int f d\mu = \mu(A)$;
- 2. si $f = a1_A + b1_B$ avec $a, b \in \mathbb{R}$ et $A, B \in \mathcal{T}$ alors $\int f d\mu = a\mu(A) + b\mu(B);$
- 3. si $f:\Omega\to [0,\infty]$ est mesurable et vérifie $\mu(f^{-1}(\{\infty\}))=0$ alors f est intégrable;
- 4. si $f:\Omega\to [0,\infty]$ est intégrable alors $\mu(f^{-1}(\{\infty\}))=\emptyset$;
- 5. si $f:\Omega\to [0,\infty]$ est mesurable et vérifie $\int fd\mu=0$ alors f=0;
- 6. si $f:\Omega\to [0,\infty]$ est mesurable et satisfait $\int fd\mu=0$ alors f=0 $\mu-p.p.$;
- 7. si $f:\Omega\to [0,\infty]$ est mesurable et satisfait f=0 μ -p.p. alors $\int f d\mu=0$;

- 8. si $f:\Omega \to [0,\infty]$ est mesurable et $\int\limits_{\Omega} f d\mu < \infty$ alors $f<\infty \ \mu$ -p.p.
- 9. le produit de deux fonctions intégrables est intégrable.

Exercice 5 Pour tout $n \in \mathbb{N}$ soit $f_n : \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$f_n(x) = \begin{cases} x - n & \text{si } x \ge n \\ 0 & \text{si } x < n \end{cases}$$

Montrer que

- 1. chaque f_n admet une intégrale sur $\mathbb R$ pour la mesure de Lebesgue. Est-elle intégrable ?
- 2. $f_n(x) \searrow \emptyset$ pour tout $x \in \mathbb{R}$;
- 3. $\int f_n d\lambda$ ne converge pas vers $\int \lim_{n\to\infty} f_n d\lambda$.

Théorèmes de convergence

Exercice 6

- 1. Montrer que $\int_{0}^{1} \left(\sum_{n=0}^{+\infty} x^{2n} (1-x) \right) dx = \ln(2)$.
- 2. En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.

Exercice 7

1. Pour $x \in]0, +\infty[$, on pose $f(x) = \sum_{n=0}^{+\infty} e^{-nx}$. Calculer f(x).

2. En déduire que
$$\int_0^{+\infty} \frac{x}{e^x - 1} dx = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$
, et
$$\int_0^{+\infty} \frac{\sin(x)}{e^x - 1} dx = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$$

Exercice 8 Soit $\alpha \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, $\int_0^1 \left(x^{\alpha} + \frac{e^x}{n} \right)^{-1} dx < +\infty.$

En fonction de la valeur de α , déterminer, si elle existe, la limite suivante :

$$\lim_{n\to\infty}\int_0^1\left(x^\alpha+\frac{e^x}{n}\right)^{-1}dx.$$

Exercice 9 Pour $n \in \mathbb{N}$, on définit $f_n : [0, 1] \to [0, +\infty[$ par $f_n(x) = (n+1)x^n$.

- 1. Déterminer la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$.
- 2. Déterminer, si elle existe, la limite de la suite $\left(\int_0^1 f_n(x) dx\right)_{n \in \mathbb{N}}$.
- 3. Commenter ce résultat.

Exercice 10 Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{(\sin \pi x)^n}{1+x^2}$. Montrer que chaque fonction f_n est intégrable sur \mathbb{R} . Vérifier que la suite $\left(\int_{\mathbb{R}} f_n d\lambda\right)_{n \in \mathbb{N}}$ a une limite et déterminer cette limite.

Exercice 11 Pour tout entier $n \ge 1$ et tout réel x, on pose $f_n(x) = e^{-nx} - 2e^{-2nx}$.

- 1. Montrer que pour tout x > 0, la série $\sum_{n=1}^{+\infty} f_n(x)$ est convergente et calculer sa somme f(x).
- 2. Comparer $\int_0^{+\infty} f(x) dx$ et $\sum_{n=1}^{\infty} \int_0^{+\infty} f_n(x) dx$. Expliquer.

Exercice 12 Soit $(f_n)_{n\in\mathbb{N}}$ une suite décroissante de fonctions positives intégrables sur \mathbb{R} convergente vers 0 presque partout.

- 1. Montrer que la série $\sum_{n=0}^{+\infty} (-1)^n f_n$ converge presque partout vers une fonction positive f intégrable sur \mathbb{R} .
- 2. Montrer que la série $\sum_{n=0}^{+\infty} (-1)^n \int_{\mathbb{R}} f_n d\lambda$ est convergente et que

$$\sum_{n=0}^{+\infty} (-1)^n \int_{\mathbb{R}} f_n d\lambda = \int_{\mathbb{R}} \left(\sum_{n=0}^{+\infty} (-1)^n f_n \right) d\lambda.$$

Intégrales à paramètres

Exercice 13 Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction intégrable et μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Montrer que leurs **transformées de Fourier** \hat{f} et $\hat{\mu}$ sont continues sur $\mathbb R$:

$$\hat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{itx} dt, \quad \hat{\mu}(x) = \int_{-\infty}^{\infty} e^{itx} d\mu(t)$$

Exercice 14 Soient
$$f(x) = (\int_0^x e^{-t^2} dt)^2$$
 et $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1. Montrer que f et g sont C^1 et calculer f'(x) et g'(x).
- 2. Montrer que f'(x) + g'(x) = 0 pour tout $x \in \mathbb{R}$, en déduire la valeure de f(x) + g(x).
- 3. En déduire que $\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$

Exercice 15

On pose $F(x) = \int_0^\infty e^{-t^2} \cos(tx) dt$.

- 1. Montrer que F est bien définie sur \mathbb{R} .
- 2. Montrer que F est continûment dérivable. Donner une expression de F'(x).
- 3. Montrer que pour tout $x \in \mathbb{R}$, on a $F'(x) + \frac{x}{2}F(x) = 0$ En déduire que la fonction $G(x) = e^{\frac{x^2}{4}}F(x)$ est constante.
- 4. Donner l'expression de F(x) pour $x \in \mathbb{R}$ en utilisant le résultat de l'exercice 1.3
- 5. En déduire la transformée de Fourier d'une variable gaussienne standard

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} e^{itx} dt.$$

Exercice 16 On pose $F(x) = \int_0^\infty e^{-tx} \frac{\sin(t)}{t} dt$.

- 1. Montrer que F est bien définie et continue sur $]0, \infty[$
- 2. Montrer que F est continûment dérivable sur $]0, \infty[$.
- 3. Montrer que F est aussi bien définie en 0 comme intégrale de Riemann semi-convergente : $F(0) = \lim_{K \to \infty} \int_0^K \frac{\sin(t)}{t} dt$. (Indication : utiliser une intégration par partie).
- 4. Montrer que F est continue en 0. (Indication : il faut utiliser une méthode standard pour les intégrales semi-convergentes. On pourra décomposer $F(x) = F_0(x) + F_1(x)$ pour les intégrales sur $]0,1],]1,+\infty[$, et utiliser une intégration par partie $v'(t)=\sin(t), u(t)=e^{-tx}/t \sin F_1$ pour obtenir la formule alternative suivante :

$$F_0(x) = \int_0^1 e^{-tx} \frac{\sin(t)}{t} dt, \qquad F_1(x) = \int_1^\infty e^{-tx} \frac{\sin(t)}{t} dt = e^{-x} \cos(t)$$

Exercice 17 Pour x > 0, on pose $\varphi(x) = \int_0^1 e^{-x/t} dt$.

Montrer que φ est de classe \mathcal{C}^2 sur]0, $+\infty$ [et que $\varphi''(x) = \frac{e^{-x}}{x}$ pour x > 0.

Exercices supplémentaires

Exercice 18 Calculer $\lim_{n\to\infty}\int_0^1 \frac{e^x}{1+x^n} dx$, $\lim_{n\to\infty}\int_0^1 \frac{e^{-nx}}{1+x} dx$ et $\lim_{n\to\infty}\int_{-\infty}^{+\infty} \exp(-\frac{|x|}{n}) dx$.

Exercice 19 Calculer
$$\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n dx$$
 et $\lim_{n\to\infty} \int_0^n \left(1+\frac{x}{n}\right)^n e^{-2x} dx$.

Exercice 20 Calculer
$$\lim_{n\to+\infty} \int_0^{+\infty} e^{-x} (\sin(x))^n dx$$
 et $\lim_{n\to+\infty} \int_1^{+\infty} \frac{n \sin\left(\frac{x}{n}\right)}{x^3} dx$.

Exercice 21 Pour $n \in \mathbb{N}$, on définit une fonction $f_n : [0, 1] \to [0, +\infty[$ par $f_n(x) = n(1-x)^n \sin^2(nx)$.

- 1. Déterminer la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$. On notera cette limite simple f.
- 2. Montrer que pour chaque $n \in \mathbb{N}$,

$$\int_0^1 f_n(x) dx = \int_0^n \left(1 - \frac{x}{n}\right)^n \sin^2(x) dx.$$

- 3. Vérifier que pour tout $x \ge 0$, on a $1 x \le e^{-x}$.
- 4. En déduire que la suite $\left(\int_0^1 f_n(x) dx\right)_{n \in \mathbb{N}}$ converge.

5. Montrer que

$$\lim_{n\to\infty}\int_0^1 f_n(x)\,dx\neq\int_0^1 f(x)\,dx.$$

6. Calculer $\lim_{n\to\infty}\int_0^1 f_n(x) dx$.