Feuille d'exercices numéro 6

Classes monotones et mesurabilit

Exercice 1 Si $\Omega = \{1, 2, 3\}$ trouver la tribu engendre par $\mathcal{E} = \{\{1\}\}$.

Exercice 2 En utilisant seulement $\mathcal{B}(\mathbb{R}) = \sigma(\{]a, b[, a < b \in \mathbb{R}\})$, montrer que

$$\mathcal{B}(\mathbb{R}) = \sigma\Big(\big\{]-\infty,a], a \in \mathbb{R}\big\}\Big) = \sigma\Big(\big\{[a,+\infty[,a \in \mathbb{R}]\big\}\Big).$$

- 1. En dduire que deux mesures μ, ν sur $\mathcal{B}(\mathbb{R})$ telles que $\mu(]-\infty, a]) = \nu(]-\infty, a]) < \infty$ pour tout $a \in \mathbb{R}$ sont gales (i.e. $\forall A \in \mathcal{B}(\mathbb{R}), \mu(A) = \nu(A)$).
- 2. Soient $\mathcal{T} = \sigma(\mathcal{E})$ et μ_1 et μ_2 des mesures sur \mathcal{T} telles que $\mu_1(A) = \mu_2(A)$ pour tous $A \in \mathcal{E}$. Est-ce que $\mu_1 = \mu_2$?

Exercice 3 Prouver ou rfuter les assertions suivantes :

- 1. Une partie d'un ensemble ngligeable est ngligeable.
- 2. Une union au plus dnombrable d'ensembles ngligeables est ngligeable.
- 3. Une union d'ensembles ngligeables est ngligeable.

Thormes de Fubini et mesures produits

Exercice 4 Soit $f \geq 0$ une fonction mesurable positive μ une mesure σ -finie sur (Ω, \mathcal{T}) , montrer que pour $p \in]0, \infty[$:

$$\int f^p d\mu = \int_0^\infty pt^{p-1}\mu(\{\omega : f(\omega) > t\})dt.$$

Exercice 5 On consider le domaine $\Delta \subseteq \mathbb{R}^2$ dlimit par les droites y = 0, y = 1, y = 2 - x et y = 1 + x. Calculer $\iint_{\Delta} xy dx dy$.

Exercice 6 Calculer $\iint_D (x+y)e^{-(x+y)}dxdy$, o

$$D = \{(x, y) \in \mathbb{R}^2 \colon 0 \le x, \ 0 \le y, \ x + y \le 1\}.$$

Exercice 7 Pour $(x,y) \in [-1,1]^2$, on pose

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que les intgrales itres de f existent et sont gales.
- 2. La fonction f est-elle λ_2 -integrable sur $[-1,1]^2$?

Exercice 8 Soient ν la mesure de comptage sur \mathbb{Z} et $\rho = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ la mesure de Rademacher. Soit s(x,y) = x + y donnant une fonction $s : \mathbb{Z}^2 \to \mathbb{Z}$. Montrer que la mesure image par s de la mesure produit est $s_*(\nu \otimes \rho) = \nu$.

Exercice 9 Soit
$$D = [0,1]^2$$
. Calculer $\iint_D \frac{dx \, dy}{(x+y+1)^2}$ et $\iint_D \frac{dx \, dy}{(x+y)^2}$.

Exercice 10 Soient f, g des fonctions mesurables positives sur \mathbb{R} . On rappelle que $||f||_1 = \int_{\mathbb{R}} |f(x)| d\lambda(x)$. On dfinit la convolution de f, g par :

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y)d\lambda(y) \in [0, +\infty].$$

- 1. Montrer que f * g est, mesurable et que $||f * g||_1 = ||f||_1 ||g||_1$.
- 2. Montrer que la dfinition de f * g s'tend pour presque tout x aux $f, g \in L^1(\mathbb{R}, d\lambda)$, que $f * g \in L^1(\mathbb{R}, d\lambda)$ et $||f * g||_1 \leq ||f||_1 ||g||_1$.
- 3. Montrer que pour f, g, h toutes mesurables positives ou toutes intgrables, alors f * (g * h) = (f * g) * h.

Changements de variables

Exercice 11 Soit D = B((0,1),1) dans le plan. Calculer $\iint_D (x^2 + y^2) dx dy$.

Exercice 12 Soit $B = \{(x,y) \in \mathbb{R}^2 : (x^2 + y^2) < 9\}$. Justifier que l'intgrale $\iint_B \frac{1}{(x^2 + y^2)^{2/3}} dxdy$ est convergente et donner sa valeur.

Exercice 13 Soit $D = \{(x, y) \in \mathbb{R}^2 : (x^2 + y^2)^2 < xy\}$. Calculer $\iint_D \sqrt{xy} \, dx \, dy$.

Exercice 14 Soit $D = \{(x, y) \in \mathbb{R}^2 : y^2 - 2x < 0, x^2 - 2y < 0\}$. Calculer $\iint_D e^{\frac{x^3 + y^3}{xy}} dx dy$. (Indication : poser $x = u^2v$ et $y = uv^2$)

Exercice 15 On pose $I = \int_0^{+\infty} e^{-t^2} dt$. Calculer $J = \iint_{]0,+\infty[^2} e^{-(x^2+y^2)} dx dy$ en fonction de I. Calculer J en utilisant les coordonnes polaires. En dduire la valeur de I.

Exercice 16 Calculer l'intgrale $\iiint_D \frac{z}{x^2 + y^2} dx \, dy \, dz$ o $D = \{(x, y, z) \in \mathbb{R}^3 \colon 1 < x^2 + y^2 < z^2 < 4\}.$

Exercice 17 Soit $D = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < x^2 + y^2 < 1\}$.

Justifier que l'intgrale $\iiint_D \ln(x^2 + y^2) \, dx \, dy \, dz$ est convergente et donner sa valeur.

Exercices plus difficiles.

Exercice 18 Ensemble triadique de Cantor et escalier du diable Soit $\Omega = [0, 1]$, muni de la restriction de la mesure de Lebesgue $\lambda \mathcal{B}([0, 1])$.

Si I = [a, b] est un intervalle compact de \mathbb{R} , on note $\widetilde{I} = \left[a, \frac{2a+b}{3}\right] \cup \left[\frac{a+2b}{3}, b\right] \subset I$ l'union d'intervalles obtenu en retirant de I l'intervalle ouvert qui a le mme centre que I et dont la longueur est un tiers de celle de I.

On dfinit par reurrence une suite d'ensembles $C_n \subset [0,1]$ (tous union finie d'intervalle ferms) et de fonctions croissantes linaires par morceau $F_n : [0,1] \to [0,1]$ par

- $-C_0 = [0,1]$ et $F_0(x) = x$.
- Si C_n s'crit comme une union finie d'intervalles ferms deux deux disjoints : $C_n = \bigcup_{m=1}^{N} I_m$ avec

$$I_m = [a_m, b_m]$$
alors C_{n+1} est d
fini comme $C_n = \bigcup_{m=1}^N \widetilde{I_m}$ et

$$F_{n+1}(x) = \begin{cases} F_n(x) & \text{si} & x \notin C_n \\ \frac{F_n(a_m) + F_n(b_m)}{2} & \text{si} & x \in I_m - \widetilde{I_m} = \left] \frac{2a_m + b_m}{3}, \frac{a_m + 2b_m}{3} \right[, \\ F_n(a_m) + (F_n(b_m) - F_n(a_m)) \frac{3(x - a_m)}{2(b_m - a_m)} & \text{si} & x \in [a_m, \frac{2a_m + b_m}{3}], \\ F_n(b_m) - (F_n(b_m) - F_n(a_m)) \frac{3(b_m - x)}{2(b_m - a_m)} & \text{si} & x \in \left[\frac{a_m + 2b_m}{3}, b_m\right]. \end{cases}$$

- 1. Montrer que C_n est compact et vrifie $C_{n+1} \subset C_n$.
- 2. On pose $U_n = [0, 1] C_n$. Montrer que C_n est une union de 2^n intervalles compacts deux deux disjoints et U_n est union de $2^n 1$ intervalles ouverts deux deux disjoints. Est-ce que C_n est borlien?
- 3. Calculer $\lambda(C_n)$, pour $n \in \mathbb{N}$.
- 4. Posons $C = \bigcap_{n \geq 0} C_n$. Montrer que C est non vide et calculer $\lambda(C)$. C s'appelle ensemble triadique de Cantor.
- 5. Montrer que la formule $\phi(A) = \sum_{n=0}^{\infty} \frac{21_A(n)}{3^{n+1}}$ dfinit une fonction injective $\phi: \mathcal{P}(\mathbb{N}) \to C$. En dduire que C est non-dnombrable.
- 6. Montrer que F_n est croissante pour tout n.
- 7. Montrer que F_n est lipschitzienne de constante $K \leq \frac{3^n}{2^n}$ et que pour tout $x \in [0,1]$,

$$|F_{n+1}(x) - F_n(x)| \le \frac{1}{3 \cdot 2^{n+1}}$$

En dduire que F_n converge uniformment sur [0,1] vers une fonction continue F.

- 8. Montrer que F(0) = 0 et F(1) = 1.
- 9. Posons U = [0,1] C. Si $I \subset U$ est un intervalle ouvert, montrer que F est constante sur I.
- 10. En dduire que F est drivable sur U, n'est pas constante, mais que F'(x) = 0 pour λ -presque tout $x \in [0,1]$. F s'appelle escalier du diable de Cantor.

Exercice 19 Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesur et $\{x\} \in \mathcal{T}$ pour tous $x \in \Omega$. On dit que μ est continue si $\mu(\{x\}) = 0$ } pour tout $x \in \Omega$ et on dit que μ est discrte s'il existe un ensemble D au plus dnombrable tel que $\mu(D^c) = 0$.

- 1. Montrer que l'quivalence des conditions suivantes :
 - (a) μ est continue;
 - (b) si A est une partie au plus dnombrable de Ω alors $\mu(A) = 0$;
 - (c) toute partie au plus dnombrable A de Ω est μ -ngligeable.
- 2. Montrer que μ est discrte si et seulement s'il existe une suite (a_n) de points de Ω et une suite $(c_n) \subset [0, \infty]$ telles que $\mu = \sum_n c_n \delta_{a_n}$.
- 3. Derire les espaces mesurs avec μ la fois discrte et continue.
- 4. (*) Supposons maintenant que μ est σ -finie. Montrer que μ s'crit de faon unique $\mu = \mu_c + \mu_d$, o μ_c est une mesure continue et μ_d est une mesure discrte.

Exercice 20 (*) Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesur et $\overline{\mathcal{T}} = \{A\Delta N : A \in \mathcal{T}, N \mu - \text{ngligeable}\}.$

- 1. Montrer que $\overline{\mathcal{T}}$ est une tribu. C'est la tribu μ -complte de \mathcal{T} .
- 2. Soit $\overline{\mu}: \overline{\mathcal{T}} \to \overline{\mathbb{R}}$, $A\Delta N \mapsto \mu(A)$, o $A \in \mathcal{T}$ et N est μ -ngligeable. Montrer que $\overline{\mu}$ est une mesure sur $\overline{\mathcal{T}}$. On obtient un espace mesur $(\Omega, \overline{\mathcal{T}}, \overline{\mu})$ appel l'espace mesur μ -complet de $(\Omega, \mathcal{T}, \mu)$.

Exercice 21 Le but de cet exercice est de montrer qu'une runion *arbitraire* d'ensembles mesurables n'est pas forcment un ensemble mesurable. Soit

 $\mathcal{T} = \{ A \subset \mathbb{R} : A \text{ au plus dnombrable ou } A^c \text{ au plus dnombrable } \}.$

- 1. Montrer que \mathcal{T} est une tribu.
- 2. Montrer que $\mathcal{T} \neq \mathcal{P}(\mathbb{R})$.
- 3. Conclure.

Exercice 22 On reprend la tribu \mathcal{T} de l'exercice prodent et on restreint la mesure de comptage ν sur \mathbb{R} \mathcal{T} . Montrer que $(\mathbb{R}, \mathcal{T}, \nu)$ est un espace mesur qui n'est pas σ -finie.

Exercice 23

- 1. Si $\Omega = \{1, 2, 3, 4\}$, trouver la tribu et la classe monotone engendrs par $\mathcal{E} = \{\{1, 2\}, \{1, 3\}\}$.
- 2. Trouver une classe monotone qui n'est pas une tribu.

Exercice 24

- 1. Si $\Omega = \mathbb{N}$ trouver la classe monotone engendre par $\mathcal{E} = \{\{1, n\} : n \geq 2\}$.
- 2. Trouver une classe monotone dnombrable qui n'est pas une tribu.