Feuille d'exercices numéro 6

Mesures et mesurabilité : (suite)

Exercice 1 Si $\Omega = \{0, 1, 2, 3\}$ trouver la tribu engendrée par $\mathcal{E} = \{\{3\}\}$ puis par $\mathcal{E} = \{\{1, 2\}, \{3\}\}$.

Exercice 2 En utilisant seulement $\mathcal{B}(\mathbb{R}) = \sigma(\{a, b[, a < b \in \mathbb{R}\}), \text{ montrer que}$

$$\mathcal{B}(\mathbb{R}) = \sigma(\{] - \infty, a], a \in \mathbb{R}\}) = \sigma(\{[a, +\infty[, a \in \mathbb{R}]\}).$$

- 1. En déduire que deux mesures μ , ν sur $\mathcal{B}(\mathbb{R})$ telles que $\mu(]-\infty$, $a]) = \nu(]-\infty$, $a]) < \infty$ pour tout $a \in \mathbb{R}$ sont égales (i.e. $\forall A \in \mathcal{B}(\mathbb{R}), \mu(A) = \nu(A)$).
- 2. Soient $\mathcal{T} = \sigma(\mathcal{E})$ et μ_1 et μ_2 des mesures sur \mathcal{T} telles que $\mu_1(A) = \mu_2(A)$ pour tous $A \in \mathcal{E}$. Est-ce que $\mu_1 = \mu_2$?

Exercice 3 Mesure de Dirac

Soit (Ω, \mathcal{T}) un espace mesurable quelconque et soit $x \in \Omega$. Pour tout $A \in \mathcal{T}$ on pose

$$\delta_{x}(A) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$

Montrer que δ_x est une mesure de probabilité.

Exercice 4 Mesure discrètes

Soit $(\Omega, \mathcal{P}(\Omega))$ un espace mesurable avec Ω au plus dénombrable. On fixe une famille de nombres $(\mu_{\omega})_{\omega \in \Omega} \in [0, +\infty]^{\Omega}$. On définit pour $A \subset \Omega$:

$$\mu(A) = \sum_{\omega \in A} \mu_{\omega}.$$

- 1. Montrer que μ est une mesure sur Ω .
- 2. Montrer que μ est une mesure finie (c'est à dire $\mu(\Omega) < +\infty$) si et seulement si la famille $(\mu_{\omega})_{\omega \in \Omega}$ est sommable.
- 3. Montrer que $\mu = \sum_{\omega \in \Omega} \mu_{\omega} \delta_{\omega}$.
- 4. Pour $h: \Omega \to [0, +\infty]$, montrer que

$$\int_{\Omega} h d\mu = \sum_{\omega \in \mathbf{A}} h(\omega) \mu_{\omega}.$$

Exercice 5 Une mesure image

Soit $\Omega = ([0, 1], \mathcal{B}([0, 1]), \lambda)$ et $f : \Omega \to \mathbb{R}$ définie par

$$f(x) = 1_{[0,2/3]}(x) + 1_{[0,1/3]}(x).$$

Montrer que f est borélienne, puis calculer la mesure image λ_f de λ par f. Rappel : c'est la mesure sur $\mathcal{B}(\mathbb{R})$ définie par $\lambda_f(B) = \lambda(f^{-1}(B))$.

Exercice 6 Prouver ou réfuter les assertions suivantes :

- 1. Une partie d'un ensemble négligeable est négligeable.
- 2. Une union au plus dénombrable d'ensembles négligeables est négligeable.
- 3. Une union d'ensembles négligeables est négligeable.

Théorèmes de Fubini et Changements de variables

Exercice 7 Soit $f \ge 0$ une fonction mesurable positive μ une mesure σ -finie sur (Ω, \mathcal{T}) , montrer que pour $p \in]0, \infty[$:

$$\int f^{p} d\mu = \int_{0}^{\infty} pt^{p-1} \mu(\{\omega : f(\omega) > t\}) dt.$$

Exercice 8 On considère le domaine $\Delta \subseteq \mathbb{R}^2$ délimité par les droites $y=0,\ y=1,\ y=2-x$ et y=1+x. Calculer $\iint_{\Delta} xydx\,dy$.

Exercice 9

Calculer
$$\iint_D (x+y)e^{-(x+y)}dxdy$$
, où
$$D=\{(x,y)\in\mathbb{R}^2:\ 0\le x,\ 0\le y,\ x+y\le 1\}.$$

Exercice 10 Soient ν la mesure de comptage sur \mathbb{Z} et $\rho = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ la **mesure de Rademacher**. Soit s(x, y) = x + y donnant une fonction $s : \mathbb{Z}^2 \to \mathbb{Z}$. Montrer que la mesure image par s de la mesure produit est $s_*(\nu \otimes \rho) = \nu$.

Exercice 11 Soient f, g des fonctions mesurables positives sur \mathbb{R} . On rappelle que $||f||_1 = \int_{\mathbb{R}} |f(x)| d\lambda(x)$. On définit la convolution de f, g par :

$$f * g(x) = \int_{\mathbb{D}} f(x - y)g(y) d\lambda(y) \in [0, +\infty].$$

- 1. Montrer que f * g est, mesurable et que $||f * g||_1 = ||f||_1 ||g||_1$.
- 2. Montrer que la définition de f*g s'étend pour presque tout x aux $f, g \in L^1(\mathbb{R}, d\lambda)$, que $f*g \in L^1(\mathbb{R}, d\lambda)$ et $||f*g||_1 < ||f||_1 ||g||_1$.

Exercice 12

Soit
$$D = B((0, 1), 1)$$
 dans le plan. Calculer $\iint_D (x^2 + y^2) dx dy$.

Espaces L^p

Exercice 13

Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et $f \in L^{\infty}(\Omega, \mu)$, montrer que $|f| \leq ||f||_{\infty}$ μ -presque partout.

Exercice 14 Soit
$$f(x, y) = \frac{1}{x^2 + y^2} \mathbf{1}_{[0,1]} (x^2 + y^2)$$
.

- 1. Montrer que $f \notin L^1(]0, 1[^2, \lambda_2)$. (Indication, on pourra utiliser un changement de variable en coordonnées polaires).
- 2. Montrer que $\sqrt{f} \in L^1(]0, 1[^2, \lambda_2)$ et calculer $||\sqrt{f}||_1$.
- 3. En déduire que $L^1(]0,1[^2,\lambda_2)$ n'est pas inclus dans $L^2(]0,1[^2,\lambda_2)$.

Exercice 15 Soient $1 \le p < q \le +\infty$. On rappelle que $\ell^p(\mathbb{N})$ est l'espace vectorielle des séries de puissance p sommable et qu'il coïncide avec $\ell^p(\mathbb{N}) = L^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ pour la mesure de comptage ν .

- 1. Soit $u_n = \frac{1}{(n+1)^{\alpha}}$. Pour quel α a-t-on $u_n \in \ell^p(\mathbb{N})$? En déduire que $\ell^q(\mathbb{N}) \not\subset \ell^p(\mathbb{N})$.
- 2. Soit v_n une suite telle que pour tout n, $|v_n| \le 1$, montrer que

$$\sum_{n=0}^{\infty} |v_n|^q \leq \sum_{n=0}^{\infty} |v_n|^p.$$

- 3. Montrer que la boule unité de $\ell^p(\mathbb{N})$ est inclus dans la boule unité de $\ell^q(\mathbb{N})$.
- 4. Montrer que $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$, et pour tout $v \in \ell^p(\mathbb{N}) ||v||_q \leq ||v||_p$.

Exercice 16 Soient $1 \le p < q \le +\infty$, λ la mesure de Lebesgue.

- 1. Montrer que $L^q(]0,1], \lambda)$ est un sous-espace de $L^p(]0,1], \lambda)$.
- 2. Soit $f_{\alpha}(x) = \frac{1}{x^{\alpha}}$. Pour quel $\alpha > 0$ a-t-on $f \in L^{p}(]0, 1], \lambda)$? En déduire que $L^{q}(]0, 1], \lambda)$ est un sous-espace strict de $L^{p}(]0, 1], \lambda)$.
- 3. Soit $g_{\alpha}: \mathbb{R} \to \mathbb{R}$ définit par $g_{\alpha} = \frac{1}{(x+1)^{\alpha}} 1_{]0,+\infty[}(x)$. Pour quel α a-t-on $g_{\alpha} \in L^{p}(\mathbb{R}, \lambda)$?
- 4. Peut-on comparer pour l'inclusion $L^q(\mathbb{R},\lambda)$ et $L^p(\mathbb{R},\lambda)$? (justifier)

Exercices plus difficiles.

Exercice 17 Ensemble triadique de Cantor et escalier du diable Soit $\Omega = [0, 1]$, muni de la restriction de la mesure de Lebesgue λ à $\mathcal{B}([0, 1])$.

Si I=[a,b] est un intervalle compact de \mathbb{R} , on note $\widetilde{I}=\left[a,\frac{2\,a+b}{3}\right]\cup\left[\frac{a+2\,b}{3},b\right]\subset I$ l'union d'intervalles obtenu en retirant de I l'intervalle ouvert qui a le même centre que I et dont la longueur est un tiers de celle de I.

On définit par récurrence une suite d'ensembles $C_n \subset [0,1]$ (tous union finie d'intervalle fermés) et de fonctions croissantes linéaires par morceau $F_n:[0,1] \to [0,1]$ par

- $C_0 = [0, 1] \text{ et } F_0(x) = x.$
- Si C_n s'écrit comme une union finie d'intervalles fermés deux à deux disjoints : $C_n = \bigcup_{m=1}^N I_m$ avec $I_m = [a_m, b_m]$ alors C_{n+1} est défini comme

$$C_n = \bigcup_{m=1}^N \widetilde{I_m}$$
 et

$$F_{n+1}(x) = \begin{cases} F_n(x) & \text{si} & x \notin C_n \\ \frac{F_n(a_m) + F_n(b_m)}{2} & \text{si} & x \in I_m - \widetilde{I_m} = \left] \frac{2a_m + b_m}{3}, \frac{a_m + 2b_m}{3} \right[, \\ F_n(a_m) + (F_n(b_m) - F_n(a_m)) \frac{3(x - a_m)}{2(b_m - a_m)} & \text{si} & x \in [a_m, \frac{2a_m + b_m}{3}], \\ F_n(b_m) - (F_n(b_m) - F_n(a_m)) \frac{3(b_m - x)}{2(b_m - a_m)} & \text{si} & x \in \left[\frac{a_m + 2b_m}{3}, b_m\right]. \end{cases}$$

- 1. Montrer que C_n est compact et vérifie $C_{n+1} \subset C_n$.
- 2. On pose $U_n = [0, 1] C_n$. Montrer que C_n est une union de 2^n intervalles compacts deux à deux disjoints et U_n est union de $2^n 1$ intervalles ouverts deux à deux disjoints. Est-ce que C_n est borélien?
- 3. Calculer $\lambda(C_n)$, pour $n \in \mathbb{N}$.
- 4. Posons $C = \bigcap_{n \geq 0} C_n$. Montrer que C est non vide et calculer $\lambda(C)$. C s'appelle ensemble triadique de Cantor.
- 5. Montrer que la formule $\phi(A) = \sum_{n=0}^{\infty} \frac{21_A(n)}{3^{n+1}}$ définit une fonction injective $\phi: \mathcal{P}(\mathbb{N}) \to C$. En déduire que C est non-dénombrable.
- 6. Montrer que F_n est croissante pour tout n.
- 7. Montrer que F_n est lipschitzienne de constante $K \leq \frac{3^n}{2^n}$ et que pour tout $x \in [0, 1]$,

$$|F_{n+1}(x) - F_n(x)| \le \frac{1}{3 \cdot 2^{n+1}}$$

En déduire que F_n converge uniformément sur [0,1] vers une fonction continue F.

- 8. Montrer que F(0) = 0 et F(1) = 1.
- 9. Posons U = [0, 1] C. Si $I \subset U$ est un intervalle ouvert, montrer que F est constante sur I.
- 10. En déduire que F est dérivable sur U, n'est pas constante, mais que F'(x) = 0 pour λ -presque tout $x \in [0, 1]$. F s'appelle **escalier du diable de Cantor**.

Exercices supplémentaires.

Exercice 18 Pour $(x, y) \in [-1, 1]^2$, on pose

$$f(x, y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que les intégrales itérées de f existent et sont égales.
- 2. La fonction f est-elle λ_2 -intégrable sur $[-1, 1]^2$?

Exercice 19 Soit
$$D = [0, 1]^2$$
. Calculer $\iint_D \frac{dx \, dy}{(x+y+1)^2}$ et $\iint_D \frac{dx \, dy}{(x+y)^2}$.

Exercice 20 Soit $B = \{(x, y) \in \mathbb{R}^2 : (x^2 + y^2) < 9\}$. Justifier que l'intégrale $\iint_B \frac{1}{(x^2 + y^2)^{2/3}} \, dx \, dy \text{ est convergente et donner sa valeur.}$

Exercice 21 Soit
$$D = \{(x, y) \in \mathbb{R}^2 : (x^2 + y^2)^2 < xy\}$$
. Calculer $\iint_D \sqrt{xy} \, dx \, dy$.

Exercice 22 Soit
$$D = \{(x, y) \in \mathbb{R}^2 : y^2 - 2x < 0, x^2 - 2y < 0\}$$
. Calculer
$$\iint_D e^{\frac{x^3 + y^3}{xy}} dx dy.$$

(Indication : poser $x = u^2v$ et $y = uv^2$)

Exercice 23 On pose $I = \int_0^{+\infty} e^{-t^2} dt$. Calculer $J = \iint_{]0,+\infty[^2} e^{-(x^2+y^2)} dx dy$ en fonction de I. Calculer J en utilisant les coordonnées polaires. En déduire la valeur de I.

Exercice 24 Calculer l'intégrale
$$\iiint_D \frac{z}{x^2 + y^2} dx dy dz$$

où
$$D = \{(x, y, z) \in \mathbb{R}^3 : 1 < x^2 + y^2 < z^2 < 4\}.$$

Exercice 25 Soit
$$D = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < x^2 + y^2 < 1\}.$$

Justifier que l'intégrale $\iiint_D \ln(x^2 + y^2) dx dy dz$ est convergente et donner sa valeur.

Exercices plus difficiles supplémentaires.

Exercice 26 Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et $\{x\} \in \mathcal{T}$ pour tous $x \in \Omega$. On dit que μ est *continue* si $\mu(\{x\}) = \emptyset$ pour tout $x \in \Omega$ et on dit que μ est *discrète* s'il existe un ensemble D au plus dénombrable tel que $\mu(D^c) = \emptyset$.

- 1. Montrer que l'équivalence des conditions suivantes :
 - a) μ est continue;
 - b) si A est une partie au plus dénombrable de Ω alors $\mu(A) = 0$;
 - c) toute partie au plus dénombrable A de Ω est μ -négligeable.
- 2. Montrer que μ est discrète si et seulement s'il existe une suite (a_n) de points de Ω et une suite $(c_n) \subset [0, \infty]$ telles que $\mu = \sum_n c_n \delta_{a_n}$.
- 3. Décrire les espaces mesurés avec μ à la fois discrète et continue.
- 4. (*) Supposons maintenant que μ est σ -finie. Montrer que μ s'écrit de façon unique $\mu = \mu_c + \mu_d$, où μ_c est une mesure continue et μ_d est une mesure discrète.

Exercice 27 (*) Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et $\overline{\mathcal{T}} = \{A\Delta N : A \in \mathcal{T}, N \mu - \text{négligeable}\}.$

- 1. Montrer que $\overline{\mathcal{T}}$ est une tribu. C'est la tribu μ -complétée de \mathcal{T} .
- 2. Soit $\overline{\mu}: \overline{\mathcal{T}} \to \overline{\mathbb{R}}$, $A \triangle N \mapsto \mu(A)$, où $A \in \mathcal{T}$ et N est μ -négligeable. Montrer que $\overline{\mu}$ est une mesure sur $\overline{\mathcal{T}}$. On obtient un espace mesuré $(\Omega, \overline{\mathcal{T}}, \overline{\mu})$ appelé *l'espace mesuré* μ -completé $de(\Omega, \mathcal{T}, \mu)$.

Exercice 28 Le but de cet exercice est de montrer qu'une réunion *arbitraire* d'ensembles mesurables n'est pas forcément un ensemble mesurable. Soit

$$\mathcal{T} = \{ A \subset \mathbb{R} : A \text{ au plus dénombrable } \text{ ou } A^c \text{ au plus dénombrable } \}.$$

- 1. Montrer que $\mathcal T$ est une tribu.
- 2. Montrer que $\mathcal{T} \neq \mathcal{P}(\mathbb{R})$.
- 3. Conclure.

Exercice 29 On reprend la tribu \mathcal{T} de l'exercice précédent et on restreint la mesure de comptage ν sur \mathbb{R} à \mathcal{T} . Montrer que $(\mathbb{R}, \mathcal{T}, \nu)$ est un espace mesuré qui n'est pas σ -finie.