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1. Introduction27

Renormalization in the Epstein–Glaser sense has played a fundamental role in the28

construction of perturbative quantum field theories on curved space times. Our aim29

in this paper is to present a pedagogical and new proof of the existence of covariant30

renormalization of Euclidean perturbative quantum field theories (pQFT) on closed31

Riemannian manifolds that is simple, and based on extension of distributions. The32

advantage of the Riemannian setting is that the propagators are only singular on33

the diagonals hence we do not need involved methods of microlocal analysis to34

construct the renormalization. The structure of the paper is first to describe a35

class of distributions having some moderate growth properties that generalize the36

example x−1Θ(x) discussed below and contain the singular Feynman amplitudes37

encountered in quantum field theory. Then, we construct some analytic tools which38

allow to extend these distributions as in the above example. We finally use these39

tools to give a short proof of renormalizability of pQFT on closed Riemannian40

manifolds in the sense of Epstein–Glaser, extending previous results [36, 37] of41
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the Nikolov and collaborators on flat space. Our approach builds on the works1

of [5, 6, 14, 17, 19, 20, 38, 39, 44].2

1.1. Statement of the main theorem3

1.1.1. Preliminary definitions4

In Minkowski pQFT, we are interested in making sense of time-ordered correlation5

functions of Wick powers of free fields denoted by6

〈T (:φi1 :(x1) . . . :φin :(xn))〉. (1.1)

These are objects living on the configuration space Mn that can be expressed7

formally, using the Feynman rules, as linear combinations of products of the form8 ∏
1≤i<j≤n

G(xi, xj)
nij , (1.2)

where nij ∈ N and G is the Green function, that will be recalled below for the9

Euclidean case. A product (1.2) is called Feynman amplitude and it is depicted pic-10

torially by a graph with n labeled vertices {1, . . . , n}, where the vertices i and j are11

connected by nij unoriented lines. In principle, since the product of distributions12

is not always well-defined, the previous product (1.2) only makes sense as a formal13

expression or as a smooth function defined on Mn outside of all the diagonals. In14

the latter case, the aim of pQFT could be reexpressed as trying to find a distribu-15

tion extending the mentioned smooth function defined outside of all diagonals and16

satisfying certain properties to be explained below.17

To illustrate the problem of extension of distributions, let us start with a simple18

example which is discussed in [40, Example 9, p. 140], and actually goes back to19

Hadamard. Denote by Θ the Heaviside function (i.e. the indicator function of R≥0)20

and consider the function x−1Θ(x), viewed as a distribution on D′(R\{0}). The21

linear map22

ϕ 7→
∫ ∞

0

dx
ϕ(x)

x
(1.3)

is clearly ill-defined for ϕ ∈ D(R) if ϕ(0) 6= 0 since the integral
∫∞

0
dx/x diverges.23

However, the integral
∫∞

0
dxx−1ϕ(x) converges if ϕ(0) = 0 and an elementary24

estimate shows that x−1Θ(x) defines a linear functional on the ideal xD(R) of D(R)25

formed by functions vanishing at 0. Note that the following expression26

lim
ε→0

∫ 1

ε

dx
(ϕ(x)− ϕ(0))

x
+

∫ ∞
1

dx
ϕ(x)

x
(1.4)

converges, for all ϕ ∈ D(R). One thus defines an extension of x−1Θ(x) by27

x−1
+ = lim

ε→0

∫ ∞
ε

dxx−1 + log(ε)δ, (1.5)

where we subtracted the distribution log(ε)δ supported at 0, which becomes28

singular when ε → 0, and it is called a local counterterm. The distributional29
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extension x−1
+ ∈D′(R), called the Hadamard finite part, extends the linear func-1

tional x−1Θ(x) ∈ (xD(R))′. This example shows the most elementary situation2

where we can extend a distribution by an additive renormalization.3

Going back to pQFT, we will work with the Euclidean formulation, i.e. where4

one uses Schwinger functions instead of the time-ordered correlation functions (1.1).5

In this case we consider a compact Riemannian manifold (M, g) and let −∆g be6

the corresponding Laplace–Beltrami operator. The Laplace operator has a discrete7

spectrum σ(−∆g) = {0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞}. We will denote by eλ the8

corresponding eigenfunction to λ ∈ σ(−∆g), i.e. solutions of the equation −∆geλ =9

λeλ. Let us recall the definition of the associated Green function.10

Definition 1.1. The series11 ∑
λ∈σ(−∆g)\{0}

λ−1eλ(x) � eλ(y) (1.6)

converges to a distribution G in D′(M×M). Furthermore, G defines a fundamental12

solution of the Laplace operator −∆g, i.e. if (u, f) ∈ C∞(M)2 is a solution of the13

elliptic equation ∆u = f , then u(x) =
∫
M
G(x, y)f(y)dv + k for some constant k,14

where dv is the Riemannian volume and G is symmetric with respect to permutation15

of the variables. We remark that G is a smooth function outside of the diagonal.16

1.1.2. Renormalization maps17

In order to encompass all products of the form (1.2), we will consider a slightly18

more general index set for the variables appearing in them.19

Definition 1.2. Let (M, g) be a Riemannian manifold. Given any finite subset I ⊆20

N of the positive integers, we denote by M I the configuration space of points labeled21

by I and for any subset J ⊆ I, DJ is the subset of M I given by {(xi)i∈I |xj =22

xk for some (j, k) ∈ J2, j 6= k}. As usual, if I = {1, . . . , n}, we shall denote M I23

simply by Mn. Define O(M I) to be the vector subspace of the space of smooth24

functions on M I\DI generated by25  ∏
(i<j)∈I2

G(xi, xj)
nij :nij ∈ N0

. (1.7)

We will now briefly explain the following notation that we will use in this paper.26

Assume we have a linear map R : E → D′(M), where E is a vector space and M27

is a smooth manifold. For any open subset U ⊆ M , let iU : U ↪→ M denote the28

inclusion map. By R|U , we mean the operator i∗UR :E → D′(U) obtained as the29

composition of R and the pull-back by iU , i.e. taking the restriction of the image30

of R to the open subset U .31

Now, following the recent work [36] by Nikolov, Stora and Todorov, we can give32

an elegant definition of renormalization scheme as follows.33
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Definition 1.3. Let (M, g) be a Riemannian manifold. A renormalization scheme1

is a sequence of (not necessarily continuous) linear maps RMI [g] : O(M I) →2

D′(M I), called renormalization maps, indexed by finite subsets I of N satisfying3

the following system of functional equations:4

(i) Given any t ∈ O(M I) and ϕ ∈ D(M I\DI), then5

〈RMI [g](t), ϕ〉 = 〈t, ϕ〉. (1.8)

This condition expresses the fact that RMI [g](t) is a distributional extension6

of t ∈ C∞(M I\DI).7

(ii) Given any pair of disjoint finite subsets I ′, I ′′ ⊆ N and a Feynman amplitude8

GI =
∏
i<j∈I2 G

nij (xi, xj) of the form given in (1.7) with I ′ t I ′′, we have9

RMI (GI)|CI′,I′′ =
(
RMI′ (GI′) �RMI′′ (GI′′)

)
GI′,I′′ |CI′,I′′ ,

where GI′ , GI′′ are defined as GI , GI′,I′′ =
∏

(i′<i′′)∈I′×I′′ G
nij (xi, xj) and10

CI′,I′′ =
{

(xi)i∈I ∈M I : xi′ 6= xi′′ for all (i′, i′′) ∈ I ′ × I ′′
}
.

This equation states that our renormalization map RMI [g] factorizes on some11

regions of the configuration space M I and translates the fact that renormal-12

ization must preserve the locality property.13

We are also interested in imposing the following covariance condition on the con-14

struction of the renormalization scheme with respect to the Riemannian metric g.15

It means that it only depends on the metric and not the chosen coordinates.16

(iii) Given any diffeomorphism Φ : N → M of closed manifolds, any Riemannian17

structure g on M , any finite set I ⊆ N and any t ∈ O(M I), then18

RNI [Φ∗g]
(
(ΦI)∗t

)
= (ΦI)∗

(
RMI [g](t)

)
, (1.9)

where ΦI :N I →M I is the diagonal map induced by Φ.19

Remark 1.4. By choosing a set of isomorphism representativesM in the groupoid20

category of closed Riemannian manifolds provided with isometries as morphisms, we21

see that, in order to satisfy the covariance condition (iii) in the previous definition,22

it suffices to construct the renormalization maps {RMI [g]}I satisfying (i) and (ii)23

and such that RMI [g] is equivariant under the action of the isometry group of24

(M, g), for each representative M ∈M.25

1.1.3. The main result of the paper : Renormalization as a problem of26

extensions of distributions27

One main ingredient of a Euclidean pQFT on some Riemannian manifold (M, g)28

is to find some solution {RMI [g]}I to the above system of functional equations.29

The main result of our paper, namely Theorem 6.5, gives the existence of such30

renormalization maps on a closed Riemannian manifold, based on the nice work [36].31
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Theorem 1.5 (Main Theorem). Let (M, g) be a smooth compact Riemannian1

manifold without boundary and G be the Green function of −∆g. Then, there exists2

a solution {RMI [g]}I to the system of functional equations of Definition 1.3 that is3

equivariant under the action of the isometry group of (M, g).4

1.1.4. Comparison to related work5

To our knowledge, one of the first rigorous results on the perturbative renormaliza-6

tion of the φ4 theory on curved Riemannian manifolds was given by Kopper and7

Müller (see [27]) and it is based on some implementation of the Wilson–Polchinsky8

equations to derive the renormalization group flow of the coupling constants. In9

his book [9] (see also [10]), Costello gives a different approach to the first problem.10

First, from any action functional of the form S(φ) =
∫
M
φ∆gφ+ Iint(φ), where ∆g11

is the Laplace–Beltrami operator and the interaction part Iint is at least cubic in12

φ, he defines a notion of effective field theory via the effective action13

Γε(χ) = ~ log

(∫
dµGε(φ)e

iS(φ+χ)
~

)
,

where dµGε is the Gaussian measure whose covariance is a regularized propagator14

Gε with Gε → G as ε → 0. He then proves that starting from any local action15

functional S, there is a local action functional SCTε so that the limit16

lim
ε→0

Γε(χ) = ~ log

(∫
dµGε(φ)e

i(S(φ+χ)+SCTε (φ+χ))

~

)
exists for every power of ~ (see [9, Theorems 9.3.1 and 10.1.1]). The key point is17

that SCTε might contain infinitely many counterterms and that the limit can always18

be defined even for theories that are not renormalizable in the classical sense.19

For quantum fields on curved Lorentzian spacetimes, a proof of the renormal-20

izability was first achieved by Brunetti and Fredenhagen in [5], and by Hollands21

and Wald in [19, 20]. They rely on the Epstein–Glaser approach, which reformu-22

lates renormalization as a problem of extension of distributions satisfying physical23

constraints such as causality. Recently, this method was revisited in the elegant24

paper [36], which discusses Epstein–Glaser renormalization in flat Minkowski space.25

Costello’s approach is similar to the above methods because they both deal with26

Feynman amplitudes in position space and make sense for all quantum field theories,27

even those that are not renormalizable in the classical sense.28

Our goal in this paper is to give a simple existence proof of the renormalizabil-29

ity of quantum field theories on arbitrary closed Riemannian manifolds, following30

the Epstein–Glaser philosophy. It thus gives an alternative approach to the one31

by Costello. To reach our goal, we will need to revisit some methods in analysis32

originally developed by Whitney in [47], and which were in turn improved by Mal-33

grange and  Lojasiewicz, to compare these techniques with the approach by scaling34

of Meyer in [33] and the first author in [11]. We will finally apply them to our35

renormalization problem.36
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In the mathematical literature, the idea to consider extendible distributions1

really goes back to  Lojasiewicz (see [28]), whereas tempered functions already2

appear in the work [29, 30] of Malgrange. However, the first general definition of a3

tempered distribution on any open set U in some manifold M is due to M. Kashi-4

wara: a distribution is tempered if it is extendible to U (see [22, Lemma 3.2, p. 332],5

or also [7]). By our Theorem 4.1, this will in turn imply that these distributions6

are in TM\∂U , i.e. they have moderate growth along ∂U . The previously mentioned7

work by Kashiwara was further extended in [16, 25, 26]. On the other hand, tem-8

pered functions and distributions were also recently studied in the context of real9

algebraic geometry in [1, 7] with applications to representation theory. A different10

approach to the extension problem in terms of scaling was developed by Meyer in11

his book [33]. His purpose was to study the singular behavior at given points of12

irregular functions with applications to multifractal analysis (see [23]).13

2. The General Problem of Extension of Distributions14

We recall that, given a smooth manifold M , C∞(M) (also denoted by E(M)) has a15

unique structure of Fréchet algebra (see [34, Theorem 14.2]), which can be described16

as follows. Let {K`}`∈N0
be a countable collection of compact subsets of M such17

that M = ∪`∈N0K
◦
` and K` is included in a chart (Ui` , φi`) of the atlas of M . For18

`,m ∈ N0, define19

p`,m(f) = sup
x∈φi` (K`)

sup
ᾱ∈Nn

0,≤m

∣∣∣∣∣2m ∂α(f ◦ φ−1
i`

)

∂xα
(x)

∣∣∣∣∣, (2.1)

where Nn0,≤m is the subset of Nn0 formed by the elements ᾱ = (α1, . . . , αn) such that20

|ᾱ| = α1 + · · · + αn ≤ m, and f ∈ C∞(M). This family of seminorms induces a21

structure of Fréchet algebra on C∞(M) (see [31, IV.4.(2)]). A similar construction22

tells us that Cm(M) (also denoted by Em(M)) is a Fréchet algebra, for any m ∈ N0.23

Given a compact subset K ⊆ M , we will denote by DK(M) the subspace of the24

LCS E(M) formed by the smooth functions whose compact support is included in25

K. Let D(M) be the vector subspace of E(M) formed by all smooth functions on26

M of compact support, and its usual locally convex topology, for which D(M) is27

an (LF)-space. If Ω ⊆ M is an open subset, D(Ω) will denote the subset of D(M)28

formed by the smooth functions whose compact support is included in Ω. Moreover,29

given a closed subset K ⊆ M , we will denote by DK(Ω) the vector subspace of30

D(Ω) formed by the smooth functions whose compact support is included in K.31

Since we will treat the case of Riemannian manifolds, there is a canonical iden-32

tification of LCS between C∞(M) and the space of 1-densities Vol(M), by means33

of the Riemannian density of M , and the same is true if the concerned objects have34

compact support. As a consequence, we can (and will) consider a distribution on35

a Riemannian manifold M to be a continuous linear functional of D(M). We will36

denote them by D′(M). We refer the reader to [21, Chap. 6], for details. Given a37

compact subset K ⊆ M , we will denote by D′K(M) the vector subspace of D′(M)38

1950017-6
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formed by distributions whose support is included in K. The vector subspace of1

D′(M) formed by all distributions of compact support is canonically identified with2

E ′(M). We also remark that the dual spaces considered previously are in principle3

provided with the strong topology, unless otherwise stated.4

2.1. An abstract characterization of the extension problem and a5

brief summary of the results6

In order to deal with the requirement (i) in Definition 1.3, we first investigate the7

following problem which has a simple formulation. Let M be a smooth manifold8

and Ω ⊆ M be an open subset. A distribution t ∈ D′(Ω) is extendible to M if and9

only if it belongs to the image of the restriction map10

D′(M)→ D′(Ω). (2.2)

As this map is not surjective, the previous extension problem of distributions is tan-11

tamount to explicitly determining the image of (2.2), that we are going to denote by12

T (Ω). It is a LCS with subspace topology of that of D′(Ω). Since (2.2) is clearly con-13

tinuous, its kernel D′M\Ω(M) is a closed subspace of D′(M). Moreover, D′M\Ω(M)14

is the space formed by all distributions t ∈ D′(M) satisfying that supp(t) ⊆M\Ω,15

so we get a sequence of LCS16

0→ D′M\Ω(M)→ D′(M)→ T (Ω)→ 0 (2.3)

such that the underlying short sequence of vector spaces is exact. By the First17

Isomorphism theorem, we see that there is a bijective continuous linear map from18

D′(M)/D′M\Ω(M) onto the subspace T (Ω) of D′(Ω) formed by the extendible dis-19

tributions. We remark that the previous map is not in general a topological isomor-20

phism, since the mapping (2.2) is not necessarily closed.21

Even though extendible distributions do not form a sheaf (cf. Remark 3.2), they22

satisfy the following nice property, due to  Lojasiewicz in the case M is the Euclidean23

space (see [28, Sec. 5, Proposition 1, p. 96]), and whose proof applies verbatim to24

this more general situation.25

Lemma 2.1. Let Ω ⊆M be an open set of a smooth manifold M, and let t ∈ D′(Ω)26

be a distribution. Then, t is extendible to M if and only if there is an open covering27

{Ωi}i∈I of M such that t|Ωi∩Ω is extendible to M, for all i ∈ I. One may even28

assume that Ωi is relatively compact, for all i ∈ I.29

We will introduce in Sec. 3.1 a natural growth condition on t ∈ D′(Ω) that30

measures the singular behavior of t near the boundary ∂Ω and that addresses31

the previous issue: if t satisfies the referred growth condition, then there exists a32

distribution t̄ ∈ D′(M) such that the restriction of t̄ to Ω coincides with t. Moreover,33

we will explicitly construct in Sec. 4.1 a linear map PΩ : T (Ω)→ D′(M) such that34

for all t ∈ T (Ω), PΩ(t)|Ω = t, and eventually give explicit formulas for PΩ. We will35

discuss the different possibilities for extension maps PΩ in case M = Rn which is36

the local case.37
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Our approach in the present paper combines the more traditional one in the1

mathematical physics literature where one tries to extend a distribution on M\X to2

M , where X is a closed submanifold and where the singularities of the distributions3

are measured in terms of the scaling degree by means of Euler vector fields (see4

[12]), and a more general approach where distributions are extended along closed5

subsets X and the singular behavior is measured by the distance function to X.6

Note that in general the notion of scaling in the transverse directions to X is not7

even well defined, which is not the case for the notion of moderate growth. Another8

advantage of the framework presented in our paper is its great flexibility, since we9

can extend directly Feynman amplitudes on the complement of all the diagonals in10

the configuration spaces, which thus involve stratified sets and not submanifolds.11

2.2. Some ideals associated to the extension of distributions12

2.2.1. Taylor decomposition13

Let X ⊆ M be a closed subset of M and m ∈ N0. Denote by Im+1
X (M) the closed14

ideal of Cm(M) formed by the functions satisfying that all their derivatives of order15

less than or equal to m vanish at any point of X. Then we have a short exact16

sequence of Fréchet spaces17

0→ Im+1
X (M)

ιm→ Cm(M)→ Em(X)→ 0, (2.4)

where Em(X) is precisely the Banach space of Whitney jets on X (see [30, Defini-18

tion 2.3, p. 3]). This short exact sequence has even a splitting of Fréchet spaces (see19

[30, p. 10] or [2, Theorem 2.3, p. 146]), where we recall that a short exact sequence20

of Fréchet spaces means that the sequence of underlying vector spaces is exact (see21

[32, p. 70]). Since (2.4) is an exact sequence of Fréchet spaces, the dual sequence of22

vector spaces23

0→ Em(X)′ → Cm(M)′
ι′m→ Im+1

X (M)′ → 0 (2.5)

is exact (see [32, Proposition 26.4, p. 308]).24

Definition 2.2. Let X be a closed subset of M . A Taylor decomposition of Cm(M)25

along X is a continuous projector Π : Cm(M) → Cm(M) with image Im+1
X (M).26

Equivalently, a Taylor decomposition of Cm(M) along X is given by a (continuous)27

splitting of (2.4).28

Remark 2.3. The reader can think of the Taylor decomposition of Cm(M) as a29

way to decompose a Cm function as a sum of a Taylor remainder in Im+1
X (M),30

which vanishes at order m on X, and a Taylor polynomial, which is some function31

in a fixed complement space of Im+1
X (M) in Cm(M) given by the kernel of Π. For32

example, if X = {x} is given by a single point in U ⊆ Rn, Em(X) is isomorphic to33

the space Rm[X1, ..., Xn] of abstract polynomials of degree less than or equal to m34

in n variables. In this case, we can choose the projector Π : Cm(U)→ Cm(U) such35

that Π(f) is the usual Taylor polynomial of f at x of degree m.36

1950017-8
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We will use the following proposition for classifying the possible extensions of1

an extendible distribution.2

Proposition 2.4. Let M = Rn and X ⊆ M be a closed subset. Then, given any3

m ∈ N0, there is a canonical bijection between4

(i) the space of Taylor decompositions of Cm(M) along X;5

(ii) the collection of closed subspaces B of Cm(M) such that Cm(M) = Im+1
X6

(M)⊕B;7

(iii) the space of continuous linear maps R from Im+1
X (M)′ to E ′m(M) such that8

ι′m ◦ R is the identity map of Im+1
X (M)′, where Im+1

X (M)′ and E ′m(M) are9

provided with the weak? topology.10

Moreover, any of these spaces is nonempty.11

Proof. The equivalence between conditions (i) and (ii) follows directly from the12

Open mapping theorem for Fréchet spaces (see [32, Theorem 24.30]), whereas13

the equivalence between conditions (i) and (iii) follows from the Bipolar theorem14

(see [32, Theorem 22.13]). Finally, the nonemptiness is a consequence of the Whit-15

ney extension theorem (see [30, p. 10] or [2, Theorem 2.3, p. 146]).16

A continuous linear map R from Im+1
X (M)′ to E ′m(M) such that ι′m ◦ R is the17

identity map of Im+1
X (M)′, where Im+1

X (M)′ and E ′m(M) are provided with the18

weak? topology, will be called a renormalization map of order m.19

Let I∞X (M) be the closed ideal of C∞(M) formed by all functions whose deriva-20

tives of all orders vanish at every point of X. This is a nuclear Fréchet space since21

it is a closed subspace of the nuclear Fréchet space C∞(M). We then define the22

Fréchet space E(X) as the quotient of C∞(M) by I∞X (M), i.e. we have the short23

exact sequence of Fréchet spaces24

0→ I∞X (M)→ C∞(M)→ E(X)→ 0. (2.6)

One can think of the space E(X) as some sort of ∞-jets in “the transverse direc-25

tions” to X.26

2.2.2. An abstract characterization of the extendible27

distributions of compact support28

We first remark that the strong dual of E(X) is canonically isomorphic to the29

closed subspace (I∞X (M))⊥ of the strong dual of C∞(M) given by the continuous30

functionals that vanish on I∞X (M) (see [32, Lemma 23.31]). Moreover, (I∞X (M))⊥31

coincides with the subspace C∞(M)′X of C∞(M)′ given by the distributions with32

compact support included in X (the inclusion (I∞X (M))⊥ ⊆ C∞(M)′X is trivial,33

whereas the other contention follows from [21, Theorem 2.3.3]). Hence, by taking the34

strong dual of the sequence (2.6) and taking into account the previous comments,35

we obtain the short sequence of (DNF) spaces (see [7, Appendix A], for a nice short

1950017-9
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exposition)1

0→ C∞(M)′X → C∞(M)′ → I∞X (M)′ → 0. (2.7)

We remark that the previous short sequence is exact for the underlying struc-2

tures of vector spaces (see [32, Proposition 26.4]). Hence, by the First Isomor-3

phism theorem, we conclude that there is a bijective continuous linear map from4

C∞(M)′/C∞(M)′X ' (I∞X (M))′ onto (I∞X (M))′. Furthermore, since C∞(M) is a5

Fréchet–Schwartz space, [32, Proposition 26.24], implies that this map is a topolog-6

ical isomorphism. If the manifold M is compact, then there is a morphism from the7

short exact sequence (2.7) of (DNF) to (2.3) such that the first two maps are topo-8

logical isomorphisms but the third map (from I∞X (M)′ to T (Ω)) is only bijective9

and continuous.10

Remark 2.5. When X is a submanifold of Rn, it is interesting to think of E(X)11

as smooth functions restricted to the formal neighborhood of X. We can think of12

the formal neighborhood of X as the topological dual of E(X) which is nothing but13

the space of distributions E ′X(Rn) with compact support contained in X.14

2.2.3. An explicit construction of Π for diagonals15

The aim of this subsubsection is to explicitly construct a set of renormalization16

maps that satisfy a certain covariance condition with respect to the choice of the17

Riemannian metric g on a manifold M . Therefore, we are led to construct a pro-18

jection map Π[M, g] in the particular case where the closed subset is the small19

diagonal dn = {x1 = · · · = xn} of the configuration space Mn, for every n ∈ N,20

such that Π[M, g] is covariant with respect to the Riemannian manifold (M, g),21

i.e. Π naturally induces a functor on the (groupoid) category of closed Riemannian22

manifolds provided with isometric maps (see (2.12)). Pick a Riemannian metric g23

on M and consider the (n−1)th fiber product En(M) = TM×M · · ·×M TM →M .24

It is a vector bundle over M whose fiber over x ∈ M is (TxM)n−1. An element25

of the bundle En(M) will be denoted by (x; v2, . . . , vn) where x lives on the base26

and v2, . . . , vn are in TxM . Using the metric g, for every x ∈ M , we can define an27

exponential map expx : Ux ⊆ TxM → M , which is a local diffeomorphism on a28

neighborhood Ux of 0 ∈ TxM . We thus define a map29

En : (x, v2, . . . , vn) ∈ U 7→
(
x, expx(v2), . . . , expx(vn)

)
∈Mn, (2.8)

which is a diffeomorphism on some neighborhood U ⊆ En(M) of the zero section.30

On the other hand, consider the commutative Lie group R>0 for the usual31

product of the real numbers, and the action σ of R>0 on En(M) given by scaling in32

the fibers, i.e. σ(λ, (x; v)) = (x;λv) ∈ En(M), where λ ∈ R>0 and (x; v) ∈ En(M).33

Hence, for every (x; v) ∈ En(M), σ(x;v) : R>0 → En(M) is smooth and one defines34

the vector field ρ : En(M)→ TEn(M), called the Euler vector field [12], by35

ρ(x; v) =
dσ(x;v)(λ)

dλ

∣∣∣∣
λ=1

.

1950017-10
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It is clear that ρ is complete and its global flow Φρ sends (t, (x; v)) ∈ R × En(M)1

to σ(et, (x; v)). Consider the subalgebra A of C∞(En(M)) given by all the smooth2

functions f that are polynomial on the fibers of En(M), i.e. f |En(M)x : En(M)x →3

R is a polynomial function, for all x ∈ M . Since the map σ(λ,−) gives an action4

of R>0 on A by automorphisms of algebras via f 7→ f ◦ σ(λ−1,−), it induces an5

action of the corresponding Lie algebra R on A by derivations. In particular, ρ acts6

by derivations on A. The next lemma shows that this action has spectrum included7

in N0, and its spectral decomposition is given by the Taylor expansion.8

Lemma 2.6 (Spectral Projectors). There is a decomposition A = ⊕k∈N0Ak9

such that Ak is the eigenspace of ρ associated with the eigenvalue k ∈ N0 and a10

sequence of spectral projectors {Πk}k∈N0
, where Πk : C∞(En(M))→ Ak such that,11

given any f ∈ C∞(En(M)) and any N ∈ N0,12

f −
N∑
k=0

Πk(f) ∈ IN+1
0 (En(M)),

where IN+1
0 (En(M)) is the ideal of functions all of whose derivatives of order less13

than or equal to N vanish along the zero section 0 ⊆ En(M).14

Note that the projectors Πk are algebraic analogues of spectral projectors15

appearing in [13], where the difference is that the Euler vector field ρ has critical16

set equal to a submanifold instead of singular points for Morse gradients and the17

discussion here is only local.18

Proof. Let etρ = Φρ(t) denote the one parameter group of diffeomorphisms gener-19

ated by the Euler field ρ. For every k ∈ N0, we define the projector Πk by20

Πk(f) =
1

k!

(
d

dλ

)k
(e− log(λ)ρ∗f)

∣∣∣
λ=1

. (2.9)

Observe that by its definition, Πk is global and intrinsic. Also by definition it is clear21

that ρΠk = kΠk. Now we will consider the action of Πk in some local trivialization22

of the bundle En(M) to prove that the remainder f−
∑N
k=0 Πk(f) really vanishes at23

order N along the zero section of En(M). Recall that En(M) is an Euclidean bundle24

whose metric depends only on the metric g since En(M) is a fiber product of (TM, g)25

viewed as an Euclidean bundle. Over some contractible open subset U , the bundle26

En(M)|U admits some orthonormal moving coframe (hix)
(n−1)d
i=1 , for x ∈ U . For any27

chart Φ : U → Ω ∈ Rd the map (x; v) ∈ En(M)|U 7→ (Φ(x), hix(v)) ∈ Ω × R(n−1)d28

trivializes the bundle over U and (hi)i can be thought of as linear coordinates in29

the fibers. Then the vector field ρ reads
∑
i h

i∂hi in this trivialization and the result30

follows from the usual Taylor expansion in the variables (hi)i. Hence by some slight31

notation abuse for f ∈ C∞(En(M)|U ), we can write in the above trivialization32

f(x, h) =
∑
|α|≤N

hα

α!

∂|α|f

∂hα
(x, 0) +O

(
|h|N+1

)
1950017-11
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and we thus find the explicit formula for the spectral projector1

Πk =
∑
|α|=k

|hα〉
α!
〈∂αh δ0(h)|, (2.10)

where2

Πk(f) =
∑
|α|=k

hα

α!

∂|α|f

∂hα
(x, 0) (2.11)

is homogeneous of degree k with respect to scaling, i.e. ρΠk = kΠk. Hence, given3

a contractible open subset U as before, every f compactly supported function f at4

x ∈ U has a Taylor expansion5

f −
N∑
k=0

Πk(f) ∈ IN+1
0 (En(M)|U ).

The result for f defined on the whole manifold M follows from the fact that6

ρ is globally defined on En(M) and by a classical argument using partitions of7

unity.8

By the above construction we also obtain the following result.9

Corollary 2.7. The projectors {Πk}k∈N0 constructed above only depend on the10

metric g.11

Proposition 2.8. Let (M, g) be a closed Riemannian manifold of dimension d, and12

let n ∈ N. For every m ∈ N0, there is a projector Π≤m[M, g] : C∞(Mn)→ C∞(Mn)13

such that Im(Π≤m[M, g]) ⊆ Im+1
dn

(Mn). Moreover, the construction of Π≤m[M, g]14

satisfies that15

Φ∗
(
Π≤m[M, g]ϕ

)
= Π≤m[N, g′](Φ∗ϕ), (2.12)

for every ϕ ∈ C∞(Mn) and every diffeomorphism Φ : (M, g) → (N, g′), where16

Φ∗ϕ ∈ C∞(Nn) is the obviously induced map.17

Proof. Assume that the injectivity radius of M is greater than ρ > 0 (see [24,18

Definition 1.4.6]). Let χ ∈ C∞c (R) be a smooth function such that χ = 1 if |t| ≤ ρ2/419

and χ = 0 if |t| ≥ ρ2. We denote by δ : M ×M → R≥0 the distance function on20

M ×M induced by the metric g, which is smooth on δ−1[0, ρ). On configuration21

space Mn, set δn(x1, . . . , xn) = δ2(x1, x2) + · · ·+ δ2(x1, xn). Then, set:22

Π≤m[M, g](ϕ) = χ(δn)(En)∗

(
E∗n (χ(δn)ϕ)−

m∑
k=0

Πk(E∗n (χ(δn)ϕ))

)

+
(
1− χ2(δn)

)
ϕ.

1950017-12
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It only depends on the metric g and the choice of test function χ, but not on the1

chosen coordinates on M or Mn.2

3. Distributions of Moderate Growth3

3.1. Generalities4

We introduce now one of the main notions of this work.5

Definition 3.1. LetM be a smooth manifold and let Ω ⊆M be an open subset. Set6

X = M\Ω. Pick any Riemannian metric g on M and let d be the distance function7

on M induced by g. A distribution t ∈ D′(Ω) has moderate growth (along X) if for8

every compact set K included in M , there are finite seminorms p`1,m1
, . . . , p`N ,mN9

and a pair of constants C, s ∈ R≥0 such that10

|t(ϕ)| ≤ C(1 + d(supp(ϕ), X)−s) sup
1≤i≤N

p`i,mi(ϕ), (3.1)

for all ϕ ∈ D(Ω) with support included in K. We denote by T (Ω) the set of11

distributions in D′(Ω) with moderate growth.12

Remark 3.2. Note that the mapping Ω 7→ T (Ω) clearly forms a separated presheaf13

on M . We remark however that it is not necessarily a sheaf. Moreover, taking into14

account that all metrics on M are locally equivalent, we see that T (Ω) is in fact15

independent of the choice of Riemannian metric g of M , so T (Ω) is well-defined.16

On the other hand, assume there is t̄ ∈ D′(M) and set t = t̄|Ω. Then, (3.1) is17

clearly satisfied with s = 0, so t is of moderate growth.18

The next result follows directly from Leibniz’s rule and a standard manipulation19

of upper bounds.20

Lemma 3.3. Let M be a smooth manifold and let Ω ⊆ M be an open subset. If21

t ∈ D′(Ω) is a distribution of moderate growth along M\Ω and f ∈ C∞(Ω) is a22

smooth function, then the distribution ft ∈ D′(Ω) also has moderate growth along23

M\Ω.24

3.2. The local case25

We will consider the following special situation for distributions (of moderate26

growth). All along this subsection M ⊆ Rn will denote an open subset, X ⊆ Rn will27

be a compact subset included in M and Ω = M\X. Set IX(M) to be the subset of28

E(M) formed by all smooth functions ϕ satisfying that29

supp(ϕ) ∩X = ∅. (3.2)

Note that IX(M) canonically includesD(Ω). The aim of this subsection is to provide30

an equivalent but simpler description of a distribution t ∈ D′(Ω) of moderate growth

1950017-13
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along X having compact support (see Proposition 3.6). In this case, we define1

‖ϕ‖Ym = supx∈Y,|α|≤m |∂αxϕ(x)|, for any subset Y ⊆ Ω and any smooth function2

defined on Ω.3

We first note that, by precisely the same argument as the one used to prove that4

the continuous dual of E(M) coincides with the vector subspace of D′(M) formed5

by the distributions of compact support, we have the following result.6

Fact 3.4. Let t ∈ D′(Ω) be a distribution with supp(t) compact in M . Then, t has7

moderate growth along X if and only if there are finite (C, s,m) ∈ R2
≥0 × N0 such8

that9

|t(ϕ)| ≤ C
(
1 + d

(
supp(ϕ), X

)−s)‖ϕ‖Ωm, (3.3)

for all ϕ ∈ IX(M).10

Given m ∈ N0 ∪ {∞}, we recall that Im+1
X (M) is the closed ideal of Cm(M)11

formed by all functions whose derivatives of order (strictly) less than m+ 1 vanish12

at every point of X. It has the subspace topology of Cm(M).13

We will need the following technical result.14

Lemma 3.5. Let Y ⊆ Rn be a compact subset and let (d,m) ∈ N2
0 be two nonnega-15

tive integers. Then, there is a family of functions χλ ∈ C∞(Rn,R≥0) parametrized16

by λ ∈ (0, 1] satisfying that χλ = 1 if d(x, Y ) ≤ λ/8, χλ = 0 if d(x, Y ) ≥ λ, and17

such that there exists a constant C̃ ≥ 0 satisfying that18

‖χλϕ‖Km ≤ C̃λd‖ϕ‖
K∩
{
d(x,Y )≤λ

}
m+d , (3.4)

for all K ⊆ Rn compact, λ ∈ (0, 1] and ϕ ∈ Im+d+1
Y (Rn), where the constant C̃19

does not depend on ϕ nor λ.20

Proof. Choose φ ∈ C∞(Rn,R≥0) such that
∫
Rn φ = 1, and φ = 0 if |x| ≥ 3/8.21

Then, set φλ(x) = λ−nφ(λ−1x), for all x ∈ Rn, and let αλ be the characteristic22

function of the set23 {
x ∈ Rn | d(x, Y ) ≤ λ

2

}
.

Define χλ to be the convolution product φλ ∗αλ. Hence χλ(x) = 1 if d(x, Y ) ≤ λ/8,24

and it equals 0 if d(x, Y ) ≥ λ. By Leibniz’s rule one has25

∂α(χλϕ)(x) =
∑
|k|≤|α|

(
α

k

)
∂kχλ(x)∂α−kϕ(x),

for every α such that |α| ≤ m. It suffices to estimate each term ∂kχλ∂
α−kϕ(x) of26

the above sum, where |k| ≤ |α| and x ∈ K. For any such multi-index k, there is27

Ck > 0 such that |∂kχλ(x)| ≤ Ck/λ
|k| for all x ∈ Rn\Y , and supp(∂kχλ) ⊆ {x ∈28

Rn | d(x, Y ) ≤ λ}. Therefore, for all ϕ ∈ Im+d+1
Y (Rn), x ∈ supp(∂kχλ∂

α−kϕ), and29
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y ∈ Y such that d(x, Y ) = |x− y|, we find that ∂α−kϕ ∈ I |k|+d+1 since it vanishes1

at y with order at least |k|+ d. As a consequence,2

∂α−kϕ(x) =
∑

|β|=|k|+d

(x− y)βRβ(x),

where the right-hand side is just the integral remainder in Taylor’s expansion of3

∂α−kϕ around y. It only depends on the jet of ϕ of order less than or equal to4

m+ d. Hence,5 ∣∣∂kχλ∂α−kϕ(x)
∣∣ ≤ Ck

λ|k|

∑
|β|=|k|+d+1

∣∣(x− y)βRβ(x)
∣∣.

Since Rβ only depends on the jet of ϕ of order less than or equal to m+ d, we see6

that7 ∣∣∂kχλ∂α−kϕ(x)
∣∣ ≤ Ckλd sup

x∈K,
d(x,Y )≤λ

∑
|β|=|k|+d

∣∣Rβ(x)
∣∣,

for all x ∈ K, and the conclusion easily follows.8

We provide now the main result of this subsection.9

Proposition 3.6. Let t ∈ D′(Ω) be a distribution having compact support (included10

in Ω). Then, t has moderate growth along X if and only if there are constants11

C ∈ R≥0 and m ∈ N0 such that12 ∣∣t(ϕ)
∣∣ ≤ C‖ϕ‖Ωm, (3.5)

for all ϕ ∈ IX(M).13

Proof. By Fact 3.4, t has moderate growth along X if and only if there exists14

(C, s,m) ∈ R2
≥0 × N0 such that15 ∣∣t(ϕ)

∣∣ ≤ C(1 + d
(

supp(ϕ), X
)−s)‖ϕ‖Ωm, (3.6)

for all ϕ ∈ IX(M).16

If s = 0, then there is nothing to prove. It remains to treat the case s > 0,17

which we suppose from now on. Since t has compact support, consider a smooth18

function f of compact support such that f(x) = 1 for all x in a neighborhood of19

supp(t). As t(fϕ) = t(ϕ), we may (and will) assume that ϕ has compact support.20

Our idea is to absorb the divergence in (3.6) by a dyadic decomposition, as follows.21

Let {χλ}λ∈(0,1] be the family of maps constructed in Lemma 3.5 for Y = X. Given22

any ϕ ∈ D(Ω) ∩ IX(M), there exists N ∈ N such that χ2−Nϕ = 0. In consequence,23

t(ϕ) = t((1− χ2−N )ϕ), and, in particular,24

t(ϕ) =

N−1∑
j=0

t
(
(χ2−j − χ2−j−1)ϕ

)
+ t
(
(1− χ1)ϕ

)
.
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We easily estimate t((1 − χ1)ϕ) by |t((1 − χ1)ϕ)| ≤ C‖ϕ‖Ωm, for all ϕ ∈ C∞(Rn),1

and for some constant C, since the support of 1 − χ1 does not meet X. Choose2

d ∈ N such that d− s > 0. Then,3

∣∣t(χ1ϕ)
∣∣ ≤ N−1∑

j=0

∣∣t((χ2−j − χ2−j−1)ϕ
)∣∣

≤ C

N−1∑
j=0

(
1 + d

(
supp

(
ϕ(χ2−j − χ2−j−1)

)
, X
)−s)‖(χ2−j − χ2−j−1)ϕ‖Ωm,

≤ C

N−1∑
j=0

(1 + 2s(j+4))(2−jd + 2−(j+1)d)C̃‖ϕ‖Ωm+d ≤ C ′‖ϕ‖Ωm+d,

where we have used the moderate growth property on the second inequality and4

Lemma 3.5 in the third, and5

C ′ = C̃C(1 + 2−d)

∞∑
j=0

2−jd(1 + 2(j+4)s) < +∞,

which is a convergent series, since d − s > 0, and it is independent of N and ϕ.6

Hence, we have proved that there exists C ′ ∈ R≥0 and m′ such that7 ∣∣t(ϕ)
∣∣ ≤ C ′‖ϕ‖Ωm′

for all ϕ ∈ D(Ω), where m′ = m + d and d is any integer such that d > s. The8

proposition is thus proved.9

We will also need the following result.10

Lemma 3.7. Assume M = Rn. Let t ∈ D′(Ω) be a distribution having compact11

support (included in Ω). If t has moderate growth along X, then there is a nonnega-12

tive integer m ∈ N0 such that t has a unique continuous extension tm ∈ (Im+1
X (M))′13

given by14

tm(ϕ) = lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ ϕ

)
, (3.7)

where ϕ ∈ Im+1
X (M), {χλ}λ∈(0,1] is the family of cut-off functions defined in15

Lemma 3.5, and φε is any mollifier. Furthermore, if ϕ ∈ Im+1
X (M) ∩ E(M), then16

tm(ϕ) = lim
λ→0

t
(
(1− χλ)ϕ

)
. (3.8)

Proof. Let m ∈ N0 be the nonnegative integer given by Proposition 3.6. It suffices17

to prove that Im+1
X (M) is the closure in Em(M) of the space IX(M) of smooth18

functions whose support does not meet X. Let φε be a smooth mollifier. By a19

classical regularization argument, we have limε→0(1 − χλ)φε ∗ ϕ = (1 − χλ)ϕ in20
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Em(M), for all ϕ ∈ Em(M). Moreover, limλ→0(1−χλ)ϕ→ ϕ in Im+1
X (M). Indeed,1

by Lemma 3.5 (see [30, p. 11]), we have2

‖χλϕ‖Km ≤ C̃‖ϕ‖
K∩
{
d(x,Ωc)≤λ

}
m → 0,

for all ϕ ∈ Im+1
X (M) and all compact subsets K ⊆ Rn, when λ → 0. Hence,3

ϕ = limλ→0(1−χλ)ϕ with respect to the topology induced by that of Em(M). This4

proves the claim.5

Remark 3.8. Taking into account that any distribution of compact support in an6

open subset M of Rn can be canonically regarded as a distribution of compact sup-7

port in the whole space by an extension by zero, it is clear that Fact 3.4 and Propo-8

sition 3.6 also hold if one replaces ϕ ∈ IX(M) by ϕ ∈ IX(Rn). Analogously, (3.8)9

of Lemma 3.7 also holds if one replaces ϕ ∈ Im+1
X (Rn) by ϕ ∈ Im+1

X (M).10

4. The Main Result: Extendible Distributions11

have Moderate Growth12

4.1. The statement13

We will now present the first main result of this paper, mentioned in Sec. 2.1.14

Theorem 4.1. Let M be a smooth manifold and Ω be an open subset of M . Set15

X = M\Ω. Then, the following are equivalent :16

(i) t ∈ D′(Ω) is extendible to M ;17

(ii) t ∈ D′(Ω) has moderate growth;18

(iii) there is a family of smooth functions {βλ}λ∈(0,1] ∈ C∞(M)(0,1] and a family19

of neighborhood Uλ of X in M such that20

(a) (βλ)|Uλ ≡ 0, for all λ ∈ (0, 1];21

(b) limλ→0 βλ(x) = 1, for all x ∈ Ω;22

and a family of distributions {cλ}λ∈(0,1] ∈ D′(M)(0,1] with support in X such23

that the limit24

lim
λ→0

(tβλ − cλ) (4.1)

exists in D′(M) and defines an extension of t, where we remark that tβλ is25

naturally regarded as a distribution in D′(M) by (a).26

Proof. It clear that (iii) implies (i), and (i) implies (ii) by Remark 3.2. It only27

remains to prove that (ii) implies (iii). This will be done in Sec. 4.2.28

Our moderate growth condition is weaker than the hypothesis of [22,29

Lemma 3.3]. Theorem 4.1 can also be viewed as a generalization of [33, Theo-30

rem 2.1, p. 48], and [5, Theorem 5.2, p. 645], which only treat the extension problem
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in the case of a point. Condition (iii) in the above theorem is a generalization of1

Hadamard’s definition of finite parts of distributions. This is beautifully explained2

in Meyer’s book [33] (see p. 45), and it also linked with the appearance of local3

counterterms in the renormalization of Feynman amplitudes in pQFT. After prov-4

ing this theorem, we will use it in the proof of Theorem 5.3, which states that the5

product of distributions in D′(M) with functions which are tempered in Ω (see Def-6

inition 5.1 for the algebraM(Ω) of tempered functions) is renormalizable. This also7

implies that the space of extendible distributions (or, equivalently, of distributions8

in T (Ω)) is a module over M(Ω) (see Theorem 5.4).9

Remark 4.2. Note that the map sending t ∈ T (Ω) to t̄ ∈ D′(M) given by (4.1)10

is linear. We will denote it by PΩ. Let G be any compact group acting on M such11

that the action preserves Ω and M\Ω. As, a consequence, the short exact sequence12

(2.3) is of G-modules. By using the standard Weyl’s unitarian trick (see [46, §5]),13

we also obtain a G-equivariant section PGΩ : T (Ω) → D′(M) of D′(M) → T (Ω).14

Indeed, setting PGΩ = (
∫
G
g ·PΩdg)/(

∫
G
dg), where dg is an invariant Haar measure15

on G, we obtain the purported G-equivariant section.16

4.2. Proof of Theorem 4.117

We will first prove a restricted version of Theorem 4.1, given by taking the manifold18

M to be an open subset of Rn.19

Proposition 4.3. Let M be an open subset of Rn, which is regarded as a manifold,20

and let t ∈ D′(Ω) be a distribution of compact support. Then, statements (i)–(iii)21

in Theorem 4.1 are equivalent.22

Proof. As explained in the proof of Theorem 4.1, the only nontrivial implication23

is (ii) ⇒ (iii). Since any distribution of compact support in an open subset of Rn24

can be canonically extended by zero to a distribution of compact support in Rn, we25

will assume without loss of generality that M = Rn. Let m ∈ N0 be the nonnegative26

integer given by Proposition 3.6, {χλ}λ∈(0,1] be the family of smooth functions27

considered in Lemma 3.7 for Y = X, and φε be a mollifier. Set βλ = 1− χλ. Note28

that βλ satisfies the conditions stated in (iii) of Theorem 4.1. By Lemma 3.7, t has29

a unique continuous extension tm ∈ Im+1
X (M)′ given by30

tm(ϕ) = lim
λ→0

lim
ε→0

t((1− χλ)φε ∗ ϕ), (4.2)

where ϕ ∈ Im+1
X (M).31

As recalled in Proposition 2.4, the short exact sequence (2.4) has a continuous32

splitting, so there is a continuous retraction Im : Cm(Rn) → Im+1
X (Rn) of the33

inclusion Im+1
X (Rn) → Cm(Rn). Set B = Ker(Im) and Pm : Cm(Rn) → B be the34

continuous linear map given by Pm = idCm(Rn)− Im. For any ϕ ∈ Cm(Rn), we now
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define1

t̄m(ϕ) = lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ Im(ϕ)

)
= lim

λ→0
lim
ε→0

t
(
(1− χλ)φε ∗ ϕ

)
− lim
λ→0

lim
ε→0

t
(
(1− χλ)φε ∗ Pm(ϕ)

)
. (4.3)

Set2

cλ(ϕ) = lim
ε→0

t
(
(1− χλ)φε ∗ Pm(ϕ)

)
,

for all ϕ ∈ Cm(Rn). This defines a family of distributions {cλ}λ∈(0,1] of compact3

support included in X. It is now clear that (4.3) is tantamount to (4.1), and the4

proposition follows.5

Proof of Theorem 4.1 from Proposition 4.3. Choose a locally finite cover6

of M by relatively compact open charts {(Ui, φi)}i∈I and a subordinated smooth7

partition of unity {ϕi}i∈I , where Ki = supp(ϕi) is a compact subset of Ui. Define8

Vi = φi(Ui) and Yi = φi(X ∩Ki). Then Vi is an open subset of Rn, Yi is a compact9

subset of Vi, and ti = (φi)∗(tϕi) ∈ D′(Vi\Yi) is a distribution of moderate growth10

along Yi. By Proposition 4.3, for each i ∈ I, there exists a family of smooth functions11

{βi,λ}λ∈(0,1] ∈ C∞(Vi)
(0,1] and a family of neighborhood Ui,λ of Yi in Vi such that12

(a) (βi,λ)|Ui,λ ≡ 0, for all λ ∈ (0, 1];13

(b) limλ→0 βi,λ(x) = 1, for all x ∈ Vi;14

and a family of distributions {ci,λ}λ∈(0,1] ∈ D′(Vi)(0,1] with support in Yi such that15

the limit16

lim
λ→0

(
tiβi,λ − ci,λ

)
(4.4)

exists in D′(Vi) and defines an extension t̄i of ti. Define17

βλ =
∑
i∈I

ϕi(βi,λ ◦ φi) ∈ C∞(M)

and18

cλ =
∑
i∈I

(φ−1
i )∗(ci,λ) ∈ E ′(M).

We recall that the last sum is well defined for it is locally finite and each summand19

is a distribution of compact support, so it is canonically extended by zero to a20

distribution of compact support in M . Moreover, the support of cλ is included in X,21

for each summand satisfies that condition. Then, (iii) is satisfied, and the theorem22

is proved.23

Remark 4.4. The divergences of the first term in the third member of (4.3) come24

from the fact that ϕ /∈ Im+1
X (Rn). However, these divergences are local in the sense25

they can be subtracted by the counterterm given by the last term of (4.3), which
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becomes singular when λ → 0, and only depend on the restriction to X of the1

m-jets of ϕ. Indeed, the fact that ϕ vanishes near X implies that, if ϕ ∈ Im+1
X (Rn),2

then Pmϕ = 0. We remark that the family of distributions {cλ}λ are exactly the3

counterterms that appear in the renormalization procedure in QFT.4

4.3. The ambiguity group5

Define the ambiguity group Gm of order m ∈ N0 as the collection of linear, continu-6

ous, bijective maps from Cm(Rn) to itself preserving Im+1
X (Rn). Note that g ∈ Gm7

implies g−1 is continuous by the Open mapping theorem, so Gm is a group. LetR be8

the renormalization map corresponding to a retraction Im : Cm(Rn)→ Im+1
X (Rn)9

of the inclusion Im+1
X (Rn) → Cm(Rn). In other words, R is the continuous dual10

of Im. The group Gm naturally acts on the space of renormalization maps. Indeed,11

given g ∈ Gm, t ∈ Im+1
X (Rn)′ and ϕ ∈ Cm(Rn), define (g.R)(t)(ϕ) = R(t)(g(ϕ)) =12

t(Im ◦ g(ϕ)).13

5. Renormalized Products14

5.1. Generalities15

As explained in the introduction, in pQFT we need to renormalize products of16

Green functions. Therefore we usually need to control the behavior of products of17

distributions with smooth functions that are singular along some closed sets.18

Definition 5.1. Let Ω ⊆ Rn be an open subset. A function f ∈ C∞(Ω) is said to19

be tempered if for every compact K ⊆ Rn and every m ∈ N0, there exist C and s20

in R≥0 such that21

sup
|α|≤m

∣∣∂αf(x)
∣∣ ≤ C(1 + d(x,Ωc)−s

)
, (5.1)

for all x ∈ K ∩ Ω. The set of all tempered functions on Ω will be denoted by22

M(Ω,Rn) ⊆ C∞(Ω).23

Note that tempered functions form a subalgebra of C∞(Ω) by Leibniz’s rule.24

It is immediate that this definition can be generalized to any open subset Ω of a25

smooth manifold M .26

Proposition 5.2. Let Ω ⊆ Rn be an open subset. Consider t ∈ T (Ω) and f ∈27

C∞(Ω) satisfying the following conditions:28

(a) there exists (C, s1) ∈ R2
≥0 such that29 ∣∣t(ϕ)
∣∣ ≤ C(1 + d(supp(ϕ),Ωc)−s1)‖ϕ‖Km,

for all ϕ ∈ D(Ω);30

(b) there exists (Cm, s2) ∈ R2
≥0 such that31

sup
|α|≤m

∣∣∂αf(x)
∣∣ ≤ Cm(1 + d(x,Ωc)−s2

)
,
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for all x ∈ K ∩ Ω.1

Then, there is C ′ > 0 such that2 ∣∣ft(ϕ)
∣∣ ≤ C ′(1 + d(supp(ϕ),Ωc)−(s1+s2))‖ϕ‖Km, (5.2)

for all ϕ ∈ D(Ω).3

Proof. The claim follows from the inequalities4 ∣∣ft(ϕ)
∣∣ ≤ C(1 + d(supp(ϕ),Ωc)−s1)‖fϕ‖Km

≤ CCm2mn(1 + d(supp(ϕ), X)−s1)(1 + d(supp(ϕ),Ωc)−s2)‖ϕ‖Km

≤ 4CCm2mn︸ ︷︷ ︸
C′

(1 + d(supp(ϕ),Ωc)−(s1+s2))‖ϕ‖Km,

for all ϕ ∈ D(Ω).5

Theorem 5.3. Let M be a manifold and Ω ⊆ M be an open subset. For all f ∈6

M(Ω) and all t ∈ D′(M), there exists a distribution R(ft) ∈ D′(M) which coincides7

with the regular product ft in Ω.8

Proof. By a classical argument on partitions of unity (as the one used in the proof9

of Theorem 4.1), we may reduce to the case where Ω is an open subset of a relatively10

compact open set M ⊆ Rn. Moreover, we may even assume that f ∈ M(Ω) and11

t ∈ D′(Ω) is a distribution of compact support included in Ω, so it canonically12

extends to t ∈ E ′(Rn). By Proposition 4.3, it suffices to prove that ft has moderate13

growth, which is a consequence of the previous proposition.14

Example. Our result shares some similarities with [33, Theorems 4.2 and 4.3,15

pp. 83–85], where Meyer renormalizes the product of distributions Sγt at a point16

x0 ∈ Rn, where Sγ(x) = fp |x − x0|γ is the Hadamard finite part of |x − x0|γ , t17

is some kind of weakly homogeneous distribution of degree s at x0 and s + γ ∈18

R\{−n − m : m ∈ N0}. He shows that the renormalized product Sγt is locally19

weakly homogeneous of degree s+ γ at x0.20

Proposition 4.3 gives the following direct consequence of Theorem 5.3.21

Corollary 5.4. T (Ω) is a M(Ω)-module.22

This was also proved by Malgrange (see [29, Proposition 1, p. 4]).23

5.2. Gluing properties24

The following property plays a central role in our approach to renormalization à la25

Epstein–Glaser and it allows to avoid the use of partitions of unity.26
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Definition 5.5. Let X and Y be two closed sets of an open set U of the Euclidean1

space Rn. They are said to be regularly situated (in U) if given any x0 ∈ X ∩ Y2

there exist a neighborhood W of x0 and constants C > 0 and m ∈ N such that3

d(x,X) + d(x, Y ) ≥ Cd(x,X ∩ Y )m, (5.3)

for all x ∈W .4

More generally, two closed sets of a manifold M of dimension n are called reg-5

ularly situated if there is an atlas {(Ui, φi)}i∈I of M such that φi(X ∩ Ui) and6

φi(Y ∩ Ui) are regularly situated in Rn, for all i ∈ I.7

Finally, we will say that a finite family {Vj}j∈J of open sets of a manifold M8

are regularly good if for all nonempty subsets J ′, J ′′ ⊆ J such that J ′ ∩ J ′′ = ∅,9

∂(∪j∈J′Vj)∪∂(∪j∈J′∪J′′Vj) and ∂(∪j∈J′′Vj)∪∂(∪j∈J′∪J′′Vj) are regularly situated.10

The following result is due to  Lojasiewicz in the case of bounded open sets in11

the Euclidean space (see [28, Sec. 5, Proposition 6, p. 98]).12

Proposition 5.6. Let U and V be two regularly good open subsets of a manifold13

M of dimension n, i.e. such that X = ∂U ∪ ∂(U ∪ V ) and Y = ∂V ∪ ∂(U ∪ V ) are14

regularly situated. Then the short sequence of vector spaces15

0→ T (U ∪ V )
ι→ T (U)⊕ T (V )

p→ T (U ∩ V )→ 0

is exact, where ι(u) = (u|U , u|V ) and p(v, w) = v|U∩V − w|U∩V , for all u ∈ T16

(U ∪ V ), v ∈ T (U) and w ∈ T (V ).17

Proof. Let (Ui, φi)i∈I be a locally finite atlas of M such that φi(X ∩ Ui) and18

φi(Y ∩ Ui) are regularly situated in Rn, for all i ∈ I. By Lemma 2.1, it suffices19

to show that t|Ui ∈ T ((U ∪ V ) ∩ Ui), for all i ∈ I. Hence, by replacing U by20

φi(U ∩ Ui), V by φi(V ∩ Ui) and t|Ui by φ∗i (t|Ui), we might assume that U and V21

are open subsets of Rn and t is a distribution on an open set of Rn including U and22

V . The definition of X and Y being regularly situated is clearly equivalent to the23

definition that ∂U and ∂V are regularly separated by ∂(U ∪ V ) (for the definition,24

see [28, Sec. 3, p. 91]). By [28, Sec. 5, Proposition 6, p. 98], t ∈ T (U ∪ V ), and the25

proposition follows.26

We will now recall a result showing that the regularly situated hypothesis is fairly27

general. For the definition of semianalytic and subanalytic sets of a real analytic28

manifold, we refer the reader to [3, Definitions 2.1 and 3.1], respectively. We only29

remark that any semianalytic set is clearly subanalytic, any finite intersection and30

finite union of a subanalytic sets is again subanalytic, as well as the complement31

and the closure of any subanalytic set.32

The local version of the next result, where M is an open subset of Rn, can33

be found in [3, Corollary 6.7]. The general version follows from observing that34

Definition 5.5 is of local nature.35

Proposition 5.7. Let M be an analytic manifold, and let X and Y be two closed36

subanalytic subsets of M . Then, X and Y are regularly situated.37
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6. Renormalization of Feynman Amplitudes in Euclidean1

Quantum Field Theories: The Proof of Theorem 1.52

6.1. Feynman amplitudes are tempered3

We will give in this section the main application of our extension techniques: the4

proof of Theorem 1.5. Our approach to renormalization follows the philosophy of5

Brunetti and Fredenhagen in [4–6], and Nikolov, Stora and Todorov in [36], which6

goes back to the papers [14, 15]. It is essentially based on the concept of extension7

of distributions. However, we will use the nice formalism of renormalization maps8

of Nikolov (see [36, 37]) which is closest in spirit to the present paper. In what9

follows, we will always assume that (M, g) is a smooth d-dimensional Riemannian10

manifold with Riemannian metric g. We denote by ∆g the Laplace–Beltrami oper-11

ator corresponding to g, and we consider the Green function G ∈ D′(M ×M) of12

the operator ∆g + m2, for m ∈ R≥0. G is the Schwartz kernel of the operator13

inverse of ∆g + m2 (see [43, Appendix 1]), which always exists when M is com-14

pact and m2 /∈ Spec(∆g). In the noncompact case, the existence and uniqueness15

for the Green function usually depends on the global properties of ∆g and (M, g).16

For instance, if (M, g) has bounded geometry in the sense of [8, p. 33], and [41]17

(see also [43, Definition 1.1, Appendix 1], and [42, Definition 1.1, p. 3]), then under18

some conditions of spectral theoretic nature on ∆g +m2 (see [43, Appendix 1]), the19

operator inverse (∆g + m2)−1 : Lp(M) → Lp(M) exists for p ∈ (1,+∞), and its20

Schwartz kernel is G.21

In any case, assuming that G exists, we have the following well-known result22

about the asymptotics of G near the diagonal.23

Lemma 6.1. Let (M, g) be a smooth Riemannian manifold and ∆g the correspond-24

ing Laplace operator. If G ∈ D′(M ×M) is the fundamental solution of ∆g + m2,25

then G is tempered in M2\D2, where D2 ⊆M ×M denotes the diagonal.26

Proof. This follows from the estimate in [45, Proposition 2.2(2.5)], applied to the27

Green function G, which is the Schwartz kernel of an elliptic pseudodifferential28

operator of degree −2, for G is a parametrix of the Laplace–Beltrami operator29

∆g +m2.30

6.2. Basic definitions on configuration spaces31

We recall that for every finite subset I ⊆ N and any open subset U ⊆ M , we32

define the configuration space U I = {(xi)i∈I |xi ∈ U, ∀ i ∈ I} of |I| particles in33

U labeled by the subset I ⊆ N. In the sequel, we will distinguish two types of34

diagonals in U I : the big diagonal DI = {(xi)i∈I | ∃ (i 6= j) ∈ I2, xi = xj}, which35

represents configurations where at least two particles collide, and the small diagonal36

dI = {(xi)i∈I | ∀ (i, j) ∈ I2, xi = xj}, where all particles in U I collapse over the same37

element. For every pair of elements i, j ∈ I such that i 6= j, set dI{i,j} to be the subset38

{xi = xj} of the configuration space M I . For simplicity, the configuration space39
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M{1,...,n} and the corresponding big and small diagonals D{1,...,n} and d{1,...,n}, as1

well as the set d
{1,...,n}
{i,j} will be denoted by Mn, Dn, dn, and dn{i,j}, respectively. For2

any finite subset I ⊆ N, a Feynman amplitude will denote any element of the form3 ∏
i<j∈I2 G(xi, xj)

nij ∈ C∞(M I\DI), nij ∈ N0.4

6.3. The vector subspace O(DI , .) generated5

by Feynman amplitudes6

As explained in Sec. 1.1.2, in QFT, the extension of Feynman amplitudes to the7

whole configuration space should satisfy some consistency conditions in order to be8

compatible with the fundamental requirement of locality.9

Recall that for any open subset Ω ⊆M I , we denote byM(Ω\DI) the algebra of10

tempered functions in Ω\DI . We introduce the vector spaceO(DI ,Ω) ⊆ C∞(Ω\DI)11

generated by the Feynman amplitudes, i.e.12

O(DI ,Ω) =

〈{ ∏
i<j∈I2

G(xi, xj)
nij : nij ∈ N0

}〉
. (6.1)

By Lemma 6.1, O(DI ,Ω) ⊆M(Ω\DI).13

6.4. Axioms for renormalization maps: Factorization property as14

a consequence of locality15

We will now present a slightly different but equivalent form of the notion of renor-16

malization maps given in Definition 1.3(i) and (ii). We remark that these axioms17

are simplified versions of those appearing in [36, Sec. 5, pp. 33–35].18

Definition 6.2. A collection of linear maps {RΩ⊆MI}Ω,I : O(DI ,Ω) → D′(Ω),19

where I runs over the finite subsets of N and Ω runs over the open subsets of M I ,20

is called a renormalization scheme if the following conditions are satisfied.21

(i) For any finite set I ⊆ N and any open set Ω ⊆M I , RΩ⊆MI (t)|Ω\DI = t for all22

t ∈ O(DI ,Ω);23

(ii) For every pair of open subsets Ω1 ⊆ Ω2 ⊆M I , we require that24

〈RΩ2⊆MI (f), ϕ〉 = 〈RΩ1⊆MI (f), ϕ〉,

for all f ∈ O(DI ,Ω2) and ϕ ∈ D(Ω1);25

(iii) The renormalization maps satisfy the factorization property, given as follows.26

Given any pair of disjoint finite subsets I ′, I ′′ ⊆ N, and open set Ω ⊆M I and27

a Feynman amplitude GI =
∏
i<j∈I2 G

nij (xi, xj) ∈ O(DI ,Ω) with I ′ t I ′′, we28

have29

RΩ(GI)|ΩI′,I′′ =
(
RMI′ (GI′) �RMI′′ (GI′′)

)
GI′,I′′ |ΩI′,I′′ ,

where GI′ , GI′′ are defined as GI , GI′,I′′ =
∏

(i′<i′′)∈I′×I′′ G
nij (xi, xj) and30

ΩI′,I′′ =
{

(xi)i∈I ∈ Ω :xi′ 6= xi′′ , for all (i′, i′′) ∈ I ′ × I ′′
}
.
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The most important condition is the factorization property (iii), which is1

imposed in [36, Eq. (2.2), p. 5]. We recall that, as usual, the renormalization map2

RΩ⊆MI with Ω = M I is typically denoted just by RMI .3

6.5. The main idea on how to define Renormalization maps4

In order to define R on M I , for every Feynman amplitude t ∈ O(DI ,M
I), it5

suffices to define RΩi⊆MI for a finite open cover {Ωi}i of M I\DI satisfying that the6

open sets {Ωi}i are regularly situated and such the maps RΩi⊆MI coincide on the7

overlaps Ωi ∩Ωj and eachRΩi⊆MI (t) has moderate growth in T (Ωi). Indeed, by the8

gluing property for distributions with moderate growth given in Proposition 5.6,9

the various sections {RΩi⊆MI (t)}i glue together to define an element RMI\DI (t) ∈10

T (M I\DI).11

6.6. Covering lemma12

We now state a key result in the sequel. Its first part is due to Popineau and Stora13

(see [36, Lemma 2.2, p. 6] and also [39, 44]).14

Lemma 6.3. Let M be a smooth manifold of dimension d. For any nonempty15

subset I ( {1, . . . , n}, let CI = {(x1, . . . , xn) | ∀ i ∈ I, ∀j /∈ I, xi 6= xj} ⊆ Mn. Note16

that CI is the complement of ∪i∈I,j /∈Idn{i,j} in Mn. Then,17 ⋃
I

CI = Mn\dn, (6.2)

where I runs over all nonempty strict subsets of {1, . . . , n}. Moreover, the family18

{CI}I is regularly good.19

Proof. Note first that, if (x1, . . . , xn) /∈ dn, then at least two points xi and xj differ20

for (i, j) ∈ {1, . . . , n}2. In consequence, (x1, . . . , xn) ∈ CI , for I = {j ∈ {1, . . . , n} :21

xj = xi}, which in turn implies that (6.2) holds.22

We will now prove that the finite collection of open subsets {CI}I is regularly23

good, i.e. given {Ij′ : j ∈ J ′} and {Ij′′ : j ∈ J ′′} be two nonempty and disjoint fam-24

ilies of nonempty strict subsets of {1, . . . , n}, X = ∂(∪j′∈J′CIj′ ) ∪ ∂(∪j∈J′∪J′′CIj )25

and Y = ∂(∪j′′∈J′′CIj′′ ) ∪ ∂(∪j∈J′∪J′′CIj ) are regularly situated. By [18, Proposi-26

tion 8], the smooth manifold M admits a compatible analytic structure, which then27

induces an analytic structure on the cartesian power Mn of M . Furthermore, any28

diagonal dn{i,j} inside Mn is a closed real analytic subset, which in turn implies that29

CI is a semianalytic set of Mn, so a fortiori subanalytic. By the preservation of the30

subanalyticity property under finite unions, finite intersections, complements and31

closures, we conclude that X and Y are also subanalytic, so regularly situated, by32

Proposition 5.7. The statement is thus proved.33
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6.7. Recursive property of the renormalization maps1

The following result is proved in [36, Lemmas 2.2 and 2.3, p. 6].2

If t =
∏

1≤i<j≤nG(xi, xj)
nij is a Feynman amplitude and I ( {1, . . . , n} is a3

nonempty subset, we introduce the following elements4

tI =
∏
i,j∈I
i<j

G(xi, xj)
nij , tIc =

∏
i,j∈Ic
i<j

G(xi, xj)
nij ,

tI,Ic =
∏

(i,j)∈I×Ic
G(xi, xj)

nij .

(6.3)

Lemma 6.4. Let n ∈ N and let {RΩ⊆MI}Ω,I be a collection of renormaliza-5

tion maps defined for all I ⊆ N such that |I| < n and satisfying the axioms6

of Definition 6.2. Consider the open cover {CI}I defined in Lemma 6.3 and a7

Feynman amplitude t =
∏

1≤i<j≤nG(xi, xj)
nij . Then, given two nonempty subsets8

I, J ( {1, . . . , n}, we have the identity9

RMI (tI)RMIc (tIc)tI,Ic |CI∩CJ = RMJ (tJ)RMJc (tJc)tJ,Jc |CI∩CJ (6.4)

on the open set CI ∩ CJ , which in turn implies that10

RCI⊆Mn\dn |CI∩CJ = RCJ⊆Mn\dn |CI∩CJ . (6.5)

As a consequence, the renormalization map RMn\dn⊆Mn exists and it is uniquely11

determined by the renormalizations maps RMI for all |I| < n.12

Proof. See [36, pp. 6–7], for a detailed proof.13

The previous result clearly generalizes to any subset L of N having n elements,14

but we have stated it for the case L = {1, . . . , n} for simplicity. Note also that the15

above Lemma does not ascertain the existence of the renormalization map RMn .16

6.8. The existence theorem for renormalization maps: The proof17

of Theorem 1.518

We finally provide the following short proof of the existence of renormalization19

maps on general closed Riemannian manifolds.20

Theorem 6.5. Let (M, g) be a closed Riemannian manifold, ∆g be the correspond-21

ing Laplace operator, and G be the Green function of ∆g + m2, where m ≥ 0. We22

recall that for any configuration space M I , where I is a finite subset of N, and any23

open subset Ω ⊆ M I , O(DI ,Ω) ⊆ M(DI ,Ω) is the vector space generated by the24

Feynman amplitudes
∏
i<j∈I2 G(xi, xj)

nij , nij ∈ N0.25

Then, there exists a collection of renormalization maps {RΩ⊆MI}Ω,I , where I26

runs over the finite subsets of N and Ω runs over the open subsets of M I which27

satisfies the three axioms of Definition 6.2. They can even be constructed so that28

they satisfy the covariance condition (iii) in Sec. 1.1.2.29
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Proof. We proceed by induction on the number n ∈ N of elements of the configura-1

tion space. Now assume that all renormalization maps {RΩ⊆MI}Ω,I for |I| ≤ n− 12

are constructed and satisfy the list of axioms of Definition 6.2, as well as the covari-3

ance condition. It suffices to show that RΩ⊆MI exists for all finite subsets I ⊆ N4

satisfying that |I| = n and all open subsets Ω ⊆ M I , and it fulfills the covariance5

condition. By Definition 6.2(ii), it suffices to prove the previous statement for RMI6

and all finite subsets I ⊆ N satisfying that |I| = n. For simplicity, we will only deal7

with the case RMn , but the same argument holds in general.8

For n = 2, the renormalization map RM2 : O(D2,M
2) → D′(M2) exists since9

propagators are tempered along diagonals by Lemma 6.1 and their powers can10

be renormalized by Theorem 5.3. For n > 2 and any generic Feynman ampli-11

tude t =
∏

1≤i<j≤nG(xi, xj)
nij ∈ O(Dn,M

n), Lemmas 6.3 and 6.4 tell us that12

RMn\dn(
∏

1≤i<j≤nG(xi, xj)
nij ) exists and it is unique. Recall that we can write13

RCI (t) = RMI (tI)︸ ︷︷ ︸
∈D′(MI)

RMIc (tIc)︸ ︷︷ ︸
∈D′(MIc )

tI,Ic︸︷︷︸
∈M(∂CI ,Mn)

, (6.6)

where we use the notation of (6.3). The product RMI (tI)RMIc (tIc) belongs to14

D′(Mn) and the product tI,Ic =
∏

(i,j)∈I×Ic G
nij (xi, xj) is tempered in CI . It15

follows from Theorem 5.3 that the distribution16

RCI

 ∏
1≤i<j≤n

G(xi, xj)
nij

 =
∏

(i,j)∈I×Ic
G(xi, xj)

nij

︸ ︷︷ ︸
∈M(∂CI ,Mn)

RMI (GI)RMIc (GIc)︸ ︷︷ ︸
∈D′(Mn)

in D′(CI) has moderate growth in CI , so for every CI , RMn\dn(t)|CI ∈ T (CI).17

Since the open sets CI are regularly good by Lemma 6.4, Proposition 5.6 tells us18

that RMn\dn(t) ∈ T (∪CI) = T (Mn\dn), so RMn\dn(t) is extendible. Note that, for19

n = 2, RMn\dn clearly satisfies the covariance axiom, for the Feynman amplitudes20

clearly do. Moreover, for n > 2, the inductive hypothesis and the explicit expression21

(6.6) of RMn\dn in terms of the renormalization maps {RΩ⊆MI}Ω,I for |I| ≤ n− 122

imply that RMn\dn also satisfies the covariance axiom.23

We now set RMn(t) to be any extension of RMn\dn(t) that is equivariant with24

respect to the action of the group of isometries of (M, g). Indeed, since the isometry25

group Iso(M, g) of any closed Riemannian manifold is compact (Iso(M, g) is a Lie26

group by [35, Theorem 9], whereas the Arzelà–Ascoli theorem shows that it is com-27

pact if M is so), Remark 4.2 tells us that RMn(t) = PIso(M,g)
Mn\dn (RMn\dn(t)) does the28

job. Alternatively, the existence of such RMn(t) also follows from Proposition 2.8.29

In any case, since the extension RMnt of RMn\dnt is compatible with the action of30

the group of isometries of (M, g), the former also satisfies the covariance axiom, as31

explained in Remark 1.4. The theorem is thus proved.32

An important remark is that the sequence of renormalization maps constructed33

in the above proof is not unique and has infinitely many degrees of freedom at each34
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step of the induction since we can choose many possible extensions for the distri-1

bution RMn\dn(
∏

1≤i<j≤nG(xi, xj)
nij ) and these are precisely controlled by the2

ambiguity group considered in Sec. 4.3. Moreover, they are related to the renormal-3

ization ambiguities which are encountered in renormalization of pQFT on curved4

spacetimes.5

Acknowledgements6

The first author would like to thank Christian Brouder, Frédéric Hélein, Stefan De7
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