SPECTRAL ANALYSIS OF MORSE-SMALE FLOWS II:
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ABSTRACT. The goal of the present work is to compute explicitely the correlation spec-
trum of a Morse-Smale flow in terms of the Lyapunov exponents of the Morse—Smale flow,
the topology of the flow around periodic orbits and the monodromy of some given flat con-
nection. The corresponding eigenvalues exhibit vertical bands when the flow has periodic
orbits. As a corollary, we obtain sharp Weyl asymptotics for the dynamical resonances.

1. INTRODUCTION

Consider p : £ — M a smooth (C*) complex vector bundle of rank N over a smooth,
compact, oriented manifold M without boundary of dimension n. Suppose now that &
is endowed with a flat connection V and that V' is a smooth vector field on M which
generates a flow ¢' : M — M. For every 0 < k < n, ' induces a flow ®% on the complex
vector bundle py, : A¥(T*M)®E — M whose sections are differential k-forms on M valued
in sections of £. The flow ®% satisfies the equation ¢’ o py, = py o ®L. In this article, we
aim at describing the long time behaviour of this family of induced flows for vector fields
enjoying some hyperbolic features. For this purpose, it is natural to look at the action of
these flows on smooth sections of A¥(T*M) ® &, i.e. given 1y in Q*(M, E), one would like
to understand the asymptotic behaviour of

(1) ;" (o)
as t — +o0o. Such quantities are sometimes referred as linear cocycles in the literature

from dynamical systems. Actually, it is convenient to observe that ®,"* (1) solves the
partial differential equation

Op = —Lywp, P(t =0) =y,

where
»CV,V = (dv —|— Lv)2,

with dV the coboundary operator! induced by V and ¢y the contraction by the vector field
V. Hence, one would be able to determine the limit of (1) as soon as one has built a good
spectral theory for the Lie derivative Ly v.

In recent years, many progresses have been made towards the construction of functional
frameworks adapted to smooth vector fields satisfying certain hyperbolicity assumptions.
For instance, in the case of Anosov vector fields and in the case of the trivial vector bundle

1Recall that d¥ o dV = 0 as the connection is flat.
1
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M x C, Butterley and Liverani constructed Banach spaces for which the Lie derivative
has good spectral properties such as discrete spectrum [9]. This was extended to more
general vector bundles by Giulietti, Liverani and Pollicott [30] and applied to prove the
meromorphic continuation of the Ruelle zeta function. The result of Butterley and Liverani
was recovered by Faure and Sjostrand [22] via microlocal techniques inspired by the study
of resonances of semiclassical Schrédinger operators [35, 19]. These microlocal methods
were then extended to the situation of vector bundles by Dyatlov and Zworski [18] who
gave a microlocal proof of the meromorphic continuation of the Ruelle zeta function. Still
from a microlocal perspective, we can also mention the works of Tsujii [51] and Faure—
Tsujii [24, 25] which are based on the use of the FBI transform. Beyond the Anosov
case, Dyatlov and Guillarmou proved that a similar microlocal approach can be performed
for Axiom A flows [48] at the expense of making some restriction on the supports of the
sections 1 in QF(M, £) [17]. More specifically, for Axiom A flows, Smale proved that there
exists a decomposition of the nonwandering set of the flow into finitely many basic sets
(A;)iz1,.. x and the results of Dyatlov and Guillarmou hold locally in a neighborhood of
some fixed given basic set. Recently, we showed how to construct a proper global spectral
theory for certain families of Axiom A flows, namely Morse-Smale flows [12, 13]. This was
achieved by combining some ideas from dynamical systems going back to the original works
of Smale [47] with the microlocal approach of Faure and Sjostrand. Even if we focus on the
case of flows, as in the present article, we emphasize that results on flows follow from many
progresses that have been made towards the understanding of hyperbolic diffeomorphisms
and we refer to the recent book of Baladi for a detailed account of this case [1].

1.1. Dynamical correlations and their Laplace transform. As expected, these spec-
tral results have nice dynamical consequences which can be formulated in terms of the
correlation function:

Conin(t) = /M B A D (),

where ¥ € Q" F(M,E"), ¥y € QF(M,E) and &' is the dual bundle of £. Following the
works of Pollicott [43] and Ruelle [44], we can introduce its Laplace transform :

61/)171112 (Z) = /0 01/;1 o (t)e_tzdt.

Note that this function is well defined for Re(z) > 0 large enough and most of the above
mentionned results show that it has a meromorphic extension to the entire complex plane?.
The poles and residues of this function describe in some sense the fine structure of the long
time dynamics of the flow (b,;t*. For instance, let us state the precise result when V is a
Morse-Smale flow which is C'-linearizable [13] — see section 3. In that framework, there
exists a minimal discrete® set Ry (V, V) C C such that, given any (¢1, 1) € Q"%(M,E’) x

2In the Axiom A case, one has to consider 1; and 1o compactly supported near a fixed basic set.
3We mean that it has no accumulation point. In particular, it is at most countable.
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QF(M, ), the map z — Cy, 4,(2) has a meromorphic extension whose poles are contained
inside Ry(V, V). These poles are called the Pollicott-Ruelle resonances. Moreover, given
any such zy € Ry (V, V), there exists an integer my(zp) and a linear map of finite rank

(2) ngg) CQF (M, E) = D* (M, E)
such that, given any (¢, 1) € Q" F(M,E") x QF(M, ), one has, in a small neighborhood

of zg,

. mx(z0) (LY + 20)'1ly (2), v
01111#12 (Z) = Z <_1)ll< (Z _ Zo)l > + Rw1,w2(z)7

=1
where Ry, 4,(2) is a holomorphic function. Here, we use the convention that D*(M,¢)

represents the currents of degree k with values in £. Elements in the range of ﬂéﬁ) are called
Pollicott-Ruelle resonant states and they can be interpreted as the generalized eigenvectors

of the operator —Lgf)v acting on an appropriate Sobolev space [13]. In particular, the

dimension of the range of 7r§’§) is the algebraic multiplicity of the resonance z, viewed as
an eigenvalue of this operator.

1.2. Quantum chaos, instantonic theories and Epstein—Glaser renormalization.
Recall that, beyond the dynamical aspects, one of the motivation of Faure and collabo-
rators, as we understand it, comes from quantum chaos. For geodesic flows in negative
curvature*, @7 (1)) converges to some equilibrium state 1, at the limit when ¢t — +o0.
The Pollicott-Ruelle spectrum describes the fluctuations around the equilibrium .., and
one hopes that, for general geodesic flows in nonconstant negative curvature, the emergent
dynamics induced by the vector field is a model of quantum chaos. Before stating our main
results on this correlation spectrum for Morse-Smale flow, we would like to present another
motivation coming from mathematical physics and emphasize possible links of these dy-
namical problems with the work of Frenkel-Losev—Nekrasov on instantonic quantum field
theories.

Instantons arise in mathematical physics as critical points of some natural variational
problems. In the context of Morse theory, the term instanton denotes gradient lines con-
necting two critical points of the vector field V. In several geometrical problems, it is
often proved that the moduli space of instantons is finite dimensional in some sense.
In [27, 28, 29, 38], Frenkel-Losev—Nekrasov started an ambitious program of construct-
ing quantum field theories by integrating on finite dimensional moduli space of instan-
tons. Since this is a very hard problem in general, they propose to start by investigating
1-dimensional QFT which is just instantonic quantum mechanics. This is a version of
supersymmetric quantum mechanics where the vector field V' plays the role of the gener-
alized Laplacian from Hodge theory. The Hamiltonian of the theory is a multiple of the
Lie derivative H = ¢Ly. A natural problem in quantum theory is to specify all eigen-
values and eigenstates of the Hamiltonian H. For general Hamiltonians this is usually
very hard. However, for H = iLy, it is hoped that the system is integrable and actually,

4These are the simplest examples of contact Anosov flows.
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it is showed in [27, paragraph 3.7 p. 508] that for the height function on the Riemann
sphere CP!, the spectrum of H coincides with N and the structure of the eigenstates is
completely understood by a local construction near the south pole and by a procedure
of extension of distributions near the north pole [27, p. 516-517] in the style of Epstein—
Glaser renormalization in quantum field theory [20]. We extended this explicit description
to more general gradient flows in [12]. One can now briefly illustrate the process describ-
ing the passage from quantum mechanics to instantonic theories in the specific case of
Morse-Smale gradient flows [21, section 5], which can be thought of as the inverse
of the path followed by Faure et al. for Anosov flows. One starts from a rescaled Wit-
ten Laplacian which is a deformation of the Hodge Laplacian by a Morse potential f :
Hy = 3 (—hA + h7Ydf|* + Lv + L£3},). Then one can wonder what the eigenvalues of this

new quantum Hamiltonian are. For that purpose, we conjugate H with e% which yields
the new Hamiltonian : Hj, = ethe’g =Ly — %. At the instantonic limit h — 0, H,
becomes formally Hy = £y which is nothing else but the Lie derivative along the gradient
vector field whose spectrum was computed explicitely in [12] or can be deduced from the
upcoming results applied in the particular case of Morse-Smale gradient flows. Therefore,
the spectrum of the Witten Laplacian converges to the spectrum of the Lie derivative.

2. STATEMENT OF THE MAIN RESULTS

The main objective of this article is to give a complete description of the Pollicott-
Ruelle resonances and resonant states in the case of Morse-Smale vector fields satisfying
certain generic linearizing assumptions. Let us start with the resonances which are simpler
to describe. Recall that a Morse-Smale flow ¢! is a flow whose nonwandering set is the
union of finitely many hyperbolic closed orbits and hyperbolic fixed points that we denote
by Ai,...,Ak. These are called the critical elements (or the basic sets) of the flow. To
each A; is associated an unstable (resp. stable) manifold W*(A;) (resp. W*(A;)). These
unstable manifolds form a partition of M and, by definition of a Morse-Smale flow, they
enjoy some transversality properties — see paragraph 3 for a brief reminder. Such unstable
manifolds can be either orientable or not®. We define the twisting index of A as

1
epn = 0 if W*(A) is orientable, and €5 = 5 otherwise.

To every closed orbit A, we also associate a positive number P, which is the minimal
period of the closed orbit and an element Mg¢(A) which is a monodromy matrix for the

parallel transport around A. We denote the eigenvalues of this matrix by (e%”JA )j=1,..N
where %A are complex numbers. For every fixed point A, we define

op = {0},

®Non orientability can only occurs for closed orbits.
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and the multiplicity of 0 is defined as ux(0) = N. For every closed orbit, we set
{ 2im(m + ex +75)
A = —

1 <5 <N, SN/
Pa =7 = m }

and the multiplicity of zy in o, is given by

im(m A A
{(j,m):zoz—2 (m+e +vj)}.

pa(z0) = P

2.1. Resonances on the imaginary axis. Our first main result describes the resonances
lying on the imaginary axis in the case where the flat connection V preserves some Her-
mitian structure on the fibers of £. Recall that this is equivalent to fixing some unitary
representation of the fundamental group 7 (M) [49, Th. 13.2]. In that case, all the 'yj’-\ are
real and we show:

Theorem 2.1. Let £ — M be a smooth, complex, hermitian vector bundle of dimen-
sion N endowed with a flat unitary connection V. Suppose that V' is a Morse-Smale
vector field which is C*°-diagonalizable.

Then, for every 0 < k < n,

Ri(V,V) C {z: Re(z) <0},
and one has

Re(V,V)NiR = U oAU U oA,
A fized point: dim Ws(A)=k A closed orbit: dim W#(A)e{k,k+1}

where a resonance zy € Ri(V, V) NiR appears with the algebraic multiplicity

Z pia(zo) + Z 1ia(z0)-

A fized point: dim Ws(A)=k A closed orbit: dim W#(A)e{k,k+1}

Before making some comments on this first result, let us observe that we made an ex-
tra assumption on the vector field saying that it is C*°-diagonalizable — see section 3 for
the precise definition. It roughly means that we can linearize the vector field in a smooth
chart near any A;. Thanks to the Sternberg-Chen Theorem, this is satisfied as soon as
certain nonresonance assumptions are satisfied [40, 52]. Combined with the classical results
of Peixoto [42] and Palis [41], we can then verify that this assumption is in some sense
generic among Morse-Smale vector fields: we refer to paragraph 3 and to the discussion
following Theorem 7.5 for more precision on this hypothesis. One of the reason for this
assumption is that we do not only aim at describing these dynamical eigenvalues but also
their corresponding generalized eigenmodes — see Theorem 7.5 for a complete statement.
Besides the fact that the question of describing the eigenstates is interesting on its own,
we shall also see in [14] that these eigenmodes have interesting topological properties re-
lated to Morse inequalities and Reidemeister torsion. If we were only interested in the
eigenvalues, it would probably be sufficient to relate these eigenvalues to the zeros of some
dynamical zeta function via a trace formula as in [2, 1] and maybe avoid some of the
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linearization assumptions we have. Yet, it would not be necessarily much simpler from
the technical point of view as this would require to justify such a formula in our context.
This would mean to use the notion of distributional traces [32] of a flow with fixed points
and closed orbits. Our somewhat direct approach avoid this difficulty and, along the way,
it also gives in addition a complete description of the generalized eigenmodes. Coming
back to the nonresonance assumption, one should probably be able to lower the regular-
ity assumptions (at the expense of a slightly more technical work), and still describe the
Pollicott-Ruelle resonant states explicitely in some half plane {z : Re(z) > —T'}, where T’
would depend on the regularity assumptions. Yet, removing these assumptions is beyond
the scope of the present article which essentially aims at giving examples where one can
explicitely determine the correlation spectrum.

Let us now briefly comment our first Theorem. First of all, it completely determines
the Pollicott-Ruelle resonances on the imaginary axis in terms of the periods of the flow,
of the topology of the unstable manifolds and of the monodromy around every closed
orbit. In particular, up to the periods, this part of the spectrum is completely determined
by the “topology” of the flow. We also emphasize that eigenvalues in every degree are
associated with Smale’s partition of M into stable manifolds [47]. We remark that, even
if many progresses were made towards understanding the Pollicott-Ruelle spectrum, there
are not so many examples where one can compute the spectrum explicitely. In the case
of maps, we can mention the case of hyperbolic linear automorphisms of the torus where
there is in fact only one resonance [6], the case of an hyperbolic fixed point which can be
derived from [2] (see also [23]) or the one of analytic expanding circle maps arising from
finite Blaschke products [3, 4]. In the case of geodesic flows on hyperbolic manifolds, these
resonances were shown to be in correspondance with the spectrum of the Laplace Beltrami
operator [16, 31] — see also [26] for earlier related results. In the case of Morse-Smale
gradient flows, we gave a complete description of the correlation spectrum. The main
differences with that last reference are the addition of the flat connection and the presence
of closed orbits. These closed orbits are in fact responsible for the vertical lines we can
observe inside R (V, V). As a first corollary of our analysis, let us point the following Weyl
formula:

Corollary 2.2. Suppose the assumptions of Theorem 2.1 are satisfied and let 0 < k < n.
Then, as T — +o00, one has

{20 € Ra(V, V) 4R : |Tm(z)] < T} = L 3 Py | +0(1),

T A closed orbit: dim W*(A)e{k,k+1}
where the resonances are counted with their algebraic multiplicity.

Recall that, for Anosov flows, Faure and Sjostrand proved that the resonances near the
imaginary axis verifies Weyl’s upper bound in the limit Im(z) — +o0 [22] — see also [15, 25]
in the contact case.

2.2. Pollicott-Ruelle resonances and Weyl’s law. Our analysis will in fact give an
explicit description of the full correlation spectrum inside {z : Re(z) < 0} in terms of the
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Lyapunov exponents of the flow, of the periods of the flow, of the topology of the unstable
manifolds and of the monodromy around every closed orbits. Since this description is a
little bit combinatorial and, for the simplicity of exposition, we just mention the following
consequence of Theorem 7.5:

Theorem 2.3. Suppose the assumptions of Theorem 2.1 are satisfied. Then, for
every 0 < k < n and for every critical element A, there exists a sequence of complex
numbers (zax(j));», such that
Vj Z 17 Re (ZA,k(j)) < 0, hm ZA,k(j) = —0Q,
J—+oo
and

Re(V,V) = U (eani) + oa) .

A j>1

For every closed orbit or critical point A, the zjx(j) can be determined explicitely as
linear (integer) combination of the eigenvalues of the linearized system near A. In some
sense, they will only depend on the local properties of the flow near A. For simplification,
we also made the assumption that V preserves a smooth hermitian structure but our anal-
ysis remains true under the slightly more general hypothesis that M¢(A) is diagonalizable
for every closed orbit. In that case, it may happen that there are finitely many bands of
resonances on the half plane {z : Re(z) > 0}. This Theorem should be compared with the
results of Faure and Tsujii [24, 25] on the Pollicott-Ruelle spectrum of contact Anosov flows.
In that framework, they proved that the resonances exhibit in the limit Im(z) — 400 a
band structure which is completely determined by the unstable Jacobian of the flow. Here,
our analysis show that this band structure remains true for Morse-Smale flows and it is in
fact given by vertical lines of resonances which can be explicitely determined. Finally, to
every critical element A of the Morse-Smale flow, we associate a convex polytope Q, in
R™ which depends only on the eigenvalues of the linearization of the vector field V' near A.
These convex polytopes are explicitely defined by (46) and (47). Our last Theorem gives
Weyl’s law satisfied by elements in Ry (V, V):

Theorem 2.4 (Weyl’s law). Suppose that the assumptions of Theorem 2.1 are satis-
fied. For every 0 < k <mn, define

Ni(T) :=1{z0 € Ri(V, V) : |Im(20)| < T and Re(z) > T}/,

where the Pollicott-Ruelle resonances are counted with their algebraic multiplicity.
Then, one has, as T — +o0,

Ne(T) = k'(iv—ﬁ'k)' (Z:; VOan(QAj)> ™ +0(T" ).

Except for the case of Morse-Smale gradient flows [12], we are not aware of the exis-
tence of asymptotic formulas for the counting function of Pollicott-Ruelle resonances. In
the case of the geodesic vector field on hyperbolic manifold, they can maybe be derived
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following [16] but it is not completely obvious what the exponent would be for T. Again,
this Theorem is just a Corollary of the analysis we will perform in this article and we will
in fact be able to determine exactly which resonances are inside these large boxes.

2.3. Constructing the resonant states. As was already explained, not only we will
describe the eigenvalues and their multiplicity but also their corresponding generalized
eigenmodes. In fact, the way we prove the above results rely on our explicit construction
of the generalized eigenmodes of the operator —Ly v acting on the anisotropic Sobolev
spaces we have defined in [13]. More precisely, given any critical element A and any
29 € C, we will first consider germs of solution u € D"*(£) of the equation

(3) (Lvy + 20) %0 =0

whose support near A is contained in the unstable manifold W*"(A) (see equation (24)) and
whose wavefront set lies in the union of conormals of strongly unstable manifolds of A (see
equation (25) for a precise statement). We will solve this eigenvalue problem explicitely
near A and show that it imposes restriction on the possible values of z5. Then we will try to
extend these local solutions into currents which are globally defined on M. What we would
do intuitively is to use the fact that @~ (1)y) = €'*°¢)y to propagate the local solution to
define some current supported on W#(A). Yet, this would require to analyze carefully the
closure of W*(A) and this may turn to be a delicate task — see [36] for related problems in
the case of Morse-Smale gradient flows. Instead of that, we will make use of the spectral
projectors 7r£;) which are given to us by our spectral analysis in [13]. In that manner, we
hide the difficulty of understanding the dynamics of the flow near the boundary of W*(A)
into the construction of our anisotropic Sobolev space — see for instance [13, Sect. 4] for
results related to this delicate dynamical issue. Applying the spectral projectors to the
locally defined currents allow to extend them into globally defined currents. In some sense,
the use of spectral theory elegantly replaces the method of Epstein—Glaser renormalization
used in [28, 27] to extend distributions — see paragraph 7.1.1 especially Theorem 7.4 for a
more detailed discussion. We also note that the generalized eigenmodes we will construct
are related to the so-called Ruelle-Sullivan currents [45] and we shall come back on that
issue in paragraph 7.1.2.

If we come back to our problem, the price we pay when we extend these currents is
that they are not a priori true eigenmode and they only satisfy the generalized eigenvalue
equation:

(Lyy + 2™, = 0.

Once these generalized eigenmodes are constructed, we will make use of the Morse-Smale
dynamics and of the spectral analysis from [13] to conclude that they indeed generate all
the Pollicott-Ruelle resonant states. The main result on that question is Theorem 7.5
which is in fact the main result of the present article.

Finally, we briefly mention that the resonant states associated to resonances lying on
the imaginary axis have a strong topological meaning. We shall come back to this issue in
the companion article [14].
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2.4. Organization of the article. In section 3, we start with a brief reminder on Morse-
Smale flows and on the spectral results from [13]. For more details on both issues, we refer
the reader to this reference. In section 4, we show how we can remove the contribution com-
ing from the flat connection V by shifting the spectrum. After that, we show in section 5
how to reduce the question of solving the eigenvalue equation to a scalar problem. In this
section, we also introduce several conventions related to the Pollicott-Ruelle spectrum. In
section 6, we solve the eigenvalue problem locally near every critical element of the vector
field. Finally, in section 7, we construct the resonant states and gives our main Theorem
from which all the results of this section follows. In the appendix, we briefly review some
facts from Floquet theory that we extensively use all along the article.

Acknowledgements. We warmly thank Frédéric Faure for many explanations on his
works with Johannes Sjostrand and Masato Tsujii. We also acknowledge useful discussions
related to this article and its companion articles [13, 14] with Livio Flaminio, Colin Guil-
larmou, Benoit Merlet, Frédéric Naud and Patrick Popescu Pampu. The second author is
partially supported by the Agence Nationale de la Recherche through the Labex CEMPI
(ANR-11-LABX-0007-01) and the ANR project GERASIC (ANR-13-BS01-0007-01).

3. A BRIEF REMINDER ON MORSE-SMALE FLOWS AND ON [13]

3.1. Morse-Smale flows. We say that A C M is an elementary critical element if A is
either a fixed point or a closed orbit of ©!. Such an element is said to be hyperbolic if the
fixed point or the closed orbit is hyperbolic — see appendix A of [13] for a brief reminder.
Following [48, p. 798] , ¢' is a Morse-Smale flow if the following properties hold:

(1) the non-wandering set NW(¢") is the union of finitely many elementary critical

elements Ay, ..., Ag which are hyperbolic,
(2) for every i, j and for every z in W¥(A;) N W*(A;), one has ® T, M = T,W*(A;) +
T,W*(A,).

We now briefly expose some important properties of Morse-Smale flows and we refer to [13]
for a more detailed exposition on the dynamical properties of these flows. Under such
assumptions, one can show that, for every x in M, there exists an unique couple (i, j) such
that z € W"(A;)NW*(A;) (see e.g. [13, Lemma 3.1]). In particular, the unstable manifolds
(W™(Aj))j=1,..k form a partition of M, i.e.

K
M= JW"(A)), and Vi#j, W*"(A)NW"(A;) = .
j=1

The same of course holds for stable manifolds. One of the main feature of such flows is the
following result which is due to Smale [13, 47]:

Theorem 3.1 (Smale). Suppose that ¢ is a Morse-Smale flow. Then, for every 1 <
Jj < K, the closure of W*(A;) is the union of certain W"(A;). Moreover, we say that

6See appendix of [13] for the precise definition of the stable/unstable manifolds WW*/%(A).
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W (Ay) < WU(A;) if W(Ay) is contained in the closure of W"(A;), then, < is a partial
ordering. Finally if W*(A;/) < W"(A;), then dim W*(A;/) < dim W*(A;).

The partial order relation on the collection of subsets W* (Aj)jK:1 defined above is called

Smale causality relation. Following Smale, we define an oriented graph” D called Smale
quiver whose K vertices are given by W*(A;)iL,. Two vertices W*(A;), W*(A;) are con-
nected by an oriented path starting at W*(A;) and ending at W*(A;) iff W*(A;) = W*(A;).
From the works of Peixoto [42], it is known that Morse-Smale flows form an open and dense
subset of all smooth vector fields in dimension 2 while Palis showed that in higher dimen-
sion they form an open subset [41]. In particular, if we perturb a little bit a Morse-Smale
flow, it remains Morse-Smale. For our analysis, we will need to choose Morse-Smale flows
satisfying certain generic assumptions on their linearization near critical elements as we
shall now explain. It would be interesting to remove these assumptions and we refer to the
discussion following our main Theorem 7.5 for more details on that question.

More precisely, our linearizing assumptions are as follows. We fix 1 < k < oo and we
say that the Morse-Smale flow is C*-linearizable if for every 1 < i < K, the following hold:

e If A, is a fixed point, there exists a C* diffeomorphism h : B,(0,7) — W (where W
is a small open neighborhood of A; and B,,(0,r) is a small ball of radius r centered
at 0 in R") and a linear map A; on R™ such that V o h = dh o L where V is the
vector field generating ¢’ and where

L(z) = Ajz.0,.

e If A; is a closed orbit of period Py, there exists a C* diffeomorphism h : B,,_1(0,7) X
R/(Pa,Z) — W (where W is a small open neighborhood of A; and r > 0 is small)
and a smooth map A : R/(Pa,Z) — M,_1(R) such that V o h = dh o L with

In other words, the flow can be put into a normal form in a certain chart of class C¥. We
shall say that a Morse-Smale flow is C*-diagonalizable if it is C*-linearizable and if,
for every critical element A, either the linearized matrix A € GL,(R) or the monodromy
matrix M (see appendix A) associated with A(#) is diagonalizable in C. Such properties are
satisfied as soon as certain (generic) non resonance assumptions are made on the Lyapunov
exponents thanks to the Sternberg-Chen Theorem [10, 40, 52]. Hence, as Morse-Smale flows
form an open subset of all smooth vector fields, the flows we consider are in some sense
generic from the Sternberg-Chen Theorem. We refer to the appendix of [13] for a detailed
description of these nonresonant assumptions.

3.2. Pollicott-Ruelle resonant states following [13|. The main goal of the present arti-
cle is to describe both the resonances and the resonant states of —58’% forevery 0 < k < n.
Recall from the introduction that they correspond to the poles and the residues of the mero-
morphic extension of the Laplace transform Cy, ,, of the correlation function. From [13],
they are also the eigenvalues and generalized eigenmodes of the (nonseladjoint) operator

"This diagram is the Hasse diagram associated to the poset (W“(Aj)szl, §)
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—ﬁgfj)v acting on a certain anisotropic Sobolev space of currents H}'(M, £), where m(z, €)
is a certain order function which indicate the Sobolev regularity — see section 5 of [13]
for details. More precisely, given any Tj > 0, there exists an order function m such that
the spectrum of _ng,)v on HP'(M,E) is discrete for Re(z) > —Tp. In particular, it follows
from [22, Th. 1.5] that the eigenvalues and their corresponding generalized eigenmodes are
independent of the choice of the order function m satisfying the properties of Lemma 5.2
in [13]. Hence, if we increase the Sobolev regularity in the construction (which corresponds
to increase |u|, |s| and |ng| in this Lemma), we have that a given eigenmode u stay in the
anisotropic Sobolev space with the higher choice of regularity. In particular, if a general-
ized eigenmode u is supported on W*"(A) near a critical element A of the flow. Then, the
wavefront set of u [7] near A is contained in the conormal of W*(A) which roughly says
that the current is smooth in the direction of W*(A).

4. MONODROMY AND FLAT CONNECTIONS

In [12], we were able to compute explicitely the spectrum of —Ly by localizing the
eigenvalue equation near the critical elements of the flow. Here, we will perform a similar
analysis with the two following additional difficulties: (i) critical elements may be closed
orbits of the flow (and not only fixed points) (ii) the complex vector bundle £ and the
corresponding flat connection V. The risk of introducing this new geometric object V is
that all our analysis to compute the Pollicott-Ruelle resonances breaks down or becomes
much more involved from the technical point of view. Yet, this is not the case and our goal
in this section is to show that the addition of V does not complexify the calculation that
much once we have defined an appropriate basis for the vector bundle £.

Before stating precise results on that issue, let us start with a simple observation. Let U
be an open set inside M and let (cq,...,cy) be a moving frame of £ defined on U. Then,
we can write, for u =3, u;c; in Q2(U, €)

N N N
(4) 'CV,V (Z UjCj> = Z Ev(u]')ej + Z UijCj.
j=1 j=1 j=1

Hence, if we are able to find a moving frame (cy,...,cy) such that, for every 1 < j < N,
Vye; = vjc;, then, for u in Q2(U, £), one has, in some open set U CC U,

—Lyvu=XAu <= VI<j<N, —Ly(uy;) = (A7)

In other words, if we have a diagonalizing moving frame, then the problem is essentially
equivalent to the case of the trivial bundle U x C. In this section, we shall explain how we
can indeed construct such nice moving frame near any critical elements of a Morse-Smale
flow. Note that the frame will not necessarily be as nice as above due to the fact that the
monodromy matrix may not be diagonalizable.

Let us now state the precise results we shall need. We distinguish the cases of critical
points and of closed orbits of the flow. First, in the case where A C NW (¢') is a critical
point, we can use the following classical result [37, Th. 12.25]:
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Theorem 4.1. Let &€ — M be a smooth complex vector bundle of rank N endowed with a
flat connection V. Let U C M be a simply connected open set.

Then, there exists a moving frame (cy,...,cn) of € defined on U such that, for every
1<j<N,

(5) VCJ' =0.

Thus, in the case of critical elements, we can take all the «; to be equal to 0 if we only
aim at