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Abstract. The goal of the present work is to compute explicitely the correlation spec-
trum of a Morse-Smale flow in terms of the Lyapunov exponents of the Morse–Smale flow,
the topology of the flow around periodic orbits and the monodromy of some given flat con-
nection. The corresponding eigenvalues exhibit vertical bands when the flow has periodic
orbits. As a corollary, we obtain sharp Weyl asymptotics for the dynamical resonances.

1. Introduction

Consider p : E → M a smooth (C∞) complex vector bundle of rank N over a smooth,
compact, oriented manifold M without boundary of dimension n. Suppose now that E
is endowed with a flat connection ∇ and that V is a smooth vector field on M which
generates a flow ϕt : M → M . For every 0 ≤ k ≤ n, ϕt induces a flow Φt

k on the complex
vector bundle pk : Λk(T ∗M)⊗E →M whose sections are differential k-forms on M valued
in sections of E . The flow Φt

k satisfies the equation ϕt ◦ pk = pk ◦ Φt
k. In this article, we

aim at describing the long time behaviour of this family of induced flows for vector fields
enjoying some hyperbolic features. For this purpose, it is natural to look at the action of
these flows on smooth sections of Λk(T ∗M)⊗ E , i.e. given ψ0 in Ωk(M, E), one would like
to understand the asymptotic behaviour of

(1) Φ−t∗k (ψ0)

as t → +∞. Such quantities are sometimes referred as linear cocycles in the literature
from dynamical systems. Actually, it is convenient to observe that Φ−t∗k (ψ0) solves the
partial differential equation

∂tψ = −LV,∇ψ, ψ(t = 0) = ψ0,

where
LV,∇ := (d∇ + ιV )2,

with d∇ the coboundary operator1 induced by ∇ and ιV the contraction by the vector field
V . Hence, one would be able to determine the limit of (1) as soon as one has built a good
spectral theory for the Lie derivative LV,∇.

In recent years, many progresses have been made towards the construction of functional
frameworks adapted to smooth vector fields satisfying certain hyperbolicity assumptions.
For instance, in the case of Anosov vector fields and in the case of the trivial vector bundle

1Recall that d∇ ◦ d∇ = 0 as the connection is flat.
1
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M × C, Butterley and Liverani constructed Banach spaces for which the Lie derivative
has good spectral properties such as discrete spectrum [9]. This was extended to more
general vector bundles by Giulietti, Liverani and Pollicott [30] and applied to prove the
meromorphic continuation of the Ruelle zeta function. The result of Butterley and Liverani
was recovered by Faure and Sjöstrand [22] via microlocal techniques inspired by the study
of resonances of semiclassical Schrödinger operators [35, 19]. These microlocal methods
were then extended to the situation of vector bundles by Dyatlov and Zworski [18] who
gave a microlocal proof of the meromorphic continuation of the Ruelle zeta function. Still
from a microlocal perspective, we can also mention the works of Tsujii [51] and Faure–
Tsujii [24, 25] which are based on the use of the FBI transform. Beyond the Anosov
case, Dyatlov and Guillarmou proved that a similar microlocal approach can be performed
for Axiom A flows [48] at the expense of making some restriction on the supports of the
sections ψ0 in Ωk(M, E) [17]. More specifically, for Axiom A flows, Smale proved that there
exists a decomposition of the nonwandering set of the flow into finitely many basic sets
(Λi)i=1,...,K and the results of Dyatlov and Guillarmou hold locally in a neighborhood of
some fixed given basic set. Recently, we showed how to construct a proper global spectral
theory for certain families of Axiom A flows, namely Morse-Smale flows [12, 13]. This was
achieved by combining some ideas from dynamical systems going back to the original works
of Smale [47] with the microlocal approach of Faure and Sjöstrand. Even if we focus on the
case of flows, as in the present article, we emphasize that results on flows follow from many
progresses that have been made towards the understanding of hyperbolic diffeomorphisms
and we refer to the recent book of Baladi for a detailed account of this case [1].

1.1. Dynamical correlations and their Laplace transform. As expected, these spec-
tral results have nice dynamical consequences which can be formulated in terms of the
correlation function:

Cψ1,ψ2(t) =

∫
M

ψ1 ∧ Φ−t∗k (ψ2),

where ψ1 ∈ Ωn−k(M, E ′), ψ2 ∈ Ωk(M, E) and E ′ is the dual bundle of E . Following the
works of Pollicott [43] and Ruelle [44], we can introduce its Laplace transform :

Ĉψ1,ψ2(z) =

∫ ∞
0

Cψ1,ψ2(t)e−tzdt.

Note that this function is well defined for Re(z) > 0 large enough and most of the above
mentionned results show that it has a meromorphic extension to the entire complex plane2.
The poles and residues of this function describe in some sense the fine structure of the long
time dynamics of the flow Φ−t∗k . For instance, let us state the precise result when V is a
Morse-Smale flow which is C1-linearizable [13] – see section 3. In that framework, there
exists a minimal discrete3 set Rk(V,∇) ⊂ C such that, given any (ψ1, ψ2) ∈ Ωn−k(M, E ′)×

2In the Axiom A case, one has to consider ψ1 and ψ2 compactly supported near a fixed basic set.
3We mean that it has no accumulation point. In particular, it is at most countable.
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Ωk(M, E), the map z 7→ Ĉψ1,ψ2(z) has a meromorphic extension whose poles are contained
inside Rk(V,∇). These poles are called the Pollicott-Ruelle resonances. Moreover, given
any such z0 ∈ Rk(V,∇), there exists an integer mk(z0) and a linear map of finite rank

(2) π(k)
z0

: Ωk(M, E)→ D′k(M, E)

such that, given any (ψ1, ψ2) ∈ Ωn−k(M, E ′)×Ωk(M, E), one has, in a small neighborhood
of z0,

Ĉψ1,ψ2(z) =

mk(z0)∑
l=1

(−1)l−1

〈
(L(k)

V,∇ + z0)l−1π
(k)
z0 (ψ2), ψ1

〉
(z − z0)l

+Rψ1,ψ2(z),

where Rψ1,ψ2(z) is a holomorphic function. Here, we use the convention that D′k(M, E)

represents the currents of degree k with values in E . Elements in the range of π
(k)
z0 are called

Pollicott-Ruelle resonant states and they can be interpreted as the generalized eigenvectors

of the operator −L(k)
V,∇ acting on an appropriate Sobolev space [13]. In particular, the

dimension of the range of π
(k)
z0 is the algebraic multiplicity of the resonance z0 viewed as

an eigenvalue of this operator.

1.2. Quantum chaos, instantonic theories and Epstein–Glaser renormalization.
Recall that, beyond the dynamical aspects, one of the motivation of Faure and collabo-
rators, as we understand it, comes from quantum chaos. For geodesic flows in negative
curvature4, Φ−t∗(ψ) converges to some equilibrium state ψ∞ at the limit when t → +∞.
The Pollicott-Ruelle spectrum describes the fluctuations around the equilibrium ψ∞, and
one hopes that, for general geodesic flows in nonconstant negative curvature, the emergent
dynamics induced by the vector field is a model of quantum chaos. Before stating our main
results on this correlation spectrum for Morse-Smale flow, we would like to present another
motivation coming from mathematical physics and emphasize possible links of these dy-
namical problems with the work of Frenkel–Losev–Nekrasov on instantonic quantum field
theories.

Instantons arise in mathematical physics as critical points of some natural variational
problems. In the context of Morse theory, the term instanton denotes gradient lines con-
necting two critical points of the vector field V . In several geometrical problems, it is
often proved that the moduli space of instantons is finite dimensional in some sense.
In [27, 28, 29, 38], Frenkel–Losev–Nekrasov started an ambitious program of construct-
ing quantum field theories by integrating on finite dimensional moduli space of instan-
tons. Since this is a very hard problem in general, they propose to start by investigating
1-dimensional QFT which is just instantonic quantum mechanics. This is a version of
supersymmetric quantum mechanics where the vector field V plays the role of the gener-
alized Laplacian from Hodge theory. The Hamiltonian of the theory is a multiple of the
Lie derivative H = iLV . A natural problem in quantum theory is to specify all eigen-
values and eigenstates of the Hamiltonian H. For general Hamiltonians this is usually
very hard. However, for H = iLV , it is hoped that the system is integrable and actually,

4These are the simplest examples of contact Anosov flows.
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it is showed in [27, paragraph 3.7 p. 508] that for the height function on the Riemann
sphere CP1, the spectrum of H coincides with iN and the structure of the eigenstates is
completely understood by a local construction near the south pole and by a procedure
of extension of distributions near the north pole [27, p. 516-517] in the style of Epstein–
Glaser renormalization in quantum field theory [20]. We extended this explicit description
to more general gradient flows in [12]. One can now briefly illustrate the process describ-
ing the passage from quantum mechanics to instantonic theories in the specific case of
Morse-Smale gradient flows [21, section 5], which can be thought of as the inverse
of the path followed by Faure et al. for Anosov flows. One starts from a rescaled Wit-
ten Laplacian which is a deformation of the Hodge Laplacian by a Morse potential f :
H~ = 1

2
(−~∆ + ~−1|df |2 + LV + L∗V ). Then one can wonder what the eigenvalues of this

new quantum Hamiltonian are. For that purpose, we conjugate H with e
f
~ which yields

the new Hamiltonian : H̃~ = e
f
~H~e

− f~ = LV − ~∆
2
. At the instantonic limit ~ → 0, H̃~

becomes formally H̃0 = LV which is nothing else but the Lie derivative along the gradient
vector field whose spectrum was computed explicitely in [12] or can be deduced from the
upcoming results applied in the particular case of Morse-Smale gradient flows. Therefore,
the spectrum of the Witten Laplacian converges to the spectrum of the Lie derivative.

2. Statement of the main results

The main objective of this article is to give a complete description of the Pollicott-
Ruelle resonances and resonant states in the case of Morse-Smale vector fields satisfying
certain generic linearizing assumptions. Let us start with the resonances which are simpler
to describe. Recall that a Morse-Smale flow ϕt is a flow whose nonwandering set is the
union of finitely many hyperbolic closed orbits and hyperbolic fixed points that we denote
by Λ1, . . . ,ΛK . These are called the critical elements (or the basic sets) of the flow. To
each Λj is associated an unstable (resp. stable) manifold W u(Λj) (resp. W s(Λj)). These
unstable manifolds form a partition of M and, by definition of a Morse-Smale flow, they
enjoy some transversality properties – see paragraph 3 for a brief reminder. Such unstable
manifolds can be either orientable or not5. We define the twisting index of Λ as

εΛ = 0 if W u(Λ) is orientable, and εΛ =
1

2
otherwise.

To every closed orbit Λ, we also associate a positive number PΛ which is the minimal
period of the closed orbit and an element ME(Λ) which is a monodromy matrix for the

parallel transport around Λ. We denote the eigenvalues of this matrix by (e2iπγΛ
j )j=1,...,N

where γΛ
j are complex numbers. For every fixed point Λ, we define

σΛ := {0},

5Non orientability can only occurs for closed orbits.
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and the multiplicity of 0 is defined as µΛ(0) = N . For every closed orbit, we set

σΛ :=

{
−

2iπ(m+ εΛ + γΛ
j )

PΛ

: 1 ≤ j ≤ N, m ∈ Z

}
,

and the multiplicity of z0 in σΛ is given by

µΛ(z0) :=

∣∣∣∣∣
{

(j,m) : z0 = −
2iπ(m+ εΛ + γΛ

j )

PΛ

}∣∣∣∣∣ .
2.1. Resonances on the imaginary axis. Our first main result describes the resonances
lying on the imaginary axis in the case where the flat connection ∇ preserves some Her-
mitian structure on the fibers of E . Recall that this is equivalent to fixing some unitary
representation of the fundamental group π1(M) [49, Th. 13.2]. In that case, all the γΛ

j are
real and we show:

Theorem 2.1. Let E →M be a smooth, complex, hermitian vector bundle of dimen-
sion N endowed with a flat unitary connection ∇. Suppose that V is a Morse-Smale
vector field which is C∞-diagonalizable.
Then, for every 0 6 k 6 n,

Rk(V,∇) ⊂ {z : Re(z) ≤ 0},
and one has

Rk(V,∇) ∩ iR =
⋃

Λ fixed point: dim W s(Λ)=k

σΛ ∪
⋃

Λ closed orbit: dim W s(Λ)∈{k,k+1}

σΛ,

where a resonance z0 ∈ Rk(V,∇) ∩ iR appears with the algebraic multiplicity∑
Λ fixed point: dim W s(Λ)=k

µΛ(z0) +
∑

Λ closed orbit: dim W s(Λ)∈{k,k+1}

µΛ(z0).

Before making some comments on this first result, let us observe that we made an ex-
tra assumption on the vector field saying that it is C∞-diagonalizable – see section 3 for
the precise definition. It roughly means that we can linearize the vector field in a smooth
chart near any Λj. Thanks to the Sternberg-Chen Theorem, this is satisfied as soon as
certain nonresonance assumptions are satisfied [40, 52]. Combined with the classical results
of Peixoto [42] and Palis [41], we can then verify that this assumption is in some sense
generic among Morse-Smale vector fields: we refer to paragraph 3 and to the discussion
following Theorem 7.5 for more precision on this hypothesis. One of the reason for this
assumption is that we do not only aim at describing these dynamical eigenvalues but also
their corresponding generalized eigenmodes – see Theorem 7.5 for a complete statement.
Besides the fact that the question of describing the eigenstates is interesting on its own,
we shall also see in [14] that these eigenmodes have interesting topological properties re-
lated to Morse inequalities and Reidemeister torsion. If we were only interested in the
eigenvalues, it would probably be sufficient to relate these eigenvalues to the zeros of some
dynamical zeta function via a trace formula as in [2, 1] and maybe avoid some of the
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linearization assumptions we have. Yet, it would not be necessarily much simpler from
the technical point of view as this would require to justify such a formula in our context.
This would mean to use the notion of distributional traces [32] of a flow with fixed points
and closed orbits. Our somewhat direct approach avoid this difficulty and, along the way,
it also gives in addition a complete description of the generalized eigenmodes. Coming
back to the nonresonance assumption, one should probably be able to lower the regular-
ity assumptions (at the expense of a slightly more technical work), and still describe the
Pollicott-Ruelle resonant states explicitely in some half plane {z : Re(z) ≥ −T}, where T
would depend on the regularity assumptions. Yet, removing these assumptions is beyond
the scope of the present article which essentially aims at giving examples where one can
explicitely determine the correlation spectrum.

Let us now briefly comment our first Theorem. First of all, it completely determines
the Pollicott-Ruelle resonances on the imaginary axis in terms of the periods of the flow,
of the topology of the unstable manifolds and of the monodromy around every closed
orbit. In particular, up to the periods, this part of the spectrum is completely determined
by the “topology” of the flow. We also emphasize that eigenvalues in every degree are
associated with Smale’s partition of M into stable manifolds [47]. We remark that, even
if many progresses were made towards understanding the Pollicott-Ruelle spectrum, there
are not so many examples where one can compute the spectrum explicitely. In the case
of maps, we can mention the case of hyperbolic linear automorphisms of the torus where
there is in fact only one resonance [6], the case of an hyperbolic fixed point which can be
derived from [2] (see also [23]) or the one of analytic expanding circle maps arising from
finite Blaschke products [3, 4]. In the case of geodesic flows on hyperbolic manifolds, these
resonances were shown to be in correspondance with the spectrum of the Laplace Beltrami
operator [16, 31] – see also [26] for earlier related results. In the case of Morse-Smale
gradient flows, we gave a complete description of the correlation spectrum. The main
differences with that last reference are the addition of the flat connection and the presence
of closed orbits. These closed orbits are in fact responsible for the vertical lines we can
observe inside Rk(V,∇). As a first corollary of our analysis, let us point the following Weyl
formula:

Corollary 2.2. Suppose the assumptions of Theorem 2.1 are satisfied and let 0 ≤ k ≤ n.
Then, as T → +∞, one has

|{z0 ∈ Rk(V,∇) ∩ iR : | Im(z0)| ≤ T}| = NT

π

 ∑
Λ closed orbit: dim W s(Λ)∈{k,k+1}

PΛ

+O(1),

where the resonances are counted with their algebraic multiplicity.

Recall that, for Anosov flows, Faure and Sjöstrand proved that the resonances near the
imaginary axis verifies Weyl’s upper bound in the limit Im(z)→ +∞ [22] – see also [15, 25]
in the contact case.

2.2. Pollicott-Ruelle resonances and Weyl’s law. Our analysis will in fact give an
explicit description of the full correlation spectrum inside {z : Re(z) ≤ 0} in terms of the
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Lyapunov exponents of the flow, of the periods of the flow, of the topology of the unstable
manifolds and of the monodromy around every closed orbits. Since this description is a
little bit combinatorial and, for the simplicity of exposition, we just mention the following
consequence of Theorem 7.5:

Theorem 2.3. Suppose the assumptions of Theorem 2.1 are satisfied. Then, for
every 0 6 k 6 n and for every critical element Λ, there exists a sequence of complex
numbers (zΛ,k(j))j≥1 such that

∀j ≥ 1, Re (zΛ,k(j)) 6 0, lim
j→+∞

zΛ,k(j) = −∞,

and
Rk(V,∇) =

⋃
Λ

⋃
j≥1

(zΛ,k(j) + σΛ) .

For every closed orbit or critical point Λ, the zΛ,k(j) can be determined explicitely as
linear (integer) combination of the eigenvalues of the linearized system near Λ. In some
sense, they will only depend on the local properties of the flow near Λ. For simplification,
we also made the assumption that ∇ preserves a smooth hermitian structure but our anal-
ysis remains true under the slightly more general hypothesis that ME(Λ) is diagonalizable
for every closed orbit. In that case, it may happen that there are finitely many bands of
resonances on the half plane {z : Re(z) > 0}. This Theorem should be compared with the
results of Faure and Tsujii [24, 25] on the Pollicott-Ruelle spectrum of contact Anosov flows.
In that framework, they proved that the resonances exhibit in the limit Im(z) → +∞ a
band structure which is completely determined by the unstable Jacobian of the flow. Here,
our analysis show that this band structure remains true for Morse-Smale flows and it is in
fact given by vertical lines of resonances which can be explicitely determined. Finally, to
every critical element Λ of the Morse–Smale flow, we associate a convex polytope QΛ in
Rn which depends only on the eigenvalues of the linearization of the vector field V near Λ.
These convex polytopes are explicitely defined by (46) and (47). Our last Theorem gives
Weyl’s law satisfied by elements in Rk(V,∇):

Theorem 2.4 (Weyl’s law). Suppose that the assumptions of Theorem 2.1 are satis-
fied. For every 0 ≤ k ≤ n, define

Nk(T ) := |{z0 ∈ Rk(V,∇) : | Im(z0)| 6 T and Re(z0) > −T}| ,
where the Pollicott-Ruelle resonances are counted with their algebraic multiplicity.
Then, one has, as T → +∞,

Nk(T ) =
Nn!

k!(n− k)!

(
K∑
j=1

VolRn(QΛj)

)
T n +O(T n−1).

Except for the case of Morse-Smale gradient flows [12], we are not aware of the exis-
tence of asymptotic formulas for the counting function of Pollicott-Ruelle resonances. In
the case of the geodesic vector field on hyperbolic manifold, they can maybe be derived



8 NGUYEN VIET DANG AND GABRIEL RIVIÈRE

following [16] but it is not completely obvious what the exponent would be for T . Again,
this Theorem is just a Corollary of the analysis we will perform in this article and we will
in fact be able to determine exactly which resonances are inside these large boxes.

2.3. Constructing the resonant states. As was already explained, not only we will
describe the eigenvalues and their multiplicity but also their corresponding generalized
eigenmodes. In fact, the way we prove the above results rely on our explicit construction
of the generalized eigenmodes of the operator −LV,∇ acting on the anisotropic Sobolev
spaces we have defined in [13]. More precisely, given any critical element Λ and any
z0 ∈ C, we will first consider germs of solution u ∈ D′,•(E) of the equation

(3) (LV,∇ + z0)ψ0 = 0

whose support near Λ is contained in the unstable manifold W u(Λ) (see equation (24)) and
whose wavefront set lies in the union of conormals of strongly unstable manifolds of Λ (see
equation (25) for a precise statement). We will solve this eigenvalue problem explicitely
near Λ and show that it imposes restriction on the possible values of z0. Then we will try to
extend these local solutions into currents which are globally defined on M . What we would
do intuitively is to use the fact that Φ−t∗(ψ0) = etz0ψ0 to propagate the local solution to

define some current supported on W u(Λ). Yet, this would require to analyze carefully the
closure of W u(Λ) and this may turn to be a delicate task – see [36] for related problems in
the case of Morse-Smale gradient flows. Instead of that, we will make use of the spectral

projectors π
(•)
z0 which are given to us by our spectral analysis in [13]. In that manner, we

hide the difficulty of understanding the dynamics of the flow near the boundary of W u(Λ)
into the construction of our anisotropic Sobolev space – see for instance [13, Sect. 4] for
results related to this delicate dynamical issue. Applying the spectral projectors to the
locally defined currents allow to extend them into globally defined currents. In some sense,
the use of spectral theory elegantly replaces the method of Epstein–Glaser renormalization
used in [28, 27] to extend distributions – see paragraph 7.1.1 especially Theorem 7.4 for a
more detailed discussion. We also note that the generalized eigenmodes we will construct
are related to the so-called Ruelle-Sullivan currents [45] and we shall come back on that
issue in paragraph 7.1.2.

If we come back to our problem, the price we pay when we extend these currents is
that they are not a priori true eigenmode and they only satisfy the generalized eigenvalue
equation:

(LV,∇ + z)m•(z0) ψ0 = 0.

Once these generalized eigenmodes are constructed, we will make use of the Morse-Smale
dynamics and of the spectral analysis from [13] to conclude that they indeed generate all
the Pollicott-Ruelle resonant states. The main result on that question is Theorem 7.5
which is in fact the main result of the present article.

Finally, we briefly mention that the resonant states associated to resonances lying on
the imaginary axis have a strong topological meaning. We shall come back to this issue in
the companion article [14].
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2.4. Organization of the article. In section 3, we start with a brief reminder on Morse-
Smale flows and on the spectral results from [13]. For more details on both issues, we refer
the reader to this reference. In section 4, we show how we can remove the contribution com-
ing from the flat connection ∇ by shifting the spectrum. After that, we show in section 5
how to reduce the question of solving the eigenvalue equation to a scalar problem. In this
section, we also introduce several conventions related to the Pollicott-Ruelle spectrum. In
section 6, we solve the eigenvalue problem locally near every critical element of the vector
field. Finally, in section 7, we construct the resonant states and gives our main Theorem
from which all the results of this section follows. In the appendix, we briefly review some
facts from Floquet theory that we extensively use all along the article.

Acknowledgements. We warmly thank Frédéric Faure for many explanations on his
works with Johannes Sjöstrand and Masato Tsujii. We also acknowledge useful discussions
related to this article and its companion articles [13, 14] with Livio Flaminio, Colin Guil-
larmou, Benoit Merlet, Frédéric Naud and Patrick Popescu Pampu. The second author is
partially supported by the Agence Nationale de la Recherche through the Labex CEMPI
(ANR-11-LABX-0007-01) and the ANR project GERASIC (ANR-13-BS01-0007-01).

3. A brief reminder on Morse-Smale flows and on [13]

3.1. Morse-Smale flows. We say that Λ ⊂ M is an elementary critical element if Λ is
either a fixed point or a closed orbit of ϕt. Such an element is said to be hyperbolic if the
fixed point or the closed orbit is hyperbolic – see appendix A of [13] for a brief reminder.
Following [48, p. 798] , ϕt is a Morse-Smale flow if the following properties hold:

(1) the non-wandering set NW(ϕt) is the union of finitely many elementary critical
elements Λ1, . . . ,ΛK which are hyperbolic,

(2) for every i, j and for every x in W u(Λj) ∩W s(Λi), one has 6 TxM = TxW
u(Λj) +

TxW
s(Λi).

We now briefly expose some important properties of Morse-Smale flows and we refer to [13]
for a more detailed exposition on the dynamical properties of these flows. Under such
assumptions, one can show that, for every x in M , there exists an unique couple (i, j) such
that x ∈ W u(Λj)∩W s(Λi) (see e.g. [13, Lemma 3.1]). In particular, the unstable manifolds
(W u(Λj))j=1,...,K form a partition of M , i.e.

M =
K⋃
j=1

W u(Λj), and ∀i 6= j, W u(Λi) ∩W u(Λj) = ∅.

The same of course holds for stable manifolds. One of the main feature of such flows is the
following result which is due to Smale [13, 47]:

Theorem 3.1 (Smale). Suppose that ϕt is a Morse-Smale flow. Then, for every 1 ≤
j ≤ K, the closure of W u(Λj) is the union of certain W u(Λj′). Moreover, we say that

6See appendix of [13] for the precise definition of the stable/unstable manifolds W s/u(Λ).
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W u(Λj′) 5 W u(Λj) if W u(Λj′) is contained in the closure of W u(Λj), then, 5 is a partial
ordering. Finally if W u(Λj′) 5 W u(Λj), then dimW u(Λj′) ≤ dimW u(Λj).

The partial order relation on the collection of subsets W u(Λj)
K
j=1 defined above is called

Smale causality relation. Following Smale, we define an oriented graph7 D called Smale
quiver whose K vertices are given by W u(Λj)

K
j=1. Two vertices W u(Λj),W

u(Λi) are con-
nected by an oriented path starting at W u(Λj) and ending at W u(Λi) iff W u(Λj) = W u(Λi).
From the works of Peixoto [42], it is known that Morse-Smale flows form an open and dense
subset of all smooth vector fields in dimension 2 while Palis showed that in higher dimen-
sion they form an open subset [41]. In particular, if we perturb a little bit a Morse-Smale
flow, it remains Morse-Smale. For our analysis, we will need to choose Morse-Smale flows
satisfying certain generic assumptions on their linearization near critical elements as we
shall now explain. It would be interesting to remove these assumptions and we refer to the
discussion following our main Theorem 7.5 for more details on that question.

More precisely, our linearizing assumptions are as follows. We fix 1 ≤ k ≤ ∞ and we
say that the Morse-Smale flow is Ck-linearizable if for every 1 ≤ i ≤ K, the following hold:

• If Λi is a fixed point, there exists a Ck diffeomorphism h : Bn(0, r)→ W (where W
is a small open neighborhood of Λi and Bn(0, r) is a small ball of radius r centered
at 0 in Rn) and a linear map Ai on Rn such that V ◦ h = dh ◦ L where V is the
vector field generating ϕt and where

L(x) = Aix.∂x.

• If Λi is a closed orbit of period PΛi , there exists a Ck diffeomorphism h : Bn−1(0, r)×
R/(PΛiZ)→ W (where W is a small open neighborhood of Λi and r > 0 is small)
and a smooth map A : R/(PΛiZ)→Mn−1(R) such that V ◦ h = dh ◦ L with

Li(x, θ) = Ai(θ)x.∂x + ∂θ.

In other words, the flow can be put into a normal form in a certain chart of class Ck. We
shall say that a Morse-Smale flow is Ck-diagonalizable if it is Ck-linearizable and if,
for every critical element Λ, either the linearized matrix A ∈ GLn(R) or the monodromy
matrix M (see appendix A) associated with A(θ) is diagonalizable in C. Such properties are
satisfied as soon as certain (generic) non resonance assumptions are made on the Lyapunov
exponents thanks to the Sternberg-Chen Theorem [10, 40, 52]. Hence, as Morse-Smale flows
form an open subset of all smooth vector fields, the flows we consider are in some sense
generic from the Sternberg-Chen Theorem. We refer to the appendix of [13] for a detailed
description of these nonresonant assumptions.

3.2. Pollicott-Ruelle resonant states following [13]. The main goal of the present arti-

cle is to describe both the resonances and the resonant states of −L(k)
V,∇ for every 0 ≤ k ≤ n.

Recall from the introduction that they correspond to the poles and the residues of the mero-
morphic extension of the Laplace transform Ĉψ1,ψ2 of the correlation function. From [13],
they are also the eigenvalues and generalized eigenmodes of the (nonseladjoint) operator

7This diagram is the Hasse diagram associated to the poset
(
Wu(Λj)

K
j=1,5

)
.
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−L(k)
V,∇ acting on a certain anisotropic Sobolev space of currents Hm

k (M, E), where m(x, ξ)
is a certain order function which indicate the Sobolev regularity – see section 5 of [13]
for details. More precisely, given any T0 > 0, there exists an order function m such that

the spectrum of −L(k)
V,∇ on Hm

k (M, E) is discrete for Re(z) ≥ −T0. In particular, it follows
from [22, Th. 1.5] that the eigenvalues and their corresponding generalized eigenmodes are
independent of the choice of the order function m satisfying the properties of Lemma 5.2
in [13]. Hence, if we increase the Sobolev regularity in the construction (which corresponds
to increase |u|, |s| and |n0| in this Lemma), we have that a given eigenmode u stay in the
anisotropic Sobolev space with the higher choice of regularity. In particular, if a general-
ized eigenmode u is supported on W u(Λ) near a critical element Λ of the flow. Then, the
wavefront set of u [7] near Λ is contained in the conormal of W u(Λ) which roughly says
that the current is smooth in the direction of W u(Λ).

4. Monodromy and flat connections

In [12], we were able to compute explicitely the spectrum of −LV by localizing the
eigenvalue equation near the critical elements of the flow. Here, we will perform a similar
analysis with the two following additional difficulties: (i) critical elements may be closed
orbits of the flow (and not only fixed points) (ii) the complex vector bundle E and the
corresponding flat connection ∇. The risk of introducing this new geometric object ∇ is
that all our analysis to compute the Pollicott-Ruelle resonances breaks down or becomes
much more involved from the technical point of view. Yet, this is not the case and our goal
in this section is to show that the addition of ∇ does not complexify the calculation that
much once we have defined an appropriate basis for the vector bundle E .

Before stating precise results on that issue, let us start with a simple observation. Let U
be an open set inside M and let (c1, . . . , cN) be a moving frame of E defined on U . Then,
we can write, for u =

∑
j ujcj in Ω•c(U, E)

(4) LV,∇

(
N∑
j=1

ujcj

)
=

N∑
j=1

LV (uj)ej +
N∑
j=1

uj∇V cj.

Hence, if we are able to find a moving frame (c1, . . . , cN) such that, for every 1 ≤ j ≤ N ,
∇V cj = γjcj, then, for u in Ω•c(U, E), one has, in some open set Ũ ⊂⊂ U ,

−LV,∇u = λu ⇐⇒ ∀1 ≤ j ≤ N, −LV (uj) = (λ+ γj)uj.

In other words, if we have a diagonalizing moving frame, then the problem is essentially
equivalent to the case of the trivial bundle U ×C. In this section, we shall explain how we
can indeed construct such nice moving frame near any critical elements of a Morse-Smale
flow. Note that the frame will not necessarily be as nice as above due to the fact that the
monodromy matrix may not be diagonalizable.

Let us now state the precise results we shall need. We distinguish the cases of critical
points and of closed orbits of the flow. First, in the case where Λ ⊂ NW (ϕt) is a critical
point, we can use the following classical result [37, Th. 12.25]:
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Theorem 4.1. Let E →M be a smooth complex vector bundle of rank N endowed with a
flat connection ∇. Let U ⊂M be a simply connected open set.

Then, there exists a moving frame (c1, . . . , cN) of E defined on U such that, for every
1 ≤ j ≤ N ,

(5) ∇cj = 0.

Thus, in the case of critical elements, we can take all the γj to be equal to 0 if we only
aim at solving the eigenvalue problem locally. However, this is no longer the case for closed
orbits of the flow. In fact, there may be closed orbits Λ ⊂ NW (ϕt) for which any open
neighborhood U of Λ is not simply connected and the above Theorem cannot be applied.
In that case, we have to work more and we shall prove the following statement which is
the main result of this section :

Theorem 4.2. Let E → M be a smooth complex vector bundle of rank N endowed with
a flat connection ∇. Let V be a smooth Morse-Smale vector field on M which is C∞
linearizable and let Λ be a closed orbit of the induced flow of minimal period P.

Then there exists a neighborhood U of Λ, a smooth moving frame (cΛ
1 , . . . , c

Λ
N) of E

defined on U , some complex numbers (γΛ
1 , . . . , γ

Λ
N) ∈ CN such that, for every 1 ≤ j ≤ N ,

(6) ∇V cΛ
j =

2iπγΛ
j

PΛ

cΛ
j or ∇V cΛ

j =
2iπγΛ

j

PΛ

cΛ
j + cΛ

j−1.

Moreover, the e2iπγΛ
j are the eigenvalues of the monodromy matrix for the parallel transport

around the closed orbit Λ and, if the monodromy matrix is diagonalizable, one has

∇V cΛ
j =

2iπγΛ
j

PΛ

cΛ
j ,

for every 1 ≤ j ≤ N .

In other words, as we will be able to reduce the spectral analysis of Morse-Smale flows
to solving certain eigenvalue equations near critical elements, the effect of introducing a
flat connection will just be to shift the spectrum thanks to (4). We will come back on that
observation later on. Let us now give the proof of that Theorem.

4.1. Trivializing E near a closed immersed curve Λ ⊂M . Let Λ be a smooth closed
immersed curve. We first prove that the vector bundle E is in fact trivial near Λ:

Proposition 4.3. Let E 7→ M a smooth complex vector bundle of rank N on M . Then,
near Λ ⊂M , there is a neighborhood U on which one has the local trivialization

E|U ' S1 × Rn−1 × CN .

We prove this proposition in two steps. First, we consider the case of an oriented real
bundle on M = S1:

Lemma 4.4. Let E → S1 be an oriented real vector bundle of rank n − 1 over the circle
S1. Then, E is trivial.
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Proof. Real oriented vector bundles of rank n − 1 over S1 are identified with cartesian
products [0, 1] × Rn−1 quotiented by an equivalence relation [0, 1] × Rn−1/ ∼ identifying
the fiber {0} × Rn−1 over {0} with the fiber {1} × Rn−1 over {1}. In other words, there
exists a linear invertible element g in GLn−1(R) such that (1, z) ∼ (0, gz) and det(g) > 0.
Then, one can define a smooth path g : [0, 1] 7→ GLn−1(R) such that g(0) = Id, g(1) = g
and det(g(θ)) > 0 for every θ ∈ [0, 1]. Let (e1, . . . , en−1) be a basis of {0} × Rn−1 and
define a moving frame of [0, 1]× Rn−1 as follows

(e1(θ), . . . , en−1(θ)) = (g(θ)−1e1, . . . , g(θ)−1en−1).

Finally, observe that over the fiber {1}×Rn−1, (g(1)−1e1, . . . , g(1)−1en−1) is identified with
(e1, . . . , en−1) = (g(0)−1e1, . . . , g(0)−1en−1). Hence, the moving frame (e1(θ), . . . , en−1(θ))
trivializes E over S1. �

If γ is a closed immersed curve inside (M, g) (which is supposed to be an oriented
manifold), then the above lemma shows that the normal bundle N(γ ⊂ M) is trivial.
Indeed, if one chooses an orientation of γ and thus of N(γ ⊂ M) (since M is oriented),
then N(γ ⊂ M) fibers over the circle and is hence trivial. In order to conclude the proof
of Proposition 4.3, we shall now prove the following Lemma:

Lemma 4.5. Let E → M be a smooth complex vector bundle of rank N . Let Λ be a
closed immersed curve in M , then there is a neighborhood U of Λ such that the bundle E|U
restricted over U is trivial.

Proof. Since the normal bundle to Λ in M is locally trivial near Λ, we can in fact consider
a complex vector bundle E → S1 × Rn−1 of rank N . This can be identified with the
quotient cartesian product [0, 1]× Rn−1 × CN/ ∼ where, for every x in Rn−1, there exists
gx ∈ GLN(C) such that (1, x, z) ∼ (0, x, gxz). Moreover, as we supposed the vector bundle
to be smooth, the map x 7→ gx can be chosen smooth. Then, we conclude as in the case of
a real oriented bundle by observing that we can find a smooth map

g : (θ, x) ∈ [0, 1]× Ũ → g(θ, x) ∈ GlN(C)

defined in small neighborhood of x = 0 such that g(0, x) = Id and g(1, x) = gx. Indeed, one
can fix a smooth function χ : [1/2, 1]→ [0, 1] which is equal to 1 in a small neighborhood
of 1/2 and to 0 near 1. Thus, we can set g(θ, x) = χ(θ)g0 + (1 − χ(θ))gx. If x is close
enough to 0, this defines a smooth path in GLN(C) and one can complete the path up to
θ = 0 by taking a smooth path from g0 to Id. �

4.2. Parallel transport and monodromy. Consider a path γ : t ∈ [0, 1] 7→ γ(t) ∈ M .
An element s ∈ Ω0(M, E) is said to be parallel along γ if, it solves the following ODE:

(7) ∇γ′(t)s(γ(t)) = 0.

Given any e in Eγ(0), there always exists a unique parallel section along γ satisfying
s(γ(0)) = e [37, Th. 12.20]. For t = 1, we can then define an invertible linear mapping
from Eγ(0) to Eγ(1), called the holonomy of γ (or parallel translation):

H(γ)(e) := s(γ(1)).
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Fix now x ∈M and γx a loop based at x. The monodromy of the connection ∇ around
γx calculated at x reads

(8) M(γx) ∈ GL(Ex) ' GLN(C).

When ∇s = 0, we say that s is a parallel section. Recall that such a section exists locally
if we suppose that the connection is flat [37, Th. 12.25].

4.3. Proof of Theorem 4.2. As we supposed the Morse-Smale vector field V to be
C∞-diagonalizable, there exists some smooth local coordinates (z, θ) ∈ Ũ × R/(PZ) ⊂
Rn−1 × R/(PΛZ) such that the vector field has the form

V (z, θ) = AΛ(θ)z∂z + ∂θ.

We shall now work with these local coordinates. Thanks to Proposition 4.3, we can fix
(e1(z, θ), . . . , eN(z, θ)) to be a smooth trivializing frame field near Λ := {(0, θ) : θ ∈
R/(PΛZ)} for the complex vector E →M . In this frame field, the connection acts as

∇

(
N∑
j=1

sjej

)
=

N∑
j=1

dsjej +
N∑
j=1

sj∇ej

=
N∑
j=1

dsjej +
N∑
j=1

sj

(
n−1∑
l=0

Bl(z, θ)dzl + C(z, θ)dθ

)
ej,

where (Bl(z, θ))l=1,...,n−1 and C(z, θ) are smooth maps from Ũ × R/(PZ) to GLN(C). As
a first step, we would like to define a new trivializing frame (f1, . . . , fN) such that B ≡ 0
and C(z, θ) does not depend on z. For that purpose, we fix θ0 in R/(PZ) and for every
1 ≤ j ≤ N , we solve the following system of equations:

(9) ∀1 ≤ i ≤ N,∇ ∂
∂zi

fj(z, θ0) = 0 and fj(0, θ0) = ej(0, θ0).

As was already mentionned, using the fact that the connection is flat, we can find a parallel
section f̃j in a small neighborhood of (0, θ0) [37, Th. 12.25] satisfying f̃j(0, θ0) = ej(0, θ0).
Such a section solves in particular the above system of equations. Thus, we shall now work
in this new trivializing (smooth) frame field (f1, . . . , fN) where, for every 1 ≤ j ≤ N and
for every θ0 ∈ R/(PZ), fj(z, θ0) is the solution of the system (9). In this new frame, the
connection reads

∇

(
N∑
j=1

sjfj

)
=

N∑
j=1

dsjfj +
N∑
j=1

sj

(
∇ ∂

∂θ
fj

)
(z, θ)dθ.

Let us now verify that
(
∇ ∂

∂θ
fj

)
(z, θ) is of the form

∑N
i=1 T (θ)ijfi for z near 0 where T (θ)

is a smooth map from R/(PΛZ) to GLN(C). Indeed, by flatness of the connection, we
observe that ∇ ∂

∂θ
∇ ∂

∂z
= ∇ ∂

∂z
∇ ∂

∂θ
[37, p. 526]. Hence, using the definition of fj, one has

0 = ∇ ∂
∂θ
∇ ∂

∂z
fj(z, θ) = ∇ ∂

∂z
∇ ∂

∂θ
fj(z, θ).
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We now decompose

∇ ∂
∂θ

fj(z, θ) =
∑
i

T (z, θ)ijfi(z, θ),

and we find, using one more time the equation satisfied by fi,

0 = ∇ ∂
∂z

(∑
i

T (z, θ)ijfi(z, θ)

)
=
∑
i

∂T (z, θ)ij
∂z

fi(z, θ).

Since fi(z, θ)
N
i=1 is a basis for every (z, θ), this implies that, for every 1 ≤ i, j ≤ N ,

∂T ij
∂z

(z, θ) = 0, hence T (z, θ)ij is independent of z as expected.
We shall now use Floquet theory to conclude the proof of Theorem 4.2. From [50,

Chapter 3], there exists U(θ, θ0) solving the following ordinary differential equation:

dU

dθ
= T (θ)U, U(θ0, θ0) = IdCN .

Moreover, this fundamental solution can be put under the form U(θ, 0) = P1(θ)eθΩ1 where
P1(θ) is P-periodic. We then set the following gauge transformation f ′j = P1(θ)−1fj for
every 1 ≤ j ≤ N . In this new frame, the connection can be written as follows

∇

(
N∑
j=1

sjf
′
j

)
=

N∑
j=1

dsjf
′
j +

N∑
j=1

sjT1(θ, dθ)f ′j,

where

T1(θ, dθ) := P1(θ)−1
(
−dP1(θ)P1(θ)−1 + T (θ)dθ

)
P1(θ) = Ωdθ,

where the second equality follows from the fact that P1(θ)eθΩ1 solves the Floquet equation.
Hence, in this trivializing frame, one has

∇

(
N∑
j=1

sjf
′
j

)
=

N∑
j=1

dsjf
′
j +

N∑
j=1

sjΩf ′jdθ,

where Ω is a constant matrix. Note that ePΩ is the monodromy matrix for the parallel
transport along Λ. In order to conclude, we just use the fact that there exists a Jordan
basis for the matrix Ω and make a last gauge transformation to work in this basis.

4.4. Diagonalizing monodromy matrices for parallel transport. Suppose now that
we have a hermitian structure 〈., .〉E on E which preserves the flat connection, i.e. for any
s1 and s2 in Ω0(M, E), one has

d (〈s1, s2〉E) = 〈∇s1, s2〉E + 〈s1,∇s2〉E .

Recall that complex vector bundles E → M endowed with a flat connection compatible
with some Hermitian structure are also used in Hodge theory [5, 39, 8]. In our setting, if we
use the coordinates (z, θ) near the closed orbit Λ and if we consider the parallel transport
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s1 and s2 of two vectors s1(0) and s2(0) based at (0, 0) along the curve c(θ) = (0, θ), we
have

d

dθ
(〈s1, s2〉E) = 〈∇∂θs1, s2〉E + 〈s1,∇∂θs2〉E = 0.

Hence, the parallel transport preserves the Hermitian structure on E . In particular, the
monodromy matrix for the parallel transport along Λ is a unitary matrix and has its
spectrum contained in S1 = R/(2πZ). In that case, the γΛ

j in Theorem 4.2 can be chosen
in R and the effect of the flat connection is just to shift the spectrum in the vertical
direction.

In the following, we shall always assume for the sake of simplicity8 that the Morse-
Smale vector fields we consider have diagonalizable monodromy matrices for
the parallel transport around its closed orbits.

5. Reduction to a scalar problem near critical elements

As was already explained, we will have to solve the eigenvalue equation −L(k)
V,∇u = λu

for u ∈ D′k(M, E) satisfying certain smoothness assumptions or more specifically certain
wavefront assumptions – see paragraph 6. Theorems 4.1 and 4.2 provides a smooth moving
frame (cΛ

1 , . . . , c
Λ
N) in the neighborhood of any critical element Λ of the flow. More precisely,

recall that, if we write u =
∑N

j=1 ujc
Λ
j near Λ (with uj ∈ D′k(M)), then one has

(10) L(k)
V,∇

(
N∑
j=1

ujc
Λ
j

)
=

N∑
j=1

(
L(k)
V +

2iπγΛ
j

PΛ

)
ujc

Λ
j ,

where all the γΛ
j are equal to 0 for critical points (and PΛ = 1) and where

(
e2iπγΛ

j

)N
j=1

are the eigenvalues of the monodromy matrix for the parallel transport around the closed
orbit Λ. We would now like to reduce the problem one more time to deal only with scalar
problems near the critical elements of the flow. For that purpose, we shall explain how
to construct an appropriate basis of the vector bundle Λk(T ∗M) in a neighborhood of any
critical element Λ of the flow and we will distinguish again the case of critical points and
periodic orbits.

This construction requires a rather tedious work in order to take into account the various
situations. Yet, this preliminary discussion permits afterwards to lighten the proofs of the
upcoming sections. Along the way, we fix some conventions for smooth local coordinates
that we shall use all along the article.

Remark 5.1. From this point on, we shall always suppose that ϕt is a Morse-
Smale vector field which is C∞-diagonalizable. Again, we refer to the discussion
following Theorem 7.5 for comments on that assumption.

8At the expense of some extra combinatorial work, the general case could probably be treated by similar
technics.
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5.1. Critical points. Fix Λ a critical point of the flow. Recall that we supposed the flow
to be C∞-diagonalizable near Λ, i.e. there exists a diagonalizable (in C) matrix AΛ such
that, in a smooth system of coordinates (x1, . . . , xn), the Morse-Smale vector field V can
be written as

V (x, ∂x) = AΛx.∂x.

Up to a linear change of coordinates in Rn, we can suppose that the matrix A is block-
diagonal of the form

AΛ = Diag(S1(Λ), . . . , Sp(Λ), Up+1(Λ), . . . , Uq(Λ)) ∈ GLn(R),

where one has :

• for every 1 ≤ j ≤ p, one has Sj(Λ) = χj(Λ)IdR1 or Sj(Λ) :=

(
χj(Λ) ωj(Λ)
−ωj(Λ) χj(Λ)

)
with χj(Λ) < 0 and ωj(Λ) 6= 0,

• for every p+1 ≤ j ≤ q, one has Uj(Λ) = χj(Λ)IdR1 or Uj(Λ) :=

(
χj(Λ) ωj(Λ)
−ωj(Λ) χj(Λ)

)
with χj(Λ) > 0 and ωj(Λ) 6= 0.

The numbers (χj(Λ))j=1,...,n are the Lyapunov exponents of the critical point Λ.
We now introduce new labellings for the indices of coordinates in Rn depending on the

block decomposition of the matrix AΛ. We denote by Ls (resp Lu) the set of indices
i corresponding to a matrix Si(Λ) (resp. Ui(Λ)) of size 1 (i.e. associated with a real
line) while Ps (resp. Pu) will denote the set of indices corresponding to matrices of size
2 (i.e. associated with a real plane). Then, for every j in Ls (resp. Lu), we denote the
corresponding coordinates by xj (resp. yj). For Ps (resp. Pu), two coordinates are involved
and we denote them by (xj1, xj2) (resp. (yj1, yj2)). For latter computation, it will also be
convenient to introduce the new pair of complex functions

zj : (xj1, xj2) 7→ xj1 + ixj2, zj : (xj1, xj2) 7→ xj1 − ixj2
wj : (yj1, yj2) 7→ yj1 + iyj2, wj : (yj1, yj2) 7→ yj1 − iyj2.

We denote then by (x, y) the two group of complex valued functions corresponding to stable
and unstable directions respectively where

x = ((xj)j∈Ls , (zj, zj)j∈Ps) and y = ((yj)j∈Lu , (wj, wj)j∈Pu).

In order to make our reduction to a scalar problem, we also consider the associated Grass-
mann variables

(dx, dy) := ((dxj)j∈Ls , (dzj, dzj)j∈Ps , (dyj)j∈Lu , (dwj, dwj)j∈Ps)

Recall that exterior products of those anticommute. Keeping this convention in mind, we
will omit to write exterior products in order to alleviate notations. Note that, for j ∈ Ls
(resp. Lu), one has −L(1)

V (dxj) = −χj(Λ)dxj (resp. −L(1)
V (dyj) = −χj(Λ)dyj). In the case

where j belongs to Ps (resp. Pu), one has

−L(1)
V (dzj) = − (χj(Λ) + iωj(Λ)) dzj and − L(1)

V (dzj) = − (χj(Λ)− iωj(Λ)) dzj,



18 NGUYEN VIET DANG AND GABRIEL RIVIÈRE

resp.

−L(1)
V (dwj) = − (χj(Λ) + iωj(Λ)) dwj and − L(1)

V (dwj) = − (χj(Λ)− iωj(Λ)) dwj.

Fix now u(x, y, dx, dy) to be an element in D′k(M) which is compactly supported in a

neighborhood of Λ. We can then decompose u in the adapted basis (bΛ,k
1 , . . . ,bΛ,k

Nk
) given

by the k products of the Grassmann variables (dx, dy) where Nk :=

(
n
k

)
, i.e.

u(x, y, dx, dy) =

Nk∑
j=1

uj(x, y)bΛ,k
j .

From our construction, we know that

L(k)
V (u) =

Nk∑
j=1

(
L(0)
V (uj) + βΛ,k

j uj

)
bΛ,k
j ,

where, for every 1 ≤ j ≤ Nk, one has

(11) βΛ,k
j =

∑
χ∈Sp(AΛ)

εχχ,

where, for every χ, εχ ∈ {0, 1},
∑

χ εχ = k and where the eigenvalues χ are counted with

their geometric multiplicity. Recall that χ is either of the form χj(Λ) or χj(Λ) ± iωj(Λ).
Fix now u ∈ D′k(M, E). In local coordinates near Λ, we can use the above frames to write

(12) u =
N∑
j=1

Nk∑
j′=1

ujj′c
Λ
j ⊗ bΛ,k

j′ ,

with, for every (j, j′), ujj′ ∈ D′(M). We can then write

(13) L(k)
V,∇(u) =

N∑
j=1

Nk∑
j′=1

(
LV (ujj′) + βΛ,k

j′ ujj′
)

cΛ
j ⊗ bΛ,k

j′ .

Hence, near a critical point, the eigenvalue equation −L(k)
V,∇(u) = λu can be reduced to

solving some scalar eigenvalue equation where the eigenvalue λ may be shifted. For latter
purpose, let us introduce the following set:

(14) Dk(Λ) :=

{
−βΛ,k

j : 1 ≤ j ≤
(
n
k

)}
.

Note that every δ ∈ Dk(Λ) appears with a multiplicity which is given by

(15) mk(δ,Λ) := N ×

∣∣∣∣∣
{

(εχ)χ∈Sp(A) ∈ {0, 1}n :
∑
χ

εχ = k and δ = −
∑
χ

εχχ

}∣∣∣∣∣ .
Note that, for k = 0, Dk(Λ) = {0} and mk(0,Λ) = N .
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5.2. Periodic orbits. Fix now a periodic orbit Λ with minimal period PΛ. We will per-
form a similar construction in order to reduce the problem to a scalar one. Recall that, as
the flow is C∞-linearizable, there exists a smooth system of coordinates near Λ such that

V (x, θ, ∂x, ∂θ) = AΛ(θ)x.∂x + ∂θ,

where A(θ) is a smooth, Mn−1(R)-valued and PΛ-periodic function. We refer to appendix A
for a brief reminder on Floquet theory. In particular, according to appendix A and up to
a linear change of coordinates in Rn−1, we can suppose that the monodromy matrix MΛ is
of the form

MΛ = Diag(S1(Λ), . . . , Sp(Λ), Up+1(Λ), . . . , Uq(Λ)) ∈ GLn−1(R),

where one has

• for every 1 ≤ j ≤ p, one has Sj(Λ) = νj(Λ)IdR1 with 0 < |νj(Λ)| < 1 or Sj(Λ) =

νj(Λ)Rϑj(Λ) with 0 < νj(Λ) < 1 and Rϑj(Λ) :=

(
cos(ϑj(Λ)) − sin(ϑj(Λ))
sin(ϑj(Λ)) cos(ϑj(Λ))

)
,

• for every p + 1 ≤ j ≤ q, one has Uj(Λ) = νj(Λ)IdR1 with |νj(Λ)| > 1 or Uj(Λ) =

νj(Λ)Rϑj(Λ) with νj(Λ) > 1 and Rϑj(Λ) :=

(
cos(ϑj(Λ)) − sin(ϑj(Λ))
sin(ϑj(Λ)) cos(ϑj(Λ))

)
.

Recall from appendix A that one can define the following real-valued matrix:

AΛ =
1

2PΛ

logM2
Λ.

As before, we introduce appropriate coordinates depending on the fact that we consider
an eigenvalue associated with a line or with a two plane. One more time, we denote by Ls
(resp Lu) the set of indices j corresponding to a matrix Si(Λ) (resp. Uj(Λ)) of size 1 (i.e.
associated with a real line) while Ps (resp. Pu) will denote the set of indices corresponding
to matrices of size 2 (i.e. associated with a real plane). We can then define the Lyapunov
exponents of the closed orbit:

(χl(Λ))n−1
l=1 =

((
log |νj(Λ)|
PΛ

)
j∈Ls∪Lu

,

(
log |νj(Λ)|
PΛ

,
log |νj(Λ)|
PΛ

)
j∈Ps∪Pu

)
,

which are exactly the real parts of the eigenvalues of the matrix AΛ. For the indices in

Ps∪Pu, we also set ωj(Λ) =
ϑj(Λ)

PΛ
, hence χj(Λ)±iωj(Λ) are exactly the complex eigenvalues

of AΛ.
Coming back to the choice of coordinates, we also split Ls (resp. Lu) in two disjoint

parts: L+
s (resp. L+

u ) which correspond to some positive νj and L−s (resp. L−u ) which
correspond to some negative νj. Observe that W s(Λ) (resp. W u(Λ)) is orientable if and
only if |L−s | (resp. |L−u |) is even. For every j, we define its twisting index ε̃j which is equal
to 1

2
whenever j ∈ L−s ∪ L−u and to 0 otherwise. Again, for every j in Ls (resp. Lu), we

denote the corresponding coordinates by xj (resp. yj). For Ps (resp. Pu), two coordinates
are involved and we denote them by (xj1, xj2) (resp. (yj1, yj2)). As for critical points, it
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will also be convenient to introduce the new pair of complex functions

zj : (xj1, xj2) 7→ xj1 + ixj2, zj : (xj1, xj2) 7→ xj1 − ixj2
wj : (yj1, yj2) 7→ yj1 + iyj2, wj : (yj1, yj2) 7→ yj1 − iyj2.

As before, we denote by (x, y) the two group of complex valued functions corresponding
to stable and unstable directions respectively where

x = ((xj)j∈Ls , (zj, zj)j∈Ps) and y = ((yj)j∈Lu , (wj, wj)j∈Pu).

Then, local coordinates near Λ are given by (x, y, θ) where θ belongs to R/(PΛZ). We
should now define an appropriate moving frame along the closed orbit Λ. For that purpose,
we define the associated Grassmann variables (dx, dy, dθ). According to appendix A, we
can introduce a real valued matrix P (θ, 0) := P (θ) ∈ GLn−1(R) which transports the
stable (resp. unstable) directions along the closed orbit Λ. Using the matrix P (θ)T , we
can transport the Grassmann variables along the closed orbit Λ and consider all the k
exterior products as in the case of critical points. This gives rise to a moving frame for
Λk(T ∗M) along Λ but this frame is not a priori well defined (modulo PΛ) due to the fact
that the matrix P (PΛ) is not equal to the identity – see appendix A. In order to fix this

problem, we just need to multiply each element in the moving frame by a factor e
2iπ ε̃θ
PΛ

where ε̃ is the sum of the twisting indices ε̃j corresponding to the Grassman variables

appearing in the vector. We then denote this moving frame by (bΛ,k
j (θ))Nkj=1. As for critical

points, we find that, if we write near Λ

u(x, y, θ, dx, dy, dθ) =

Nk∑
j=1

uj(x, y, θ)b
Λ,k
j ,

then one has

L(k)
V (u) =

Nk∑
j=1

(
L(0)
V (uj) + βΛ,k

j uj

)
bΛ,k
j ,

where, for every 1 ≤ j ≤ Nk, one has

(16) βΛ,k
j =

∑
χ∈Sp(AΛ)∪{0}

εχ

(
χ+

2iπε̃χ
PΛ

)
,

where

• for every χ, εχ ∈ {0, 1},
∑

χ εχ = k,
• the eigenvalues χ are counted with their geometric multiplicity,
• 0 is counted with multiplicity 1,
• εχ is the twisting index.

We now fix u in D′k(M, E). In local coordinates near Λ, we can use the above frames to
write

(17) u =
N∑
j=1

Nk∑
j′=1

ujj′c
Λ
j ⊗ bΛ,k

j′ ,
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with, for every (j, j′), ujj′ ∈ D′(M). We can then write

(18) L(k)
V,∇(u) =

N∑
j=1

Nk∑
j′=1

(
LV (ujj′) +

(
2iπγΛ

j

PΛ

+ βΛ,k
j′

)
ujj′

)
cΛ
j ⊗ bΛ,k

j′ .

Hence, as before, the eigenvalue equation −L(k)
V,∇(u) = λu can be reduced to solving some

scalar eigenvalue equation near Λ (where the eigenvalue λ may be shifted). To mimick the
conventions for critical points, let us introduce the following set:

(19) Dk(Λ) :=

{
−(βΛ,k

j′ + γΛ
j ) : 1 ≤ j ≤ N, 1 ≤ j′ ≤

(
n
k

)}
.

Again, we can compute the multiplicity of every δ ∈ Dk(Λ) with the following formula

(20) mk(δ,Λ) :=
∣∣{(j, (εχ)χ∈Sp(AΛ)∪{0}

)
∈ {1, . . . , N} × {0, 1}n : (∗) holds

}∣∣ ,
where (∗) means that∑

χ

εχ = k and δ = −
2iπγΛ

j

PΛ

−
∑
χ

εχ

(
χ+

2iπε̃χ
PΛ

)
.

5.3. Reduction to a scalar problem. Let us now summarize this construction by in-
troducing unifying conventions for closed orbits and fixed points. We fix 0 ≤ k ≤ n and Λ
a critical element. Observe first that the sets of “shifting parameters” Dk(Λ) counted with
their multiplicities can be indexed by the set

(21) Dk := {1, . . . , N} ×
{

1, . . . ,

(
n
k

)}
.

In the following, we shall denote by j = (j, j′) an element in that set and the corresponding
element of Dk(Λ) will be denoted by δΛ

j . Then, in a neighborhood of Λ, one can find a

moving frame (fΛ,k
j )j∈Dk of Λk(T ∗M)⊗E such that, in the system of linearized coordinates

defined above, one can decompose u ∈ D′k(M, E) as

u =
∑
j∈Dk

ujf
Λ,k
j ,

with uj ∈ D′(M) for every j in Dk. Moreover, one has

(22) L(k)
V,∇

(∑
j∈Dk

ujf
Λ,k
j

)
=
∑
j∈Dk

(
LV (uj)− δΛ

j uj
)
fΛ,k
j .

6. Solving the eigenvalue equation near critical elements

In this section, we shall explain how to solve the generalized eigenvalue equation

(23) (LV + λ)p (u) = 0, u ∈ D′(M), λ ∈ C
for some p ≥ 1 near a critical element Λ of the Morse-Smale flow and under some constraint
on the support and the regularity of u near Λ. More precisely, we fix Λ a critical element
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and UΛ a small enough9 open neighborhood of Λ. We then suppose that u solves (23) near
Λ, i.e. for every ψ ∈ C∞(UΛ),

〈(LV + λ)u, ψ〉 = 0.

We will solve this problem under the two following additional constraints:

(24) supp(u) ∩ UΛ ⊂ W u(Λ),

and

(25) WF(u) ∩ T ∗UΛ ⊂
⋃
x∈Λ

N∗(W uu(x)),

where W uu(x) = W u(Λ) in the case of a fixed point and where W uu(x) is defined in
appendix A in the case of a closed orbit. These extra constraints are motivated by the
inductive proof we will give in section 7.3.

Remark 6.1. Recall from the description of global dynamics of Morse-Smale flows (see for
instance Remark 4.5 in the proof of [13, Th. 4.4]) that UΛ ⊂ W u(Λ) is equal to the local
unstable manifold for a small enough neighborhood. We refer to appendix A of [13]) for a
brief reminder on local unstable manifolds.

As in the previous section, we will distinguish the case of critical points and the one of
closed orbits in order to solve this problem. The main results of this section are Theo-
rems 6.3 and 6.5 which give the local form of u in the system of local coordinates and the
value of λ.

6.1. Critical points. We start with the case of critical points whose treatment is close to
the one appearing for gradient flows [12], up to the difference that some of the eigenvalues
of Λ may be complex. In order to state our main result, let us fix some conventions using
the notations of paragraph 5.1. First, to describe the value of λ, we introduce for every
α = (αχ)χ∈Sp(AΛ) ∈ Nn,

(26) λΛ
α := −

∑
j∈Ls

|χj(Λ)| − 2
∑
j∈Ps

|χj(Λ)|+
∑

χ∈Sp(AΛ):Re(χ)<0

αχχ−
∑

χ∈Sp(AΛ):Re(χ)>0

αχχ.

Then, we introduce the set of resonances associated with the fixed point Λ:

(27) R0(Λ) :=
{
λΛ
α : α ∈ Nn

}
.

For every λ ∈ R0(Λ), the multiplicity is defined as follows:

(28) m(λ,Λ) :=
{
α ∈ Nn : λΛ

α = λ
}
.

To these resonances, we associate some eigenmodes on Rn, i.e. for every α = (αx, αy) ∈
Nn, we set

(29) uΛ
α(x, y) := δ

(αx)
0 (x)yαy .

9In particular, we can use the system of local coordinates introduced in paragraphs 5.1 and 5.2.
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Remark 6.2. This expression should be understood as follows. For α = (0, . . . , 0) ∈ Nr,

δ
(0)
0 (x) = δ0(x) is the Dirac distribution on Rr. For every multi-index α := ((αj)j∈Ls , (αj, αj)j∈Ps) ∈
Nr, one has

δ
(α)
0 (x) = (∂(αj)

xj
)j∈Ls

(
∂(αj)
zj

∂
(αj)
zj

)
j∈Ps

(δ0(x)),

where

∂zj := ∂xj1 + i∂xj2 and ∂zj := ∂xj1 − i∂xj2 .
For the polynomial part, one has, for every α ∈ Nn−r,

yα =
∏
j∈Lu

y
αj
j

∏
j∈Pu

w
αj
j w

αj
j .

A more or less direct calculation shows that, using the system of local coordinates of
paragraph 5.1, one has near Λ

(30) −LV (uΛ
α) = λΛ

αu
Λ
α.

These local solutions will be the building blocks to construct global resonant states for the

operator −L(k)
V,∇. One of their key property is the following Theorem:

Theorem 6.3. Let ϕt be a Morse-Smale flow which is C∞-diagonalizable and let Λ be a
critical point of the flow. Let (u, λ) ∈ D′(M)×C (with u 6= 0) be a solution of (23) on UΛ

satisfying the properties (24) and (25). Then, one has

λ ∈ R0(Λ)

and, in the local system of coordinates of paragraph 5.1, there exist some constants (cα)α:λΛ
α=λ

u(x, y) =
∑

α:λΛ
α=λ

cαu
Λ
α(x, y).

Furthermore, near the critical element Λ, u solves the equation (LV + λ)u = 0.

Proof. We still work in the adapted local system of coordinates (x, y) near Λ of para-
graph 5.1. We start by making use of the support hypothesis (24) on u. From a classical
result of Schwartz [46, Th. 37, p.102] on distributions carried by submanifolds, we know
that u can be written in local coordinates as

u(x, y) =
∑
α∈Nr

δ
(α)
0 (x)uα(y),

where uα are elements of D′((−δ, δ)n−r) (for some small δ) and uα = 0 is equal to 0 except
for a finite number of multi-indices. We then use the wavefront assumption (25) to show
that the uα(y) appearing in the local decomposition of u are indeed smooth functions of
the variable y [11, Corollary 9.3 p. 851]. Fix now some large enough N and write the
Taylor expansion of every uα. One finds that

u =
∑

(α,β)∈Nn:|β|≤CN

cα,βδ
(α)
0 (x)yβ +

∑
α∈Nr

δ
(α)
0 (x)Oα(|y|N+1),
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where we recall that the sums over α are finite and CN is constant that depends only on
N . Thus, for every ψ compactly supported in UΛ, one has

〈u, ψ〉 =
∑

(α,β)∈Nn:|β|≤CN

cα,β〈δ(α)
0 (x)yβ, ψ〉+

∑
α∈Nr
〈δ(α)

0 (x)Oα(|y|N+1), ψ〉.

Using the eigenvalue equation (23), we find that for every test function ψ supported in the
chart of paragraph 5.1, there is some polynomial P such that, for every t > 0,

eλtP (t) = 〈ϕ−t∗u, ψ〉 =
∑

(α,β)∈Nn:|β|≤CN

cα,βe
tλΛ
α,β〈δ(α)

0 (x)yβ, ψ〉+
∑
α∈Nr
〈ϕ−t∗(δ(α)

0 (x)Oα(|y|N+1)), ψ〉.

In order to conclude, we make the Laplace transform (w.r.t. t) of this quantity. As u 6= 0,
we find that, for an appropriate choice of ψ, the Laplace transform of the left hand-side is
meromorphic and it has a nontrivial (a priori) multiple pole at λ. For a large enough N
(depending on (u, λ)), the Laplace transform of the remainder of the right hand side has
no pole at λ and the Laplace transform of the main part contains only simple poles at
λΛ
α,β for some finite number of (α, β) ∈ Nn, |β| 6 CN . This implies that λ = λΛ

α,β for some
(α, β) ∈ Nn and that P (t) is constant equal to 〈u, ψ〉. Finally, using that the equality is
valid for any ψ and identifying the residue of the Laplace transform at λ, we obtain the
expected expression for u near Λ. �

6.2. Periodic orbits. We now turn to the case of closed orbits which is slightly more
involved but still based on similar ideas (up to the fact that we have to work with the
periodic variable θ). As above, we start by fixing some conventions using now the notations
of paragraph 5.2. For every α = (α′, αn) ∈ Nn−1 × Z, we set

λΛ
α := −

∑
j∈Ls

|χj(Λ)| − 2
∑
j∈Ps

|χj(Λ)|+ iαn
2π

PΛ

(31)

+
∑

χ∈Sp(AΛ):Re(χ)<0

α′χχ−
∑

χ∈Sp(AΛ):Re(χ)>0

α′χ

(
χ+

2iπε̃χ
PΛ

)
,(32)

and we define

(33) R0(Λ) :=
{
λΛ
α : α ∈ Nn−1 × Z

}
.

We recall that εχ denotes the twisting index of the eigenvalue. One more time, for every
λ ∈ R0(Λ), the multiplicity is defined as follows:

(34) m(λ,Λ) :=
{
α ∈ Nn−1 × Z : λΛ

α = λ
}
.

We now turn to the definition of the local solutions of the problem (23). We then set,
for α = (αx, αy, αn) ∈ Nn−1 × Z,

(35) uΛ
α(x, y, θ) := e

2iπ(αn−ε̃.αy)θ

PΛ (P (θ)−1)∗
(
δ

(αx)
0 (x)yαy

)
,

where we use the conventions of Remark 6.2 to define the derivatives of the Dirac dis-
tributions and the multinomials. Note that the prefactor involving the twisting indices ε
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ensures that this is a well-defined PΛ-periodic distribution10. Again, using the system of
local coordinates of paragraph 5.1, one has near Λ

(36) −LV (uΛ
α) = λΛ

αu
Λ
α.

Remark 6.4. In order to verify this eigenvalue equation, observe that, using appendix A
and the conventions of paragraph 5.2, the flow can be written locally as

ϕ−t(x, θ) = (P (θ − t)e−tAΛP (θ)−1x, θ − t).
Thus, if we write the pullback under the flow, we get

ϕ−t∗
(
uΛ
α

)
= e

iπ(−ε.αy+2αn)(θ−t)
PΛ (P (θ − t)e−tAΛP (θ)−1)∗(P (θ − t)−1)∗

(
δ

(αx)
0 (x)yαy

)
= e

iπ(−ε.αy+2αn)(θ−t)
PΛ (P (θ)−1)∗(e−tAΛ)∗

(
δ

(αx)
0 (x)yαy

)
.

Then, the following Theorem is the analogue of Theorem 6.3 for closed orbits:

Theorem 6.5. Let ϕt be a Morse-Smale flow which is C∞-diagonalizable and let Λ be a
closed orbit of the flow. Let (u, λ) ∈ D′(M)× C be a solution of (23) on UΛ (with u 6= 0)
satisfying the properties (24) and (25). Then, one has

λ ∈ R0(Λ)

and, in the local system of coordinates of paragraph 5.2, there exist some constants (cα)α:λΛ
α=λ

u(x, y, θ) =
∑

α:λΛ
α=λ

cαu
Λ
α(x, y, θ).

Furthermore, near the critical element Λ, u solves the equation (LV + λ)u = 0.

Proof. Recall from appendix A that the unstable manifold can be expressed in local coor-
dinates as follows:

W u(Λ) ∩ UΛ :=
{

(P (θ)(0, y), θ) : y ∈ (−δ, δ)n−1−r, θ ∈ R/(PΛZ)
}
.

As for fixed points, we would like to use Laurent Schwartz’s [46, Theorem 37, p.102] to
represent the current u as finite sum of distributions involving the variables (x, y, θ). More
precisely, according to the support assumption, the elements in the sum should be locally

of the form (P (θ)−1)∗(δ
(α)
0 (x)uα(y, θ)). However, due to the fact that P (PΛ) is not equal to

the identity, we can not get a global formula along the θ variables. In order to write things
properly, let us pass first to the universal cover UΛ × R of UΛ × R/(PΛZ) by defining the
2PΛ-periodic distribution

ũ(x, y, θ) := P (θ)∗u(x, y, θ).

Note that ũ is not a priori PΛ-periodic in the θ variable as P (θ) is only 2PΛ-periodic in θ.
Now we can write thanks to Schwartz Theorem

ũ(x, y, θ) =
∑
α

δ
(α)
0 (x)ũα(y, θ),

10Recall from appendix A that P (PΛ) may not be equal to the identity.
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Recall from Schwartz Theorem that the sum is finite and that ũα(y, θ) is an element of
D′((−δ, δ)n−1−r × R) which is 2PΛ-periodic in the θ-variable. Using the assumption (25)
on the wave front of u, we know that the distributions ũα(y, θ) are in fact smooth by a
similar argument as in [11, Lemma 9.2 and Corollary 9.3]. As before, we make use of the
Taylor expansion in the variable y, i.e. for every α ∈ Nr and for every N ≥ 0, we write

ũα(y, θ) =
∑

β:|β|≤CN

cα,β(θ)yβ +RN,α(y, θ),

with RN,α(y, θ) = O(|y|N+1) uniformly in θ as ũ(x, y, θ) is 2PΛ-periodic in θ. Then, we
write the Fourier decomposition of each term cα,β(θ), i.e.

ũ(x, y, θ) =
∑

(α,β,α̃n)∈Nn−1×Z

c̃α,β,α̃ne
iπα̃nθ
PΛ δ

(α)
0 (x)yβ +

∑
α

δ
(α)
0 (x)RN,α(y, θ).

Then, we can recover the expression for u(x, y, θ),

u(x, y, θ) =
∑

(α,β,α̃n)∈Nn−1×Z

c̃α,β,α̃ne
iπα̃nθ
PΛ (P (θ)−1)∗

(
δ

(α)
0 (x)yβ

)
+
∑
α

(P (θ)−1)∗δ
(α)
0 (x)RN,α(y, θ),

which is a PΛ periodic distribution in θ even if each individual term is a priori only 2PΛ-
periodic. We now fix a smooth test function ψ ∈ C∞(UΛ × R) which is PΛ-periodic in the
variable θ and compactly supported in UΛ. We write

〈u, ψ〉 =
∑

(α,β,α̃n)∈Nn−1×Z

c̃α,β,α̃n

〈
e
iπα̃nθ
PΛ (P (θ)−1)∗(δ

(α)
0 (x)yβ), ψ

〉
+
∑
α

〈
(P (θ)−1)∗(δ

(α)
0 (x)RN,α(y, θ)), ψ

〉
.

We can now make use of the eigenvalue equation (23) and of remark 6.4 to find that there
exists some polynomial P (t) such that, for every t ≥ 0,

eλtP (t) = 〈e−tLV u, ψ〉

=
∑

(α,β,α̃n)∈Nn−1×Z

c̃α,β,α̃ne
tλ̃α,β,α̃n

〈
e
iπα̃nθ
PΛ (P (θ)−1)∗(δ

(α)
0 (x)yβ), ψ

〉
+
∑
α

〈
(ϕ−t∗P (θ)−1)∗(δ

(α)
0 (x)RN,α(y, θ)), ψ

〉
,

where

λ̃α,β,α̃n := −
∑
j∈Ls

|χj(Λ)|−2
∑
j∈Ps

|χj(Λ)|+iα̃n
π

PΛ

+
∑

χ∈Sp(AΛ):Re(χ)<0

αχχ−
∑

χ∈Sp(AΛ):Re(χ)>0

βχχ.

Note that this is not exactly the expression given by (31) and we will explain how to
recover the correct expression. Before that, we make the Laplace transform of this equality
(w.r.t. the variable t). The left-hand side has multiple poles at z = λ. Using the fact
that RN,α(y, θ) = O(|y|N+1), we can verify that the remainder of the right-hand side has
no pole at z = λ provided that N is chosen large enough (in a way that depends on λ and
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u). Hence, arguing as in the case of fixed point, we find that the pole on the left hand side

must be simple and λ = λ̃α,β,α̃n for some (α, β, α̃n). Moreover, as the residue of the left
hand side is equal to 〈u, ψ〉 near Λ, we know that u is equal to

u(x, y, θ) =
∑

(α,β,α̃n)∈Nn−1×Z:λ̃α,β,α̃n=λ

c̃α,β,α̃ne
iπα̃nθ
PΛ (P (θ)−1)∗(δ

(α)
0 (x)yβ).

Here, we have to pay a little attention to the periodicity issue in order to conclude. First

of all, observe that (P (θ)−1)∗(δ
(α)
0 (x)yβ) is not a priori PΛ-periodic due to the properties

of P (θ) – see appendix A. However, e
− 2iπβ.ε̃θ

PΛ (P (θ)−1)∗(δ
(α)
0 (x)yβ) is PΛ-periodic. Thus, we

can rewrite u as follows:

u(x, y, θ) =
∑

(α,β,α̃n)∈Nn−1×Z:λ̃α,β,α̃n=λ

c̃α,β,α̃ne
2iπ( α̃n2 +β.ε̃)θ

PΛ

(
e
− iπβ.εθPΛ (P (θ)−1)∗(δ

(α)
0 (x)yβ)

)
.

Writing now that u is PΛ-periodic, we finally get that∑
(α,β,α̃n):λ̃α,β,α̃n=λ, α̃n

2
+β.ε/∈Z

c̃α,β,α̃ne
2iπ( α̃n2 +β.ε̃)θ

PΛ

(
e
− iπβ.ε̃θPΛ (P (θ)−1)∗(δ

(α)
0 (x)yβ)

)
= 0,

which implies that

u(x, y, θ) =
∑

(α,β,α̃n):λ̃α,β,α̃n=λ, α̃n
2

+β.ε∈Z

c̃α,β,α̃ne
2iπ( α̃n2 +β.ε̃)θ

PΛ

(
e
− iπβ.ε̃θPΛ (P (θ)−1)∗(δ

(α)
0 (x)yβ)

)
,

and concludes the proof. �

7. Complete description of the Pollicott-Ruelle spectrum

In this section, we will give a complete description of the resonances of the lifted flow
Φt
k and their corresponding resonant states. This result will make a crucial use of both

the construction of the previous paragraphs and the anisotropic Sobolev spaces defined
in [13]. The strategy is as follows. First, we make use of the local eigenmodes defined in
section 6 and we project each of them on a resonant state by using the spectral projectors
defined in [13]. Then, we study some of their properties : the support and local form
near a critical element. Finally, we show that these states generate all the resonant states
of the Morse-Smale flow. This is exactly the content of Theorem 7.5 which is the main
result of the article and which is much more general than Theorems 2.1 and 2.3 from the
introduction.

7.1. Construction of resonant states. Let Λ be a critical element of the flow (either a
fixed point or a closed orbit) and let 0 ≤ k ≤ n. Fix a smooth function 0 ≤ τΛ ≤ 1 which
is equal to 1 in a small neighborhood of Λ and to 0 outside a slightly larger neighborhood.
Let (α, j) be an element in Nn × Dk (if Λ is a fixed point) and in Nn−1 × Z × Dk (if Λ
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is a closed orbit). Using the conventions of paragraph 5.3 and of section 6, we define the
following element of D′k(M, E):

(37) ũΛ
α,j := τΛu

Λ
αfΛ,k

j .

In a small neighborhood of Λ, ũΛ
α,j satisfies the following equation:

(38) −L(k)
V,∇
(
ũΛ
α,j

)
=
(
λΛ
α + δΛ

j

)
ũΛ
α,j.

This element is of course not a resonant state as it only solves the eigenvalue equation locally
and we shall now define a global resonant state from this element. For that purpose, observe
that ũΛ

α,j belongs to the anisotropic Sobolev space Hm
k (M, E) we have constructed in [13,

section 5] provided that we choose large enough parameters for the Sobolev regularity in
the stable and unstable directions. We can also choose the order function m in a such
a way that λΛ

α + δΛ
j belongs to the half-plane where −L(k)

V,∇ has a discrete spectrum with

a finite multiplicity. In particular, if we pick a sufficiently small curve ΓΛ,k
α,j surrounding

λΛ
α + δΛ

j in C, we can define the corresponding spectral projector:

(39) πΛ,k
α,j :=

1

2iπ

∫
ΓΛ,k
α,j

(
z + L(k)

V,∇

)−1

dz : Hm
k (M, E)→ Hm

k (M, E).

We refer to section 5 of [13] for more details on that issue. Note that this projector may a
priori be equal to 0, i.e. its range could be reduced to 0. In any case, this operator allows
us to define a resonant state:

(40) uΛ,k
α,j := πΛ,k

α,j

(
ũΛ
α,j

)
.

From the definition of the spectral projector, we know that there exists some p ≥ 1 such
that uΛ,k

α,j solves the generalized eigenvalue equation:

(41)
(
L(k)
V,∇ +

(
λΛ
α + δΛ

j

))p
uΛ,k
α,j = 0.

We define the following family of resonant states

(42) F (k)(V,∇, E) := F (k)
pt (V,∇, E) ∪ F (k)

orb(V,∇, E),

where

F (k)
pt (V,∇, E) :=

{
uΛ,k
α,j : (α, j) ∈ Nn ×Dk

}
and

F (k)
orb(V,∇, E) :=

{
uΛ,k
α,j : (α, j) ∈ Nn−1 × Z×Dk

}
.

Theorem 7.5 will show that the family F (k)(V,∇, E) is composed of linearly independent
vectors which generate all the possible resonant states. Before proving this, let us prove
some properties of these resonant states (in particular that they are not equal to 0):

Proposition 7.1. Let Λ be a critical element and let 0 ≤ k ≤ n. Fix (α, j) as above.
Then, the following holds:

(1) uΛ,k
α,j is equal to ũΛ,k

α,j in a small neighborhood of Λ;
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(2) the support of uΛ,k
α,j is equal to W u(Λ).

Remark 7.2. Note that, by construction, the ũΛ,k
α,j are linearly independent near every Λ.

Hence, we can deduce from this Proposition that the elements of F (k)(V,∇, E) are linearly
independent.

Remark 7.3. From (41), the resonant states are not a priori solutions of a true eigenvalue
equation and they may be associated to Jordan blocks. The works of Frenkel-Losev-
Nekrasov exhibits situations where there are indeed infinitely many Jordan blocks [28].
On the other hand, one can also find simple nonresonance criteria under which there are
no Jordan blocks [12, section 7] in the case of Morse-Smale gradient flows. In any case,

note that, if we restrict ourselves to the open set M − (W u(Λ)−W u(Λ)), this proposition

combined with (38) shows that uΛ,k
α,j is a solution of the true eigenvalue equation on that

open set.

Proof. In order to prove this Proposition, we should consider the semi-group Φ−t∗k (see
Remark 5.6 in [13]) associated to the unbounded operator

−L(k)
V,∇ : Hm

k (M, E)→ Hm
k (M, E).

In other words, we denote by Φ−t∗k ũΛ,k
α,j the solutions of the following PDE:

∂tu = −L(k)
V,∇u, u(t = 0) = ũΛ,k

α,j .

Then, for every ψ ∈ Ωn−k(M, E ′) and for z with Re(z) large enough, we can define

Ĉψ(z) :=

∫ +∞

0

〈Φ−t∗k ũΛ,k
α,j , ψ〉e

−ztdt.

Due to equation (38), we know that, for ψ compactly supported in a small neighborhood

of Λ, one has Ĉψ(z) = 〈ũΛ,k
α,j , ψ〉(z − (λΛ

α + δΛ
j ))−1. If the support of ψ does not intersect

W u(Λ), we can also verify that Ĉψ(z) = 0.

On the other hand, the main result of [13] states that, for every ψ, the function Ĉψ(z)
has a meromorphic extension to the entire complex plane. Note that the main result
of the introduction in [13] is stated for the trivial vector bundle M × C and for test
functions which are in Ωk(M)×Ωn−k(M). Yet, the results hold more generally for elements

Hk
m(M, E) × Ωn−k(M, E) as it follows from the spectral analysis of the operator −L(k)

V,∇
acting on the Hilbert space Hk

m(M, E) – see section 5 of [13] for more details. From the

construction of Hk
m(M, E), one can verify that ũΛ,k

α,j is indeed in that space if we pick large
enough Sobolev regularity in the definition of the order function m. Hence, from [13,

Sect. 5.4], one knows that, near every z0 ∈ C, Ĉψ(z) can be decomposed as follows:

Ĉψ(z) =

mk(z0)∑
l=1

(−1)l−1

〈
(L(k)

V,∇ + z0)l−1π
(k)
z0 (ũΛ,k

α,j ), ψ
〉

(z − z0)l
+Rψ(z),
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where Rψ is an holomorphic function and where π
(k)
z0 is a certain spectral projector corre-

sponding to z0 (and which is eventually 0 if z0 is not an eigenvalue). We can now make
use of this result with z0 = −(λΛ

α + δΛ
j ). More precisely, identifying the residue at that

point when ψ is compactly supported near λ, we find that 〈uΛ,k
α,j , ψ〉 = 〈ũΛ,k

α,j , ψ〉 for such

test functions as uΛ,k
α,j is by definition the projection of ũΛ,k

α,j . This shows the first part of
the proposition. For the second part, we argue similarly but with test functions ψ that
does intersect W u(Λ). �

7.1.1. Relation to Epstein-Glaser renormalization. In [27] and in the present paper, one

construct some germ of eigenmode uΛ
αfΛ,k

j with corresponding eigenvalue λ locally near
some critical element Λ. Assume it is defined in some neighborhood VΛ of Λ. Then using

both the flow and the fact that uΛ
αfΛ,k

j is an eigenmode for −L(k)
V,∇ allows us to define the

current uΛ
αfΛ,k

j in D′,k(M \ ∂W u(Λ), E) (where ∂W u(Λ) = W u(Λ) \W u(Λ) is the boundary

of W u(Λ)). Indeed, for every test form ψ ∈ Ωn−k(M \ ∂W u(Λ), E ′), there is some time
T > 0 large enough such that ϕ−T (supp(ψ) ∩W u(Λ)) is contained in VΛ and using the

relation e−TλΦ−T∗k

(
uΛ
αfΛ,k

j

)
= uΛ

αfΛ,k
j , we define the pairing 〈uΛ

αfΛ,k
j , ψ〉 as :

e−Tλ〈Φ−T∗k uΛ
αfΛ,k

j , ψ〉.

So the globally defined current uΛ,k
α,j from proposition 7.1 is a distributional extension

of the twisted current uΛ
αfΛ,k

j ∈ D′,k(M \∂W u(Λ), E). This is analoguous to Epstein–Glaser
renormalization [20] where one aims to extend some distribution defined on some manifold
M minus some closed subset X to the whole manifold M . Therefore this motivates us to
reformulate some of the results from Theorems 6.3, 6.5 and Proposition 7.1 as the following
Theorem of independent interest :

Theorem 7.4 (Extension Theorem). Let E →M be a smooth, complex, hermitian vector
bundle of dimension N endowed with a flat unitary connection ∇, V a C∞-diagonalizable
Morse–Smale vector field and LV,∇ : D′,•(M, E) 7→ D′,•(M, E) the corresponding linear
operator acting on twisted currents.

For every critical element Λ of V , if ũ is a germ of twisted current defined near Λ
which is a solution of −LV,∇ũ = λũ with the constraints supp(ũ) ⊂ W u(Λ) and WF (ũ) ⊂
N∗(W u(Λ)), then there exists a globally defined current u ∈ D′(M, E) such that

(LV,∇ + z)p u = 0

for some p ∈ N and ũ = u in some neighbborhood of Λ. In particular (LV,∇ + z) u = 0 on
M \ ∂W u(Λ).

7.1.2. Relation to Ruelle-Sullivan currents. In [45], Ruelle and Sullivan constructed natural
families of currents associated with Axiom A diffeomorphisms. More precisely, given a
basic set Λ of the diffeomorphism, they constructed two invariant De Rham currents, one
Tu associated with W u(Λ) and the other one Ts with W s(Λ). The currents are not globally

defined on M . They are rather defined on W u(Λ) ∪
(
M −W u(Λ)

)
and their support
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are contained in W u(Λ). The difficulty for turning these currents into global objects

is that one would have to analyse their mass near the “boundary” W u(Λ) − W u(Λ) of
W u(Λ). In the case of diffeomorphisms derived from certain Morse-Smale gradient flows,

this can be deduced from results of Laudenbach who analyzed the structure of W u(Λ) as
a stratified manifold [36] – see also [33, 34, 12]. From the perspective of ergodic theory,
a crucial property of these currents is that they can be paired together and that Tu ∧ Ts
is an invariant probability measure carried by the basic set Λ and maximizing a certain
variational principle.

Here, we deal with Morse-Smale flows which are the simplest example of Axiom A flows
and whose basic sets are exactly the critical elements (either fixed points or closed orbits).

We have constructed globally defined twisted De Rham currents uΛ,k
α,j which are supported

by W u(Λ). From their spectral definition, they also satisfy certain invariance relation

related to the induced flow on E and each of them has an associated dual current ûΛ,k
α,j which

is supported by W s(Λ) and whose local expression can be computed in local coordinates.
Besides the fact that they are globally defined, we also emphasize that compared with [45],
we have infinitely many currents associated with each basic set Λ. Finally, for any choice
of indices, we have that uΛ,k

α,j ∧ ûΛ,k
α,j is equal to the Dirac measure at Λ in the case of

fixed points while, in the case of closed orbits, it is equal to the Lebesgue measure LebΛ

along Λ with total mass PΛ. Hence, as for Ruelle-Sullivan currents, we recover a positive
measure carried by Λ and which is invariant under the flow (such a measure is unique in
our case). To summarize, our infinite families of twisted currents can be understood as
generalizations of the Ruelle-Sullivan currents in the particular case of Morse-Smale flows
satisfying proper nonresonance assumptions.

7.2. Statement of the main Theorem. We can now state the main result of the article
which gives a complete description of the Pollicott-Ruelle spectrum:

Theorem 7.5 (Main Theorem). Let V be a Morse-Smale vector field which is C∞-diagonalizable.
Let (E ,∇) be a vector bundle of rank N endowed with a flat connection. We suppose that
the Morse-Smale vector fields we consider have diagonalizable monodromy matrices for the
parallel transport around its closed orbits.

Then, all the elements of F (k)(V,∇, E) are linearly independent and any resonant state

of −L(k)
V,∇ is a linear combination of elements from F (k)(V,∇, E).

Remark 7.6. Recall that the first part of the Theorem is a consequence of Proposition 7.1
as was already noticed in Remark 7.2. Hence, it remains to prove the “generation part” of
the Theorem and it will be achieved in Proposition 7.10.

We will explain in paragraph 7.5 how this Theorem implies the main results stated in the
introduction. Let us briefly comment the assumptions we made on the vector field and the
flat connection. Concerning the vector field, we already mentionned that Morse-Smale flows
forms an open set of all smooth vector fields on M . Moreover, in dimension 2, such flows are
dense among all smooth vector fields thanks to a classical result of Peixoto [42]. In higher
dimension, Palis proved that they form an open set [41]. Here, we require in addition
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that these flows are smoothly diagonalizable which means that we can find C∞ charts
where the flow is linearized with a block-diagonal form. Thanks to the Sternberg-Chen
Theorem [10, 40, 52], this can be guaranteed by imposing some nonresonance assumptions
on the Lyapunov exponents which are generic among Morse-Smale flows. It is natural to
ask if lower regularity assumptions would allow to conclude. The main result from [13] was
for instance valid for C1-linearizing assumptions, i.e. we have a discrete Pollicott-Ruelle
spectrum on C as soon as the vector field can be linearized in C1 charts. Here, requiring C∞
allows us to give a complete description of this spectrum. If we ask for less regularity (say
Ck with k ≥ 1), it seems to us that we could get a complete description of the spectrum
in the half-plane Re(z) > −Ck (for some Ck > 0 depending on k and on the vector field).
This should probably be worked out by similar techniques but at the expense of a slightly
more involved analysis (due to the low regularity) which would be beyond the scope of the
present article. The assumption on the diagonalization of the monodromy matrix for the
parallel transport around closed orbits makes also our analysis easier and it could probably
be removed up to some extra combinatorial work. Note that our assumption is satisfied
whenever the connection preserves an hermitian structure which is a standard hypothesis
in Hodge theory [5].

To prove the main result, we proceed in several steps. First, we start with a simple
propagation Lemma which will be used at several stages of our proof to control supports
of generalized eigencurrents.

7.2.1. Propagation Lemmas to control supports. In our proof, we intend to use a simple
propagation Lemma that we will now prove.

Lemma 7.7 (Propagation Lemma for generalized eigenstates). Let 0 ≤ k ≤ n, let z in

C and let u ∈ D′,k(M, E) be a solution of
(
L(k)
V,∇ + z

)p
u = 0 for some p ≥ 1. If u|U = 0

where U ⊂M is some open subset then u vanishes on the larger open subset
⋃
t∈R ϕ

t(U).

Proof. We choose p to be the smallest integer so that
(
L(k)
V,∇ + z

)p
u = 0. We shall establish

the result by a duality argument. First, we note that, for every ψ in Ωn−k(M, E ′),

d

dt

〈
Φt∗
k u, ψ

〉
=
〈

Φt∗
k L

(k)
V,∇u, ψ

〉
.

Hence a simple calculation yields :

d

dt


Φt∗
k u(

L(k)
V,∇ + z

)
Φt∗
k u

. . .(
L(k)
V,∇ + z

)p−1

Φt∗
k u

 =


−z 1 0 . . .
0 −z 1 . . .

. . .
0 . . . 0 −z




Φt∗
k u(

L(k)
V,∇ + z

)
Φt∗
k u

. . .(
L(k)
V,∇ + z

)p−1

Φt∗
k u


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Hence, solving the ODE yields

Φt∗
k


u(

L(k)
V,∇ + z

)
u

. . .(
L(k)
V,∇ + z

)p−1

u

 = e−tzetN


u(

L(k)
V,∇ + z

)
u

. . .(
L(k)
V,∇ + z

)p−1

u

 , ∀t ∈ R,

where

N :=


0 1 0 . . .
0 0 1 . . .

. . .
0 . . . 0 0


Choose some arbitrary element x ∈

⋃
t∈R ϕ

t(U). It means that there is some t0 ∈ R such
that x ∈ ϕt0(U) which is an open subset of M . Let ψ be any vector valued test form in
Ωn−k(ϕt0(U), E ′). We have the identity

〈


u(

L(k)
V,∇ + z

)
u

. . .(
L(k)
V,∇ + z

)p−1

u

 , ψ〉 = 〈(Φt0
k )∗


u(

L(k)
V,∇ + z

)
u

. . .(
L(k)
V,∇ + z

)p−1

u

 ,Φt0∗
k,†ψ〉

= 〈e−t0zetN


u(

L(k)
V,∇ + z

)
u

. . .(
L(k)
V,∇ + z

)p−1

u

 ,Φt0∗
k,†ψ〉 = 0

since supp
(
Φt0∗
k,†ψ

)
⊂ U and (u, (L(k)

V,∇ + z)u, . . . (L(k)
V,∇ + z)p−1u)|U = 0 by definition.

Therefore u = 0 on ϕt0(U) in particular u = 0 in some neighborhood of the given element
x ∈

⋃
t∈R ϕ

t(U). �

7.3. The inductive proof following the Smale quiver. Following Smale’s Theorem 3.1,
we introduce an oriented graph D whose K vertices are labelled by the the unstable man-
ifolds (W u(Λi))

K
i=1. Recall that two vertices W u(Λi),W

u(Λj) are connected by an oriented
path starting at W u(Λj) and ending at W u(Λi) iff W u(Λj) 5 W u(Λi) i.e. W u(Λj) ⊂
W u(Λi). This means Λi is a larger stratum than Λj and Λj is a stratum of the topological
boundary of Λi. Let u ∈ Hm

k (M, E) be a generalized eigencurrent which solves the equation

(43) (L(k)
V,∇ + z)pu = 0.

Our strategy is to analyze u near a maximal critical element (Λj)
K
j=1 in the Smale

quiver D such that u 6= 0 near Λj.
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7.3.1. Eigencurrents near critical elements. Assume Λj is a maximal element in Smale
causality diagram such that u does not vanish near Λj.

Lemma 7.8 (support of generalized eigenfunctions). Let u ∈ D′,k(M, E) be some general-

ized eigencurrent of −L(k)
V,∇ acting on Hm

k (M). If u vanishes in some neighborhood of all
Λi = Λj (with Λi 6= Λj) for the Smale causality relation and if the germ of distribution
u 6= 0 near Λj, then u is supported on the germ of unstable manifold W u(Λj) near Λj.

Proof. We fix Λj. We use Remark 4.5 from the proof of [13, Theorem 4.4] which deals with
the construction of an invariant neighborhood of11

⋃
Λi=Λj

W s(Λi) for the backward flow

ϕ−t, t > 0. Then, for all ε > 0, there exists some neighborhood U of
⋃

Λi=Λj
W u(Λi) which

has size less than ε in the sense that ∀x ∈ U , dist(x,
⋃

Λi=Λj
W s(Λi)) 6 ε and which is

invariant by the backward flow

∀t > 0, ϕ−t(U) ⊂ U .
Let us consider some neighborhood Uj of Λj such that Uj ⊂ U and let x ∈ Uj \W u(Λj).

Then by definition the flowline ϕ−t(x) cannot converge to Λj when t → +∞ otherwise
it would be in W u(Λj). Hence it must escape the small neighborhood Vj of Λj in fi-
nite time and reach in the past some critical element W u(Λi) = W u(Λj) in the sense
that dist(ϕ−t(x),Λi) → 0 when t → +∞. Since the germ of vector valued current(
u, (L(k)

V,∇ + z)u, . . . , (L(k)
V,∇ + z)p−1u

)
vanishes near Λi, we know that(

u, (L(k)
V,∇ + z)u, . . . , (L(k)

V,∇ + z)p−1u
)

vanishes in some neighborhood Ui of Λi and we may choose Vi small enough so that
Ui ⊂ U . Let us call Ti the finite time for ϕ−t(x) to reach the open set Ui. By continuity
of y ∈ Uj 7→ ϕ−Ti(y) ∈ U there is some small neighborhood Ux of x in Uj such that
ϕ−Ti(Ux) ⊂ Ui and therefore u vanishes on ϕ−Ti(Ux), which concludes the proof thanks to
Lemma 7.7.

�

7.4. Geometric structure of Jordan blocks. The next Lemma shows that if we have
a cyclic family u0 = u,u1 = (LV,∇ + z0)u0, . . . ,up−1 = (LV,∇ + z0)p−1u0 of generalized
eigencurrents generated by u solution of (LV + z0)pu = 0 then their distributional support
are ordered in some way which is organized by the Smale causality relation. In particular,
it implies that inside a nontrivial cyclic family, generalized eigencurrents cannot have the
same distributional supports.

Lemma 7.9. [Support of currents in Jordan block] For any element u ∈ Mm
k (M, E), we

define the subset

Crit(u) = {Λ s.t. the germ of current u does not vanish at Λ} ⊂ NW (ϕ)

and Max (Crit(u)) as all maximal elements in Crit(u) for the Smale causality relation.

11Here and after, to alleviate notations, we sometimes note Λi 5 Λj instead of Wu(Λi) 5Wu(Λj).
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Assume that u is a generalized eigencurrent for the eigenvalue z0 and p is the smallest

integer so that (L(k)
V,∇ + z0)pu = 0. Set u0 = u,u1 = (L(k)

V,∇ + z0)u0, . . . ,up−1 = (L(k)
V,∇ +

z0)p−1u0 the corresponding cyclic family.
Then

∀Λ′ ∈ Max(Crit(ui+1)),∃Λ 6= Λ′ ∈ Max(Crit(ui)) s.t. W u(Λ) = W u(Λ′).

Proof. Suppose that p > 1 (otherwise the Lemma is empty). We obviously have the chain
of inclusions supp(up−1) ⊂ · · · ⊂ supp(u0) for the supports of the currents (u0, . . . ,up−1).
We shall prove the following inequality of support :

∀Λ′ ∈ Max(Crit(u1)),∃Λ 6= Λ′ ∈ Max(Crit(u0)) s.t. W u(Λ) = W u(Λ′).

We proceed by contradiction and we choose some Λ′ ∈ Max(Crit(u1)) which does not satisfy

the above property. Then by the equation (L(k)
V,∇+z0)u0 = u1, we find that Λ′ ⊂ supp (u0)

and, from the contradiction assumption, we deduce that Λ′ ∈ Max(Crit(u0)). So far, we
did not use the regularity assumptions we have on the solutions of the eigenvalue problem.
Recall that these generalized eigenmodes are intrinsic [22, Th. 1.5] in the sense that they
do not depend on the choice of the order function m used to define the anisotropic Sobolev
spaces Hm

k (M, E) in [13, Sect. 5]. Hence, we can choose order functions m with arbitrary
high order of Sobolev regularity. Both u0 and u1 are supported inside W u(Λ′) near Λ′.
Hence, from the definition of the Sobolev space in [13, Sect. 5] and by choosing arbitrary
high order of Sobolev regularity in these spaces, we find that the wave front of u0 and u1

are contained in the conormal of W u(Λ′) near Λ′. We can now apply Theorems 6.3 and
6.5 near Λ′ combined with paragraph 5.3. We deduce that both generalized eigencurrents
(u0,u1) have local forms

u0 =
∑

λΛ
α+δΛ

j =z0

cΛ,α,jũ
Λ,k
α,j(44)

u1 =
∑

λΛ
α+δΛ

j =z0

dΛ,α,jũ
Λ,k
α,j(45)

where the sum runs over multi-indices α and j ∈ Dk so that λ = λΛ
α+δΛ

j (recall that α ∈ Nn

if Λ is a critical point or α ∈ Nn−1 × Z if Λ is a periodic orbit). Moreover, cΛ,α,j, dΛ,α,j

are complex numbers andthe coefficients (cΛ,α,j)λΛ
α+δΛ

j =z0 do not all vanish since the germ

u0 6= 0 near Λ. But from the definition of the currents uΛ,k
α,j , we find that locally near Λ,

(L(k)
V,∇ + z0)u0 = 0 hence u1 = (L(k)

V,∇ + z0)u0 = 0 near Λ which contradicts the fact that
the germ u1 does not vanish near Λ. This gives the expected contradiction. Repeating the
argument, we can deduce the Lemma by induction over i. �

Finally the next proposition concludes the proof of Theorem 7.5 :

Proposition 7.10 (Generation). Assume that u ∈ Hm
k (M, E) is a generalized eigencurrent

for the eigenvalue z0. Then u is a linear combination of the eigencurrents uΛ,k
α,j for all triples

(Λ, α, j) such that λΛ
α + δΛ

j = z0.
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Proof. In the proof of Lemma 7.9, we found that u =
∑

λΛ
α+δΛ

j =z0
cΛ,α,ju

Λ,k
α,j near all elements

Λ ∈ Max(Crit(u0)). Therefore we define the current

v1 = u−
∑

Λ∈Max(Crit(u0))

∑
λΛ
α+δΛ

j =z0

cΛ,α,ju
Λ,k
α,j

which is a generalized eigencurrent for the eigenvalue z0 which vanishes near all critical
elements Λ ∈ Max(Crit(u0)).

Now repeat the algorithm for the new generalized eigencurrent v1 whose support is repre-
sented by lower vertices in the Smale quiver thanks to the propagation Lemma 7.7. Again,
we find that v1 =

∑
λΛ
α+δΛ

j =z0
cΛ,α,ju

Λ,k
α,j near all elements Λ ∈ Max(Crit(v1)). Therefore the

current

v2 := v1 −
∑

Λ∈Max(Crit(v1))

∑
λΛ
α+δΛ

j =z0

cΛ,α,ju
Λ,k
α,j

is a generalized eigencurrent for the eigenvalue z0 vanishing near all critical elements Λ ∈
Max(Crit(v1)). Since the number of critical elements is finite, the algorithm starting from
u0 = v0 will terminate at some element vp once we exhausted all critical elements and we
find

u =

p∑
l=0

∑
Λ∈Max(Crit(vl))

∑
λΛ
α+δΛ

j =z0

cΛ,α,ju
Λ,k
α,j

and the decomposition is unique from Remark 7.2. �

7.5. Connection preserving a hermitian structure and spectrum on the imagi-
nary axis. Let us now explain how we can derive Theorem 2.1 from the introduction (the
proof of Theorem 2.3 follows similar lines). Recall that we only stated there Theorems
valid under the simplifying assumption that ∇ preserves an Hermitian structure on E and
that we only described the Pollicott-Ruelle spectrum on the imaginary axis Re(z) = 0.
In that case, we recall from paragraph 4.4 that the eigenvalues of the monodromy matrix
for the parallel transport lies on the unit circle. More specifically, the eigenvalues of the

monodromy matrix are of the form ρΛ
j (E) = e2iπγΛ

j for 1 ≤ j ≤ N with γΛ
j ∈ R the quantity

involved in the definition of the shifting parameter δΛ
j – see equations (19) and (41).

Let us now describe the eigenvalues of −L(k)
V,∇ satisfying Re(z) = 0. Recall that eigen-

values are of the form λΛ
α + δΛ

j where

• for critical points, λΛ
α is defined by (26) and δΛ

j = βΛ,k
j′ for every j = (j, j′) ∈ Dk =

{1, . . . , N} × {1, . . . , n!/(k!(n− k)!)} with βΛ,k
j′ defined by (11);

• for closed orbits, λΛ
α is defined by (31) and δΛ

j = βΛ,k
j′ +

2iπγΛ
j

PΛ
for every j = (j, j′) ∈

Dk = {1, . . . , N} × {1, . . . , n!/(k!(n− k)!)} with βΛ,k
j′ defined by (16).

Recall that we defined εΛ to be equal to 0 whenever W u(Λ) is orientable and to 1/2
otherwise. Combining these observations with the local forms of the resonant states near
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Λ (given by (30) and (36)), we find, for every 0 ≤ k ≤ n the following resonances on the
imaginary axis:

• For every fixed point Λ such that dim W s(Λ) = k, we have a resonance of
multiplicity N at

z = 0,

each of them being associated with a generalized eigenmode whose local form near
Λ is given by

∀1 ≤ j ≤ N, δ0(x) (∧j∈Lsdxj) ∧ (∧j∈Ps(dzj ∧ dzj)) cΛ
j ,

with the conventions of paragraph 5.1 for the local coordinates and with ∇cΛ
j = 0

for every j – see Theorem 4.1.
• For every closed orbit Λ such that dim W s(Λ) = k+ 1, we have infinitely many

resonances on the imaginary axis. More precisely, for every 1 ≤ j ≤ N and for
every m ∈ Z, we have a resonance which is given by

z = −2iπ

PΛ

(
m+ εΛ + γΛ

j

)
associated with a resonant state whose local form near Λ is given by

e
2iπθ
PΛ

(m+εΛ)
(P (θ)−1)∗ (δ0(x) (∧j∈Lsdxj) ∧ (∧j∈Ps(dzj ∧ dzj))) cΛ

j ,

with the conventions of paragraph 5.1 for the local coordinates and with ∇cΛ
j =

2iπγΛ
j

PΛ
cΛ
j dθ for every j – see Theorem 4.2 and paragraph 4.3.

• For every closed orbit Λ such that dim W s(Λ) = k, we have infinitely many
resonances on the imaginary axis. More precisely, for every 1 ≤ j ≤ N and for
every m ∈ Z, we have a resonance which is given by

z = −2iπ

PΛ

(
m+ εΛ + γΛ

j

)
associated with a resonant state whose local form near Λ is given by

e
2iπθ
PΛ

(m+εΛ)
(P (θ)−1)∗ (δ0(x) (∧j∈Lsdxj) ∧ (∧j∈Ps(dzj ∧ dzj))) ∧ dθcΛ

j ,

with the conventions of paragraph 5.1 for the local coordinates and with ∇cΛ
j =

2iπγΛ
j

PΛ
cΛ
j dθ for every j – see Theorem 4.2 and paragraph 4.3.

7.6. Weyl’s asymptotics. As an application of our main Theorem 7.5, we can give
asymptotics formulas for the resonance couting function. We will use the conventions
of paragraphs 5.1 and 5.2. In order to alleviate the expressions, we introduce the following
conventions:

χ+
Λ := (|Re(χ)|)χ∈Sp(AΛ) and ωΛ := (Im(χ))χ∈Sp(AΛ) ,

where the eigenvalues are indexed with their algebraic multiplicity which is equal to the
geometric multiplicity (as we supposed AΛ to be diagonalizable in C). In the case of a
fixed point, these define vectors in Rn and, in the case of closed orbits, vectors in Rn−1.
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Then, we define a convex polytope associated to every critical element Λ. More precisely,
for a fixed point Λ, we set

(46) QΛ :=
{
x ∈ Rn

+ : −1 ≤ x.ωΛ ≤ 1 and x.χ+
Λ ≤ 1

}
,

and, for a closed orbit Λ,

(47) QΛ :=

{
(x′, xn) ∈ Rn−1

+ × R : −1 ≤ x′.ωΛ +
2π

PΛ

xn ≤ 1 and x′.χ+
Λ ≤ 1

}
.

With these conventions, one has

Corollary 7.11 (Weyl’s law). Suppose that the assumptions of Theorem 7.5 are satisfied.
Then, for every 0 ≤ k ≤ n, one has, as T → +∞,

Nk(T ) := |{z0 ∈ Rk(V,∇) : | Im(z0)| ≤ T and Re(z0) ≥ −T}|

=
Nn!

k!(n− k)!

(∑
Λ

VolRn(QΛ)

)
T n +O(T n−1).

where the Pollicott-Ruelle resonances are counted with their algebraic multiplicity.

Proof. Let 0 ≤ k ≤ n and let T > 0 be some large enough paramater. First of all, observe
from Theorem 7.5 combined with (42) and (41) that

Nk(T ) =
∑

Λ fixed point

∣∣{(α, j) ∈ Nn ×Dk : | Im(λΛ
α + δΛ

j )| ≤ T and Re(λΛ
α + δΛ

j ) ≥ −T
}∣∣

+
∑

Λ closed orbit

∣∣{(α, j) ∈ Nn−1 × Z×Dk : | Im(λΛ
α + δΛ

j )| ≤ T and Re(λΛ
α + δΛ

j ) ≥ −T
}∣∣ .

As we are only interested as the behaviour as T → +∞ and as |Dk| = Nn!
k!(n−k)!

, this quantity

is in fact equal to

(48) Nk(T ) =
Nn!

k!(n− k)!

∑
Λ

NΛ
0 (T ) +O(T n−1),

where, for every fixed point Λ,

NΛ
0 (T ) =

∣∣{α ∈ Nn : | Im(λΛ
α)| ≤ T and Re(λΛ

α) ≥ −T
}∣∣

and, for every closed orbit Λ,

NΛ
0 (T ) =

∣∣{α ∈ Nn−1 × Z : | Im(λΛ
α)| ≤ T and Re(λΛ

α) ≥ −T
}∣∣ .

Let us now compute the asymptotic formula for NΛ
0 (T ) for every choice of Λ. For a fixed

point Λ, we find, as T → +∞,

NΛ
0 (T ) =

∣∣{α ∈ Nn : −T ≤ α.ωΛ ≤ T and 0 ≤ α.χ+
Λ ≤ T

}∣∣+O(T n−1).

Up to an error term of order O(T n−1), this can be rewritten under an integral form, i.e.

NΛ
0 (T ) = VolRn

({
x ∈ Rn

+ : −T ≤ x.ωΛ ≤ T and x.χ+
Λ ≤ T

})
+O(T n−1),
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or equivalently

NΛ
0 (T ) = T nVolRn

({
x ∈ Rn

+ : −1 ≤ x.ωΛ ≤ 1 and x.χ+
Λ ≤ 1

})
+O(T n−1).

For a closed orbit, the same calculation would give

NΛ
0 (T ) = T nVolRn

({
(x′, xn) ∈ Rn−1

+ × R : −1 ≤ x′.ωΛ +
2π

PΛ

xn ≤ 1 and x′.χ+
Λ ≤ 1

})
+O(T n−1),

which, combined with (48), concludes the proof of the corollary. �

Appendix A. Monodromy and periodic orbits: a brief account of Floquet
theory

In section 3, we made the assumption that near every closed orbit Λ of the flow, one can
choose (regular) local coordinates such that the vector field V can be put into the normal
form

V (x, θ) := A(θ)x.∂x + ∂θ,

where x ∈ Rn−1, θ ∈ R/(PΛZ), and A(θ) : R/(PΛZ) → GLn−1(R). Floquet theory
describes the solution of the following ordinary differential equation:

(49)
dU

dθ
= A(θ)U, U(θ0, θ0) = IdRn−1 .

We will now discuss standard properties of Floquet theory that are extensively used all
along our analysis. In particular, we give a precise description of W u(Λ) and W s(Λ) in
these local coordinates. We refer the reader to [50, Chapter 3] for a detailed presentation
on Floquet theory.

First of all, the fundamental solution U satisfies the groupoid equation :

(50) U(θ1, θ2)U(θ2, θ3) = U(θ1, θ3) and U(θ, θ) = IdRn−1 .

Note that U(PΛ + θ,PΛ + θ0) = U(θ, θ0) but U(θ + PΛ, θ) 6= Id a priori. However setting

(51) M(θ) = U(θ + PΛ, θ)

yields the following Lemma:

Lemma A.1. For all θ ∈ [0,PΛ], the monodromy matrix M(θ) = U(θ + PΛ, θ) depends
smoothly in θ and is PΛ–periodic. Furthermore, all monodromy matrices are conjugated

M(θ + PΛ) = M(θ)(52)

M(θ1) = U−1(θ0, θ1)M(θ0)U(θ0, θ1).(53)

Proof.

U(θ1 + PΛ, θ1) = U(θ1 + PΛ, θ0 + PΛ)U(θ0 + PΛ, θ0)U(θ0, θ1)

but U(θ1 + PΛ, θ0 + PΛ) = U(θ1, θ0) which yields the result. �
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A direct consequence of that Lemma is that the spectrum of monodromy matrices M(θ)
does not depend on θ. Its eigenvalues are called the Floquet multipliers of the closed orbit
Λ := {(0, θ) : θ ∈ R/(PΛZ)}. Saying that the closed orbit Λ is hyperbolic is equivalent
to the fact that no Floquet multipliers lies on the unit circle S1. Equivalently, it also
says that the monodromy matrices are hyperbolic. We shall now always suppose that the
monodromy matrix is hyperbolic and diagonalizable in C. In that case, note that, up to a
change of linear coordinates in Rn−1, we can suppose that M := M(0) takes the following
form:

M = Diag(S1, . . . , Sp, Up+1, . . . , Uq) ∈ GLn−1(R),

where one has

• for every 1 ≤ i ≤ p, one has Si = νiIdR1 with |νi| < 1 or Si = νiRϑi with 0 < νi < 1

and Rϑi :=

(
cos(ϑi) − sin(ϑi)
sin(ϑi) cos(ϑi)

)
,

• for every p+ 1 ≤ i ≤ q, one has Si = νiIdR1 with |νi| > 1 or Si = νiRϑi with νi > 1

and Rϑi :=

(
cos(ϑi) − sin(ϑi)
sin(ϑi) cos(ϑi)

)
.

The Lyapunov exponents of the closed orbit are then given by the value log |νi|
PΛ

(which

appear with multiplicity 2 when they correspond to a complex eigenvalue). We denote12

them by (χi(Λ))i=1,...,n−1 and by r the number of negative Lyapunov exponents. Note now
that each matrix νiRϑi can be put under an exponential form as follows :

νiRϑi = exp

(
log(νi)IdR2 +

(
0 −ϑi
ϑi 0

))
.

For the blocks of size one, this will of course depend on the sign of νi. In order to avoid
that difficulty, we consider the matrix M2 and we can then write

M2 = exp(2PΛAΛ),

where AΛ is a real valued matrix which has also a block-diagonal form given by the above
matrices. For a general θ, we set ÃΛ(θ) := U(0, θ)−1AΛU(0, θ) and we have the relation
M(θ)2 = exp(2PΛÃΛ(θ)). Let us now state the main result we needed in our analysis and
which follows from the Floquet Theorem [50] :

Proposition A.2. With the above notations, one has

(54) U(θ, θ0) = P (θ, θ0)e(θ−θ0)ÃΛ(θ0)

P (θ, θ0) is a real 2PΛ-periodic matrix depending smoothly on θ. Furthermore,P (PΛ, 0) is a
diagonal matrix with entries on the diagonal which are equal to ±1 where the term on the
diagonal is equal to −1 whenever νi < 0 and to +1 otherwise.

Note that we immediatly deduce from that proposition the following fact:

ÃΛ(θ) = P (θ, 0)AΛP (θ, 0)−1.

12Some of them may be equal.
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Then, this proposition allows us to give a precise description of the unstable (resp. stable)
manifold W u(Λ) (resp. W s(Λ)) of Λ. Indeed, by construction, one can verify that

W u(Λ) =
{

(P (θ0, 0)(0, y), θ0) : (y, θ0) ∈ Rn−1−r × R/(PΛZ)
}
,

and
W s(Λ) = {(P (θ0, 0)(x, 0), θ0) : (x, θ0) ∈ Rr × R/(PΛZ)} .

These submanifolds are invariantly fibered by the following smooth submanifolds:

∀θ0 ∈ R/(PΛZ), W uu(θ0) :=
{

(P (θ0, 0)(0, y), θ0) : y ∈ Rn−1−r} ,
and

∀θ0 ∈ R/(PΛZ), W ss(θ0) := {(P (θ0, 0)(x, 0), θ0) : x ∈ Rr} .
Note that W u(Λ) is non orientable if and only if

(55) detP (PΛ, 0)|{0}⊕Rn−1−r = −1.

The same holds for the stable manifolds. In particular, observe that det M is always
positive thanks to the Liouville’s formula [50, Lemma 3.11, p.83]. This implies that
det P (PΛ, 0) = 1 and thus W u(Λ) is orientable if and only if W s(Λ) is orientable.
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Braconnier, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex

E-mail address: dang@math.univ-lyon1.fr
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