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Abstract
The wavefront set of a distribution describes not only the points where the
distribution is singular, but also the ‘directions’ of the singularities. Because of
its ability to control the product of distributions, the wavefront set was a key
element of recent progress in renormalized quantum field theory in curved
spacetime, quantum gravity, the discussion of time machines or quantum
energy inequalitites. However, the wavefront set is a somewhat subtle concept
whose standard definition is not easy to grasp. This paper is a step-by-step
introduction to the wavefront set, with examples and motivation. Many dif-
ferent definitions and new interpretations of the wavefront set are presented.
Some of them involve a Radon transform.

Keywords: wave front set, quantum field theory, microlocal analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Feynman propagators are distributions, and Stueckelberg realized very early that renormali-
zation was essentially the problem of defining a product of distributions [1–3]. This point of
view was clarified by Bogoliubov, Shirkov, Epstein and Glaser [4–6] but was later almost
forgotten.

In a ground-breaking paper [7], Radzikowski showed that the wavefront set of a dis-
tribution was a crucial concept to define quantum fields in curved spacetime. This idea was
fully developed into a renormalized scalar field theory in curved spacetimes by Brunetti,
Fredenhagen [8], Hollands and Wald [9]. This approach was rapidly extended to the case of
Dirac fields [10–16], to gauge fields [17–19] and even to the quantization of gravitation [20].
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This tremendous progress was made possible by a complete reformulation of quantum
field theory, where the wavefront set of distributions plays a central role, for example to
determine the algebra of microcausal functions and to define a spectral condition for time-
ordered products and quantum states [21–24]. The wavefront set was also a decisive tool to
discuss the existence of time-machine spacetimes [25], quantum energy inequalities [26] and
cosmological models [27].

Until the early 1990s, the wavefront set was rarely used to solve physical problems. We
only know of a few works in crystal optics [28, 29] and quantum field theory on curved
spacetimes [30, 31]. This is probably due to the fact that this concept is not familiar to most
physicists and not easy to grasp. But now, the wavefront set is here to stay and we think that a
smooth and physically motivated introduction to it is worthwhile. This is the purpose of the
present paper.

There are textbook descriptions of the wavefront set [32–41], but they do not give any
clue on its physical meaning and advanced textbooks are notoriously laconic (the outstanding
exception being the book by Gregory Eskin [40]).

The main use of the wavefront set in quantum field theory is to provide a condition for
the product of distributions. Indeed, the Feynman propagator is a distribution and the products
of propagators present in a Feynman diagrams are not well defined. The wavefront set gives a
precise description of the region of spacetime where the product is well defined and the value
of the Feynman diagram on the whole spacetime is then obtained by an extension proce-
dure [8].

After this introduction, we discuss in simple terms the problem of the multiplication of
one-dimensional distributions. This elementary example reveals a natural condition for two
distributions to be multiplied and this condition leads to the definition of the wavefront set.
After giving elementary examples of wavefront sets, we discuss in detail the wavefront set of
the characteristic function of a domain Ω in the plane (i.e. a function which is equal to 1 on Ω
and to 0 outside it). To bring a physical feel of the concept, we give two new characterizations
of the wavefront set of such functions: the first one uses a Radon transform, the second one
counts the number of intersections of straight lines with the boundary of Ω. These two
characterizations do not employ any Fourier transform. The next section explores the
wavefront set of a distribution defined by an oscillatory integral. This technique is crucial to
calculate the wavefront set of the Wightman and Feynman propagators in quantum field
theory. The main properties of the wavefront set are listed without proof. The last section
enumerates other definitions of the wavefront set.

2. Multiplication of distributions

We shall introduce the wavefront set as a condition required to multiply distributions. We first
recall that a distribution ∈ ′u ( )n is a continuous linear map from the set of smooth
compactly supported functions  ( )n to the complex numbers, and we denote u(f) by 〈 〉u f, .
For example, if δ is the Dirac delta distribution, then δ〈 〉 =f f, (0). If g is a locally integrable
function, then we can consider it as a distribution by associating to g the distribution

∫〈 〉 =u f g x f x x, ( ) ( )dg (for a nice introduction to distributions see for example [36]).
It is well known that distributions can generally not be multiplied [42]. The first reason is the

very definition of distributions as objects which generalize the functions but for which the ‘value
at some point’ has no sense in general. But, motivated by questions in theoretical physics (e.g.
quantum field theory), we may ask under which circumstances it is possible to extend the product
of ordinary functions to distributions. In most cases this is just impossible. For instance we cannot
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make sense of the square of δ: a simple way to convince yourself of that is to study the family of
functions  χ →ε : for ε > 0 defined by χ ε=ε x( ) 1 if ε⩽x| | 2 and χ =ε x( ) 0 otherwise.

For any ∈ f ( ) we have

∫ ∫χ ε ε ε ε= = +ε ε

ε−
−

−x f x x f x x f O( ) ( )d ( )d ( (0) ( ))1
2

2 1 3

and χ δ=ε ε→lim 0 . However, the square of χε does not converge to a distribution:


∫ χε x f x x( ) ( )d2 ∫ε ε ε ε= = +

ε

ε−
−

−f x x f O( )d ( (0) ( ))2
2

2 2 3 diverges for ε → 0.
In some other cases it is possible to define a product, but we loose some good properties.

Consider the example of the Heaviside step function H, which is defined by =H x( ) 0 for
<x 0 and =H x( ) 1 for ⩾x 0. Its associated distribution, denoted by θ, is

∫ ∫θ = =
−∞

∞ ∞
f H x f x x f x x, ( ) ( )d ( )d .

0

The function H can obviously be multiplied with itself and =H Hn for any integer >n 0. As
we shall see, it is possible to define a product of distributions such that θ θ=n as a
distribution. But then, we loose the compatibility of the product with the Leibniz rule because,
by taking the derivative of both sides we would obtain θ θ θ′ = ′−n n 1 . The identity θ δ′ = and
θ θ=−n 1 would give us θδ δ=n for all integers >n 1. Since the left-hand side depends
linearly on n and the right-hand side does not and is not equal to zero, we reach a
contradiction.

The Leibniz rule is essential for applications in mathematical physics and we shall define
a product of distributions obeying the Leibniz rule. We first enumerate some conditions under
which distributions can be safely multiplied.

2.1. In which cases can we multiply distributions?

2.1.1. A distribution times a smooth function. The product of distributions is well defined
when one of the two distributions is a smooth function. Indeed, consider a distribution

∈ ′u ( )n and a smooth function ϕ ∈ ∞C ( )n . Then, for all test function ∈ f ( )n we
can define the product of u and ϕ by ϕ ϕ〈 〉 = 〈 〉u f u f, , .

2.1.2. Distributions with disjoints singular supports. We can also define the product of two
distributions when the singularities of the distributions are disjoint. To make this more
precise, we recall that the support of a function f, denoted by fsupp , is the closure of the set
of points where the function is not zero [32, p 14]. For example, the support of the Heaviside
function is = + ∞Hsupp [0, ]. Note that although a function is zero outside its support, it
can also vanish at isolated points of its support, because of the closure condition of the
definition. For example the support of the sine function is  although π =nsin ( ) 0.

However, the support of a distribution cannot be defined as the support of a function because
the value of a distribution at a point is generally not defined. Hence we define the support by
duality: we say that the point x does not belong to the support of the distribution u if and only if
there is an open neighborhood U of x such that u is zero on U, in other words if 〈 〉 =u f, 0 for all
test functions f whose support is contained in U [36, p 12]. For example δ =supp {0} and

θ = +∞supp [0, ]. Similarly, we can define the singular support of a distribution ∈ ′u ( )n ,
denoted by using supp , by saying that ∉x using supp if and only if there is a neighborhood U
of x such that the restriction of u to U is a smooth function, in other words if there is a smooth
function ϕ ∈ ∞C U( ) such that ∫ϕ ϕ〈 〉 = 〈 〉 =u f f x f x x, , ( ) ( )d for all test functions f
supported on U [36, p 108]. For example δ =sing supp {0}, θ =sing supp {0}.

A more elaborate example is the distribution ∈ ′u ( ), defined by: = + + −u x x i( ) ( 0 ) 1,
i.e. u is the limit in ′ ( ) of εu x( ):= ϵ+ −x( i ) 1, when ε > 0 and ε → 0, this means that [43,
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section 2]

∫ ∫ϵ
π=

+
= − − −

ϵ ϵ ϵ→ −∞

∞

→

∞

+ +
u f

f x x

x

f x f x

x
x f, lim

( )d

i
lim

( ) ( )
d i (0).

0 0

If ≠y 0, consider the open set = − +U y y y y( | | 2, | | 2). Take a smooth function χ such that
χ =x( ) 1 for − <x y y| | 3 | | 4 and χ =x( ) 0 for − >x y y| | 7 | | 8. Then, for any f supported
on U we have =f (0) 0 and χ=f f . Thus,

∫

∫

χ χ χ

χ ϕ

= = − − −

= =

∞

−∞

∞

u f u f
x f x x f x

x
x

x f x

x
x f

, ,
( ) ( ) ( ) ( )

d

( ) ( )
d , ,

y 8

where ϕ χ=x x x( ) ( ) is smooth because χ =x( ) 0 for <x y| | | | 8 (see figure 1). As a
consequence, every ≠y 0 is not in the singular spectrum of u and =using supp {0} because
the imaginary part of u is proportional to a Dirac δ distribution.

We can now state an important theorem [32, p 55].

Theorem 1. If u and v are two distributions in ′ ( )n such that sing supp u ∩ sing supp
= ∅v , then the product uv is well defined.

Proof. We first notice that, if ∈ f ( )n is supported outside the singular support of v, then
vf is smooth and we can define the product by 〈 〉 = 〈 〉uv f u vf, , . Similary, 〈 〉 = 〈 〉uv f v uf, ,
if f is supported outside the singular support of u. This definition of uv extends to all test
functions f by using a smooth function χ which is equal to zero on a neighborhood of the
singular support of u and equal to one on a neighborhood of the singular support of v. Then

χ χ〈 〉 = 〈 〉 + 〈 − 〉uv f v u f u v f, , , (1 ) . This product is associative and commutative [32,
p 55]. □

2.1.3. The singular oscillations of the distributions are transversal. Consider the two
distributions δ= ⊗u 1 and δ= ⊗v 1 in ′ ( )2 , i.e., φ∀ ∈  ( )2 , φ〈 〉u, =


∫ φ y y(0, )d

and φ〈 〉v, =

∫ φ x x( , 0)d . Then we can define their product by δ δ= ⊗ ⊗uv ( 1)(1 ):=

δ δ δ⊗ = (2), i.e. φ〈 〉 =uv, φ (0, 0), since φ〈 〉 =uv, ∫ ∫ φ =u x v y x y x y( ) ( ) ( , )d d

Figure 1. In this figure we take y = 0.8, the open set is =U (0.4, 1.2) and the smooth
function χ is supported on (0.1, 1.5).

J. Phys. A: Math. Theor 47 (2014) 443001 C Brouder et al

4



∫ ∫ φ =( )u x v y x y y x( ) ( ) ( , )d d ∫ φ =u x x x( ) ( , 0)d φ (0, 0) by the Fubini theorem for
distributions. Here u and v are singular on the lines =x{ 0} and =y{ 0} respectively,
which have a non empty intersection {(0, 0)}. However the oscillations of both distributions
are orthogonal at that point, so that this definition makes sense. But actually the orthogonality
is not essential and, as we will see, the important point is the transversality.

Indeed we can extend this example to measures which are supported by non orthogonal
lines: let  α →: 2 2 be a linear invertible map and set α α α= ( , )1 2 and α α= = ◦αu u u: *

and α α= = ◦αv v v: * , where ∀ ∈ ′w ( )2 , φ∀ ∈  ( )2 , α φ α φ α〈 〉 = 〈 ◦ 〉− −w w* , : (det ) ,1 1 .
These distributions are well-defined and they are singular on the line of equation α = 01 and
α = 02 respectively. Moreover we can define α αu v by setting α α δ= =α αu v uv: *( ) *( )(2) .
Hence here α δ=α α

−u v (det ) 1 (2) and we see that the product makes sense as long as α ≠det 0,
which means that the singular supports of αu and αv are transversal.

2.1.4. The singularities of the distributions are transversal in the complex world. This last case
looks as the most mysterious at first glance and concerns complex valued distributions.
Consider the distribution = + +u x x( ) 1 ( i0 ) defined previously, i.e. the limit of

ε= + = −ϵ ε
ε

ε+ +
u x x( ) 1/( i ) x

x x

i
2 2 2 2

when ε > 0 and ε → 0 (hence πδ= −u pv( ) i
x

1
0.)

Observe that ′ = −ε εu u( ) ( )2, ε∀ > 0. Thus since ′εu( ) converges to ′u in ′ ( ), we can set
= − ′u u:2 . Moreover since any polynomial relation in εu and its derivatives which follows

from Leibniz rule is satisfied ( εu being a smooth function), the same holds for u. One can
define similarly the square of = − +u x x( ) 1 ( i0 ). However this recipe fails for defining the
product of u by u .

A similar mechanism works for making sense of the square of the Wightman function
(see section 6). One way to understand what happens is to remark that we multiply
distributions which are boundary values of holomorphic functions on the same domain.

In order to really understand all these examples and go beyond, we need to revisit them
by using refined tools such as: the Radon transform and the Fourier transform. This will lead
us to Hörmanderʼs definition of wavefront sets.

2.2. The product of distributions by using Fourier transform

We remark that the Fourier transform of a product of distributions (when it is defined) is the
convolution of the Fourier transforms of these distributions [36, p 102]: = ⋆uv u vˆ ˆ, if it
exists. Therefore, we can define the product of two distributions u and v as the inverse Fourier
transform of ⋆u vˆ ˆ. However, this definition, which requires the Fourier transforms of u and v
to be defined and their convolution product to make sense, can be improved. Indeed it does
not take into account the fact that the product of two distributions is local, i.e. that its
definition on the neighborhood of a point depends only on the restriction of the distributions
on that neighborhood. Therefore, we can localize the distributions by multiplying them with a
test function: if ∈ ′u U( ) and ∈ f U( ), then fu is a distribution with compact support in
U and we can extend it to a distribution defined on n by setting it to equal to zero outside U.
Let us still denote by fu this compactly supported distribution on n. It has a Fourier
transform fu k( ) which is an entire analytic function of k by the Paley–Wiener–Schwartz
theorem.

Following the physicistʼs convention [44], [45, p 32], we define the Fourier transform of
u by
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∫= = u k u k x u x( )( ) ˆ ( ) d e ( ),k xi ·

n

where = ∑k x k x· i i
i (we could interpret this quantity as an Euclidean scalar product between

two vectors in n; however as we will see in section 6 it is better to understand k as a covector
and the product k x· as a duality product, this is the reason for the lower indices used for the
coordinates of k and the upper indices used for the coordinates of x). More rigorously, the
above definition applies to functions f of rapid decrease and, for a tempered distribution u, the
Fourier transform is defined by 〈 〉 = 〈 〉u f u fˆ, , ˆ . The inverse Fourier transform is

∫ π
= −u x

k
u k( )

d

(2 )
e ˆ ( ),

n
k xi ·

where n is the dimension of spacetime. The same convention was used, for example, by
Franco and Acebal [46]. Note the relation between this Fourier transform and the one used in
other references: = −u k u kˆ ( ) ( )( )H [32, 47], or π= −u k u kˆ ( ) (2 ) ( )( )n

RS
2 [35, 39, 41].

We can now give a definition of the product of two distributions. Note that there are
alternative definitions, under different hypotheses (and we will meet another one later on.) For
a general overwiew about the existing options, see [48, 49].

Definition 2. Let u and v in ′ ( )n . We say that ∈ ′w ( )n is the product of u and v if and
only if, for each ∈x n, there exists some ∈ f ( )n , with f = 1 near x, so that for each

∈k n the integral

∫π
= ⋆ = −   ( )f w k fu fv k fu q fv k q q( ) ( )

1

(2 )
( ) ( )d , (1)

n
2

is absolutely convergent.

When it exists, this product has many desirable properties: it is unique, commutative,
associative (when all intermediate products are defined) and it coincides with the product of
theorem 1 when the singular supports of u and v are disjoint [35, p 90].

Let us consider some examples.

Example 3. If δ= =u v , the product is not defined.

Proof. For any test function f satisfying the hypothesis of the definition,
δ δ δ= =f x f x x( ) (0) ( ) ( ) and δ =f k( ) 1, so that ∫ ∫δ δ − = f q f k q q q( ) ( )d d , which is not
absolutely convergent. □

Example 4. If θ= =u v , the product is well defined.

Proof. For any ∈ f ( ), ∫θ = ∞f k f x x( ) e ( )dkx
0

i satisfies the uniform bound


∫θ ⩽ ∥ ∥ =f k f f x x| ( ) | : | ( ) |dL1 . Moreover an integration by part gives us also

θ = +f k f g k( ) [ (0) ( )]k

i with ∫= ′∞
g k f x x( ): e ( )dkx

0
i and we thus have the uniform bound

θ ⩽ + ∥ ′∥f k f f| ( ) | (| (0)| )
k L
1

| |
1 . Hence, for any ∈k , θ ⩽ + −f k C k| ( ) | (1 | |) 1 for

= ∥ ′∥ + ∥ ∥ +C f f f| (0)|L L1 1 and the integral defining ⋆fu fv k( )( ) is absolutely convergent
because
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∫ ∫ ∫θ θ − ⩽

− + +
⩽

+
 f q f k q q

C q

k q q
C

q

q
( ) ( ) d

d

( 1)( 1)
˜ d

( 1)
,

2

2

where = +
− +C C˜ supq
q

k q
2 (| | 1)

(| | 1)
is finite. □

Example 5. If = = + +u x v x x( ) ( ) 1 ( i0 ), the product exists.

Proof. By contour integration, πθ= − −u k kˆ ( ) 2i ( ). Thus,


∫ ∫π

= − = −
∞fu k qf q u k q f q q( )

1

2
d ˆ ( ) ˆ ( ) i ˆ ( )d ,

k

tends to π π− = −f2 i (0) 2 i for → −∞k .
To show that the integral in equation (1) is absolutely convergent, we define the smooth

function ∫= +∞
F k f q q( ) ˆ ( )d

k
. The Fourier transform of a test function f is fast decreasing: for

any integer N, there is a constant CN for which ⩽ + −f q C q| ˆ ( )| (1 | |)N
N [32, p 252]. Thus, for

⩾k 0

∫⩽ + =
−

+
∞

− −F k C q q
C

N
k( ) (1 ) d

1
(1 ) ,N

k

N N N1

is fast decreasing and for any ∈k

∫⩽ + =
−−∞

∞
−F k C q q

C

N
( ) (1 ) d

2

1
.N

N N

Therefore, the right-hand side of equation (1) can be written

∫ ∫ ∫π− + + −−
−∞

+∞( )F q F k q q(2 ) ( ) ( )d
k

k
1 0

0
. The first integral is absolutely convergent

because − ⩽ − + −− −F q F k q C N k q| ( ) ( )| 2 ( 1) (1 | |)N
N2 2 1 , the second because the integrand

is smooth and the domain is finite and the third integral because
− ⩽ − +− −F q F k q C N q| ( ) ( )| 2 ( 1) (1 )N

N2 2 1 .
To compute the product =w u2 we take f = 1 and we calculate directly

 
∫ ∫π

π θ θ π θ= − = − − − = −u k u q u k q q q q k k k( )
1

2
ˆ ( ) ˆ ( )d 2 ( ) ( ) 2 ( ).2

□
Note that the Fourier transform of the derivative of a distribution v is given by

′ = −v k kv k( ) i ˆ ( ). Thus we recover the relation = − ′ = + =+ −u u u x xi.e. ( ) ( i0 )2 2 2

− + + −x( i0 )
x

d

d
1.

Example 6. If = + +u x x( ) 1 ( i0 ) and = − +v x x( ) 1 ( i0 ), the product does not exist.

Proof. We have πθ= − −u k kˆ ( ) 2i ( ) and πθ=v k kˆ ( ) 2i ( ). Thus,

∫ ∫π
= − =

−∞
fv k qf q v k q f q q( )

1

2
d ˆ ( ) ˆ ( ) i ˆ ( )d ,

k

which decreases fast for → −∞k and tends to π π=f2 i (0) 2 i for → + ∞k . We define

∫= −∞
G k f q q( ) ˆ ( )d

k
and recall that ∫= +∞F k f q q( ) ( )d

k
so that π+ =F G 2 . The right-hand

side of equation (1) can be written as the limit for → ∞M of π − I k(2 ) ( )M
1 with
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∫
∫ ∫π

= −

= − −

−

∞

−

∞

−

∞

I k F q G k q q

F q q F q F k q q

( ) ( ) ( )d

2 ( )d ( ) ( )d .

M
M

M M

We saw in the previous example that the second term is absolutely convergent and for the first
term we use π= −F G2 to write

∫ ∫ ∫ ∫π= + −
−

∞ ∞

− −
F q q F q q q G q q( )d ( )d 2 d ( )d .

M M M0

0 0

The decay properties of F and G imply that the first and third terms are absolutely convergent,
but the second term is πM2 which diverges for → ∞M . Thus, there is no test function f with

=f (0) 1 such that IM(k) converges: the product of distributions does not exist. □

In example 5, the distribution u2 was calculated without using the localizing test function
f. In general this is not possible. For example, consider

Example 7.

=
+

+
+ −+ +u x

x x a
( )

1

i0

1

i0
,

with ≠a 0. Then, u2 exists.

Indeed, denote by u1 and u2 the two terms on the right-hand side. We showed that u1
2 exists

and the same reasoning implies that u2
2 exists. The cross term u u1 2 exists because the singular

support of u1, which is{0}, is disjoint from the singular support of u2, which is −a{ }. Thus, u2

exists although the Fourier transform of u (i.e. πθ π θ= − − + −u k k kˆ ( ) 2i ( ) 2i e ( )kai ) is slowly
decreasing in both directions. Therefore, the role of the localizing test function f is not only to
make the Fourier transform of fu exist (even when the Fourier transform of u does not), but also
to isolate the singularities of u. In example 7, the two singular points of u are x = 0 and = −x a.
To localize the distribution around x = 0, we multiply u by a smooth function f such that

=f (0) 1 and =f x( ) 0 for >x a| | | | 2, so that ∫= − ∞fu k f q q( ) i ˆ ( )d
k

is fast decreasing in the

direction of >k 0 because the contribution of + − +x a1 ( i0 ) is eliminated. Conversely, if we
multiply the distribution by a smooth function g such that − =g a( ) 1 and =g x( ) 0 for

+ >x a a| | | | 2, then ∫=
−∞

gu k g q q( ) i ˆ ( )d
k

, which is fast decreasing in the direction <k 0.

2.2.1. Discussion. In the previous examples, we saw that the calculation of the product of
two distributions by using the Fourier transform looks rather tricky. In particular, it seems that
we have to know the Fourier transform of the product of each distribution with an arbitrary
function.

Moreover even when we are able to define it, the product of distribution does not always
satisfy the Leibniz rule ∂ = ∂ + ∂uv u v u v( ) ( ) ( ). For instance the product of θ makes sense
(example 4) but does not respect the Leibniz rule (see section 2). On the other hand the square
of + +x1 ( i0 ) can be defined (see example 5) and this definition agrees with Leibniz rule.

Fortunately, Hörmander devised a powerful condition on a pair of distributions to: (1)
guarantee the existence of their product without computing it; (2) ensure that this product
satisfies the Leibniz rule.

As a preparation for this condition, we can analyze why the product exists in example 5
and not in example 6. In example 5, the support of û is −∞( , 0) and, because of the
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convolution formula −u q u k qˆ ( ) ˆ ( ), the support of −u q u k qˆ ( ) ˆ ( ) as a function of q is the
finite interval k[ , 0] if ⩽k 0 and is empty if >k 0. Thus, the integral over q is absolutely
convergent. On the other hand, in example 6 the support of −u q v k qˆ ( ) ˆ ( ) is
−∞ k( , min ( , 0)), which is infinite.

In general, for the convolution integral to be well defined, we just need that the product
−fu q fv k q( ) ( ) decreases fast enough for large q for the integral over q to be absolutely

convergent. Note also that, for any distribution u and for any smooth function f with compact
support, since fu is a distribution with compact support, its Fourier transform fu grows at
most polynomially at infinity, i.e. there exists some ∈p and some constant >C 0 such that

⩽ +fu k C k| ( ) | (1 | |)p everywhere. Hence it is enough that one of the two factors in the
product −fu q fv k q( ) ( ) is fast decreasing at infinity to ensure that the product is fast
decreasing. In example 5, fu q( ) decreases very fast for → +∞q but does not decrease for
→ −∞q . Iffu q( ) decreases slowly in some directions q, this must be compensated by a fast

decrease of −fv k q( ) in the same direction q. This is exactly what happens in example 5 and
not in example 6.

Lastly example 7 confirms that a general condition for the existence of a product of
distributions should use the Fourier transform of distributions localized around singular
points.

It is now time to introduce the key notion for defining Hörmanderʼs product of
distributions: the wavefront set.

3. The wavefront set

We want to find a sufficient condition by which the product of distributions defined in
equation (1) is absolutely convergent. In this integral, the distribution fv is compactly sup-
ported because ∈ f ( )n . Thus, there is constant C and an integer m such that

− ⩽ + −fv k q C k q| ( ) | (1 | |)m. The smallest m for which this inequality is satisfied is called
the order of the distribution fv. The integral (1) would be absolutely convergent if we had

⩽ ′ + − − −fu q C q| ( ) | (1 | |) m n 1. However, since we also wish the product of distributions to be
compatible with derivatives through the Leibniz rule ∂ = ∂ + ∂uv u v u v( ) ( ) ( ) and since a
derivative of order n increases the order of u by n, what we really need is that fu q| ( ) |
decreases faster than any inverse power of + q1 | |. We give now a precise definition of the
property of fast decrease.

3.1. Outside the wavefront set: the regular directed points

We start by defining some basic tools: the conical neighborhoods and the fast decreasing
functions.

Definition 8. A conical neighborhood of a point ∈k {0}n is a set ⊂V n such that V
contains the ball ϵ ϵ= ∈ − <B k q q k( , ) { ; | | }n for some ϵ > 0 and, for any p in V and
any α > 0, αp belongs to V.

An example of conical neighborhood of k0 is given in figure 2.

Definition 9. A smooth function g is said to be fast decreasing on a conical neighborhood V
if, for any integer N, there is a constant CN such that ⩽ + −g q C q| ( ) | (1 | |)N

N for all ∈q V .
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For example, the function −e q2
is fast decreasing on n. We need functions to be fast

decreasing in a conical neighborhood and not only along a specific direction (which would be
the case if CN were a function of q), because a single direction has zero measure and we
would not be able to control the integral 1. According to the discussion of the previous section
we see that the integral 1 converges absolutely if the directions where −fv k q( ) decrease
slowly correspond to regions where fu q( ) is fast decreasing.

We define now the ‘nice points’ around which fu is fast decreasing. They are called
regular directed points [35, p 92].

Definition 10. For a distribution ∈ ′u ( )n , a point  ∈ ×x k( , ) ( {0})n n is called a
regular directed point of u if and only if there exist: (i) a function ∈ f ( )n with =f x( ) 1
and (ii) a closed conical neighborhood ⊂V n of k, such that fu is fast decreasing on V.

The relevance of the concept of regular directed point also stems from the following
theorem [32, p 252]

Theorem 11. A compactly supported distribution ∈ ′u U( ) is a smooth function if and
only if u q( ) is fast decreasing on n.

This theorem is physically reasonable because, if f is a smooth function, then f x( )e k xi ·

oscillates widely when k is large, so that the average of this expression (i.e. f k( )) is very
small. Theorem 11 implies that any singularity of a distribution can be detected by an absence
of fast decrease in some direction: a point x is in the singular support if and only if there is a
direction k, where the Fourier transform is not fast decreasing. However, if ∈x using supp ,
there can be directions k such that (x, k) is regular directed. In example 5, we saw thatfu k( ) is
rapidly decreasing for >k 0 but not for <k 0. This brings us finally to the definition of the
wavefront set.

3.2. The definition of the wavefront set and the product theorem

Definition 12. The wavefront set of a distribution ∈ ′u ( )n is the set, denoted by uWF( ),
of points  ∈ ×x k( , ) ( {0})n n which are not regular directed for u.

Figure 2. Example of a conical neighborhood of k0.
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In other words, for each point of the singular support of u, the wavefront set of u is composed
of the directions where the Fourier transform of fu is not fast decreasing, for f a sufficiently
small support. The name ‘wavefront set’ comes from the fact that the singularities of the
solutions of the wave equation move within it [32, p 274], so that the wavefront set describes
the evolution of the wavefront. The wavefront set is a refinement of the singular support, in
the sense that the singular support of u is the set of points ∈x n, such that ∈x k u( , ) WF( )
for some nonzero ∈k n.

Now we see how this definition can be used to determine the product of two distributions
u and v. Broadly speaking, if a point x belongs to the singular support of u and v, then the
product of u and v exists at x if, for all directions q, either fu q( ) or −fv k q( ) is rapidly
decreasing. In particular, if (x, q) belongs to uWF( ), then −x q( , ) must not belong to vWF( ).
This is called Hörmanderʼs condition and the precise theorem is [32, p 267].

Theorem 13. (Product theorem) . Let u and v be distributions in ′ U( ). Assume that there
is no point (x, k) in uWF( ) such that −x k( , ) belongs to vWF( ), then the product uv can be
defined. Moreover, if so, then

∪ ∪⊂ +uv S S SWF( ) , (2)u v

where +S = + ∈x k q x k u{( , )|( ; ) WF( ) and ∈x q v( ; ) WF( )}, = ∈S x k x k{( ; )|( ; )u uWF( )
and ∈x vsupp ( )} and = ∈S x k x k{( ; )|( ; )v vWF( ) and ∈x usupp ( )}.

Remarks.

(1) This theorem is absolutely fundamental for the theory of renormalization in curved
spacetimes. With this simple criterion, we can prove that a product of distributions exists
even if we cannot calculate their Fourier transforms and even if we do not know the
explicit form of the distributions.

(2) The condition involving the support of u in Sv and the support of v in Su in uvWF( ) is
given in [38, p 84] but is usually not stated explicitly [32, p 267] [33, p 21] [35, p 95],
[34, p 527], [36, p 153], [37, p 193], [40, p 61]. This support condition is imperative to
calculate the wavefront set of example 19 or of the Feynman propagator in section 6.2.

(3) When Hörmanderʼs condition holds, then the product of distributions satisfies the Leibniz
rule for derivatives, because derivatives do not extend the wavefront set [32, p 256]).

(4) Note that if u and v satisfy Hörmanderʼs condition, then their product exists in the sense
of definition 2. The converse is not true in general. However, if the product of
distributions is extended beyond Hörmanderʼs condition, then it is generally not
compatible with the Leibniz rule, as shown by the example of the Heaviside distribution
at the beginning of section 2.

(5) Hörmanderʼs condition of the Product theorem can be rephrased by saying that +S does not
meet the zero section (of the cotangent bundle over U), i.e. that ∩ × = ∅+S U( {0}) .

(6) For any pair A and B of subsets of ×U n, we can define ⊕ = +A B x k q: {( , )
∈ ∈x k A x q B|( , ) , ( , ) }. We then observe that = ⊕+S u vWF( ) WF( ) and hence

Hörmanderʼs condition amounts to saying that WF ⊕u v( ) WF( ) does not intersect the
zero section. On the other hand if we set ∪= ×u u uWF( ): WF( ) (supp {0}), etc., we
then always have ∪ ∪ ∪⊕ = ×+u v S S S uvWF( ) WF( ) (supp( ) {0})u v . Moreover if
Hörmanderʼs condition holds then ×uvsupp( ) {0} is disjoint from ∩ ∩+S S Su v and
thus conclusion (2) is equivalent to the inclusion ⊂ ⊕uv u vWF( ) WF( ) WF( ).
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3.3. Simple examples and applications of the product theorem

We give a few very simple examples.

Example 14. The simplest example is δ x( ) in ′ ( )n , for which δ =WF( )
∈ ≠k k k{(0; )| , 0}n . Thus, the powers of δ cannot be defined.

Proof. The singular support of δ x( ) is {0} and δ =f k f( ) (0) is not fast decreasing if
≠f (0) 0. This proves that δ = ∈ ≠k k kWF( ) {(0; )| , 0}n . To show that the product is not

allowed, consider any point k(0; ) of δWF( ), then − k(0; ) is also a point of δWF( ) and the
Hörmander condition is not satisfied. □

Example 15. The wavefront set of the Heaviside distribution θ is
θ = ≠k kWF( ) {(0; ); 0}. There is a constant C such that θ ⩽ +f k C k| ( ) | (1 | |) for all k.

Proof. The Heaviside distribution is smooth for <x 0 and >x 0 because it is constant
there. Thus, the only possible singular point is x = 0. Consider a smooth compactly supported
function f such that =f (0) 1. We have for ≠k 0

∫ ∫
∫

θ = = − ′

= + ′

∞ ∞

∞

 ( )f k f x x
k

f x x

f

k k
f x x

( ) e ( )d
( i)

e ( )d

i (0) i
e ( )d , (3)

kx kx

kx

0

i

0

i

0

i

where the prime denotes a derivative with respect to x and we integrated by parts. A further
integration by part gives us

∫θ = − ′ − ″
∞f k

f

k

f

k k
f x x( )

i (0) (0) 1
e ( )d . (4)kx

2 2 0

i

Let L be the length of fsupp and, for =n 0, 1, 2, let Mn be a constant such that
⩽f x M| ( ) |n

n
( ) for all x. Using =f (0) 1, identity (4) implies that θ − ⩽ +f k| ( ) |

k

M LM

k

i 1 2

2 .

Hence θ∈k WF(0, ) ( ), ∀ ≠k 0. On the other hand (3) implies both θ ⩽f k LM| ( ) | 0 and

θ ⩽ +f k| ( ) | LM

k

1

| |
1 . We hence deduce that θ ⩽ +

f k| ( ) | C

k1 | |
, for some constant C. □

The wavefront set of θ is the same as the wavefront set of δ. This explains why the
powers of θ are not allowed in the sense of Hörmander.

Example 16. = + +u x x( ) 1 ( i0 ), then = <u k kWF( ) {(0; ), 0}. Thus, u2 exists
and =u uWF( ) WF( )2 .

Proof. The proof is obvious from example 5 (see also [35, p 94], where one must recall that
the sign is opposite because of the different convention for the Fourier transform). □

Example 17. = − +v x x( ) 1 ( i0 ), then = >v k kWF( ) {(0; ), 0}. Thus, v2 exists and
=v vWF( ) WF( )2 , but we cannot conclude that uv exists (it does not, as we saw in

example 6).
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Example 18. We consider again example 7

=
+

+
+ −+ +u x

x x a
( )

1

i0

1

i0
,

with ≠a 0. Then, ∪= < − >u k k a k kWF( ) {(0; ), 0} {( ; ), 0} and u2 exists, with
=u uWF( ) WF( )2 .

Example 19. (See [35, p 97]). Let δ1 and δ2 be the distributions in ′ ( )2 defined by
δ〈 〉 =f,1 ∫ yf yd (0, ) and δ〈 〉 =f,2 ∫ xf xd ( , 0). Then, δWF( )1 = λ λ∈ ≠y y{(0, ; , 0)| , 0}
and δ =WF( )2 μ μ∈ ≠x x{( , 0; 0, )| , 0}. Thus, δ δ1 2 exists and δ δWF( )1 2 ⊂

λ μ λ μ≠ ≠{(0, 0; , ), 0, 0}∪ λ λ ≠{(0, 0; , 0), 0} ∪ μ μ ≠{(0, 0; 0, ), 0}, where we used
δ = ∈x xsupp ( ) {( , 0)| }2 and δ = ∈y ysupp ( ) {(0, )| }1 . Note that the estimate of the

wavefront set of δ δ1 2 would be much worse if the support of δ2 and δ1 had not been taken into
account in δS 1 and δS 2 of the Product Theorem. In that case the inclusion is in fact an equality
because δ δ λ μ λ μ= ≠WF( ) {(0, 0; , ), ( , ) (0, 0)}1 2 .

Proof. Let ∈y , we want to calculate δ( )WF 1 at y(0, ). Take a test function f x x( , )1 2

which is equal to one around y(0, ). Then,

∫ ∫δ δ= =+ ( )f k x x f x x x x f x( ) d d ( , ) ( )e d 0, e .k x k x k x
1 1 2 1 2 1

i i
2 2

i1 1 2 2 2 2

Take =k k k( , )1 2 and observe the decay of δ λf k( )1 . If ≠k 02 this is a fast decreasing
function of λ because f x(0, )2 is a smooth compactly supported function of x2. If =k 02 ,
then we have ∫δ =f k x f x( , 0) d (0, )1 1 2 2 , which is independent of k1, so that δ λf k( , 0)1 1 is
not fast decreasing. This proves that δWF( )1 has the given form. A similar proof yields

δWF( )2 . The rest follows from the fact that δ δ1 2 is the two-dimensional delta function. □

4. The wavefront set of a characteristic function

Now that we know the definition of the wavefront set, we shall get the feel of it by studying in
detail the characteristic distribution u of a region Ω of n, defined by ∫〈 〉 = Ωu f f x x, ( )d . We
shall also revisit it in section 5.2.

4.1. The upper half-plane

For concreteness we start from the characteristic distribution of the upper half-plane

∫ ∫=
−∞

∞ ∞
u f x x f x x, d d ( , ).1

0
2 1 2

This is the distribution corresponding to the function equal to one on the upper half-plane (i.e.
if ⩾x 02 ) and to zero on the lower half-plane (i.e. if <x 02 ). It is intuitively clear that the
singular support of u is the line x( , 0)1 . Now take a point x( , 0)1 of the singular support and a
test function f which is non-zero on x( , 0)1 . What are the directions of slow decrease offu? It
seems clear thatfu k( ) decreases fast when k is along (1, 0), because we do not feel the step of
u if we walk along it and do not cross it. But what about the other directions? Does the
wavefront set contain all the directions that cross the step or just the direction (0, 1) which is
perpendicular to it?

The wavefront set of u can be obtained by noticing that u is the (tensor) product of the
constant function 1 for the variable x1 by the Heaviside distribution θ x( )2 . Then, a standard
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theorem [32, p 267] gives us λ λ= ≠u xWF( ) {( , 0; 0, ), 0}1 . In other words, the wavefront
set detects the direction perpendicular to the step. It is instructive to make an explicit cal-
culation to understand why it is so.

We use an idea of Strichartz [37, p 194] and consider test functions
=f x x f x f x( , ) ( ) ( )1 2 1 1 2 2 . This is not really a limitation because any test function can be

approximated by a finite sum of such products. Then θ= uf k f k f k( ) ( ) ( )1 1 2 2 . We want to
show that, if ≠k 01 , for every integer N there is a constant CN such that

τ τ⩽ + −uf k C k| ( ) | (1 | |)N
N for every κ > 0. We already know that there is a constant DN such

that τ τ⩽ + −f k D k| ( ) | (1 | |)N
N

1 1 1 because f1 is smooth and a constant C such that

τ τ⩽ + −f k C k| ( ) | (1 | |)2 2 2
1 (see example 15). We are going to show that, if the component k1

of k is not zero, the fast decrease of τf k( )1 1 induces the fast decrease of τuf k( ). If ≠k 01 , we
have α⩽k k| | | |1 where α = k k| |/| |1 . Note that α ⩾ 1 because ⩽k k| | | |1 . Hence

τ α τ+ ⩽ +k k(1 | |) (1 | |)1 and

τ τ τ α τ⩽ + + ⩽ +− − − ( ) ( )uf k CD k k CD k( ) 1 1 (1 | |) ,N
N

N
N N

1 2
1

where we bounded τ+ −k(1 | |)2
1 by 1. Finally, if ≠k 01 , then τ τ⩽ + −uf k C k| ( ) | (1 | |)N

N for
all κ > 0 with α=C CDN

N
N . This result was obtained for a single vector k, but it can be

extended to a cone around k by increasing the value of α.

4.2. Characteristic function of general domains

More generally, we can consider the characteristic function of any domain Ω in n limited by
a smooth surface S. The characteristic function of Ω is the function χΩ such that χ =Ω x( ) 1 if

Ω∈x and χ =Ω x( ) 0 if Ω∉x . The characteristic function χΩ corresponds to a distribution

Ωu defined by ∫〈 〉 =Ω Ωu f f x x, ( )d . The wavefront set of Ωu is given by [50, p 129]

Proposition 20. Let Ω ⊂ n be a region with smooth boundary S and let χ=Ω Ωu be the
characteristic distribution of Ω. Then = ∈Ωu x k x S k SWF( ) {( , ); , and normal to }.

Notice that the vectors k are perpendicular to the boundary S of Ω (see figure 3 for the
example of a disk). This can be understood by a hand-waving argument. Since the boundary S
is smooth, by using a test function with very small support around ∈x S, the boundary looks
flat around x and we can apply the argument of the upper-half plane (generalized to n)
previously discussed. The set of vectors k which are perpendicular to all tangent vectors to S
at x is called the conormal of S at x and is denoted by Cx (see figure 3 for the example where
n = 2 and Ω is the unit disk). The set = ∈C x k k C{( , ); }x is called the conormal bundle of
S. The previous proposition says that the wavefront set of Ωu is the conormal bundle of S.

The wavefront set of a characteristic distribution has many applications. Its ability to give
an accurate description of the boundary of shapes makes it particularly efficient for image
analysis [51] and tomography [52].

4.3. Counting intersections

We close this section by stating that the wavefront set of the characteristic distribution of a
bounded smooth domain Ω in the plane can be determined by the following striking pro-
cedure. For each straight line Lk a, in the plane, denote by nk a, the number of times the straight
line intersects the boundary (see figure 4). For generic domains, the wavefront set of Ωu can
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be recovered from the set of integers nk a, [53]. In particular, this information is sufficient to
recover the shape of Ω. This remark can have applications in image analysis.

In some exceptional cases, this result holds only up to localization or the replacement of
the number of intersections by the number of connected parts of the intersection [53]. This
characterization of the wavefront set can be extended to surfaces in 3 if we replace the
number of intersections nk a, by the Euler characteristic of the intersection of a given surface
with all possible half-spaces [53].

Figure 3. The characteristic function of the unit disk (pink) is equal to 1 for
+ ⩽x y 12 2 to zero for + >x y 12 2 . Some vectors of the wavefront set are indicated as

green arrows. For a given point (x, y) of the boundary + =x y 12 2 , the points
x y k k( , ; , )x y of the wavefront set are such that k k( , )x y is perpendicular to the

boundary, thus λ λ=k k x y( , ) ( , )x y for all λ ≠ 0. In this figure we represent the

characteristic function, the tangent bundle and the cotangent bundle in the same
coordinates.

Figure 4. Counting the number of times a straight line crosses the boundary of Ω. From
the bottom to the top, this number is 0, 1, 2, 3 and 4. It is possible to reconstruct Ω from
the set of straight lines and their numbers of crossings.
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5. Use of the Radon transform

5.1. The wavefront set of a measure supported by a hypersurface

In an attempt to better understand the wavefront set, we came up with the following idea. As
seen in example (c) in section 2.1, a distribution may be singular and may enjoy partial
regularity properties simultaneously. Consider for instance a smooth submanifold Γ ⊂ n and
the distribution which is the measure μ supported by Γ with the Euclidean density. The
singular character of μ shows up by restricting μ to a smooth path which crosses transversally
Γ: this gives us a Dirac mass type singularity. However if we probe μ by moving in a parallel
to Γ we may be tempted to say that heuristically the distribution varies smoothly. Such a test
cannot be performed by following a path which lies inside Γ, because the restriction of μ to
such a path would not make sense! However we may replace such a path by a dual wave. In
the most naive approach, this consists in a family of hypersurfaces H( )t t which cross trans-
versally (e.g. orthogonally) our path and which forms locally a foliation of an open subset of

Figure 5. The upper half-plane is green. An integration over the blue lines (which are
not parallel to the edge) gives a smooth function of the distance from the first line. An
integration over the red lines (parallel to the edge) jumps when the line reaches
the edge.

Figure 6. Wavefront set of Δ+: the wavefront set at the origin is an upper cone. Note

that, in this figure, three different spaces are identified: the configuration space 3, the
tangent space and the cotangent space over each point of the configuration point. The
tangent and cotangent spaces are identified through the Euclidian metric. This implies
that the covectors inWF(u) are perpendicular to the tangent planes.
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n. Each Ht can be thought as a wavefront in this Huygens type picture. This is another
indication that we must interpret p as a covector.

Letʼs explore this idea in the simple case where Γ is a smooth curve. Choose a point
Γ∈x0 and a covector ∈p n, and define the linear form  α →: n by α =x p x( ): · and

assume that α ≠Γ| 0Tx0
. We will test μ locally around x0 by using a plane wave whose

wavefronts are the hyperplanes αH a, of equation α =x a( ) , for ∈a close to α x( )0 . Choose
an open neighborhood ⊂U n of x0 such that there exists a parametrization γ →I U: of
∩Γ U . Then for any φ ∈  ( )n with support contained in U, we have

∫μ φ φ γ γ= t t t, ( ( )) ˙ ( ) d .
I

Moreover we may choose U such that α ≠Γ| 0Tx , ∩Γ∀ ∈x U . We remark then that α γ◦ is
a diffeomorphism into its image.

Let ω be an open subset of U such that ω ⊂ U and let χ ∈  ( )n with support contained
in U and such that χ = 1 on ω . Let ∈ f ( ) with support in ∩α ω Γ( ). Set φ χ α= ◦f: ( )
and observe that α φ◦ =f on ∩ ΓU . Hence we can define μ α〈 ◦ 〉f, by setting

∫μ α μ φ α γ γ◦ = = ◦ ◦f f t t t, : , ( ) ˙ ( ) d .
I

By performing the change of variable α γ= ◦a t( ), α γ=a t td | ( ˙ ( ))|d , α γ= ◦A I( ), we
obtain

∫μ α
α τ

◦ =f f a
a

a
, ( )

d

( ( ))
,

A

where τ a( ) is the tangent vector to Γ: τ α γ γ γ◦ =t t t( ( )) ˙ ( ) | ˙ ( )|. We see that we can extend
this definition by replacing f by a Dirac mass δa at some value ∈a A. We then get
μ α δ α τ τ〈 〉 = =a p a, * 1/| ( ( ))| 1/| · ( )|a , a smooth function of a. However it appears clearly
that this quantity becomes singular when α τ τ= =a p a( ( )) · ( ) 0: this corresponds to points
of Γ such that ΓTx is contained in the kernel of α.

Note that we may replace α by α =∼ ∼x p x( ) · , for ∈∼p n close to p: by choosing U
suitably we can show that the previous computation remains valid for α∼ a( , ) close to

Figure 7. Wavefront set of ΔF , the wavefront set at the origin is a ball.
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α α x( , ( ))0 . Geometrically μ α δ〈 〉∼, * a corresponds to the integral of μ on the hyperplane α∼H a,

(more precisely a neighborhood in α∼H a, of x0), i.e. the value of the local Radon transform at
this hyperplane.

The Radon transform provides a determination of the wavefront set (up to sign) without
Fourier transformation. Thus, it can give a way to guess the wavefront set of a distribution, as
shall be illustrated in the next section.

5.2. The Radon transform of the characteristic function of the half-plane

We go back to the distribution u introduced in section 4.1, i.e. the characteristic function of the
upper half-plane Ω in 2. Any half-line λ λ ∈ +∞x k{( , )| (0, )} in the wavefront set of u is
characterized by a point x and a unit direction k. Consider a straight line perpendicular to k and
move it along k. Then, something should happen to the restriction of u to the line when the line
crosses the point x. To be more precise, consider a straight line Lk a, defined by the equation

=k x a· (the line perpendicular to k that goes through the point a k( / , 0)1 if ≠k 01 ). By
changing the value of a we move the line along k. The integral of fu over the line Lk a, is

∫= ∩Ω fu k a f x ℓ( )( , ) ( )d
Lk a,

, the value of the Radon transform of fu at (k, a). Let us check in

this case the result which will be proved in section 5.3, i.e. that the wavefront set of u can be
obtained by looking at the points where the Radon transform ∫= ∩Ω fu k a f x ℓ( )( , ) ( )d

Lk a,
is

not a smooth function of a. This means here that if a line Lk a, is not parallel to the step, then a
small variation of a is smooth, while it will jump at the step if Lk a, is the x1 axis (see figure 5).
To prove this, let k be a unit vector and v a unit vector perpendicular to k. Then the points of the
straight line Lk a, are = +x ak tv and

∫ θ= + +
−∞

∞ ( )fu k a f ak tv ae k te v t( )( , ) ( ) · · d ,2 2

where e2 is the unit vector along the x2 axis. If we choose an angle π ϕ π− < ⩽/2 /2 such that
ϕ ϕ= +k e esin cos1 2 and ϕ ϕ= −v e ecos sin1 2 (where e1 is the unit vector along the x1

axis) we obtain ∫ θ ϕ ϕ= + −
−∞

∞ fu k a f ak tv a t t( )( , ) ( ) ( cos sin )d . We must consider
three cases.

∫
∫

∫

ϕ

θ ϕ

ϕ

= + >

= + = ≠

= + <

ϕ

ϕ

∞

−∞

∞

−∞







fu k a f ak tv t

fu k a a f ae te t a

fu k a f ak tv t

( )( , ) ( )d if 0,

( )( , ) ( ) ( )d if 0 and 0,

( )( , ) ( )d if 0.

a

a

cotg

2 1

cotg

We indeed see that  fu e a( )( , )2 jumps from 0 for = −a 0 to ∫−∞
∞

f te t( )d1 for = +a 0 .

5.3. The wavefront set up to sign and the Radon transform

Let us start with the following definition.

Definition 21. For any distribution u the wavefront set up to a sign of u is the set

= ∈ − ∈± u x p x p u x p uWF ( ): {( , ) ( , ) WF( )or( , ) WF( )}.

This notion is slightly coarser than the wavefront set. However it gives interesting information
about its geometry. Note that ⧹ ±T M u* WF ( ) is the set of absolutely regular directed points.
These are the points (x, p) such that there exists ∈ f ( )n satisfying =f x( ) 1 and a closed
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conic neighborhood ⊂V n of p such that fu is fast decreasing on ∪ −V V( ). The set
± uWF ( ) or equivalently its complementary set can be characterized by using the Radon

transform.
The Radon transform is defined by averaging functions over affine subspaces. Here we

use affine hyperplanes of n. First consider the case of a continuous function with compact
support ∈ u ( )c

n0 . For any ν ∈ ×−s S( , ) n 1 , let νH s, be the hyperplane of equation
ν =x s· and set

∫ν σ=
ν

 u s u x x( )( , ): ( )d ( ),
H s,

where σ is the Lebesgue measure on νH s, . This defines a function  u( ) on ×−Sn 1 , the
Radon transform of u. This function is linked to the Fourier transform of u by

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

 
∫ ∫= =

=

 

 

u p x u x s u p p s

u
p

p
p

( ) d e ( ) d e ( )( , )

( ) , · ( ),

p x s pi · i
n

hence conversely


∫ν

π
ν= −  u s k u k( )( , )

1

2
d e ( ).ksi

Now consider a distribution ∈ ′u ( )n , let (x, p) be an absolutely regular directed point of u.
Let ∈ f ( )n such that =f x( ) 1 and a closed conic neighborhood ⊂V n of p such thatfu
is fast decreasing on V. For any ∩ν ∈ −V Sn 1, ν→k fu k( ) is a smooth fast decreasing
function of ∈k . We can thus define its inverse Fourier transform and set


∫ν

π
ν= −  fu s k fu k( )( , )

1

2
d e ( ).ksi

Note, for any fixed ν, ν→ s fu s( )( , ) has a compact support because f has a compact
support. Since ∀ ∈N ,∃ >C 0N such that ∀ ∈q V , ⩽ +fu q C q| ( ) | (1 | |)N

N , it implies that,

∀ ⩽ −m N 2, ∩ν∀ ∈ −V Sn 1, ν ⩽ ′ fu s C C| ( )( , ) |
s N

d

(d )

m

m , for

∫′ =

π +
C k

k

1

2

d

(1 | |)2
. Hence

 fu( ) is uniformly smooth in s on ∩ ×−V S( )n 1 .
Conversely let u be a distribution and assume that, for some ν ∈ × −x S( , ) n n 1, there

exists ∈ f ( )n and a closed neighborhood ∩ −V Sn 1 of ν in −Sn 1 such that we can make
sense of the Radon transform  fu( ) of fu on ∩ ×−V S( )n 1 (e.g. by proving that there exists
a sequence εfu( ) of smooth functions with compact support which converges to fu in ′ ( )n

and that the sequence ε fu(( ) ) converges also in ′ ×− S( )n 1 to a distribution which we call
 fu( )). Conversely let u be a distribution and observe that, for any ∈ f ( )n and any closed
neighborhood ∩ −V Sn 1 of ν in −Sn 1, we can make sense of the Radon transform  fu( ) of fu
on ∩ ×−V S( )n 1 , e.g. by noticing that fu is a compactly supported distribution, thus fu is
real analytic with polynomial growth by Paley–Wiener–Schwartz, therefore the restriction

νfu k( ) is analytic with polynomial growth in ∈k uniformly in ∩ν ∈ −V n 1, hence a
tempered distribution in ′ ( ). Its inverse Fourier transform ν fu s( )( , ) is thus a tempered
distribution in s.) Assume moreover, ∀ ∈N , Γ∃ > 0N such that η∀ ∈ V ,

ν Γ⩽ fu s| ( )( , ) |
s N

d

(d )

m

m . Then, since ∩η∀ ∈ −V Sn 1, η⟼s fu s( )( , ) is compactly sup-

ported we can define its Fourier transform in s and set

∫= fu p s fu p p s( ) d e ( )( /| |, )p si | | ,

J. Phys. A: Math. Theor 47 (2014) 443001 C Brouder et al

19



∀ ∈p V . It follows then that Γ⩽ − fu p fu p p p| ( ) | |supp ( )( /| |, · ) || |N
N and hence fu is fast

decreasing in V. As a conclusion:

Theorem 22. Let ∈ ′u U( ) be a distribution and ∈ ×x k U( , ) ( {0})n . Then (x, k) does
not belong to ±WF u( ) iff there exists ∈ f U( ) such that  fu( ) is smooth on a neigborhood
of k k k x k( | |, · | |) in ∩× −U V S( )n 1 .

6. Oscillatory integrals

In proposition 20, the singular support of the characteristic distribution is the submanifold S.
Hörmander gives another example of a distribution where the singular support is a sub-
manifold [32, p 261]. This example is important because it exhibits a distribution defined by
an oscillatory integral (as the Wightman propagator).

Example 23. Let M be a smooth submanifold of n defined near a point ∈x M0 by
ϕ ϕ= = =x x( ) ... ( ) 0,k1 where ϕ ϕd ,..., d k1 are linearly independent at x0. If the function

∈ a ( )n has support near x0, we define the distribution π〈 〉 =u f, (2 )k

∫ δ ϕ ϕxa x f xd ( ) ( ,..., ) ( )k1 , where δ is the delta function in k. This can be rewritten

 
∫ ∫ ξ= ϕ ξu f xf x a x, d ( ) d ( )e ,xi ( , )

n k

where ϕ ξx( , ) = ϕ ξ∑ = x( )i
k

i i1 and ξ ∈i . Then WF u( ) = ϕ ξ−x x{( , d ( , ))x ;
ϕ =x( ) ...1 = ϕ = ∈x x a( ) 0, supp }k , where

ϕ ξ ϕ ξ ϕ ξ= ∂
∂

+ + ∂
∂

x
x

x
x

x

x
xd ( , )

( , )
d ...

( , )
d .x

n
n

1
1

We can use this result to recover the wavefront set of example 20 when n = 2, Ω is the unit
disk and S is the unit circle. We have a single function ϕ = + −x x x x( , ) 11 1 2 1

2
2
2 , so that

ϕ ξ ξ= + −x x x( , ) ( 1)1
2

2
2 , the critical set is given by ϕ ξ ϕ= =ξ x x xd ( , ) ( , ) 01 1 2 and

ϕ ξ ξ= +x x x x xd ( , ) (2 d 2 d )x 1 1 2 2 . If we switch to polar coordinates, we obtain
ϕ ξ ρξ ρ=xd ( , ) 2 dx , which is a direction perpendicular to the unit circle at x. Note that ξ

can have both signs, thus both ρd and ρ−d belong to the wavefront set. This example
confirms an important characteristics of the wavefront set. The direction k are not vectors but
covectors. Indeed, ϕ ξxd ( , )x can be expanded over the (covector) basis x xd ,..., d n1 of T Mx

*

and not over the vector basis ∂ ∂,...,x xn1 of TxM. To determine the nature of the directions k in
the wavefront set, we can also look at the way the wavefront set transforms under a smooth
mapping  →n n. The detailed calculation [37, p 195] confirms that k are covectors because
they transform covariantly. This point is important for distributions on manifolds.

The previous result can be extended to more generaly oscillatory integrals (in the fol-
lowing we always assume that the phase function ϕ is homogeneous of degree 1, i.e.
ϕ λξ λϕ ξ=x x( , ) ( , ), λ∀ > 0, see [32, p 260] for details).

Theorem 24. If a distribution u is defined by an oscillatory integral

 
∫ ∫ ξ ξ ξ= ϕ ξu f xf x a x( ) d ( ) d ( , )e d ,xi ( , )

n s

where ϕ is a phase function and a an asymptotic symbol, then
ϕ ξ ϕ ξ⊂ − =ξWF u x x x( ) {( ; d ( , ))| d ( , ) 0}x .
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We refer to the literature for a precise definition of phase functions and asymptotic
symbols [32, p 236] [35, p 99]. We can give a hand-waving argument to understand the origin
of this wavefront set. The Fourier transform of u is given by ∫ ∫ ξ ξ ϕ ξ +x a xd d ( , )e x k xi ( , ) i · . By
using the stationary-phase method, we see that the directions of slow decrease are the
directions where the phase ϕ ξ +x k x( , ) · is critical with respect to ξx( , ). They are deter-
mined by the equations ϕ ξ+ =k xd ( , ) 0x and ϕ ξ =ξ xd ( , ) 0.

6.1. The Wightman propagator

With the help of theorem 24 we can calculate the wavefront set of a fundamental distribution
of quantum field theory: the Wightman propagator in Minkowski spacetime [35, p 66]

 

 

∫
∫

φ φ

Δ

=

= − −

×

×
+

W f g x y x y f x g y

x y x y f x g y

( , ) d d 0 ( ) ( ) 0 ( ) ( )

i d d ( ) ( ) ( ),

2
3 3

3 3

where [35, p 70]


∫Δ

π
=+

−x
k

k
( )

i

2(2 )

d
e ,k x

3
0

i ·
3

with = k k kk ( , , )1 2 3 , = +k mk| |0
2 2 , = =μk k k k( ) ( , )0 and = ∑μ μ

μ
=k x k x· 0

3 .
The analytic form of Δ+ x( ) is given by Scharf [54, p 90]. We can write Δ+ f( ) in the

oscillatory integral form of theorem 24 by setting, for ξ ∈ 3, [35, p 100]

ϕ ξ ξ ξ ξ
ω

= − − =
ω ξ

ξ

− −ξ( )
x x x a x( , ) , ( , )

e
,j

j

x
0

i 0

where ξ ξ ξ ξ= + +| | ( ) ( ) ( )1
2

2
2

3
2 , ω ξ= +ξ m| |2 2 and ξ ξ= ∑ =x xj

j j
j

j1
3 . To prove this,

just write

− = − + = − − − −( ) ( ) ( )ik x i x k x k i x x k ix kk k· | | | | ,j
j

j
j

0
0

0 0
0

and replace k by ξ. The modification of the phase is necessary to make ξa x( , ) an asymptotic
symbol. We can now calculate the wavefront set of the Wightman propagator [35, p 106]

Proposition 25. The wavefront set of Δ+ is ∪ ∪Δ =+ + −S S SWF( ) 0 , where



λ λ λ

= ∈

= ± ∓ ∈ >±

{ }
{ }

( )
( )

{ }
{ }

S

S

k k k

x x x x x

(0; , ) / 0 ,

( , ; , ) / 0 , 0 .

0
3

3

More compactly [39, p 118], Δ λ λ λ= = = = − ∈+ x k k x k x kkWF( ) {( ; ); | |, , , }i
i0

0
0

(see figure 6).

The advantage of the physical convention for the Fourier transform is that positive
energies correspond to >k 00 . The wavefront set of Δ+ for curved (globally hyperbolic)
spacetime is given by Strohmaier [39].

Proof. According to theorem 24, we first calculate the set of critical points ϕ =ξ{d 0} for

ϕ ξ ξ ξ= − −x x x( , ) | | i
i

0 . We find ξ− ∑ − ∑ =ξ ξ
ξ= =( )x x d 0i
d

i
i

i
0

1
3

| | 1
3i i , which implies
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= − ξ
ξ

x xi 0
| |

i and thus λ ξ=x | |0 and λξ= −xi
i for λ =

ξ
.x

| |

0

Conversely, if we plug

λ ξ λξ= = −x x| |, i
i

0 in ϕξd for any λ ∈ , we find ϕ λξ λξ ξ= ∑ − =ξ =d ( )d 0i i i i1
3 . Then

theorem 24 claims that Δ+WF ( ) is a subset of ϕ ϕ ξ =ξx x{( ; d ); d ( ; ) 0}x :





Δ ξ ξ λ ξ λξ λ

λ λ λ

⊂ = = − ∈

⊂ = = = − ∈

+ { }
{ }

( )
( )

( ) x x x

x k k k x k x k

x

x k

WF , ; , | |, ,

, ; , | |, , , .

i
i

i

i
i

i

0 0

0
0 0

0
0

We leave to the reader the proof of the decomposi-
tion  ∪ ∪λ λ λ= = = − ∈ = + −x k k k x k x k S S Sx k{( , ; , ) | | |, , , }i

i
i

0
0 0

0
0 0 .

Note that theorem 24 states only that ∪ ∪Δ ⊂+ + −S S SWF( ) 0 . We refer to the literature
to show that ⊂ can be replaced by = [35, p 107]. The singular support of Δ+ is the light cone
= ±x x| |0 , the cotangent vectors k are light-like, have positive energy k0 and are

perpendicular to x. □

6.2. The Feynman propagator

Proposition 26. The Feynman propagator Δ θ Δ θ Δ= + − −+ +x x x x x( ) ( ) ( ) ( ) ( )F
0 0

exists and its wavefront set is ∪Δ = D CWF( ) *F F , where = ≠D k k* {(0; )| 0} is the
wavefront set of the Dirac delta function and = − =C x k x x{( ; )| ( ) | | 0,F

0 2 2

λ λ λ≠ = = − >x k x k x0, , , 0}i
i0

0
0 (see figure 7).

Proof. θ Δ+x x( ) ( )0 is a product of distributions, we must first show that it exists. As a
distribution in 4, θ x( )0 is defined by ∫θ = ⩾x f f x x( )( ) ( )d

x
0

00 . Therefore, it is the tensor
product of the Heaviside distribution in the variable x0 by the unit distribution in the variables
x x,...,1 3: θ θ= ⊗x( ) 10 . The distribution 1 is smooth and its wavefront set is empty. Thus, by
property (i) of section 7, we have θ λ λ⊂ ± ∈ >x x xWF( ( )) {(0, ; , 0)| , 0}0 3 . In fact, the
inclusion can be replaced by an equal sign [35, p 108]. By theorem 13, we see that the product
θ Δ+x x( ) ( )0 exists. Indeed, ∩θ Δ =+xsing supp ( ) sing supp {0}0 and, at x = 0, the allowed
cotangent vectors are λ= ±k ( , 0) with λ > 0 for θ x( )0 and =q k k(| |, ) with ≠k 0 for Δ+.
Thus, + ≠q k 0 and the product exists. A similar calculation for θ Δ− −x x( ) ( )F

0 shows that
ΔF is a well defined distribution on 4. However, the estimate of the wavefront set given by the
product theorem is not precise enough because of the contribution of θWF( ). To calculate the
wavefront set of ΔF , we use the causality method of Bogoliubov. Let = ∈x x x( , ) /{0}0 4 . If
>x 00 then there is a neighborhood U of x such that ∀ ∈ >y U y, 00 . Therefore,

Δ |F U = θ Δ+x x( ) ( )|U0 = Δ+ x( )|U thus ΔWF( | )F U = Δ =+ +SWF( | ) |U U and by definition
of +S :

Δ λ λ λ= = = = − > ∈{ }( ) x k x x k x k x UxWF ( ; ); , , , 0, .F U
i

i
0 0

0

If <x 00 then there is a neighborhood U of x such that Δ =|F U

θ Δ Δ− − = −+ +x x x( ) ( )| ( )|U U
0 . Thus

Δ

λ λ λ

= − − ∈ ∈

= = − = = − > ∈
+

{ }
( ) { }x k x k S x U

x k x x k x k x Ux

WF ( ; ); ( ; ) ,

( ; ); , , , 0, .

F U

i
i

0 0
0

If =x 00 , then x is space-like because ≠x 0. Thus, there exists some orthochronous Lorentz
transformation ∈ ↑R SO (1, 3) such that >Rx( ) 00 . From the definition of ΔF we deduce that
Δ θ=Rx Rx( ) (( ) )F

0 Δ θ Δ+ − −+ +Rx Rx Rx( ) ( ( ) ) ( )0 . Since ΔF and Δ+ are invariant by
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orthochronous Lorentz transformations, this implies Δ θ=x Rx( ) (( ) )F
0

Δ θ Δ+ − −+ +x Rx x( ) ( ( ) ) ( )0 . Hence we recover the case >x 00 and ΔF is smooth on a
neighborhood of x because x is not light-like. This gives us Δ =≠ CWF( )|F x F0 . To complete
the proof of the proposition, recall that Δ δ□ + = −m( ) iF

2 [44, p 124]. Thus property (h) of

section 7 implies δ Δ= ⊂DWF( ) * WF( )F . Since no wavefront set at x = 0 can be larger than

D*, we obtain Δ == DWF( )| *F x 0 and the proposition is proved. □

The calculation of ΔWF( )F was first made by Duistermaat and Hörmander [55] after
discussion with Wightman. The analytic expression for the Feynman propagator in position
space is given by Zhang et al [56]. The wavefront set of the advanced and retarded solutions
to the wave equation is calculated in [55] and [39, p 115].

Note that the wavefront set condition does not allow to multiply Feynman propagators.
This implies that a renormalization procedure is required. By using the causal condition put
forward by Stueckelberg [57] and Bogoliubov [58]3, Brunetti and Fredenhagen [8] showed
that Feynman diagrams can be inductively built as well-defined distributions on ×M k, where
M is the spacetime manifold and k is the number of vertices of the Feynman diagram, except
along the thin diagonal (i.e. where = ⋯ =x x( )k1 ). The distribution is then defined on the full
×M k by an extension whose ambiguity is organized by the renormalization group [59, 60].

7. Properties of the wavefront set

We now give without proof a number of properties of the wavefront set. Let u and
∈ ′v ( )n . Then

(a) uWF( ) is a closed subset of  × ( {0})n n [35, p 92].
(b) For each ∈x n, = ∈u k x k uWF ( ) { ; ( , ) WF( )}x is a cone, i.e. ∈k uWF ( )x and λ > 0

implies λ ∈k uWF ( )x [35, p 92].
(c) ∪+ ⊂u v u vWF( ) WF( ) WF( ) [35, p 92].
(d) = ≠ ∅u x WF using supp { ; ( ) }x [35, p 93].
(e) If u is a tempered distribution and û has support in a closed cone C, then for each x,

⊂u CWF ( )x [35, p 93].
(f) Let ⊂U m and ⊂V n be two open sets. For any smooth ( ∞C ) map →f U V: we

define

= ∈ × ◦ ={ }N f x k V k f: ( ( ), ) ; d 0 ,f
n

x

where ◦ = ◦ =k f k y f k fd : ( d ) d : dx i
i

x i x
i. Consider the pull-back operator ⟼ = ◦u f u u f* :

defined on smooth maps u on V. Then it is possible to extend this operator to the space of
distributions ∈ ′u V( ) which satisfy ∩ = ∅N WF u( )f in an unique way (if we
furthermore require some continuity assumptions, see [32, theorem 8.2.4]). Moreover the
wavefront set of f u* is contained in the set

= ◦ ∈{ }( )f WF u x k f f x k WF u* ( ): , d ( ( ), ) ( ) .x

[32, theorem 8.2.4] (beware that, in the definition of the inverse image of a distribution by a
diffeomorphism in [35, p 93], the expression for the wavefront set of f u* is not correct.)

3 German translation in [86], English translation in [87, pp 23–118]
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(g) If ∈ ′u U( ) and ∈ ∞f C U( ), then  ∩⊂ ×fu f uWF( ) {supp ( {0})} WF( )n

[41, p 344].
(h) If ∈ ′u U( ) and P is a partial differential operator with smooth coefficients, then

⊂Pu uWF( ) WF( ) [32, p 256].
(i) If ∈ ′u U( ) and ∈ ′v V( ), then ⊗u vWF( ) ⊂ ×u v(WF( ) WF( )) ∪

× ×u v((supp {0}) WF( )) ∪ × ×u v(WF( ) (supp {0})) [32, p 267].
(j) If ∈ ′ ×u U U( ) is such that (formally) = −u x y v x y( , ) ( ) for some ∈ ′v V( ), then

= − − ∈u x y k k x y k vWF( ) {( , ; , ); ( ; ) WF( )} [39, p 118] and [32, p 270].

As an application of the pull-back theorem, we calculate the wavefront set of ΔF for a
massless particle, whose analytic expression is [44, p 133]

Δ
π

=
−

x
x i

( )
1

4

1

0
,F 2 2

where = −x x x( ) | |2 0 2 2. We first prove that this distribution is well defined on  {0}4 . So ΔF

is just the pull–back of π −− −t(2 ) ( i0)2 1 by the ∞C map.

 ∈ → − ∈( )f x x x: /{0} . (5)4 0 2 2

Indeed, this map is smooth and = − =N f x k k x x x x{( ( ), ); 2 ( d d ) 0}f
i i0 0 . We know that

− = >+t k kWF(1 ( i0 )) {(0; ); 0}. Thus, the condition ∩ = ∅N WF u( )f implies ≠x 0

and ΔF is therefore well defined in ′ ( {0})4 . Furthermore, by property (f) Δ ≠WF ( | )F x 0 is
included in the pull-back of − +tWF(1 ( i0 )) by f. We obtain:

Δ λ λ⊂ ◦ ∈ −≠
−{ }( ) x f f x tWF ( ; d ); ( ( ); ) WF( i0) .F x 0

1

Therefore, Δ λ λ λ= = = ⊂ − > ≠≠ x k f x k f x x xxWF( | ) {( ; )| ( ) 0, d ( ) ( , ), 0, 0}F x 0
0 . To

conclude, observe that ΔF is a homogeneous distribution, therefore by a theorem of
Hörmander ([32, Theorem 3.2.4]), it admits an extension in ′ ( )4 . The wavefront set of ΔF

at x = 0 is calculated as in the proof of proposition 26 by using Δ δ□ = − iF and we recover
proposition 26 for m = 0.

8. The many faces of the wavefront set

In this section we give several definitions of the wavefront set. Each of them can be useful in
specific contexts.

8.1. The frequency set

It is possible to define the wavefront set in terms of the frequency set of distributions u,
denoted by Σ u( ) [32, p 254], which is the projection of the wavefront set of u on the
momentum (i.e. cotangent) space.

Definition 27. Let ∈ ′u ( )n , we define Σ u( ) to be the closed cone in  {0}n having no
conic neighborhood V such that, ⩽ + −u k C k| ˆ ( )| (1 | |)N

N for ∈k V and for all =N 1, 2 ,....

Friedlander and Joshi define the frequency set Σ u( ) by
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Definition 28. Let ∈ ′u ( )n , then the direction k0 is not in Σ ⊂u( ) {0}n iff there is a
conic neighborhood V of k0 such that, for all N, there is a ′C N such that ⩽ ′ 〈 〉−u k C k| ˆ ( )| N

N ,
for all k in V, where 〈 〉 = +k k(1 | | )2 1 2.

Duistermaat (implicitly) proposed a third definition

Definition 29. Let ∈ ′u ( )n , then the direction k0 is not in Σ ⊂u( ) {0}n iff there is a
neighborhood W of k0 such that, for all N, there is a constant DN such that τ τ⩽ −u k D| ˆ ( )| N

N

for τ → ∞ uniformly in ∈k W .

The proof of the equivalence of these definitions is left to the reader.

8.2. Several definitions of the wavefront set

The frequency set is used in several definitions of the wavefront set. According to Hörmander
[32, p 254]

Definition 30. Let U be an open set of n, ∈ ′u U( ) and Σ Σ ϕ= ⋂ϕu u( ) ( )x , where ϕ
runs over all elements of  U( ) such that ϕ ≠x( ) 0. The wavefront set of u is the closed
subset of ×U ( {0})n defined by

 Σ= ∈ × ⧹ ∈{ }( )u x k U k uWF( ) ( ; ) {0} ; ( ) .n
x

For Duistermaat [33, p 16] the wavefront set is:

Definition 31. If ∈ ′u U( ), then WF(u) is defined as the complement in ×U ( /{0})n of
the collection of all ∈x k( , ) ( {0})n

0 0 such that for some neighborhood U of x0, V of k0 we
have for each ϕ ∈  U( ) and each N: ϕ τ τ= −u k O( ) ( )N for τ → ∞, uniformly in ∈k V .

An equivalent definition was used by Chazarain and Piriou [34, p 501], who use the name
singular spectrum but the notation uWF .

For Friedlander and Joshi [36, p 145] (after correction of a misprint) and Strichartz
[37, p 191]

Definition 32. Let Y be an open set of n and ∈ ′u U( ), then we shall say that
∈ ×x k U( , ) ( {0})n

0 0 is not in uWF( ) iff there exists ϕ ∈  U( ) such that φ ≠x( ) 00

and Σ ϕ∉k u( )0 .

For Eskin [40, p 58]

Definition 33. Let U be an open set of n and ∈ ′u U( ), then we shall say that
∈ ×x k U( , ) ( {0})n

0 0 is not in uWF( ) iff there exists ϕ ∈  U( ) such that φ ≠x( ) 00 and

ϕ ⩽ + −u k C k| ( ) | (1 | ])N
N for all N and all ≠k 0 satisfying δ− <| |k

k

k

k| | | |
0

0
for some δ > 0.

The proof of the equivalence of these definitions is left to the reader.

8.3. More definitions of the wavefront set

In this section we gather alternative definitions of the wavefront set, which show that the
wavefront set is the single solution of many different problems.
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8.3.1. Coordinate invariant definition. A coordinate invariant definition of the wavefront set
was given by Duistermaat [33, p 16] following a first attempt by Gabor [61]. We consider a
smooth n-dimensional manifold M, its cotangent bundle T M* and the zero section Z of T M*

(i.e. = ∈ =Z x k T M k{( ; ) * ; 0}). Then, the wavefront set of a distribution ∈ ′u M( ) is a

closed conic subset of = ⧹T M T M Z˙* * .

Definition 34. If M is a smooth n-dimensional manifold, ∈ ′u M( ) and ∈x k T M( ; ) ˙*0 0 ,
then ∉x k u( ; ) WF( )0 0 iff, for any smooth function  ψ × →M: p , with ψ =x a kd ( , )x 0 0 0,
there are open neighborhoods U of x0 and A of a0 such that, for any ϕ ∈  U( ) we have for
all ⩾N 1: ϕ τ〈 〉 =τψ −u O, e ( )a Ni (·, ) for τ → ∞, uniformly in ∈a A.

This definition is surprisingly general because the phase function ψ is only required to be
smooth and to satisfy ψ =x a kd ( , )x 0 0 0. The usual definition of the wavefront set is
recovered by choosing =A n, a = k and ψ =x a k x( , ) · . In the coordinate invariant
definition, the open set A is used to parametrize the covectors k0 of the wavefront set but its
dimension p is not necessarily equal to n. Still, this general definition is equivalent to the
standard one (see [33, p 17], [34, p 542] and [62]).

8.3.2. Pseudo-differential operators. The original definition of the wavefront set was given
by Hörmander in terms of pseudo-differential operators [63], [64, p 89]

= ⋂ ∈ ∞{ }( )u P Pu CWF( ) char ; ,n

where P runs over the pseudo-differential operators of all orders [64, p 85]. If p x k( , )m is the
principal symbol of P, then  = ∈ × =P x k p x kchar {( , ) ( /{0}); ( , ) 0}n n

m is the set of
characteristic points of P [64, p 87]. A proof of the equivalence with the other definitions can
be found in [65, p 307] (see also [38, p 78]).

This definition can be extended to a refinement of the wavefront set for vector-valued
distributions, called the polarization set, introduced by Dencker [66]. If →E M is a complex
vector bundle of rank r over the n-dimensional manifold M, then

= ⋂ ∈ ∞{ }u N Pu C MWF ( ) ; ( ) ,pol P

where, locally, = ∈ × ∈N x k w T M w p x k{( , ; ) ˙* ; ker ( , )}P
r

m . Dencker used the polar-
ization set to describe electromagnetic waves in uniaxial crystals [67].

8.3.3. Wavelets and Co. In the usual definitions of the wavefront set, the distribution u is
multiplied by a large family of test functions f and the product is Fourier transformed. It is in
fact possible to use a single function f and to scale it. More precisely, let f be an even
Schwartz function that does not vanish at zero and, for any α with α< <0 1, form the family
of Schwartz functions = −α α( )f y t f t y x( ) ( )t

n 2 for >t 0. Then, (x, k) is not in the wavefront

set of the tempered distribution u iff there exists an open subset U of n such that uf tq( )t is
fast decreasing in the variable >t 0 uniformly in ∈q U [68, p 159]. This definition was first
proposed by Córdoba and Fefferman for α = 1 2 and f a Gaussian function [69]. It is then
similar to the FBI-transform (see [70] for a nice presentation and [71] for a geometric
version).

Although wavelets cannot be used to measure the wavefront set because they are
isotropic, some variants of them, known as curvelets [51], shearlets [72] or conical wavelets
[73] provide an interesting resolution of the wavefront set.

J. Phys. A: Math. Theor 47 (2014) 443001 C Brouder et al

26



9. Conclusion

We have presented a review of the various guises of the wavefront set. These different points
of view should help grasp the meaning of this concept. We also proposed two new
descriptions of the wavefront set of a characteristic distribution. Physically, we saw that the
wavefront set is related to the fact that, in some directions, destructive interferences in Fourier
space become weaker than for smooth functions. The wavefront set also describes the
directions along which the singularities of the distribution propagate. We hope that we have
convinced the reader that the wavefront set is a subtle but natural object. Its use is not limited
to quantum field theory or many-body physics because, as stressed by Martinez, it is also
related to the semi-classical limit [70, p 134].

In this introduction, we limited ourselves to the wavefront sets for the scalar field. For a
Dirac or photon field, two definitions are possible: (i) the (standard) wavefront set of the
propagator, which is the union of the wavefront sets of all its components in a given basis; (ii)
the polarization set, described in section 8.3.2. The polarization set of the Dirac propagator

was investigated in detail [10, 11]. The projection of the polarisation set on T M˙* gives the
(standard) wavefront set [66]. It is calculated for the Dirac field by Sanders [14]. Since the
microlocal spectrum condition can be entirely defined in terms of the wavefront set (i), it turns
out that the polarization set is not required in renormalized quantum field theory [74]. The
polarization set for electromagnetic waves was discussed by Franco and Fagundes [73]. The
wavefront set for gauge field propagators in the Feynman gauge is the same as that of the
scalar field [17].

For pedagogical reasons, we focussed on the role of the wavefront set in the multi-
plication of distributions. However, the wavefront set also plays a crucial role to describe the
propagation of singularites in quantum field theory [7] and the dispersion of waves [75], or to
determine when a distribution can be pulled back by a smooth map [32]. Moreover, many
proofs concerning distributions that are usually obtained by microlocal estimates can be
derived more simply by considering the wavefront set [62].

It is ironic that, although the standard wavefront set is sufficient to build a quantum
theory of gauge fields and gravitation, it is not enough to describe the optics of crystals (in
particular the conical refraction). Higher order wavefront sets were proposed [76] to solve that
problem.

Finally, note that we have restricted our discussion to the classical wavefront set. Many
variations have been devised: analytic wavefront set (see [77] and [78] for a recent com-
parison of various definitions), homogeneous wavefront set [79], Gabor wavefront set [80],
global wavefront set [81–83], discrete wavefont set [84], etc. Specific techniques can be
applied to the (Sobolev) wavefront set of periodic distributions [85].
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