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Abstract. The pull-back, push-forward and multiplication of smooth functions can
be extended to distributions if their wave front sets satisfy some conditions. Thus, it is
natural to investigate the topological properties of these operations between spaces D′Γ of
distributions having a wave front set included in a given closed cone Γ of the cotangent
space. As discovered by S. Alesker, the pull-back is not continuous for the usual topology
on D′Γ , and the tensor product is not separately continuous. In this paper, a new topology
is defined for which the pull-back and push-forward are continuous, and the tensor and
convolution products and multiplication of distributions are hypocontinuous.

1. Introduction. The motivation of our work comes from the renor-
malization of QFT in curved space times; indeed, the question addressed in
this paper cannot be avoided in this context and also the technical results
of this paper form the core of the proof that perturbative quantum field
theories are renormalizable on curved spacetimes [7, 6].

From the work of L. Schwartz, we know that the tensor product of dis-
tributions is continuous [16, p. 110] and the product of a distribution by a
smooth function is hypocontinuous [16, p. 119] (see Definition 3.1), although
it is not jointly continuous [15].

However, in many applications (for instance when considering multipli-
cation of distributions), we cannot work with all distributions and we must
consider the subsets D′Γ of distributions whose wave front set [3] is included

in some closed subsets Γ of Ṫ ∗Rn = {(x; ξ) ∈ T ∗Rn ; ξ 6= 0}, where Γ is a
cone in the sense that (x; ξ) ∈ Γ implies (x;λξ) ∈ Γ for every λ ∈ R>0.
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If Γ is a cone, then Γ ′ = {(x;−ξ) ; (x; ξ) ∈ Γ}. Indeed, the spaces D′Γ are
widely used in microlocal analysis because wave front set conditions rule the
so-called fundamental operations on distributions: multiplication, pull-back
and push-forward. The tensor product is also a fundamental operation, but
it is feasible without any condition.

Hörmander himself, who introduced the concept of a wave front set [11],
equipped D′Γ with a pseudo-topology [11, p. 125], which is not a topol-
ogy but just a rule describing the convergence of sequences. In particular,
when Hörmander writes that the fundamental operations are continuous [12,
p. 263], he means “sequentially continuous”. And indeed, Hörmander and his
followers proved that, under conditions on the wave front set to be described
later, the following operators are sequentially continuous: the pull-back of a
distribution by a smooth map [12, Thm. 8.2.4]; the push-forward of a distri-
bution by a proper map [4, p. 528], the tensor product of two distributions [4,
p. 511] and the multiplication of two distributions [4, p. 526].

However, sequential continuity was soon found to be too weak for some
applications and Duistermaat [8, p. 18] equipped D′Γ with a locally convex
topology defined in terms of the following seminorms [10, p. 80]:

(i) All the seminorms on D′(Rn) for the weak topology: ‖u‖φ = |〈u, φ〉|
for all φ ∈ D(Rn).

(ii) The seminorms ‖u‖N,V,χ = supk∈V (1 + |k|)N |ûχ(k)|, where N ≥ 0,
χ ∈ D(Rn), and V ⊂ Rn is a closed cone with (suppχ×V )∩Γ = ∅.

These seminorms give D′Γ the structure of a locally convex vector space
and the corresponding topology is usually called Hörmander’s topology. It
probably first appeared in the 1970–1971 lecture notes by Duistermaat [8],
although the seminorms ‖ · ‖N,V,χ had already been mentioned by Hörman-
der [11, p. 128]. The (sequential) convergence in the sense of Hörmander is:
a sequence (uj) ∈ D′Γ converges to u in D′Γ if and only if ‖uj − u‖φ → 0 for
every φ ∈ D(Rn) and ‖uj − u‖N,V,χ → 0 for every χ ∈ D(Ω), every N ∈ N
and every closed cone V in Rn such that (suppχ × V ) ∩ Γ = ∅. Therefore,
it is clear that a sequence converges in the sense of Hörmander if and only
if it converges in Hörmander’s topology.

However, for a locally convex space such as D′Γ (which is not metriz-
able), sequential continuity and topological continuity are not equivalent.
Therefore, when Duistermaat states, after defining the above topology, that
the pull-back [8, p. 19], the push-forward [8, p. 20] and the product of dis-
tributions [8, p. 21] are continuous, it is not clear whether he means sequen-
tial or topological continuity. When investigating applications to valuation
theory [1], Alesker discovered a counterexample proving that the tensor
product is not separately continuous and the pull-back is not continuous for
Hörmander’s topology. In other words, this topology is too weak to be useful
for these questions.
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The purpose of the present paper is to describe Alesker’s counterexample
and to define a topology for which the fundamental operations have optimal
continuity properties: the tensor product is hypocontinuous; the pull-back
by a smooth map is continuous; the pull-back by a family of smooth maps de-
pending smoothly on parameters is uniformly continuous; the push-forward
by a smooth map is also continuous; the push-forward by a family of smooth
maps depending smoothly on parameters is uniformly continuous; and mul-
tiplication of distributions and the convolution product are hypocontinuous.
Finally, we discuss how the wave front set of distributions on manifolds can
be defined in an intrinsic way. In appendices, we prove important technical
results concerning the covering of the complement of Γ , the topology of D′∅
and the fact that the additional seminorms used to define the topology of
D′Γ can be taken countably many.

The main applications of these results are to replace technical microlocal
proofs by classical topological statements [6, 7].

2. Alesker’s counterexample. Semyon Alesker discovered the follow-
ing counterexample.

Proposition 2.1. Let f : R2 → R be the projection to the first coor-
dinate. Let Γ = Ṫ ∗R, so that D′Γ (R) = D′(R) and f∗Γ = {(x1, x2; ξ1, 0)}.
Then the map f∗ : D′Γ (R) → D′f∗Γ (R2) is not topologically continuous for
the Hörmander topology.

Note that the general definition of f∗Γ is given in Proposition 5.1.

Proof. Let ϕ ∈ D(R) be such that ϕ|[−1,1] = 1. Take χ = ϕ ⊗ ϕ, V =

{(ξ1, ξ2) ∈ R2 ; |ξ1| ≤ |ξ2|} and N = 0. The intersection of V with {(ξ1, 0) ;
ξ1 6= 0} is empty as |ξ1| ≤ |ξ2| = 0 implies ξ1 = ξ2 = 0. Therefore, ‖ · ‖N,V,χ
is a seminorm of D′f∗Γ and, if f∗ were continuous, it would be possible to
bound ‖f∗u‖N,V,χ by supi |〈u, fi〉| for a finite set of fi ∈ D(R) and every
u ∈ D′(R).

We are going to show that this is not the case. We have

‖f∗u‖0,V,χ = sup
ξ∈V
|ϕ̂u(ξ1)| |ϕ̂(ξ2)| = sup

ξ1

|ϕ̂u(ξ1)|ω(ξ1),

where ω(ξ1) = sup|ξ2|≥|ξ1| |ϕ̂(ξ2)|. It is clear that ω(ξ1) > 0 everywhere since
ϕ̂ is a real analytic function. Thus we should show that the map D′(R)→ R
given by u 7→ supξ∈R |ϕ̂u(ξ)|ω(ξ) is not continuous (for a fixed ω > 0).

If the pull-back were continuous, there would be a finite set χ1, . . . , χt of
functions in D(R) such that

‖f∗u‖0,V,χ ≤ sup
i=1,...,t

|〈u, χi〉|.

We can find ξ such that the functions χ1, . . . , χt and ϕ(x)e−ixξ are linearly
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independent. Then there exists u ∈ D′(R) such that 〈u, χi〉 = 0 for i =
1, . . . , t and ûϕ(ξ) = 〈u, ϕeξ〉 = 1 + 1/ω(ξ), where eξ(x) = e−iξ·x. Then
‖f∗u‖0,V,χ = 1 + ω(ξ), and we reach a contradiction.

Thus, the pull-back is not continuous. Moreover, the same example can
be considered as an exterior tensor product u 7→ u � 1. This shows that
the exterior tensor product is not separately continuous for the Hörmander
topology.

3. The normal topology and hypocontinuity. We now modify
Hörmander’s topology and define what we call the normal topology of D′Γ .
This is a locally convex topology defined by the same seminorms ‖ · ‖N,V,χ
as Hörmander’s topology, but we replace the seminorms ‖ · ‖φ of the weak
topology of D′(Rn) by the seminorms pB(u) = supφ∈B |〈u, φ〉| (where B
runs over the bounded sets of D(Ω)) of the strong topology of D′(Rn). The
functional properties of this topology, like completeness, duality, nuclearity,
PLS-property, bornologicity, were investigated in detail [5]. As in the case
of standard distributions, several operations will not be jointly continuous
but only hypocontinuous. Let us recall

Definition 3.1 ([17, p. 423]). Let E, F and G be topological vector
spaces. A bilinear map f : E × F → G is said to be hypocontinuous if:

(i) for every neighborhood W of zero in G and every bounded set A ⊂ E
there is a neighborhood V of zero in F such that f(A× V ) ⊂W ;

(ii) for every neighborhood W of zero in G and every bounded set B ⊂ F
there is a neighborhood U of zero in E such that f(U ×B) ⊂W .

If E, F and G are locally convex spaces with topologies defined by the
families of seminorms (pi)i∈I , (qj)j∈J and (rk)k∈K , respectively, the definition
of hypocontinuity can be translated into the following two conditions: (i) for
every bounded setA of E and every seminorm rk, there is a constantM and a
finite set of seminorms qj1 , . . . , qjn (both depending only on k andA) such that

∀x ∈ A, rk(f(x, y)) ≤M sup{qj1(y), . . . , qjn(y)};(3.1)

and (ii) for every bounded set B of F and every seminorm rk, there is a
constant M and a finite set of seminorms pi1 , . . . , pin (both depending only
on k and B) such that

∀y ∈ B, rk(f(x, y)) ≤M sup{pi1(x), . . . , pin(x)}.(3.2)

Equivalently [14, p. 155], we can reformulate hypocontinuity using the con-
cept of equicontinuity [13, p. 200], defined as follows:

Definition 3.2. Consider the general context of a locally convex topo-
logical vector space E with seminorms (pα)α∈A. Let E∗ be its topologi-
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cal dual. A set H in E∗ is called equicontinuous if the family of maps
`vE 3 u 7→ 〈u, v〉 ∈ R is uniformly continuous when v runs over H.

Hence f is hypocontinuous if for every bounded set A ⊂ E and every
bounded set B ⊂ F the sets of maps {fx ;x ∈ A} and {fy ; y ∈ B} are
equicontinuous, where fx : E → G and fy : F → G are defined by fx(y) =
fy(x) = f(x, y).

4. Tensor product of distributions. Let Ω1 and Ω2 be open sets in
Rd1 and Rd2 , respectively, and (u, v) ∈ D′Γ1

×D′Γ2
, where D′Γ1

⊂ D′(Ω1) and
D′Γ2
⊂ D′(Ω2). Then the tensor product u⊗ v belongs to D′Γ ⊂ D′(Ω1×Ω2)

where

Γ = (Γ1 × Γ2) ∪
(
(Ω1 × {0})× Γ2

)
∪
(
Γ1 × (Ω2 × {0})

)
= (Γ1 ∪ {0}1)× (Γ2 ∪ {0}2) \ {(0, 0)},

{0}1 means Ω1 × {0}, {0}2 means Ω2 × {0}, and {0, 0} means (Ω1 ×Ω2)×
{0, 0}. Our goal in this section is to show that the tensor product is hypocon-
tinuous for the normal topology. We denote by (z; ζ) the coordinates in
T ∗(Ω1 ×Ω2), where z = (x, y) with x ∈ Ω1 and y ∈ Ω2, and ζ = (ξ, η) with
ξ ∈ Rd1 and η ∈ Rd2 . We also denote d = d1 + d2, so that ζ ∈ Rd.

Lemma 4.1. The seminorms of the strong topology of D′(Rd) and the
family of seminorms

(4.1) ‖t1 ⊗ t2‖N,V,ϕ1⊗ϕ2 = sup
ζ∈V

(1 + |ζ|)N |t̂1ϕ1(ξ)| |t̂2ϕ2(η)|,

where ζ = (ξ, η), (ϕ1, ϕ2) ∈ D(Ω1) × D(Ω2) and V ⊂ Rd are such that
(supp(ϕ1 ⊗ ϕ2) × V ) ∩ Γ = ∅, are a fundamental system of seminorms for
the normal topology of D′Γ .

Proof. We use the following lemma [10, p. 80].

Lemma 4.2. Let Ω be an open set in Rn. If there is a family, indexed
by α ∈ A, of χα ∈ D(Ω) and of closed cones Vα ⊂ Rn \ {0} such that
(suppχα × Vα) ∩ Γ = ∅ and

Γ c =
⋃
α∈A
{(x, ξ) ∈ Ṫ ∗Ω ;χα(x) 6= 0, ξ ∈ V̊α},

then the topology of D′Γ is already defined by the strong topology of D′(Ω)
and the seminorms ‖ · ‖N,Vα,χα.

It is clear that the family indexed by ϕ1⊗ϕ2 and V with (supp(ϕ1⊗ϕ2)
× V ) ∩ Γ = ∅ satisfies the hypothesis of the lemma.

To establish the hypocontinuity of the tensor product, we consider an
arbitrary bounded set B ⊂ D′Γ1

(Ω1); according to (3.1), we must show that,
for every seminorm rk of D′Γ (Ω1 × Ω2), there is a constant M and a finite
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number of seminorms qj such that rk(u ⊗ v) ≤ M supj qj(v) for all u ∈ B
and v ∈ D′Γ2

(Ω2). By Schwartz’ theorem [16, p. 110] we already know that
this is true for every seminorm rk of the strong topology of D′Γ (Ω1×Ω2). It
remains to show it for every ‖·‖N,V,ϕ1⊗ϕ2 . This will be done by first defining
a suitable partition of unity on Ω1×Ω2 and its corresponding cones. Then,
this partition of unity will be used to bound the seminorms by standard
microlocal techniques.

Lemma 4.3. Let Γ1, Γ2 be closed cones in Ṫ ∗Ω1 and Ṫ ∗Ω2, respectively.
Set Γ = (Γ1 ∪ {0})× (Γ2 ∪ {0}) \ {(0, 0)} ⊂ Ṫ ∗Rd. Then for all closed cones
V ⊂ Rd and χ ∈ D(Ω1 ×Ω2) such that (suppχ× V ) ∩ Γ = ∅, there exist a
partition of unity (ψj1⊗ψj2)j∈J on Ω1×Ω2, which is finite on suppχ, and
a family (Wj1 ×Wj2)j∈J of closed cones in (Rd1 \ {0}) × (Rd2 \ {0}) such
that

(4.2) (suppψj1 ×W c
j1) ∩ Γ1 = (suppψj2 ×W c

j2) ∩ Γ2 = ∅,
(4.3) V ∩ ((Wj1 ∪ {0})× (Wj2 ∪ {0})) = ∅

if suppχ ∩ supp(ψj1 ⊗ ψj2) 6= ∅.
Proof. We first set some notation. For any D ∈ N, with the identification

T ∗RD ' RD⊕(RD)∗, we denote by π : T ∗RD → RD and π : T ∗RD → (RD)∗

the two projections. We use the distance d∞ on RD (or (RD)∗) defined
by d∞(u, v) := sup1≤i≤D |ui − vi|. For u ∈ RD and r ≥ 0 we then set

B(u, r) = {v ∈ RD ; d∞(u, v) ≤ r} and, for any subset Q ⊂ RD, Q,r :=
{v ∈ RD; d∞(v,Q) ≤ r}. We note that, for any pair of sets Q1 ⊂ Rd1 and
Q2 ⊂ Rd2 , we have (Q1 × Q2),r = Q1,r × Q2,r (in particular, B((x, y), r) =
B(x, r) × B(y, r) for (x, y) ∈ Ω1 × Ω2). Lastly, for any closed conic subset
W ⊂ (RD)∗ \ {0}, we set W := W ∪ {0} and UW := SD−1 ∩W . Similarly
if Γ is a conic subset of T ∗RD, we set UΓ = (RD × SD−1) ∩ Γ and Γ =
Γ ∪ 0 ⊂ T ∗RD where 0 is the zero section of T ∗RD.

We will prove that there exists a family (Bj1×Bj2)j∈J of open balls that
covers Ω1 ∩ Ω2, which is finite over any compact subset of Ω1 × Ω2 and in
particular on suppχ and such that (Bj1×W c

j1)∩Γ1 = (Bj2×W c
j2)∩Γ2 = ∅,

and V ∩ (W j1×W j2) = ∅ if suppχ∩ (Bj1×Bj2) 6= ∅. The conclusion of the
lemma will then follow by constructing a partition of unity (ψj1 ⊗ ψj2)j∈J
such that suppψj1 = Bj1 and suppψj2 = Bj2, for all j ∈ J , by using
standard arguments.

Step 1. If (suppχ × V ) ∩ Γ = ∅, then there exists δ > 0 such that
d∞(suppχ × UV,UΓ ) ≥ 4δ. We define K := (suppχ),δ and note that
d∞(K × UV,UΓ ) ≥ 3δ. Without loss of generality, we can assume that
δ has been chosen so that K ⊂ Ω1 × Ω2. Obviously Ω1 × Ω2 is cov-
ered by (B((x, y), δ))(x,y)∈Ω1×Ω2

. Moreover all balls B((x, y), δ) are con-
tained in K if (x, y) ∈ suppχ, and suppχ is covered by the subfamily
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(B((x, y), δ))(x,y)∈suppχ. Since suppχ is compact, we can extract a count-
able family (Bi)i∈I = (Bi1 × Bi2)i∈I of balls which covers Ω1 × Ω2 and
which is finite over suppχ.

We now set γ := π(π−1(K) ∩ Γ ) and Uγ := π(π−1(K) ∩ UΓ ) and we
estimate the distance of Uγ to UV :

d∞[Uγ,UV ] = inf
ξ∈π(π−1(K)∩UΓ )

inf
η∈UV

d∞(ξ, η)

= inf
(u,ξ)∈UΓ, u∈K

inf
(v,η)∈K×UV

d∞(ξ, η)

= inf
(u,ξ)∈UΓ, u∈K

inf
(v,η)∈K×UV

d∞((u, ξ), (v, η)),

where the last equality is due to the fact that one can choose v = u in the
minimization. We deduce that, by removing the constraint u ∈ K in the
minimization,

d∞[Uγ,UV ] ≥ inf
(u,ξ)∈UΓ

inf
(v,η)∈K×UV

d∞((u, ξ), (v, η))

= d∞(K × UV,UΓ ) ≥ 3δ.

Step 2. Since γ and V are cones, the previous inequality implies d∞(ξ, V )
≥ 2‖ξ‖δ for every ξ ∈ γ. For any i ∈ I such that the ball Bi is centered at
a point in suppχ, the inclusion Bi ⊂ K implies π(π−1(Bi) ∩ Γ ) ⊂ γ. We
hence also have

(4.4) ∀ξ ∈ π(π−1(Bi) ∩ Γ ), d∞(ξ, V ) ≥ 2‖ξ‖δ.
We now set W i1 := {ξ1 ∈ (Rd1)∗ ; d∞(ξ1, π(π−1(Bi1)∩Γ1)) ≤ ‖ξ1‖δ},W i2 :=
{ξ2 ∈ (Rd2)∗ ; d∞(ξ2, π(π−1(Bi2) ∩ Γ2)) ≤ ‖ξ2‖δ} and Wi1 := W i1 \ {0},
Wi2 := W i2 \ {0}. By the definition of Wi1, W

c
i1 ∩ π(π−1(Bi1) ∩ Γ1) = ∅,

which is equivalent to (Bi1 ×W c
i1)∩ Γ1 = ∅. Similarly (Bi2 ×W c

i1)∩ Γ2 = ∅.
On the other hand, since

π(π−1(Bi1) ∩ Γ1)× π(π−1(Bi2) ∩ Γ2) = π[π−1(Bi1 ×Bi2) ∩ (Γ1 × Γ2)]
= π[π−1(Bi) ∩ Γ ], Bi = Bi1 ×Bi2

because

{ξ1 ; ∃(x1; ξ1) ∈ Γ1, x1 ∈ Bi1} × {ξ2 ;∃(x2; ξ2) ∈ Γ2, x2 ∈ Bi2}
= {(ξ1, ξ2) ;∃(x1, x2; ξ1, ξ2) ∈ Γ1 × Γ2, (x1, x2) ∈ Bi1 ×Bi2},

we also have

W i1 ×W i2 = {(ξ1, ξ2) ∈ (Rd)∗ ; d∞[(ξ1, ξ2), π(π−1(Bi) ∩ Γ )]

≤ sup(‖ξ1‖, ‖ξ2‖)δ}.
Hence by (4.4), we deduce that W i1 ×W i2 does not meet V .

In the rest of the paper, we may identify abusively Rd and (Rd)∗. We also
introduce the notation eζ(x, y) = ei(ξ·x+η·y) where ζ = (ξ, η). To estimate
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‖u⊗v‖N,V,ϕ1⊗ϕ2 , we use Lemma 4.3 to find a partition of unity (ψj1⊗ψj2)j∈J
which is finite on supp(ϕ1 ⊗ ϕ2) to write

ûϕ1(ξ)v̂ϕ2(η) = F(uϕ1 ⊗ vϕ2)(ζ) = 〈u⊗ v, (ϕ1 ⊗ ϕ2)eζ〉

=
∑
j

〈u⊗ v, (ϕ1ψj1 ⊗ ϕ2ψj2)eζ〉 =
∑
j

ûϕ1ψj1(ξ) v̂ϕ2ψj2(η).

Hence ‖u⊗v‖N,V,ϕ1⊗ϕ2 ≤
∑

j ‖u⊗v‖N,V,ϕ1ψj1⊗ϕ2ψj2 , where the sum is finite.
By the following lemma, each seminorm on the right hand side is bounded.

Lemma 4.4. Let Γ1, Γ2 and Γ be closed cones as in the previous lemma,
ψ1 ∈ D(Ω1), ψ2 ∈ D(Ω2) with (supp(ψ1 ⊗ ψ2) × V ) ∩ Γ = ∅, and closed
cones W1 and W2 in Rd1 \ {0} and Rd2 \ {0} such that

(W1 ∪ {0})× (W2 ∪ {0}) ∩ V = ∅,(4.5)

(suppψk ×W c
k) ∩ Γk = ∅ for k = 1, 2.(4.6)

Then, for every bounded set A ⊂ D′Γ1
and every integer N , there are con-

stants m, M1, M2 and a bounded set B ⊂ D(K), where K is an arbitrary
compact neighborhood of suppψ2, such that

‖t1 ⊗ t2‖N,V,ψ1⊗ψ2 ≤M1‖t2‖N,Cβ ,ψ2 +M2‖t2‖N+m,Cβ ,ψ2 + pB(t2)

for all t1 ∈ A and t2 ∈ D′Γ2
, where Cβ is any conic neighborhood of W2 with

compact base and pB is a seminorm of the strong topology of D′(Rd2).

Proof. We want to calculate

‖t1 ⊗ t2‖N,V,ψ1⊗ψ2 = sup
ζ∈V

(1 + |ζ|)N |F(t1ψ1 ⊗ t2ψ2)(ζ)|.

We denote u = t1ψ1, v = t2ψ2 and I = û⊗ v. From e(ξ,η) = eξ ⊗ eη we find
that I(ξ, η) = 〈t, e(ξ,η)〉 = 〈u⊗ v, eξ ⊗ eη〉 = 〈u, eξ〉〈v, eη〉 = û(ξ)v̂(η). By the
shrinking lemma we can slightly enlarge W1 and W2 to closed cones having
the same properties. Thus, there are two homogeneous functions α and β
on Rd1 and Rd2 , respectively, of degree zero, which are smooth except at the
origin, nonnegative and bounded by 1, such that:

(i) α|W1∪{0} = 1 and β|W2∪{0} = 1;
(ii) (suppα× suppβ) ∩ V = ∅;
(iii) (suppψ1 × supp(1− α)) ∩ Γ1 = ∅;
(iv) (suppψ2 × supp(1− β)) ∩ Γ2 = ∅.

We can write I = I1 + I2 + I3 + I4 where (recalling that ζ = (ξ, η))

I1(ζ) = α(ξ)û(ξ)β(η)v̂(η),

I2(ζ) = α(ξ)û(ξ)(1− β)(η)v̂(η),

I3(ζ) = (1− α)(ξ)û(ξ)β(η)v̂(η),

I4(ζ) = (1− α)(ξ)û(ξ)(1− β)(η)v̂(η).
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We have I1(ζ) = 0 because, by condition (ii), α(ξ)β(η) = 0 for (ξ, η) ∈ V .
Condition (iii) implies that

|(1− α)(ξ)û(ξ)| ≤ sup
ξ∈Cα

|t̂1ψ1(ξ)| ≤ (1 + |ξ|)−N‖t1‖N,Cα,ψ1 ,

where ξ ∈ Cα = supp(1− α). This gives, with Cβ = supp(1− β),

|I4(ζ)| ≤ (1 + |ξ|)−N (1 + |η|)−N‖t1‖N,Cα,ψ1‖t2‖N,Cβ ,ψ2

≤ (1 + |ζ|)−N‖t1‖N,Cα,ψ1‖t2‖N,Cβ ,ψ2 ,

because 1 + |(ξ, η)| ≤ 1 + |ξ| + |η| ≤ (1 + |ξ|)(1 + |η|). Since the set A is
bounded in D′Γ1

, there is a constant M1 = supt1∈A ‖t1‖N,Cα,ψ1 such that

|I4(ζ)| ≤ (1 + |ζ|)−NM1‖t2‖N,Cβ ,ψ2 .

To estimate I2, we use the fact that, u = t1ψ1 being a compactly sup-
ported distribution, there is an integer m such that, for all t1 ∈ A,

|α(ξ)û(ξ)| ≤ |û(ξ)| ≤ (1 + |ξ|)m‖θ−mû‖L∞ .

As for I4, we get |(1 − β)(η)v̂(η)| ≤ (1 + |η|)−N−m‖t2‖N+m,Cβ ,ψ2 . The set

{ζ ∈ suppα× Cβ ; |ζ| = 1} ∩ V is compact and avoids the set of elements
of the form ζ = (ξ, 0) with ξ ∈ suppα \ {0}. Otherwise, we would find some
sequence (ξn, ηn)→ (ξ, 0) ∈ ((suppα×{0})∩V ) ⊂ ((supp α× suppβ)∩V ),
which contradicts condition (ii). Let ε > 0 be the smallest value of |η| in
this set. Then, the functions α and β being homogeneous of degree zero,
(suppα × Cβ) ∩ V is a cone in Rd and |η|/|ζ| ≥ ε for all ζ = (ξ, η) in
(suppα× Cβ) ∩ V . Thus, (1 + |η|)−N−m ≤ ε−N−m(1 + |(ξ, η)|)−N−m and

|I2(ζ)| ≤ ‖θ−mt̂1ψ1‖L∞‖t2‖N+m,Cβ ,ψ2ε
−N−m(1 + |ζ|)−N for every ζ ∈ V,

because |ξ| ≤ |(η, ξ)|. We now prove an intermediate lemma:

Lemma 4.5. Let Ω be an open set in Rd and B a bounded set in D′(Ω).
Then for every χ ∈ D(Ω) there exist an integer M and a constant C (both
depending only on B and on an arbitrary relatively compact open neighbor-
hood of suppχ) such that

sup
u∈B

sup
ξ∈Rn

(1 + |ξ|)−M |ûχ(ξ)| < 2MC Vol(K)πM,K(χ),

where πM,K(χ) = supx∈K, |α|≤M |∂αχ(x)| and K = suppχ.

Proof. LetΩ0 be a relatively compact open neighborhood ofK = suppχ.
According to Schwartz [16, p. 86], for any bounded set B in D′(Ω), there is
an integer M (depending only on B and Ω0) such that every u ∈ B can be
expressed in Ω0 as u = ∂αfu for |α| ≤M , where fu is a continuous function.
Moreover, there is a constant C (depending only on B and Ω0) such that
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|fu(x)| ≤ C for all x ∈ Ω0 and u ∈ B. Thus,

ûχ(ξ) =
�

Ω0

e−iξ·xχ(x)∂αfu(x) dx = (−1)|α|
�

Ω0

fu(x)∂α(e−iξ·xχ(x)) dx

= (−1)|α|
∑
β≤α

(
α

β

)
(iξ)β

�

Ω0

fu(x)e−iξ·x∂β−αχ(x) dx.

By using |(iξ)β| ≤ (1 + |k|)M if |β| ≤M we obtain

(1 + |ξ|)−M |ûχ(ξ)| ≤ sup
|α|≤M

∑
β≤α

(
α

β

)∣∣∣ �
Ω0

fu(x)e−iξ·x∂β−αχ(x) dx
∣∣∣

≤ 2MC Vol(K)πM,K(χ).

By Lemma 4.5, ‖θ−mt̂1ψ1‖L∞ is uniformly bounded for t1 ∈ A by a

constant M ′2 = supt1∈A ‖θ
−mt̂1ψ1‖L∞ with θ = 1 + |ξ|. Therefore, there is a

constant M2 = M ′2ε
−N−m such that, for all t1 ∈ A and t2 ∈ D′Γ2

,

|I2(ζ)| ≤M2‖t2‖N+m,Cβ ,ψ2 .

The term I3 is treated differently because we want to get the following
result: for every bounded set A in D′Γ1

and every seminorm ‖ · ‖N,V,χ, there
is a bounded set B ⊂ D(Ω2) such that for all ζ ∈ V ,

I3(ζ) ≤ pB(t2)(1 + |ζ|)−N for every t2 ∈ D′Γ2
.

This special form of (3.1) is possible because the union of bounded sets is
bounded and multiplying a bounded set by a positive constant M yields a
bounded set.

We write I3(ζ) = 〈t2, fζ〉, where

f(ξ,η)(y) = (1− α)(ξ)û(ξ)β(η)ψ2(y)eη(y);

we must show that B = {(1+ |ζ|)Nfζ ; ζ ∈ V } is a bounded subset of D(Ω2).
A subset B of D(Ω2) is bounded if and only if there is a compact set K and,
for every integer n, a constant Mn such that supp f ⊂ K and πm,K(f) ≤Mn

for all f ∈ B. All fζ are supported on suppψ2 and are smooth functions
because ψ2 and eη are smooth. We have to prove that if t1 runs over a
bounded set in D′Γ1

, then there are constants Mn such that πn,K(fζ) ≤Mn

for all ζ ∈ V , where K is a compact neighborhood of suppψ2. We start from

πn,K(f(ξ,η)) = |(1− α)(ξ)û(ξ)β(η)|πn,K(ψ2eη).

We notice that πn,K(ψ2eη) ≤ 2nπn,K(ψ2)πn,K(eη) and πn,K(eη) ≤ |η|n. As
for the estimate of I2, we have

|(1− α)(ξ)û(ξ)| ≤ (1 + |ξ|)−N−n‖t1‖N+n,Cα,ψ1
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as (suppϕ1 × supp(1 − α)) ∩ Γ1 = ∅, and moreover (1 + |ξ|)−N−n ≤
ε−N−n(1 + |(ξ, η)|)−N−n for some ε as (ξ, η) ∈ V ∩ (supp(1− α)× suppβ).
Therefore

πn,K(fζ) ≤ ‖t1‖N+n,Cα,ψ12nπn,K(ψ2)ε
−N−n(1 + |ζ|)−N ,

because |η|n(1 + |(ξ, η)|)−n ≤ 1. If t1 belongs to a bounded subset A of D′Γ1
,

then for each N , ‖t1‖N,Cα,ψ1 is uniformly bounded. Finally,

|I3(ζ)| ≤ pB(t2)(1 + |ζ|)−N .
For each j, the conditions of the lemma hold if we set ψ1 = ϕ1ψj1,

ψ2 = ϕ2ψj2, W1 = Wj1 and W2 = Wj2. Thus, for every bounded set A
in D′Γ1

, every u ∈ A and every v ∈ D′Γ2
we have

‖u⊗ v‖N,V,ϕ1⊗ϕ2 ≤
∑
j

‖u⊗ v‖N,V,ϕ1ψj1⊗ϕ2ψj2

≤
∑
j

[M1j‖v‖N,Cβj ,ϕ2ψj2 +M2‖v‖N+m,Cβj ,ϕ2ψj2 + pBj (v)].

Since the sum over j is finite, the family of maps u × v 7→ u ⊗ v, where
u ∈ A, is equicontinuous for any bounded set A ⊂ D′Γ1

. By the symmetry of
the problem, we can prove similarly that the family of maps u× v 7→ u⊗ v,
where v ∈ B, is equicontinuous for any bounded set B ⊂ D′Γ2

. Finally, we
have proved

Theorem 4.6. Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be open sets, Γ1 ∈ Ṫ ∗Ω1

and Γ2 ∈ Ṫ ∗Ω2 be closed cones, and set

Γ = (Γ1 × Γ2) ∪
(
(Ω1 × {0})× Γ2

)
∪
(
Γ1 × (Ω2 × {0})

)
.

Then the tensor product (u, v) 7→ u ⊗ v is hypocontinuous from D′Γ1
× D′Γ2

to D′Γ in the normal topology.

5. The pull-back. The purpose of this section is to prove

Proposition 5.1. Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be open sets and Γ a
closed cone in Ṫ ∗Ω2. Let f : Ω1 → Ω2 be a smooth map such that Nf ∩ Γ
= ∅, where Nf = {(f(x); η) ∈ Ω2 × Rd2 ; η ◦ dfx = 0}, and define f∗Γ =
{(x; η ◦ dfx) ; (f(x); η) ∈ Γ}, where

η ◦ dfx :=

d2∑
j=1

ηjd(yj ◦ f)x =

d2∑
j=1

ηjdy
j ◦ dfx

=

d2∑
j=1

ηjdf
j
x =

d2∑
j=1

d1∑
i=1

ηj
∂f j

∂xi
dxi.

Then the pull-back operation f∗ : D′Γ (Ω2)→ D′f∗Γ (Ω1) is continuous for the
normal topology.
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We will show this by proving that 〈f∗u, v〉 is continuous for every v in
an equicontinuous set. Before doing so, we characterize the equicontinuous
sets of the normal topology, which is of independent interest.

5.1. Equicontinuous subsets. Let Ω be open in Rd and Γ be a closed
cone in Ṫ ∗Ω. We define the open cone Λ = {(x; ξ) ∈ Ṫ ∗Ω ; (x;−ξ) /∈ Γ} and
consider the space E ′Λ(Ω) of compactly supported distributions v ∈ E ′(Ω)
such that WF(v) ⊂ Λ.

Acccording to Definition 3.2, a set H is equicontinuous in E ′Λ(Ω) (which
is the strong dual of D′Γ (Ω) [5]) if and only if there are a finite number of
seminorms ‖ · ‖N1,V1,χ1 , . . . , ‖ · ‖Nk,Vk,χk of D′Γ (Ω), a bounded subset B0 of
D(Ω) and a constant M such that

|〈u, v〉| ≤M sup{‖u‖N1,V1,χ1 , . . . , ‖u‖Nk,Vk,χk , pB0(u)}(5.1)

for all u ∈ D′Γ (Ω) and v ∈ H. There is only one seminorm pB0 because these
seminorms are saturated [13, p. 107] in D′(Ω) with the strong topology. The
following theorem will be useful to prove the continuity of linear maps [13,
p. 200]:

Theorem 5.2. If E is a locally convex space and f : E → D′Γ (Ω) is
a linear map, then f is continuous if and only if, for every equicontinu-
ous subset H of E ′Λ(Ω), the seminorm pH : E → R defined by pH(x) =
supv∈H |〈f(x), v〉| is continuous.

The equicontinuous sets of E ′Λ(Ω) are known:

Lemma 5.3. A subset B of E ′Λ(Ω) is equicontinuous if and only if there
are:

(i) a compact set K ⊂ Ω containing the supports of all elements of B;
(ii) a closed cone Ξ ⊂ Λ such that B ⊂ D′Ξ(Ω), B is bounded in D′Ξ(Ω)

and π(Ξ) ⊂ K.

Proof. We first prove that every such B is equicontinuous. We showed
in [5] that E ′Λ(Ω) is the inductive limit of the spaces E` = {v ∈ E ′Λ(Ω) ; supp v
⊂ L`, WF(v) ⊂ Λ`}, where the compact sets L` exhaust Ω and the closed
cones Λ` exhaust Λ. Thus, there is an integer ` such that Ξ ⊂ Λ` and
B ⊂ E`. The inclusion of Ξ in Λ` implies that every seminorm ‖ · ‖N,V,χ of
E` is also a seminorm of D′Ξ(Ω) because suppχ × V does not meet Ξ if it
does not meet Λ`. Thus, B is bounded in E`, and [5, (8)] gives

sup
v∈B
|〈u, v〉| ≤

∑
j

(
pBj (u) + ‖u‖m+n+1,Vj ,χjCI

n+1
n + ‖u‖n,Vj ,χjMn,Wj ,χjI

2n
n

)
,

which can be converted to the equicontinuity condition (5.1).
To show the converse, we denote by B the set of all v ∈ E ′Λ(Ω) that satisfy

(5.1). Then, by following [5, proof of Prop. 7], we find that the supports of
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all elements of B are included in a compact set K =
⋃
j suppχj ∪K ′, where

K ′ is a compact set containing the supports of all f ∈ B0. Moreover, the
wave front sets of all elements of B are contained in Ξ =

⋃
j suppχj×(−Vj).

It remains to show that B is bounded in D′Ξ(Ω) for the normal topology.
We first notice that if suppχ × (−V ) ⊂ Ξ, then ‖ · ‖N,V,χ is a continuous
seminorm of the strong dual E ′Ξ′c(Ω) of D′Ξ(Ω). Indeed, it was shown in [5,
proof of Prop. 7] that we have ‖u‖N,V,χ = supξ∈V |〈u, fξ〉|, where fξ(x) =

(1 + |ξ|)Nχ(x)e−iξ·x and the set {fξ ; ξ ∈ V } is bounded in D′Ξ(Ω). If B′ is
a bounded set in E ′Ξ′c(Ω), the continuous seminorms ‖u‖N,V,χ and pB0(u)
of E ′Ξ′c(Ω) appearing on the right hand side of (5.1) are bounded over B′.
Thus, for any bounded set B′ in E ′Ξ′c(Ω), taking u ∈ B′ and taking the
sup in (5.1) over u ∈ B′ shows that supu∈B′, v∈B |〈u, v〉| is bounded and B
is a bounded subset of D′Ξ(Ω) when D′Ξ(Ω) is equipped with the strong
β(D′Ξ , E ′Ξ′c) topology. It is shown in [5, Theorem 33] that the bounded sets
of D′Γ (Ω) coincide for the strong and the normal topologies. Thus, B is
bounded for the normal topology.

We obtain the following characterization of continuous linear maps:

Theorem 5.4. Let E be a locally convex space, Ω an open subset of Rd
and Γ a closed cone in Ṫ ∗Ω. A linear map f : E → D′Γ (Ω) is continuous if
and only if every map fB : E → R defined by fB(x) = supv∈B |〈f(x), v〉| is
continuous, where B is equicontinuous in E ′Λ(Ω) with Λ = Γ ′c.

The equicontinuous sets of E ′Λ(Ω) intervene also because the duality pair-
ing enjoys a sort of hypocontinuity where, for E ′Λ(Ω), the bounded sets are
replaced by the equicontinuous ones:

Theorem 5.5 ([14, p. 157]). Let the duality pairing D′Γ (Ω)×E ′Λ(Ω)→ K
be defined by u × v 7→ f(u, v) = 〈u, v〉. Then, for every bounded subset A
of D′Γ (Ω) and every equicontinuous subset B of E ′Λ(Ω) the sets of maps {fu ;
u ∈ A} and {fv ; v ∈ B} are equicontinuous.

5.2. Continuity of pull-back

Strategy of the proof. Let Ω1 and Ω2 be open sets in Rd1 and Rd2 ,
respectively. Let f : Ω1 → Ω2 be a smooth map and Γ be a closed cone
in Ṫ ∗Ω2. We want to show that the pull-back f∗ : D′Γ (Ω2) → D′f∗Γ (Ω1) is
continuous for the normal topology. According to Theorem 5.4, the pull-back
is continuous if and only if, for every equicontinuous set B ⊂ E ′Λ(Ω1) (where
Λ = (f∗Γ )′c) the family of maps (ρv)v∈B defined by ρv : u 7→ 〈f∗u, v〉 is
equicontinuous, which implies that supv∈B |〈f∗u, v〉| is continuous in u. By
Lemma 5.3, there is a compact set K ⊂ Ω1 and a closed cone Ξ ⊂ (f∗Γ ′c)
such that supp v ⊂ K and WF(v) ⊂ Ξ for all v ∈ B. Choose χ ∈ D(Ω1)
such that χ|K = 1. If (ϕi)i∈I is a partition of unity on Ω2, we can write
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〈f∗u, v〉 =
∑

i〈f∗(uϕi), vχ〉. The image of suppχ by f being compact [2,
p. 19], only a finite number of terms of this sum are nonzero and the family
ρv is equicontinuous if and only if, for every ϕ ∈ D(Ω2), the family of maps
u 7→ 〈f∗(uϕ), vχ〉 is equicontinuous.

Stationary phase and Schwartz kernels. In order to calculate the
pairing between f∗(uϕ) and v, we first notice that, when u is a locally
integrable function, then uϕ(y) = F−1(ûϕ)(y) = (2π)−d2

	
Rd2 dη e

iη·yûϕ(η),

so that f∗(uϕ)(x) = (2π)−d2
	
Rd2 dη e

iη·f(x)ûϕ(η) and

〈f∗(uϕ), χv〉 =
1

(2π)d2

�

Ω1

�

Rd2

χ(x)v(x)eiη·f(x)ûϕ(η) dx dη

=
1

(2π)d2

�

Rd2

�

Ω1

�

Rd2

χ(x)v(x)eiη·f(x)e−iy·ηu(y)ϕ(y) dy dx dη.

This definition can be extended to any distribution u ∈ D′Γ as

〈f∗(uϕ), χv〉 =
1

(2π)d

�

Rd
u(y)v(x)I(x, y) dx dy,(5.2)

where d = d1 + d2 and I(x, y) =
	
Rd2 e

iη·(f(x)−y)ϕ(y)χ(x) dη. The duality
pairing can also be written as 〈f∗(uϕ), vχ〉 = 〈v⊗u, I〉. Note that I(x, y) =
(2π)−d2χ(x)ϕ(y)

	
dη eiη·(f(x)−y) is an oscillatory integral [12] with symbol

χ(x)ϕ(y) and phase η · (f(x) − y) where η · (f(x) − y) is homogeneous of
degree 1 with respect to η, and for all η 6= 0, d(η · (f(x)−y)) 6= 0. Therefore,
I ∈ D′(Ω1 × Ω2) is the Schwartz kernel of the bilinear continuous map
(u, v) 7→ 〈f∗(uϕ), vχ〉.

Proof of Proposition 5.1. By Theorem 4.6, the map (v, u) 7→ v ⊗ u is
hypocontinuous from D′Ξ×D′Γ to D′Γ⊗ where Γ⊗ = Ξ×Γ ∪(Ω1×{0})×Γ ∪
Ξ×(Ω2×{0}). Let Λ⊗ be the open cone Γ ′c⊗ . Therefore by Theorem 5.5, the
family of duality pairings D′Γ⊗ 3 u ⊗ v 7→ 〈u ⊗ v, r〉 is equicontinuous from

D′Γ⊗ to K uniformly in r ∈ B′ for every equicontinuous set B′ of E ′Λ⊗ . In

particular, if B′ contains only the element I, then the map v⊗u 7→ 〈v⊗u, I〉
is continuous since I is compactly supported in suppχ × suppϕ and its
wave front set is contained in Λ⊗. Thus, if WF(I) ⊂ Λ⊗, then the map
(v, u) 7→ 〈v ⊗ u, I〉 is hypocontinuous by the next lemma.

Lemma 5.6. The composition of a hypocontinuous map and a continuous
linear map is hypocontinuous.

Proof. Let f : E × F → G be a hypocontinuous map and g : G → H a
continuous linear map. The map g ◦ f is hypocontinuous if and only if, for
every bounded set B ⊂ F and every neighborhood W of zero in H, there
is a neighborhood U of zero in E such that (g ◦ f)(U × B) ⊂ W (with
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a similar condition for (g ◦ f)(A × V )). By the continuity of g, there is a
neighborhood Z of zero in G such that g(Z) ⊂ W . By the hypocontinuity
of f , there is a neighborhood U of zero in E such that f(U ×B) ⊂ Z. Thus,
(g ◦ f)(U ×B) ⊂ g(Z) ⊂W .

Therefore, the map (v, u) 7→ 〈f∗(uϕ), χv〉 is hypocontinuous; by item (i)
of Definition 3.1, this implies that the family of maps ρv : u 7→ 〈f∗(uϕ), χv〉
with v ∈ B is equicontinuous. It just remains to check that WF(I) ⊂ Λ⊗,
i.e. WF(I)′ does not meet Γ⊗. We have WF(I) ⊂ {(x, f(x);−η ◦ dxf, η) ;
x∈ suppχ} [12, p. 260]. Recall Ξ ⊂ (f∗Γ ′)c = {(x;−η ◦ dfx) ; (f(x); η) /∈Γ}.
By definition of Γ⊗ the following three conditions have to be satisfied:

• Ξ × Γ ∩ WF(I)′ = ∅ because it is the set of points (x, f(x);
−η◦dxf, η) such that (f(x); η) /∈ Γ by definition of Ξ and (f(x); η) ∈ Γ
by definition of Γ ;
• Ξ × (Ω2 × {0}) ∩WF(I)′ = ∅ because we would need η = 0 whereas

(y, η) ∈ Γ implies η 6= 0;
• (suppχ × {0}) × Γ ∩WF(I)′ ⊂ {(x, f(x); 0, η) ;x ∈ suppχ, η ◦ dfx

= 0, (f(x); η) ∈ Γ}.

Thus, if f∗Γ∩Nf = ∅, then WF(I)′∩Γ⊗ = ∅ and the pull-back is continuous.

How to write the pull-back operator in terms of the Schwartz
kernel I? Relationship with the product of distributions. We start
from a linear operator L : D(Rd2) → D′(Rd1) with Schwartz kernel K ∈
D′(Rd1×Rd2). Using the standard operations on distributions, we can make
sense of the well-known representation formula Lu =

	
Rd2 K(x, y)u(y) dy for

an operator L : D(Rd2) → D′(Rd1) and its kernel K ∈ D′(Rd1 × Rd2). Let
π2 : Rd1 × Rd2 3 (x, y) 7→ y ∈ Rd2 and π1 : Rd1 × Rd2 3 (x, y) 7→ x ∈ Rd1 .
Then we define

K(x, y)u(y) = K(x, y)π∗2u(x, y) = K(x, y)
(
1(x)⊗ u(y)

)
where π∗2u = 1⊗ u and

	
Rd2 dy f(x, y) = π1∗f(x). Therefore

(5.3) Lu =
�

Rd2

K(x, y)u(y) dy = π1∗(K(π∗2u)).

The interest of the formula Lu = π1∗(K(π∗2u)) is that everything gen-
eralizes to oriented manifolds. Replace Rd2 (resp. Rd1) with a manifold M2

(resp. M1) with smooth volume densities |ω2| (resp. |ω1|). The duality pair-
ing is defined as the extension of the usual integration against the volume
densities, for instance:

∀(u, ϕ) ∈ C∞(M1)×D(M1), 〈u, ϕ〉M1 =
�

M1

(uϕ)ω1.
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Finally, for the continuous linear map L : D(Rd2) 3 u 7→ χf∗(uϕ) ∈ D′(Rd1),
we get the formula Lu = π1∗(I(π∗2u)) where

I(x, y) = (2π)−d2χ(x)ϕ(y)
�
dη eiη·(f(x)−y)

is the Schwartz kernel of L.

5.3. Pull-back by families of smooth maps. To renormalize quan-
tum field theory in curved spacetimes, it is crucial to pull back by a family
of smooth maps. We start with a simple lemma.

Lemma 5.7. Let Ω1, Ω2, U be open sets in Rd1, Rd2, Rn respectively.
For any compact sets K1 ⊂ Ω1, K2 ⊂ Ω2, A ⊂ U and any smooth map
f : Ω1 × U → Ω2, the conic set

Γ = {(x, f(x, a);−η ◦ dxf(x, a), η) ; (x, a, f(x, a)) ∈ K1 ×A×K2, η 6= 0}

is closed in Ṫ ∗(Ω1 ×Ω2).

Proof. Let (x, y; ξ, η) ∈ Γ with (ξ, η) 6= (0, 0). Then there is a sequence

(xk, f(xk, ak);−ηk ◦dxf(xk, ak), ηk) ∈ Γ, (xk, ak, f(xk, ak)) ∈ K1×A×K2

which converges to (x, y; ξ, η). By compactness of A, we extract a convergent
subsequence ak → a. By continuity of dxf , we find that ξ = −η ◦ dxf(x, a);
moreover limk→∞ f(xk, ak) = f(x, a) ∈ K2 since K2 is closed; and η 6= 0
since otherwise ξ = 0, η = 0. Therefore (x, y; ξ, η) ∈ Γ by definition. Finally,
Γ ⊂ Γ , hence Γ is closed.

Proposition 5.8. Let Ω1 be an open set in Rd1, Ω2 an open set in Rd2,
and A ⊂ U ⊂ Rn where A is compact and U is open. Let χ ∈ D(Ω1),
ϕ ∈ D(Ω2) and f : Ω1 × U → Ω2 a smooth map. Then:

(1) The family (If(·,a))a∈A of distributions formally defined by

If(·,a)(x, y) = χ(x)ϕ(y)
�

Rd2

dθ

(2π)d2
eiθ·(f(x,a)−y)

is a bounded set in D′Γ , where Γ is the closed cone in Ṫ ∗(Ω1 × Ω2)
defined by

Γ = {(x, f(x, a);−η ◦ dxf(x, a), η) ;

x ∈ suppχ, f(x, a) ∈ suppϕ, a ∈ A, η 6= 0}.

(2) For any open cone Λ containing Γ , (If(·,a))a∈A is equicontinuous in
E ′Λ(Ω1 ×Ω2).

In the proof we will use the push-forward Theorem 6.3, whose proof will
be given in Section 7.
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Proof of Proposition 5.8. From Lemma 5.3 and the fact that (If(·,a))a∈A
is supported in a fixed compact set suppχ× suppϕ, we deduce that conclu-
sion (2) follows from (1), so it suffices to prove (1).

The conic set Γ is closed by Lemma 5.7. To prove that the family
(If(·,a))a∈A is bounded in D′Γ , by [5, Proposition 1] it suffices to check that
supa∈A |〈If(·,a), v〉| <∞ for all v ∈ E ′Γ ′c(Ω1 ×Ω2).

Step 1. Our goal is to study the map a 7→
	
Ω1×Ω2

If (x, y, a)v(x, y) dx dy,
where

If (x, y, a) = χ(x)ϕ(y)
�

Rd2

dθ

(2π)d2
eiθ·(f(x,a)−y).

Let π12, π3 be projections from Ω1 ×Ω2 × U defined by π12(x, y, a) = (x, y)
and π3(x, y, a) = a. Using the dictionary of Subsection 5.2, if v were a test
function, then we would find that

�

Ω1×Ω2

If (x, y, ·)v(x, y) dx dy = π3∗(Ifπ
∗
12v) ∈ D′(U).(5.4)

We want to prove that a 7→
	
Ω1×Ω2

If (x, y, a)v(x, y) dx dy is smooth in some
open neighborhood of A since this will imply that

sup
a∈A

∣∣∣ �

Ω1×Ω2

If (x, y, a)v(x, y) dx dy
∣∣∣ = sup

a∈A
|〈If(·,a), v〉| <∞.

In order to do so, it suffices to prove that the condition v ∈ E ′Γ ′c im-
plies that the distributional product If (x, y, a)v(x, y) = If (π∗12v)(x, y, a)
makes sense in D′(Ω1 × Ω2 × U) and the push-forward π3∗(Ifπ

∗
12v) =	

Ω1×Ω2
If (x, y, ·)v(x, y) dx dy has empty wave front set over some open neigh-

borhood of A.

Step 2. WF(If ) is the set of all x;−θ ◦ dxf
f(x, a); θ

a;−θ ◦ daf


such that x ∈ suppϕ, f(x, a) ∈ suppχ, a ∈ U , θ 6= 0. And WF(π∗12v) is the

set of all

(
x; ξ
y; η
a; 0

)
such that

(
x; ξ
y; η

)
∈WF(v).

Moreover v ∈ E ′Γ ′c implies WF(v) ∩ Γ ′ = ∅ so that ξ 6= −η ◦ dxf and

∀θ,
(
ξ − θ ◦ dxf
θ + η

)
=

(
0

0

)
has no solution.
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Observe that

WF(If ) + WF(π∗12v) =


 x; ξ − θ ◦ dxf
f(x); θ + η

a;−θ ◦ daf

 ; θ ∈ Rd \ {0}


implies (WF(If ) + WF(π∗12v)) ∩ 0 = ∅ and (WF(If ) ∪WF(π∗12v)) ∩ 0 = ∅.

Step 3. In the last step, we shall prove that the condition WF(v) ∩ Γ ′
= ∅ actually implies that WF(π3∗(Ifπ

∗
12v)) is empty over some open neigh-

borhood U ′ of A. The condition WF(v) ∩ Γ ′ = ∅ implies the existence of
some open neighborhood U ′ of A such that

∀a ∈ U ′, ∀(x, f(x, a); ξ, η) ∈WF(v), ξ 6= −η ◦ dxf(x, a).

Since A and supp v are compact and A×WF(v) is closed, we can find δ > 0
such that

∀(a, (x, f(x, a); ξ, η)) ∈ A×WF(v), |ξ + η ◦ dxf(x, a)| ≥ δ|η|.
Define

U ′ = {a ∈ U ;∀(x, f(x, a); ξ, η) ∈WF(v), |ξ + η ◦ dxf(x, a)| > (δ/2)|η|}.
The condition WF(v) ∩ Γ ′ = ∅ ensures that π3∗(Ifπ

∗
12v) is well defined in

D′∅(U
′) = C∞(U ′). Hence

a 7→ 〈v, If(·,a)〉 =
�

Ω1×Ω2

If (x, y, a)v(x, y) dx dy

is smooth on U ′, a fortiori continuous on the compact set A, which means
that supa∈A |〈v, If(·,a)〉| <∞.

Theorem 5.9. Let Ω1⊂Rd1 and Ω2⊂Rd2 be open sets, let A⊂U ⊂Rn
where A is compact and U open, and let Γ be a closed cone in Ṫ ∗Ω2. Let
f : Ω1 × U → Ω2 be a smooth map such that f(·, a)∗Γ meets the zero sec-
tion 0 for no a ∈ A, and set Θ =

⋃
a∈A f(·, a)∗Γ . Then for all seminorms

PB of D′Θ(Ω1) and all u ∈ D′Γ (Ω2), the family PB(f(·, a)∗u)a∈A is bounded.

Proof. We need to prove that sup(v,a)∈B×A |〈f(·, a)∗u, v〉| < ∞ for any
equicontinuous subset B of E ′Θ′c(Ω1). It follows from Lemma 5.3 that there
exists a closed cone Ξ such that Ξ ∩Θ′ = ∅ and B ⊂ D′Ξ(Ω1). Set

Γ⊗ = (Ξ × Γ ) ∪
(
(Ω1 × {0})× Γ

)
∪
(
Ξ × (Ω2 × {0})

)
.

Let Λ⊗ be the open cone defined by Λ⊗ = (Γ⊗)′c. By Proposition 5.8, we can
easily verify as in the proof of Proposition 5.1 that the family (If(·,a))a∈A is
equicontinuous in E ′Λ⊗ . Then we prove much as in the proof of the pull-back

Proposition 5.1 that the family of maps ρv,a : u 7→ 〈f(·, a)∗(uϕ), χv〉 with
(v, a) ∈ B×A is equicontinuous where B is equicontinuous in E ′Θ′c(Ω1) and
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χ is chosen in such a way that χ|suppB = 1 and ϕ|f(suppB) = 1. Therefore,

sup
(v,a)∈B×A

|〈f(·, a)∗u, v〉| = sup
(v,a)∈B×A

|〈f(·, a)∗(uϕ), χv〉| <∞,

and the result follows from Theorem 5.4.

6. Product and push-forward of distributions. Hörmander no-
ticed that the product of distributions u and v can be described as the
composition of the tensor product (u, v) 7→ u ⊗ v with the pull-back by
the map f : x 7→ (x, x). If the wave front sets of u and v are contained
in Γ1 and Γ2, then the wave front set of u ⊗ v is contained in Γ⊗ =
(Γ1 × Γ2) ∪

(
(Ω1 × {0}) × Γ2

)
∪
(
Γ1 × (Ω2 × {0})

)
, and the pull-back is

well defined if the set Nf = {(x, x; η1, η2) ; (η1 + η2) ◦ dx = 0}, which is the
conormal bundle of the diagonal ∆ ⊂ Rn×Rn, does not meet Γ , i.e. if there
is no point (x; η) in Γ1 such that (x;−η) is in Γ2. This gives

Theorem 6.1. Let Ω ⊂ Rn be an open set and Γ1, Γ2 be closed cones in
Ṫ ∗Ω such that Γ1 ∩Γ ′2 = ∅. Then the product of distributions is hypocontin-
uous for the normal topology from D′Γ1

×D′Γ2
to D′Γ , where

Γ = (Γ1 ×Ω Γ2) ∪
(
(Ω × {0})×Ω Γ2

)
∪
(
Γ1 ×Ω (Ω × {0})

)
.(6.1)

Proof. The product of distributions is the composition of the hypocon-
tinuous tensor product with the continuous pull-back (see Lemma 5.6).

This theorem has the useful corollary:

Corollary 6.2. Let Ω ⊂ Rn be an open set and Γ be a closed cone in
Ṫ ∗Ω. Then the product of a smooth map and a distribution is hypocontinuous
for the normal topology from C∞(Ω)×D′Γ to D′Γ .

Proof. By Lemma 7.2, C∞(Ω) and D′∅ are topologically isomorphic.
Therefore, the corollary follows by applying Theorem 6.1 to Γ1 = ∅ and
Γ2 = Γ . Equation (6.1) shows that the wave front set of the product is
in Γ .

6.1. The push-forward as a consequence of
the pull-back theorem

Theorem 6.3. Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be two open sets and Γ
a closed cone in Ṫ ∗Ω1. For any smooth map f : Ω1 → Ω2 and any closed
subset C of Ω1 such that f |C : C → Ω2 is proper and π(Γ ) ⊂ C, the
map f∗ is continuous in the normal topology from {u ∈ D′Γ ; suppu ⊂ C}
to D′f∗Γ , where f∗Γ = {(y; η) ∈ Ṫ ∗Ω2 ;∃x ∈ Ω1, y = f(x) and (x; η ◦ dfx) ∈
Γ ∪ suppu× {0}}.

Proof. The idea of the proof is to think of a push-forward as the adjoint
of a pull-back [8]. For all B equicontinuous in E ′Λ where Λ = f∗Γ

′c, and
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all v ∈ B, supp(f∗v) ∩ C is contained in a fixed compact set K since f
is proper on C. Hence, for any χ ∈ D(Rd) such that χ|C = 1 and f is
proper on suppχ, we should have at least formally 〈f∗u, v〉 = 〈u, χf∗v〉 if
the duality pairings make sense. On the one hand, if v ∈ E ′Λ(Ω2) where f∗Λ
does not meet the zero section 0 ⊂ T ∗Ω1 then the pull-back f∗v would be
well defined by the pull-back Proposition 5.1 (which is equivalent to the fact
that Nf ∩Λ = ∅). On the other hand, the duality pairing 〈u, χ(f∗v)〉 is well
defined if f∗Λ∩Γ ′ = ∅. Combining both conditions leads to the requirement
that f∗Λ ∩ (Γ ′ ∪ 0) = ∅. But note that:

(f∗Λ) ∩ (Γ ′ ∪ 0) = ∅
⇔ {(x; η ◦ df) ; (f(x); η) ∈ Λ, (x; η ◦ df) ∈ Γ ′ ∪ {0}} = ∅
⇔ [(f(x); η) ∈ Λ⇒ (x; η ◦ df) /∈ Γ ′ ∪ {0}]
⇔ [(f(x); η) ∈ Λ′ ⇒ (x; η ◦ df) /∈ Γ ∪ {0}],

which is equivalent to the fact that Λ′ does not meet f∗Γ = {(f(x); η) ;
(x; η ◦ df) ∈ Γ ∪ 0, η 6= 0} ⊂ T ∗Ω2, which is exactly the assumption of our
theorem. Therefore, the set of distributions χf∗B is supported in a fixed
compact set, bounded in D′f∗Λ(Ω1) by the pull-back Proposition 5.1 ap-
plied to f∗, the duality pairings are well defined, and supv∈B |〈f∗u, v〉| =
supv∈B′ |〈u, v〉| where B′ = χf∗B is equicontinuous in E ′Γ ′c(Ω1) (the sup-
port of the distribution is compact because f is proper), which means
that supv∈B′ |〈u, v〉| is a continuous seminorm for the normal topology of
D′Γ (Ω1).

We now prove a parameter version of the push-forward theorem.

Theorem 6.4. Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be open sets, A ⊂ U ⊂ Rn,
A is compact, U is open and Γ a closed cone in Ṫ ∗Ω1. For any smooth map
f : Ω1 × U → Ω2 and any closed subset C of Ω1 such that f : C × A →
Ω2 is proper and π(Γ ) ⊂ C, the function f(·, a)∗ is uniformly continuous
in the normal topology from {u ∈ D′Γ ; suppu ⊂ C} to D′Ξ , where Ξ =⋃
a∈A f(·, a)∗Γ .

Proof. We have to check that Ξ is closed over Ṫ ∗f(C×A)Ω2. Let (y; η) ∈
Ξ ∩ Ṫ ∗f(C×A)Ω2. Then there exists a sequence (yk; ηk) → (y; η) such that

(yk; ηk) ∈ Ξ ∩ Ṫ ∗f(C×A)Ω2. By definition, yk = f(xk, ak) where (xk, ηk ◦
dxf(xk, ak)) ∈ Γ ∪ 0 and (xk, ak) ∈ C × A. The central observation is that
{yk ; k ∈ N} ⊂ f(C × A) and {(xk, ak) ; f(xk, ak) = yk, k ∈ N} ⊂ C × A are
compact sets because f is proper on C×A. Then we can extract convergent
subsequences (xk, ak) → (x, a) and (x, η ◦ dxf(x, a)) ∈ Γ ∪ 0 since Γ ∪ 0 is
closed in Ṫ ∗Ω2 and dxf is continuous. By definition of Ξ, this proves that
(y; η) ∈ Ξ and we conclude that Ξ is closed.
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Now we can repeat the proof of the push-forward theorem except that
we use the pull-back theorem with parameters. Let B be equicontinuous in
E ′Ξ′c(Ω2), hence all elements of B have support contained in some compact
set. For every v ∈ B, supp(f∗v) ∩ C ×A is compact, therefore for χ = 1 on⋃
a∈A supp(f(·, a)∗v) ∩ C, the family B′ = {(χf(·, a)∗v) ; a ∈ A, v ∈ B} is

equicontinuous in E ′Θ whereΘ = Γ ′c by the parameter version of the pull-back
theorem. Therefore, u 7→ supa∈A supv∈B |〈f(·, a)∗u, v〉| = supv∈B′ |〈u, v〉| is
continuous in u since the right hand term is a continuous seminorm for the
normal topology of D′Γ (Ω1).

Convolution product. In the same spirit as for multiplication of dis-
tributions, the convolution product u ∗ v can be described as the composi-
tion of the tensor product (u, v) 7→ u⊗ v with the push-forward by the map
Σ : (x, y) 7→ (x + y). For a closed subset X ⊂ Rn, let D′Γ (X) be the set of
distributions supported in X with wave front set in Γ .

Theorem 6.5. Let Γ1, Γ2 be closed conic sets in Ṫ ∗Rn and X1, X2 closed
subsets of Rn such that Σ : X1 × X2 → Rn is proper. Then the convolu-
tion product of distributions is hypocontinuous from D′Γ1

(X1)×D′Γ2
(X2) to

D′Γ (X1 +X2) where

(6.2) Γ = {(x+ y; η) ; (x; η) ∈ Γ1, (y; η) ∈ Γ2}.
Proof. The convolution product of distributions is the composition of

the hypocontinuous tensor product with the continuous push-forward.

As an application of the parameter version of the push-forward theorem,
we state the coordinate invariant definition of the wave front set, which was
proposed by Duistermaat [8, p. 13], correcting a first attempt by Gabor [9].
Its proof is left to the reader.

Theorem 6.6. Let Ω ⊂ Rd be an open set, and u ∈ D′(Ω). An element
(x; ξ) /∈WF(u) if and only if for all f ∈ C∞(Ω×Rn) such that dxf(x, a0) =
ξ for some a0 ∈ Rn, there exist neighborhoods A of a0 and U of x0 such that
for all ϕ ∈ D(U), |〈u, ϕeiτf(·,a)〉| = O(τ−∞) uniformly in some neighborhood
of a0 in A.

7. Appendix: Technical results. This appendix gathers different use-
ful results. Several of them are folkore results for which we could find no
proof in the literature.

7.1. Exhaustion of the complement of Γ . To prove that D′Γ is
nuclear [5], we need to take the additional seminorms in a countable set: the
complement Γ c = Ṫ ∗M \ Γ of any closed cone Γ ⊂ Ṫ ∗M can be exhausted
by a countable set of products U × V , where U ⊂M is compact and V is a
closed conic subset of Rn.
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First we introduce the sphere bundle over M (or unit cotangent bundle)
UT ∗M = {(x; k) ∈ T ∗M ; |k| = 1}. We then define the set

UΓK = {(x; k) ∈ Γ ;x ∈ K, |k| = 1} = UT ∗M |K ∩ Γ,
for any compact subset K ⊂ M . Since M can be covered by a countable
union of compact sets, we assume without loss of generality that K is covered
by a single chart (U,ψ) such that ψ(K) ⊂ Q, where Q = [−1, 1]n is an
n-dimensional cube. Hence we can assume that M = Rn and UT ∗M =
Rn × Sn−1. It will be convenient to use the norm d∞ on Rn, defined by

d∞(x, y) := sup
1≤i≤n

|xi − yi| for x, y ∈ Rn.

We denote by B∞(x, r) = {y ∈ Rn ; d∞(x, y) ≤ r} the closed ball of radius r
for this norm. We also denote the restriction of d∞ to Sn−1 × Sn−1 by the
same letter and, lastly, for (x; ξ), (y; η) ∈ UT ∗Rn we set d∞((x; ξ), (y; η)) =
sup(d∞(x, y), d∞(ξ, η)).

We define cubes centered at rational points in Q: Let qj = [−1/2j , 1/2j ]n

= B∞(0, 2−j) and qj,m = m/2j + qj = B∞(2−jm, 2−j), where m ∈ Zn ∩
2jQ. In other words, the center of qj,m runs over a hypercubic lattice with
coordinates (2−jm1, . . . , 2

−jmn), where −2j ≤ mi ≤ 2j . Note that, for each
nonnegative integer j, the hypercubes qj,m overlap and cover Q:

Q ⊂
⋃

m∈Zn∩2jQ

qj,m.(7.1)

Denote by π : UT ∗Rn → Rn and π : UT ∗Rn → Sn−1 the projection maps
defined by π(x; k) = x and π(x; k) = k. We define Fj,m = π−1(qj,m) ' qj,m×
Sn−1 (see Fig. 1). The set π(Fj,m∩UΓK) is compact because the projection

ΓS

x

Bs (p,δ)

F j, m

qj, m

C j, m, ℓ

η p

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. The case n = 2, where only one dimension of the cube [−1, 1]2 is shown and the
circle S1 is represented by the vertical segment [0, 1]. The large surface is UΓK , the small
square around p is the ball B∞(p, δ). We see that qj,m contains x and is contained in
π(B∞(p, δ)).



Operations on distributions 223

π is continuous and Fj,m∩UΓK is compact. For any positive integer `, define
the compact set Cj,m,` = {η ∈ Sn−1 ; d∞(π(Fj,m ∩ UΓK), η) ≥ 1/`}. This is
the set of points of the sphere which are at least at distance 1/` from the
projection of the slice of UΓ inside Fj,m (see Fig. 1). We have⋃

`>0

Cj,m,` = Sn−1 \ π(Fj,m ∩ UΓK).

Indeed, by definition, any element of Cj,m,` is in Sn−1 and not in π(Fj,m ∩
UΓK); conversely, the compactness of π(Fj,m∩UΓK) implies that any point
(x; ξ) in Sn−1 \ π(Fj,m ∩UΓK) is at a finite distance δ from π(Fj,m ∩UΓK).
If we take ` > 1/δ, we have (x; ξ) ∈ Cj,m,`. Note that all Cj,m,` are empty if
π(Fj,m ∩ UΓK) = Sn−1. With this notation we can now state

Lemma 7.1. ⋃
j,m,`

qj,m × Cj,m,` = UT ∗M |K \ UΓK ,(7.2)

and, by denoting Vj,m,` = {k ∈ Rn \ {0} ; k/|k| ∈ Cj,m,`},⋃
j,m,`

qj,m × Vj,m,` = (T ∗M \ Γ )|K .(7.3)

Proof. We first prove ⊂ in (7.2). Let (x; k) ∈
⋃
j,m,` qj,m×Cj,m,`, so there

exist j ∈ N, m ∈ Zn∩2jQ and ` ∈ N∗ such that (x; k) ∈ qj,m×Cj,m,`. Hence
(x; k) ∈ Fj,m and, by definition of Cj,m,`, d∞(π(Fj,m∩UΓK), k) ≥ 1/`, which
implies that (x; k) /∈ UΓK .

Let us prove the reverse inclusion ⊃. Let (x; k) ∈ UT ∗M |K \UΓK . Since
this set is open, there exists δ > 0 such that B∞((x; k), δ) ⊂ UT ∗M |K\UΓK .
Let j ∈ N∗ with 2−j+1 < δ. Because the sets qj,m cover Q (see (7.1)), there
is an m such that x ∈ qjm. Moreover, for all y ∈ qj,m, we have

d∞(x, y) ≤ d∞(x, 2−jm) + d∞(2−jm, y) ≤ 2−j + 2−j < δ,

i.e. y ∈ B∞(x, δ). Hence qj,m ⊂ B∞(x, δ). We deduce that

qj,m ×B∞(k, δ) ⊂ B∞(x, δ)×B∞(k, δ) = B∞((x; k), δ) ⊂ UT ∗M |K \UΓK .
This means that (qj,m ×B∞(k, δ)) ∩ UΓK = ∅ or equivalently

Fj,m ∩ π−1(B∞(k, δ)) ∩ UΓK = ∅.
Hence B∞(k, δ) ∩ π(Fj,m ∩ UΓK) = ∅, so d∞(k, π(Fj,m ∩ UΓK)) > δ. By
choosing ` ∈ N∗ with 1/` ≤ δ, we deduce that d∞(k, π(Fj,m ∩UΓK)) > 1/`,
i.e. k ∈ Cj,m,`. Thus (x; k) ∈ qj,m × Cj,m,` and (7.2) is proved.

To prove (7.3), we notice that, because of the conic property of Γ , each
Cj,m,` corresponds to a unique Vj,m,`.

Any nonnegative smooth function ψ supported on [−3/2, 3/2]n and such
that ψ(x) = 1 for x ∈ [−1, 1]n enables us to define scaled and shifted func-
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tions ψj−1,m(x) = ψ(2j(x−m)) supported on qj−1,m and equal to 1 on qj,2m.
If Cj,m,` is not empty, we denote by αj,m,` : Sn−1 → R a smooth function
supported on Cj,m,` and equal to 1 on Cj,m,`+1. Note that if Cj,m,` is a proper
subset of Sn−1, then it is strictly included in Cj,m,`+1.

7.2. Equivalence of topologies. Grigis and Sjöstrand stated [10, p. 80]
that if we have a family χα of test functions and closed cones Vα such that
(suppχα × Vα) ∩ Γ = ∅ and

⋃
α{(x, k) ;χα(x) 6= 0 and k ∈ V̊α} = Γ c, then

the topology of D′Γ is given by the seminorms of the weak topology and the
seminorms ‖·‖N,Vα,χα . By coveringM with a countable family of compact sets
Ki described in Section 7.1, we see that Lemma 7.1 gives a family of indices
α = (i, j, `), functions χj,m,` = ψj,m and cones Vj,m,` adapted to Ki such
that the conditions of the Grigis–Sjöstrand lemma are satisfied. Therefore,
the normal topology is described by the seminorms of the strong topology
of D′(Ω) and by a countable family of seminorms indexed by (i, j,m, `).

7.3. Topological equivalence of C∞(X) and D′∅. As an application
of the previous lemma, we show

Lemma 7.2. The spaces C∞(X) and D′∅ are topologically isomorphic.

Proof. The two spaces are identical as vector spaces because a distribu-
tion u whose wave front set is empty is smooth everywhere, since its singular
support sing supp(u) = π(WF(u)) [12, p. 254] is empty [12, p. 42].

To prove the topological equivalence, we must show that the two inclu-
sions D′∅ ↪→ C∞(X) and C∞(X) ↪→ D′∅ are continuous. Recall that a system
of seminorms defining the topology of C∞(X) is πm,K , where m runs over
the integers and K runs over the compact subsets of X [16, p. 88]. By a
straightforward estimate, we obtain

πm,K(ϕ) ≤ Cn(2π)−n
∑
|α|≤m

sup
k∈Rn

(1 + |k|2)p|kαϕ̂χ(k)|

≤ Cn(2π)−n
(
m+ n

n

)
‖ϕ‖m+2p,Rn,χ,

where χ ∈ D(X) is equal to one on a compact set whose interior contains K
and where we have used 1+|k|2 ≤ (1+|k|)2, |kα| ≤ (1+|k|)m and

∑
|α|≤m 1 =(

m+n
n

)
. Thus, every seminorm of C∞(X) is bounded by a seminorm of D′∅,

and the injection D′∅ ↪→ C∞(X) is continuous.

Conversely, for any closed conic set V and any χ ∈ D(X) we have
‖ϕ‖N,V,χ ≤ ‖ϕ‖N,Rn,χ. Thus, it is enough to estimate ‖ϕ‖N,Rn,χ. We also
find that, for any integer N and α = 0,

sup
k∈Rn

(1 + k2)N |ϕ̂χ(k)| ≤ |K|2Nπ2N,K(ϕχ),
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where K is the support of ϕ. Then the inequality 1+|k| ≤ 2(1+|k|2) and the
Leibniz rule give ‖ϕ‖N,Rn,χ ≤ |K|8Nπ2N,K(χ)π2N,K(ϕ), so the seminorms
‖ · ‖N,V,χ are controlled by the seminorms of C∞(X). For the seminorms
of D′(X), it is well known that the inclusion C∞(X) ↪→ D′(X) is contin-
uous [16, p. 420] when D′(X) has its strong topology. Therefore, it is also
continuous when D′(X) is equipped with the weak topology. Thus we have
proved that C∞(X) and D′∅ are topologically isomorphic, where D′∅ can be
equipped with the Hörmander or the normal topology.
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[14] G. Köthe, Topological Vector Spaces II, Springer, New York, 1979.
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