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Abstract We study the twisted Ruelle zeta function ζX (s) for smooth Anosov
vector fields X acting on flat vector bundles over smooth compactmanifolds. In
dimension 3, we prove the Fried conjecture, relating Reidemeister torsion and
ζX (0). In higher dimensions, we show more generally that ζX (0) is locally
constant with respect to the vector field X under a spectral condition. As
a consequence, we also show the Fried conjecture for Anosov flows near the
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geodesic flow on the unit tangent bundle of hyperbolic 3-manifolds. This gives
the first examples of non-analytic Anosov flows and geodesic flows in variable
negative curvature where the Fried conjecture holds true.

1 Introduction

LetM be a smooth (C∞), compact, connected and orientedmanifold of dimen-
sion n and E →M a smoothHermitian vector bundle with fibersCr equipped
with a flat connection ∇. Parallel transport via ∇ induces a conjugacy class
of representation ρ : π1(M)→ GL(Cr ), which is unitary as soon as ∇ pre-
serves 〈·, ·〉E . One can then define a twisted de Rham complex on the space
�(M; E) of smooth twisted forms with twisted exterior derivative d∇ , and
we denote by Hk(M; ρ) its cohomology of degree k. We say that the complex
(or ρ) is acyclic if Hk(M; ρ) = 0 for each k. If ρ is acyclic and unitary, Ray
and Singer introduced a secondary invariant which is defined by the value at
0 of the derivative of the spectral zeta function of the Laplacian [58]. They
showed that this quantity τρ(M) is in fact independent of the choice of the
metric used to define the Laplacian, thus an invariant of the flat bundle. This
is the so-called analytic torsion and it was conjectured by Ray and Singer to
be equal to the Reidemeister torsion [12,23,59]. This conjecture was proved
independently by Cheeger [8] and Müller [54] and it was extended to unimod-
ular flat vector bundles by Müller [55] and to arbitrary flat vector bundles by
Bismut and Zhang [4]. For an introduction to the different notions of torsion,
we refer the reader to [52].

In the context of hyperbolic dynamical systems, Fried conjectured and
proved in certain cases that the analytic torsion can in fact be related to the value
at 0 of a certain dynamical zeta function [27] that we will now define. Given
a (primitive) closed hyperbolic orbit γ of a smooth vector field X , one can
define its orientation index εγ to be equal to 1 when its unstable bundle Eu(γ )

is orientable and to−1 otherwise. If now X is a smooth Anosov vector field on
M, we can define the Ruelle zeta function twisted by the representation ρ as :

ζX,ρ(λ) :=
∏

γ∈P
det(1− εγ ρ([γ ])e−λ
(γ )), Re(λ) > C (1.1)

where P denotes the set of primitive closed orbits of X and 
(γ ) the corre-
sponding periods. Here C > 0 is some large enough constant depending on
X and ρ. If ρ is unitary and acyclic and if X is the geodesic vector field on
the unit tangent bundleM = SM of a hyperbolic manifold M , Fried showed
that ζX,ρ(λ) extends meromorphically to λ ∈ C using Selberg trace formula
[26] and the work or Ruelle [60]. Then he proved [25] the remarkable formula
(with dim(M) = 2n0 + 1):
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The Fried conjecture in small dimensions

|ζX,ρ(0)(−1)n0 | = τρ(M), (1.2)

where ρ is the lift to π1(M) of an acyclic and unitary representation ρ0 :
π1(M) → U (Cr ). Fried interpreted this formula as an analogue of the Lef-
schetz fixed point formula answering his own question in the case of geodesic
flows [24, p. 441] : is there a general connection between the analytic torsion
of Ray and Singer and closed orbits of some flow (e.g. geodesic flow) ?He then
extended this formula [27,28] to various families of flows including Morse-
Smale flows and conjectured in [27, p. 66] that formula (1.2) holds for compact
locally homogeneous Riemannian spaces and acyclic bundles. This conjecture
was proved for non-positively curved locally symmetric spaces byMoscovici-
Stanton [53] and Shen [64]. As for generalisations of the above results, Fried
makes the following comment in [27, p. 66]: it is even conceivable that (ϕt , E)
is Lefschetz for any acyclic E with a flat density and any Cω contact flow ϕt .
In his 1995 article [28, p. 181], Fried conjectured that the relation (1.2) holds
for geodesic flows with variable negative curvature, an important case that can
be seen as a part of a body of conjectures considered by Fried in special cases.
As stated by Zworski [70, p. 5] in the survey article: in the case of smooth
manifolds of variable negative curvature, (1.2) remains completely open.

For analytic Anosov flows, generalizing earlier works of Ruelle [60], Rugh
showed in [61] that ζX,ρ has meromorphic continuation to the whole com-
plex plane when dim(M) = 3. This was later extended to higher dimensions
by Fried [28]. Then, Sanchez-Morgado [62,63] proved that (1.2) holds for
transitive analytic Anosov flows in dimension 3 if there exists a closed orbit
γ such that, for each j ∈ {0, 1}, ker(ρ([γ ]) − ε jγ Id) = 0—see also [27]
for related assumptions in the case of Morse-Smale flows. More recently,
the meromorphic continuation of Ruelle zeta functions was proved in the
case of hyperbolic dynamical systems with less regularity (say C∞). The case
of Anosov diffeomorphisms was handled by Liverani [50] while the case of
Axiom A diffeomorphisms was treated by Kitaev [44] and Baladi-Tsujii [3].
Afterwards, Giulietti, Liverani and Pollicott proved that the meromorphic con-
tinuation of ζX,ρ holds for smoothAnosov flows [30]—seeRemark 3 below for
the extension to general representations of the fundamental group. An alterna-
tive proof of this latter fact was given by Dyatlov-Zworski [16] via microlocal
techniques, and extended by Dyatlov-Guillarmou [14,15] to Axiom A cases.
In the case of smooth contact Anosov vector fields in dimension 3 and of
the trivial representation 1 : [γ ] ∈ π1(M) → 1 ∈ C

∗, Dyatlov-Zworski
[17] subsequently proved that the vanishing order of ζX,1(λ) at 0 is λb1(M)−2
[17] where b1(M) is the first Betti number of M—see also [39] in the case
with boundary. Recent account about these advances can be found in [33,70].
We also refer to the book of Baladi [1] for a complete introduction to the
spectral analysis of zeta functions in the case of diffeomorphisms. Building on
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these recent results in the smooth case, the purpose of this work is to bring new
insights on Fried’s questions regarding the links between Ruelle zeta functions
and analytic torsion.

2 Statement of the main results

Our first result answers Fried’s question in dimension 3 for smooth Anosov
flows.

Theorem 1 Suppose that dim(M) = 3 and let E be a smooth Hermitian
vector bundle with a flat connection ∇ inducing a unitary and acyclic rep-
resentation ρ : π1(M) → U (Cr ). Let X0 be a smooth Anosov vector field
preserving a smooth volume form. Then, there is a nonempty neighborhood
U(X0) ⊂ C∞(M; TM) of X0 so that

∀X ∈ U(X0), ζX,ρ(0) = ζX0,ρ(0) �= 0.

In addition, if b1(M) �= 0 or if there exists a closed orbit γ of X0 such that,
for each j ∈ {0, 1}, ker(ρ([γ ]) − ε jγ Id) = 0, then |ζX,ρ(0)|−1 = τρ(M) is
the Reidemeister torsion for each X ∈ U(X0).

The second part of the Theorem is based on the approximation of smooth
volume preserving Anosov flows by analytic transitive Anosov flows and it
crucially uses the result of Sanchez-Morgado [63] who proved the conjecture
for transitive and analytic Anosov flows in the 3-dimensional case. This is
also the reason of the holonomy assumption ker(ρ([γ ])− ε jγ Id) = 0 for some
γ , which was necessary in the argument of [63] as well as in other cases
already treated by Fried, see e.g. [27, Th. 3.1, Th. 6.1]. When b1(M) �= 0, this
holonomy assumption can be removed by some approximation argument—
see Sect. 7 below. For the existence of acyclic unitary representations on 3-
manifolds, we refer to [29]. Our proof of the first part of this Theorem 1 is
independent of these earlier works and it follows from a variation formula for
ζX,ρ(0) with respect to X which shows that X �→ ζX,ρ(0) is locally constant
for unitary and acyclic representations in dimension 3. Observe that a vector
field in U(X0) may not preserve a smooth volume form even if X0 does. This
variation property of the Ruelle zeta function at 0 is in fact our main result
and it holds more generally for smooth Anosov vector fields in any dimension
under a certain non-resonance at λ = 0 assumption. In order to state it, we
need to recall the notion of Pollicott–Ruelle resonances.

Given a vector field X0 and connection ∇, one can define the Lie derivative
X0 := d∇ ιX0 + ιX0d

∇ acting on smooth differential forms �(M; E). Then,
one can find some C > 0 depending on X0 and ρ such that
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The Fried conjecture in small dimensions

RX0(λ) :=
∫ +∞

0
e−tλe−tX0dt : �(M; E)→ �′(M, E)

is holomorphic for Re(λ) > C where �′(M; E) is the space of currents
with values in E . For smooth Anosov flows, it was first proved by Butterley
and Liverani that RX0(λ) has a meromorphic extension to the whole complex
plane [7]. The poles of this meromorphic extension are called Pollicott–Ruelle
resonances and this result was based on the construction of appropriate func-
tional spaces for the differential operator X0—see also [5,32] in the case of
diffeomorphisms and [30,49] for flows. Building on earlier works for dif-
feomorphisms [2,19], Faure and Sjöstrand introduced microlocal methods to
analyse the spectrum of Anosov flows [21] and, among other things, they gave
another proof of this result—see also [16,20,65]. Using this meromorphic
extension, our main result reads as

Theorem 2 Let E be a smooth vector bundle with a flat connection ∇. Then
the set of smooth Anosov vector fields X such that 0 is not a pole of the
meromorphic extension of RX(λ) : �(M; E) → �′(M; E) forms an open
subset U ⊂ C∞(M, TM), and the map X ∈ U �−→ ζX,ρ(0) is locally
constant and nonzero.

This result is valid in any dimension and without any assumption on the fact
that ρ is unitary or that X preserves some smooth volume form. Note from
[10, Th. 2.1] that our condition on the poles of RX(λ) implies that ρ is acyclic.
Yet, it is not clear if the converse is true even for a unitary representation and
for a generic choice of vector field among Anosov vector fields. If we suppose
in addition that M is 3-dimensional, that ρ is unitary and that X preserves a
smooth volume form, then we will show that the converse is indeed true and
thus deduce the first part of Theorem 1. This spectral assumption also implies
that ζX,ρ(0) �= 0 as a consequence of [16,30]—see e.g. [17, § 3.1]. In the case
of nonsingular Morse-Smale flows [27, Th. 3.1], Fried proved that ζX,ρ(0) is
equal to the Reidemeister torsion under certain assumptions on the eigenvalues
of ρ([γ ]) for every closed orbit. This geometric condition was in fact shown
to be equivalent to the spectral condition we have here [10, § 2.6].

Observe now that Theorem 2 says that the Ruelle zeta function evaluated
at λ = 0 is locally constant under a certain spectral assumption. This result
suggests that this value should be an invariant of the acyclic representation
class [ρ] but it does not say a priori that it should be equal to the Reidemeister
torsion. In dimension 3, this is indeed the case under the extra assumptions
that X0 preserves a smooth volume form and that ρ is unitary as shown by
Theorem 1. For contact Anosov flows and unitary representation ρ, we prove
that it is enough (in order to apply Theorem2) to verify that 0 is not a pole of the
meromorphic extension of RX0(λ) restricted to�

n0(M, E)where dim(M) =
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2n0 + 1. For hyperbolic manifolds, using a factorisation of dynamical zeta
functions associated toX in terms of infinite products of Selberg zeta functions
associated to certain irreducible representations of SO(n0), we can show thatX
has no 0 resonance in the acyclic case when dimM = 5 (see Proposition 7.7)
and we deduce the following extension of Fried conjecture (1.2):

Theorem 3 Suppose that M = �\H3 is a compact oriented hyperbolic man-
ifold of dimension 3 and denote by X0 the geodesic vector field onM = SM.
Let E be a smooth Hermitian vector bundle with a flat connection ∇ on
M inducing an acyclic and unitary representation ρ : π1(M) → U (Cr ).
Then, X0 has no resonance at 0 and there exists a nonempty neighborhood
U(X0) ⊂ C∞(M; TM) of X0 so that1

∀X ∈ U(X0), ζX,ρ̃ (0) = τρ(M)2,
where ρ̃ is the lift of ρ to M.

We emphasize that these are the first examples of geodesic flows with
variable negative curvature where the Fried conjecture holds in dimension
n = 2n0 + 1 > 3, except for locally symmetric spaces. In dimension n0 > 2,
the computations for the order of 0 as a resonance of X0 on S(�\Hn0+1) are
involved and do not always seem to be topological (cf Remark 10). Finally, the
existence of acyclic unitary representations on hyperbolic 3-manifolds follows
for instance from [29].

Organisation of the article

In Sect. 3, we describe in detail the dynamical framework and construct the
escape function needed to build appropriate functional spaces. In Sects. 4
and 5, we describe the variation of the Ruelle zeta function for Re(z) large. In
Sect. 6, we show the analytic continuation of our variation formula up to z = 0
relying on the microlocal methods of [16,21]. In Sect. 7, we use the variation
formula andmethods of [10,13,17,63] to discuss the Fried conjecture. Finally,
“Appendix A” gives technical details on the escape function and “Appendix B”
discusses Selberg’s trace on symmetric tensors.

Conventions

For a smooth compactmanifoldM, wewill always use the following terminol-
ogy: T ∗0 M := {(x, ξ) ∈ T ∗M; ξ �= 0}, D′(M) is the space of distributions,
(i.e. the dual to the space of smooth functions, once a fixed smooth density

1 Recall from [27] that τρ(M)2 = τρ̃ (M).
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has been chosen), Hs(M) := (1 + �)−s/2L2(M) if � is the Laplacian of
some fixed Riemannian metric on M. If B is a regularity space (such as
Ck, Hs,C∞,D′) and E a smooth vector bundle onM, B(M; E) denotes the
space of sections with regularity B. A set � ⊂ T ∗M (or ⊂ T ∗0 M) is called
conic if (x, ξ) ∈ � implies (x, tξ) ∈ � for all t > 0.

3 Dynamical and analytical preliminaries

Let X be a smooth vector field on a n-dimensional compact manifoldM, and
denote by ϕXt its flow on M. Recall that a vector field is said to be Anosov if
there exist some constants C, λ > 0 and a dϕt -invariant continuous splitting
such that, for every t ≥ 0,

TM = RX ⊕ Eu(X)⊕ Es(X),

∀v ∈ Es(X, x), ‖dϕXt (x)v‖ ≤ Ce−λt‖v‖,
∀v ∈ Eu(X, x), ‖dϕX−t (x)v‖ ≤ Ce−λt‖v‖.

(3.1)

Here we have equippedMwith a smooth Riemannian metric g that will be
fixed all along the paper. The subset of Anosov vector fields

A := {X ∈ C∞(M; TM) : X is Anosov}
forms an open subset ofC∞(M; TM) in the C∞ topology. Next, we introduce
the dual decomposition to (3.1):

T ∗M = E∗0(X)⊕ E∗u(X)⊕ E∗s (X)

where E∗0(X) (Eu(X)⊕ Es(X)) = {0}, E∗s/u(X)
(
Es/u(X)⊕ RX

) = {0}.We
have for every t ≥ 0,

∀v ∈ E∗s (X, x), ‖(dϕXt (x)T )−1v‖ ≤ Ce−λt‖v‖,
∀v ∈ E∗u(X, x), ‖(dϕX−t (x)T )−1v‖ ≤ Ce−λt‖v‖, (3.2)

where C > 0 may be larger than in (3.1).
We define the symplectic lift of ϕXt as follows:

∀(x, ξ) ∈ T ∗M, �X
t (x, ξ) :=

(
ϕXt (x), (dϕ

X
t (x)

T )−1ξ
)
,

and the induced flow on S∗M:

�̃X
t (x, ξ) :=

(
ϕXt (x),

(dϕXt (x)
T )−1ξ∥∥(dϕXt (x)T )−1ξ
∥∥
ϕXt (x)

)
.
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The flow �X
t is the Hamiltonian flow corresponding to the Hamiltonian

H(x, ξ) := ξ(X (x)). The vector fields corresponding to these lifted flows
will be denoted by XH and X̃ H .

3.1 Invariant neighborhoods

Fix some X0 ∈ A. We will now recall how to construct cones adapted to the
Anosov structure. For that purpose, we decompose any given ξ ∈ T ∗x M as

ξ = ξ0 + ξu + ξs ∈ E∗0(X0, x)⊕ E∗u(X0, x)⊕ E∗s (X0, x),

and we define a new norm on the fibers of T ∗M

‖ξ‖′x := ‖ξ0‖x +
∫ 0

−∞
e−λ0 t‖(dϕX0

t (x)
T )−1ξu‖ϕX0t (x)

dt

+
∫ +∞

0
eλ0t‖(dϕX0

t (x)
T )−1ξs‖

ϕ
X0
t (x)

dt,

with λ0 > 0 small enough to ensure that the integrals converge. With these
conventions, one has, for every t0 ≥ 0,

∀ξ ∈ E∗s (X0, x), ‖(dϕX0
t0 (x)

T )−1ξ‖′ ≤ e−λ0t0‖ξ‖′,
∀ξ ∈ E∗u(X0, x), ‖(dϕX0−t0(x)

T )−1ξ‖′ ≤ e−λ0t0‖ξ‖′.

Note also that, provided the initial metric g is chosen in such a way that
‖X0(x)‖x = 1 for every x inM, one has, for every t0 ∈ R,

∀ξ ∈ E∗0(X0, x), ‖(dϕX0
t0 (x)

T )−1ξ‖′ = ‖ξ‖′.

In other words, we have constructed a norm adapted to the dynamics of ϕX0
t .

Recall that this new norm is a priori only continuous. Nevertheless, we may
use it to define stable and unstable cones. We fix a small parameter α > 0 and
we introduce a strongly stable cone and a weakly unstable one:

Css(α) := {(x, ξ) ∈ T ∗0 M : ‖ξu + ξ0‖′x ≤ α‖ξs‖′x
}
,

Cu(α) := {(x, ξ) ∈ T ∗0 M : α‖ξu + ξ0‖′x ≥ ‖ξs‖′x
}
.

In the following, α is always chosen strictly less than 1 to ensure thatCss(α)∩
Cu(α) = ∅. We have the following properties, for every t ≥ 0,
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∀(x, ξ) ∈ Css(α), ‖(dϕX0−t (x)T )−1(ξu + ξ0)‖′
ϕ
X0−t (x)

≤ e−tλ0α‖(dϕX0−t (x)T )−1(ξs)‖′
ϕ
X0−t (x)

,

∀(x, ξ) ∈ Cu(α), αe−tλ0‖(dϕX0
t (x)

T )−1(ξu + ξ0)‖′
ϕ
X0
t (x)

≥ ‖(dϕX0
t (x)

T )−1(ξs)‖′
ϕ
X0
t (x)

.

In particular, the cone Cu(α) (resp. Css(α)) is stable under the forward (resp.
backward) flow of ϕX0

t . Similarly, we define two conesCuu(α) andCs(α)with
−X0 replacing X0 in the definitions. The following result

will be useful in our analysis:

Lemma 3.1 Let X0 ∈ A and let 0 < α < 1 so that Css(α) ∩ Cu(α) = ∅.
There exist a neighborhood Uα(X0) of X0 in the C∞ topology such that

∀X ∈ Uα(X0), ∀t ≥ 1, �X−t (Css(α)) ⊂ Css(α), and �X
t (C

u(α)) ⊂ Cu(α).

Proof We only discuss the case of Cu(α) as the other case is similar. From the
above construction, one knows that

�
X0
1

(
Cu(α)

) ⊂ Cu (αe−λ0
)

� Cu
(
αe−

λ0
2

)
� Cu(α).

Hence, for any X in a small neighborhood of X0 in the C∞-topology, one has

�X
1

(
Cu(α)

) ⊂ Cu
(
αe−

λ0
2

)
,

from which one infers that, for every positive integer j , �X
j (C

u(α)) ⊂
Cu
(
αe−

λ0
2

)
. Now, as for every 0 ≤ t ≤ 1,

�
X0
t

(
Cu
(
αe−

λ0
2

))
⊂ Cu

(
αe−

λ0
2

)
,

one can deduce that, for every X close enough to X0, one has

∀t ≥ 1, �X
t

(
Cu(α)

) ⊂ Cu(α).

This concludes the proof of the Lemma. ��
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3.2 Escape functions

In order to study analytical properties of Anosov flows, we make use of the
microlocal tools developped by Faure–Sjöstrand [21], Dyatlov–Zworski [16].
One of the key ingredients of these spectral constructions is the existence of
an escape function:

Lemma 3.2 (Escape functions) There exist a function f ∈ C∞(T ∗M,R+)
which is 1-homogeneous for ‖ξ‖x ≥ 1, a constant c0 > 0 and a constant
0 < α̃0 < 1 such that the following properties hold:

(1) f (x, ξ) = ‖ξ‖x for ‖ξ‖x ≥ 1 and (x, ξ) /∈ Cuu(α̃0) ∪ Css(α̃0),
(2) for every N1 > 16N0 > 0 and 0 < α0 < α̃0, there exist 0 < α1 < α0

and a neighborhood U(X0) of X0 in the C∞-topology for which one can
construct, for any X in U(X0), a smooth function

mN0,N1
X : T ∗M→ [−2N0, 2N1]

with the following requirements
• mN0,N1

X is 0-homogeneous for ‖ξ‖x ≥ 1,

• mN0,N1
X (x, ξ/‖ξ‖x ) ≥ N1 on Css(α1), m

N0,N1
X (x, ξ/‖ξ‖x ) ≤ −N0 on

Cuu(α1),
• mN0,N1

X (x, ξ/‖ξ‖x ) ≥ N1
8 outside Cuu(α0)

• there exist R ≥ 1 such that, for every X ∈ U(X0) and for every (x, ξ)
outside a small vicinity of E∗0(X0) (independent of X), one has

‖ξ‖x ≥ R �⇒ XH (G
N0,N1
X )(x, ξ) ≤ −2c0 min{N0, N1}, (3.3)

where

GN0,N1
X (x, ξ) := mN0,N1

X (x, ξ) ln(1+ f (x, ξ)), (3.4)

and where R can be chosen equal to 1 on Cuu(α1) ∪ Css(α1).
• there exists a constant CN0,N1 > 0 such that, for every X ∈ U(X0),

‖ξ‖x ≥ R �⇒ XH (G
N0,N1
X )(x, ξ) ≤ CN0,N1, (3.5)

(3) Moreover,

X ∈ C∞(M; T ∗M)→ mN0,N1
X ∈ C∞(T ∗M, [−2N0, 2N1])

is a smooth function.
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Under this form, this Lemma was proved in [21, Lemma 1.2] (or Lemma
[16, Lemma C.1]). For our purpose, the only inputs with the statements from
these references is that we need the escape function to depend smoothly on the
vector field X and the conic neighborhoods must be chosen uniformly w.r.t. X .
We postpone the proof of this Lemma to “Appendix A”. Note that, compared
with the construction of [21], we do not have decay of the escape function
GN0,N1

X in a small vicinity of the flow direction but this will be compensated
by the ellipticity of the principal symbols in these directions—see e.g. the proof
of Proposition 6.1 below.We could have chosen f (x, ξ) to depend on X and in
thatmanner,wewould get XH (G

N0,N1
X ) ≤ 0 for every ξ large enough even near

the flow direction—see [21]. Despite the fact that f (x, ξ) is not equal to ‖ξ‖x
in a vicinity of E∗u and of E∗s , we emphasize thatC−1‖ξ‖x ≤ f (x, ξ) ≤ C‖ξ‖x
for |ξ | ≥ 1 (for some uniform constant C > 0).

The different properties stated in this Proposition may look technical but,
except for the third part of (2), they all played a role in the microlocal proof
given in [21]. Even if it will not be used in our analysis, this extra point
compared with [21] can be used to describe the wavefront set of the resonant
states uniformly for a family of Anosov vector fields near a given X0. This
Lemma is also used under that form in [36]. This is the reason why we wrote
the it in such a generality.

3.3 Pollicott–Ruelle spectrum

Consider a smooth complex vector bundle E → M equipped with a flat
connection ∇ : �0(M, E) → �1(M, E), where we denote �k(M, E) =
C∞(M;�k(T ∗M)⊗ E). This connection induces a representation

ρ : π1(M)→ GL(Cr ) (3.6)

by taking ρ([γ ]) to be the parallel transport with respect to ∇ along a repre-
sentative γ of [γ ] ∈ π1(M). We also denote by E the graded vector bundle

E :=
n⊕

k=0
Ek, Ek := ∧k(T ∗M)⊗ E .

Associated with this connection is a twisted exterior derivative d∇ acting on
the space�(M, E) = ⊕n

k=0�k(M, E). Since∇ is flat, one has d∇ ◦d∇ = 0.
As before, we fix a smooth Riemannianmetric g onM and a smooth hermitian
structure 〈., .〉E on E . This induces a scalar product on �(M, E) by setting,
for every (ψ1, ψ2) ∈ �k(M, E),
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〈ψ1, ψ2〉L2 :=
∫

M
〈ψ1, ψ2〉Ekdvolg.

We set L2(M, E) (or L2(M) if there is no ambiguity) to be the completion
of �(M, E) for this scalar product. The set of De Rham currents valued2 in
E is denoted by D′(M, E).
Given X ∈ A, we define the twisted Lie derivative

X := iXd
∇ + d∇ iX : �(M, E)→ �(M, E). (3.7)

In local coordinates (x1, . . . , xn), its action can be written as follows. Fix
(e j )1≤ j≤r a local basis of the vector bundle E . For every 1 ≤ j ≤ r and every
J ⊂ {1, . . . , n}, one has

X
(
u j,J dxJ ⊗ e j

) = LX (u j,J )dxJ ⊗ e j + u j,JLX (dxJ )⊗ e j

+u j,J dxJ ⊗
(∇Xe j

)

where LX is the standard Lie derivative acting on smooth forms and dxJ =
dxJ1∧ . . . , dxJk if J = (J1, . . . , Jk). Hence, as the last two terms in the above
sum are of order 0, the differential operator−iX has diagonal principal symbol
given by

σ(−iX)(x, ξ) = H(x, ξ)IdE (3.8)

(recall H(x, ξ) = ξ(X (x))). Note that X preserves �k(M, E) for each k.
Also, since [X, iX ] = 0, it also preserves sections of the bundle (depending
smoothly on X )

E0 := E ∩ ker iX =
n−1⊕

k=0
Ek ∩ ker iX︸ ︷︷ ︸

:=Ek
0

. (3.9)

It was shown in [7,16,21,30] that this differential operator has a discrete
spectrum when acting on convenient Banach spaces of currents. Let us recall
this result using the microlocal framework from [16,21]. Using [69, Th. 8.6]
and letting N0, N1 > 0 be two positive parameters, we set

Ah(N0, N1, X) := Oph

(
eG

N0,N1
X IdE

)
, (3.10)

2 Observe that E ′ can be identified with E via the Hermitian structure.
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where Oph is a semiclassical quantization procedure onM [69, Th. 14.1]. As
in [19, Lemma 12] (or the semiclassical version of it), if h > 0 is small enough
there is a semiclassical pseudo-differential operator Ã−1h (N0, N1, X) with

semiclassical principal symbol e−G
N0,N1
X so that Ah(N0, N1, X)Ã

−1
h (N0, N1,

X) = Id + h∞�−∞(M; E), which implies that Ah(N0, N1, X)−1 exists and
is a pseudodifferential operator with principal symbol e−G

N0,N1
X and local full

symbol (in charts) that only involves derivatives of G.
We then define the (semiclassical) anisotropic Sobolev spaces:

∀0 < h ≤ 1, Hm
N0,N1
X

h (M, E) := Ah(N0, N1, X)
−1L2(M; E),

where we used the subscript X to remind the dependence of these spaces on
the vector field X . These spaces are related to the usual semiclassical Sobolev
spaces Hk

h (M; E) := (1 + h2�E)−k/2L2(M; E) as follows (�E is some
positive Laplacian on E)

H2N1
h (M, E) ⊂ Hm

N0,N1
X

h (M, E) ⊂ H−2N0
h (M, E), (3.11)

with continuous injections. Stated in the case of a general smooth vector bundle
E , the main results from [21, Th. 1.4-5, § 5] and [16, Prop. 3.1-3] read as
follows:

Proposition 3.3 Let X be an element in U(X0) where U(X0) is the neighbor-
hood of Lemma 3.2. Then, there is h0 > 0 small and exists CX > 0 (depending
continuously3 on X ∈ A) such that, for any N1 > 16N0 > 0, the resolvent

(X+ λ)−1 =
∫ +∞

0
e−tXe−tλdt : Hm

N0,N1
X

h0
(M, E)→ Hm

N0,N1
X

h0
(M, E)

is holomorphic in {Re(λ) > CX } and has a meromorphic extension to

{Re(λ) > CX − c0N0} ,
where c0 > 0 is the constant from Lemma 3.2. The poles of this meromor-
phic extension are called the Pollicott–Ruelle resonances and the range of
the residues are the corresponding generalised resonant states. Moreover, the
poles and residues of the meromorphic extension are intrinsic and do not
depend on the choice of escape function used to define the anisotropic Sobolev
space.

3 Even if not explicitely written in [21], this observation can be deduced from paragraph 3.2 of
this reference and from Lemma 3.2 above.
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This result should be understood as follows. In these references, (X + λ) :
D(X)→ Hm

h is shown to be a family of Fredholm operators of index 0 depend-
ing analytically on λ in the region {Re(λ) > CX − c0N0}. Then, the poles of
the meromorphic extension are the eigenvalues of−X onHm

N0,N1
X

h (M, E). We
shall briefly rediscuss the proofs of [16,21] in Proposition 6.1 below as we
will need to control the continuity of (X + λ)−1 with respect to X ∈ A. We
also refer to the recent work of Guedes-Bonthonneau for related results [34].

Remark 1 For technical reasons appearing later in the analysis of the wave-
front set of the Schwartz kernel of (X+λ)−1, we use a semiclassical parameter
h and a semiclassical quantization, even though the operator X + λ is not
semiclassical. For this Proposition, one just fix h = h0 but some statement for
h → 0 will be used later on in the proof of Proposition 6.3.

Remark 2 In the following, we will take N1 = 20N0 and thus we will omit
the index N1 in GN0,N1

X , mN0,N1
X and Ah(N0, N1, X).

4 Twisted Ruelle zeta function and variation formula

In this section,we shall introduce theRuelle zeta function andderive a formula4

for its variation with respect to the vector field X ∈ A. More precisely, we
consider a smooth 1-parameter family τ ∈ (−1, 1) �→ Xτ ∈ A onM and we
fix a representation ρ : π1(M)→ GL(Cr ). We define the Ruelle zeta function
of (Xτ , ρ) as in [27] by the converging product5

ζτ,ρ(λ) :=
∏

γτ∈Pτ
det(1− εγτ ρ([γτ ])e−λ
(γτ )) (4.1)

for Re(λ) > �τ (for some �τ > 0), where Pτ is the set of primitive periodic
orbits of Xτ , [γτ ] represents the class of γτ in π1(M), and 
(γτ ) denotes
the period of the orbit γτ . Recall also that εγτ is the orientation index of the
closed orbit. To justify the convergence, it suffices to combine the fact that
for a fixed Hermitian product 〈·, ·〉E on E , there is C > 0 depending only
on (∇, E, 〈·, ·〉E ) such that ||ρ([γτ ])||E→E ≤ eC
(γτ ), together with Margulis
bound [51] on the growth of periodic orbits

|{γ ∈ Pτ : 
(γτ ) ≤ T }| = O
(
eTh

τ
top

T

)
as T →+∞ (4.2)

4 Similar method is also used in [22] for Selberg zeta function on surfaces of constant curvature.
5 As we shall consider families τ �→ Xτ , if no confusion is possible we will use the index (or

the exponent) τ instead of Xτ in the various quantities ϕ
Xτ
t , ζXτ ,ρ , etc.
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where hτtop denotes the topological entropy of the flowϕ
τ
t of Xτ at time t = 1—

see also [16, Lemma 2.2]. Recall that, for weak-mixing Anosov flows, one has
in fact an equivalent.

Remark 3 In [16,30], the proof of the meromorphic continuation of the Ruelle
zeta function was given under the extra assumptions that εγ = 1 for every
γ ∈ P , and that the representation ρ is trivial. The analysis of the resolvent
and of the dynamical zeta functions in the case of general bundle is done in [14,
§5, Th. 4] in a setting containing the case of Anosov flows. We thus refer to
that last article for the discussion about non-trivial representations and general
bundles. The factor εγ in (4.1) allows to compensate the assumption about
orientability of the stable/unstable bundles.

4.1 Variation of lengths of periodic orbits

The first ingredient is the following consequence of the structural stability of
Anosov flows:

Lemma 4.1 Assume that X0 ∈ A. There exists a neighborhood U(X0) of
X0 such that τ �→ Xτ ∈ U(X0) is a smooth family of Anosov vector fields
on M topologically conjugated to X0. Moreover, there is a smooth family
τ �→ hτ ∈ C0(M,M) of conjugating homeomorphisms defined near τ = 0
such that hτ (γ0) = γτ for each γ0 ∈ P0, the map τ �→ 
(γτ ) = 
(h(γ0)) is
C1 near 0 for each γ0 ∈ P0, and

∂τ 
(γτ ) = −
∫

γτ

qτ

if ∂τ Xτ = qτ Xτ + X⊥τ , with X⊥τ ∈ C0(M; Eu(Xτ )⊕ Es(Xτ )).

Proof We consider the Anosov vector field X0. Following [11, App. A], we
introduce the space CX0(M,M) of continuous functions h from M to M
which areC1 along X0. Thismeans that, for all x inM, themap t �→ h◦ϕtX0

(x)

is C1 and the map x �→ d
dt

(
h ◦ ϕX0

t (x)
)

t=0 =: DX0h(x) ∈ TM is con-

tinuous. Building on earlier arguments of Moser and Mather for Anosov
diffeomorphisms, de la Llave, Marco and Moriyon proved the structural sta-
bility theorem of Anosov via an implicit function theorem [11, App. A]. ��
Proposition 4.2 (De la Llave-Marco-Moriyon [11]) With the previous con-
ventions, there exists an open neighborhood U(X0) of X0 in A and a C∞
map

S : X ∈ U(X0) �→ (hX , θX ) ∈ CX0(M,M)× C0(M,R),
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where S(X0) = (Id, 1) and

∂t (hX (ϕ
0
t (x)))|t=0 = θX (x)X (hX (x)), ∀x ∈M

if ϕ0t is the flow of X0. Moreover, hX is a homeomorphism of M for each X.

We take a connected component of the curve Xτ lying in U(X0), which
amounts to consider Xτ for |τ | < δ with δ > 0 small enough. Writing the
flow of Xτ by ϕτt and hτ := hXτ , θτ := θXτ , this result can be rewritten in an
integrated version:

∀x ∈M, hτ (ϕ
0
t (x)) = ϕτ∫ t

0 θτ ◦ϕ0s (x)ds
(hτ (x)).

Fix now a primitive closed orbit γ0 of the flow ϕ0t (with period 
(γ0)) and fix
a point x0 on this orbit. From the previous formula, one has

hτ (x0) = ϕτ∫ 
(γ0)
0 θτ ◦ϕ0s (x0)ds

(hτ (x0)) .

In particular, the period of the closed orbit for Xτ equals


(γτ ) =
∫

γ0

θτ ∈ C∞((−δ, δ),R∗+).

Let us now compute its derivative by differentiating hτ (x0) = ϕτ
(γτ )(hτ (x0))
at τ = 0:

(
∂hτ
∂τ
(x0)

)

|τ=0
= ∂

∂τ
ϕτ
(γ0)(x0)|τ=0 + ∂τ 
(γτ )|τ=0X0(x0)

+ dϕ0
(γ0)(x0) ·
(
∂hτ
∂τ
(x0)

)

|τ=0
. (4.3)

Let βx0 : Tx0M → R be defined such that, if V ∈ Tx0M, then V =
βx0(V )X0(x0)+ V⊥ where V⊥ ∈ Eu,x0(X0)⊕ Es,x0(X0). Pairing (4.3) with
βx0 , we get

∂τ 
(γτ )|τ=0 = −βx0
(
∂

∂τ
ϕτ
(γ0)(x0)|τ=0

)
. (4.4)
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Since βx0 is dϕ
0

(γ0)

(x0) invariant, we have

βx0

(
∂

∂τ
ϕτ
(γ0)(x0)|τ=0

)
= βx0

((
dϕ0
(γ0)(x0)

)−1 · ∂
∂τ
ϕτ
(γ0)(x0)|τ=0

)

=
∫ 
(γ0)

0

d

dt
βx0

((
dϕ0t (x0)

)−1 · ∂
∂τ
ϕτt (x0)|τ=0

)
dt.

(4.5)

On the other hand, we have

∂

∂t

((
dϕ0t (x0)

)−1 · ∂
∂τ
ϕτt (x0)|τ=0

)

= dϕ0t (x0)
−1 ∂2

∂s∂τ

(
ϕ0−s ◦ ϕτt+s(x0)

)
|(s,τ )=0 ,

and ∂
∂s (ϕ

0−s ◦ϕτt+s(x0)) = −X0(ϕ
0−s ◦ϕτt+s(x0))+Xτ (ϕ0−s ◦ϕτt+s(x0))+O(s).

Hence, one finds

∂

∂t

((
dϕ0t (x0)

)−1 · ∂
∂τ
ϕτt (x0)|τ=0

)
= (dϕ0t (x0)

)−1 ·
(
∂Xτ
∂τ

(
ϕ0t (x0)

))

|τ=0
.

(4.6)

By (4.4)–(4.6) and by the invariance of the Anosov splitting, we get the desired
equation (the same argument works at each τ instead of τ = 0). ��
Remark 4 A consequence Lemma 4.1 is that, for every γ0 ∈ P0, one has


(γ0)

2
≤ 
(γτ ) ≤ 2
(γ0),

provided that U(X0) is chosen small enough (independently of the closed
orbit).

4.2 Variation of Ruelle zeta function in the convergence region

We start with the following result which is a consequence of Lemma 4.1.

Lemma 4.3 Under the above assumptions, there exist τ0 > 0 and C0 > 0
such that Xτ ∈ U(X0) for every τ ∈ (−τ0, τ0) and such that the map

τ ∈ (−τ0, τ0) �→ ζτ,ρ(.) ∈ Hol(�0)
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is of class C1 where �0 := {Re(λ) > C0}.Moreover, for every τ ∈ (−τ0, τ0)
ζτ,ρ(λ)

= ζ0,ρ(λ) exp
⎛

⎝−λ
∫ τ

0

∑

γτ ′


�(γτ ′)

(γτ ′)

(∫

γτ ′
qτ ′

)
e−λ
(γτ ′ )εγτ ′ Tr(ρ([γτ ′ ]))dτ ′

⎞

⎠ ,

where the sum runs over all closed orbits of Xτ ′ , 
�(γτ ′) is the period of the
primitive orbit generating γτ ′ , εγτ ′ is the orientation index

6 of γτ ′ and

∫

γτ ′
qτ ′ =

∫ 
(γτ ′ )

0
qτ ′ ◦ ϕτ ′t dt.

Proof The fact that λ �→ ζτ,ρ(λ) is holomorphic in some half plane {Re(λ) >
Cτ } was already discussed. The fact that C0 can be chosen uniformly in τ
follows fromLemma4.1 andRemark 4 togetherwith (4.2) at τ = 0. Let us now
compute the derivative with respect to the parameter τ . For that purpose, we
compute the derivative of each term in the sum defining log ζτ,ρ(.). Precisely,
we write

∂τ

(
log det

(
Id− εγτ e−λ
(γτ )ρ([γτ ])

))

= λ∂τ 
(γτ )
+∞∑

k=1
e−kλ
(γτ )εkγτTr(ρ([γτ ])k).

The same kind of considerations as above allows to verify that the sum of
this quantity over all primitive orbits is a continuous map from (−τ0, τ0) to
Hol(�0). Hence, the map τ ∈ (−τ0, τ0) �→ ln ζτ,ρ(.) ∈ Hol(�0) is C1 with a
derivative given by

∂τ log ζτ,ρ(λ) = λ
∑

γ∈Pτ
∂τ 
(γτ )

+∞∑

k=1
e−λk
(γτ )εkγτTr(ρ([γτ ])k).

It remains to integrate this expression between 0 and τ and use Lemma 4.1. ��
One of the technical issue with the formula of Lemma 4.3 is that qτ is in

general C0 (or Hölder), and it makes it difficult to relate it with distributional
traces as in [16,30]. To bypass this problem we introduce an invertible smooth
bundle map Sτ : TM→ TM such that Sτ (X0) = Xτ and

∀0 ≤ k ≤ n, A(k)τ := ∂τ (∧k Sτ )
(
∧k S−1τ

)
: ∧k(TM)→ ∧k(TM). (4.7)

6 For a nonprimitive orbit k.γ , this is equal to εk.γ = εkγ .
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Remark 5 In order to get an intuition on the introduction of this extra-operator,
let us observe that Sτ will play in some sense the role of the Hodge-star
map in the analytical definition by Ray and Singer of torsion [58]. Indeed,
one has Xτ := ιXτ d

∇ + d∇ ιXτ , with ιXτ which can be rewritten as ιXτ =(∧(STτ )−1
)◦ ιX ◦

(∧STτ
)
.Note also that, using the conventions of Lemma 4.1,

one has A(1)τ (Xτ ) = qτ Xτ + X⊥τ .
Our next Lemma allows to express the variation of the Ruelle zeta function

in terms of this bundle map A(k)τ instead of the continuous function qτ :

Lemma 4.4 With the conventions of Lemma 4.3, one has, for every τ1 ∈
(−τ0, τ0), for every closed orbit γτ1 and for every x ∈ γτ1 ,

qτ1(x) = −
1

det
(
Id−P(γτ1)

)
n∑

k=0
(−1)k Tr

(
A(k)τ1 (x)

(
∧kdϕτ1−
(γτ1 )(x)

))
,

where P(γτ1) = dϕτ1−
(γτ1 )(x)|Eu(Xτ1 )⊕Es(Xτ1 )
is the linearized Poincaré map

at x ∈ γτ1 .
Proof Fix τ1 in (−τ0, τ0) and x belonging to a closed orbit γτ1 . Write

det
(
Id− Sτ S−1τ1 dϕτ1−
(γτ1 )(x)

)

det
(
Id− P(γτ1)

)

=
det
(
Id− dϕτ1−
(γτ1 )(x)− (Sτ − Sτ1)S

−1
τ1

dϕτ1−
(γτ1 )(x)
)

det(Id− P(γτ1))
.

We now differentiate this expression at τ = τ1. We have

(Sτ − Sτ1)S
−1
τ1
= (τ − τ1)

(
dSτ
dτ

)

|τ=τ1
S−1τ1 +O((τ − τ1)2).

Observe now that
(
dSτ
dτ

)

|τ=τ1
S−1τ1 (Xτ1) =

(
dXτ
dτ

)

|τ=τ1
. Hence, one finds

qτ1 = −
d

dτ

⎛

⎝
det
(
Id− Sτ S−1τ1 dϕτ1−
(γτ1 )(x)

)

det
(
Id− P(γτ1)

)

⎞

⎠

|τ=τ1

by using the decomposition RXτ1 ⊕ Es(Xτ1)⊕ Eu(Xτ1). On the other hand,

det
(
Id− Sτ S

−1
τ1

dϕτ1−
(γτ1 )(x)
)
=

n∑

k=0
(−1)kTr

(
∧k
(
Sτ S

−1
τ1

dϕτ1−
(γτ1 )(x)
))
.
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Differentiating this expression at τ = τ1, this yields

qτ1 = −
1

det
(
Id−P(γτ1)

)
n∑

k=0
(−1)kTr

(
d

dτ

(
∧k
(
Sτ S

−1
τ1

dϕτ1−
(γτ1 )(x)
))

|τ=τ1

)
,

from which the conclusion follows. ��
Combining Lemmas 4.3 and 4.4, we get

Corollary 4.5 With the conventions of Lemma 4.3, one has, for every τ ∈
(−τ0, τ0) and for λ ∈ �0

ζτ,ρ(λ)

ζ0,ρ(λ)

= exp

⎛

⎝−λ
∫ τ

0

n∑

k=0
(−1)k

∑

γτ ′


�(γτ ′)

(γτ ′)

(∫
γτ ′ Tr

(
A(k)
τ ′
(
∧kdϕτ ′−
(γτ ′ )

)))

| det(Id − P(γτ ′))|eλ
(γτ ′ )
Tr(ρ([γτ ′ ]))dτ ′

⎞

⎠ .

Note that the reason for the value at 0 of the twisted Ruelle zeta function being
locally constant appears clearly in this last statement. Yet, this formula is only
valid for a large real part of λ and the rest of the proof consists in showing that
this formula meromorphically extends at λ = 0. This is where our hypothesis
on Ruelle resonances at 0 will play a role.

In order to interpret this variation formula spectrally, we already observe
that we recognize here the Jacobian terms appearing in the Guillemin trace
formula [37, p. 315] when we consider the action on the full vector bundle of
differential forms of degree k—see (5.2) below.

Remark 6 As was already said, the reason for the introduction of the bundle
map Aτ was due to the lack of smoothness of qτ in the non-contact case. In
the contact case, the formula could be written more simply as follows:

ζτ,ρ(λ)

ζ0,ρ(λ)

= exp

⎛

⎝λ
∫ τ

0

n∑

k=0
(−1)kk

∑

γτ ′


�(γτ ′)


(γτ ′)

(∫
γτ ′

qτ ′
)
Tr
(
∧kdϕτ

′
−
(γτ ′ )

)

| det(Id − P(γτ ′))|eλ
(γτ ′ )
Tr(ρ([γτ ′ ]))dτ ′

⎞

⎠ ,

where we used Lemma 4.3 and the formula (see [27, p. 50])

εγτ =
det(Id − P(γτ ))

| det(Id − P(γτ ))| =
n∑

k=0
(−1)k Tr

(∧k P(γτ )
)

| det(Id − P(γτ ))|

=
n∑

k=0
(−1)k+1k

Tr
(
∧kdϕτ−
(γτ )

)

| det(Id − P(γτ ))| .
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Under that form, this variation formula would be amenable to our microlocal
techniques as qτ is smooth and the formulas below would be slightly simpler.
Yet, in the general case, we have to rewrite qτ using Aτ aswe did in Lemma 4.4.

5 Variation formula in the non-convergent region

We recall that [16,30] show that ζτ,ρ(λ) admits a meromorphic continuation
λ ∈ C. This was achieved by relating the Ruelle zeta function to some flat

trace of some operator. We will use similar ideas to rewrite ζτ,ρ(λ)
ζ0,ρ (λ)

in terms of
flat traces by analysing

F (k)τ (λ) :=
∑

γτ


�(γτ )


(γτ )

(∫
γτ
Tr
(
A(k)τ
(
∧kdϕτ−
(γτ )

)))
e−λ
(γτ )

| det(Id − P(γτ ))| Tr(ρ([γτ ])).

(5.1)

Note that, in these references, the meromorphic extension was proved under
some orientability hypothesis but this assumption can be removed by intro-
ducing the orientation index in the definition of the Ruelle zeta function as we
did.

5.1 Reformulation via distributional traces

Let us startwith a brief reminder onflat traces. First, ifM is a compactmanifold
and � ⊂ T ∗0 M a closed conic subset, we define, following Hörmander [42,
Section 8.2], the space

D′�(M) := {u ∈ D′(M);WF(u) ⊂ �}.

Its topology is described using sequences in [42, Def. 8.2.2.], we will recall it
later. Denote by � the diagonal in M×M and by

N∗� := {(x, x, ξ,−ξ) : ξ �= 0} ⊂ T ∗0 (M×M).

We fix a smooth density onM, so that distributions can be viewed with scalar
values rather than densities. If E →M is a vector bundle overM, the Atiyah–
Bott flat trace of a K ∈ D′�(M×M; E ⊗ E∗) with � ∩ N∗� = ∅ is defined
by

Tr�(K ) := 〈Tr(i∗�K ), 1〉
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where i� : M → M ×M is the natural inclusion map i�(x) := (x, x)
and Tr denotes the local trace of endomorphisms End(E) = E ⊗ E∗, so that
Tr(i∗�K ) ∈ D′(M).

Lemma 5.1 For each closed conic subset � ⊂ T ∗(M ×M) satisfying � ∩
N∗� = ∅, the flat trace Tr� is a sequentially continuous linear form

Tr� : D′�(M×M; E ⊗ E∗)→ C

with respect to the topology of D′�(M×M; E ⊗ E∗).

Proof This follows directly from continuity of the pullback from D′�(M ×
M; E ⊗ E∗) �→ D′(M) [42, Theorem 8.2.4] and continuity of the pairing
against 1. ��
For an operator B : C∞(M; E) → D′(M; E) with Schwartz kernel KB
satisfying KB ∈ D′�(M×M; E ⊗ E∗) for some � with � ∩ N∗� = ∅, we
write

Tr�(B) := Tr�(KB).

Then, by a slight extension of the Guillemin trace formula [37, p. 315], we
have

Tr�
(
A(k)τ e−tXτ |�k(M,E)

)

=
∑

γτ


�(γτ )


(γτ )

∫
γτ
Tr
(
A(k)τ
(
∧kdϕτ−
(γτ )

))

| det(Id− P(γτ ))| Tr(ρ([γτ ]))δ(t − 
(γτ )),

(5.2)

in D′(R>0), where this equality holds for every τ such that Xτ ∈ U(X0)

and where the sum runs over all closed orbits. We choose t0 > 0 so that
there is some c > 0 uniform in τ (τ is also close enough to 0) such that
minx∈M dg(x, ϕτt0(x)) ≥ c and define the meromorphic family of operators
(well-defined by Proposition 3.3)

Qτ (λ) := e−t0Xτ (−Xτ − λ)−1. (5.3)

Our assumptionon t0 will be used later onwhenwewill bound thewavefront set
of the kernel of the operator. By the same arguments as in [16, § 4], we obtain
that Tr�(A(k)τ Qτ (λ)|Ek ) is well-defined for each small τ as a meromorphic
function in λ ∈ C and
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if Re(λ) > C0, F (k)τ (λ) = −e−λt0Tr�
(
A(k)τ Qτ (λ)|Ek

)
(5.4)

with C0 > 0 given by Lemma 4.3.

Remark 7 Again, in the contact case, we would have a simpler variation for-
mula with F (k)τ (λ) replaced for Re(λ) > C0 by ke−λt0Tr�

(
qτQτ (λ)|Ek

)
.

5.2 Proof of Theorem 2

The proof of Theorem 2 will follow directly from Corollary 4.5 and the fol-
lowing

Theorem 4 Assume that X0 ∈ A is such that X0 has no Pollicott–Ruelle
resonance at λ = 0 and let Z ⊂ C be an open connected subset containing 0
and a point inside the region {Re(λ) > CX0} and such thatX0 has no Pollicott–
Ruelle resonance in Z . Then, there exists a neighborhood U(X0) ⊂ A of X0
such that

(1) the operator (−X − λ)−1 of Proposition 3.3 is holomorphic in Z for all
X ∈ U(X0).

(2) if τ �→ Xτ ∈ U(X0) is a smooth map with Xτ |τ=0 = X0, then τ �→
Tr�(A(k)τ Qτ (λ)|Ek ) is continuous with values in Hol(Z), with A(k)τ defined
by (4.7).

Take Bk(X0, ε) := {X ∈ A; ‖X− X0‖Ck ≤ ε} contained in the neighborhood
U(X0) of Theorem 4, for some k ∈ N, ε > 0, and for X ∈ Bk(X0, ε) define
Xτ := X0 + τ(X − X0) for τ ∈ (−δ, 1 + δ) with δ > 0 small so that Xτ ∈
Bk(X0, ε). Now eachXτ has no resonances inZ and 2) in Theorem4with (5.4)
show that τ �→ F (k)τ (λ) can be extended as a continuous family of functions in
Hol(Z) for τ ∈ [0, 1]. Corollary 4.5 then shows that ζτ,ρ(λ)/ζ0,ρ(λ) admits a
holomorphic extension inZ with ζτ,ρ(0) = ζ0,ρ(0). Thus ζX,ρ(0) = ζX0,ρ(0).
The proof of Theorem 4 will be given in the next section.

6 Continuity of the resolvent and Proof of Theorem 4

The purpose of this section is to prove the properties of the Schwartz kernel
of the resolvent that were used in the proof of Theorem 2. We are interested
in the continuity with respect to τ of the flat trace of the operator

Qτ (λ) := e−t0Xτ (−Xτ − λ)−1 (6.1)
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where we recall that we chose t0 > 0 so that there is some C > 0 uniform in
τ (here τ is close enough to 0) such that

min
x∈M dg(x, ϕ

τ
t0(x)) ≥ C

where dg is the Riemannian distance induced by a metric g. The arguments
used here are variations on the microlocal proofs of Faure–Sjöstrand in [21]
andDyatlov–Zworski in [16]. The continuity of the resolvent also follows from
Butterley–Liverani [7]. For k ∈ R, we will write �k

h (M; E) for the space of
semi-classical pseudo-differential operators [69, Chapter 14.2] (on sections
of E) with symbols in the class Skh(T

∗M; E) defined by: ah ∈ Skh(T
∗M; E)

if ah ∈ C∞(T ∗M;End(E)) satisfies |∂αx ∂βξ ah(x, ξ)| ≤ Cαβ〈ξ 〉k−|β| with
Cαβ independent of h. As mentionned before, we also take a semi-classical
quantisation Oph mapping Skh(T

∗M; E) to �k
h (M; E). The operators in the

class �k(M; E) := �k
h0
(M; E) for some fixed small h0 > 0 are called

pseudo-differential operators. We introduce the family of h-pseudodifferential
operators:

PX (h, λ) := Ah(N0, X)(−hX− hλ)Ah(N0, X)
−1, (6.2)

where Ah(N0, X) := Ah(N0, 20N0, X) was defined in Eq. (3.10) and
Remark 2. All along this section, N0 will be chosen large enough (say at
least equal to 1).

6.1 Continuity of the resolvent for families of Anosov flows

For the first part of Theorem 4 we prove:

Proposition 6.1 Let X0 and Z chosen as in Theorem 4. There exist a neigh-
borhood U(X0) of X0, h0 > 0 and C > 0 such that, for every 0 < h < h0,
and for every X ∈ U(X0), the map λ ∈ Z �→ PX (h, λ)−1 ∈ L(L2, L2) is
holomorphic and

∀λ ∈ Z, ∥∥PX (h, λ)
−1∥∥

H1
h→L2 ≤ Ch−1−100N0 . (6.3)

Moreover, for every 0 < h < h0, the following map is continuous

X ∈ U(X0) �→ PX (h, λ)
−1 ∈ Hol

(L(H1
h , L

2)
)
.

Proof In order to prove this Proposition, we need to review the proofs from
[21, p.340-345]—see also paragraph 5 from this reference or [16] for a semi-
classical formulation as described here. Note already fromProposition 3.3 that,
for every X ∈ U(X0), λ ∈ Z �→ PX (h, λ)−1 ∈ L(L2, L2) is meromorphic.
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Recall from [21, Lemma 5.3] that

PX (h, λ)=Oph
((
−i HX − hλ+h

{
HX ,G

N0
X

})
Id
)
+OX (h)+O

m
N0
X
(h2),

(6.4)

where HX (x, ξ) = ξ(X (x)) and where the remainders are understood as
bounded operator on L2(M; E). Only the second remainder depends on the
choice of the order function, and both remainders can be made uniform in
terms of X ∈ U(X0) thanks to Lemma 3.2. Following [21, § 3.3], one can
introduce an operator χ̂0 = Oph(χ0Id) in �

0
h (M; E) depending only on X0

with χ0 ≥ 0 and so that (c0 is the constant from Lemma 3.2)

∀(x, ξ) ∈ T ∗M,
{
HX ,G

N0
X

}
− χ0(x, ξ)2 ≤ −2c0N0 (6.5)

��
Remark 8 Note that we have some flexibility in the choice of the operator χ̂0.
Besides the fact that it belongs to �0

h (M, E), the only requirements we shall
need are

• χ2
0 = CN0+2c0N0 (inside a small conic neighborhood of E∗0(X0)), where

CN0 > 0 is the uniform constant from (3.5),
• outside a slightly larger conic neighborhood of E∗0(X0), supp(χ0) is con-
tained in {‖ξ‖ ≤ 3R/2} where R is the parameter from Lemma 3.2,

• χ0 satisfies (6.5) in {‖ξ‖ ≤ R}.
Next we let χ̂1 = Oph(χ1Id) ∈ �0

h (M) with χ1 ∈ C∞0 (T ∗M,R+) where χ1
is a function of |ξ | satisfying supp(χ1) ⊂ {‖ξ‖ ≤ 3R/2}, and χ1(x, ξ) = 1
for ‖ξ‖ ≤ R, and we define7

χ̂ := χ̂∗1 χ̂1 + hχ̂∗0 χ̂0 ∈ �0
h (M; E). (6.6)

One can apply the semiclassical Gårding inequality to verify that there exists a
constantC0 > 0 (uniform in X ∈ U(X0)) such that, for every u ∈ C∞(M, E),
Re(λ) > C0 − c0N0 and every small enough h > 0,

Re〈(PX (h, λ)− hχ̂∗0 χ̂0)u, u〉L2 ≤ −c0N0h‖u‖2L2 .

This shows that

(
PX (h, λ)− χ̂

)−1 : L2(M, E)→ L2(M, E)

7 The operator χ̂∗1 χ̂1 is not necessary for this proof but will be useful for the wavefront set
analysis later.
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is bounded for Re(λ) > C0−c0N0. Moreover, we get a uniform upper bound:
there is C > 0 such that for λ and for h > 0 small enough as above

∀X ∈ U(X0),

∥∥∥
(
PX (h, λ)− χ̂

)−1∥∥∥
L2→L2

≤ Ch−1. (6.7)

By adding a constant s ∈ [−1, 1] to the order functionmN0
X , the same argument

as above works and we can pick the operators χ̂0 and χ̂1 independently of
s ∈ [−1, 1]. Since the consideration of Pτ (h, λ)− χ̂ acting on Hs

h (M; E) is
equivalent to its conjugation by Oph((1+ f )s), it implies that

h(PX (h, λ)− χ̂ )−1 : Hs
h (M; E)→ Hs

h (M; E) (6.8)

is uniformly bounded in (λ, X, h) for all (X, λ) as before and all h > 0 small.
In order to study the continuity, we first write

(PX (h, λ)− χ̂)−1
= (PX0(h, λ0)− χ̂ )−1
+(PX (h, λ)− χ̂ )−1

(
PX0(h, λ0)− PX (h, λ)

)
(PX0(h, λ0)− χ̂ )−1.

Thanks to the Calderón-Vaillancourt Theorem [69, Th. 5.1], one knows that
∥∥PX0(h, λ0)− PX (h, λ)

∥∥
H1
h→L2 ≤ C‖X − X0‖Ck + h|λ− λ0|

for some k ≥ 1 large enough (depending only on the dimension of E) and for
some C > 0 independent of h, X and λ. Hence, combined with (6.8), we find
that the map (X, λ) �→ (PX (h, λ)− χ̂ )−1 ∈ L(H1

h , L
2) is continuous.

Next, as in [21, p. 344], one can construct EX (h, λ) ∈ �−1h (M; E) whose
principal symbol is supported in a conic neighborhood of E∗0(X0) so that

(PX (h, λ)− χ̂ )EX (h, λ) = Id + SX (h, λ),

EX (h, λ)(PX (h, λ)− χ̂ ) = Id + TX (h, λ)

with SX (h, λ) and TX (h, λ) both in �0
h (M; E) such that the support of their

principal symbols intersects supp(χ0) ∪ supp(χ1) inside a compact region of
T ∗M which is independent of (X, λ). Note that all these pseudodifferential
operators depend continuously in (X, λ) (these are just parametrices in the
elliptic region). Then,

KX (h, λ) := χ̂(PX (h, λ)− χ̂ )−1
= χ̂EX (h, λ)− χ̂TX (h, λ)(PX (h, λ)− χ̂ )−1 (6.9)

is compact as χ̂EX (h, λ) ∈ �−1h (M; E) and χ̂TX (h, λ) ∈ �−1h (M, E).
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This operator (viewed as an element of L(H1
h , H

1
h )) depends continuously

on (X, λ). Moreover, from our upper bound on the modulus of continuity of
(X, λ) �→ (PX (h, λ)− χ̂ )−1, we get

‖KX (h, λ)− KX0(h, λ0)‖H1
h→H1

h
≤ 1

h2
ω(|λ− λ0|, ||X − X0||Ck ),

where ω(x, y) is independent of (h, X, λ) and verifies ω(x, y) → 0 as
(x, y) → 0. With this family of compact operators, we get the identity (as
meromorphic operators in λ on H1

h )

Id+ KX (h, λ) = PX (h, λ)(PX (h, λ)− χ̂)−1. (6.10)

Now, from the definition ofZ , we know that, for every λ ∈ Z , (Id+KX0(h, λ))
is invertible inL(H1

h , H
1
h ). Thus, by continuity of the inversemap, we can then

conclude that this remains true for any ||X − X0||Ck small enough uniformly
for λ ∈ Z (as PX0(h, λ) remains invertible for λ in Z). The neighborhood
depends a priori on h but it can be made uniform in h, as all the operators
PX (h, λ) are conjugated for different values of h,

∀X ∈ U(X0), PX (h, λ)

= h

h0
Ah(N0, X)Ah0(N0, X)

−1PX (h0, λ)Ah0(N0, X)Ah(N0, X)
−1.

It now only remains to verify the upper bound on the norm of the resolvent.
For that purpose, we can fix h = h0 > 0 with h0 small enough. The above
proof shows that PX (h0, λ) is uniformly bounded (for X ∈ U(X0) and λ ∈ Z)
as an operator from H1

h0
to L2. We observe that for h, h0 fixed, the operators

Ah0(N0, X)−1 and Ah(N0, X) belong to the class of (non semiclassical) pseu-
dodifferential operators with variable order (see for example [19, App. A]).
Their order are respectively −mN0

X (x, h0ξ) and mN0
X (x, hξ) while their prin-

cipal symbols are given by (1+ f )−m
N0
X (x, h0ξ) and (1+ f )m

N0
X (x, hξ). By

the composition rule of pseudodifferential operators, their product has order 0
with principal symbol

(1+ f (x, hξ))m
N0
X (x,hξ)

(1+ f (x, h0ξ))m
N0
X (x,h0ξ)

,

and its full local symbol in charts is given by derivatives of these symbols.
Now, applying the Calderón-Vaillancourt Theorem, we know that the L(L2)

norm ofAh(N0, X)Ah0(N0, X)−1 is bounded by a finite number of derivatives
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of the full symbol (written in charts). Due to the fact that these are symbols in
ξ and using that −2N0 ≤ mX ≤ 40N0 and that f is homogeneous of degree
1 at infinity, it is direct to check that (as N0 ≥ 1)

∥∥Ah(N0, X)Ah0(N0, X)
−1∥∥

L2→L2

+ ∥∥Ah0(N0, X)Ah(N0, X)
−1∥∥

H1
h→H1

h0
� h−50N0,

from which we can deduce the announced upper bound on the norm of the
resolvent. ��

6.2 Wavefront set of the Schwartz kernel of the resolvent

The next part consists in bounding locally uniformly in (τ, λ) the Schwartz
kernel of the operator Qτ (λ) defined in (6.1).

First, let us introduce a bit of terminology. Let M be a compact manifold
(in practice, we take M =M or M =M×M). We refer for example to [16,
Appendix C.1] for a summary of the notion of wavefront set WF(A) ⊂ T ∗0 M
(resp. WF(u) ⊂ T ∗0 M) of an operator A ∈ �k(M) (resp. of a distribution u ∈
D′(M)). For � ⊂ T ∗0 M a closed conic set, we say that a family uτ ∈ D′(M)
with τ ∈ [τ1, τ2] ⊂ R is bounded in D′� if it is bounded in D′ and for each
τ -independent A ∈ �0(M) with WF(A) ∩ � = ∅,

∀N ∈ N, ∃CN ,A > 0,∀τ ∈ [τ1, τ2], ||A(uτ )||HN ≤ CN ,A.

This can also be described in terms of Fourier transform in charts (see [16,
Appendix C.1]). Similarly, we refer to [16, Appendix C.2] for a summary on
the semi-classical wavefront set WFh(A) ⊂ T ∗M (resp. WFh(u) ⊂ T ∗M)
of an operator A = Oph(ah) ∈ �k

h (M) (resp. of a h-tempered family of
distributions uh ∈ D′(M)); here T ∗M denotes the fiber-radially compactified
cotangent bundle (see [66, Section 2.1]).

We recall from [42, Definition 8.2.2] the topology of D′�(M): a sequence
uτ ∈ D′�(M) converges to uτ0 in D′�(M) as τ → τ0 if uτ → uτ0 in D′(M)
and (uτ )τ is bounded in D′� .

We note that all these properties hold the same way for sections of vector
bundles.

Next,we recall a resultwhich is essentially Lemma2.3 in [16] characterising
the wave-front set of a family Kτ ∈ D′(M ×M; E ⊗ E ′), but uniformly
in the parameter τ . We shall use a semi-classical parameter h > 0 for this
characterisation.
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Lemma 6.2 Let Kτ ∈ D′(M ×M; E ⊗ E ′) be an h-independent bounded
family depending on τ ∈ [τ1, τ2] and letKτ be the associated operator onM.
Let � ⊂ T ∗0 (M×M) be a fixed closed conic set, independent of τ .

Assume that for each point (y, η, z,−ζ ) ∈ T ∗0 (M × M)\�, there are
small relatively compact neighborhoods U of (z, ζ ) and V of (y, η) in T ∗M
such that, for every N ≥ 1 and for every τ -independent Bh ∈ �0

h (M, E)
microlocally supported inside V , there exist CN ,B > 0 and kN ,B > 0 with the
following property:
For every function a ∈ C∞(M, E) compactly supported near z and for every
S ∈ C∞(M,R) such that8

{(x, dx S) : x ∈ supp(a)} ⊂ U,

the Lagrangian states fh := ae
iS
h verify

∀τ,∀h ∈ (0, 1) ||BhKτ fh||L2 ≤ CN ,B‖(a, S)‖CkN ,B hN . (6.11)

Then, (Kτ )τ is a bounded family of distributions in D′�(M×M; E ⊗ E ′).

Proof The proof is readily the same as the first part of the proof of [16, Lemma
2.3, App. C.2] by just adding the τ dependence. Compared with that reference,
note that, as the kernel Kτ is h-independent, it is sufficient to consider points
outside the zero section (the wavefront set being a conical subset when it is
h-independent). ��

6.2.1 Main technical result

We shall now prove that the kernel of the resolvent is uniformly bounded in
D′�(M×M; E ⊗ E ′), where � is a closed cone that does not intersect N∗�.

Proposition 6.3 There exist a small neighborhood U(X0) of X0 in the C∞-
topology and a closed conic set � ⊂ T ∗0 (M×M) not intersecting N∗� such
that, for every τ �→ Xτ as in 2) of Theorem 4,

(τ, λ) ∈ [−δ, δ] × Z �→ Qτ (λ)(., .) ∈ D′�(M×M, E ⊗ E ′)

is bounded, where δ > 0 is small enough to ensure that Xτ ∈ U(X0) for all
τ ∈ [−δ, δ].

8 This implies that the Lagrangian states ( fh)0<h≤1 verifies WFh( fh) ⊂ U [69, p. 190].
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6.2.2 Proof of Proposition 6.3

Thanks to Proposition 6.1, we already know that the Schwartz kernel of Qτ (λ)
is uniformly bounded on D′(M×M; E ⊗ E ′) and Qτ (λ)→ Qτ0(λ0) in this
space as (τ, λ) → (τ0, λ0) for |τ0| ≤ δ, λ0 ∈ Z . Hence, it only remains to
show that the family is bounded in D′�(M ×M, E ⊗ E ′). We shall use the
criteria of Lemma 6.2 to get a bound on the kernel of the resolvent and, up
to some details of presentation, we will follow partly [16] by combining with
[21] and we shall verify that everything is bounded uniformly in the parameter
τ .

Recall that, up to multiplication by h, our kernel is h-independent. Hence, it
is sufficient to test one covector in every direction of T ∗0 M and we take some
R > 0 larger than the R appearing in Lemma 3.2 and we fix some point (z, ζ )
in T ∗M such that 2R ≤ ‖ζ‖ ≤ 4R. Let U be a small enough neighborhood
of (z, ζ ) in T ∗M so that Ut0,δ :=

⋃
|τ |≤δ �τt0(U ) satisfies U ∩ Ut0,δ = ∅

where the existence ofU is guaranteed by the choice of t0. We also fix t0 small

enough so thatUt0,δ ∩ {‖ξ‖ ≤ 3R/2} = ∅. Let fh = ae
iS
h ∈ C∞(M; E) with

a a smooth function compactly supported in a small neighborhood of z and
S a smooth (real valued) function such that {(x, dx S) : x ∈ supp(a)} ⊂ U .
Define

f̃h(τ ) := he−t0Xτ fh

which verifies that WFh( f̃h(τ )) ⊂ Ut0,δ [69, Th. 8.14] uniformly in τ (with
the involved constants depending on a finite number derivatives of a and S),
thus not intersecting U . Let

uh(τ, λ) = (−hXτ − hλ)−1 f̃h(τ ),

where |τ | ≤ δ for some small δ > 0 and where λ varies in Z .
We now conjugate the operators with Ah(N0, τ ) in order to work with the

more convenient operator Pτ (h, λ) defined in (6.2) (with X = Xτ ), i.e.

Pτ (h, λ)ũh(τ, λ) = F̃h(τ ), with

ũh(τ, λ) := Ah(N0, τ )uh(τ, λ), F̃h(τ ) := Ah(N0, τ ) f̃h(τ ).

Observe that WFh(F̃h(τ )) ⊂ Ut0,δ uniformly in τ (as the order functions used
to define Ah(N0, τ ) are uniform in τ–see Lemma 3.2) and that ‖F̃h(τ )‖H1

h
�

‖ f̃h(τ )‖H2N0+1
h

� h, where the involved constants are still uniform for (τ, λ)

in the allowed region. From the resolvent bound from Proposition 6.1, one has,
uniformly in (τ, λ), ‖ũh(τ, λ)‖L2 � h−100N0 . In order to apply Lemma 6.2,
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we just need to verify that WFh(ũh(τ, λ))∩U = ∅ uniformly in (τ, λ) thanks
to the uniformity of Ah(N0, τ ) in (τ, λ). For that purpose, we fix a family
(Bh)0<h≤1 ⊂ �0

h (M) whose semiclassical wavefront set is contained in U
and we will verify that (6.11) holds. To that aim, we will also need to use the
operator (with χ̂ defined in (6.6))

Pχτ (h, λ) := Pτ (h, λ)− χ̂ ,
and the function

ũχh (τ, λ) := Pχτ (h, λ)
−1 F̃h(τ )

where we recall that Pχτ (h, λ) is invertible on L2(M) for λ ∈ Z and that the
norm of the inverse ||Pχτ (h, λ)−1||L2→L2 = O(h−1) uniformly for (τ, λ) in
the allowed region. Finally, observe that

ũh(τ, λ) = ũχh (τ, λ)− Pτ (h, λ)
−1χ̂ ũχh (τ, λ).

Hence if we can prove that

χ̂ ũχh (τ, λ) = OL2(hN ) (6.12)

for all N uniformly in (τ, λ), then it is equivalent to prove the wave front
properties for ũχh (τ, λ) or for ũh(τ, λ) thanks to the resolvent bound of Propo-
sition 6.1. The remaining of the proof will be devoted to the proof of the
wavefront properties of ũχh (τ, λ) and along the way, we will verify that (6.12)
holds. Hence, this will give the expected conclusion for ũh(τ, λ). To that aim,
we will distinguish several cases depending on the location of the open set U
we are considering.

The elliptic region. We start with the simplest part of phase space, that is
when U is contained inside the region where the operator Pτ (h, λ) is elliptic:
we suppose that (z, ζ ) ∈ T ∗0 M does not belong to the cone

Cus(α1) :=
{
(x, ξ) ∈ T ∗M\0 : α1‖ξu + ξs‖′ ≥ ‖ξ0‖′

}
,

for some small α1 > 0 with the conventions of Sect. 3.1; here and below, the
cones are defined with respect to the Anosov decomposition of the vector field
X0. The operator Pτ (h, λ) is elliptic outside Cus(α) uniformly for τ small
enough. We can then use the fact that WFh(Bh) is contained in a region where
the principal symbol of Pτ (h, λ) is uniformly (in (τ, λ)) bounded away from
0. This allows us to write, for every N ≥ 1,

Bh = B̃N
h (τ, λ)Pτ (h, λ)+OL2→L2(hN )
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where B̃N
h (τ, λ) ∈ �0

h (M) and where the constant in the remainder are uni-
form in (τ, λ) in the allowed region. Note that B̃N

h (τ, λ) depends on (τ, λ) but,
as these two parameters remain bounded, WFh(B̃N

h (τ, λ)) ⊂ U uniformly in
(τ, λ). Gathering these informations, we get

‖Bhũh(τ, λ)‖L2 ≤ ‖B̃N
h (τ, λ)F̃h(τ )‖L2 +O(hN )‖ũh(τ, λ)‖L2 .

Since WFh(F̃h(τ )) ⊂ Ut0,δ (uniformly in τ ) does not intersect U , we find
that, for every N ≥ 1, there exists CN > 0 such that, for every (τ, λ) in the
allowed region, ‖Bhũh(τ, λ)‖L2 ≤ CNhN−100N0 which is exactly (6.11) (N0
being fixed and all the constants depending on a finite number of derivatives
of a and S). The same ellipticity argument shows that the same property holds
with ũχh (τ, λ) replacing ũh(τ, λ).

Remark 9 Keeping in mind that we will also need to prove (6.12), we already
make the following obervation. Since Pχτ (h, λ) is elliptic in {||ξ || ≤ R} and
outside Cus(α1), the same type of ellipticity argument shows that uniformly
for (τ, λ) in the allowed region we have, as ‖ζ‖ ∈ [2R, 4R] and as t0 > 0 is
small enough,

WFh(ũ
χ
h (τ, λ)) ⊂ {‖ξ‖ > R} ∩ Cus(α1). (6.13)

It now remains to deal with the part of phase space where the symbol of
Pτ (h, λ) is not elliptic.

The characteristic region away from the strongly unstable cone We start
with the regularity/smallness away from E∗u(Xτ0) for large ‖ξ‖. To that aim,
we shall verify that one can find some 0 < α1 < α0, some R′ > 0 large enough
so that, for each N > 0, for each (z, ζ ) ∈ Cus(2α1) with ‖ζ‖ ∈ [2R, 4R], for
each B̃h which is microlocalized in Css(α1) ∩ {‖ξ‖ ≥ R′}, there exists some
CN ,B̃,a,S > 0 such that for all τ close enough to τ0 and λ ∈ Z ,

∥∥∥B̃hũh(τ, λ)
∥∥∥
2

L2
≤ CN ,B̃,a,Sh

N ,

∥∥∥B̃hũ
χ
h (τ, λ)

∥∥∥
2

L2
≤ CN ,B̃,a,Sh

N ,

(6.14)

with CN ,B̃,a,S depending on a finite number of derivatives of (a, S) as in the
formulation of Lemma 6.2.

We postpone the proof of estimate (6.14) and we first show how to use it
in order to conclude when (z, ζ ) ∈ Cus(2α1)\Cuu(α1). To see this, we first
observe that one can find some T1 > 0 such that

�τ−T1(U ) ⊂ Css(α1) ∩ {‖ξ‖ ≥ R′}.
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Take now B̃h = Bh . As (z, ζ ) ∈ Cus(α1) (hence not in the trapped set of
the flows �τt , given by E∗0(Xτ )), by taking U and δ small enough, we can
suppose that, for every t ∈ [0, T1] and for any τ small, �τ−t (U ) ∩ Ut0,δ = ∅.
Hence, by propagation of singularities [16, Prop. 2.5] for the operator i Pτ (h, λ)
and by the regularity estimates (6.14) near the radial source, one knows that
‖Bhũh(τ, λ)‖L2 ≤ CNhN for all N with CN uniform in (τ, λ) (in the allowed
region). Note that due to the compactness of WFh(Bh), evaluating ‖Bhuh‖L2

or ‖Bhũh‖L2 is equivalent. Here, we notice that, due to the facts that we just
use propagation for a uniform finite time and that the Hamiltonian flow �τt
is smooth in τ , the proof of [16, Prop. 2.5] can be repeated uniformly for τ
close enough to 0. Note that the same argument also works for ũχh as we can
apply propagation of singularities [16, Prop. 2.5] with the operator i Pχτ (h, λ)
as well (using that χ2

1 ≥ 0). This concludes the proof of (6.11) for ũχh (τ, λ)
and ũh(τ, λ) away from Cuu(α1), noting one more time that the constants
depend on a finite number of derivatives of the functions (a, S) appearing in
the definition of fh .

Hence, up to the fact thatwe still have to prove the radial estimates (6.14),we
are left with the points (z, ζ ) ∈ Cuu(α1). Note that Eq. (6.14) gave something
slightly stronger thanwhatwe need to handle the points away from the strongly
unstable cone.Yet, this stronger statementwill turn out to be useful belowwhen
dealing with the points in the strongly unstable cone Cuu(α1).

The strongly unstable region We now fix (z, ζ ) ∈ Cuu(α1) with ‖ζ‖ ∈
[2R, 4R]. In that case, we will need to use the auxiliary sequence (ũχh (τ,
λ))0<h≤1. First, we begin with the proof of (6.12). Recalling the construction
of χ̂ and (6.13), we already know that

(
WFh(ũ

χ
h (τ, λ)) ∩WFh(χ̂)

) ⊂ Cus(α1) ∩ {R ≤ ‖ξ‖ ≤ 3R/2}.
We fix some point (x, ξ) ∈ Cus(2α1)\Cuu(α1) satisfying ‖ξ‖ ∈ [R/2, 3R/2]
and we see similarly that there is a uniform time T2 > 0 such that and for
every τ close enough to 0,�τ−T2(x, ξ) ∈ Css(α1/2)∩ {‖ξ‖ ≥ 2R′}. As in the
previous step, we can apply propagation of singularities [16, Prop. 2.5] and
the radial estimates (6.14) near the stable cone to ũχh (τ, λ) with the operator
i Pχh (τ, λ). From that, we deduce that, uniformly in (τ, λ), WFh(ũ

χ
h (τ, λ)) ∩

V = ∅ for V a small neighborhood of (x, ξ). Thus, one has, uniformly in
(τ, λ),

(
WFh(ũ

χ
h (τ, λ)) ∩WFh(χ̂)

) ⊂ (Cuu(α1) ∩ {‖ξ‖ ∈ [R, 3R/2]}
)
. (6.15)

If α1 is chosen small enough, then, for each (x, ξ) ∈ Cuu(α1) with ‖ξ‖ ∈
[R, 3R/2], there is a uniform time T3 > 0 (with respect to τ ) such that
�τ−T3(x, ξ) ∈ {(x, ξ) ∈ T ∗M; ‖ξ‖ ≤ R/2}. We now combine propaga-
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tion of singularities as above with the elliptic estimate (6.13). From the above,
we conclude that, uniformly in (τ, λ),

WFh(ũ
χ
h (τ, λ)) ∩WFh(χ̂) = ∅, (6.16)

from which we can deduce (6.12) as expected. As already said, we find that
ũχh (τ, λ) = ũh(τ, λ) + OL2(hN ) uniformly in (τ, λ) (again all the constants
depend on a finite number of derivatives of the functions (a, S) defining fh).
Hence, to conclude the proof of the Proposition, it remains to show that, if Bh
is microlocalized inside a neighborhood U of (z, ζ ) ∈ Cuu(α1) with ‖ζ‖ ∈
[2R, 4R], then Bhũ

χ
h (τ, λ) = O(hN ) uniformly in (τ, λ). For that purpose, it

is sufficient to combine propagation of singularities [16, Prop. 2.5] with the
elliptic estimate (6.13) as before. Indeed, as above and up to shrinking U a
little bit, there is T4 > 0 such that �τ−T4(U ) ⊂ {‖ξ‖ ≤ R/2} uniformly in τ

and such that �τ−t (U ) ∩Ut0,δ = ∅ for every 0 ≤ t ≤ T4.
We have now dealt with every point (z, ζ ) satisfying ‖ζ‖ ∈ [2R, 4R]. As

already explained, combined with Lemma 6.2, this concludes the proof of the
Proposition except for the estimates (6.14) that still have to be proved.

Proof of the radial estimates (6.14) Let us now give the proof of these crucial
estimates that were used to handle the points (z, ζ ) in the characteristic region.
To that aim, wewill make use of the radial propagation estimates from [16,66],
the only difference being that we need to verify the uniformity in the parameter
τ . First of all, we write that, uniformly in (τ, λ),

∀v ∈ C∞(M; E),
∥∥∥B̃hv

∥∥∥
2

L2
= 〈Oph(b(h))v, v〉 +O(hN+1)‖v‖2L2,

(6.17)

where b(h) = ∑N
j=0 h jb j are symbols supported in Css(α1) ∩ {‖ξ‖ ≥ R′}.

In particular,

∥∥∥B̃hv

∥∥∥
2

L2
= Re(〈Oph(b0)v, v〉L2)+ h〈R̃h(τ, λ)v, v〉L2 +O(hN )‖v‖2L2,

(6.18)

where R̃h(τ, λ) ∈ �0
h (M; E) satisfies WFh(R̃h(τ, λ)) ⊂ U .

We now fix a nondecreasing smooth function χ̃1 on R which is equal to
1 on [20N0,+∞) and to 0 on (−∞, 4N0]. Take α1 < α0 small, and using
Remark 12 (recall that N1 = 20N0) we set

χτ (x, ξ) := χ̃1
(
m̃N0,20N0
τ (x, ξ)

)
.
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For ‖ξ‖x ≥ 1, we have χτ ≡ 0 outside Css(α0), χτ ≡ 1 on Css(α1) and
{Hτ , χτ } ≤ 0 onCus(α0).Wewill use this smooth function in order tomicrolo-
calize our operators near Css(α1) at infinity (the radial source). After possibly
adjusting α1, R′ and thanks to (A.6), we may suppose that there exist R0 < R̃0
such that f (x, ξ) ≥ R̃0 on Css(α1) ∩ {‖ξ‖ ≥ R′} and f (x, ξ) ≤ R0 on Ut0,δ .
We fix χ̃2 to be a nondecreasing smooth function onRwhich is equal to 1 near
[ln(1+ R̃0),+∞) and to 0 near (−∞, ln(1+ R0)]. We set

χ2(x, ξ) = χ̃2(ln(1+ f (x, ξ))).

With these conventions, one hasχ2 ≡ 1 in a neighborhood ofCss(α1)∩{‖ξ‖ ≥
R′}, χ2 ≡ 0 in a neighborhood of Ut0,δ and {Hτ , χ2}(x, ξ) ≤ 0 for ‖ξ‖x ≥ 1
such that (x, ξ) ∈ Css(α0), for all τ near τ0. We now define Ah(τ ) = A∗h(τ ) in
�0

h (M; E)with principal symbol aτ := χτχ2Id andWFh(Ah(τ )) ⊂ supp(aτ ),
thusWFh(Ah(τ ))∩Ut0,δ = ∅ uniformly for (τ, λ) in the allowed region. From
the composition rules for pseudo-differential operators,

Ah(τ )Pτ (h, λ)+ Pτ (h, λ)
∗Ah(τ )

= h Oph
((
{Hτ , aτ } − 2aτ

(
Re(λ)−

{
Hτ ,G

N0
τ

}))
Id+ aτOτ (1)

)

+O�0
h (M,E)(h

2).

Note that the remainderOτ (1) is independent of N0 and thatO�0
h (M,E)(h

2) has
its semiclassicalwavefront set contained in∪τ supp(aτ )uniformly in (τ, λ).We
can now compare the principal symbol of h−1 (Ah(τ )Pτ (h, λ)+ Pτ (h, λ)∗
Ah(τ ))with b0: from our construction, one can find some constant cN0,b0 > 0
so that

cN0,b0b0Id ≤
(
−{Hτ , aτ } + 2aτ

(
Re(λ)−

{
Hτ ,G

N0
τ

}))
Id+ aτOτ (1).

Note that we got the negativity of the symbol provided that we choose N0 large

enough in a manner that depends only on b0 and Z (recall that
{
Hτ ,G

N0
τ

}
≤

−c0N0 for every ‖ξ‖x ≥ 1 when (x, ξ) ∈ Css(α1)). We can then use the
Gårding inequality proved in [18, Proposition E.34] to this symbol: combining
with (6.18), we get for all v in C∞(M; E)

∥∥∥B̃hv

∥∥∥
2

L2
≤ −(cN0,b0h)

−12Re(〈Ah(τ )Pτ (h, λ)v, v〉L2)

+h〈Rh(τ, λ)v, v〉L2 +O(hN )‖v‖2L2,
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where Rh(τ, λ) ∈ �0
h (M; E) satisfies WFh(Rh(τ, λ)) ⊂ V with V a small

neighborhood of ∪τ supp(aτ ) in T ∗M uniform in (τ, λ). Then, for all v in
C∞(M; E) and uniformly in (τ, λ), one has

∥∥∥B̃hv

∥∥∥
2

L2
≤ 2(cN0,b0h)

−1‖Ah(τ )Pτ (h, λ)v‖L2‖v‖L2

+h〈Rh(τ, λ)v, v〉L2 +O(hN )‖v‖2L2 .

This is a kind ofweakened version of the radial estimates (near the source) from
[16,66] which holds uniformly in (τ, λ). Using that ‖ũh(τ, λ)‖L2 ≤ Ch−100N0

uniformly in (τ, λ), we find by letting9 v→ ũh(τ, λ) that, for all N > 0, there
is CN > 0 so that

∥∥∥B̃hũh(τ, λ)
∥∥∥
2

L2
≤ CNh

−1−100N0‖Ah F̃h‖L2

+h〈Rh(τ, λ)ũh(τ, λ), ũh(τ, λ)〉L2 + CNh
N−200N0 .

Using the facts that WFh(F̃h(τ )) ⊂ Ut0,δ and WFh(Ah(τ )) ∩ Ut0,δ = ∅
uniformly in (τ, λ) we obtain that, for every N ≥ 1, there exists CN > 1
such that ‖Ah(τ )F̃h(τ )‖L2 ≤ CNhN+1 uniformly in (τ, λ). Hence, one has,
uniformly in (τ, λ),

∥∥∥B̃hũh(τ, λ)
∥∥∥
2

L2
≤ h〈Rh(τ, λ)ũh(τ, λ), ũh(τ, λ)〉L2 + CNh

N−200N0 .

We can now reiterate this procedure with B̃h B̃h replaced by h
1
2 Rh(τ, λ)which

satisfiesWFh(Rh(τ, λ)) ⊂ V , thus not intersectingUt0,δ . After a finite number

of steps, we find
∥∥∥B̃hũh(τ, λ)

∥∥∥
L2
≤ CNh

N
2 −100N0 uniformly in (τ, λ)which is

exactly what we expected (noting that the constants depend on a finite number
of derivatives of a and χ ). The case with ũχh (τ, λ) is exactly the same by using
that WFh(χ̂) ∩ {‖ξ‖ ≥ R′} ∩ Cus(α1) = ∅. Hence, Pτ (h, λ) coincide with
Pχh (τ, λ) microlocally in the region {‖ξ‖ ≥ R′} ∩ Cus(α1) where we do the
analysis. This concludes the proof of (6.14) and thus of Proposition 6.3.

6.3 Proof of Theorem 4

Using Proposition 6.1, we can deduce the sequential continuity of (τ, λ) �→
Qτ (λ) in D′(M ×M; E ⊗ E ′). Then, using (6.3), we know that the map is
also bounded in D′� . Both conditions imply the sequential continuity in D′�
[42, condition (i i)′) in definition 8.2.2] and with Lemma 5.1, we conclude the

9 We can use [18, Lemma E.45] to justify the convergence in the inequality.
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proof of 2) in Theorem 4. As A(k)τ acts as a multiplication operator by smooth
functions, the same remains true if we consider (τ, λ) �→ A(k)τ Qτ (λ) and this
shows that for every 0 ≤ k ≤ n the map

(τ, λ) ∈ [−δ, δ] × Z �→ Tr�
(
A(k)τ Qτ (λ)|Ek

)
∈ C (6.19)

is continuous. Finally, by an application of the Cauchy formula and by Propo-
sition 6.1, one can verify that, for every τ ∈ [−δ, δ] and for every 0 ≤ k ≤ n,

λ ∈ Z �→ Tr�
(
A(k)τ Qτ (λ)|Ek

)

is an holomorphic function using Cauchy’s formula and the continuity of
(6.19).

Finally, let us remark that the arguments of this section combined with [16,
§4] also show the following

Proposition 6.4 Suppose that X0 is an Anosov vector field and that the repre-
sentation ρ0 induced by the connection∇0 is such that X0 has no resonance at
λ = 0. Then, for any continuous family of flat connections t ∈ [−1, 1] �→ ∇t
with corresponding representation ρt , the maps

X �→ ζX,ρ0(0) and t ∈ [−1, 1] �→ ζX0,ρt (0)

are continuous near X0 (resp. t = 0).

Note that we only treated the case where X varies. Yet, the same argument
holds when we vary the flat connection and when we fix X0 as it only modifies
X0 by subprincipal symbols. Given some flat bundle (E,∇), note that the
space of flat connections on E is an affine quadric which can be identified
with the solutions of the Maurer–Cartan equations [31, 5.8 p. 74]

{[∇, ] + [ ∧ ] = 0; ∈ �1(M, End(E))},
which forms a quadric in �1(M, End(E)) since one easily verifies that for
every such  , ∇ +  : �k(M, E) �→ �k+1(M, E) is flat. The topology is
induced from the Fréchet topology of �1(M, End(E)).
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7 The Fried conjecture in dimension 3 and some cases in dimension 5

7.1 The kernel of X at λ = 0

In this section, we will analyze when 0 is not a resonance for the operator X
of (3.7) associated to a vector field X ∈ A. We define

Ck := ker

(
X|HmN0,N1

h0
(M,Ek)

)p

, Ck
0 := Ck ∩ ker iX

where p ≥ 1 is the smallest integer so that ker(X(k))p = ker(X(k))p+1, and
where here we mean the kernel on the anisotropic spaces (for some large
enough N0 and N1). By [10, Th. 2.1], the complex

0
d∇−→ C0 d∇−→ C1 d∇−→ . . .

d∇−→ Cn d∇−→ 0. (7.1)

is quasi-isomorphic to the twisted De Rham complex (�•(M, E), d∇) hence
the cohomology of (7.1) coincides with the twisted De Rham cohomology.We
will denote by Hk(M; ρ) the twisted de Rham cohomology of degree k with
ρ the representation associated with the flat bundle (E,∇).

We say that X ∈ A is a contact Anosov flow if there is α ∈ �1(M) such
that iXα = 1, iXdα = 0 and dα is symplectic on ker α. The dimension ofM
will be denoted n = 2n0 + 1 in that case. In particular, one has LXα = 0 and
LXdα = 0, and LXμ = 0 if μ = α ∧ dαn0 . To begin with, we notice a few
commutation relations that will be extensively used. For all u ∈ D′(M; E)

XiXu = iXXu, X(α ∧ u) = α ∧ Xu, X(u ∧ dα) = (Xu) ∧ dα. (7.2)

The Koszul complex is naturally associated with our problem

0
iX−→ C2n0+1 iX−→ C2n0 iX−→ . . .

iX−→ C1 iX−→ C0 iX−→ 0,

and in the contact case there is a dual complex

0
∧α−→ C0 ∧α−→ C1 ∧α−→ . . .

∧α−→ C2n0 ∧α−→ C2n0+1 ∧α−→ 0.

Lemma 7.1 For X ∈ A, the complex (C•, iX ) is acyclic. If in addition X is
contactwith contact formα, (C•,∧α) is acyclic andwehave adecomposition :

∀0 ≤ k ≤ 2n0 + 1, Ck = (Ck−1
0 ∧ α)⊕ Ck

0 .
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Proof The spectral projector !0 can be expressed as a contour integral
involving the resolvent (X + λ)−1 on a small circle around 0. Then, as X
and iX commute, one can verify that !0 and iX also commute. Hence, if
u ∈ Ck ∩ ker(iX ) = Ck

0 , then iX!0 (θ ∧ u) = !0 (θ(X)u) = u where
θ ∈ �1(M) satisfies θ(X) = 1 and !0 is the projector on C•. Thus (C•, iX )
is acyclic. According to (7.2), α ∧ u belongs to Ck+1 whenever u belongs
to Ck . For u ∈ Ck ∩ ker(∧α), one has α ∧ (iXu) = α(X)u = u. Hence,
(C•,∧α) is acyclic. For u ∈ Ck , we can write u = α ∧ iXu + (u − α ∧ iXu)
with u−α∧ iXu ∈ Ck

0 , and if u ∈ Ck
0 satisfies α∧ u = 0, then u = iX (α∧ u)

= 0. ��
From the contact structure, we can also deduce the following duality prop-

erty:

Lemma 7.2 Suppose that X ∈ A is contact, then for every 0 ≤ k ≤ n0,

Ck
0 ! C2n0−k

0 , Ck ! C2n0+1−k .

Proof The bundle N := ker α is smooth andω := dα is symplectic on N . The
form ω induces a non-degenerate pairing G on �k N∗ for each k ∈ [1, 2n0],
invariant by X . Following [47, p. 43] (see also [48,68]), we can define a
(smooth) Hodge star operator " : �k N∗ → �2n0−k N∗

β1 ∧ "β2 := G(β1, β2)ω
n0/n0!.

" is a bundle isomorphism follows from [47, 15.2 p. 43]. One can check
from LXG = 0 and LXω = 0 (LX the Lie derivative) that X" = "X, and
thus " : Ck

0 → C2n0−k
0 is an isomorphism since "" = Id. It remains to use

Lemma 7.1 to obtain Ck ! C2n0+1−k . ��
Proposition 7.3 Suppose that X ∈ A is contact onMwith dimension 2n0+1.
The following statements are equivalent:

(1) Cn0−1 = 0 and Hn0(M, ρ) = 0,
(2) Cn0 = 0,
(3) For all 0 ≤ k ≤ 2n0 + 1, Ck = 0.

Suppose that X ∈ A (not necessarily contact) on a 3-manifoldM and that X
preserves some smooth volume form. Then, if C0 = 0, one has

(�•(M, E), d∇) is acyclic ⇐⇒ ∀1 ≤ k ≤ 3,Ck = 0.

Proof The statement (3) �⇒ (1) follows from the quasi-isomorphismbetween(
C•, d∇

)
and
(
�•(M, E), d∇

)
. Let us show (1) �⇒ (2). SinceCn0−1 = 0,we

haveCn0+2 = 0 by Lemma 7.2.Moreover, by Poincaré duality, Hn0(M, ρ) =
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Hn0+1(M, ρ) = 0. Then, still from the quasi-isomorphism, we have that
d∇ : Cn0 �→ Cn0+1 is an isomorphism. We can now use the acyclicity of
(C•, iX ) and the same argument shows iX : Cn0+1 �→ Cn0 is an isomorphism.
So, combined with Lemma 7.1, this shows that X|Cn0 = iXd∇ + d∇ iX =
iXd∇ : Cn0 �→ Cn0 is an isomorphism. However, by our definition, X|Cn0 is
nilpotent. Thus, Cn0 = Cn0+1 = 0. To show (2) �⇒ (3), from Lemmas 7.1
and 7.2, it suffices to show that Cn0

0 = Cn0−1
0 = 0 implies Ck

0 = 0 for every
0 ≤ k ≤ n0 − 2. By [68, Cor. 2.7], u �→ u ∧ (dα) maps Ck

0 → Ck+2
0

injectively10 if k ≤ n0 − 1, thus we have dimCn0
0 ≥ dimCn0−2

0 ≥ . . . and
dimCn0−1

0 ≥ dimCn0−3
0 ≥ . . ., which shows that (2) �⇒ (3).

In case n = 3 (i.e., n0 = 1), the proof of the converse sense is the same
as before. For the direct sense, we cannot use Lemma 7.2. But we still have
C0 = C3 = 0 since X preserves some smooth volume form μ. The rest of the
proof is exactly the same as (1) �⇒ (2) given before. ��
Lemma 7.4 Assume X ∈ A preserves a smooth volume form μ and assume
(E,∇) is a bundle with flat unitary connection. Let u be an element of C0 such
that Xu = 0. Then u ∈ C∞(M; E) and d∇u = 0.

Proof Note that X∗ = −X onC∞(M; E), since Xμ = 0 and that for v1, v2 ∈
C∞(M; E),

〈Xv1, v2〉L2 =
∫

M
〈Xv1, v2〉Eμ =

∫

M
X(〈v1, v2〉E )μ

−
∫

M
〈v1,Xv2〉Eμ = −〈v1,Xv2〉L2 .

Hence, we can apply [17, Lemma 2.3] and deduce that u ∈ C∞(M; E).
Now we use the argument of [19, Lemma 3]. We can lift u to its universal
cover M̃ to get a bounded π1(M) equivariant ũ ∈ C∞(M̃;Cr ) satisfying
ũ(ϕ̃t (x)) = ũ(x) for all x ∈ M and ϕ̃t is the lifted flow on M̃. This implies
dũϕ−t (x) = (dϕ̃t )Tϕ−t (x)dũx . For x ∈M assume that dũx /∈ E∗s ⊕ E∗0 , then as
t →+∞ we get |dũϕ−t (x)|Cr →+∞, but |dũ|Cr ∈ L∞ thus a contradiction.
The same argument by letting t → −∞ tells us that dũx ∈ E∗u ⊕ E∗0 thus
dũx ∈ E∗0(x). But dũ(X) = 0, thus dũ(x) = 0. Then d∇u = ∇u = 0 on M.

��

10 This follows from surjectivity of the map u ∈ C∞(M; En−k−20 ) �→ u ∧ dα ∈
C∞(M; En−k0 ).
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7.2 Proof of Theorem 1: The Fried conjecture in dimension 3

We start with the first statement in Theorem 1. Let X0 be an Anosov vector
field preserving a smooth volume form μ and ∇ be a flat unitary connection
on a Hermitian bundle E inducing an acyclic representation ρ. By Lemma 7.4,
we find C0 = 0 and by Proposition 7.3, we obtain Ck = 0 for all k ∈ [0, 3].
Then Theorem 2 shows that ζX,ρ(0) = ζX0,ρ(0) for all X in a neighborhood
U(X0) ⊂ A of X0.

Let us show the second part of Theorem 1. It suffices to show that there
is a sequence Xn ∈ A such that Xn → X0 in C∞(M; TM) and such that
|ζXn,ρ(0)|−1 = τρ(M). Sanchez-Morgado [63, Th. 1] (based on [28,61,62])
showed that transitive analytic Anosov vector fields X satisfy |ζX,ρ(0)|−1 =
τρ(M) if there is a closed orbit γ of X so that ker(ρ([γ ]) − ε jγ Id) = 0
for each j ∈ {0, 1}. Among other things including the spectral construction
of [61], Sanchez-Morgado’s argument relied crucially on the existence (for
Anosov transitive flows on 3-manifolds) of a Markov partition [57, p. 885]
whose rectangles have boundaries in Wu(γ ) ∪ Ws(γ ) for any fixed closed
orbit γ . Recall that, for Anosov transitive flows,Wu/s(γ ) is everywhere dense
in M.

If the monodromy property is satisfied for some orbit γ of X0, then, for all
vector fields X in a small neighborhood U(X0), there is a periodic orbit γX of
X in the same free homotopy class and the corresponding flow is topologically
transitive by the strong structural stability Theorem 4.2. Therefore, the results
of Sanchez-Morgado applies for any X inU(X0) provided that it satisfies some
analyticity property. The conclusion of the proof is then given by the following
when there exists a closed orbit γ such that the monodromy property of [63]
is verified.

Proposition 7.5 There exists a real analytic structure onM compatible with
the C∞ structure and a sequence (Xn)n ⊂ A of analytic Anosov vector fields
such that Xn → X0 in the C∞ topology.

Proof By Whitney [67, Th. 1 p. 654, Lemma 24 p. 668] (see also [41, Th. 7.1
p. 118]), there exists a C∞ embedding σ ofM into RN for some N ∈ N such
that σ(M) is a real analytic submanifold of RN . It follows from such embed-
ding that the manifoldM inherits some analytic structure compatible with the
C∞ structure of M since M is diffeomorphic to some analytic submanifold
ofRN . The tangent bundle TM �→M also inherits the real analytic structure
from M which makes it a real analytic bundle in the sense of [45, Def. 2.7.8
p. 57]. Therefore by the Grauert–Remmert Theorem [41, Th. 5.1 p. 65], the
space of analytic mapsM �→ TM is everywhere dense in C∞(M, TM) for
the strong C∞-topology. In particular, a vector field X onM is understood as
a smooth mapM �→ TM transverse to the fibers of TM which is C1 stable.
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Hence any analytic mapM �→ TM sufficiently close to X in theC1 topology
will be transverse to the fibers of TM and its image in TM can be realized
as the graph of a real analytic section X̃ of TM (see also [9, Cor. 5.49 p. 106]
for similar results). ��
It now remains to discuss when we only suppose that ρ is acyclic and that
H1(M,R) �= {0}. In that case, one knows from [56, Th. 2.1] that X0 has a
closed orbit γ0 which is homologically nontrivial. It may happen that no closed
orbit verifies the monodromy condition of [63]. Yet, we can fix a closed one
form α0 ∈ H1(M,R) such that

∫
γ0
α0 �= 0. Then, we define∇s = ∇+ isα0∧

(with s ∈ R) which still induces a unitary representation. Recall that, for s = 0,
0 is not a resonance ofX0 according toLemma7.4 and to Proposition 7.3. Thus,
for s small enough, ∇s also remains acyclic thanks to the finite dimensional
Hodge theory [4, (1.6)] or to [10, Th. 2.1] combined with the fact that 0 is
still not a resonance of X0 + isα0(X0) by the arguments11 used to prove
Proposition 6.1. One can verify that, for s �= 0 small enough, the monodromy
condition of [63] is verified. Hence, for every s �= 0 small enough, one has
|ζX0,ρs (0)|−1 = τρs (M). By Proposition 6.4 and by continuity of the map
ρ �→ τρ(M), we can conclude that |ζX0,ρ(0)|−1 = τρ(M).

7.3 The Fried conjecture near hyperbolic metrics in dimension n = 5 -
Proof of Theorem 3

We refer to [6,25,43] for backgrounds on Ruelle/Selberg zeta functions for
hyperbolic manifolds. Let M = �\Hn0+1 be a smooth oriented compact (n0+
1)-dimensional hyperbolic manifold with n0 ≥ 2 and SM = �\SHn0+1 its
unit tangent bundle, where here � ⊂ SO(n0 + 1, 1) is a co-compact discrete
subgroup with no torsion. We consider a unitary representation ρ : π1(M)→
U (r) for r ∈ N, and since π1(SM) ! π1(M) if n0 + 1 ≥ 3, ρ induces a
representation ρ̃ : π1(SM) → U (r). By considering functions w on H

n+1
with values in R

r that are �-equivariant (i.e., ∀γ ∈ �, γ ∗w = ρ(γ )w), we
obtain a rank r vector bundle E → M equipped with a unitary flat connection
∇, and similarly by using ρ̃ we obtain a bundle Ẽ and a flat connection ∇̃ on
SM .
We let X be the vector field of the geodesic flow on M := SM , and

following the previous sections, this induces an operator on section of Ẽ :=
⊕k ∧k T ∗(SM)⊗ Ẽ

X : �(SM; Ẽ)→ �(SM, Ẽ), X := iXd
∇̃ + d∇̃ iX .

11 The proof is even simpler in this case as adding isα0(X0) only modifies the operator by a
subsprincipal symbol.
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and we write X(k) := X|�k
0(SM;Ẽ) where �

k
0(SM; Ẽ) := �k(SM; Ẽ) ∩

ker iX .
We define the dynamical zeta function of X acting on �k

0(SM; Ẽ) by

ZX(k) (λ) = exp
(
−
∑

γ∈P

∞∑

j=1

1

j

e−λ j
(γ )Tr(ρ̃(γ ) j )Tr(∧k P(γ ) j )

| det(1− P(γ ) j )|
)

(7.3)

where P denotes the set primitive closed geodesics and P(γ ) is the lin-
earized Poincaré map of the geodesic flow along this geodesic. Note that P is
parametrized by the conjugacy classes of primitive elements in the group �.
It is known [16,30] that ZX(k) (λ) has an analytic continuation to λ ∈ C and its
zeros are the Ruelle resonances of X(k) on SM with multiplicities.

Let K = SO(n0+1) be the compact subgroup ofG := SO(n0+1, 1) so that
H

n0+1 = G/K and we can identify SHn0+1 = G/H where H := SO(n0) ⊂
K is the stabilizer of a spacelike element in R

n0+1,1. We have M = �\G/K
as locally symmetric spaces of rank 1 and SM = �\G/H .

Let us define ξp : SO(n0) → GL(S p
R
n0) to be the canonical (unitary)

representation of SO(n0) into the space S p
R
n0 of symmetric tensors of order

p on Rn0 . This representation decomposes into irreducible representations of
SO(n0)

ξp =
∑

2q≤p

σp−2q

where σr : SO(n0)→ GL(Sr0R
n0) is the canonical representation of SO(n0)

into the space of trace-free symmetric tensors of order r . We also define νl :
SO(n0)→ GL(�l

R
n0) to be the canonical (unitary) representation of SO(n0)

on l-forms.
For each primitive closed geodesic γ on M (i.e. primitive closed orbit on

SM), there is an associated conjugacy class in �, with a representative that we
still denote by γ ∈ � andwhose axis inHn+1 descends to the geodesic γ . There
is also a neighborhood of the geodesic inM that is isometric to a neighborhood
of the vertical line {z = 0} in the upper half-space H

n0+1 = R
+
z0 × R

n0
z

quotiented by the elementary group generated by

(z0, z) �→ e
(γ )(z0,m(γ )z),

wherem(γ ) ∈ SO(n0) and 
(γ ) > 0 being the length of γ . The linear Poincaré
map along this closed geodesic on Es ⊕ Eu is conjugate to the map

123

Author's personal copy



N. V. Dang et al.

P(γ ) : (ws, wu) �→ (e−
(γ )m(γ )ws, e

(γ )m(γ )wu) (7.4)

where we identify Es and Eu with Rn0 .
To any irreducible unitary representationμ of SO(n0) and the representation

ρ of π1(M) being fixed, we can define a Selberg zeta function ZS,μ(λ) by

ZS,μ(λ) := exp
(
−
∑

γ∈P

∞∑

j=1

Tr(ρ̃(γ ) j )Tr(μ(m(γ ) j ))e−λ j
(γ )

j det(1− Ps(γ ) j )

)
(7.5)

where the sum is over all primitive closed geodesics and Ps(γ0) = P(γ0)|Es is
the contracting part of P(γ ). This series converges uniformly for Re(λ) > n0.
For any unitary representation μ of SO(n0), we can also define ZS,μ(λ) by
the formula (7.5), and if μ = ∑p

q=1 μq is a decomposition into irreducible

representations, ZS,μ(λ) = ∏p
q=1 ZS,μq (λ). By [6, Theorem 3.15], ZS,μ(λ)

has a meromorphic continuation to λ ∈ C, and if n0+ 1 if odd, the only zeros
and poles are contained in Re(λ) ∈ [0, n0].
Proposition 7.6 In the region of convergence Re(λ) > n0, we have for k ∈
[0, n0]

ZX(k) (λ) =
∞∏

p=0

∞∏

q=0

k∏

l=0
ZS,νl⊗νk−l⊗σp(λ+ 2(q − l)+ p + n0 + k) (7.6)

Proof To factorise ZX(k) (λ)with some Selberg zeta functions, we compute for
j ∈ N

| det(1− P(γ ) j )|−1
= e−n0 j
(γ ) det(1−e− j
(γ )m(γ ) j )−1 det(1−Ps(γ )

j )−1

= e−n0 j
(γ ) det(1−Ps(γ )
j )−1

∞∑

r=0
e−r j
(γ ) Tr(ξr (m(γ ) j ))

where we used det(1− B)−1 =∑∞
r=0 Tr(Sr B) with Sr B the action of B on

symmetric tensors on Rn0 if B ∈ End(Rn0) with |B| < 1. Now we can use

∞∑

r=0
e−r j
(γ ) Tr(ξr (m(γ ) j )) =

∞∑

r=0

∑

2q≤r
e−r j
(γ ) Tr(σr−2q(m(γ ) j ))

=
∞∑

p=0

∞∑

q=0
e−(p+2q) j
(γ ) Tr(σp(m(γ ) j ))
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Now we also have Tr(∧k P(γ ) j ) = ∑k
l=0 e j (2l−k)
(γ )Tr(νl(m(γ ) j ) ⊗

νk−l(m(γ ) j )). Combining all this, we thus get

ZX(k) (λ)

= exp
(
−
∑

γ∈P

∞∑

j=1

∞∑

p=0

∞∑

q=0

k∑

l=0

1

j

e−(λ+n0+p+2(q−l)+k) j
(γ )Tr(ρ̃(γ ) j )Tr(μl,k,p(m(γ ) j )
| det(1− Ps(γ ) j )|

)

with μl,k,p := νl ⊗ νk−l ⊗ σp. This gives the result. Note that the products in
(7.6) converge for Re(λ) > 0. ��
We notice that in each Re(λ) > −N for N > 0 fixed, there is only finitely
many Selberg type functions in the factorisation (7.6) whose exponent of con-
vergence is on the right of 0, this means that only finitely many Selberg terms
can bring a zero to ZX(k) (λ) in Re(λ) > −N . In particular at λ = 0, only the
terms l, k, q, p with

2(q − l)+ p + k ≤ 0 (7.7)

can contribute to a zero (or a pole) there. Theorem 3 follows directly from
Theorem 1, Fried formula 1.2 for hyperbolic manifolds [25] and the following:

Proposition 7.7 Let M = �\H3 be a smooth compact oriented hyperbolic
manifold and let ρ be a unitary representation of π1(M). The multiplicity
mk(0) := dimCk

0 of 0 as a Ruelle resonance for X(k) are given by

m0(0) = dim H0(M; ρ), m1(0) = 2 dim H1(M, ρ),

m2(0) = 2(dim H1(M, ρ)+ dim H0(M; ρ)), m4−k(0) = mk(0)

where Hk(M; ρ) is the twisted de Rham cohomology of degree k associated
to ρ.

Proof For k = 0, from (7.6) and (7.7), we see that only the term ZS,σ0(λ+ 2)
can contribute to a zero to the dynamical zeta function ZX(0) (λ). By Selberg
trace formula [6, Corollary 5.1], ZS,σ0(λ+ 2) has a zero of order dim ker�0
where�0 = (d∇)∗d∇ on sections of the flat Hermitian bundle (E,∇) associ-
ated to ρ.

For k = 1, the condition (7.7) reduces to the following cases to analyse:
q = 0, l = 1, p = 0, 1. For p = 0, the only term to consider is ZS,ν1(λ+ 1),
the Selberg zeta function on 1-forms. As explained in Section 5.3 of [6], ν1
decomposes into two irreducibles ν+1 ⊕ ν−1 and by [6, Proposition 5.6], each
irreducible brings a zero of order− dim H0(M, ρ)+dim H1(M, ρ) at λ = 0:
the contribution to ZX(1) (λ) at λ = 0 coming from ZS,ν1(λ + 1) is a zero or
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pôle with order −2 dim H0(M, ρ) + 2 dim H1(M, ρ). Next the term p = 1:
we need to look at ZS,ν1⊗σ1(λ + 2). First we decompose σ1 ⊗ ν1 = ν1 ⊗ ν1
into irreducibles: ν1 ⊗ ν1 = σ0 ⊕ ν2 ⊕ σ2. Since ν2 ! ν0 is equivalent to the
trivial representation, ZS,σ0⊕ν2(λ+ 2) = (ZS,σ0(λ+ 2))2 has a zero of order
2 dim H0(M, ρ) at λ = 0. Now, for ZS,σ2(λ+ 2) we can use Proposition B.1,
which gives that the order of ZS,σ2(λ + 2) at λ = 0 is dim(ker∇∗∇ − 2) ∩
ker D∗ where∇ is the twisted covariant derivative on S20T

∗M⊗ E and D∗ the
divergence operator. But by Bochner identity [13, Equation (2.4)], ∇∗∇ ≥ 3
and thus dim(ker∇∗∇−2)∩ker D∗ = 0.We conclude that the order at λ = 0
of ZX(1) (λ) is 2 dim H1(M, ρ).

For k = 2, if l = 2 one has to consider (p, q) = (0, 0), (p, q) = (0, 1),
(p, q) = (1, 0), (p, q) = (2, 0). First (p, q) = 0, one get the term ZS,ν0(λ)

since ν2 ! ν0, and this has a zero of order dim H0(M, ρ) at λ = 0. For
(p, q) = (0, 1), ZS,ν0(λ + 2) has a zero of order dim H0(M, ρ) at λ = 0.
For (p, q) = (1, 0), we get the term ZS,σ1(λ + 1) which has a zero of order
−2 dim H0(M, ρ)+2 dim H1(M, ρ) as discussed above. For (p, q) = (2, 0),
we get ZS,σ2(λ+2)which has no zero at λ = 0 as above. Now for l = 1, only
(p, q) = (0, 0) could contribute, and we get the terms ZS,ν1⊗ν1(λ+2)which,
as shown above, has a zero of order 2 dim H0(M, ρ). This ends the proof. ��
Remark 10 We remark that such a result could alternatively be obtained using
the works [13,46], with the advantage of knowing the presence of Jordan
blocks. The work [13] also directly implies that in all dimension n0 + 1 ≥ 4,
one always has m1(0) = dim H1(M; ρ) for M = �\Hn0+1 co-compact.
However, for higher degree forms, and n0 ≥ 4, it turns out that mk(0) could
a priori be non-topological: for example, when n0 = 4, some computations
based on Proposition 7.6 and Selberg formula for irreducible representations
as used above shows that when dim ker(�0 − 4) = j > 0, these j elements
in the kernel contribute to m3(0).
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Appendix A: Proof of Lemma 3.2

A.1. Family of order functions

In this paragraph, we fix the aperture of the cones α0 > 0 small enough to
ensure that Css(α0) ∩ Cu(α0) = ∅ and we fix some small parameter δ > 0.
We construct an order function for every X in a small enough neighborhood
of X0. For that purpose, we closely follow the lines of [21, Lemma 2.1]. We
fix T ′α0 > 1 Tα0 is given by Lemma 3.1. The time T ′α0 will be determined
later on in a way that depends only on α0. For our construction, we also let
m0(x, ξ) ∈ C∞(S∗M, [0, 1]) to be equal to 1 on Cu(α0) and to 0 on Css(α0).
Then, we set

mX (x, ξ) := 1

2T ′α0

∫ T ′α0

−T ′α0
m0 ◦ �̃X

t (x, ξ)dt. (A.1)

Note that mX depends smoothly on X as we chose T ′α0 independently of X
near X0. First of all, we note that

X̃ HmX (x, ξ) = 1

2T ′α0

(
m0 ◦ �̃X

T ′α0
(x, ξ)− m0 ◦ �̃X

−T ′α0 (x, ξ)
)
, (A.2)

where X̃ H is the vector field of �̃X
t . We also observe that, for every (x, ξ)

inside S∗M, the set

IX0(x, ξ) :=
{
t ∈ R : �̃X0

t (x, ξ) ∈ S∗M\ (Cu(α0/2) ∪ Css(α0/2)
)}

is an interval whose length is bounded by some constant T ′′α0 > 0. Fix now

a point (x, ξ) ∈ S∗M̃ and a vector field which is close enough to X0 (to be
determined). If �̃X

t (x, ξ) ∈ Cu(α0) for every t ∈ R, then the set

ĨX (x, ξ) :=
{
t ∈ R : �̃X

t (x, ξ) ∈ S∗M\ (Cu(α0) ∪ Css(α0)
)}

is empty and the same holds if �̃X
t (x, ξ) ∈ Css(α0) for every t ∈ R. Hence,

it remains to bound the length of ĨX (x, ξ) when the orbit of (x, ξ) crosses
S∗M\ (Cu(α0) ∪ Css(α0)) and we may suppose without loss of generality
that (x, ξ) ∈ S∗M\ (Cu(α0) ∪ Css(α0)). Up to the fact that we may have to
decrease a little bit the size of the set Uα0(X0) appearing in Lemma 3.1, we
have that �̃X

T ′′α0
(x, ξ) belongs to Cu(α0). Hence, thanks to Lemma 3.1, one

finds that, for every t ≥ T ′′α0 +1, one has �̃X
t (x, ξ) ∈ Cu(α0). The same holds
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in backward times. Hence, the diameter of ĨX (x, ξ) is uniformly bounded by

2(1+ T ′′α0) and we pick T ′α0 =
1+T ′′α0
δ

for δ < 1.
We set

Ou(X) = �̃X
T ′α0
(S∗M\Css(α0)) and Oss(X) = �̃X

−T ′α0 (S
∗M\Cu(α0)).

Let us now discuss the properties of mX for X belonging to Uα0(X0):

(1) If (x, ξ) ∈ Ou(X), then �̃X
−T ′α0

(x, ξ) /∈ Css(α0). Hence, from the defini-

tion of T ′α0 , one has �̃
X
T ′α0
(x, ξ) ∈ Cu(α0) and, from (A.2), one deduce that

X̃ HmX ≥ 0 on Ou(X). Similarly, one has

mX (x, ξ) = 1

2T ′α0

(∫ −T ′α0+2(Tα0+T ′′α0 )

−T ′α0
m0 ◦ �̃X

t (x, ξ)dt

+
∫ T ′α0

−T ′α0+2(Tα0+T ′′α0 )
m0 ◦ �̃X

t (x, ξ)dt

)
,

from which one can infer

∀(x, ξ) ∈ Ou(X), mX (x, ξ) ≥ 1− Tα0 + T ′′α0
T ′α0

= 1− δ.

(2) Reasoning along similar lines, one also finds that, for every (x, ξ) ∈
Oss(X), X̃ HmX ≥ 0 and

mX (x, ξ) ≤ δ.
(3) Let (x, ξ) be an element of S∗M\(Ou(X) ∪ Oss(X)). In that case, one

has �̃X
−T ′α0

(x, ξ) ∈ Css(α0) and �̃X
T ′α0
(x, ξ) ∈ Cu(α0). Thus, one finds

X̃ HmX (x, ξ) = 1

2T ′α0

(
m0 ◦ �̃X

T ′α0
(x, ξ)− m0 ◦ �̃X

−T ′α0 (x, ξ)
)

= 1

2T ′α0
> 0. (A.3)

(4) Let now (x, ξ) ∈ S∗M\Cu(α0). Write

mX (x, ξ) ≤ 1

2
+ 1

2T ′α0

∫ 0

−T ′α0
m0 ◦ �̃X

t (x, ξ)dt ≤
1+ δ
2
.
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Let us conclude this construction with the following useful observation:

Lemma A.1 Letα0 > 0 be small enough to ensure thatCu(α0)∩Css(α0) = ∅.
Then, there exists 0 < α1 < α0 and a neighborhood Uα0(X0) of X0 inA such
that, for every X ∈ Uα0(X0),

Cu(α1) ∩ S∗M ⊂ Ou(X) and Css(α1) ∩ S∗M ⊂ Oss(X).

Proof First of all, we note that S∗M∩Cu(0) is invariant by the flow �̃X0
t and

it is disjoint fromCss(α0)∩ S∗M. Hence, by construction ofOu(X0), one can
find some small enough α1 > 0 such that S∗M ∩ Cu(α1) is contained inside
Ou(X0). By continuity with respect to X , this property remains true for any X
close enough to X0, i.e. S∗M∩Cu(α1) ⊂ Ou(X) for any X ∈ Uα0(X0)∩A.
The same proof works for the second part of the Lemma. ��
Remark 11 In all the construction so far, we could have defined the cones
Cuu(α) andCs(α) (see paragraph 3.1) and a decaying order function m̃X (x, ξ)
which is close to 0 on Cs(α) and close to 1 on Cuu(α).

A.2. Definition of the escape function

We start with the construction of the function f (x, ξ) ∈ C∞(T ∗M,R+). For
‖ξ‖x ≥ 1, it will be 1-homogeneous and equal to ‖ξ‖x outside the cones
Cuu(α̃0) and Css(α̃0) for α̃0 > 0 small enough (to be determined). Following
the proof of [16, Lemma C.1] (see also [35, Lemma 2.2]), we set, for (x, ξ)
near Css(α̃0/2) and ‖ξ‖x ≥ 1,

f (x, ξ) := exp

(
1

T1

∫ T1

0
ln ‖(dϕX0

t (x)
T )−1ξ‖ϕtX0 (x)dt

)
.

Recall that, for every ξ in E∗s (X0, x), one has ‖(dϕX0
t (x)

T )−1ξ‖ ≤ Ce−βt‖ξ‖
for every t ≥ 0 (where C, β are some uniform constants). Hence, if we
set T1 = 2 lnC

β
, we find that, for every (x, ξ) ∈ E∗s (X0) with ‖ξ‖x ≥ 1,

XH0 f (x, ξ) ≤ − f (x, ξ)β2 . Similarly, picking T1 large enough, we set, for
(x, ξ) near Cuu(α̃0/2) and ‖ξ‖x ≥ 1,

f (x, ξ) := exp

(
1

T1

∫ T1

0
ln ‖(dϕX0

t (x)
T )−1ξ‖ϕtX0 (x)dt

)
,

and we find that XH0 f (x, ξ) ≥ f (x, ξ)β2 on E∗u(X0). By continuity, we find
that there exists some (small enough) α̃0 > 0 such that, for every ‖ξ‖x ≥ 1,

(x, ξ) ∈ Css(α̃0/2)⇒ XH0 f (x, ξ) ≤ − f (x, ξ)
β

3
, (A.4)
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and

(x, ξ) ∈ Cuu(α̃0/2)⇒ XH0 f (x, ξ) ≥ f (x, ξ)
β

3
. (A.5)

As the function f (x, ξ) is 1-homogeneous, we can find a neighborhoodU(X0)

of X0 in the C∞-topology such that, for every X in U(X0) and for every
‖ξ‖x ≥ 1,

(x, ξ) ∈ Css(α̃0/2)⇒ XH f (x, ξ) ≤ − f (x, ξ)
β

4
, (A.6)

and

(x, ξ) ∈ Cuu(α̃0/2)⇒ XH f (x, ξ) ≥ f (x, ξ)
β

4
. (A.7)

Finally, we note that there exists some uniform constant C > 0 such that, for
every X in U(X0) and for ‖ξ‖x ≥ 1,

− C f (x, ξ) ≤ XH f (x, ξ) ≤ C f (x, ξ) (A.8)

We are now ready to construct our family of escape functions GN0,N1
X (x, ξ):

GN0,N1
X (x, ξ) := mN0,N1

X (x, ξ) ln(1+ f (x, ξ)),

withmN0,N1
X ∈ C∞(T ∗M, [−2N0, 2N1])which is 0-homogeneous for ‖ξ‖x ≥

1. In order to construct this function, we will make use of the order functions
defined in paragraph A.1 as in [21, p. 337-8]. Before doing that, let us observe
that

XHG
N0,N1
X (x, ξ) = XH (m

N0,N1
X )(x, ξ) ln(1+ f (x, ξ))

+mN0,N1
X (x, ξ)

XH f (x, ξ)

1+ f (x, ξ)
. (A.9)

We now fix a small enough neighborhood U(X0) of X0 so that f enjoys
(A.6) and (A.7) for all X in U(X0) and so that we can apply the results of
paragraph A.1. Following [21], we set, for ‖ξ‖x ≥ 1,

mN0,N1
X (x, ξ) := N1

(
2− mX

(
x,

ξ

‖ξ‖x
)
− m̃X

(
x,

ξ

‖ξ‖x
))

− 2N0m̃X

(
x,

ξ

‖ξ‖x
)
, (A.10)
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where we used the conventions of paragraph A.1 and Remark 11. First,
notice that, by construction, XH (m

N0,N1
X ) ≤ 0 for ‖ξ‖x ≥ 1. Recall that

the order functions mX and m̃X depends on the parameters α0 > 0 and
δ > 0 and that they depend smoothly on X . Now, we fix 0 < δ <
1
2 min{1,min{N0, N1}/(N0+ N1)}, 0 < 16N0 < N1 and 0 < α0 < α̃0/2. We

then find that mN0,N1
X (x, ξ/‖ξ‖x ) ≥ N1 onOss(X) and mN0,N1

X (x, ξ/‖ξ‖x ) ≤
−N0 onOuu(X). We also have that mN0,N1

X (x, ξ/‖ξ‖x ) ≥ N1
4 − 2N0 ≥ N1/8

for (x, ξ) outside Cuu(α0) (as N1 > 16N0). We now fix α1 to be the aper-
ture of the cone appearing in Lemma A.1. This allows to verify the first three
requirements of mN0,N1

X .

Remark 12 We could also have defined

m̃N0,N1
X (x, ξ) := N1

(
1− mX

(
x,

ξ

‖ξ‖x
))

− N0m̃X

(
x,

ξ

‖ξ‖x
)
.

We still have m̃N0,N1
X (x, ξ) ≥ N1 onOss(X), m̃N0,N1

X (x, ξ) ≤ N1
4 −N0 outside

Css(α0).

Finally, combining XH (m
N0,N1
X ) ≤ 0 with (A.9) for ||ξ || ≥ 1, we

immediately get the upper bound (3.5). It now remains to verify the decay
property (3.3). For that purpose, we shall use the conventions of paragraph A.1
and set, for every X ∈ U(X0),

Õuu(X) = Ouu(X) ∩Ou(X), Õ0(X) = Os(X) ∩Ou(X), and Õss(X)

= Oss(X) ∩Os(X),

which contains respectivelyCuu(α1),Cu(α1)∩Cs(α1) andCss(α1) forα1 > 0
small enough (see Lemma A.1). Note also that Õ0(X) is contained inside
Cu(α0) ∩ Cs(α0) which is a small vicinity of E∗0(X0). Based on (A.9), we
can now establish (3.3) except in this small cone around the flow direction.
Outside Õuu(X) ∪ Õ0(X) ∪ Õss(X), it follows from (A.3) and (A.9). Inside
Õuu(X) and Õss(X), it follows from (A.6), (A.7) and (A.9).

Appendix B: Selberg zeta function on trace-free symmetric tensors

Proposition B.1 Let n be even and M = �\Hn+1 be a compact hyperbolic
manifold. Let ρ : π1(M)→ U (Vρ) be a finite dimensional unitary represen-
tation and let σm be the irreducible unitary representation of SO(n) into the
space Sm0 R

n of trace-free symmetric tensors of order m ≥ 1 on R
n. Then the

Selberg zeta function ZS,σm (s) on M associated to σp and ρ is holomorphic
and the order of its zeros are given by
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ords0 ZS,σm (s)

=
{
dim ker(∇∗∇ − n2/4− m + (s0 − n/2)2) ∩ ker D∗ if s0 �= n/2
2 dim ker(∇∗∇ − n2/4− m) ∩ ker D∗ if s0 = n/2

where ∇ is the twisted Levi-Civita covariant derivative on Sm0 T ∗M ⊗ E,
E → M being the flat bundle over M obtained from the representation ρ,
and D∗ = −Tr ◦ ∇ is the divergence operator.

Proof We follow [6, Theorem 3.15]. First we need to view σm as the restriction
of a sum of irreducibles representations of SO(n + 1) as in Section 1.1.2 [6]:
it is not difficult to check that

σm = ($m −$m−1)|SO(n)
where$m denotes the irreducible unitary representation of SO(n+1) into the
space Sm0 R

n+1. By Section 1.1.3 of [6], there is a Z
2-graded homogeneous

vector bundle Vσm = V+$m
⊕V−$m

overHn+1 with V+$m
= Sm0 R

n+1 and V−$m
=

Sm−10 R
n+1, and we define the bundle VM,ρ⊗σm = �\(Vρ ⊗ Vσm ) over M .

Denoting E → M the bundle over M obtained from Vρ by quotienting by �
and Sm0 T ∗M the bundle of trace-free symmetric tensors of order m on M , the
bundle VM,ρ⊗σm is isomorphic to the bundle E := (Sm0 T ∗M⊕Sm−10 T ∗M)⊗E .
There is a differential operator A2

σm
on E constructed from theCasimir operator

that has eigenvalues in correspondence with the zeros/poles of ZS,σm (s), it is
given A2

σm
= −� − c(σm) where � is the Casimir operator and c(σ ) =

n2/4 − |μ(σm)|2 − 2μ(σ).ρso(n) with μ(σm) the highest weight of σ and
ρso(n) = (n2 − 1, n2 − 2, . . . , 0). Here we have μ(σm) = (m, 0, . . . , 0) thus

c(σm) = n2

4
− m(m + n − 2).

We then obtain the formula

A2
σm
= (�m − c(σm))⊕ (�m−1 − c(σm))

where�m = ∇∗∇−m(m+n−1) is the Lichnerowicz Laplacian on (twisted)
trace-free symmetric tensors of order m on M (see for instance [38, Section
5]). Now we have by [38, Lemma 5.2] that D∗�m = �m−1D∗ if D∗ is
the divergence operator defined by D∗u = −Tr(∇u), and whose adjoint is
D = S∇ is the symmetrised covariant derivative. This gives�mD = D�m−1,
but since D is elliptic with no kernel by [40, Proposition 6.6], it has closed
range and D gives an isomorphism

D : ker(�m−1 − c(σm)− s)→ ker(�m − c(σm)− s) ∩ (ker D∗)⊥
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for each s ∈ R. In particular, one obtains that for each s ∈ R

dim ker(�m − c(σm)− s)− dim ker(�m−1 − c(σm)− s)

= dim(ker(�m − c(σm)− s) ∩ ker D∗).

Now by [6, Theorem 3.15], the function ZS,σm (s) has a zero at s of order

2 dim(dim(ker(�m − c(σm) ∩ ker D∗)) if s = n
2

dim(dim(ker(�m − c(σm) ∩ ker D∗)) if s �= n
2 .

��
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