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Abstract. We introduce a new object, the dynamical torsion, which extends the poten-

tially ill-defined value at 0 of the Ruelle zeta function of a contact Anosov flow twisted

by an acyclic representation of the fundamental group. We show important properties of

the dynamical torsion: it is invariant under deformations among contact Anosov flows, it

is holomorphic in the representation and it has the same logarithmic derivative as some

refined combinatorial torsion of Turaev. This shows that the ratio between this torsion and

the Turaev torsion is locally constant on the space of acyclic representations.

In particular, for contact Anosov flows path connected to the geodesic flow of some hy-

perbolic manifold among contact Anosov flows, we relate the leading term of the Laurent

expansion of ζ at the origin, the Reidemeister torsion and the torsions of the finite dimen-

sional complexes of the generalized resonant states of both flows for the resonance 0. This

extends previous work of [DGRS18] on the Fried conjecture near geodesic flows of hyperbolic

3–manifolds, to hyperbolic manifolds of any odd dimension.

1. Introduction

Let M be a closed odd dimensional manifold and (E,∇) be a flat vector bundle over

M . The parallel transport of the connection ∇ induces a conjugacy class of representation

ρ ∈ Hom(π1(M),GL(Cd)). Moreover, ∇ defines a differential on the complex Ω•(M,E) of

E-valued differential forms on M and thus cohomology groups H•(M,∇) = H•(M,ρ) (note

that we use the notation ∇ also for the twisted differential induced by ∇ whereas it can be

denoted by d∇ in other references). We will say that ∇ (or ρ) is acyclic if those cohomology

groups are trivial. If ρ is unitary (or equivalently, if there exists a hermitian structure on

E preserved by ∇) and acyclic, Reidemeister [Rei35] introduced a combinatorial invariant

τR(ρ) of the pair (M,ρ), the so-called Franz-Reidemeister torsion (or R-torsion), which is

a positive number. This allowed him to classify lens spaces in dimension 3; this result was

then extended in higher dimension by Franz [Fra35] and De Rham [dR36].

On the analytic side, Ray-Singer [RS71] introduced another invariant τRS(ρ), the analytic

torsion, defined via the derivative at 0 of the spectral zeta function of the Laplacian given

by the Hermitian metric on E and some Riemannian metric on M . They conjectured the

equality of the analytic and Reidemeister torsions. This conjecture was proved independently

by Cheeger [Che79] and Müller [Mül78], assuming only that ρ is unitary (both R-torsion and

analytic torsion have a natural extension if ρ is unitary and not acyclic). The Cheeger-Müller

theorem was extended to unimodular flat vector bundles by Müller [Mul93] and to arbitrary

flat vector bundles by Bismut-Zhang [BZ92].
1
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In the context of hyperbolic dynamical systems, Fried [Fri87] was interested in the link

between the R-torsion and the Ruelle zeta function of an Anosov flow X which is defined by

ζX,ρ(s) =
∏
γ∈G#

X

det
(

1− εγρ([γ])e−s`(γ)
)
, Re(s)� 0,

where G#
X is the set of primitive closed orbits of X, `(γ) is the period of γ and εγ = 1 if the

stable bundle of γ is orientable and εγ = −1 otherwise. Using Selberg’s trace formula, Fried

could relate the behavior of ζX,ρ(s) near s = 0 with τR, as follows.

Theorem 1 (Fried [Fri86]). Let M = SZ be the unit tangent bundle of some closed oriented

hyperbolic manifold Z, and denote by X its geodesic vector field on M . Assume that ρ :

π1(M)→ O(d) is an acyclic and unitary representation. Then ζX,ρ extends meromorphically

to C. Moreover, it is holomorphic near s = 0 and

|ζX,ρ(0)|(−1)r = τR(ρ), (1.1)

where 2r + 1 = dimM , and τR(ρ) is the Reidemeister torsion of (M,ρ).

In [Fri87], Fried conjectured that the same holds true for negatively curved locally sym-

metric spaces. This was proved by Moscovici-Stanton [MS91], Shen [She17].

For analytic Anosov flows, the meromorphic continuation of ζX,ρ was proved by Rugh

[Rug96] in dimension 3 and by Fried [Fri95] in higher dimensions. Then Sanchez-Morgado

[SM93, SM96] proved in dimension 3 that if ρ is acyclic, unitary, and satisfies that ρ([γ])−εjγ
is invertible for j ∈ {0, 1} for some closed orbit γ, then (1.1) is true.

For general smooth Anosov flows, the meromorphic continuation of ζX,ρ was proved by

Giuletti-Liverani-Pollicott [GLP13] and alternatively by Dyatlov–Zworski [DZ16]. The Ax-

iom A case was treated by Dyatlov–Guillarmou in [DG18]. Quoting the commentary from

Zworski [Zwo18] on Smale’s seminal paper [Sma67], equation (1.1) ”would link dynamical,

spectral and topological quantities. [. . . ] In the case of smooth manifolds of variable negative

curvature, equation (1.1) remains completely open”. However in [DZ17], the authors were

able to prove the following.

Theorem 2 (Dyatlov–Zworski). Suppose (Σ, g) is a negatively curved orientable Riemannian

surface. Let X denote the associated geodesic vector field on the unitary cotangent bundle

M = S∗Σ. Then for some c 6= 0, we have as s→ 0

ζX,1(s) = cs|χ(Σ)| (1 +O(s)) , (1.2)

where 1 is the trivial representation π1(S∗Σ) → C∗ and χ(Σ) is the Euler characteristic of

Σ. In particular, the length spectrum
{
`(γ), γ ∈ G#

X

}
determines the genus.

This result was generalized in a recent preprint of Cekić–Paternain [CP19] to volume

preserving Anosov flows in dimension 3.

In the same spirit and using similar microlocal methods, Guillarmou-Rivière-Shen and the

second author [DGRS18] showed
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Theorem 3 (D–Rivière–Guillarmou–Shen). Let ρ be an acyclic representation of π1(M).

Then the map

X 7→ ζX,ρ(0)

is locally constant on the open set of smooth vector fields which are Anosov and for which 0

is not a Ruelle resonance, that is, 0 /∈ Res(L∇X). If X preserves a smooth volume form and

dim(M) = 3, equation (1.1) holds true if b1(M) 6= 0 or under the same assumption used in

[SM96].

Let us comment on the notion of Ruelle resonance to explain the assumptions in the above

Theorem. All recent works on the analytic continuation of the Ruelle zeta function are

important byproducts of new functional methods to study hyperbolic flows. They rely on

the construction of spaces of anisotropic distributions adapted to the dynamics, initiated by

Kitaev [Kit99], Blank–Keller–Liverani [BKL02], Baladi [Bal05, Bal18], Baladi–Tsujii [BT07],

Gouëzel-Liverani [GL06], Liverani [Liv05], Butterley-Liverani [BL07, BL13], and many oth-

ers where we refer to the recent book [Bal18] for precise references. These spaces allow to

define a suitable notion of spectrum for the operator L∇X = ∇ιX + ιX∇, where ι is the in-

terior product, acting on Ω•(M,E). This spectrum is the set of so-called Pollicott–Ruelle

resonances Res(L∇X), which forms a discrete subset of C and contains all zeros and poles of

ζX,ρ. Faure–Roy–Sjöstrand [FRS08], Faure–Sjöstrand [FS11] initiated the use of microlocal

methods to describe these anisotropic spaces of distributions giving a purely microlocal ap-

proach to study Ruelle resonances. This was further developped by Dyatlov and Zworski to

study Ruelle zeta functions.

However, if 0 ∈ Res(L∇X) then the results of [DGRS18] no longer apply since the zeta

function ζX,ρ might have a pole or zero at s = 0 (recall zeros and poles of ζX,ρ are contained

in Res(L∇X)). One goal of this article is to remove the assumption that 0 is not a Ruelle

resonance. In the spirit of Theorem 2 and the Fried conjecture, we can state a Theorem

which follows from more general results of the present paper (see §2).

Theorem 4. Let (Z, g0) be a compact hyperbolic manifold of dimension q and ρ be the lift to

S∗Z of some acyclic unitary representation π1(Z)→ GL(Cd). Then for every metric g which

is path connected to g0 in the space of negatively curved metrics, there exists m(g, ρ) ∈ Z s.t.∣∣ζXg ,ρ(s)∣∣(−1)q
= |s|(−1)qm(g,ρ) τR(ρ)︸ ︷︷ ︸

R-torsion

∣∣∣∣τ(C•(Xg0 , ρ))

τ(C•(Xg, ρ))

∣∣∣∣ (1 +O(s)) , (1.3)

where Xg denotes the geodesic vector field of g and τ(C•(Xg, ρ)) is the refined torsion of the

finite dimensional space of resonant states for the resonance 0 of (Xg, ρ).

In the above statement, the vector field Xg generates a contact Anosov flow on the contact

manifold S∗gZ = {(x, ξ) ∈ T ∗Z, |ξ|g = 1} 1. The finite dimensional torsion τ(C•(Xg, ρ)) will

be described in §2 below.

1This means concretely that changing the metric g on Z affects both the contact form ϑ and Reeb field X

on S∗Z
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2. Main results

There are two restrictions in Theorem 3 of [DGRS18]. The first restriction is that

|ζX,ρ(0)|(−1)r = τR(ρ)

is an equality of positive real numbers and the representation ρ is unitary. For arbitrary

acyclic representations ρ : π1(M) → GL(Cd), one could wonder if the phase of the complex

number ζX,ρ(0) contains topological information. For instance, if it can be compared with

some complex valued torsion defined for general acyclic representations ρ : π1(M)→ GL(Cd).
The second restriction concerns the assumption that 0 is not a Ruelle resonance. Apart from

the low dimension cases studied in [DGRS18], this assumption is particularly hard to control

and is difficult to check for explicit examples.

Our goal in the present work is to partially overcome these two obstacles. In the case

where X induces a contact flow, which means that X = Xϑ is the Reeb vector field of some

contact form ϑ on M , we deal with these difficulties by introducing a dynamical torsion

τϑ(ρ) which is a new object defined for any acyclic ρ and which coincides with ζX,ρ(0)±1 if

0 /∈ Res(L∇X). Before stating our main results, let us introduce the two main characters of

our discussion in the next two subsections.

2.1. Refined versions of torsion. The Franz–Reidemeister torsion τR is given by the mod-

ulus of some alternate product of determinants and is therefore real valued. One cannot get

a canonical object by removing the modulus since one has to make some choices to define

the combinatorial torsion, and the ambiguities in these choices affect the alternate product

of determinants. To remove indeterminacies arising in the definition of the combinatorial

torsion, Turaev [Tur86, Tur90, Tur97] introduced in the acyclic case a refined version of the

combinatorial R-torsion, the refined combinatorial torsion. It is a complex number τe,o(ρ)

which depends on additional combinatorial data, namely an Euler structure e and a coho-

mological orientation o of M , and which satisfies |τe,o(ρ)| = τR(ρ) if ρ is acyclic and unitary.

We refer the reader to subsection 9.2 for precise definitions. Later, Farber-Turaev [FT00]

extended this object to non-acyclic representations. In this case, τe,o(ρ) is an element of the

determinant line of cohomology detH•(M,ρ).

Motivated by the work of Turaev, but from the analytic side, Braverman-Kappeler [BK07c,

BK+08, BK07b] introduced a refined version of the Ray-Singer analytic torsion called refined

analytic torsion τan(ρ). It is complex valued in the acyclic case. Their construction heavily

relies on the existence of a chirality operator Γg, that is,

Γg : Ω•(M,E)→ Ωn−•(M,E), Γ2
g = Id,

which is a renormalized version of the Hodge star operator associated to some metric g. They

showed that the ratio

ρ 7→ τan(ρ)

τe,o(ρ)

is a holomorphic function on the representation variety given by an explicit local expression,

up to a local constant of modulus one. This result is an extension of the Cheeger-Müller

theorem. Simultaneously, Burghelea-Haller [BH07] introduced a complex valued analytic
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torsion, which is closely related to the refined analytic torsion [BK07a] when it is defined;

see [H+07] for comparison theorems.

2.2. Dynamical torsion. We now assume that X = Xϑ is the Reeb vector field of some

contact form ϑ on M . Let us briefly describe the construction of the dynamical torsion. In

the spirit of [BK07c], we use a chirality operator associated to the contact form ϑ,

Γϑ : Ω•(M,E)→ Ωn−•(M,E), Γ2
ϑ = Id,

cf. §6, analogous to the usual Hodge star operator associated to a Riemannian metric. Let

C• ⊂ D′•(M,E) be the finite dimensional space of Pollicott-Ruelle generalized resonant

states of L∇X for the resonance 0, that is,

C• =
{
u ∈ D′•(M,E), WF(u) ⊂ E∗u, ∃N ∈ N,

(
L∇X
)N

u = 0
}
,

where WF is the Hörmander wavefront set, E∗u ⊂ T ∗M is the unstable cobundle of X 2, cf.

§5, and D′(M,E) denotes the space of E-valued currents. Then ∇ induces a differential on

C• which makes it a finite dimensional cochain complex. Then a result from [DR17c] implies

that the complex (C•,∇) is acyclic if we assume that ∇ is. Because Γϑ commutes with L∇X ,

it induces a chirality operator on C•. Therefore we can compute the torsion τ(C•,Γϑ) of

the finite dimensional complex (C•,∇) with respect to Γϑ, as described in [BK07c] (see §3).

Then we define the dynamical torsion τϑ as the product

τϑ(ρ)(−1)q = ± τ(C•,Γϑ)(−1)q︸ ︷︷ ︸
finite dimensional torsion

× lim
s→0

s−m(X,ρ)ζX,ρ(s)︸ ︷︷ ︸
renormalized Ruelle zeta function at s=0

∈ C \ 0,

where the sign ± will be given later, m(X, ρ) is the order of ζX,ρ(s) at s = 0 and q = dim(M)−1
2

is the dimension of the unstable bundle of X. Note that the order m(X, ρ) ∈ Z is a priori

not stable under perturbations of (X, ρ), in fact both terms in the product may not be

invariant under small changes of ϑ whereas the dynamical torsion τϑ has interesting invariance

properties as we will see below.

2.3. Statement of the results. We denote by Repac(M,d) the set of acyclic representations

π1(M) → GL(Cd) and by A ⊂ C∞(M,TM) the space of contact forms on M whose Reeb

vector field induces an Anosov flow. This is an open subset of the space of contact forms.

For any ϑ ∈ A, we denote by Xϑ its Reeb vector field. Recall that we want to study the

value at 0 without taking the modulus. As in Fried’s case, ζX,ρ(0) might be ill–defined since

0 ∈ Res(L∇X) and this was the reason for introducing the more general object τϑ(ρ). Our goal

is to compare this new complex number with the refined torsion. As a first step towards this,

our first result shows τϑ(ρ) is invariant by small perturbations of the contact form ϑ ∈ A.

Theorem 5. Let (M,ϑ) be a contact manifold such that the Reeb vector field of ϑ induces

an Anosov flow. Let (ϑτ )τ∈(−ε,ε) be a smooth family in A. Then ∂τ log τϑτ (ρ) = 0 for any

ρ ∈ Repac(M,d).

2 the annihilator of Eu ⊕ RX where Eu ⊂ TM denotes the unstable bundle of the flow



6 Y. CHAUBET AND N.V. DANG

Remark 2.1. In the case where the representation ρ is not acyclic, we can still define τϑ(ρ)

as an element of the determinant line detH•(M,ρ), cf Remark 6.5. This element is invariant

under perturbations of ϑ ∈ A, cf. Remark 7.1.

This result implies that the map ϑ ∈ A 7→ τϑ(ρ) is locally constant for all ρ ∈ Repac(M,d).

To apply Theorem 3 in the case of contact Anosov flows, we need to make small perturbations

near a contact Anosov flow s.t. 0 /∈ Res(L∇X). Assume we have a C1 family of contact Anosov

flows (Xt)t∈[0,1] s.t. 0 is not a resonance of (X0, X1), but if 0 ∈ Res(L∇Xu) for some u ∈ (0, 1)

then we cannot claim that ζX0,ρ(0) = ζX1,ρ(0) using Theorem 3. In the present case, the

assumption 0 /∈ Res(L∇X) is no longer needed and we can make more general perturbations

provided we stay within the set of contact Anosov flows.

Our second result aims to compare τϑ with Turaev’s refined version of the Reidemeister

torsion τe,o, which depends on some choice of Euler structure e and orientation o. An analog

of the Fried conjecture would be to prove the equality τϑ(ρ) = τe,o(ρ) for some (e, o) and for

all ρ ∈ Repac(M,d) (this would imply |τR(ρ)| = |ζX,ρ(0)|±1 if ρ is acyclic and unitary and if

0 /∈ Res(L∇X)). We prove a weaker result, which shows that the derivatives in ρ ∈ Repac(M,d)

of log τϑ(ρ) and log τe,o(ρ) coincide.

Theorem 6. Let (M,ϑ) be a contact manifold such that the Reeb vector field of ϑ induces

an Anosov flow. Then ρ ∈ Repac(M,d) 7→ τϑ(ρ) is holomorphic 3 and there exists an Euler

structure e such that for any cohomological orientation o and any smooth family (ρu)u∈(−ε,ε)
of Repac(M,d),

∂u log τϑ(ρu) = ∂u log τe,o(ρu)

Moreover, if dimM = 3 and b1(M) 6= 0, the map ρ 7→ τϑ(ρ)/τe,o(ρ) is of modulus one on the

connected components of Repac(M,d) containing an acyclic and unitary representation.

In [DGRS18], for ρ acyclic, the authors proved that 0 /∈ Res(L∇X) implies that X 7→ ζX,ρ(0)

is locally constant. Then the equality |ζX,ρ(0)| = τR(ρ) was proved indirectly by working

near analytic Anosov flows in dimension 3 or near geodesic flows of hyperbolic 3-manifolds,

where the equality is known by the works of Sanchez Morgado and Fried, relying on the

fact that ζX,ρ(0) remains constant by small perturbations of the vector field X. Whereas in

the above Theorem, for any contact Anosov flow in any odd dimension, we directly compare

the log derivatives of the dynamical and refined torsions as holomorphic functions on the

representation variety. We do not need to work near some vector field X for which the

equality |ζX,ρ(0)| = τR(ρ) is already known.

Finally, our third result aims to describe how ∂u log τϑ(ρu) depends on the choice of the

contact Anosov vector field Xϑ.

Theorem 7. Let (M,ϑ) be a contact manifold such that the Reeb vector field of ϑ induces

an Anosov flow. Let (ρu)|u|≤ε be a smooth family in Repac(M,d). Then for any η ∈ A

∂u log τη(ρu) = ∂u log τϑ(ρu) + ∂u log det (〈ρu, cs(Xϑ, Xη)〉)︸ ︷︷ ︸
topological

3Repac(M,d) is a variety over C see subsection 11.2 for the right notion of holomorphicity
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as differential 1-forms on Repac(M,d) and where cs(Xϑ, Xη) ∈ H1(M,Z) is the Chern-

Simons class of the pair of vector fields (Xϑ, Xη).

The underbraced term is topological since it is defined as the pairing of the representation ρ

with the Chern–Simons class cs(Xϑ, Xη) ∈ H1(M,Z) which measures the obstruction to find a

homotopy among non singular vector fields connecting Xϑ and Xη
4. In particular, if ϑ and η

are connected by some path in A, then cs(Yη, Xϑ) = 0 which yields det
〈
ρ,
(
cs(Xϑ, Xη)

)〉
= 1

hence ∂u log τη(ρu) = ∂u log τϑ(ρu) for any acyclic ρ. We refer the reader to subsection 9.1

for the definition of Chern-Simons classes.

Because the dynamical torsion is constructed with the help of the dynamical zeta function

ζX,ρ, we deduce from the above theorem some informations about the behavior of ζX,ρ(s)

near s = 0, as follows.

Corollary 8. Let M be a closed odd dimensional manifold. Then for every connected open

subsets U ⊂ Repac(M,d) and V ⊂ A, there exists a constant C such that for every Anosov

contact form ϑ ∈ V and every representation ρ ∈ U ,

ζXϑ,ρ(s)
(−1)q = Cs(−1)qm(ρ,Xϑ)

τeXϑ ,o(ρ)

τ (C• (ϑ, ρ) ,Γϑ)
(1 +O(s)) , (2.1)

where Xϑ is the Reeb vector field of ϑ, (Eρ,∇ρ) is the flat vector bundle over M induced by

ρ, C• (ϑ, ρ) ⊂ D′•(M,Eρ) is the space of generalized resonant states for the resonance 0 of

L∇ρXϑ and m(Xϑ, ρ) is the vanishing order of ζXϑ,ρ(s) at s = 0.

2.4. Methods of proof. Let us briefly sketch the proof of Theorems 5 and 6 which relies

essentially on two variational arguments: we compute the variation of τϑ(∇) when we perturb

the contact form ϑ and the connection ∇. As we do so, the space C•(ϑ,∇) of Pollicott-Ruelle

resonant states of L∇Xϑ for the resonance 0 may radically change. Therefore, it is convenient

to consider the space C•[0,λ](ϑ,∇) instead, which consists of the generalized resonant states

for L∇Xϑ for resonances s such that |s| ≤ λ, where λ ∈ (0, 1) is chosen so that {|s| =

λ}∩Res(L∇Xϑ) = ∅. Then using [BK07c, Proposition 5.6] and multiplicativity of torsion, one

can show that

τϑ(∇) = ±τ
(
C•[0,λ](ϑ,∇),Γϑ

)
ζ

(λ,∞)
Xϑ,ρ

(0)(−1)q , (2.2)

where ζ
(λ,∞)
Xϑ,ρ

is a renormalized version of ζXϑ,ρ (we remove all the poles and zeros of ζXϑ,ρ
within {s ∈ C, |s| ≤ λ}), see §6. Thus we can work with the space C•[0,λ](ϑ,∇), which

behaves nicely under perturbations of X thanks to Bonthonneau’s construction of uniform

anisotropic Sobolev spaces for families of Anosov flows [Bon18], and also under perturbations

of ∇.

Now consider a smooth family of contact forms (ϑt)t for |t| < ε such that their Reeb

vector fields (Xt)t induce Anosov flows. Then Theorem 9 says that for any acyclic ∇, the

map t 7→ τϑt(∇) is differentiable and its derivative vanishes. This follows from a result of

[BK07c] which allows to compute the variation of the torsion of a finite dimensional complex

4Note that taking the determinant det (〈ρ, cs(Xϑ, Xη)〉) does not depend on the choice of representative of

cs(Xϑ, Xη) in π1(M)
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when the chirality operator is perturbed, and on a variation formula of the map t 7→ ζXt,ρ(s)

for Re(s) big enough obtained in [DGRS18].

Next, consider a smooth family of flat connections z 7→ ∇(z), where z is a complex

number varying in a small neighborhood of the origin and write ∇(z) = ∇+ zα+ o(z) where

α ∈ Ω1(M,End(E)). Then we show in §8, in the same spirit as before, that z 7→ τϑ(∇(z)) is

complex differentiable and its logarithmic derivative reads

∂z|z=0 log τϑ(∇(z)) = −tr[sαKe
−εL∇Xϑ ,

where ε > 0 is small enough, tr[s is the super flat trace, cf. §4.4, and K : Ω•(M,E) →
D′•(M,E) is a cochain contraction, that is, it satisfies ∇K +K∇ = IdΩ•(M,E). On the other

hand, we can compute, using the formalism of [DR17b],

∂z|z=0 log τeϑ,o(∇(z)) = −tr[sαK̃e
−εL∇

−X̃ −
∫
e

trα,

where eϑ is an Euler structure canonically associated to ϑ, K̃ is another cochain contraction,

X̃ is a Morse-Smale gradient vector field and e ∈ C1(M,Z) is a singular one-chain representing

the Euler structure eϑ, cf. §9. Now using the fact that K and K̃ are cochain contractions,

one can see that

α
(
Ke
−εL∇Xϑ − K̃e

−εL∇
X̃

)
= αRε + [∇, αGε],

where Rε is an operator of degree -1 whose kernel is, roughly speaking, the union of graphs

of the maps e−εXu , where (Xu)u is a non-degenerate family of vector fields interpolating Xϑ

and X̃, cf. §9.3, and Gε is some operator of degree -2. Therefore we obtain by cyclicity of

the flat trace

∂z|z=0 log
τϑ(∇(z))

τeϑ,o(∇(z))
= tr[sαRε −

∫
e

trα = 0, (2.3)

where the last equality comes from differential topology arguments. Using the analytical

structure of the representation variety, we may deduce from (2.3) the claim of Theorem 6.

Theorem 7 then follows from the invariance of the dynamical torsion under small pertur-

bations of the flow, the fact that τe,o(ρ) = τe′,o(ρ)〈det ρ, h〉 for any other Euler structure e′,

where h ∈ H1(M,Z) satisfies e = e′+h (we have that H1(M,Z) acts freely and transitively on

the set of Euler structures, cf. §9), and the fact that, in our notations, eη − eϑ = cs(Xϑ, Xη)

for any other contact form η.

2.5. Related works. Some analogs of our dynamical torsion were introduced by Burghelea–

Haller [BH08b] for vector fields which admit a Lyapunov closed 1–form generalizing previous

works by Hutchings [H02], Hutchings–Lee [HL99b, HL99a] dealing with Morse–Novikov flows.

In that case, the dynamical torsion depends on a choice of Euler structure and is a partially

defined function on Repac(M,d); if d = 1, it is shown in [BH08a] that it extends to a rational

map on the Zariski closure of Repac(M, 1) which coincides, up to sign, with Turaev’s refined

combinatorial torsion (for the same choice of Euler structure). This follows from previous
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works of Hutchings–Lee [HL99b, HL99a] who introduced some topological invariant involving

circle-valued Morse functions. In both works, the considered object has the form

Dynamical zeta function(0) × Correction term

where the correction term is the torsion of some finite dimensional complex whose chains

are generated by the critical points of the vector field. The chosen Euler structure gives

a distinguished basis of the complex and thus a well defined torsion. This is one of the

main differences with our work since in the Anosov case, there are no such choices of distin-

guished currents in C•. However, the chirality operator allows us to overcome this problem

as described above.

We also would like to mention some interesting related works of Rumin–Seshadri [RS12]

where they relate some dynamical zeta function involving the Reeb flow and some analytic

contact torsion on 3–dimensional Seifert CR manifolds.

Finally, very recently, Spilioti [Spi20] and Müller [Mul20] were able to compare the Ruelle

zeta function for odd dimensional compact hyperbolic manifolds with some of the complex

valued torsions mentioned above.

2.6. Plan of the paper. The paper is organized as follows. In §3, we give some preliminaries
about torsion of finite dimensional complexes computed with respect to a chirality operator.
In §4, we present our geometrical setting and conventions. In §5, we introduce Pollicott-Ruelle
resonances. In §6, we compute the refined torsion of a space of generalized eigenvectors for
nonzero resonances and we define the dynamical torsion. In §7, we prove that our torsion
is unsensitive to small perturbations of the dynamics. In §8, we compute the variation of
our torsion with respect to the connection. In §9, we introduce Euler structures which are
some topological tools used to fix ambiguities of the refined torsion. In §10, we introduce
the refined combinatorial torsion of Turaev using Morse theory and we compute its variation
with respect to the connection. We finally compare it to the dynamical torsion in §11.
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chelli, Claude Roger, Nicolas Vichery, Jean Yves Welschinger, Steve Zelditch, for asking questions

about this work or for interesting discussions related to the paper. Particular thanks are due to Colin

Guillarmou who went through the whole paper, helped us correct many errors and is always a source

of inspiration. We thank the organizers of the microlocal analysis program in MSRI for the invitation

to speak about our result. N.V.D is very grateful to Gabriel Rivière for his friendship, many inspiring

maths discussions, his many advices and for the series of works which made the present paper possible.

Finally, N.V.D acknowledges the incredible patience and love of his wife and daughter, who created

the right atmosphere at home which made this possible.

3. Torsion of finite dimensional complexes

We recall the definition of the refined torsion of a finite dimensional acyclic complex

computed with respect to a chirality operator, following [BK07c]. Then we compute the

variation of the torsion of such a complex when the differential is perturbed.
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3.1. The determinant line of a complex. For a non zero complex vector space V , the

determinant line of V is the line defined by det(V ) =
∧dimV V . We declare the determinant

line of the trivial vector space {0} to be C. If L is a 1-dimensional vector space, we will denote

by L−1 its dual line. Any basis (v1, . . . , vn) of V defines a nonzero element v1 ∧ · · · ∧ vn ∈
det(V ). Thus elements of the determinant line of det(V ) should be thought of as equivalence

classes of oriented basis of V .

Let

(C•, ∂) : 0
∂−→ C0 ∂−→ C1 ∂−→ · · · ∂−→ Cn

∂−→ 0

be a finite dimensional complex, i.e. dimCj < ∞ for all j = 0, . . . , n. We define the deter-

minant line of the complex C• by

det(C•) =

n⊗
j=0

det(Cj)(−1)j .

Let H•(∂) be the cohomology of (C•, ∂), that is

H•(∂) =
n⊕
j=0

Hj(∂), Hj(∂) =
ker(∂ : Cj → Cj+1)

ran(∂ : Cj−1 → Cj)
.

We will say that the complex (C•, ∂) is acyclic if H•(∂) = 0. In that case, detH•(∂) is

canonically isomorphic to C.

It remains to define the fusion homomorphism that we will later need to define the torsion

of a finite dimensional based complex [FT00, §2.3]. For any finite dimensional vector spaces

V1, . . . , Vr, we have a fusion isomorphism

µV1,...,Vr : det(V1)⊗ · · · ⊗ det(Vr)→ det(V1 ⊕ · · · ⊕ Vr)

defined by

µV1,...,Vr

(
v1

1 ∧ · · · ∧ v
m1
1 ⊗ · · · ⊗ v1

r ∧ · · · ∧ vmrr
)

= v1
1 ∧ · · · ∧ v

m1
1 ∧ · · · ∧ v1

r ∧ · · · ∧ vmrr ,

where mj = dimVj for j ∈ {1, . . . , r}.

3.2. Torsion of finite dimensional acyclic complexes. In the present paper, we want to

think of torsion of finite dimensional acyclic complexes as a map ϕC• from the determinant

line of the complex to C. We have a canonical isomorphism

ϕC• : det(C•)
∼−→ C, (3.1)

defined as follows. Fix a decomposition

Cj = Bj ⊕Aj , j = 0, . . . , n,

with Bj = ker(∂) ∩ Cj and Bj = ∂(Aj−1) = ∂(Cj−1) for every j. Then ∂|Aj : Aj → Bj+1 is

an isomorphism for every j.

Fix non zero elements cj ∈ detCj and aj ∈ detAj for any j. Let ∂(aj) ∈ detBj+1 denote

the image of aj under the isomorphism detAj → detBj+1 induced by the isomorphism
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∂|Aj : Aj → Bj+1. Then for each j = 0, . . . , n, there exists a unique λj ∈ C such that

cj = λjµBj ,Aj
(
∂(aj−1)⊗ aj

)
,

where µBj ,Aj is the fusion isomorphism defined in §3.1. Then define the isomorphism ϕC• by

ϕC• : c0 ⊗ c−1
1 ⊗ · · · ⊗ c

(−1)n

n 7→ (−1)N(C•)
n∏
j=0

λ
(−1)j

j ∈ C,

where

N(C•) =
1

2

n∑
j=0

dimAj
(
dimAj + (−1)j+1

)
.

One easily shows that ϕC• is independent of the choices of aj [Tur01, Lemma 1.3]. The

number τ(C•, c) = ϕC•(c) is called the refined torsion of (C•, ∂) with respect to the element

c.

The torsion will depend on the choices of cj ∈ detCj . Here the sign convention (that is,

the choice of the prefactor (−1)N(C•) in the definition of ϕC•) follows Braverman–Kappeler

[BK07c, §2] and is consistent with Nicolaescu [Nic03, §1]. This prefactor was introduced by

Turaev and differs from [Tur86]. See [Nic03] for the motivation for the choice of sign.

Remark 3.1. If the complex (C•, ∂) is not acyclic, we can still define a torsion τ(C•, c),

which is this time an element of the determinant line detH•(∂), cf. [BK07c, §2.4].

3.3. Torsion with respect to a chirality operator. We saw above that torsion depends

on the choice of an element of the determinant line. A way to fix the value of the torsion

without choosing an explicit basis is to use a chirality operator as in [BK07c]. Take n = 2r+1

an odd integer and consider a complex (C•, ∂) of length n. We will call a chirality operator

an operator Γ : C• → C• such that Γ2 = IdC• , and

Γ(Cj) = Cn−j , j = 0, . . . , n.

Γ induces isomorphisms det(Cj) → det(Cn−j) that we will still denote by Γ. If ` ∈ L is a

non zero element of a complex line, we will denote by `−1 ∈ L−1 the unique element such

that `−1(`) = 1. Fix non zero elements cj ∈ det(Cj) for j ∈ {0, . . . , r} and define

cΓ = (−1)m(C•)c0 ⊗ c−1
1 ⊗ · · · ⊗ c

(−1)r

r ⊗ (Γcr)
(−1)r+1 ⊗ (Γcr−1)(−1)r ⊗ · · · ⊗ (Γc0)−1,

where

m(C•) =
1

2

r∑
j=0

dimCj
(
dimCj + (−1)r+j

)
.

Definition 3.2. The element cΓ is independent of the choices of cj for j ∈ {0, . . . , r}; the

refined torsion of (C•, ∂) with respect to Γ is the element

τ(C•,Γ) = τ(C•, cΓ).

We also have the following result which is [BK07c, Lemma 4.7] in the acyclic case about

the multiplicativity of torsion.
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Proposition 3.3. Let (C•, ∂) and (C̃•, ∂̃) be two acyclic complexes of same length endowed

with two chirality operators Γ and Γ̃. Then

τ(C• ⊕ C̃•,Γ⊕ Γ̃) = τ(C•,Γ)τ(C̃•, Γ̃).

3.4. Computation of the torsion with the contact signature operator. Let

B = Γ∂ + ∂Γ : C• → C•.

B is called the signature operator. Let B+ = Γ∂ and B− = ∂Γ. Denote

Cj± = Cj ∩ ker(B∓), j = 0, . . . , n.

We have that B± preserves C•±. Note that B+(Cj+) ⊂ Cn−j−1
+ , so that B+(Cj+ ⊕ C

n−j−1
+ ) ⊂

Cj+ ⊕ C
n−j−1
+ . Note that if B is invertible on C•, B+ is invertible on C•+. If B is invertible,

we can compute the refined torsion of (C•, ∂) using the following

Proposition 3.4. [BK07c, Proposition 5.6] Assume that B is invertible. Then (C•, ∂) is

acyclic so that det(H•(∂)) is canonically isomorphic to C. Moreover,

τ(C•,Γ) = (−1)r dimCr+ det
(

Γ∂|Cr+
)(−1)r

r−1∏
j=0

det
(

Γ∂|
Cj+⊕C

n−j−1
+

)(−1)j

.

3.5. Super traces and determinants. Let V • =
⊕p

j=0 V
j is a graded finite dimensional

vector space and A : V • → V • be a degree preserving linear map. We define the super trace

and the super determinant of A by

trs,V •A =

p∑
j=0

(−1)j trV j A, dets,V •A =

p∏
j=0

(detV jA)(−1)j .

We also define the graded trace and the graded determinant of A by

trgr,V •A =

p∑
j=0

(−1)jj trV j A, detgr,V •A =

p∏
j=0

(detV jA)(−1)jj .

3.6. Analytic families of differentials. The goal of the present subsection is to give a

variation formula for the torsion of a finite dimensional complex when we vary the differential.

This formula plays a crucial role in the variation formula of the dynamical torsion, when

the representation is perturbed. Indeed, we split the dynamical torsion as the product of

the torsion τ (C•(ϑ, ρ),Γϑ) of some finite dimensional space of Ruelle resonant states and

a renormalized value at s = 0 of the dynamical zeta function ζX,ρ(s). Then the following

formula allows us to deal with the variation of τ (C•(ϑ, ρ),Γϑ).

Let (C•, ∂) be an acyclic finite dimensional complex of finite odd length n. If S : C• : C•

is a linear operator, we will say that it is of degree s if S(Ck) ⊂ Ck+s for any k. If S and T

are two operators on C• of degrees s et t respectively then the supercommutator of S and T

by

[S, T ] = ST − (−1)stTS.

Cyclicity of the usual trace gives trs,C• [S, T ] = 0 for any S, T .
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Let U be a neighborhood of the origin in the complex plane and ∂(z), z ∈ U , be a family

of acyclic differentials on C• which is complex differentiable at z = 0, that is,

∂(z) = ∂ + za+ o(z) (3.2)

for some operator a : C• → C• of degree 1. Note that ∂(z) ◦ ∂(z) = 0 implies that the

supercommutator

[∂, a] = ∂a+ a∂ = 0. (3.3)

We will denote by C•(z) the complex (C•, ∂(z)). Finally let k : C• → C• be a cochain

contraction, that is a linear map of degree 1 such that

∂k + k∂ = IdC• . (3.4)

The existence of such map is ensured by the acyclicity of (C•, ∂).

Lemma 3.5. In the above notations, for any chirality operator Γ on C•, the map z 7→
τ(C•(z),Γ) is complex differentiable at z = 0 and

d

dz

∣∣∣∣
z=0

log τ(C•(z),Γ) = −trs,C•(ak).

Note that this implies in particular that trs,C•(ak) does not depend on the chosen cochain

contraction k. This is expected since if k′ is another cochain contraction,

[∂, akk′] = ∂akk′ + akk′∂ = a(k − k′)

by (3.3), and the supertrace of a supercommutator vanishes.

Proof. First note that for non zero elements c, c′ ∈ detC•, we have

τ(C•(z), c) = [c : c′] · τ(C•(z), c′), (3.5)

where [c : c′] ∈ C satisfies c = [c : c′] · c′.
For every j = 0, . . . , n, fix a decomposition

Cj = Aj ⊕Bj ,

where Bj = ker ∂ ∩Cj and Aj is any complementary of Bj in Cj . Fix some basis a1
j , . . . , a

`j
j

of Aj ; then ∂a1
j , . . . , ∂a

`j
j is a basis of Bj+1 by acyclicity of (C•, ∂). Now let

cj = a1
j ∧ · · · ∧ a

`j
j ∧ ∂a

1
j−1 ∧ · · · ∧ ∂a

`j−1

j−1 ∈ detCj ,

and

c = c0 ⊗ (c1)−1 ⊗ c2 ⊗ · · · ⊗ (cn)(−1)n ∈ detC•.

Now by definition of the refined torsion, we have for |z| small enough

τ(C•(z), c) = ±
n∏
j=0

det
(
Aj(z)

)(−1)j+1

(3.6)

where the sign ± is independent of z and Aj(z) is the matrix sending the basis

a1
j , . . . , a

`j
j , ∂a

1
j−1, . . . , ∂a

`j−1

j−1
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to the basis

a1
j , . . . , a

`j
j , ∂(z)a1

j−1, . . . , ∂(z)a
`j−1

j−1

(which is indeed a basis of Cj for |z| small enough). Let k : C• → C• of degree −1 defined

by

k∂amj = amj , kamj = 0,

for every j and m ∈ {0, . . . , `j}. Then k∂ + ∂k = IdC• and

detAj(z) = det∂Bj−1⊕Bj
(
∂(z)k ⊕ Id

)
.

Now (3.2) and (3.6) imply the desired result, because τ(C•(z),Γ) = [cΓ : c] · τ(C•(z), c) by

(3.5). �

4. Geometrical setting and notations

We introduce here our geometrical conventions and notations. In particular, we adopt the

formalism of Harvey–Polking [HP+79] which will be convenient to compute flat traces and

relate the variation of the Ruelle zeta function with topological objects.

4.1. Twisted cohomology. We consider M an oriented closed connected manifold of odd

dimension n = 2r + 1. Let E → M be a flat vector bundle over M of rank d ≥ 1. For

k ∈ {0, . . . , n}, we will denote the bundle ΛkT ∗M by Λk for simplicity. We will denote by

Ωk(M,E) = C∞(M,Λk ⊗ E) the space of E valued k-forms. We set

Ω•(M,E) =
n⊕
k=0

Ωk(M,E).

Let ∇ be a flat connection on E. We view the connection as a degree 1 operator (as an

operator of the graded vector space Ω•(M,E))

∇ : Ωk(M,E)→ Ωk+1(M,E), k = 0, . . . , n.

The flatness of the connection reads ∇2 = 0 and thus we obtain a cochain complex(
Ω•(M,E),∇

)
. We will assume that the connection ∇ is acyclic, that is, the complex(

Ω•(M,E),∇
)

is acyclic, or equivalently, the cohomology groups

Hk(M,∇) =

{
u ∈ Ωk(M,E) : ∇u = 0

}
{
∇v : v ∈ Ωk−1(M,E)

} , k = 0, . . . , n,

are trivial.
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4.2. Currents and Schwartz kernels. Let

D′•(M,E) =

n⊕
k=0

D′(M,Λk ⊗ E)

the space of E-valued currents. Let E∨ denote the dual bundle of E. We will identify

D′k(M,E) and the topological dual of Ωn−k(M,E∨) via the non degenerate bilinear pairing

〈α, β〉 =

∫
M
α ∧ β, α ∈ Ωk(M,E), β ∈ Ωn−k(M,E∨),

where ∧ is the usual wedge product between E-valued forms and E∨-valued forms.

A continuous linear operator G : Ω•(M,E) → D′•(M,E) is called homogeneous if for

some p ∈ Z, we have G
(

Ωk(M,E)
)
⊂ D′k+p(M,E) for every k = 0, . . . , n; the number p is

called the degree of G and is denoted by degG. In that case, the Schwartz kernel theorem

gives us a twisted current G ∈ D′n+p(M ×M,π∗1E
∨ ⊗ π∗2E) satisfying

〈Gu, v〉M = 〈G, π∗1u ∧ π∗2v〉M×M , u ∈ Ωk(M,E), v ∈ Ωn−k−p(M,E∨),

where π1 and π2 are the projections of M ×M onto its first and second factors respectively.

4.3. Integration currents. LetN be an oriented submanifold ofM of dimension d, possibly

with boundary. The associated integration current [N ] ∈ D′n−d(M) is given by〈
[N ], ω

〉
=

∫
N
i∗Nω, ω ∈ Ωd(M),

where iN : N →M is the inclusion. We have classically

d[N ] = (−1)n−d+1[∂N ]. (4.1)

For f ∈ Diff(M), we will set Gr(f) = {(f(x), x), x ∈ M} the graph of f . Note that

Gr(f) is a n-dimensional submanifold of M ×M which is canonically oriented since M is.

Therefore, we can consider the integration current over Gr(f). By definition, we have for

any α, β ∈ Ω•(M) 〈
[Gr(f)], π∗1α ∧ π∗2β

〉
=

∫
M
f∗α ∧ β.

In particular, [Gr(f)] is the Schwartz kernel of f∗ : Ω•(M)→ Ω•(M).

4.4. Flat traces. Let G : Ω•(M,E) → D′•(M,E) be an operator of degree 0. We denote

its Schwartz kernel by G and we define

WF′(G) =
{

(x, y, ξ, η), (x, y, ξ,−η) ∈WF(G)
}
⊂ T ∗(M ×M),

where WF denotes the classical Hörmander wavefront set, cf [Hör90, §8]. We will also use

the notation WF(G) = WF(G) and WF′(G) = WF′(G). Assume that

WF′(G) ∩∆(T ∗M) = ∅, ∆(T ∗M) = {(x, x, ξ, ξ), (x, ξ) ∈ T ∗M}. (4.2)

Let ι : M →M ×M,x 7→ (x, x) be the diagonal inclusion. Then by [Hör90, Theorem 8.2.4]

the pull back ι∗G ∈ D′n(M,E∨ ⊗ E) is well defined and we define the super flat trace of G

by

tr[sG = 〈tr ι∗G, 1〉,
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where tr denotes the trace on E∨ ⊗ E. We will also use the notation

tr[grG = tr[sNG,

where N : Ω•(M,E) → Ω•(M,E) is the number operator, that is, Nω = kω for every

ω ∈ Ωk(M,E).

The notation tr[s is motivated by the following. Let A : C∞(M,F ) → D′(M,F ) be an

operator acting on sections of a vector bundle F . If A satisfies (4.2), we can also define a flat

trace tr[A as in [DZ16, §2.4]. Now if G : Ω•(M,E) → D′•(M,E) is an operator of degree

0, it gives rise to an operator Gk : C∞(M,Fk) → D
′
(M,Fk) for each k = 0, . . . , n, where

Fk = Λk ⊗ E. Then the link between the two notions of flat trace mentioned above is given

by

tr[sG =
n∑
k=0

(−1)k tr[Gk.

If Γ ⊂ T ∗M is a closed conical subset, we let

D′•Γ (M,E) =
{
u ∈ D′•(M,E),WF(u) ⊂ Γ

}
(4.3)

be the space of E-valued current whose wavefront set is contained in Γ, endowed with its

usual topology, cf. [Hör90, §8]. If Γ is a closed conical subset of T ∗(M ×M) not intersecting

the conormal to the diagonal

N∗∆(T ∗M) = {(x, x, ξ,−ξ), (x, ξ) ∈ T ∗M},

then the flat trace is continuous as a map D′•Γ (M ×M,π∗1E
∨ ⊗ π∗2E)→ R.

4.5. Cyclicity of the flat trace. Let G,H : Ω•(M,E)→ D′•(M,E) be two homogeneous

operators. We denote by G,H their respective kernels. If Γ ⊂ T ∗(M ×M) is a closed conical

subset, we define

Γ(1) = {(y, η), ∃x ∈M, (x, y, 0, η) ∈ Γ}, Γ(2) = {(y, η), ∃x ∈M, (x, y,−η, 0) ∈ Γ}.

Then under the assumption

WF(G)(2) ∩WF(H)(1) = ∅,
the operator F = G ◦H is well defined by [Hör90, Theorem 8.2.14] and its Schwartz kernel

F satisfies the wave front set estimate :

WF (F) ⊂
{

(x, y, ξ, η) | ∃(z, ζ), (x, z, ξ, ζ) ∈WF′ (G) and (z, y, ζ, η) ∈WF (H)
}
.

If both compositions G ◦H and H ◦G are defined, we will denote by

[G,H] = G ◦H − (−1)degG degHH ◦G

the graded commutator of G and H. We have the following

Proposition 4.1. Let G,H be two homogeneous operators with degG+ degH = 0 and such

that both compositions G ◦ H and H ◦ G are defined and satisfy the bound (4.2). Then we

have

tr[s [G,H] = 0.
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The above result follows from the cyclicity of the L2-trace, the approximation result [DZ16,

Lemma 2.8], the relation

tr[s [G,H] = tr[
[
(−1)NF,G

]
,

where N is the number operator and tr[ is the flat trace with the convention from [DZ16],

see §4.4, and the fact that the map (G,H) 7→ G ◦H is continuous

D′•Γ (M ×M,π∗1E
∨ ⊗ π∗2E)×D′•

Γ̃
(M ×M,π∗1E

∨ ⊗ π∗2E)→ D′•Υ(M ×M,π∗1E
∨ ⊗ π∗2E)

for any closed conical subsets Γ, Γ̃ ⊂ T ∗(M ×M) such that Γ(2) ∩ Γ̃(1) = ∅, and where Υ is

a closed conical subset given in [Hör90, 8.2.14].

4.6. Perturbation of holonomy. Let γ : [0, 1]→M be a smooth curve and α ∈ Ω1(M,End(E)).

Let Pt (resp. P̃t) be the parallel transport Eγ(0) → Eγ(t) of ∇ (resp. ∇̃ = ∇+α) along γ|[0,t].
Then

P̃t = Pt exp

(
−
∫ t

0
P−τα(γ̇(τ))Pτdτ

)
. (4.4)

The above formula will be useful in some occasion. For simplicity, we will denote for any

A ∈ C∞(M,End(E)) ∫
γ
A =

∫ t

0
P−τA(γ(τ))Pτdτ ∈ End

(
Eγ(0)

)
so that P̃1 = P1 exp

(
−
∫
γ α(X)

)
.

5. Pollicott-Ruelle resonances

5.1. Anosov dynamics. Let X be a smooth vector field on M and denote by ϕt its flow.

We will assume that X generates an Anosov flow, that is, there exists a splitting of the

tangent space TxM at every x ∈M

TxM = RX(x)⊕ Es(x)⊕ Eu(x),

where Eu(x), Es(x) are subspaces of TxM depending continuously on x and invariant by the

flot ϕt, such that for some constants C, ν > 0 and some smooth metric | · | on TM one has

|(dϕt)xvs| ≤ Ce−νt|vs|, t ≥ 0, vs ∈ Es(x),

|(dϕt)xvu| ≤ Ce−ν|t||vu|, t ≤ 0, vu ∈ Eu(x).

We will use the dual decomposition T ∗M = E∗0 ⊕E∗u ⊕E∗s where E∗0 , E
∗
u and E∗s are defined

by

E∗0(Es ⊕ Eu) = 0, E∗s (E0 ⊕ Es) = 0, E∗u(E0 ⊕ Eu) = 0. (5.1)
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5.2. Pollicott-Ruelle resonances. Let ιX denote the interior product with X and

L∇X = ∇ιX + ιX∇ : Ω•(M,E)→ Ω•(M,E)

be the Lie derivative along X acting on E-valued forms. Locally, the action of L∇X is given by

the following. Take U a domain of a chart and write ∇ = d +A where A ∈ Ω1(M,End(E)).

Take w1, . . . , w` (resp. e1, . . . , ed) some local basis of Λk (resp. E) on U . Then for any

1 ≤ i ≤ ` and 1 ≤ j ≤ d,

L∇X (fwi ⊗ ej) = (Xf)wi ⊗ ej + f(LXwi)⊗ ej + fwi ⊗A(X)ej , f ∈ C∞(U),

where LX is the standard Lie derivative acting on forms. In particular, L∇X is a differential

operator of order 1 acting on sections of the bundle Λ•T ∗M ⊗ E, whose principal part is

diagonal and given by X.

Denote by Φt
k the induced flow on the vector bundle ΛkT ∗M ⊗ E →M , that is,

Φt
k(β ⊗ v) = T (dϕt)

−1
x β ⊗ P∇t (x)v, x ∈M, (β, v) ∈ Λk(T ∗xM)× Ex, t ∈ R,

where P∇t (x) is the parallel transport induced by ∇ along the curve {ϕs(x), s ∈ [0, t]}. This

induces a map

etL
∇
X : Ω•(M,E)→ Ω•(M,E).

For Re(s) big enough, the operator L∇X + s acting on Ω•(M,E) is invertible with inverse

(L∇X + s)−1 =

∫ ∞
0

e−tL
∇
X e−stdt. (5.2)

The results of [FS11] generalize to the flat bundle case as in [DR17c, §3] and the resolvent(
L∇X + s

)−1
, viewed as a family of operators Ω•(M,E)→ D′•(M,E), admits a meromorphic

continuation to s ∈ C with poles of finite multiplicites; we will still denote by
(
L∇X + s

)−1

this extension. Those poles are the Pollicott-Ruelle resonances of L∇X , and we will denote

this set by Res(L∇X).

5.3. Generalized resonant states. Let s0 ∈ Res(L∇X). By [DZ16, Proposition 3.3] we have

a Laurent expansion

(
L∇X + s

)−1
= Ys0(s) +

J(s0)∑
j=1

(−1)j−1

(
L∇X + s0

)j−1
Πs0

(s− s0)j
(5.3)

where Ys0(s) is holomorphic near s = s0, and

Πs0 =
1

2πi

∫
Cε(s0)

(
L∇X + s

)−1
ds : Ω•(M,E)→ D′•(M,E) (5.4)

is an operator of finite rank. Here Cε(s0) = {|z− s0| = ε} with ε > 0 small enough is a small

circle around s0 such that Res(L∇X) ∩ {|z − s0| ≤ ε} = {s0}. Moreover the operators Ys0(s)

and Πs0 extend to continuous operators

Ys0(s),Πs0 : D′•E∗u(M,E)→ D′•E∗u(M,E). (5.5)

The space

C•(s0) = ran(Πs0) ⊂ D′•E∗u(M,E)
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is called the space of generalized resonant states of L∇X associated to the resonance s0.

5.4. The twisted Ruelle zeta function. Fix a base point x? ∈ M and identify π1(M)

with π1(M,x?). Let Per(X) be the set of periodic orbits of X. For every γ ∈ Per(X) we fix

some base point xγ ∈ Im(γ) and an arbitrary path cγ joining xγ to x?. This path defines an

isomorphism ψγ : π1(M,xγ) ∼= π1(M) and we can thus define every γ ∈ Per(X)

ρ∇([γ]) = ρ∇(ψγ [γ]).

The twisted Ruelle zeta function associated to the pair (X,∇) is defined by

ζX,∇(s) =
∏
γ∈GX

det
(

Id−ρ∇([γ])e−s`(γ)
)
, Re(s) > C, (5.6)

where GX is the set of all primitive closed orbits of X (that is, the closed orbits that generate

their class in π1(M)), `(γ) is the length of the orbit γ and C > 0 is some big constant

depending on ρ and X satisfying

‖ρ∇([γ])‖ ≤ exp(C`(γ)), γ ∈ GX , (5.7)

for some norm ‖ · ‖ on End(Ex?).

For every closed orbit γ, we have

|det(I − Pγ)| = (−1)q det(I − Pγ), (5.8)

for some q ∈ Z not depending on γ, where Pγ is the linearized Poincaré return map of γ,

that is Pγ = dxϕ
−`(γ)|Es(x)⊕Eu(x) for x ∈ Im(γ) (if we choose another point in Im(γ), the

map will be conjugated to the first one). This condition is always true when ϕt is contact,

in which case we have q = dimEs.

Giuletti-Pollicott-Liverani and Dyatlov-Zworski [GLP13, DZ16] showed that ζX,∇ has a

meromorphic continuation to C whose poles and zeros are contained in Res(L∇X); moreover,

the order of ζX,∇ near a resonance s0 ∈ Res(L∇X) is given by 5

m(s0) = (−1)q+1
n∑
k=0

(−1)kkmk(s0), (5.9)

where mk(s0) is the rank of the spectral projector Πs0 |Ωk(M,E).

5Actually, it follows from [DZ16] that m(s0) = (−1)q
n−1∑
k=0

(−1)km0
k(s0), where m0

k(s0) is the di-

mension of Πs0

(
Ωk(M,E) ∩ ker ιX

)
. We can however repeat the arguments using the identity

det(Id−Pγ) = −
n∑
k=0

(−1)kk tr Λkdxϕ
−`(γ) instead of the identity det(Id−Pγ) =

n−1∑
k=0

(−1)k tr ΛkPγ (see [DZ16,

§2.2]), and study the action of L∇X on the bundles ΛkT ∗M ⊗ E rather than its action on the bundles(
ΛkT ∗M ∩ ker ιX

)
⊗ E, to obtain (5.9).
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5.5. Topology of resonant states. Since ∇ commutes with L∇X , it induces a differential

on the complexes C•(s0) for any s0 ∈ Res(L∇X). It is shown in [DR17c] that the complexes(
C•(s0),∇

)
are acyclic whenever s0 6= 0. Moreover, for s0 = 0, the map

Πs0=0 : Ω•(M,∇) −→ C•(s0 = 0)

is a quasi-isomorphism, that is, it induces isomorphisms at the level of cohomology groups.

Since we assumed ∇ to be acyclic, the complex
(
C•(s0 = 0),∇

)
is also acyclic.

6. The dynamical torsion of a contact Anosov flow

From now on, we will assume that the flow ϕt is contact, that is, there exists a smooth

one form ϑ ∈ Ω1(M) such that ϑ ∧ (dϑ)r is a volume form on M , ιXϑ = 1 and ιXdϑ = 0.

The purpose of this section is to define the dynamical torsion of the pair (ϑ,∇). We first

introduce a chirality operator Γϑ acting on Ω•(M,E) which is defined thanks to the contact

structure. Then the dynamical torsion is a renormalized version of the twisted Ruelle zeta

function corrected by the torsion of the finite dimensional space of the generalized resonant

states for resonance s0 = 0 computed with respect to Γϑ.

This construction was inspired by the work of Braverman-Kappeler on the refined analytic

torsion [BK07c].

6.1. The chirality operator associated to a contact structure. Let VX → M denote

the bundle T ∗M ∩ ker ιX . Note that for k ∈ {0, . . . , n}, we have the decomposition

ΛkT ∗M = Λk−1VX ∧ ϑ⊕ ΛkVX . (6.1)

Indeed, if α ∈ ΛkT ∗M we may write

α = (−1)k+1ιXα ∧ ϑ︸ ︷︷ ︸
∈Λk−1VX∧ϑ

+ α− (−1)k+1ιXα ∧ ϑ.︸ ︷︷ ︸
∈ΛkVX

Let us introduce the Lefschetz map

L : Λ•VX → Λ•+2VX
u 7→ u ∧ dϑ.

Since dϑ is a symplectic form on VX , the maps L r−k induce bundle isomorphisms

L r−k : ΛkVX
∼−→ Λ2r−kVX , k = 0, . . . , r, (6.2)

see for example [LM87, Theorem 16.3]. Using the above Lefschetz isomorphisms, we are now

ready to introduce our chirality operator.

Definition 6.1. The chirality operator associated to the contact form ϑ is the operator

Γϑ : Λ•T ∗M → Λn−•T ∗M defined by Γ2
ϑ = 1 and

Γϑ(f ∧ ϑ+ g) = L r−kg ∧ ϑ+ L r−k+1f, f ∈ Λk−1VX , g ∈ ΛkVX , k ∈ {0, . . . , r}, (6.3)

where we used the decomposition (6.1).
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Note that in particular one has for k ∈ {r + 1, . . . , n},

Γϑ(f ∧ ϑ+ g) =
(
L k−r

)−1
g ∧ ϑ+

(
L k−1−r

)−1
f.

6.2. The refined torsion of a space of generalized eigenvectors. The operator Γϑ acts

also on Ω•(M,E) by acting trivially on E-coefficients. Since LXϑ = 0, Γϑ and L∇X commute

so that Γϑ induces a chirality operator

Γϑ : C•(s0)→ Cn−•(s0)

for every s0 ∈ Res(L∇X). Recall from §5.5 that the complexes
(
C•(s0),∇

)
are acyclic. The

following formula motivates the upcoming definition of the dynamical torsion.

Proposition 6.2. Let s0 ∈ Res(L∇X) \ {0, 1}. We have

τ(C•(s0),Γϑ)−1 = (−1)Qs0 detgr,C•(s0)L∇X

where

Qs0 =
r∑

k=0

(−1)k(r + 1− k) dimCk(s0)

and τ(C•(s0),Γϑ) ∈ C\0 is the refined torsion of the acyclic complex
(
C•(s0),∇

)
with respect

to the chirality Γϑ, cf Definition 3.2.

Let us first admit the above proposition; the proof will be given in §§6.5,6.6.

6.3. Spectral cuts. If I ⊂ [0, 1) is an interval, we set

ΠI =
∑

s0∈Res(L∇X)
|s0|∈I

Πs0 and C•I =
⊕

s0∈Res(L∇X)
|s0|∈I

C•(s0).

Note that L∇X + s acts on C•(s0) for every s0 ∈ Res(L∇X) as −s0 Id +J where J is nilpotent.

We thus have for s /∈ Res(L∇X)

detgr,C•I

(
L∇X + s

)(−1)q+1

=
∏

s0∈Res(L∇X)
|s0|∈I

(s− s0)m(s0), (6.4)

where detgr is the graded determinant, cf. §3.5.

Let λ ∈ [0, 1) such that Res(L∇X) ∩ {s ∈ C : |s| = λ} = ∅. Now define the meromorphic

function

ζ
(λ,∞)
X,∇ (s) = ζX,∇(s)detgr,C•

[0,λ]

(
L∇X + s

)(−1)q
. (6.5)

Then (5.9) and (6.4) show that ζ
(λ,∞)
X,∇ has no pole nor zero in {|s| ≤ λ}, so that the number

ζ
(λ,∞)
X,∇ (0) is well defined.
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6.4. Definition of the dynamical torsion. Let 0 < µ < λ < 1 such that for every

s0 ∈ Res(L∇X), one has |s0| 6= λ, µ. Using Proposition 3.3 and Proposition 6.2 we obtain,

with notations of §6.3,

τ
(
C•[0,λ],Γϑ

)
= (−1)Q(µ,λ]

(
detgr,C•

(µ,λ]
L∇X
)−1

τ
(
C•[0,µ],Γϑ

)
,

where for an interval I we set

QI =
∑

s0∈Res(L∇X)
|s0|∈I

Qs0 .

This allows us to give the following

Definition 6.3 (Dynamical torsion). The number

τϑ(∇) = (−1)Q[0,λ]ζ
(λ,∞)
X,∇ (0)(−1)q · τ

(
C•[0,λ],Γϑ

)
∈ C \ 0 (6.6)

is independent of the spectral cut λ ∈ (0, 1). We will call this number the dynamical torsion

of the pair (ϑ,∇).

Remark 6.4. If cX,∇s
m(0) is the leading term of the Laurent expansion of ζX,∇(s) at s = 0,

then taking λ small enough actually shows that

τϑ(∇) = (−1)Q0c
(−1)q

X,∇ · τ
(
C•(0),Γϑ

)
. (6.7)

In particular, if 0 /∈ Res(L∇X),

τϑ(∇) = ζX,∇(0)(−1)q . (6.8)

Note that we could have taken (6.7) as a definition of the dynamical torsion; however (6.6)

is more convenient to study the regularity of the τϑ(∇) with respect to ϑ and ∇.

Remark 6.5. This definition actually makes sense even if ∇ is not acyclic. Indeed, in that

case, formula (6.6) defines an element of the determinant line detH•
(
C•[0,λ]∇

)
, cf. Remark

3.1. Under the identification H•(M,∇) = H•
(
C•[0,λ]∇

)
given by the quasi-isomorphism

Π[0,λ] : Ω•(M,E)→ C•[0,λ] (cf §5.5), we thus get an element of detH•(M,∇).

The rest of this section is devoted to the proof of Proposition 6.2.

6.5. Invertibility of the contact signature operator. To prove Proposition 6.2 we shall

use §3.4 and introduce the contact signature operator

Bϑ = Γϑ∇+∇Γϑ : D′•(M,E)→ D′•(M,E),

where Γϑ acts trivially on E. We fix in what follows some s0 ∈ Res(L∇X) \ {0, 1} and we

denote C•(s0) by C• for simplicity. We also set C•0 = C• ∩ ker(ιX).

The following result will put us in position to apply Proposition 3.4.

Lemma 6.6. The operator Bϑ is invertible C• → C•.
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Proof. We set

C•even =
⊕
k even

Ck, C•odd =
⊕
k odd

Ck.

Then Bϑ preserves the decomposition C• = C•even⊕C•odd. Note that because Γ2
ϑ = 1, we have

Bϑ|C•even
= ΓϑBϑ|C•odd

Γϑ. It thus suffices to show that Bϑ is injective on C•even. Let β ∈ C•even

such that Bϑβ = 0. Write

β =
r∑

k=0

β2k ∈ C•even,

with

β2k = f2k−1 ∧ ϑ+ g2k, f2k−1 ∈ C2k−1
0 , g2k ∈ C2k

0 , k = 0, . . . , r.

Then Bϑβ = 0 writes, since Γϑ∇(Ck) ⊂ Cn−k−1 and ∇Γϑ(Ck) ⊂ Cn−k+1,

Γϑ∇β2k +∇Γϑβ2(k+1) = 0, k = 0, . . . , r. (6.9)

Because ∇ does not leave the decomposition (6.1) stable, we need to introduce an operator

Ψ : C•0 → C•+1
0 which mimics the action of ∇. We define

Ψµ = ∇µ− (−1)kL∇Xµ ∧ ϑ, µ ∈ Ck0 . (6.10)

Because LXdϑ = 0, the map Ψ satisfies the simple relation

Ψ
(
µ ∧ dϑj

)
= (Ψµ) ∧ dϑj , µ ∈ C•0 , j ∈ N, (6.11)

that is, Ψ commutes with L . Also, observe that

Ψ2µ = −L∇Xµ ∧ dϑ, µ ∈ C•0 . (6.12)

Indeed, using the fact that L∇X and ∇ commute,

Ψ2µ = ∇
(
∇µ− (−1)kL∇Xµ ∧ ϑ

)
− (−1)k+1

(
L∇X

(
∇µ− (−1)kL∇Xµ ∧ ϑ

))
∧ ϑ

= ∇2µ+ (−1)k+1∇
(
L∇Xµ ∧ ϑ

)
+ (−1)kL∇X∇µ ∧ ϑ− L∇X

2
µ ∧ ϑ ∧ ϑ

= (−1)k+1(−1)kL∇Xµ ∧ dϑ.

Assume first that k ≤ r/2− 1. Then 2k + 2 ≤ r; we can thus write, with (6.10) in mind,

Γϑ∇β2k = Γϑ

(
∇f2k−1 ∧ ϑ− f2k−1 ∧ dϑ+∇g2k

)
= Γϑ

(
Ψf2k−1 ∧ ϑ− L∇Xf2k−1 ∧ ϑ ∧ ϑ− f2k−1 ∧ dϑ+ Ψg2k + L∇Xg2k ∧ ϑ

)
=
(

Ψf2k−1 + L∇Xg2k

)
∧ dϑr−2k +

(
Ψg2k − f2k−1 ∧ dϑ

)
∧ dϑr−2k−1 ∧ ϑ.

Similarly we find by (6.11)

∇Γϑβ2k+2 = ∇
(
f2k+1 ∧ dϑr−2k−1 + g2k+2 ∧ dϑr−2k−2 ∧ ϑ

)
=
(

Ψf2k+1 − L∇Xf2k+1 ∧ ϑ
)
∧ dϑr−2k−1 +

(
Ψg2k+2 ∧ ϑ+ g2k+2 ∧ dϑ

)
∧ dϑr−2k−2.

(6.13)

Thus (6.9) writes, with the decompostion (6.1) in mind,(
Ψf2k+1 + g2k+2

)
∧ dϑr−2k−1 +

(
Ψf2k−1 + L∇Xg2k

)
∧ dϑr−2k = 0 (6.14)
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and(
−L∇Xf2k+1 ∧ dϑ+ Ψg2k+2

)
∧ dϑr−2k−2 +

(
Ψg2k − f2k−1 ∧ dϑ

)
∧ dϑr−2k−1 = 0. (6.15)

Then applying Ψ to (6.15) gives, with (6.12) and (6.11),(
−ΨL∇Xf2k+1 − L∇Xg2k+2

)
∧ dϑr−2k−1 − L∇Xg2k ∧ dϑr−2k −Ψf2k−1 ∧ dϑr−2k = 0.

Note that Ψ commutes with L∇X and thus with L∇X
−1

(which exists since s0 6= 0). Then

applying L∇X
−1

to the above relation we get(
−Ψf2k+1 − g2k+2

)
∧ dϑr−2k−1 − g2k ∧ dϑr−2k − L∇X

−1
(

Ψf2k−1 ∧ dϑr−2k
)

= 0.

Injecting this in (6.14), we obtain((
L∇X − Id

)
g2k +

(
Id−L∇X

−1)
Ψf2k−1

)
∧ dϑr−2k = 0.

Since L r−2k is injective on C2k
0 and L∇X − Id is invertible (since s0 6= 1), this yields

L∇Xg2k + Ψf2k−1 = 0. (6.16)

Applying L∇X
−1

Ψ to the above equation we get

Ψg2k − f2k−1 ∧ dϑ = 0 (6.17)

by (6.11); thus (6.15) gives(
Ψg2k+2 − L∇Xf2k+1 ∧ dϑ

)
∧ dϑr−2k−2 = 0.

Now repeating this process with k replaced by k − 1 we obtain
(
Ψg2k − L∇Xf2k−1 ∧ dϑ

)
∧

dϑr−2k = 0. This implies with (6.17) that(
Id−L∇X

)
f2k−1 ∧ dϑr−2k+1 = 0,

which leads to f2k−1 = 0 since L r−(2k−1) is injective on C2k−1
0 and L∇X − Id is invertible on

C•; thus g2k = 0 by (6.16), since L∇X is invertible. We therefore obtained

β2k = 0, k ≤ r/2− 1.

Next assume k ≥ (r + 1)/2. Set k̃ = r − k and

β̃2k̃+1 = Γϑβ2k ∈ C2k̃+1
0 , β̃2k̃−1 = Γϑβ2k+2 ∈ C2k̃−1

0 .

Then (6.9) writes

Γϑ∇β̃2k̃−1 +∇Γϑβ̃2k̃+1 = 0.

Since 2k̃+ 1 ≤ r and we can do exactly as before to get β̃2k̃−1 = 0 which leads to β2k+2 = 0.

Therefore we obtained

β2k = 0, k ≥ (r + 1)/2 + 1.

Therefore it remains to show that β2p = 0 and β2(p+1) = 0, where p = br/2c. We will

assume that r = 2p + 1 is odd and put p′ = p + 1 (the case r even is similar). Then (6.9)

implies, since β2k = 0 for every k 6= p, p′,

∇Γϑβ2p′ + Γϑ∇β2p = 0, Γϑ∇β2p′ = 0, ∇Γϑβ2p = 0. (6.18)
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We can compute, keeping (6.10) in mind,

∇Γϑβ2p′ = ∇
(
L −1g2p′ ∧ ϑ+ f2p′−1

)
= ΨL −1g2p′ ∧ ϑ+ L∇XL −1g2p′ ∧ ϑ ∧ ϑ+ L −1g2p′ ∧ dϑ+ Ψf2p′−1 − L∇Xf2p′−1 ∧ ϑ,

and

Γϑ∇β2p = Γϑ

(
Ψg2p + L∇Xg2p ∧ ϑ+ Ψf2p−1 ∧ ϑ− L∇Xf2p−1 ∧ ϑ ∧ ϑ− f2p−1 ∧ dϑ

)
= Ψg2p ∧ ϑ− f2p−1 ∧ dϑ ∧ ϑ+ L∇Xg2p ∧ dϑ+ Ψf2p−1 ∧ dϑ.

Therefore the first equation of (6.18) implies, since L −1g2p′ ∧ dϑ = g2p′ ,

ΨL −1g2p′ − L∇Xf2p′−1 − f2p−1 ∧ dϑ+ Ψg2p = 0 (6.19)

and

g2p′ + Ψf2p′−1 + Ψf2p−1 ∧ dϑ+ L∇Xg2p ∧ dϑ = 0. (6.20)

Applying L∇X
−1

Ψ to (6.19) leads to

−g2p′ −Ψf2p′−1 −ΨL∇X
−1
f2p−1 ∧ dϑ+−g2p ∧ dϑ = 0.

Therefore, ((
Id−L∇X

−1
)

Ψf2p−1 +
(
L∇X − Id

)
g2p

)
∧ dϑ. (6.21)

As before this gives Ψf2p−1 + L∇Xg2p = 0 and thus with (6.20) one gets

L∇Xg2p + Ψf2p−1 = 0, g2p′ + Ψf2p′−1 = 0. (6.22)

Next compute

∇Γϑβ2p = g2p ∧ dϑ2 + Ψf2p−1 ∧ dϑ2 + Ψg2p ∧ ϑ ∧ dϑ− L∇Xf2p+1 ∧ ϑ ∧ dϑ2

Therefore the third part of (6.18) gives (we take the ∧ϑ component of the above equation)

−L∇Xf2p−1 ∧ dϑ2 + Ψg2p ∧ dϑ = 0.

Applying L∇X
−1

Ψ to (6.22) we get Ψg2p = f2p−1 ∧ dϑ; we therefore obtain that f2p−1 = 0 by

injectivity of L 2 on Cr−2
0 . Thus g2p = 0 by (6.21).

Finally compute

∇β2p′ = Ψf2p′−1 ∧ ϑ+ Ψg2p′ + L∇Xg2p′ ∧ ϑ = 0.

Therefore the second part of (6.18) implies (since Γϑ∇β2p′ = 0 is equivalent to ∇β2p′ = 0)

Ψf2p′−1 + L∇Xg2p′ = 0.

Therefore by (6.22) we get
(
L∇X − Id

)
g2p′ = 0, and thus g2p′ = 0. Using (6.19) we conclude

that L∇Xf2p′−1 = 0 which leads to f2p′−1 = 0. �
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6.6. Proof of Proposition 6.2. We start from Proposition 3.4 which gives us, in view of

Lemma 6.6,

τ(C•,Γϑ) = (−1)r dimCr+ det
(

Γϑ∇|Cr+
)(−1)r

r−1∏
j=0

det
(

Γϑ∇|Cj+⊕Cn−j−1
+

)(−1)j

. (6.23)

where we set as in §3.4

C•+ = C• ∩ ker(∇Γϑ), C•− = C• ∩ ker(Γϑ∇).

We first note that for k ∈ {0, . . . , r} and β ∈ Ωk(M,E), one has

∇Γϑβ = L r−k
(
∇β − (−1)kιX∇β ∧ ϑ+ L

(
ιX∇ιXβ − ιXβ

))
∧ ϑ

+ (−1)kL r−k+1
(
β −∇ιXβ + (−1)kιX (β −∇ιXβ) ∧ ϑ

)
,

Γϑ∇β =L r−k−1
(
∇β − (−1)kιX∇β ∧ ϑ

)
∧ ϑ+ (−1)kL r−k(ιX∇β),

(6.24)

where L j−r = (L r−j |ΛjVX )−1 for 0 ≤ j ≤ r. Indeed, using the decomposition (6.1),

Γϑβ = (−1)k+1ιXβ ∧ dϑr−k+1 +
(
β + (−1)kιXβ ∧ ϑ

)
∧ dϑr−k ∧ ϑ

= (−1)k+1ιXβ ∧ dϑr−k+1 + β ∧ dϑr−k ∧ ϑ,

which leads to

∇Γϑβ = (−1)k+1∇ιXβ ∧ dϑr−k+1 +∇β ∧ dϑr−k ∧ ϑ+ (−1)kβ ∧ dϑr−k+1

= (−1)k+1
(

(−1)k+1ιX∇ιXβ ∧ ϑ ∧ dϑr−k+1
)

+ (−1)k+1
(
∇ιXβ + (−1)kιX∇ιXβ ∧ ϑ

)
∧ dϑr−k+1

+
(
∇β − (−1)kιX∇β ∧ ϑ

)
∧ dϑr−k ∧ ϑ+ (−1)k

(
β + (−1)kιXβ ∧ ϑ

)
∧ dϑr−k+1

− ιXβ ∧ dϑr−k+1 ∧ ϑ,

which is exactly the first part of (6.24). The second part follows directly from the decompo-

sition (6.1).

Let us introduce, for k ∈ {0, . . . , r}, the operator Jk : Ck → Ck defined by

Jkβ = f ∧ ϑ− (−1)kΨf (6.25)

for any β = f ∧ ϑ + g ∈ Ck with f ∈ Ck−1
0 and g ∈ Ck0 , and where Ψ is defined in (6.10).

Then we claim that Jk takes it values in Ck+. Indeed, we have for any f ∈ Ck−1
0 and g ∈ Ck0 ,

∇Γϑ(f ∧ ϑ+ g) = ∇
(
g ∧ dϑr−k ∧ ϑ+ f ∧ dϑr−k+1

)
= Ψg ∧ dϑr−k ∧ ϑ+ (−1)kg ∧ dϑr−k+1

+ Ψf ∧ dϑr−k+1 + (−1)k+1L∇Xf ∧ dϑr−k+1 ∧ ϑ,

which implies that β = f ∧ ϑ+ g lies in Ck+ if and only if(
Ψg + (−1)k+1L∇Xf ∧ dϑ

)
∧ dϑr−k = 0 and

(
Ψf + (−1)kg

)
∧ dϑr−k+1 = 0. (6.26)
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But now note that if β = f ∧ϑ+ g = Jkβ
′ = f ′∧ϑ− (−1)kΨf ′ for some β′ = f ′∧ϑ+ g′ then

f = f ′ and g = −(−1)kΨf , and thus β satisfies the second part of (6.26). We also obtain

Ψg = −(−1)kΨ2f = −(−1)kL∇Xf ∧ dϑ by (6.12), so the first part of (6.26) is also satisfied.

Therefore Jk : Ck → Ck+; moreover it is obvious that Jk is a projector. Therefore we can

consider the restricted projection Jk|Ck+ : Ck+ → Ck+, we will still denote by Jk.

The next lemma will be helpful to compute the determinants lying in the product (6.23).

Lemma 6.7. Take k ∈ {0, · · · , r− 1}. Then for any β = f ∧ ϑ+ g ∈ Ck+ with f ∈ Ck−1
0 and

g ∈ Ck0 , one has

(Γϑ∇)2β = L∇X
(
L∇X − Id

)
β −

(
L∇X − Id

)
Jkβ.

Proof. Since k < r we can write, thanks to (6.24),

Γϑ∇β = ∇β ∧ ϑ ∧ dϑr−k−1 + (−1)kιX∇β ∧ dϑr−k.

Therefore

∇Γϑ∇β = −(−1)k∇β ∧ dϑr−k + (−1)k∇ιX∇β ∧ dϑr−k

= (−1)k
(
L∇X − Id

)
∇β ∧ dϑr−k

=
(
ιX∇ιX∇β − ιX∇β

)
∧ ϑ ∧ dϑr−k

+ (−1)k(L∇X − Id)
(
∇β − (−1)kιX∇β ∧ ϑ

)
∧ dϑr−k,

where we used ∇ιX∇β = L∇X∇β and ιX∇ιX∇β = L∇XιX∇β. Since β ∈ Ck+ one has with

(6.24) (
∇β − (−1)kιX∇β ∧ ϑ

)
∧ dϑr−k =

(
ιXβ − ιX∇ιXβ

)
∧ dϑr−k+1.

This leads to

∇Γϑ∇β =
(
ιX∇ιX∇β − ιX∇β

)
∧ ϑ ∧ dϑr−k

+ (−1)k
(
L∇X − Id

) (
ιXβ − ιX∇ιXβ

)
∧ dϑr−k+1.

Since ιX∇ιX∇β − ιX∇β =
(
L∇X − Id

)
ιX∇β and ιXβ − ιX∇ιXβ =

(
Id−L∇X

)
ιXβ, we obtain

∇Γϑ∇β =
(
L∇X − Id

)
ιX∇β ∧ ϑ ∧ dϑr−k + (−1)k

(
L∇X − Id

) (
Id−L∇X

)
ιXβ ∧ dϑr−k+1,

and thus by definition of Γϑ

Γϑ∇Γϑ∇β = −(−1)k
(
Id−L∇X

)2
ιXβ ∧ ϑ+

(
L∇X − Id

)
ιX∇β. (6.27)

Now, writing β = f ∧ ϑ+ g where ιXf = 0 and ιXg = 0, we have

∇β = ∇f ∧ ϑ− (−1)kf ∧ dϑ+∇g,

ιX∇β = L∇Xf ∧ ϑ+ (−1)k∇f + L∇Xg,

ιXβ ∧ ϑ = −(−1)kf ∧ ϑ.

(6.28)
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Injecting those relations in (6.27) we get

Γϑ∇Γϑ∇β = L∇X
(
L∇X − Id

)
(f ∧ ϑ+ g)

−
(
L∇X − Id

)(
f ∧ ϑ− (−1)k

(
∇f + (−1)kL∇Xf ∧ ϑ

))
,

which concludes in view of (6.10) and (6.25). �

We now deal with the case k = r.

Lemma 6.8. One has, for β ∈ Cr+,

Γϑ∇β = (−1)r
((
L∇X − Id

)
β + (Id−Jr)β

)
.

Proof. We have

Γϑ∇β = L −1
(
∇β − (−1)rιX∇β ∧ ϑ

)
+ (−1)rιX∇β.

Since β ∈ Cr+ we have with (6.24) that ∇β − (−1)rιX∇β ∧ ϑ = (ιXβ − ιX∇ιXβ) ∧ dϑ.

Therefore,

Γϑ∇β = (ιXβ − ιX∇ιXβ) ∧ ϑ+ (−1)rιX∇β.
We now conclude as in the previous lemma, using (6.28). �

We are now in position to finish the proof of Proposition 6.2. We will set, for 0 ≤ k ≤ n,

mk = dimCk, m0
k = dimCk0 , m±k = dimCk±.

First take k ∈ {0, · · · , r − 1}. First take k ∈ {0, · · · , r − 1}. Because Bϑ is invertible on

C•, Γϑ∇ induces an isomorphism Ck+ → Cn−k−1
+ . Take any basis γ of Ck+. Then Γϑ∇γ is a

basis of Cn−k−1
+ and the matrix of Γϑ∇|Ck+⊕Cn−k+1

+
in the basis γ ⊕ Γϑ∇γ is(

0
[
(Γϑ∇)2

]
γ

Id 0

)
, (6.29)

where
[
(Γϑ∇)2

]
γ

is the matrix of (Γϑ∇)2|Ck+ in the basis γ. Define

J̃k = Id−Jk : Ck+ → Ck+.

Then J̃k is a projector (since Jk is) and Lemma 6.7 implies that Jk (and thus J̃k) commutes

with L∇X . Moreover one has

(Γϑ∇)2 |ker J̃k
=
(
L∇X − Id

)2
, (Γϑ∇)2 |ranJ̃k

= L∇X
(
L∇X − Id

)
.

As a consequence,

det
(

(Γϑ∇)2|Ck+
)

=
[
s0(1 + s0)

]m+
k −m

0
k−1(1 + s0)2m0

k−1 = s0
m+
k −m

0
k−1(1 + s0)m

+
k +m0

k−1 ,

because on C• (and in particular on Ck+), one has L∇X = −s0 Id +ν where ν is nilpotent,

and one has dim ker J̃k = dim ranJk = m0
k−1. Indeed, by (6.25) we can view Jk as a map

Ck−1
0 → Ck+, which is obviously injective. We finally obtain with (6.29)

det
(

Γϑ∇|Ck+⊕Cn−k+1
+

)
= (−1)m

+
k s0

m+
k −m

0
k−1(1 + s0)m

+
k +m0

k−1 . (6.30)
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We now deal with the case k = r. Lemma 6.8 gives

Γϑ∇|ker J̃r
= (−1)r

(
L∇X − Id

)
, Γϑ∇|ranJ̃r

= (−1)rL∇X .

As before, we obtain

det
(

Γϑ∇|Cr+
)

= (−1)rm
+
r (−1)m

+
r s0

m+
r −m0

r−1(1 + s0)m
0
r−1 . (6.31)

Combining (6.23) with (6.30) and (6.31) we finally obtain

τ(C•,Γϑ) = (−1)Js0
K(1 + s0)L (6.32)

where

J =
r∑

k=0

(−1)km+
k , K =

r∑
k=0

(−1)k(m+
k −m

0
k−1), L =

r−1∑
k=0

(−1)k(m+
k −m

0
k).

Note that for 0 ≤ k ≤ r − 1 one has by acyclicity and because Γϑ induces isomorphisms

Ck+ ' Cn−k− (since Bϑ is invertible),

m+
k = m−n−k = dim ker (∇|Cn−k) = dim ran (∇|Cn−k−1) = mn−k−1 −m−n−k−1 = mk+1 −m+

k+1.

Therefore

m+
k +m+

k+1 = mk+1, 0 ≤ k ≤ r − 1, (6.33)

which leads to m+
k +m+

k+1 = m0
k +m0

k+1. As a consequence, since m+
0 = m0 = m0

0, we get

m+
r −m0

r = −(m+
r−1 −m

0
r−1) = · · · = (−1)r(m+

0 −m
0
0) = 0.

This implies

m0
k = m+

k , 0 ≤ k ≤ r, (6.34)

which leads to L = 0. Moreover, since m0
k = m0

2r−k, we get

K =
r∑

k=0

(−1)k(m0
k −m0

k−1) =
2r∑
k=0

(−1)km0
k = −

n∑
k=0

(−1)kkmk = (−1)qm(s0),

where we used (5.9) in the last equality. Finally, again because m0
k = m0

2r−k,

2J = (−1)rm0
r +

2r∑
k=0

(−1)km0
k = (−1)rm0

r −
n∑
k=0

(−1)kkmk.

We have

(−1)rm0
r =

r∑
k=0

(−1)kmk,

n∑
k=0

(−1)kkmk =
r∑

k=0

(−1)k(2k − n)mk,

where the first equality comes from (6.33) and (6.34) and the second from the fact that

mk = mn−k. We thus obtained

J =
r∑

k=0

(−1)k(r + 1− k)mk = Qs0 ,
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and finally by (6.32)

τ(C•,Γϑ) = (−1)Qs0 (−s0)(−1)qm(s0)

But now recall from (6.4) that detgr,C•
(
L∇X
)(−1)q+1

= (−s0)m(s0). This completes the proof.

7. Invariance of the dynamical torsion under small perturbations of the

contact form

In this section, we are interested in the behaviour of the dynamical torsion when we deform

the contact form. Namely, we prove here the

Theorem 9. Assume that (ϑt)t∈(−δ,δ) is a smooth family of contact forms such that their

Reeb vector fields Xt generate a contact Anosov flow for each t. Let (E,∇) be an acyclic flat

vector bundle. Then the map t 7→ τϑt(∇) is real differentiable and we have

d

dt
τϑt(∇) = 0.

Remark 7.1. In view of Remark 6.5, if ∇ is not assumed acyclic, then it is not hard to see

that the proof (given below) of Theorem 9 is still valid and we have that ∂tτϑt(∇) = 0 in

detH•(M,∇).

We will thus consider a family of contact forms and set ϑ = ϑ0 and X = X0. We also fix

an acyclic flat vector bundle (E,∇).

7.1. Anisotropic spaces for a family of vector fields. To study the dynamical torsion

when the dynamics is perturbed, we construct with the help of [Bon18] some anisotropic

Sobolev spaces on which each Xt has nice spectral properties. We refer to Appendix B where

we briefly recall the construction of these spaces.

By §B.4, the set {
(t, s), s /∈ Res(L∇Xt)

}
is open in (−δ, δ)× C. Fix λ ∈ (0, 1) such that

Res(L∇X) ∩ {|s| ≤ λ} ⊂ {0}. (7.1)

Then for t close enough to 0, we have Res(L∇Xt)∩{|s| = λ} = ∅ so that the spectral projectors

Πt =
1

2iπ

∫
|s|=λ

(L∇Xt + s)−1ds : Ω•(M,E)→ D′•(M,E) (7.2)

are well defined. The next proposition is a brief summary of the results from Appendix B.

We will denote for any C, ρ > 0,

Ω(c, ρ) = {Re(s) > c} ∪ {|s| ≤ ρ} ⊂ C. (7.3)

Proposition 7.2. There is c, ε0 > 0 such that for any ρ > 0 there exists anisotropic Sobolev

spaces

Ω•(M,E) ⊂ H•1 ⊂ H• ⊂ D
′•(M,E),

each inclusion being continuous with dense image, such that the following holds.
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(1) For each t ∈ [−ε0, ε0], the family s 7→ L∇Xt +s is a holomorphic family of (unbounded)

Fredholm operators H•1 → H•1 and H• → H• of index 0 in the region Ω(c, ρ). Moreover

L∇Xt ∈ C
1
(

[−ε0, ε0],L(H•1,H•)
)
.

(2) For every relatively compact open region Z ⊂ int Ω(c, ρ) such that Res(L∇X)∩Z = ∅,
there exists tZ > 0 such that(

L∇Xt + s
)−1 ∈ C0

(
[−tZ , tZ ]t,Hol

(
Zs,L(H•1,H•)

))
.

(3) Πt ∈ C1
(

[−ε0, ε0]t,L(H•,H•1)
)
.

We will thus fix such Hilbert spaces for some ρ > c + 1. We denote C•t = ran Πt ⊂ H•,
Π = Πt=0 and C• = ran Π.

7.2. Variation of the torsion part. Let Γt : C•t → Cn−•t be the chirality operator asso-

ciated to Xt, c.f. §6.1. The next lemma allows us to compute the variation of the finite

dimensional torsion part of the dynamical torsion.

Lemma 7.3. We have that t 7→ τ(C•t ,Γt) is real differentiable and

d

dt
τ(C•t ,Γt) = −trs,C•t

(
ΠtϑtιẊt

)
τ(C•t ,Γt),

where Ẋt =
d

dt
Xt.

Proof. By Proposition 7.2, the operator Πt|C• : C• → C•t is invertible for t close enough to

0 and we will denote by Qt its inverse. Then for t close enough to 0, one has

τ(C•t ,Γt) = τ(C•, Γ̃t),

where Γ̃t = QtΓtΠt|C• : C• → C• because ∇ and Πt commute and the image of a Γ̃t invariant

basis of C• by the projector Πt is a Γt invariant basis of C•t .

Therefore [BK07c, Proposition 4.9]

d

dt
τ(C•t ,Γt) =

1

2
trs,C•

( ˙̃ΓtΓ̃t
)
τ(C•t ,Γt),

where ˙̃Γt = d
dt Γ̃t : C• → C•. Since Γt and Πt commute, and by the two first points of

Proposition 7.2, we can apply (A.2) to get

Γ̃t = ΠΓtΠ|C• + tΠΓ̇Π + oC•→C•(t).

This leads to
˙̃ΓΓ̃ = ΠΓ̇Γ|C• ,

where we removed the subscripts t to signify that we take all the t-dependent objects at

t = 0. Therefore,
1

2
trs,C•

(
˙̃ΓΓ̃
)

=
1

2
trs,C•

(
ΠΓ̇Γ

)
,

Now notice that Γ2
t = 1 implies ΓΓ̇ + Γ̇Γ = 0. Therefore, for every k ∈ {0, . . . , r},

trCn−k ΓΓ̇ = trCk ΓΓΓ̇Γ = trCk Γ̇Γ = − trCk ΓΓ̇.
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Therefore we only need to compute trCk
(

ΓΓ̇
)

for k ∈ {0, . . . , r} to get the full super trace

trs,C•

(
Γ̇Γ
)

. Since n is odd we have

1

2
trs,C•

(
˙̃ΓΓ̃
)

=
1

2
trC•

(
(−1)N+1ΠΓΓ̇

)
=

r∑
k=0

(−1)k+1 trCk
(

ΠΓΓ̇
)
.

Let k ∈ {0, . . . , r} and α ∈ Ωk(M). Using the decomposition

α = (−1)k−1ιXtα ∧ ϑt +
(
α+ (−1)kιXtα ∧ ϑt

)
,

we get by definition of Γt

Γtα = (−1)k−1ιXtα ∧ (dϑt)
r−k+1 +

(
α+ (−1)kιXtα ∧ ϑt

)
∧ (dϑt)

r−k ∧ ϑt.

Therefore,

Γ̇tα = (−1)k−1ιẊtα ∧ (dϑt)
r−k+1

+ (r − k + 1)(−1)k−1ιXtα ∧ dϑ̇t ∧ (dϑt)
r−k

+ (−1)k
(
ιẊtα ∧ ϑt + ιXtα ∧ ϑ̇t

)
∧ (dϑt)

r−k ∧ ϑt

+
(
α+ (−1)kιXtα ∧ ϑt

)
∧ (dϑt)

r−k ∧ ϑ̇t

+ (r − k)
(
α+ (−1)kιXtα ∧ ϑt

)
∧ dϑ̇t ∧ (dϑt)

r−k−1 ∧ ϑt

Now we use the decompositions

dϑ̇t = −ιXtdϑ̇t ∧ ϑt +
(
dϑ̇t + ιXtdϑ̇t ∧ ϑt

)
,

ϑ̇t = ϑ̇t(Xt)ϑ+
(
ϑ̇t − ϑ̇t(Xt)ϑ

)
,

ιẊtα = (−1)kιXtιẊtα ∧ ϑt +
(
ιẊtα+ (−1)k+1ιXtιẊtα ∧ ϑt

)
to get, again by definition,

ΓΓ̇α = (−1)k−1
(
ιẊα+ (−1)k+1ιXιẊα ∧ ϑ

)
∧ ϑ

+ (−1)k−1
(
L r−k

)−1 (
(−1)kιXιẊα ∧ (dϑ)r−k+1

)
+ (r − k + 1)

(
L r−k+1

)−1 (
(−1)k−1ιXα ∧

(
dϑ̇+ ιXdϑ̇ ∧ ϑ

)
∧ (dϑ)r−k

)
∧ ϑ

− (r − k + 1)
(

(−1)k−1ιXα
)
∧ ιXdϑ̇

+ (−1)kιXα ∧
(
ϑ̇− ϑ̇(X)ϑ

)
+
(
L r−k+1

)−1 ((
α+ (−1)kιXα ∧ ϑ

)
∧ (dϑ)r−k ∧

(
ϑ̇− ϑ̇(X)ϑ

))
∧ ϑ

+
(
α+ (−1)kιXα ∧ ϑ

)
ϑ̇(X)

+ (r − k)
(
L r−k

)−1 ((
α+ (−1)kιXα ∧ ϑ

)
∧
(
dϑ̇+ ιXdϑ̇ ∧ ϑ

)
∧ (dϑ)r−k−1

)
,

(7.4)
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where again we removed the subscripts t to signify that we take everything at t = 0. Now let

Ak : Ck0 → Ck0 (note that here Ck0 is Ck ∩ ker ιX , cf §6.1, and not Ckt at t = 0) defined by

Aku = (r − k)
(
L r−k

)−1 (
u ∧

(
dϑ̇+ ιXdϑ̇

)
∧ (dϑ)r−k−1

)
.

Note that the maps defined by the second, the fourth, the fifth and the sixth terms of the right

hand side of (7.4) are anti-diagonal, that is they have the form

(
0 ?

? 0

)
in the decomposition

C• = C•−1
0 ∧ ϑ⊕ C•0 . Therefore, since Ar = 0 (we also set A−1 = 0),

r∑
k=0

(−1)k+1 trCk
(

ΠΓΓ̇
)

=

r∑
k=0

(−1)k+1
(

trCk ΠϑιẊ + trCk0
Πϑ̇(X)

)
+

r∑
k=0

(−1)k+1
(

trCk−1
0

ΠAk−1 + trCk0
ΠAk

)
=

r∑
k=0

(−1)k+1
(

trCk ΠϑιẊ + trCk0
Πϑ̇(X)

)
.

(7.5)

But now note that if α = f ∧ ϑ+ g ∈ Ck−1
0 ∧ ϑ⊕ Ck0 then

ϑ ∧ ιẊα = ϑ(Ẋ)(f ∧ ϑ) + ϑ ∧ ιẊg.

This shows that for every k ∈ {0, . . . , n} one has

trCk ΠϑιẊ = trCk−1
0

Πϑ(Ẋ). (7.6)

Injecting this relation in (7.5) we obtain, with ϑ(Ẋ) = −ϑ̇(X) and the formula ϑ̇(X)|C2r−k
0

L r−k =

L r−kϑ̇(X)|Ck0 ,

r∑
k=0

(−1)k+1 trCk
(

ΠΓΓ̇
)

=
r∑

k=0

(−1)k+1
(

trCk−1
0

Πϑ(Ẋ)− trCk0
Πϑ(Ẋ)

)
=

2r∑
k=0

(−1)k trCk0
Πϑ(Ẋ).

But this concludes since by (7.6) we have

2r∑
k=0

(−1)k trCk0
Πϑ(Ẋ) = trC•

(
(−1)N+1ΠϑιẊ

)
.

�

7.3. Variation of the rest. Let us now interest ourselves in the variation of t 7→ ζ
(λ,∞)
Xt,∇ (0),

cf. §6.3. For t close enough to 0, let Pt : TM → TM be defined by

Pt : kerϑ ⊕ RX → kerϑ ⊕ RXt,

v + µX 7→ v + µXt.

For simplicity, we will still denote Λk(TPt) : ΛkT ∗M → ΛkT ∗M by Pt. Then formula (5.4)

of [DGRS18] gives that for Re(s) big enough, t 7→ ζXt,∇(s) is differentiable and we have for

every ε > 0 small enough

d

dt

∣∣∣∣
t=0

log ζX,∇(s) = (−1)qs tr[s

(
Ṗ (L∇X + s)−1e−ε(L

∇
X+s)

)
,
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where Ṗ = d
dt

∣∣
t=0

Pt. One can show that for every k ∈ {0, . . . , n} and β ∈ ΛkT ∗M one has

Ṗ β = ϑ ∧ ιẊβ. (7.7)

Therefore (we differentiated at t = 0 but we can do the same for small t)

d

dt
log ζXt,∇(s) = (−1)qs tr[s

(
ϑtιẊt(L

∇
Xt + s)−1e

−ε(L∇Xt+s)
)
. (7.8)

Now let us compute the variation of the [0, λ] part of ζ(λ,∞)(s).

Lemma 7.4. We have

d

dt
log detgr,C•t

(
L∇Xt + s

)(−1)q+1

= (−1)q+1trs,C•t

(
ϑtιẊtL

∇
Xt(L

∇
Xt + s)−1

)
.

Proof. We are in a position to apply Lemma A.2 which gives

d

dt
log detgr,C•t

(
L∇Xt + s

)(−1)q+1

= (−1)q+1trgr,C•t

(
ΠtL∇Ẋt(L

∇
Xt + s)−1

)
.

Denote At = P−1
t Ṗt. Then one can verify that

ιXt = P−1
t ιXPt,

which leads to

L∇
Ẋt

= −∇AtιXt +∇ιXtAt −AtιXt∇+ ιXtAt∇.
Using

(−1)NN∇ = ∇(−1)N+1(N + 1),

(−1)NNιXt = ιXt(−1)N−1(N − 1),

and the cyclicity of the trace, we get since (L∇Xt + s)−1 commute with ιXt and ∇,

trC•t

(
(−1)N+q+1NΠtL∇Ẋt(L

∇
Xt + s)−1

)
= (−1)q+1 trC•t

(
ΠtAt

(
(−1)N (N + 1)ιXt∇+ (−1)NN∇ιXt

−(−1)NNιXt∇− (−1)N (N − 1)∇ιXt
)

(L∇Xt + s)−1

)
= (−1)q+1 trC•t

(
(−1)NΠtAtL∇Xt(L

∇
Xt + s)−1

)
Therefore using (7.7) again this concludes, because Pt=0 = Id. �

7.4. Proof of Theorem 9. Combining this lemma and (7.8) we obtain that for Re(s) big

enough and t small enough

ζ
(λ,∞)
Xt,∇ (s)

ζ
(λ,∞)
X0,∇ (s)

= exp

(
−s
∫ t

0
tr[s

(
ϑτ ιẊτ (L∇Xτ + s)−1e−ε(LXτ+s)

)
dτ

−
∫ t

0
trs,C•τ

(
Πτϑτ ιẊτL

∇
Xτ (L∇Xτ + s)−1

)
dτ

)(−1)q+1

.

(7.9)
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Note that for every s /∈ Res(L∇Xt) we have

L∇Xt(L
∇
Xt + s)−1 = Id−s(L∇Xt + s)−1,

so that

trs,C•t
ΠtϑtιẊtL

∇
Xt(L

∇
Xt + s)−1 = trs,C•t

ΠtϑtιẊt − strs,C•t
ΠtϑtιẊt(L

∇
Xt + s)−1. (7.10)

We now fix s0 ∈ C with Re(s0) big enough so that (7.9) is valid and a smooth path c :

[0, 1]→ C with c(0) = 0, c(1) = s0 and

c(u) /∈ Res(L∇X), u ∈ (0, 1].

Let δ, t0 > 0 small enough so that

dist
(
{|s| = λ} ∪ (Vδ ∩ {|s| ≥ λ}), Res(L∇Xt)

)
≥ 2δ, |t| ≤ t0, (7.11)

where Vδ is the open δ-neighborhood of Im c. We moreover ask that

(Res(L∇Xt) ∩ {|s| ≤ λ}) ⊂ {|s| ≤ δ} and (Vδ ∩ {|s| ≥ λ}) ∩ Res(L∇Xt) = ∅.

For t ∈ [−t0, t0] and s /∈ Res(L∇Xt) we define

Yt(s) =
(
L∇Xt + s

)−1
(Id−Πt). (7.12)

Then by (5.3), we have that s 7→ Yt(s) is holomorphic on a neighborhood of {|s| ≤ λ} for

each fixed t. This implies

Yt(s) =
∞∑
n=0

Yt,ns
n, |s| < λ, |t| ≤ t0, (7.13)

with

Yt,n =
1

2iπ

∫
|s|=λ

Yt(s)s
−n−1ds. (7.14)

Therefore, for every |t| ≤ t0 one has ‖Yt,n‖H→H ≤ 2δλ−n−1 by (7.11) and Proposition 7.2.

Let Qt(s) denote the Schwartz Kernel of the operator Qt(s) =
(
L∇Xt + s

)−1
e
−ε
(
L∇Xt+s

)
.

Then [DGRS18, Proposition 6.3] gives that the map

[−t0, t0]× {|s| = λ} 3 (t, s) 7→ Qt(s) ∈ D
′n
Γ (M ×M,E∨ � E)

is bounded for some closed conic subset Γ ⊂ T ∗ (M ×M) not intersecting the conormal of

the diagonal. Moreover by §B.7, we have that [−t0, t0] 3 t 7→ Πt is bounded in D′nWs×Wu
(M ×

M,E∨ � E), and so is the map [−t0, t0] × {|s| = λ} 7→
(
L∇Xt + s

)−1
Πt. As a consequence

(7.12), (7.13) and (7.14) imply that the map

[−t0, t0]× {|s| ≤ 3δ/2} 3 (t, s) 7→ Yt(s) ∈ D
′n
Γ (M ×M,E∨ � E), (7.15)

is bounded, where Yt(s) is the Schwartz kernel of the operator Yt(s)e
−ε
(
L∇Xt+s

)
. We also know

that this map is continuous when it is seen as a map valued in D′n thanks to the last point

of Proposition 7.2; therefore this map is continuous when valued in D′nΓ (M ×M,E∨ �E, cf.

[Hör90, §8.4]. Therefore we obtain with §4.4 that

tr[sϑιẊtYt(s) ∈ C
0
(

[−t0, t0],Hol
(
{|s| ≤ 3δ/2}

))
. (7.16)
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But now apply [DGRS18, Theorem 4] to obtain that

tr[sϑιẊtQt(s) ∈ C
0
(

[−t0, t0],Hol
(
Vδ ∩ {|s| ≥ 5δ/4}

))
. (7.17)

Since the flat trace coincides with the usual trace for operators of finite rank,

tr[sϑtιẊtQt(s)− trs,C•ΠtϑtιẊt(L
∇
Xt + s)−1 = tr[sϑtιẊt

(
L∇Xt + s

)−1
(Id−Πt)e

−ε(L∇Xt+s)

+ trs,C•ΠtϑtιẊt(L
∇
Xt + s)−1

(
e
−ε(L∇Xt+s) − Id

)
.

Then (7.16), (7.17) and (7.12) imply that the right hand side of the last equation is continuous

with respect to t with values in holomorphic functions on (Vδ ∩ {|s| ≥ 5δ/4}) ∪ {|s| ≤ 3δ/2}
(indeed s 7→ (L∇Xt + s)−1

(
e
−ε(L∇Xt+s) − Id

)
is holomorphic of C•t ), and so is the left hand

side. As a consequence, (7.10) shows that both members of (7.9) are holomorphic on this

region and

ζ
(λ,∞)
Xt,∇ (0) = ζ

(λ,∞)
X0,∇ (0) exp

(
−
∫ t

0
trs,C•τΠτϑιẊτdτ

)(−1)q+1

.

Comparing this with Lemma 7.3 we obtain Theorem 9 by definition of the dynamical torsion,

cf §6.4.

8. Variation of the connection

In this section we compute the variation of the dynamical torsion when the connection

is perturbed. This formula will be crucial to compare the dynamical torsion and Turaev’s

refined combinatorial torsion.

8.1. Real-differentiable families of flat connections. Let U ⊂ C be some open set and

consider ∇(z), z ∈ U , a family of flat connections on E. We will assume that the map

z 7→ ∇(z) is C1, that is, there exists continuous maps z 7→ µz, νz ∈ Ω1(M,End(E)) such that

for any z0 ∈ U one has

∇(z) = ∇(z0) + Re(z − z0)µz0 + Im(z − z0)νz0 + o(z − z0), (8.1)

where o(z− z0) is understood in the Fréchet topology of Ω1(M,End(E)). We will denote for

any σ ∈ C
αz0(σ) = Re(σ)µz0 + Im(σ)νz0 ∈ Ω1(M,End(E)). (8.2)

Note that since the connections ∇(z) are assumed to be flat, we have

[∇(z), αz(σ)] = ∇(z)αz(σ) + αz(σ)∇(z) = 0. (8.3)

8.2. A cochain contraction induced by the Anosov flow. For z ∈ U let

(
L∇(z)
X + s

)−1
=

J(0)∑
j=1

(
−L∇(z)

X

)j−1
Π0(z)

sj
+ Y (z) +O(s) (8.4)
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be the development (5.3) for the resonance s0 = 0. Let C•(0; z) = ran Π0(z). Recall from

§5.5 that since ∇(z) is acyclic, the complex (C•(0; z),∇(z)) is acyclic. Therefore there exists

a cochain contraction k(z) : C•(0; z)→ C•(0; z), i.e. a map of degree −1 such that

∇(z)k(z) + k(z)∇(z) = IdC•(0;z) . (8.5)

We now define

K(z) = ιXY (z)(Id−Π0(z)) + k(z)Π0(z) : Ω•(M,E)→ D′•(M,E). (8.6)

A crucial property of the operator K is that it satisfies the chain homotopy equation

∇(z)K(z) +K(z)∇(z) = IdΩ•(M,E), (8.7)

as follows from the development (8.4).

8.3. The variation formula. For simplicity, we will set for every z ∈ U

τ(z) = τϑ(∇(z)).

The operators K(z) defined above are involved in the variation formula of the dynamical

torsion, as follows.

Proposition 8.1. The map z 7→ τ(z) is real differentiable; we have for every z ∈ U and

ε > 0 small enough

d(log τ)zσ = −tr[s

(
αz(σ)K(z)e−εL

∇(z)
X

)
, σ ∈ C. (8.8)

The proof of the previous proposition is similar of that of the last subsection, i.e. we

compute the variation of each part of the dynamical torsion. The rest of this section is

devoted to the proof of Proposition 8.1.

8.4. Anisotropic Sobolev spaces for a family of connections. Fix some z0 ∈ U . Recall

from §7.1 that we chose some anisotropic Sobolev spaces H•1 ⊂ H•. Notice that

L∇(z)
X = L∇(z0)

X + β(z)(X), (8.9)

where β(z) ∈ Ω1(M,End(E)) is defined by

∇(z) = ∇(z0) + β(z).

Therefore (8.1) implies that L∇(z)
X − L∇(z0)

X is a C1 family of pseudo-differential operators

of order 0, and thus forms a C1 family of bounded operators H• → H• and H•1 → H•1 by

construction of the anisotropic spaces and standard rules of pseudo-differential calculus (see

for example [FS11]). As a consequence and thanks to Proposition 7.2, we are in position to

apply [Kat76, Theorem 3.11]; thus if δ is small enough we have that

Rρ =
{

(z, s) ∈ C2, |z − z0| < δ, s ∈ Ω(c, ρ), s /∈ σH•(L∇(z)
X )

}
is open, (8.10)
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where σH•(L∇(z)
X ) denotes the resolvent set of L∇(z)

X on H•, and Ω(c, ρ) is defined in (7.3).

Moreover (8.1) and (8.9) imply that for any open set Z ⊂ Ω(c, ρ) such that Res
(
L∇(z0)
X

)
∩Z =

∅, there exists δZ > 0 such that for any j ∈ {0, 1},(
L∇(z)
X + s

)−1
∈ C1

({
|z − z0| < δZ

}
, Hol

(
Zs,L

(
H•j ,H•j

)))
. (8.11)

For all z, the map s 7→
(
L∇(z)
X + s

)−1
is meromorphic in the region Ω(c, ρ) with poles (of

finite multiplicity) which coincide with the resonances of L∇(z)
X in this region.

Moreover, the arguments from the proof of [DZ16, Proposition 3.4] can be made uniformly

for the family z 7→
(
L∇(z)
X + s

)−1
to obtain that for some closed conic set Γ ⊂ T ∗ (M ×M)

not intersecting the conormal to the diagonal and any ε > 0 small enough, the map (s, z) 7→
K(s, z) is bounded from Z × {|z − z0| < δZ} with values D′Γ(M ×M,π∗1E

∨ ⊗ π∗2E), where

K(s, z) is the Schwartz kernel of the shifted resolvent
(
L∇(z)
X + s

)−1
e−εL

∇(z)
X .

8.5. A family of spectral projectors. Fix λ ∈ (0, 1) such that

{s ∈ C, |s| ≤ λ} ∩ Res
(
L∇(z0)
X

)
⊂ {0}. (8.12)

Thanks to (8.10), if z is close enough to z0,

{s ∈ C, |s| = λ} ∩ Res
(
L∇(z)
X

)
= ∅, (8.13)

by compacity of the circle. For z ∈ U we will denote by

Π(z) =
1

2iπ

∫
|s|=λ

(
L∇(z)
X + s

)−1
ds (8.14)

the spectral projector of L∇(z)
X on generalized eigenvectors for resonances in {s ∈ C, |s| ≤ λ},

and C•(z) = ran Π(z). It follows from (8.11), (8.13) and (8.14) that the map

z 7→ Π(z) ∈ L(H•j ,H•j )

is C1 for j = 0, 1. We can therefore apply A.3 to get, for δ small enough,

Π(z) ∈ C1
(
{|z − z0| < δ}z, L(H•,H•1)

)
. (8.15)

8.6. Variation of the finite dimensional part. Because (C•(z0),∇(z0)) is acyclic, there

exists a cochain contraction k(z0) : C•(z0) → C•−1(z0), cf §3.6. The next lemma computes

the variation of the finite dimensional part of the dynamical torsion.

Lemma 8.2. The map z 7→ c(z) = τ(C•(z),Γ) is real differentiable at z = z0 and

d(log c)z0σ = −trs,C•Π(z0)αz0(σ)k(z0), σ ∈ C.

Proof. By continuity of the family z 7→ Π(z), we have that Π(z)|C•(z0) : C•(z0) → C•(z) is

an isomorphism for |z− z0| small enough, of inverse denoted by Q(z). For those z we denote

by Ĉ•(z) the graded vector space C•(z0) endowed with the differential

∇̂(z) = Q(z)∇(z)Π(z) : C•(z0)→ C•(z0).
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Then because Γ commutes with every Π(z) one has

τ(Ĉ•(z),Γ) = τ(C•(z),Γ) (8.16)

By (8.15) we can apply (A.2) in the proof of Lemma A.2 which gives for any h small enough

∇̂(z0 + σ)Π(z0) = Π(z0)∇(z0)Π(z0) + Π(z0)αz0(σ)Π(z0) + oC•(z0)→C•(z0)(σ).

Therefore the real differentiable version of Lemma 3.5 implies the desired result. �

8.7. Variation of the zeta part. We give a first Proposition which computes the variation

of the Ruelle zeta function in its convergence region.

Proposition 8.3 (Variation of the dynamical zeta function). For Re(s) big enough, the map

z 7→ gs(z) = ζX,∇(z)(s) is C1 near z = z0 and we have for every ε > 0 small enough

d(log gs)z0σ = (−1)q+1e−εstr[s

(
αz0(σ)ιX

(
L∇(z0)
X + s

)−1
e−εL

∇(z0)
X

)
.

Proof. Let ϕt denote the flow of X. For γ ∈ GX , dϕ−`(γ)|γ will denote dϕ−`(γ) taken at

any point of the image of γ; this ambiguity will not stand long since another choice of base

point will lead to a conjugated linear map, and we aim to take traces. We have the standard

factorization, for Re(s) big enough and any z near z0,

gs(z) = exp
n∑
k=0

(−1)kk
∑
γ∈GX

`#(γ)

`(γ)
tr ρ∇(z)(γ)e−s`(γ) tr Λk(dϕ−`(γ))|γ

det(I − Pγ)
, (8.17)

where Pγ = dϕ−`(γ)
∣∣
Eu⊕Es is the linearized Poincaré map of γ, and `#(γ) is the primitive

period of γ. Now (4.4) implies

tr ρ∇(z0+σ)(γ) = tr ρ∇(z0)(γ)− tr

(
ρ∇(z0)(γ)

∫
γ
αz0(σ)(X)

)
+ o(σ)`(γ).

As a consequence, the sum in (8.17) is C1 near z = z0 for Re(s) big enough, and

d(log gs)z0σ = −
n∑
k=0

(−1)kk
∑
γ∈GX

`#(γ)

`(γ)
tr

(
ρ∇(z0)(γ)

∫
γ
αz0(σ)(X)

)
e−s`(γ) tr Λk(dϕ−`(γ))|γ

det(I − Pγ)
.

Now a slight extension of Guillemin trace formula [Gui77] gives, in D′(R>0),

tr[ αz0(σ)(X)e−tL
∇
X

∣∣∣
Ωk(M,E)

=
∑
γ

`#(γ)

`(γ)
tr

(
ρ∇(z0)(γ)

∫
γ
αz0(σ)(X)

)
tr Λkdϕ−`(γ)

|det(I − Pγ)|
δ(t−`(γ)),

where δ is the Dirac distribution. But now recall from §5.4 that |det(I−Pγ)| = (−1)q det(I−
Pγ). Therefore, if ε > 0 satisfies ε < `(γ) for all γ, arguing exactly as in [DZ16, §4], with

(5.2) in mind,

d(log gs)z0σ = e−εs(−1)q+1tr[gr

(
αz0(σ)(X)

(
L∇(z0)
X + s

)−1
e−εL

∇(z0)
X

)
.
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Now it remains to turn the graded trace tr[gr into a super trace tr[s keeping in mind the

relation tr[gr = tr[s (N ·) where N is the number operator, cf. §4.4. Note that αz0(σ)(X) =

[αz0(σ), ιX ] = αz0(σ) ◦ ιX + ιX ◦ αz0(σ). We therefore have

Nαz0(σ)(X) = N [αz0(σ), ιX ]

= Nαz0(σ)ιX + ιX(N − 1)αz0(σ)

= Nαz0(σ)ιX − (N − 1)αz0ιX + [(N − 1)α, ιX ].

Since ιX commutes with
(
L∇(z0)
X + s

)−1
e−εL

∇(z0)
X one finally obtains

Nαz0(σ)(X) = αz0(σ)ιX

(
L∇(z0)
X + s

)−1
e−εL

∇(z0)
X

+

[
(N − 1)αz0(σ)

(
L∇(z0)
X + s

)−1
e−εL

∇(z0)
X , ιX

]
.

This concludes by cyclicity of the flat trace. �

The following lemma is a direct consequence of Lemma A.2 and the fact that Π0(z0) =

Π(z0) by (8.12).

Lemma 8.4. For Re(s) big enough, the map z 7→ hs(z) = detgr,C•(z)

(
L∇(z)
X + s

)(−1)q+1

is

C1 near z = z0 and

d(log hs)z0σ = (−1)q+1trs,C•(z0)

(
Π0(z0)αz0(σ)ιX

(
L∇(z0)
X + s

)−1
)
.

8.8. Proof of Proposition 8.1. Combining the two lemmas of the preceding subsection we

obtain for Re(s) big enough, the map z 7→ ζ
(λ,∞)
X,∇(z)(s) = gs(z)/hs(z) is real differentiable at

z = z0 (and therefore on U since we may vary z0). Moreover for every ε > 0 small enough

d

(
log

gs
hs

)
z

σ = (−1)q+1

(
e−εstr[sαz(σ)ιX

(
L∇(z)
X + s

)−1
e−εL

∇(z)
X

− trs,C•(z)Π0(z)αz(σ)ιX

(
L∇(z)
X + s

)−1
)
.

(8.18)

This gives the variation of ζ
(λ,∞)
X,∇(z)(s) for Re(s) big enough. To obtain the variation of

b(z) = ζ
(λ,∞)
X,∇(z)(0), we can reproduce the arguments made in §7.4 to obtain

(−1)q+1d (log b)z σ = tr[s

(
αz(σ)ιXY (z)(Id−Π0(z))e−εL

∇(z)
X

)
+trs,C•(z)

(
Π0(z)αz(σ)ιXQz(ε)

)
,

where

Qz(ε) =
∑
n≥1

(−ε)n

n!

(
L∇(z)
X

)n−1
: C•(z)→ C•(z).
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Recall that if c(z) = τ(C•(z),Γ) one has τ(z) = c(z)b(z)(−1)q . Therefore Lemma 8.2 gives,

with what precedes,

d(log τ)zσ = −tr[s

(
αz(σ)K(z)e−εL

∇(z)
X

)
− trs,C•(z)

(
Π0(z)αz(σ)

(
k(z)

(
Id−e−εL

∇(z)
X

)
+ ιXQz(ε)

))
.

(8.19)

We have Id−e−εL
∇(z)
X = −L∇(z)

X Qz(ε), which leads to

ιXQz(ε) + k(z)
(

Id−e−εL
∇(z)
X

)
=
(
ιX − k(z)L∇(z)

X

)
Qz(ε).

But now since k(z) is a cochain contraction, we get

ιX − k(z)L∇(z)
X = [∇(z), k(z)ιX ].

Because ∇(z) commutes with Π0(z) and L∇(z)
X , we obtain with (8.3)[

∇(z),Π0(z)αz(σ)k(z)ιXQz(ε)
]

= Π0(z)α
(
ιXQz(ε) + k(z)

(
Id−e−εL

∇(z)
X

))
.

This concludes by (8.19) and the cyclicity of the trace.

9. Euler structures, Chern-Simons classes

The Turaev torsion is defined using Euler structures, introduced by Turaev [Tur90], whose

purpose is to fix sign ambiguities of combinatorial torsions. We shall use however the repre-

sentation in terms of vector fields used by Burghelea–Haller [BH06]. The goal of the present

section is to introduce these Euler structures, in view of the definition of the Turaev torsion.

9.1. The Chern-Simons class of a pair of vector fields. If X ∈ C∞(M,TM) is a vector

field with isolated non degenerate zeros, we define the singular 0-chain

div(X) = −
∑

x∈Crit(X)

indX(x)[x] ∈ C0(M,Z),

where Crit(X) is the set of critical points of X and indX(x) denotes the Poincaré-Hopf

index of x as a critical point of X 6. Note also that div (−X) = −div(X) since M is odd

dimensional.

Let X0, X1 be two vector fields with isolated non degenerate zeros. Let p : M × [0, 1]→M

be the projection over the first factor and choose a smooth section H of the bundle p∗TM →
M × [0, 1], transversal to the zero section, such that H restricts to Xi on {i}×M for i = 0, 1.

Then the set H−1(0) ⊂ M × [0, 1] is an oriented smooth submanifold of dimension 1 with

boundary (it is oriented because M and [0, 1] are), and we denote by [H−1(0)] its fundamental

class.

6indX(x) = (−1)dimEs(x) if x is hyperbolic and Es(x) ⊂ TxM is the stable subspace of x.
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Definition 9.1. The class

p∗[H
−1(0)] ∈ C1(M,Z)/∂C2(M,Z),

where p∗ is the pushforward by p, does not depend on the choice of the homotopy H relating

X0 and X1, cf. [BH06, §2.2]. This is the Chern-Simons class of the pair (X0, X1), denoted

by cs(X0, X1).

We have the fundamental formulae

∂cs(X0, X1) = div(X1)− div(X0),

cs(X0, X1) + cs(X1, X2) = cs(X0, X2),
(9.1)

for any other vector field with non degenerate zeros X2. Notice also that if X0 and X1 are

nonsingular vector fields, then cs(X0, X1) defines a homology class in H1(M,Z).

9.2. Euler structures. Let X be a smooth vector field on M with non degenerate zeros.

An Euler chain for X is a singular one-chain e ∈ C1(M,Z) such that ∂e = div(X). Euler

chains for X always exist because M is odd-dimensional and thus χ(M) = 0.

Two pairs (X0, e0) and (X1, e1), with Xi a vector field with non degenerate zeros and ei
an Euler chain for Xi, i = 0, 1, will be said to be equivalent if

e1 = e0 + cs(X0, X1) ∈ C1(M,C)/∂C2(M,Z). (9.2)

Definition 9.2. An Euler structure is an equivalence class [X, e] for the relation (9.2). We

will denote by Eul(M) the set of Euler structures.

There is a free and transitive action of H1(M,Z) on Eul(M) given by

[X, e] + h = [X, e+ h], h ∈ H1(M,Z).

9.3. Homotopy formula relating flows. Let X0, X1 be two vector fields with non de-

generate zeros. Let H be a smooth homotopy between X0 and X1 as in §9.1 and set

Xt = H(t, ·) ∈ C∞(M,TM). For ε > 0 we define Φε : M × [0, 1] → M × M × [0, 1]

via

Φε(x, t) =
(
e−εXt(x), x, t

)
, x ∈M, t ∈ [0, 1].

Set also, with notations of §4.3, Hε = Gr(Φε) ⊂M ×M ×R. Then Hε is a submanifold with

boundary of M ×M × R which is oriented (since M and R are). Define

[Hε] = (Φε)∗ ([M ]× [[0, 1]]) ∈ D′n(M ×M × R)

to be the associated integration current, cf. §4.3. Let g be any metric on M and let ρ > 0

be smaller than its injectivity radius. Then for any x, y ∈ M with dist(x, y) ≤ ρ, we denote

by P (x, y) ∈ Hom(Ex, Ey) the parallel transport by ∇ along the minimizing geodesic joining

x to y. Then P ∈ C∞(M ×M,π∗1E
∨ ⊗ π∗2E) and we can define

Rε = −π∗[Hε]⊗ P ∈ D
′n−1(M ×M,π∗1E

∨ ⊗ π∗2E),

where π : M ×M × R → M ×M is the projection over the two first factors. Note that Rε
is well defined if ε is small enough so that

dist
(
x, e−sXt(x)

)
≤ ρ, s ∈ [0, ε], t ∈ [0, 1], x ∈M, (9.3)
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which implies supp π∗[Hε] ⊂ {(x, y), dist(x, y) ≤ ρ}. Now, let

Rε : Ω•(M,E)→ D′•−1(M,E)

be the operator of degree −1 whose Schwartz kernel is Rε.

Lemma 9.3. We have the following homotopy formula

[∇, Rε] = ∇Rε +Rε∇ = e
−εL∇X1 − e

−εL∇X0 . (9.4)

Proof. First note that because M is odd dimensional, the boundary (computed with orien-

tations) of the manifold Hε is

∂Hε = Gr(e−εX0)× {0} −Gr(e−εX1)× {1}.

Therefore we have, cf. (4.1),

(−1)ndM×Mπ∗[Hε] = π∗[∂Hε] =
[
Gr(e−εX0)

]
−
[
Gr(e−εX1)

]
where

[
Gr(e−εXi)

]
denotes the integration current on the manifold Gr(e−εXi) for i = 0, 1.

Now note that we have by construction ∇E∨�EP = 0. Therefore

∇E∨�ERε = (−1)n
([

Gr(e−εX1)
]
−
[
Gr(e−εX0)

])
⊗ P.

Note that by definition of e
−L∇Xi (cf §5.2), the formula (9.3) and the flatness of ∇ imply

that the Schwartz kernel of e
−εL∇Xi is

[
Gr(e−εXi)

]
⊗P . This concludes because the Schwartz

kernel of [∇, Rε] is (−1)n∇E∨�ERε, cf. [HLJ01, Lemma 2.2]. �

The next formula follows from the definition of the flat trace and the Chern-Simons classes.

It will be crucial for the topological interpretation of the variation formula obtained in §8.

Lemma 9.4. We have for any α ∈ Ω•(M,End(E)) such that trα is closed and ε > 0 small

enough

tr[s αRε =
〈
trα, cs(X0, X1)

〉
. (9.5)

Note that because H is transverse to the zero section, we have

WF(Rε) ∩N∗∆ = ∅, (9.6)

where N∗∆ denotes the conormal to the diagonal ∆ in M ×M , so that the above flat trace

is well defined.

Proof. We denote by i : M ↪→M ×M the diagonal inclusion. Note that the Schwartz kernel

of αRε is (−1)nπ∗2α ∧ Rε = −π∗2α ∧ Rε since n is odd. From the definition of the super flat

trace tr[s, we find that

tr[sαRε =
〈

tr i∗ (π∗2α ∧ π∗[Hε]⊗ P ) , 1
〉
, (9.7)

where π2 : M × M → M is the projection over the second factor. Of course we have

i∗P = IdE ∈ C∞(M,End(E)). We therefore have

tr i∗ (π∗2α ∧ π∗[Hε]⊗ P ) = trα ∧ i∗π∗[Hε] = trα ∧ p∗j∗[Hε]
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where j : M × [0, 1] ↪→M ×M × [0, 1], (x, t) 7→ (x, x, t). This leads to

tr[sαRε =
〈
trα ∧ p∗j∗[Hε], 1

〉
=
〈
p∗ trα, j∗[Hε]

〉
.

Now if ε is small enough, we can see that j∗[Hε] = [H−1(0)]. Therefore

tr[sαRε =
〈
trα, p∗[H

−1(0)]
〉

=
〈
trα, cs(X0, X1)

〉
.

�

10. Morse theory and variation of Turaev torsion.

We introduce here the Turaev torsion which is defined in terms of CW decompositions.

In the spirit of the seminal work of Bismut–Zhang [BZ92] based on geometric constructions

of Laudenbach [Lau92], we use a CW decomposition which comes from the unstable cells of

a Morse-Smale gradient flow induced by a Morse function. This allows us to interpret the

variation of the Turaev torsion as a supertrace on the space of generalized resonant states

for the Morse-Smale flow. This interpretation will be convenient for the comparison of the

Turaev torsion with the dynamical torsion.

10.1. Morse theory and CW-decompositions. Let f be a Morse function on M and

X̃ = − gradg f be its associated gradient vector field with respect to some Riemannian

metric g (the tilde notation is used to make the difference with the Anosov flows we studied

until now). For any a ∈ Crit(f), we denote by

W s(a) =
{
y ∈M, lim

t→∞
etX̃y = a

}
, W u(a) =

{
y ∈M, lim

t→∞
e−tX̃y = a

}
,

the stable and unstable manifolds of a. Then it is well known that W s(a) (resp. W u(x)) is a

smooth embedded open disk of dimension n− indf (a) (resp. indf (a)), where indf (a) is the

index of a as a critical point of f , that is, in a Morse chart (z1, . . . , zn) near a,

f(z1, . . . , zn) = f(a)− z2
1 − · · · − z2

indf (a) + z2
indf (a)+1 + · · ·+ z2

n.

For simplicity, we will denote

|a| = indf (a) = dimW u(a),

and we fix an orientation of every W u(a).

We assume that X̃ satisfies the Morse-Smale condition, that is, for any a, b ∈ Crit(f), the

manifolds W s(a) and W u(b) are transverse. Also, we assume that for every a ∈ Crit(f), the

metric g is flat near a. Let us summarize some results from [Qin10, Theorems 3.2,3.8,3.9]

ensured by the unstable manifolds of f . We would like to mention that such results can be

found in slightly different form in the work of Laudenbach [Lau92] and are used in [BZ92] 7.

First, W u(a) admits a compactification to a smooth |a|-dimensional manifold with cor-

ner W
u
(a), endowed with a smooth map ea : W

u
(a) → M that extends the inclusion

W u(a) ⊂ M . Then the collection W =
{
W

u
(a)
}
a∈Crit(f)

and the applications ea induce

7A difference is that Laudenbach only needs to compactify the unstable cells as C1–manifolds with conical

singularities whereas Qin proves smooth compactification as manifolds with corners.
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a CW-decomposition on M . Moreover, the boundary operator of the cellular chain complex

is given by

∂W
u
(a) =

∑
|b|=|a|−1

#L(a, b)W
u
(b),

where L(a, b) is the moduli space of gradient lines joining a to b and #L(a, b) is the sum of

the orientations induced by the orientations of the unstable manifolds of (a, b), see [Qin10,

Theorem 3.9].

10.2. The Thom-Smale complex. We set C•(W,E
∨) =

⊕n
k=0Ck(W,E

∨) where

Ck(W,E
∨) =

⊕
a∈Crit(f)
|a|=k

E∨a , k = 0, . . . , n.

We endow the complex C•(W,E
∨) with the boundary operator ∂∇

∨
defined by

∂∇
∨
u =

∑
|b|=|a|−1

∑
γ∈L(a,b)

εγPγ(u), a ∈ Crit(f), u ∈ E∨a ,

where for γ ∈ L(a, b), Pγ ∈ End(E∨a , E
∨
b ) is the parallel transport of ∇∨ along the curve γ

and εγ = ±1 is the orientation number of γ ∈ L(a, b).

Then by [Lau92] (see also [DR17c] for a different approach), there is a canonical isomor-

phism

H•(M,∇∨) ' H•(W,∇∨),

where H•(M,∇∨) is the singular homology of flat sections of (E∨,∇∨) and H•(W,∇∨) de-

notes the homology of the complex C•(W,E
∨) endowed with the boundary map ∂∇

∨
. There-

fore this complex is acyclic since ∇ (and thus ∇∨) is.

10.3. The Turaev torsion. Fix some base point x? ∈ M and for every a ∈ Crit(f), let γa
be some path in M joining x? to a. Define

e =
∑

a∈Crit(f)

(−1)|a|γa ∈ C1(M,Z). (10.1)

Note that the Poincaré-Hopf index of X̃ near a ∈ Crit(f) is −(−1)|a| so that

∂e = div(X̃) (10.2)

because
∑

a∈Crit(f)(−1)|a| = χ(M) = 0 by the Poincaré-Hopf index theorem. Therefore e is

an Euler chain for X̃ and

e = [X̃, e]

defines an Euler structure. Choose some basis u1, . . . , ud of E∨x? . For each a ∈ Crit(f), we

propagate this basis via the parallel transport of ∇ along γa to obtain a basis u1,a, . . . , ud,a of

Ea. We choose an ordering of the cells
{
W

u
(a)
}

; this gives us a cohomology orientation o (see

[Tur90, §6.3]). Moreover this ordering and the chosen basis of E∨a give us (using the wedge

product) an element ck ∈ detCk(W,E
∨) for each k, and thus an element c ∈ detC•(W,E

∨).
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The Turaev torsion of ∇ with respect to the choices e, o is then defined by [FT00, §9.2

p. 218]

τe,o(∇)−1 = ϕC•(W,∇∨)(c) ∈ C \ 0,

where ϕC•(W,∇∨) is the homology version of the isomorphism (3.1). Note that ∇∨ (and not

∇) is involved in the definition of τe,o(∇). Indeed, we use here the cohomological version of

Turaev’s torsion, which is more convenient for our purposes, and which is consistent with

[BK07b], [BK+08, p. 252].

10.4. Resonant states of the Morse-Smale flow. In [DR17c], it has been shown that

we can define Ruelle resonances for the Morse-Smale gradient flow L∇
X̃

as described in §5 in

the context of Anosov flows. More precisely, we have that the resolvent(
L∇
X̃

+ s
)−1

: Ω•(M,E)→ D′•(M,E),

is well defined for Re(s) � 0, has a meromorphic continuation to all s ∈ C. The poles of

this continuation are the Ruelle resonances of L∇
X̃

and the set of those will be denoted by

Res(L∇
X̃

). In fact, the set Res(L∇
X̃

) does not depend on the flat vector bundle (E,∇). Let

λ > 0 be such that Res(L∇
X̃

) ∩ {|s| ≤ λ} ⊂ {0}; set

Π̃ =
1

2πi

∫
|s|=λ

(
L∇
X̃

+ s
)−1

ds (10.3)

the spectral projector associated to the resonance 0, and denote by

C̃• = ran Π̃ ⊂ D′•(M,E)

the associated space of generalized eigenvectors for L∇
X̃

. Since ∇ and L∇
X̃

commute, ∇ induces

a differential on the complex C̃•. Moreover, Π̃ maps D′•Γ (M,E) to itself continuously where

Γ =
⋃

a∈Crit(f)

N∗W u(a) ⊂ T ∗M.

10.5. A variation formula for the Turaev torsion. Assume that we are given a C1 family

of acyclic connections ∇(z) on E as in §8. We denote by Π̃−(z) the spectral projector (10.3)

associated to ∇(z) and −X̃, and set C̃•−(z) = ran Π̃−(z). By [DR17c] we have that all the

complexes (C̃•(z),∇(z)) are acyclic and there exists cochain contractions k̃−(z) : C̃•−(z) →
C̃•−1
− (z). As in §8.3 we have a variation formula for the Turaev torsion.

Proposition 10.1. The map z 7→ τ̃(z) = τe,o(∇(z)) is real differentiable on U and for any

z ∈ U
d(log τ̃)zσ = −tr

s,C̃•(z)

(
Π̃−(z)αz(σ)k̃−(z)

)
−
∫
e

trαz(σ), σ ∈ C

where αz(σ) is given by (8.2) and e is given by (10.1).

The rest of this section is devoted to the proof of Proposition 10.1. For convenience, we

will first study the variation of z 7→ τe,o(∇(z)∨).
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10.6. A preferred basis. Let a ∈ Crit(f) and k = |a|. We denote by [W u(a)] ∈ D′n−kΓ (M)

the integration current over the unstable manifold W u(a) of X̃, it is a well defined current

far from ∂W u(a). We also pick a cut-off function χa ∈ C∞(M) valued in [0, 1] with χa ≡ 1

near a and χa is supported in a small neighborhood Ωa of a, with Ωa ∩ ∂W u(a) = ∅. Recall

from 10.3 that we have a basis u1,a, . . . , ud,a of Ea. Using the parallel transport of ∇, we

obtain flat sections of E over W u(a) that we will still denote by u1,a, . . . , ud,a. Define

ũj,a = Π̃
(
χa[W

u(a)]⊗ uj,a
)
∈ C̃n−k, j = 1, . . . , d. (10.4)

By [DR17b] we have that
{
ũj,a, a ∈ Crit(f), 1 ≤ j ≤ d

}
is a basis of C̃•. Adapting the

proof of [DR17a, Theorem 2.6] to the bundle case, we obtain the following proposition which

will allow us to compute the Turaev torsion with the help of the complex C̃•.

Proposition 10.2. The map Φ : C•(W,∇)→ C̃n−• defined by

Φ
(
uj,a
)

= ũj,a, a ∈ Crit(f), j = 1, . . . , d,

is an isomorphism and satisfies 8

Φ ◦ ∂∇ = (−1)•∇ ◦ Φ.

An immediate corollary is that (using the notation of §3.2)

τe,o(∇∨) = ϕC•(W,∇)(u)−1 = τ(C̃•, ũ), (10.5)

where u ∈ detC•(W,∇) (resp. ũ ∈ det C̃•) is the element given by the basis {uj,a} (resp.

{ũj,a}) and the ordering of the cells W u(a).

10.7. Proof of Proposition 10.1. For any a ∈ Crit(f) we denote by Pγa(z) ∈ Hom(Ex? , Ea)

the parallel transport of ∇(z) along γa. We set

uj,a(z) = Pγa(z)Pγa(z0)−1uj,a

and

ũj,a(z) = Π̃(z)
(
χa[W

u(a)]⊗ uj,a(z)
)
,

where again we consider uj,a(z) as a ∇(z)-flat section of E over W u(a) using the parallel

transport of ∇(z). The construction of Ruelle resonances for Morse-Smale gradient flow

follows from the construction of anisotropic Sobolev spaces

Ω•(M,E) ⊂ H̃•1 ⊂ H̃• ⊂ D
′•(M,E),

see [DR16], on which L∇
X̃

+ s is a holomorphic family of Fredholm operators of index 0 in the

region {Re(s) > −2}, and such that ∇(z) is bounded H̃•1 → H̃•. Every argument made in

§8.4 also stand here and z 7→ Π̃(z) is a C1 family of bounded operators H̃• → H̃•1.

Note that by continuity, Π̃(z) induces an isomorphism C̃•(z0)→ C̃•(z) for z close enough

to zero. Let ũ(z) ∈ det C̃•(z) be the element given by the basis {ũj,a(z)} and the ordering

of the cells W u(a). Then by (10.5) and (3.5) we have

τe,o(∇(z)∨) = τ
(
C̃•(z), ũ(z)

)
=
[
ũ(z) : Π̃(z)ũ(z0)

]
τ
(
C̃•(z), Π̃(z)ũ(z0)

)
, (10.6)

8(−1)• comes from ∂ = (−1)deg +1d comparing the boundary ∂ and De Rham differential d
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where Π̃(z)ũ(z0) ∈ det C̃•(z) is the image of ũ by the isomorphism det C̃•(z0) → det C̃•(z)

induced by Π̃(z), and ũ(z) =
[
ũ(z) : Π̃(z)ũ(z0)

]
Π̃(z)ũ(z0). Doing exactly as in §8.6, we obtain

that z 7→ τ̂(z) = τ
(
C̃•(z), Π̃(z)ũ

)
is C1 and

d(log τ̂)z0σ = −tr
s,C̃•Π̃(z0)αz0(σ)k̃(z0). (10.7)

Therefore it remains to compute the variation of
[
ũ(z) : Π̃(z)ũ(z0)

]
. This is the purpose of

the next formula.

Lemma 10.3. We have[
ũ(z) : Π̃(z)ũ(z0)

]
=

∏
a∈Crit(f)

det
(
Pγa(z)Pγa(z0)−1

)(−1)n−|a|

.

Proof. By definition of the basis {ua,j} in §10.3 it suffices to show that for z small enough

Π̃(z)ũa,i =
d∑
j=1

Aja,i(z)ũa,j(z), a ∈ Crit(f), 1 ≤ i, j ≤ d, (10.8)

where the coefficients Aja,i(z) are defined by ua,i(z0)(a) =
d∑
j=1

Aja,i(z)ua,j(z)(a).

Consider the dual operator L∇(z)∨

−X̃
: Ω•(M,E∨) → Ω•(M,E∨). The above constructions,

starting from a dual basis s1, . . . , sd ∈ E∨x? of u1, . . . , ud, give a basis {sa,i(z)} of each

Γ(W s(a),∇(z)∨) (the space of flat section of ∇(z)∨ over W s(a)), since the unstable manifolds

of −X̃ are the stable ones of X̃. Let C̃•∨(z) be the range of the spectral projector Π̃∨(z) from

(10.3) associated to the vector field −X̃ and the connection ∇(z)∨. We have a basis {s̃a,i(z)}
of C̃•∨(z) given by

s̃a,i(z) = Π̃∨(z)
(
χa[W

s(a)]⊗ sa,i(z)
)
.

We will prove that for any a, b ∈ Crit(f) with same Morse index we have for any 1 ≤ i, j ≤ d,〈
s̃a,j(z), ũa,i(z0)

〉
=

{〈
sa,j(z)(a), ua,i(z0)(a)

〉
E∨a ,Ea

if a = b,

0 if a 6= b
. (10.9)

First assume that a 6= b. Then W u(a) ∩W s(b) = ∅ by the transversality condition, since

a and b have same Morse index. Therefore for any t1, t2 ≥ 0, we have〈
e
−t1L∇(z)∨

−X̃
(
χb[W

s(b)]⊗ sb,j(z)
)
, e
−t2L

∇(z0)

X̃

(
χa[W

u(a)]⊗ ua,i(z)
)〉

= 0, (10.10)

since the currents in the pairing have disjoint support because they are respectively contained

in W s(b) and W u(a). Now notice that for Re(s) big enough, one has(
L∇(z)∨

−X̃
+ s
)−1

=

∫ ∞
0

e
−tL∇(z)∨

−X̃ e−tsdt and
(
L∇(z0)

X̃
+ s
)−1

=

∫ ∞
0

e
−tL∇(z0)

X̃ e−tsdt.

Therefore the representation (10.3) of the spectral projectors and the analytic continuation

of the above resolvents imply with (10.10) that
〈
s̃b,j(z), ũa,i

〉
= 0.
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Next assume that a = b. Then W u(a) ∩W s(a) = {a}. Since the support of s̃a,i(z) (resp.

ũa,i(z0)) is contained in the closure of W s(a) (resp. W u(a)), we can compute〈
Π̃∨(z)

(
χa[W

s(a)]⊗ sa,j(z)
)
, Π̃
(
χa[W

u(a)]⊗ ua,i(z0)
)〉

=
〈
χa[W

s(a)]⊗ sa,j(z), χa[W u(a)]⊗ ua,i(z0)
〉

=
〈

[a], 〈sa,j(z), ua,i(z0)〉E∨,E
〉
,

where the first equality stands because s̃a(z) = [W s(a)]⊗ sa,j(z) near a by [DR17b, Propo-

sition 7.1]. This gives (10.9).

This identity immediately yields (10.8) with Aja,i(z) =
〈
sa,j(z)(a), ua,i(z0)(a)

〉
E∨a ,Ea

since

we have

Π̃(z) =
∑
a,i

〈
s̃a,j(z), ·

〉
ũa,j(z) (10.11)

�

Using the lemma, we obtain, if µ(z) =
[
ũ(z) : Π̃(z)ũ(z0)

]
,

d(logµ)z0σ =
∑

a∈Crit(f)

(−1)n−|a| tr
(
Aγa(z0, σ)Pγa(z0)−1

)
where Aγa(z0, σ) = d (Pγa)z0 σ. Since n is odd, we obtain by definition of e and (4.4)

d(logµ)z0σ =
∑

a∈Crit(f)

(−1)|a|
∫
γa

trαz0(σ) =

∫
e

trαz0(σ).

This equation combined with (10.6) and (10.7) yields, if τ̃∨(z) = τe,o(∇(z)∨)

d(log τ̃∨)z0σ = −tr
s,C̃•Π̃(z0)αz0(σ)k̃(z0) +

∫
e

trαz0(σ).

The proof is almost finished. But since we need to formulate our results in terms of the

cohomological torsion, we still have to make some tedious formal manipulations to pass to

the cohomological formalism. The first step is to replace ∇ by the dual connection ∇∨ in the

above formula. We also introduce some notation. The operator Π̃ was the spectral projector

on the kernel of L∇
X̃

. Now we need to work with the spectral projector on ker
(
L∇(z0)∨

X̃

)
(resp.

L∇(z0)

−X̃
), which we denote by Π̃∨+(z0) (resp Π̃−(z0)) where the + (resp −) sign emphasizes the

fact that we deal with +X̃ (resp −X̃). Now note that

∇(z)∨ = ∇(z0)∨ − T
(
αz0(z − z0)

)
+ o(z − z0).

Therefore, applying what precedes to τ̃(z) we get

d(log τ̃)z0σ = −tr
s,C̃•∨,+

(
Π̃∨+(z0)

(
−Tαz0(σ)

)
k̃∨+(z0)

)
+

∫
e

tr
(
−Tαz0(σ)

)
, (10.12)
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where Π̃∨+(z0) is the spectral projector (10.3) associated to∇(z0)∨ and +X̃, C̃•∨,+ = ran Π̃∨+(z0),

and k̃∨+(z0) is any cochain contraction on the complex (C̃•∨,+,∇(z0)∨). Now, we have the iden-

tification (
C̃k∨,+

)∨
' C̃n−k− ,

where C̃•− is the range of Π̃−(z0), the spectral projector (10.3) associated to ∇(z0) and −X̃.

It is easy to show that under this identification, one has(
Π̃∨+
(
Tαz0(σ)

)
k̃(z0)

)∨
= Π̃−(z0)αz0(σ)k−(z0) +

[
Π̃−(z0)αz0(σ), k−(z0)

]
,

where for any j ∈ {0, . . . , n}, we set

k−(z0)|
C̃n−j−

= (−1)j+1
(
k̃∨+(z0)|C̃j+1

)∨
: C̃n−j− → C̃n−j−1

− .

Then k−(z0) is a cochain contraction on the complex (C̃•−,∇(z0)). As a consequence, since

n is odd,

tr
s,C̃•∨,+

(
Π̃∨+(z0)

(
−Tαz0(σ)

)
k̃∨+(z0)

)
= tr

s,C̃•−
Π̃−(z0)αz0(σ)k−(z0).

This concludes by (10.12) since tr(−Tβ) = − trβ for any β ∈ Ω1(M,End(E)).

11. Comparison of the dynamical torsion with the Turaev torsion

In this section we see the dynamical torsion and the Turaev torsion as functions on the

space of acyclic representations. This is an open subset of a complex affine algebraic variety.

Therefore we can compute the derivative of τϑ/τe,o along holomorphic curves, using the

variation formulae obtained in §§8,10. From this computation we will deduce Theorem 6.

11.1. The algebraic structure of the representation variety. We describe here the

analytic structure of the space

Rep(M,d) = Hom(π1(M),GL(Cd))

of complex representations of degree d of the fundamental group. Since M is compact, π1(M)

is generated by a finite number of elements c1, . . . , cL ∈ π1(M) which satisfy finitely many

relations. A representation ρ ∈ Rep(M,d) is thus given by 2L invertible d × d matrices

ρ(c1), . . . , ρ(cL), ρ(c−1
1 ), . . . ρ(c−1

L ) with complex coefficients satisfying finitely many polyno-

mial equations. Therefore the set Rep(M,d) has a natural structure of a complex affine

algebraic set. We will denote the set of its singular points by Σ(M,d). In what follows, we

will only consider the classical topology of Rep(M,d).

We will say that a representation ρ ∈ Rep(M,d) is acyclic if ∇ρ is acyclic. We denote

by Repac(M,d) ⊂ Rep(M,d) the space of acyclic representations. This is an open set (in

the Zariski topology, thus in the classical one) in Rep(M,d), see [BH06, §4.1]. For any

ρ ∈ Repac(M,d) we set

τϑ(ρ) = τϑ(∇ρ), τe,o(ρ) = τe,o(∇ρ),

for any Euler structure e and any cohomological orientation o.
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11.2. Holomorphic families of acyclic representations. Let ρ0 ∈ Repac(M,d)\Σ(M,d)

be a regular point. Take δ > 0 and ρ(z), |z| < δ, a holomorphic curve in Repac(M,d)\Σ(M,d)

such that ρ(0) = ρ0. Theorems 6 and 7 will be a consequence of the following

Proposition 11.1. Let X be a contact Anosov vector field on M . Let e = [X̃, e] be the Euler

structure defined in §10.3. Note that −cs(−X̃,X) + e is a cycle and defines a homology class

h ∈ H1(M,Z). Then z 7→ τϑ(ρ(z))/τe,o(ρ(z)) is complex differentiable and

d

dz

(
τϑ(ρ(z))

τe,o(ρ(z))

〈
det ρ(z), h

〉)
= 0

for any cohomological orientation o.

Proposition 11.1 relies on the variation formulae given by Propositions 8.1 and 10.1, and

Lemma 9.4 which gives a topological interpretation of those.

11.3. An adapted family of connections. Following [BV17, §4.1], there exists a flat

vector bundle E over M and a C1 family of connections ∇(z), |z| < δ, in the sense of §8.1,

such that 9

ρ∇(z) = ρ(z) (11.1)

for every z; we can moreover ask the family ∇(z) to be complex differentiable at z = 0, that

is,

∇(z) = ∇+ zα+ o(z), (11.2)

where ∇ = ∇(0) and α ∈ Ω1(M,End(E)). Note that flatness of ∇(z) implies

[∇, α] = ∇α+ α∇ = 0.

11.4. A cochain contraction induced by the Morse-Smale gradient flow. Let(
L∇−X̃ + s

)−1
=

Π̃−
s

+ Ỹ +O(s)

be the Laurent expansion of
(
L∇
−X̃

+ s
)−1

near s = 0. The fact that s = 0 is a simple pole

comes from [DR16]. As in 8.2, we consider the operator

K̃ = ι−X̃ Ỹ (Id−Π̃−) + k̃−Π̃− : Ω•(M,E)→ D′•(M,E),

where k̃− is any cochain contraction on C̃•− = ran Π̃−. Note that we have the identity

[∇, K̃] = ∇K̃ + K̃∇ = Id . (11.3)

The next proposition will allow us to interpret the term tr
s,C̃•Π̃−(z)αz(σ)k̃−(z) appearing in

Proposition 10.1 as a flat trace similar to the one appearing in Proposition 8.1. This will be

crucial for the comparison between τϑ and τe,o.

9It is actually stated in [BV17, §4.1] that one can find a C1 family of connections satisfying (11.1); however

looking carefully at the proofs one can choose the family ∇(z) to be C1 in z.
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Proposition 11.2. For ε > 0 small enough, the wavefront set of the Schwartz kernel of the

operator ι−X̃ Ỹ (Id−Π̃−)e
−εL∇

−X̃ does not meet the conormal to the diagonal in M ×M and

we have for any α ∈ Ω1(M,End(E))

tr[sαι−X̃ Ỹ (Id−Π̃−)e
−εL∇

−X̃ = 0.

We refer to appendix C for the proof. An immediate corollary is the formula

tr
s,C̃•−

Π̃−αk̃− = tr[sαK̃e
−εL∇

−X̃ . (11.4)

Indeed, since L∇
−X̃

Π̃− = 0, we have Π̃−e
−εL∇

−X̃ = Π̃−. Moreover, since the trace of finite

rank operators coincides with the flat trace, we have tr
s,C̃•−

Π̃−αk̃− = tr
s,C̃•−

Π̃−αk̃−e
−εL∇

−X̃ =

tr[sαk̃−Π̃−e
−εL∇

−X̃ . Therefore we obtain with Proposition 11.2

tr
s,C̃•Π̃−αk̃− = tr[sαι−X̃ Ỹ (Id−Π̃−)e

−εL∇
−X̃ + tr[sαk̃−Π̃−e

−εL∇
−X̃ ,

which gives (11.4).

11.5. Proof of Proposition 11.1. Note that we have by (11.1)

τϑ(ρ(z)) = τϑ(∇(z)), τe,o(ρ(z)) = τe,o(∇(z)).

We will set f(z) = τϑ(∇(z))/τe,o(∇(z)) for simplicity. Now we apply Proposition 8.1, Propo-

sition 10.1 to obtain that z 7→ f(z) is real differentiable (since z 7→ ∇(z) is); moreover it is

complex differentiable at z = 0 by (11.2) and for ε > 0 small enough we have

d

dz

∣∣∣∣
z=0

log f(z) = −tr[sαKe−εL
∇
X + tr[sαK̃e

−εL∇
−X̃ +

〈
trα, e

〉
, (11.5)

where we used (11.4). Let

∆ = ∇∇? +∇?∇ : Ω•(M,E)→ Ω•(M,E)

be the Hodge-Laplace operator induced by any metric on M and any Hermitian product on

E. Because ∇ is acyclic, ∆ is invertible and Hodge theory gives that its inverse ∆−1 is a

pseudo-differential operator of order −2. Define

J = ∇?∆−1 : D′•(M,E)→ D′•−1(M,E).

We have of course

[∇, J ] = ∇J + J∇ = IdD′•(M,E) . (11.6)

Let Rε be the interpolator at time ε defined in §9.3 for the pair of vector fields (−X̃,X).

This implies with (9.4)

[∇, Rε] = e−εL
∇
X − e

−εL∇
−X̃ . (11.7)

Now define

Gε = J
(
Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε

)
: Ω•(M,E)→ D′•−2(M,E).
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Let us compute, having (11.6) in mind,

[∇, Gε] = ∇J
(
Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε

)
− J

(
Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε

)
∇

= (Id−J∇)
(
Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε

)
− J

(
K∇e−εL

∇
X − K̃∇e

−εL∇
−X̃ −Rε∇

)
= Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε − J

(
[∇,K]e−εL

∇
X − [∇, K̃]e

−εL∇
−X̃ − [∇, Rε]

)
,

where we used that e−εL
∇
X and e

−εL∇
−X̃ commute with ∇. Now note that (8.7), (9.4) and

(11.3) imply

[∇,K]e−εL
∇
X − [∇, K̃]e

−εL∇
−X̃ − [∇, Rε] = e−εL

∇
X − e

−εL∇
−X̃ −

(
e−εL

∇
X − e

−εL∇
−X̃
)

= 0.

Therefore we obtained

[∇, Gε] = Ke−εL
∇
X − K̃e

−εL∇
−X̃ −Rε.

Because [∇, α] = 0 we have

[∇, αGε] = −α
(
Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε

)
.

Using the notations of §4.4, WF(J),WF(α),WF(∇) are contained in the conormal bundle

of the diagonal N∗∆ since J, α,∇ are pseudodifferential operators; moreover, equation (9.6)

shows that

WF
(
Ke−εL

∇
X − K̃e

−εL∇
−X̃ −Rε

)
∩N∗∆ = ∅.

It follows from wave front composition [Hör90, Theorem 8.2.14] that WF(αGε) ∩N∗∆ = ∅.
The operators ∇, αGε satisfy the assumptions of Proposition 4.1 which gives tr[s [∇, αGε] = 0

and therefore (11.5) reads

d

dz

∣∣∣∣
z=0

log f(z) = −tr[sαRε +
〈
trα, e

〉
. (11.8)

The identity [∇, α] = 0 also implies that d trα = tr∇E⊗E∨α = tr[∇, α] = 0. As a consequence

we can apply (9.5) to obtain

tr[sαRε =
〈
trα, cs(−X̃,X)

〉
.

Now note that ∂
(
−cs(−X̃,X)+e

)
= −

(
div(X)−div(−X̃)

)
+div(X̃) = 0 by (9.1) and (10.2)

since X is non singular. Therefore we obtain

d

dz

∣∣∣∣
z=0

log f(z) =
〈
trα, h

〉
where h = [−cs(−X̃,X) + e] ∈ H1(M,Z). Finally, let us note that by (4.4),

d

dz

∣∣∣∣
z=0

log
〈
det ρ(z), h

〉
= −

〈
trα, h

〉
,

since ρ(z) = ρ∇(z). Therefore the proposition is proved for z = 0. However the same

argument holds for every z close enough to 0, which concludes.
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11.6. Proof of Theorems 6 and 7. By Hartog’s theorem and Proposition 11.1, we have

that the map

ρ 7→ τϑ(ρ)

τe,o(ρ)
〈det ρ, h〉 (11.9)

is locally constant on Repac(M,d) \ Σ(M,d).

Moreover, we can reproduce all the arguments we made in the continuous category to

obtain that ρ 7→ τϑ(ρ)/τe,o(ρ) is actually continuous on Repac(M,d). Because Repac(M,d) \
Σ(M,d) is open and dense in Repac(M,d), we get that the map 11.9 is locally constant on

Repac(M,d).

By [FT00, p. 211] we have, if e′ is another Euler structure, τe′,o(ρ) = 〈det ρ, e′−e〉τe,o(ρ). As

a consequence, if we set eϑ = [−X, 0] which defines an Euler structure since X is nonsingular

(see §9.2), we have e − eϑ = h and we obtain that ρ 7→ τϑ(ρ)/τeϑ,o(ρ) is locally constant on

Repac(M,d).

Now let η be another contact form inducing an Anosov Reeb flow and denote by Xη its

Reeb flow. Then if eη = [−Xη, 0], we have

eη − eϑ = cs(X,Xη)

by definition. Therefore τeϑ,o(ρ) = τeη ,o(ρ)〈det ρ, eϑ − eη〉 = τeη ,o(ρ)〈det ρ, cs(Xη, X)〉 and we

obtain that

ρ 7→ τϑ(ρ)

τη(ρ)
〈det ρ, cs(X,Xη)〉

is locally constant on Repac(M,d). By Theorem 9 we thus obtain Theorem 7.

Finally assume that dimM = 3 and b1(M) 6= 0. Take R a connected component of

Repac(M,d) and assume that it contains an acyclic and unitary representation ρ0. We

invoke [DGRS18, Theorem 1] and the Cheeger-Müller theorem [Che79, Mül78] to obtain

that 0 /∈ Res(L∇ρ0X ) and

|τϑ(ρ0)| = |ζX,∇ρ0 (0)|−1 = τRS(ρ0),

where the first equality comes from (6.8) (we have q = 1 since dimM = 3) and τRS(ρ0) is the

Ray-Singer torsion of (M,ρ0), cf. [RS71]. On the other hand, we have by [FT00, Theorem

10.2] that τRS(ρ0) = |τe,o(ρ0)| since ρ0 is unitary. Therefore the map ρ 7→ τϑ(ρ)/τeϑ,o(ρ) is of

modulus one on R. This concludes the proof of Theorem 6.

Appendix A. Projectors of finite rank

A.1. Traces on variable finite dimensional spaces. In what follows, we consider two

Hilbert spaces G ⊂ H, the inclusion being dense and continuous. We will denote by L(H,G)

the space of bounded linear operators H → G endowed with the operator norm. Let δ > 0

and Πt, |t| ≤ δ, be a family of finite rank projectors on H such that ran Πt ⊂ G. Assume that

t 7→ Πt is differentiable at t = 0 as a family of bounded operators H → G, that is,

Πt = Π + tP + oH→G(t) (A.1)
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for some P ∈ L(H,G), where Π = Π0. Denote Ct = ran Πt and C = ran Π. Note that by

continuity, Πt|C : C → Ct is invertible for |t| small enough; we denote by Qt : Ct → C its

inverse.

Lemma A.1. We have

(i) P = ΠP + PΠ,

(ii) QtΠt = ΠΠt + oH→G(z).

Proof. Using (A.3) and Π2
t = Πt we obtain (i). This implies

Πt ◦Π ◦Πt =
(

Π + tP + o(t)
)

Π
(

Π + tP + o(t)
)

= Π + t
(
PΠ + ΠP

)
+ o(t)

= Π + tP + o(t)

= Πt + o(t),

where all the o(t) are taken in L(H,G). Therefore Qt ◦ Πt ◦ Π ◦ Πt = QtΠt + o(t). Since

Qt ◦Πt ◦Π = Π by definition, one obtains

Qt ◦Πt = Π ◦Πt + o(t),

which proves the first part of the Lemma. The second part is very similar. �

Lemma A.2. Let At, |t| ≤ δ, be a C1 family of bounded operators G → H such that At
commutes with Πt for every t. Denote A = A0. Then t 7→ trCt(At) is real differentiable at

t = 0 and
d

dt

∣∣∣∣
t=0

trCt(At) = trC
(
ΠȦ),

where Ȧt = d
dtAt. If moreover A is invertible on C, we have

d

dt

∣∣∣∣
t=0

log detCt(At) = trC

(
ΠȦ(A|C)−1

)
.

Proof. We start from

trCt(At) = trC(QtAtΠt).

Now since At commutes with Πt we have by the second part Lemma A.1

QtAtΠtΠ = ΠΠtAtΠ + oC→C(t)

= ΠAΠ + tΠ
(
Ȧ+ PAΠ + ΠAP

)
Π + oC→C(t).

But now the first part of Lemma A.1 gives ΠPΠ = 0. We therefore obtain, because A and

Π commute,

QtAtΠtΠ = ΠAΠ + tΠȦΠ + oC→C(t), (A.2)

which concludes. �
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A.2. Gain of regularity. Assume that we are given four Hilbert spaces E ⊂ F ⊂ G ⊂ H
with continuous and dense inclusions. Let Πt, |t| < δ be a family of finite rank projectors

on H which is differentiable at t = 0 as family of bounded operators G → H (note that this

differs from the last subsection where we had H → G instead), that is

Πt = Π + tP + oG→H(t) (A.3)

for some P ∈ L(G,H). We will denote Ct = ran(Πt) ⊂ H and C = ran(Π).

Lemma A.3. Under the above assumptions, assume that Πt is bounded E → F and that Πt

is differentiable at t = 0 as a family of L(E ,F). Assume also that rank Πt does not depend

on t. Then P is actually bounded G → F and

Πt = Π + tP + oG→F (t).

Proof. Because E is dense in H we know that C ⊂ F . There exists ϕ1, . . . , ϕm ∈ E such

that ϕ1
t , . . . , ϕ

m
t is a basis of Ct for t small enough where we set ϕjt = Πt(ϕ

j) ∈ F . Denote

ϕ̃jt = Π(ϕjt ) ∈ C. This family t 7→ ϕ̃jt ∈ C is differentiable at t = 0. Let ν1
t , . . . , ν

m
t ∈ C∗ be

the dual basis of ϕ̃1
t , . . . , ϕ̃

m
t . Because C is finite dimensional, Π is actually bounded H → F .

As a consequence the map

t 7→ `jt = νjt ◦Π ◦Πt ∈ G′

is differentiable at t = 0. Noting that

Πt =
m∑
j=1

ϕjt ⊗ `
j
t : G → F ,

we finally obtain that t 7→ Πt ∈ L(G,F) is differentiable at t = 0. �

Appendix B. Continuity of the Pollicott-Ruelle spectrum

We describe here the spaces used in §§7,8. In what follows, M is a compact manifold,

(E,∇) a flat vector bundle on M and X0 is a vector field on M generating an Anosov flow,

cf. §5.1. We denote by T ∗M = E∗u,0 ⊕ E∗s,0 ⊕ E∗0,0 its Anosov decomposition of T ∗M .

B.1. Bonthonneau’s uniform weight function. We state here a lemma from Bonthon-

neau which is [Bon18, Lemma 3]. This gives us an escape function having uniform good

properties for a family of vector fields. A consequence is that one can define some uni-

form anisotropic Sobolev spaces on which each vector field of the family has good spectral

properties. In what follows, | · | is a smooth norm on T ∗M .

Lemma B.1. There exists conical neighborhoods Nu and Ns of E∗u,0 and E∗s,0, some constants

C, β, T, η > 0, and a weight function m ∈ C∞(T ∗M, [0, 1]) such that the following holds. Let

X be any vector field satisfying ‖X −X0‖C1 < η, and denote by Φt its induced flow on T ∗M

and by E∗u and E∗s its (dual) unstable and stable bundles. Then

(1) E∗• ⊂ N•, for • = s, u and for any t > 0, ξu ∈ E∗u and ξs ∈ E∗s one has

|Φt(ξu)| ≥ 1

C
eβt|ξu|, |Φ−t(ξs)| ≥

1

C
eβt|ξs|.
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(2) For every t ≥ T it holds

Φt
(
{Ns ∩X⊥

)
⊂ Nu, Φ−t

(
{Nu ∩X⊥

)
⊂ Ns,

where X⊥ = {ξ ∈ T ∗M, ξ ·X = 0}.
(3) If X is the Lie derivative induced by Φt, then

m ≡ 1 near Ns, m ≡ −1 near Nu, X.m ≥ 0.

B.2. Anisotropic Sobolev spaces. Take the weight function m of Lemma B.1. Define the

escape function g by

g(x, ξ) = m(x, ξ) log(1 + |ξ|), (x, ξ) ∈ T ∗M.

We set G = Op(g) ∈ Ψ0+(M) for any quantization procedure Op. Then by [Zwo12,

§§8.3,9.3,14.2] we have exp(±µG) ∈ Ψµ+(M) for any µ > 0. For any µ > 0 and j ∈ Z
we define the spaces

H•µG,j = exp(−µG)Hj(M,Λ• ⊗ E) ⊂ D′•(M,E),

where Hj(M,Λ• ⊗ E) is the usual Sobolev space of order j on M with values in the bundle

Λ•⊗E. Note that any pseudo-differential operator of order m is bounded H•µG,j → H•µG,j−m
for any µ,m, j.

B.3. Uniform parametrices. Let us consider a smooth family of vector fields Xt, |t| < ε,

perturbing X0. For any c, ρ > 0 we will denote

Ω(c, ρ) = {Re(s) > c} ∪ {|s| ≤ ρ} ⊂ C.

The spaces defined in the last subsection yields an uniform version of [DZ16, Proposition

3.4], as follows.

Proposition B.2. [Bon18, Lemma 9] Let Q be a pseudo-differential operator micro-locally

supported near the zero section in T ∗M and elliptic there. There exists c, ε0 > 0 such that

for any ρ > 0 and J ∈ N, there is µ0, h0 > 0 such that the following holds. For each µ ≥ µ0,

0 < h < h0, j ∈ Z such that |j| ≤ J and s ∈ Ω(c, ρ) the operator

L∇Xt − h
−1Q+ s : H•µG,j+1 → H•µG,j

is invertible for |t| ≤ ε0 and the inverse is bounded H•µG,j → H•µG,j independently of t.

B.4. Continuity of the Pollicott-Ruelle spectrum. We fix ρ, J ≥ 4 and µ0, µ, h0, h, j

as in Proposition B.2. We first observe that(
L∇Xt + s

) (
L∇Xt − h

−1Q+ s
)−1

= Id +h−1Q
(
L∇Xt − h

−1Q+ s
)−1

. (B.1)

Since Q is supported near 0 in T ∗M , it is smoothing and thus trace class on any H•µG,j .
By analytic Fredholm theory, the family s 7→ K(t, s) = h−1Q

(
L∇Xt − h

−1Q+ s
)−1

is a

holomorphic family of trace class operators on H•µG,j in the region Ω(c, ρ). We can therefore

consider the Fredholm determinant

D(t, s) = detH•µG,j
(
Id +K(t, s)

)
.
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It follows from [Sim05, Corollary 2.5] that for each t, s 7→ D(t, s) is holomorphic on Ω(c, ρ).

Moreover (B.1) shows that its zeros coincide, on Ω(c, ρ), with the Pollicott-Ruelle resonances

of L∇Xt . In addition, we have for any s ∈ Ω(c, ρ),(
L∇Xt − h

−1Q+ s
)−1
−
(
L∇Xt′ − h

−1Q+ s
)−1

= −
(
L∇Xt − h

−1Q+ s
)−1

(
L∇Xt − L

∇
Xt′

)(
L∇Xt′ − h

−1Q+ s
)−1

.

(B.2)

We have
L∇Xt − L

∇
Xt′

t− t′
−→
t→t′
L∇
Ẋt

in L(H•µG,j+1,H•µG,j). (B.3)

where Ẋt =
d

dt
Xt and L(H•µG,j+1,H•µG,j) is the space of bounded linear operators H•µG,j+1 →

H•µG,j endowed with the operator norm. We therefore obtain by Proposition B.2 and because

Q is smoothing (and thus trace class H•µG,j → H•µG,j′ for any µ, j, j′) that K(t′, s)→ K(t, s)

as t′ → t in L1(H•µG,0) locally uniformly in s, where L1(H•µG,0) is the space of trace class

operators on H•µG,0 endowed with its usual norm. As a consequence, we obtain with [Sim05,

Corollary 2.5]

D(t, s) ∈ C0
(
[−ε0, ε0]t,Hol

(
Ω(c, ρ)s

))
. (B.4)

B.5. Regularity of the resolvent. Let Z be an open set of C whose closure is contained

in the interior of Ω(c, ρ). We assume that Z ∩ Res(L∇X0
) = ∅. Up to taking ε0 smaller,

Rouché’s theorem and (B.4) imply that there exists δ > 0 such that dist
(
Z, Res(L∇Xt)

)
> δ

for any |t| ≤ ε0. As a consequence, we obtain that for every |j| ≤ J , the map
(
L∇Xt + s

)−1
:

H•µG,j → H•µG,j is bounded independently of (t, s) ∈ [−ε0, ε0]×Z. Noting that(
L∇Xt + s

)−1
−
(
L∇Xt′ + s

)−1

t− t′
= −

(
L∇Xt + s

)−1L∇Xt − L
∇
Xt′

t− t′
(
L∇Xt′ + s

)−1
, (B.5)

we obtain by (B.3) that t′ 7→
(
L∇Xt′ + s

)−1
is continuous in L(H•µG,j+1,H•µG,j). Therefore,

applying (B.5) again, we get that(
L∇Xt + s

)−1 ∈ C1
(
[−ε0, ε0]t,Hol(Zs, L(H•µG,j+1,H•µG,j−2)

)
. (B.6)

Note that here we need |j − 2|, |j + 1| ≤ J .

B.6. Regularity of the spectral projectors. Let 0 < λ < 1 such that {|s| = λ} ∩
Res(L∇X0

) = ∅. Applying the last subsection with Z = {|s| = λ}, we get {|s| = λ} ∩
Res(L∇Xt) = ∅ for any |t| ≤ ε0. We can therefore define for those t

Πt =
1

2πi

∫
|s|=λ

(
L∇Xt + s

)−1
ds : H•µG,j → H•µG,j .

Then (B.6) gives that Πt ∈ C1
(
[−ε0, ε0]t,Zs, L(H•µG,j+1,H•µG,j−2

)
. This is true for j = 3 and

j = −1 because J ≥ 4. Moreover by Rouché’s theorem, the number m of zeros of s 7→ D(t, s)

does not depend on t. Noting that

∂sK(t, s)(1 +K(t, s))−1 = −K(t, s)
(
L∇Xt − h

−1Q+ s)−1(1 +K(t, s)
)−1

,
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we obtain by [DZ19, Theorem C.11] and the cyclicity of the trace that m is equal to

1

2πi
tr

∫
|s|=λ

∂sK(t, s)(1 +K(t, s))−1ds

= − 1

2πi
tr

∫
|s|=λ

(
L∇Xt − h

−1Q+ s
)−1

(1 +K(t, s))−1K(t, s)ds

=
1

2πi
tr

∫
|s|=λ

(
L∇Xt − h

−1Q+ s
)−1

(1 +K(t, s))−1,

where we used that s 7→
(
L∇Xt − h

−1Q+ s
)−1

is holomorphic on {|s| ≤ λ}. The last integral

is equal to tr Πt = rank Πt by (B.1). As a consequence we can apply Lemma A.3 to obtain

that

Πt ∈ C1
(
[−ε0, ε0]t,L(H•µG,0,H•µG,1

)
. (B.7)

B.7. Wavefront set of the spectral projectors. Let (E,∇∨) be the dual bundle of

(E,∇). Then (5.2) implies, for any Re(s)� 0,〈(
L∇Xt + s

)−1
u, v

〉
=

〈
u,
(
L∇∨−Xt + s

)−1
v

〉
, u ∈ Ωk(M,E), v ∈ Ωn−k(M,E∨), (B.8)

where 〈·, ·〉 is the pairing from §4.2. This shows that Res(L∇∨−Xt) = Res(L∇Xt). Therefore we

can apply the preceding construction with the escape function g replaced by −g (the unstable

bundle of −Xt is the stable one of Xt and reciprocally) and we obtain that

Π∨t =
1

2πi

∫
|s|=λ

(
L∇∨−Xt + s

)−1
ds ∈ C1

(
[−ε0, ε0]t,L(H•−µG,0,H•−µG,1)

)
.

Note that (B.8) implies

〈Πtu, v〉 =
〈
u,Π∨t v

〉
, u ∈ Ωk(M,E), v ∈ Ωn−k(M,E∨). (B.9)

We denote C•t = ran Πt, C
∨•
t = ran Π∨t andm = rank Πt = rank Π∨t . Take ϕ1, . . . , ϕm, ψ1, . . . , ψm ∈

Ω•(M,E) such that Π0(ϕ1), . . .Π0(ϕm) is a basis of C•0 and 〈Π0ϕ
i, ψj〉 = 0 if i 6= j and

〈Π0ϕ
i, ψj〉 = 1 otherwise. For t small enough we set

ϕit = Πtϕ
i, ψtj = Π∨t ψ

j .

Like in the proof of Lemma A.3, (B.9) implies that

Πt =

m∑
i=1

mij(t)ϕ
i
t〈ψ

j
t , ·〉, (B.10)

where t 7→ mij(t) is continuous near t = 0 and mij(0) = δij .

Next we show that there exists open conic neighborhoods of Nu and Ns such that, uni-

formly in t ∈ [−ε0, ε0],

WF(ϕit) ⊂Wu, WF(ψit) ⊂Ws, Wu ∩Ws = ∅, i = 1, . . . ,m. (B.11)

This means that the map [−ε0, ε0] 3 t 7→ ϕit (resp. ψit) is bounded in D′•Wu
(M,E) (resp.

D′•Ws
(M,E∨)). To proceed, we note that we can construct two weight functions mu,ms

satisfying the properties of Lemma B.1 such that {mu ≤ 0} ∩ {ms ≥ 0} = ∅ (for example by

choosing well the χ from [Bon18, p. 6]). Let Gu, Gs ∈ Ψ0+(M) be the associated operators
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from §B.2. Up to choosing ε0 smaller, we obtain with (B.7) that the map t 7→ ϕit is bounded

in H•µGu,0 for µ > 0 big enough. For any χ ∈ C∞(T ∗M, [0, 1]) such that suppχ ⊂ {mu ≥ δ}
for some δ > 0, we have by classical rules of pseudo-differential calculus

‖Op(χ)ϕit‖Hδµ(M,Λ•⊗E) ≤ Cµ‖ϕit‖H•µGu,0 ≤ C
′
µ, t ∈ [−ε0, ε0],

for some constants Cµ, C
′
µ independent of t. As a consequence, we obtain (for example using

[DR17a, Lemma 7.4]) that [−ε0, ε0] 3 t 7→ ϕit is bounded in D′•Wu
(M,E) where Wu = {mu ≤

0}. Doing exactly the same with −ms and −Xt we obtain that [−ε0, ε0] 3 t 7→ ψit is bounded

in D′•Ws
(M,E∨) with Ws = {−ms ≥ 0}. This shows (B.11).

Appendix C. The wave front set of the Morse-Smale resolvent

The purpose of this section is to prove Proposition 11.2. For simplicity we prove it for

X̃ instead of −X̃. We will denote by Π̂ the spectral projector (10.3) for the trivial bundle

(C, d). Recall that D′Γ(M ×M) denotes distributions whose wave front set is contained in

the closed conic set Γ ⊂ T •(M ×M). A family (ft)t≥0 of distributions will be OD′Γ(1) if it is

bounded in D′Γ in the sense of [Dan13, p. 31]. We will need the following

Lemma C.1. Let ε > 0 and a ∈ Crit(f). There exists c > 0, a closed conic set Γ ⊂
T ∗(M ×M) with Γ ∩ N∗∆(T ∗M) = ∅ and χ ∈ C∞(M, [0, 1]) such that χ ≡ 1 near a such

that

Kχ,t+ε = OD′nΓ (M×M)
(e−tc),

where for t ≥ 0, Kχ,t is the Schwartz kernel of the operator χe−tLX̃
(

Id−Π̂
)
χ.

Proof. Because X̃ is C∞-linearizable, we can take U ⊂ Rn to be a coordinate patch centered

in a so that, in those coordinates, e−tX̃(x) = e−tA(x) where A is a matrix whose eigenvalues

have nonvanishing real parts. Denoting (x1, . . . , xn) the coordinates of the patch, X̃ reads

X̃ =
∑

1≤i,j≤n
Ajix

i∂j .

We have a decomposition Rn = W u⊕W s stable by A such that A|Wu (resp. A|W s) have eigen-

values with positive (resp. negative) real parts, du/s = dimW u/s, this induces a decomposi-

tion of the coordinates x = (xs, xu). We will denote by Au = A|Wu ⊕ 0W s , As = 0Wu ⊕A|W s

and c > 0 such that

c < inf
λ∈sp(A)

|Re(λ)|

where sp(A) is the spectrum of A.

Let χ1, χ2 ∈ Ω•(M) such that suppχi ⊂ suppχ for i = 1, 2. For simplicity, we identify

e−tA and its action on differential forms and currents given by the pull-back, δd(x) denotes

the Dirac δ distribution at 0 ∈ Rd, π1, π2 are the projections M ×M 7→ M on the first and
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second factor respectively.

〈Kχ,t, π∗1χ1 ∧ π∗2χ2〉 = 〈χ2, e−tA(Id−Π̂)χ1〉

=

〈
χ2, e−tA

(
χ1 − δdu(xu)dxu

∫
W s

π∗s,0χ1

)〉
=
〈
etAsχ2, e−tAuχ1

〉
−
(∫

Wu

π∗u,0χ2

)(∫
W s

π∗s,0χ1

)
=

∫ 1

0

∫
U
∂τ
(
etAsπ∗u,τχ2 ∧ e−tAuπ∗s,τχ1

)
dτ,

where πu,τ , πs,τ : U → U are defined by πu,τ (xu, xs) = (xu, τxs) and πs,τ (xu, xs) = (τxu, xs).

Now write χ2 =
∑
|I|=k βIdx

Is
s ∧ dxIuu . We have

∂τπ
∗
u,τχ2(xu, xs) = ∂τ

∑
I

τ |Is|βI(xu, τxs)dx
Iu
u ∧ dxIss

=
∑
I

|Is|τ |Is|−1βI(xu, τxs)dx
Iu
u ∧ dxIss

+
∑
I

τ |Is| (∂xsβI)(xu,τxs)
(xs)dx

Iu
u ∧ dxIss .

Therefore

∂τetAsπ∗u,τχ2 =
∑
I

(
|Is|τ |Is|−1βI(xu, τetAsxs) + τ |Is| (∂xsβI)(xu,τxs)

(etAsxs)
)

etAsdxI .

Because |etAsxs| = O(e−tc) and etAsdxI = O(e−ct|Is|), I = (Is, Iu) is a multi–index and

repeating the same argument for ∂τe−tAuπ∗s,τχ1, we obtain the bound :

∂τ
(
etAsπ∗u,τχ2 ∧ e−tAuπ∗s,τχ1

)
= Oχ1,χ2(e−tc). (C.1)

Replacing χ1 and χ2 by χ1ei〈ξ,·〉 and χ2ei〈η,·〉 with ξ, η ∈ Rn, one gets〈
Kχ,t, π∗1

(
χ1ei〈ξ,·〉

)
∧ π∗2

(
χ2ei〈η,·〉

)〉
=

∫ 1

0

∫
U
∂τ
(
etAsπ∗u,τχ2 ∧ e−tAuπ∗s,τχ1

)
ei〈e

tAs (xu,τxs),η〉ei〈e
−tAu (τxu,xs),ξ〉dτ

+

∫ 1

0

∫
U
etAsπ∗u,τχ2 ∧ e−tAuπ∗s,τχ1∂τ

(
ei〈e

tAs (xu,τxs),η〉ei〈e
−tAu (τxu,xs),ξ〉

)
dτ.

Denoting g(τ, xu, xs) = ei〈e
tAs (xu,τxs),η〉ei〈e

−tAu (τxu,xs),ξ〉 we have

∂τg(τ, xu, xs) = i
(
〈etAsxs, ηs〉+ 〈e−tAuxu, ξu〉

)
g(τ, xu, xs) = OC∞(M)(e

−tc),

because |etAsxs|, |e−tAuxu| = O(e−tc). Repeating the process that led to (C.1) but for deriva-

tives of χ1, χ2 as test forms with successive integration by parts, we therefore obtain for any

N ∈ N:∣∣∣〈Kχ,t, π∗1 (χ1ei〈ξ1,·〉
)
∧ π∗2

(
χ2ei〈ξ2,·〉

)〉∣∣∣
≤ CN,χ1,χ2e−tc

(
1 + |etAsηs|+ |e−tAuξu|

) ∫ 1

0

(
1 + |τetAsηs + ξs|+ |τe−tAuξu + ηu|

)−N
dτ,
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where ξ = (ξu, ξs) and η = (ηu, ηs). Now assume (ξ, η) is close to N∗∆(T ∗M), say∣∣∣∣ ξ|ξ| +
η

|η|

∣∣∣∣ < ν and 1− ν < |ξ|
|η|

< 1 + ν

for some ν > 0. Then we have for any τ ∈ [0, 1]:

|τetAsηs + ξs|+ |τe−tAuξu + ηu| ≥
(
1− e−tc(1 + ν)

)
(|ξs|+ |ηu|).

As a consequence, if ν > 0 is small enough so that (1 + ν)e−(t+ε)c < 1, for every t ≥ 0, we

obtain ∣∣∣〈Kχ,t+ε, π∗1 (χ1ei〈ξ,·〉
)
∧ π∗2

(
χ2ei〈η,·〉

)〉∣∣∣ ≤ C ′N,χ1,χ2
(1 + |ξ|+ |η|)−N ,

which concludes. �

Proof of Proposition 11.2. Fix ε > 0. For a ∈ Crit(f), take ca,Γa, χa as in Lemma C.1. The

proof of Lemma C.1 actually shows that for Re(s) > −ca, the integral

Gχa,ε,s =

∫ ∞
0

e−tsχae
−(t+ε)X̃(Id−Π̂)χadt

converges as an operator Ω•(M) → D′•(M). Moreover, its Schwartz kernel Gχa,ε,s is locally

bounded in D′nΓa(M ×M) in the region {Re(s) > −ca}. We will need the following lemma.

Lemma C.2. For any µ > 0, there is ν > 0 with the following property. For every x ∈ M
such that dist(x,Crit(f)) ≥ µ, it holds

dist
(
x, e−(t+ε)X̃(x)

)
≥ ν, t ≥ 0.

Proof. We proceed by contradiction. Suppose that there is µ > 0 and sequences xm ∈ M
and tm ≥ ε such that dist

(
xm, e

−tmX̃(xm)
)
→ 0 as m → ∞ and dist(xm,Crit(f)) ≥ µ.

Extracting a subsequence we may assume that xm → x, tm → ∞ (indeed if tm → t∞ < ∞
then x is a periodic point for X̃, which does not exist) and for any m,

e−tX̃(xm)→ a and etX̃(xm)→ b as t→∞,

for some a, b ∈ Crit(f). Since the space of broken curves L(a, b) is compact (see [AD14]),

we may assume that the sequence of curves γm =
{

etX̃(xm), t ∈ R
}

converges to a broken

curve ` = (`1, . . . , `q) ∈ L(a, b) with `j ∈ L(cj−1, cj) for some c0, . . . , cq ∈ Crit(f) with c0 = a

and cq = b. Because xm → x, the proof of [AD14, Theorem 3.2.2] implies x ∈ `j for some

j so that e−tX̃x → cj−1 as t → ∞. Therefore replacing x by e−tX̃(x) for t big enough, we

may assume that x is contained in a Morse chart Ω(cj−1) near cj−1. Then cj−1 6= a. Indeed

if it was not the case then we would have e−tmX̃xm → a as m → ∞ (since xm would be

contained in Ω(a) ∩ W u(a) for big enough m and tm → ∞), which is not the case since

dist(x,Crit(f)) ≥ µ =⇒ x 6= a and dist
(
xm, e

−tmX̃(xm)
)
→ 0 as m → ∞. Therefore the

flow line of xm exits Ω(cj−1) in the past. We therefore obtain, since e−tmX̃xm → x, that

there is i < j − 1 so that ci = cj−1. This is absurd since the sequence
(
indf (ci)

)
i=0,...,q

is

strictly decreasing. �
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By (10.11) we have suppK
Π̂
∩∆ = Crit(f), where K

Π̂
is the Schwartz kernel of Π̂ and ∆ is

the diagonal in M ×M ; the same holds for e−(t+ε)X̃Π̂ = Π̂ (see [DR17a]). Moreover, Lemma

C.2 implies that if χ ∈ C∞(M, [0, 1]) satisfies χ ≡ 1 near ∆ and has support close enough to

∆, we have

χe−(t+ε)X̃χ =
∑
a

χae
−(t+ε)X̃χa.

Let c = mina∈Crit(f) ca. For Re(s) > −c,

Gχ,ε,s =

∫ ∞
0

e−tsχe−(t+ε)X̃(Id−Π̂)χdt

defines an operator Ω•(M) → D′•(M), whose Schwartz kernel Gχ,ε,s is locally bounded in

D′nΓ (M ×M) in the region {Re(s) > −c}, where Γ =
⋃
a∈Crit(f) Γa.

Now for Re(s)� 0, we have as a consequence of the Hille–Yosida Theorem applied to L
X̃

acting on suitable anisotropic spaces [DR17a, 3.2.3]:(
L
X̃

+ s
)−1

=

∫ ∞
0

e−tse−tX̃dt : Ω•(M) 7→ D′•(M).

Therefore for Re(s)� 0, it holds

Gχ,ε,s = χ
(
L
X̃

+ s
)−1

(Id−Π̂)e−εX̃χ.

Since both members are holomorphic in the region {Re(s) > −c} and coincide for Re(s)� 0,

they coincide in the region Re(s) > −c. Let β ∈ Ω1(M). We can compute for Re(s) � 0,

since ι
X̃

Π̂ = 0 by [DR17a],

tr[s βιX̃
(
L
X̃

+ s
)−1

(Id−Π̂)e−εLX̃ = tr[s βιX̃Gχ,ε,s

=

∫ ∞
0

e−tstr[s βιX̃e−(t+ε)X̃(Id−Π̂)

=

∫ ∞
0

e−tstr[sβιX̃e−(t+ε)X̃ ,

where we could interchange the integral and the flat trace thanks to the bound obtained in

Lemma C.1. Now the Atiyah-Bott trace formula [AB67] gives

tr[sβιX̃e−(t+ε)X̃ = 0

since X̃ vanishes at its critical points. By holomorphy this holds true for any s such that

Re(s) > −c. In particular if λ > 0 is small enough

tr[sβιX̃ Ŷ (Id−Π̂)e−εX̃ =
1

2iπ

∫
|s|=λ

tr[sβιX̃

(
L
X̃

+ s
)−1

s
(Id−Π̂)e−εLX̃ds = 0,

where
(
L
X̃

+ s
)−1

= Ŷ +
Π̂

s
+O(s). Therefore Proposition 11.2 is proved in the case where

(E,∇) is the trivial bundle. The general case is handled similarly. �
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[BKL02] Michael Blank, Gerhard Keller, and Carlangelo Liverani. Ruelle–Perron–Frobenius spectrum for

Anosov maps. Nonlinearity, 15(6):1905, 2002.

[BL07] Oliver Butterley and Carlangelo Liverani. Smooth Anosov flows: correlation spectra and stability.

J. Mod. Dyn, 1(2):301–322, 2007.

[BL13] Oliver Butterley and Carlangelo Liverani. Robustly invariant sets in fiber contracting bundle flows.

Journal of Modern Dynamics, 7(2):255–267, 2013.

[Bon18] Yannick Guedes Bonthonneau. Perturbation of Ruelle resonances and Faure-Sjöstrand anisotropic
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