Arithmetic properties of Apéry-like numbers

E. Delaygue

ABSTRACT

We provide lower bounds for p-adic valuations of multisums of factorial ratios which
satisfy an Apéry-like recurrence relation: these include Apéry, Domb, Franel numbers,
the numbers of abelian squares over a finite alphabet, and constant terms of powers of
certain Laurent polynomials. In particular, we prove Beukers’ conjectures on the p-adic
valuation of Apéry numbers. Furthermore, we give an effective criterion for a sequence
of factorial ratios to satisfy the p-Lucas property for almost all primes p.

1. Introduction

1.1 Classical results of Lucas and Kummer

It is a well-known result of Lucas [Lu78] that, for all nonnegative integers m,n and all primes p,

we have
k
<m> = H <ml> mod p, (1.1)
n i n;

i=0
where m = mg + mip + --- + myp® and n = ng +n1p + - - - + ngp® are the base p expansions of
m and n.
In particular, a prime p divides the binomial (’;:) if, and only if there is 0 < ¢ < k such that
m; < n;. Precisely, Kummer proved in [Ku52| that, for all nonnegative integers m > n, the p-adic
valuation (') of the binomial (") is the number of carries which occur when n is added to m —n
in base p. As a consequence, we have

<m> € p*Z, where a:#{()gigk : (m,) = } (1.2)
n n;

In this article, we show that many sequences (A(n))n>0 of Apéry-like numbers satisfy congru-
ences similar to (1.1), that is, for all nonnegative integers n and all primes p, we have

k
A(n) = HA(nZ) mod p,
i=0

where n = ng + nip + - - - + nxp”® is the base p expansion of n. Furthermore, we prove that an
analogue of (1.2) holds for those numbers, that is

A(n) € p*Z, where a = #{0 <i<k:AMn;) =0 mod p},
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which proves Beukers’ conjectures on the p-adic valuation of Apéry numbers.

1.2 Beukers’ conjectures on Apéry numbers
For all nonnegative integers n, we set

n 2 2 n 2

n n+k n n+k
Ai(n) ::Z<k> < i > and Aa(n) :zZ(k) < k >
k=0 k=0
These sequences were used in 1979 by Apéry in his proofs of the irrationality of ((3) and

C(2) (see [Ap79]). In the 1980’s, several congruences satisfied by these sequences were proved
(see for example [Be85|, [Be87|, [CCC80|, [Ge82], [Mi83]). In particular, Gessel proved in [Ge82]

that A satisfies the p-Lucas property for all prime numbers p, that is, for any prime p, all v in
{0,...,p— 1} and all nonnegative integers n, we have

Ai(v+np) = Ai1(v)A1(n) mod p.
Thereby, if n = ng +nip +--- + nyp" is the base p expansion of n, then we obtain
Ai(n) = Ai(ng)--- A1(ny) mod p. (1.3)

In particular, p divides A;(n) if, and only if there exists k in {0, ..., N} such that p divides A1 (ny).
Beukers stated in [Be86] two conjectures, when p = 5 or 11, which generalize this property ().
Before stating these conjectures, we observe that the set of all v in {0,...,4} (respectively v in
{0,...,10}) satisfying A;(v) =0 mod 5 (respectively A;(v) =0 mod 11) is {1,3} (respectively

{5}).

CONJECTURE A Beukers, [Be86|. Let n be a nonnegative integer whose base 5 expansion is
n=mng+mn5+ --+ny5". Let a be the number of k in {0,..., N} such that n = 1 or 3. Then
5% divides Ai(n).

CONJECTURE B Beukers, [Be86|. Let n be a nonnegative integer whose base 11 expansion is
n=mng+mnll+ - +ny11". Let a be the number of k in {0,..., N} such that ny = 5. Then
11¢ divides Ai(n).

Similarly, Sequence As satisfies the p-Lucas property for all primes p. Furthermore, Beukers
and Stienstra proved in [BS85] that, if p = 3 mod 4, then Ay (%) = 0 mod p, and Beukers
stated in [Be86| the following conjecture.

CONJECTURE C. Let p be a prime number satisfying p = 3 mod 4. Let n be a nonnegative

integer whose base p expansion is n = ng 4+ nip + --- + nyp~. Let a be the number of k in
{0,..., N} such that nj, = 51 Then p® divides Aa(n).

Conjectures A-C have been extended to generalized Apéry numbers and any prime p by
Deutsch and Sagan in [DS06, Conjecture 5.13| but this extension is false for at least one gener-
alization of Apéry numbers. Indeed, a counterexample is given by

n 2 3
n n+k
4= () (")
k=0
since A(1) =9 =0 mod 3 but A(4) = A(1 + 3) = 1152501 is not divisible by 32.

*If pis 2, 3 or 7, then for all v in {0,...,p—1}, A1(v) is coprime to p so that, according to (1.3), for all nonnegative
integers n, Ai(n) is coprime to p.
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The main aim of this article is to prove Theorem 1, stated in Section 1.4, which confirms and
generalizes Conjectures A-C. First, we introduce some notations which we use throughout this
article.

1.3 Notations

In order to study arithmetic properties of sums of products of binomial coefficients, such as Apéry
numbers, we first study families, indexed by N¢, of ratios of factorials of linear forms with integer
coefficients. For example, we will obtain congruences for Aj(n) by studying the factorial ratios

(2711 + ng) 12

n1!4n2!2 ) (nlun2 S N)7

as we have the useful formula
n 2 2 2
B n n+k\" (2n1 + ng)!
Ai(n) =) (].C) ( k > = 2 g2
k=0 ni+n2=n

Let d be a positive integer. Given tuples of vectors in N?, e = (eq,...,e,) and f = (f1,...,f,),
we shall prove congruences for the factorial ratios

Q. ;(n) = W (n € N9),

to deduce arithmetic properties of the numbers (3)

Gef(n):= Y  Qusm), (neN) (1.4)
neNd |n|=n
Here - denotes the standard scalar product on R? and |n| =ny +---+ng if n = (ny,...,ng). For

example, we obtain that &, ¢(n) = A;(n) with the tuples
e=1((2,1),(2,1)) and f=((1,0),(1,0),(1,0),(1,0),(0,1),(0,1)).

Because of the summation in (1.4), it is usually difficult to study arithmetic properties of
Se,r(n), however we will show that, in many interesting cases, we can transfer the p-Lucas
property from Q. r(n) to &, s(n). To that purpose, we define the p-Lucas property for families
of p-adic integers indexed by N¢. For all primes p, we write Z,, for the ring of p-adic integers.

If A= (A(n))yend I8 a Zy-valued family, then we say that A satisfies the p-Lucas property if,
for all vectors v in {0,...,p — 1}¢ and n in N% we have

A(v+np) = A(v)A(n) mod pZ,. (1.5)

If n is nonzero, then we say that n = ng 4+ n;p + --- +nyp" is the base p expansion of n if, for
all iin {0,..., N}, we have n; € {0,...,p — 1}%, and ny # 0, where 0 := (0,...,0). Hence, if A
satisfies the p-Lucas property, then we have

A(n) = A(ny) --- A(ny) mod pZ,.
We write Z,(A) for the set of all vectors v in {0,...,p — 1} such that A(v) belongs to pZ,.

Hence A(n) is in pZ, if, and only if at least one n;, 0 < i < N, belongs to Z,(A). To state our
generalization of Conjectures A-C we define the following counting function. For every nonzero

3We also provide a proof of Beukers’ conjectures which directly uses congruences for Apéry numbers due to their
representation as constant terms of powers of Laurent polynomials.
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vector n in N whose base p expansion is n = ng 4+ nip + - -- + nyp”, we write ap(A,n) for the
number of ¢ in {0,..., N} such that n, € Z,(A), and we set ap(A,0) = 0. Thereby, to prove
Conjectures A-C, it is enough to show that A;(n) € p*»(A4™7Z with i =1,p =5 or 11 and i = 2,
p=3 mod 4.

Our generalization of Beukers’ conjectures will apply to sequences &, s restricted to the
following two conditions.

The first condition (the r-admissibility) ensures that we can transfer the p-Lucas property
from Q. ¢(n) to &, ¢(n). f m = (my,...,my) and n = (n1,...,n4) belong to RY, then we write
m > n if, for all 4 in {1,...,d}, we have m; > n;. Furthermore, we set 1 := (1,...,1) € N? and
we write 1j for the vector in N?, all of whose coordinates equal zero except the k-th which is 1.
Let S:={1 <i<u: e >1}. For every positive integer r, we say that e is r-admissible if

i 1<i<u:i > d1g) >
#S + 121klgd#{ i<u:i¢Sande; >dlg} >
We will use this definition with » = 1 or 2. In the case of the Apéry numbers A;(n), we study the

family Q. ¢ with the tuple e = ((2,1),(2,1)) so that #S = 2 and e is 2-admissible. As another
example, we will also prove a result similar to Beukers’ conjectures for the sequence

Ag(n) = ;;O (Z) <2kk> (2(;__15)).

Ag(n) = Z (n1 + n2)!(2n1)!(2n2)!

ni !3?7,2!3

We can write

9
ni+na2=n

so that Ag(n) = &, r(n) with e = ((1,1),(2,0),(0,2)). In this case, we have d = 2, #S5 = 1 but
e is also 2-admissible because for k =1 or 2 we have #{2<i<3 : e; > 21} =1.

The second condition is of differential type. To apply our main result, we need the generating
series of (&, £(n))n>0 to be annihilated by a differential operator of a special form that we describe

below. We set 6 := zd% and we say that a differential operator £ in Z,[z, 0] is of type I if there

is a nonnegative integer ¢ such that:
— L=Py(0) + zP1(0) + - - + z9P,(0) with Py(X) € Zy[X] for 0 < k < g;
- R(Zy) C Zy;
— for all kin {2,...,¢}, we have Py(X) € [TF ] (X +14)%Z,[X].
We say that a differential operator £ in Zy[z, 0] is of type II if
— L= Py(0) + 2P1(0) + 22P5(0) with P.(X) € Z,[X] for 0 < k < 2;
- B(Zy) C Zy;
- Py(X) € (X +1)Z,[X].
For example, the generating series of (A1(n))n>0 is annihilated by the differential operator
L1 =60%— 2(3460° + 510 + 270 + 5) + 2%(0 + 1)?,

which is of type I for every prime p. We will also prove a result similar to Beukers’ conjectures

for the numbers
n 4
n

k=0
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The generating series of Ay is annihilated by the differential operator
Ls5=0%—22(20 4+ 1)(360% + 30 + 1) — 224(0 + 1)(460 + 5)(46 + 3),
which is of type Il for every prime p.
Our main result confirms Conjectures A—C, and also provides surprising similar properties

for some deformations of Apéry-like numbers. For example, while proving that, for every prime
p and all nonnegative integers n, we have

" n2 ’I’Z+k2 a(A n)
Al(n)—z<k>< . ) e porldn)z,

k=0

we will also show that, for every nonnegative integer a, we have
n 2 2
n n+k
e e ap(Al,n)—1Z.
() () e

More generally, we will obtain congruences for deformations 657 f of the sequences &,y defined

as follows. For any prime p, we write Sg for the set of all functions g : N¢ — Z,, such that,
for all nonnegative integers K, there exists a sequence (Pg j)r>0 of polynomial functions with
coeflicients in Z, which converges pointwise to g on {0, ... , K}, For all tuples e and f of vectors
in N4, all g € Sg and all nonnegative integers m, we set

&7 (m):= Y Qer(n)g(n).

neNd |nj=m

1.4 Main results

In the rest of the article, if e = (ey, ..., e,) is a tuple of vectors in N¢, then we set |e| := e+ - -+e,.
The main result of this article is the following.

THEOREM 1. Let e and f = (1g,,...,1%,) be two disjoint tuples of vectors in N% such that
le| = |f|, for all i in {1,...,v}, k; isin {1,...,d}, and e is 2-admissible. Let p be a fixed prime.
Assume that the generating series of & ¢ is annihilated by a differential operator L € Zpy[z, ]
such that at least one of the following conditions holds:

— L is of type L.
— Lisof type Il and p—1 € Z,(8. ).

Then, for all nonnegative integers n and all functions g in gg, we have
Gehf(n) (& pOt;n(Ge,fyn)Z and 6‘27]‘.(”) c pap(Ge,fﬂ’l)—lZP.

In Section 1.6, we show that Theorem 1 applies to many classical sequences. In particular,
Theorem 1 implies Conjectures A-C. Indeed, we have A1 = &, y, and Ay = &, y, with d = 2,

e1=((2,1),(2,1)) and f1 =((1,0),(1,0),(1,0),(1,0),(0,1),(0,1)),
and
e2 =((2,1),(1,1)) and f2 = ((1,0),(1,0),(1,0),(0,1),(0,1)).
Furthermore, it is well known that f4,, respectively f4,, is annihilated by the differential operator
L1, respectively Lo, defined by

L1 =6%— 2(346% + 5162 + 270 + 5) + 22(A + 1)3
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and
Lo =02 — 2(116% + 110 + 3) — 22(0 + 1)%.
Since £1 and Lo are of type I for all primes p, the conditions of Theorem 1 are satisfied by A;

and As, and Conjectures A-C hold. In addition, for all primes p and all nonnegative integers n
and a, we obtain that

Zk“() ("+k> p? =17, and Zk“() <n+k> € prrtdamlz,

We provide a similar result which applies to the constant terms of powers of certain Laurent
polynomials. Consider a Laurent polynomial

k
i + +
= Zaixa‘ € Lplxy,...,x5],
i=1

where a; € Z% and «; # 0 for 4 in {1,...,k}. Recall that the Newton polyhedron of A is the
convex hull of {ay,...,a;} in R?. Hence we have the following result.

THEOREM 2. Let p be a fixed prime. Let A(x) € Z,[z5 ,...,xfﬂ be a Laurent polynomial, and
consider the sequence of the constant terms of powers of A defined, for all nonnegative integers
n, by
A(n) == [A(x)”]o.

Assume that the Newton polyhedron of A contains the origin as its only interior integral point,
and that fa is annihilated by a differential operator L in Zy|z,0] such that at least one of the
following conditions holds:

— L is of type L.

— Lisof typell andp—1 € Z,(A).

Then, for all nonnegative integers n, we have

A(n) € porAmz,,

For example, Theorem 2 applies to Apéry numbers A; thanks to the following formula of
Lairez [Lail3|:

Ay(n) = [((1+z)(yz+z+?;i+m)(xy+x+y))”} o

By a result of Samol and van Straten [SvS15], if A(x) € Zy[z, ..., 2] contains the origin as
its only interior integral point, then ([A(X)”]o)n>0 satisfies the p-Lucas property, which is essential
for the proof of Theorem 2. Likewise, the proof of Theorem 1 rests on the fact that &, ; satisfies
the p-Lucas property when |e| = |f], e is 2-admissible and f = (1,,..., 1, ). Since those results
deal with multisums of factorial ratios, it seems natural to study similar arithmetic properties for
simpler numbers such as families of factorial ratios. To that purpose, we prove Theorem 3 below
which gives an effective criterion for Q. r to satisfy the p-Lucas property for almost all primes p
(*). Furthermore, Theorem 3 shows that if A := Q. r satisfies the p-Lucas property for almost all

4Throughout this article, we say that an assertion A, is true for almost all primes p if it holds for all but finitely
many primes p.
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primes p, then, for all nonnegative integers n and all primes p, we have A(n) € por(An)z,

To state this result, we introduce some additional notations. For all tuples e and f of vectors
in N%, we write A s for Landau’s function defined, for all x in R?, by

u v

Ac(x) =) lei-x| =Y |fi-x] €Z,

i=1 i=1
where |-] denotes the floor function. Therefore, according to Landau’s criterion [Lan85| and a
precision of the author [Del3|, we have the following dichotomy.

— If, for all x in [0,1]%, we have Ac f(x) =0, then Q. f is a family of integers;

— if there exists x in [0, 1]¢ such that A, (x) < —1, then there are only finitely many primes
p such that Q. r is a family of p-adic integers.

In the rest of the article, we write D,  for the semi-algebraic set of all x in [0,1)? such that
there exists a component d of e or f satisfying d - x > 1. Observe that A,y vanishes on the
nonempty set [0,1)%\ D, ;.

THEOREM 3. Let e and f be disjoint tuples of vectors in N such that Q.. Is a family of integers.
Then we have the following dichotomy.

(i) If|e| = |f| and if, for all x in D, y, we have A, y(x) > 1, then for all primes p, Q. ; satisfies
the p-Lucas property;

(ii) if |e| # |f] or if there exists x in D,y such that A, ¢(x) = 0, then there are only finitely
many primes p such that Q. ; satisfies the p-Lucas property.

Furthermore, if Q. r satisfies the p-Lucas property for all primes p, then, for all n in N? and
every prime p, we have

Q. f(n) € pr(Qes Mz,

Remark. Theorem 3 implies that Q. r satisfies the p-Lucas property for all primes p if and only
if all Taylor coefficients at the origin of the associated mirror maps z. r, 1 < k < d, are integers
(see Theorems 1 and 3 in [Del3]). Indeed, if A, ; is nonnegative on [0,1]¢ and if |e| # |f|, then
there exists k in {1,...,d} such that the kth component of |e| is greater than the kth component

of |l

Coster proved in [Co88| results similar to Theorems 1-3 for the coefficients of certain algebraic
power series. Namely, given a prime p > 3, integers a1,...,ap—1, and a sequence A such that

a1
falz)=1+arz+---+ ap_lzpfl) T-p
Coster proved that, for all nonnegative integers n, we have

vp(An) > {%(AQWJ |

1.5 Auxiliary results

The proof of Theorem 1 rests on three important results. The first one is stated rather formally
but we believe that it may be useful to study results similar to Beukers’ conjectures for other
sequences. Throughout this article, if (A(n))n>0 is a sequence taking its values in Z or Z,, then,
for all negative integers n, we set A(n) := 0.
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ProPOSITION 1. Let p be a fixed prime and A a Z,-valued sequence satisfying the p-Lucas
property with A(0) in Z,;. Let 4 be the Zy-module spanned by A. Assume that

(a) there exists a set B of Z,-valued sequences with A C B such that, for all B in B, all v in

{0,...,p— 1} and all positive integers n, there exist A’ in 2 and a sequence (By)g>0, By in
B, such that

o
B(v+mnp) = A'(n) + > _p*' Bi(n — k);
k=0
(b) fa(z) is annihilated by a differential operator L in Z,[z,0] such that at least one of the
following conditions holds:

x L is of type L.
* L is of type Il and p —1 € Z,(A).

Then, for all B in B and all nonnegative integers n, we have

A(n) € p*UMW7Z, and B(n) € porAn-lz,

We will apply Proposition 1 with A = &, ; for some tuples e and f satisfying the conditions
of Theorem 1 for a fixed prime p. Then we will choose the set B to be the set of the deformations
657]0 for g in Sg. Taking g to be a constant in Z, shows that the set 6 contains the Z,-module 2
spanned by A. The main difficulty in this article is to show, by p-adic techniques, that Assertion (a)
in Proposition 1 holds with these choices. In particular, we shall prove and use several times the
following result.

PROPOSITION 2. Let p be a fixed prime. We write I'), for the p-adic Gamma function. Then, there
exists a function g in 312, such that, for all nonnegative integers n and m, we have

I'p((m+n)p)

< =1+ g(m,n)p.

L (mp)Ty (np) i

Our proof of Theorem 2 does not use Proposition 1 but rests on the beautiful result of Mellit

and Vlasenko [MV16, Lemma 1| which gives useful congruences modulo powers of p for some

constant terms of powers of Laurent polynomials. In this case, the p-adic difficulties are hidden
in the result of Mellit and Vlasenko.

Finally, we give a general result to prove the p-Lucas property for many sums of products of
binomial coefficients. We recall that a tuple e = (eq,...,e,) of vectors in N¢ is 1-admissible if
either e; > 1 for some i, or if, for every k in {1,...,d}, we have e; > d1j for some 1.

PROPOSITION 3. Let e and f be disjoint tuples of vectors in N such that |e| = |f| and, for all
X in De g, Ae r(x) = 1. Assume that e is 1-admissible. Then, &, s is integer-valued and satisfies
the p-Lucas property for all primes p.

1.6 Application of Theorem 1

By applying Theorem 1, we obtain results similar to Conjectures A-C for numbers satisfying
Apéry-like recurrence relations which we list below. Characters in brackets in the last column
of the following table form the sequence number in the Online Encyclopedia of Integer Se-
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quences [OEIS13].

Sequence Qe r(n1,n2) L Reference
" n\? (n+ k> (2n1 + n2)!?
Z (k) ( i ) — [AZ06, (7)] Apéry numbers (A005259)
=0 n1-"No.
n 2
2 ! !
(Z) (n Z k) (2m + n?g (n'12 +n2) [Za09, D] Apéry numbers (A005258)
0 ni1:°Nng.
2n\ "L /n\? (n1 + n2)!? . I Central binomial
n/ kz—o k ny!2ny12 ype coefficients (A000984)
" /n\? (ny +no)!3
(k) e T [Za09, A] Franel numbers (A000172)
—0 ni°ng.
n 4
n (Tll + 7?,2)!4
—_— Fro4|,|Fr95 A005260
> (1) nrny [Fr94] [E193] (A005260)
"L\ 2k [2(n—k n1 + n2)!(2n1)!(2n2)!
> (k) <k> ( EI_ i )> (1 :Ll)én;g) (2n2) [AZ06, (d)] (A081085)
k=0 Y
n 2 12 | Number of abelian squares
Z <n) (2k> (1 + 7?421) '(22111). [Za09, C] of length 2n over an alphabet
i \B/ AR mting! with 3 letters (A002893)
" 2 — 12 ! !
(Z) (2:) <2(n kk)> (1 + ng).'4(2n"11).(2n2). [AZ06, (a)] Domb numbers (A002895)
50 n — ni-"Nog:
26N\ (2(n - k)\? 2n1)!1%(2n,)!?
( k) ( (n_ . )> % [AZ06, (B)] (A036917)
k=0 -

All differential operators listed in the above table are of type I for all primes p, except the
one associated with As(n) := >}, (2)4 which reads

L5 =03 —22(20 +1)(36% + 30 + 1) — 2%4(0 + 1)(46 + 5)(46 + 3).

Hence L5 is of type II for all primes p. By a result of Calkin [Ca98, Proposition 3|, for all primes
p, we have As(p—1) =0 mod p, i.e. p— 1 is in Z,(As). Thus we can apply Theorem 1 to As.

Observe that the generating function of the central binomial coefficients is annihilated by the
differential operator £ = 6 — z(46 + 2) which is of type I for all primes p.

We set Ag(n) :== > (}) (Zkk) (2(:::)). In 1885, Catalan gave in [Ca85] a recurrence relation
for the Catalan-Larcombe-French sequence 2" Ag(n) from which we deduce a recurrence relation

for Ag(n) (see also Case (d) in [AZ06]). According to this relation, Ag(n) is also Sequence E in

Zagier’s list |Za09], that is
[n/2] 2
2k
Ag(n) = > an2( " .

Furthermore, according to [RS09], Domb numbers Ag(n) = >}, (2)2(2]5) (2(;:: )) are also

the numbers of abelian squares of length 2n over an alphabet with 4 letters.

Now we consider the numbers C;(n) of abelian squares of length 2n over an alphabet with ¢
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letters which, for all positive integers i > 2, satisfy (see [RS09)])

Cilm = . (kzﬂnlk'y

ki+-+k;=n
ki,...,k; €N

According to [BNSW11], C;j(n) is also the 2n-th moment of the distance to the origin after i steps
traveled by a walk in the plane with unit steps in random directions.

To apply Theorem 1 to C}, it suffices to show that its generating series fc, is annihilated
by a differential operator of type I for all primes p. Indeed, by Proposition 1 and Theorem 2 in
[BNSW11], for all j > 2, Cj(n) satisfies the recurrence relation of order [j/2] with polynomial
coefficients of degree j — 1:

ap—1
ni=1C;(n —|—Z<nﬂ 1 Z H —ay,) ]—l—l—ak)( ﬁ;f_1> )Cj(n—i):(), (1.6)

21 \ a1, a; k=1
where the sum is over all sequences of positive integers aq, ..., q; satisfying ap < j and a1 <
ap — 2. We consider ¢ > 2 and ¢ positive integers aq,...,q; < j satisfying agpi1 < ap — 2. We
have

ap—1 j—1 [zl
n ap—a -\ oy —
n’~ 1H(n—k+1> :nal—l (H(n_k) r k+1> (n —1) 17

k=1

with j —a; > 0, ax — g1 > 2 and a; — 1 > 0. Then, fo,(z) is annihilated by a differential
operator £ = Py(0) + zP1(0) + - - + 29P,(0) with Py(f) = 6?~1 and, for all i > 2,

Pi(0) € ﬁ(@ +i—k)*z[h] C 1:[(0 + k)?7Z[6),
k=1 k=1

so that L is of type I for all primes p, as expected.

1.7 Structure of the article

In Section 2, we use several results of [Del3] to prove Theorem 3. Section 3 is devoted to the
proofs of Theorem 2 and Proposition 1. In particular, we prove Lemma 1 which points out the
role played by differential operators in our proofs. In Section 4, we prove Theorem 1 by applying
Proposition 1 to &, ;. It is the most technical part of this article.

2. Proof of Theorem 3

First, we prove that if |e| = | f|, then, for all primes p, all ain {0,...,p—1}% and all n in N¢, we
have

Le:: a/PJ i n
Qedc(a—knp) c Hz 1H (14‘%)

Q. (a) Qe (n) N l—[[f a/pJ< fjn) (1+ pZy). (2.1)

Indeed, we have

Qeslatnp) _ Qeslatnp) Qe r(np)
Qe j(@)Qer(n) Qe f(a)Qes(np) Qey(n)

10
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Since |e| = |f], we can apply [Del3, Lemma 7] (°) with ¢ = 0, m = n and s = 0 which yields

Qe f(np)
————= € 1+ pZ,.
Qe,f(n) P
Furthermore, we have
Qe,f(a+np) o 1 Hz 1]._[ .7+el )

Qe,r(a)Qe,r(np) — Qep(a) [T2_, TI%4(j + fi - np)
I T (14 292)
IR
L (1 52)

1 11—[ L£i- a/p ( fjn)

because, if p does not divide j, then 1+ (e; - np)/j belongs to 1+ pZ,. This finishes the proof of
(2.1).

(1 + pr)>

Now we prove Assertion (i) in Theorem 3. Let p be a fixed prime number. It is well known
that, for all nonnegative integers n, we have

vp(n)) :g L?;J :

We remind the reader that the Landau function A, ; is defined by

u v

Aep(x)=) lei-x] =) Ifi x|, (xeR?).

=1 j=1

Thus, for all vectors n in N¢, we have

p(Qe,r(n ZAef< )

Fix n in N? and a in {0,...,p — 1}%. Let {-} denote the fractional part function. For any vector
of real numbers x = (z1,...,xq), we set {x} := ({z1},...,{zq}). Since |e| = |f], we have

o= E ({122)) 5. (3.

because A, ; is nonnegative on [0,1]¢. By assumption, if x belongs to D, f, then A, f(x) > 1.
On the one hand, if a/p is in D, s, then both Q. ¢(a+np) and Q. ¢(a)Q. s(n) are congruent to
0 modulo p. On the other hand, if a/p is not in D, s, then by definition, for all d in e or f, we
have |d -a/p| = 0 so that (2.1) yields

Qe,f(a + l’lp) = Qe,f(a) Qe,f(n) mod pra

as expected. This proves Assertion (i) in Theorem 3.

5The proof of this lemma uses a lemma of Lang which contains an error. Fortunately, Lemma 7 remains true.
Details of this correction are presented in [DRR13, Section 2.4].

11
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Now we prove Assertion (ii) in Theorem 3. If m = (my,...,myq) is a vector in R? and
k€ {1,...,d}, then we set m¥) := my. If |e| # |f| then, since A, s is nonnegative on [0,1]¢,
there exists k in {1,...,d} such that |e|®) —|f|(*) = A, ¢(1}) > 1. Thereby, for almost all primes
p, we have

oo
1 + 1gp 1
Up(Qe,f(lk + 1kp)) = ZAe,f (Z) P Ae,f < + 1k> = ]-7
=1 p p
but v, (Qe, r(1x)) = 0 so that Q. ¢ does not satisfy the p-Lucas property.
Throughout the rest of this proof, we assume that |e| = |f|. According to Section 7.3.2 in
[Del3|, there exist k in {1,...,d} and a rational fraction R(X) in Q(X), R(X) # 1, such that, for

all large enough prime numbers p, we can choose a,, in {0,...,p — 1}¢ satisfying O, f(a,) € Zy,
and such that, for all nonnegative integers n, we have (see [Del3, (7.10)])

Q.. r(ap + 1xnp) € R(n) Qe f(ap) Qe r(1xn) (1 + pZy).

We fix a nonnegative integer n satisfying R(n) # 1. For almost all primes p, the numbers R(n),
Qc.f(1xn) and Q. ¢(a,) are invertible in Z,, and R(n) # 1 mod pZ,. Thus, we obtain

Qc.f(ap + 1pnp) # Qe (ap) Qe r(1xn) mod pZy,

which finishes the proof of Assertion (ii) in Theorem 3.

Now we assume that |e| = |f| and that, for all x in D, ¢, we have A, ¢(x) > 1. Hence, for
every prime p, we have

Zp(Qe,f) = {v €{0,....,p— 1}d cv/p e D&f}.

Furthermore, if v/p belongs to D ¢, then, for all positive integers N and all vectors ag, ...,an—_1
in {0,...,p— 1}¢, we have

{a0+a1p+~-+aN_1pN_1+va}a0+a1p+ ~+an_1pV T+ vpV S
pN+1 pN+I '
so that
ag+aip+---+ay_1pV !+ vpV .
pVH1 € Pe,f-
Hence, for every n in N%, n = Yoreo ngp* with ng € {0,...,p — 1}, we have

{—1
Qef ZAef ({ k= Onkp }) 2ap(Qe,fvn)v

and Theorem 3 is proved.

3. Proofs of Theorem 2 and Proposition 1

3.1 Induction via Apéry-like recurrence relations

In this section, we fix a prime p. We remind the reader that if A is a Zj)-valued sequence, then
Z,(A) is the set of the digits v € {0,...,p — 1} such that A(v) € pZ,. If n is a nonnegative
integer whose base p expansion is n = ng + nip + - -- + nyp?, then ap(A,n) is the number of ¢
in {0,..., N} such that n; belongs to Z,(A).

12
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If Ais a Z,-valued sequence, then, for all nonnegative integers r, we write Ua(r) for the
assertion “For all n,i € N, i < r, if o(A,n) > i, then A(n) € p'Z,”. As a first step, we shall
prove the following result.

LeEMMA 1. Let A be a Zy-valued sequence satisfying the p-Lucas property with A(0) in Z.
Assume that the generating series of A is annihilated by a differential operator L € Zp|z, 0] such
that at least one of the following conditions holds:

— L is of type L.

— Lisof typell andp—1 € Z,(A).

Let r be a nonnegative integer such that U, (r) holds. Then, for all ng in Z,(A) and all nonnegative
integers m satistying o, (A, m) > r, we have

A(ng +mp) € p" 17,

Proof. Since A satisfies the p-Lucas property, we can assume that 7 is nonzero. The generating
series of A is annihilated by a differential operator £ = Py(0) +2zP1(0)+- - -+ 29P,(0) with Py(X)
in Zp[X] and Py(Z,) C Z,;. Thus, for every nonnegative integer n, we have

q

> Pi(n—k)A(n — k) =0. (3.1)

k=0

We fix a nonnegative integer m satisfying oy, (A, m) > r. In particular, since r is nonzero and
A(0) is invertible in Z,, we have m > 1. Furthermore, for all v in {0,...,p — 1}, we also have
ap(A,v +mp) > r. According to Ua(r), we obtain that, for all v in {0,...,p — 1}, A(v + mp)
belongs to p’'Z, so that A(v + mp) =: f(v,m)p", with B(v,m) € Z,.

By (3.1), for all v in {q,...,p — 1}, we have

q q
0="> Pu(v—k+mp)A(—k+mp) =p" Y _ P(v—k+mp)B(v—k,m)
k=0 k=0

r

b

M=

Pi(v —k)B(v — k,m) mod p"1Z,,

=
Il

0

because, for all polynomials P in Z,[X| and all integers a and ¢, we have P(a + ¢p) = P(a)
mod pZ,. Thus, for all v in {g,...,p — 1}, we obtain

q
> Pi(v—k)Bv—k,m) =0 mod pZ,. (3.2)
k=0

We claim that if v is in {1,...,q — 1}, then, for all k in {v +1,...,q}, we have
Pi(v+mp—k)A(v +mp — k) € p"'7Z,. (3.3)

Indeed, on the one hand, if £ is of type II, then we have ¢ = 2 and P»(X) belongs to
(X + 1)Z,[X] which yields
Py(—1+mp)A(—1+ mp) € pA(p —14+(m-— 1)p)Zp.

Since 0 is not in Z,(A), we have ap(A,m —1) > r — 1 which, together with p —1 € Z,(A), leads
to

ap(A,p—1+(m—1)p) >r.

13
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According to Ux(r), we obtain that pA(p — 1+ (m — 1)p) is in p"T1Z,, as expected. On the other
hand, if £ is of type I, then for all v in {1,...,¢— 1} and all kin {v+1,...,q}, we have

k—1
Po(X) € [[(X +14)°Z,[X],
=1

so that
k—1

vp(Pe(v+mp —k)) > v, (H(v—l—mp— k‘—l—i)2> .

i=1
Writing k — v = a + bp with a in {0,...,p — 1} and b in N, we obtain k — 1 > a + bp so that

" b ifa=0;
v mp+i—a—b > 7
p(}_[l( Y p)> {b+1 ifa>1,
which yields
2b if a = 0;
v (Pe(v+mp—k)) > "
p(Pe(v+mp = §)) {2b+2 ifa>1.
Thus to prove (3.3), it is enough to show that

pr+172bzp if a = 0;

p”"_l_%Zp ifa>1." (3.4)

A(v+mp—k‘)€{

By definition of a and b, we have v + mp — k = —a + (m — b)p with a in {0,...,p — 1}. If

—a + (m — b)p is negative, then A(v + mp — k) = 0 and (3.4) holds. By assumption, we have

ap(A,m) >rand 0 ¢ Z,(A). Hence, if m — b is nonnegative, then we have o,(A,m —b) > r — 0.

Thus, we have either ¢ = 0 and o(A,v+mp —k) >r—b, or a,m —b > 1 and
ap(A,v+mp—k)=ap(A,p—a+(m—-b—1)p) =r—b—1

Hence Assertion Ux(r) yields

p’“*pr if a = 0;

Alv+mp —k) € .
( p ) {prlbzp ifa>1.

If a =0, then b > 1 and —b > 1 — 2b so that (3.4) holds and (3.3) is proved.

By (3.3), for all nonnegative integers v satisfying 1 < v < min(qg — 1,p — 1), we have

q
0= ZPk(v — k4 mp)A(v — k + mp)
k=0

v

= Z Pi(v —k+mp)A(v — k +mp) mod p"'Z,
k=0

=p" ZPk(v —k+mp)B(v —k,m) mod pTHZp
k=0

=p" Z Pi.(v —k)B(v — k,m) mod p"Z,.
k=0

14
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Thus, for all nonnegative integers v satisfying 1 < v < min(q — 1,p — 1), we have

zv:Pk(v —k)B(v—k,m)=0 mod pZ,. (3.5)
k=0

Both sequences (8(v,m))o<v<p—1 and (A(v))o<v<p—1 satisfy Equations (3.2) and (3.5). Fur-
thermore, for all vin {1,...,p—1}, Py(v) and A(0) are invertible in Z,. Hence there exists v(m)
in {0,...,p — 1} such that, for all v in {0,...,p — 1}, we have (v, m) = A(v)y(m) mod pZ, so
that

A(v+mp) = A(w)y(m)p” mod p 7,
Since ng is in Z,(A), we have A(ng) € pZ, so that A(ng + mp) belongs to p"*1Z, and Lemma 1
is proved. O

3.2 Proof of Theorem 2

Let p be a fixed prime number. For every positive integer n, we set £(n) := [log,(n)] + 1 the
length of the expansion of n to the base p, and £(0) := 1. For all nonnegative integers ny,...,n,,
we set

Ny * - kNp =Ny + nng(nl) + .4 nrpe(nl)-‘ru.-‘re(nrfl)’

so that the expansion of ni*- - -xn, to the base p is the concatenation of the respective expansions
of ny,...,n,. Then, by aresult of Mellit and Vlasenko [MV16, Lemma 1|, there exists a Z,-valued
sequence (¢, )n>0 such that, for all positive integers n, we have

A(n) = Z Cny " Cn, and ¢, =0 mod pﬁ(n)—lzp' (36)
N1k k=N

1<r<é(n), ny->0

For every nonnegative integer r, we write U(r) for the assertion: “For all n,i € N, i < r,
if ap(A,n) > i, then A(n),c, € p'Z,". To prove Theorem 2, it suffices to show that, for all
nonnegative integers r, Assertion U (r) holds.

First we prove U(1). By Theorem 1 in [MV16]|, A satisfies the p-Lucas property. In addition,
if v is in Z,(A), then v is nonzero because A(0) = 1, and by (3.6) we have ¢, = A(v) € pZ,.
Now, if a nonnegative integer n satisfies £(n) = 2 and a,(A,n) > 1, then Equation (3.6) yields
A(n) = ¢, mod pZy, so that ¢, is in pZ,. Hence, by induction on £(n), we obtain that, for all
nonnegative integers n satisfying a,(A,n) > 1, ¢, belongs to pZy,, so that ¢/(1) holds.

Let r be a positive integer such that ¢/(r) holds. We shall prove that U (r 4 1) is true. For all
positive integers M, we write Ups(r + 1) for the assertion:
“For all n,i € N, n < M, i <r+1,if apy(A,n) >, then A(n),c, € p'Z,".

Hence Ups(r+ 1) is true if £(M) < r. Let M be a positive integer such that Uy (r + 1) holds. We
shall prove Upr+1(r+1). By Assertions U (r) and Ups(r+1), it suffices to prove that if ay, (A, M +1)
is greater than 7, then A(M + 1) and cpr41 belong to p"™1Z,. In the rest of the proof, we assume
that o, (A, M + 1) is greater than r.

If wand nq, . .., n, are nonnegative integers satisfying 2 < u < £{(M+1) and ny*- - -+n, = M+1
with n, > 0, then, for all 4 in {1,...,u}, we have n; < M and

ap(A,n) + -+ op(A,ny) =ap(AM+1) >r+1.
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Then there exist a positive integer k, and integers 1 < a1 < -+ < ap <wuwand 1 < i1,...,%; <
7+ 1 such that a,(A,ne;) > ij and iy + -+ + 4 > 7+ 1. Thereby, Assertion Uy (r + 1) yields
Cny " Cny € D'y, s0 that

Z Cny " Cny, € pr+IZp'

npkekn, =M-+1
2<u<b(M+1), ny>0

By (3.6), we obtain
AM +1) =cp41 mod pTJrlZp and c¢p1 =0 mod pZ(MJrl)*lZP.

Hence it suffices to consider the case /(M + 1) = r + 1. In particular, we have M + 1 = v + mp
where v is in Z,(A) and m is a nonnegative integer satisfying o, (A, m) = r. Since U(r) holds,
Lemma 1 yields A(M +1) € p"*1Z,. Thus we also have cpr41 € p" 17, and Assertion Ups41(r+1)
holds. This finishes the proof of U(r + 1) so that of Theorem 2. O

3.3 Proof of Proposition 1

Let p be a prime and A a Z,-valued sequence satisfying the hypotheses of Proposition 1. For every
nonnegative integer n, we write a(n), respectively Z, as a shorthand for a,(A,n), respectively
for Z,(A). For every nonnegative integer r, we define Assertions

U(r) : “For all n,i € N, i <, if a(n) > i, then A(n) € p'Z,.”,
and

V(r): “For all n,i € N, i <r, and all B € B, if a(n) > i, then B(n) € p''Z,.

To prove Proposition 1, we have to show that, for all nonnegative integers r, Assertions U(r)
and V(r) are true. We shall prove those assertions by induction on 7.

Observe that Assertions (0), V(0) and V(1) are trivial. Furthermore, since A satisfies the
p-Lucas property, Assertion U(1) holds. Let 7y be a fixed positive integer, rg > 2, such that
Assertions U(rp — 1) and V(rg — 1) are true. First, we prove Assertion V(ro).

Let B in B and m in N be such that a(m) > ro. We write m = v+np with v in {0,...,p—1}.
Since 9 > 2 and 0 does not belong to Z, we have n > 1 and, by Assertion (a) in Proposition 1,
there exist A" in 2 and a sequence (By)g>0, with By in B, such that

B(v + np) = A'(n) + Zpk'HBk(n — k). (3.7)
k=0

In addition, we have a(n) > ro — 1 and, since 0 is not in Z, we have a(n — 1) > rg — 2. By
induction, for all nonnegative integers k satisfying k < n, we have a(n — k) > ro — 1 — k. Thus,
by (3.7) in combination with U(rp — 1) and V(rg — 1), we obtain

Al(n) ep™Z and p*IBy(n — k) € pFTito=27ky c pro-lz,
so that B(v + np) belongs to p"~1Z, and V(r¢) is true.
Now we prove Assertion U(rg). We write Uy (rg) for the assertion:

“For all n,i € N, n < N, i < ro, if a(n) > i, then A(n) € p'Z,".
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We shall prove Uy (rg) by induction on N. Assertion U (rg) holds. Let N be a positive integer
such that Uy (ro) is true. Let n :=ng +mp < N + 1 with ng in {0,...,p — 1} and m in N. We
can assume that a(n) > ro.

If ng is in Z, then we have a(m) > ro — 1 and, by Lemma 1, we obtain that A(n) belongs to
p"°Z, as expected. If ng is not in Z, then we have a(m) > ry. By Assertion (a) in Proposition 1,
there exist A" in 2 and a sequence (By)g>o with By in B such that

oo
A(n) = A'(m) + Y p*"' Bp(m — k).
k=0
We have m < N, a(m) > r¢ and a(m — k) > ro — k, hence, by Assertions Uy (ro) and V(rg), we
obtain that A(n) belongs to p™Z,,. This finishes the induction on N and proves U(rg). Therefore,
by induction on rg, Proposition 1 is proved. O

4. Proof of Theorem 1

To prove Theorem 1, we shall apply Proposition 1 to &, y. As a first step, we prove that this
sequence satisfies the p-Lucas property.

Proof of Proposition 3. For all x in [0, 114, we have A, ¢(x) = A, r({x}) > 0 so that, by Landau’s
criterion, Q. ¢ is integer-valued. Let p be a fixed prime, v in {0,...,p — 1} and n a nonnegative
integer. We have

Ge, (v +np) = Z Qe r(ki,. .., ka).
k1+--+kg=v+np
k;eN

Write k; = a; + m;p with a; in {0,...,p — 1} and m; in N. If a1 + - -+ + ag # v, then we have
aj + -+ ag > p and there exists ¢ in {1,...,d} such that a; > p/d. Write a = (ay,...,aq) so
that 1-a/p > 1 and d1; -a/p > 1. Since e = (ey,...,e,) is l-admissible, there exists a j in
{1,...,u} such that either e¢; > 1 or e; > d1;. Hence e; - a/p > 1 and a/p belongs to D, s so
that A, r(a/p) > 1 and Q. f(k1,...,kq) is in pZ,. In addition, by Theorem 3, Q. s satisfies the
p-Lucas property for all primes p. Hence we obtain

G f(v+np) = Z Z Qc.f(ar +map,...,aq+mgp) mod pZ,
al+--+aqg=v mi+--+mg=n
0<a;<p—1 m;EN
= Z Z Qe s(a1,...,aq)Qe r(m1,...,mq) mod pZ,
a1+--+tag=v mi+--+mg=n
0<a;<p—1 m;EN

= G, ()8, ¢(n) mod pZ,.

This finishes the proof of Proposition 3. O

If e is 2-admissible then e is also 1-admissible. Furthermore, if f = (1g,,...,1g,), then, for
all x in D, y, we have

u
Beylx) = Y ler x> 1.
i=1
Hence, if e and f satisfy the conditions of Theorem 1, then Proposition 3 implies that, for all
primes p, &, s has the p-Lucas property and &, ¢(0) = 1 is invertible in Z,. Thereby, to prove
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Theorem 1, it remains to prove that &, ¢ satisfies Condition (a) in Proposition 1 with the set
_Is9 . d
B = {Ge,f i g€ Sp}.

First we prove that some special functions belong to 8’;.

4.1 Special functions in 3]1)

For all primes p, we write |- |, for the ultrametric norm on Q,, (the field of p-adic numbers) defined
by |al, := p~**(®). Note that (Z,, | -|,) is a compact space. Furthermore, if (¢, )n>0 is a Z,-valued
sequence, then Y >° ¢, is convergent in (Z,, | - |,) if and only if |¢,|, tends to 0 as n tends to
infinity. In addition, if 7 ¢, converges, then (¢, )nen is a summable family in (Z, | - [,)-

In the rest of the article, for all primes p and all positive integers k, we set W), 0(0) = 1,
VU, %,i(0) =0 for s > 1 and, for all nonnegative integers i and m, m > 1, we set

, 1 1 1
v % = (=1)" m,i | 7.9 1y )
p:k, (m) ( ) Om, <k k—i—p k+(m—1)p>

where oy, ; is the i-th elementary symmetric polynomial of m variables. Let us remind the reader
that, for all nonnegative integers m and ¢ satisfying ¢ > m > 1, we have o,,; = 0.

The aim of this section is to prove that, for all primes p, all k£ in {1,...,p — 1} and all
nonnegative integers 7, we have

iWpri €3, (4.1)
that is, for every nonnegative integer M, there exists a sequence of polynomial functions with
coefficients in Z, which converges pointwise to i!¥,;; on {0,..., M}.

Proof of (4.1). Throughout this proof, we fix a prime number p and an integer kin {1,...,p—1}.
Furthermore, for all nonnegative integers ¢, we use ¥; as a shorthand for ¥, ;; and N3; as a
shorthand for the set of integers larger than or equal to i. We shall prove (4.1) by induction on
1. To that end, for all nonnegative integers i, we write A; for the following assertion:

“There exists a sequence (T} ,),>0 of polynomial functions with coefficients in Z, which
converges uniformly to ¢!¥; on N”.

First, observe that, for all nonnegative integers m, we have Wy(m) = 1, so that Assertion Ay
is true. Let ¢ be a fixed positive integer such that assertions Ayp,...,A;_1 are true. According to
the Newton-Girard formulas, for all integers m > ¢, we have

7
(=) omi(X1, - X)) = = (=1 Pomi e (X1, Xon)A(X, - Xo),
t=1

where Ay(X1,...,Xm) = X! + -+ + X! . Thereby, for all integers m > i, we have

i, (m) = —;\I!i_t(m)At (i o m> (4.2)

For all nonnegative integers j and ¢, we have

1 1 1 - (—1)S<t—1—|—s> (;)
(k+jp)t K (1+ip)t K Zsl kt s K
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where the right hand side of (4.3) is a convergent series in (Z,, | - |p) because k is invertible in Z,,.
Therefore, we obtain that

m—1 oo N\ S

1 1 m P (t—1+s J
AN|=,...,—————— — = s
t(k:’ "kt (m—1) ) W Z Kt ( )(k)p

7=0 s=1
00 m—1

m t—1+4s .

X (U () e
s=1 7=0

According to Faulhaber’s formula (see [CG96]), for all positive integers s, we have

m—1 s+1
. _ +1 Bsyi1-
s s _1)stl—ec s sPs+1l—c _1)¢
e ey

where By, is the k-th first Bernoulli number. For all positive integers s and ¢, we set Rp¢(X) :=

X/k' and
s+1
1 (t—1+s —ofS+1\ Bsyi—¢ c
Ry (X) := kHS( >Z(1)1 ( )p +1 (X —1)°,

s c s+1
c=1
so that
1 1 >
A= —— ) = R '
t(k’ ’k+(m—1)p> SE% s,t(m)
In the rest of this article, for all polynomials P(X) = 227:0 an X" in Z,[X], we set
Pl := max {|anp : 0 <n < N}.

We claim that, for all nonnegative integers s and ¢, ¢t > 1, we have
Rs’t(X) S Zp[X], HRS,t”p sjo 0 and R57t(0) =0. (45)
Indeed, on the one hand, if p = 2 and s = 1, then we have
-1
Ri4(X) = W(X — 14 (X —1)%) € XZ[X].

On the other hand, if p > 3 or s > 2, then we have p® > s+ 1 so that v,(s +1) < s — 1.
Furthermore, according to the von Staudt-Clausen theorem, we have v,(Bsi1—) = —1. Thus,
the coefficients of R,;(X) belong to Z,. To be more precise, we have v,(s + 1) < log,(s + 1), so
that || Rs.|lp = 0 as expected. In addition, we have

s+1
p° t—1+s s+1
S = T aN1fie g Bs —c
Rs.4(0) (s+ 1)ktts ( s > < c > +

c=1

p° t—145\ o= [(s+1 _
e G DY G L

d=0

where we used the well known relation satisfied by the Bernoulli numbers

zs:(sjl‘l)Bd—o, (s> 1).

d=0
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According to Ay, ..., Aj—1, for all j in {0,...,7 — 1}, there exists a sequence (Tj,)r>0 of
polynomial functions with coefficients in Z, which converges uniformly to j!¥; on N. According
to (4.2) and (4.5), for all nonnegative integers N, there exists Sy in N such that, for all » > Sy
and all m > ¢, we have

W0 (m) = — Z ((Zz : 1)): Ti—tr(m) Z Rsi(m) mod pVZ,.
t=1 ’ 5=0

Thus, the sequence (T, ),>0 of polynomial functions with coefficients in Z,, defined by

Tio(e) = -3 U=y (@) S Rue), (wreN), (4.6)
s=0

 — 1))
— (i —t)!
converges uniformly to i!¥; on N>;. To prove A;, it suffices to show that, for all m in {0,...,i—1},
we have
T;r(m) — 0. (4.7)
r—00

Observe that Equations (4.6) and (4.5) lead to T;,(0) = 0. In particular, if ¢ = 1, then (4.7)
holds. Now we assume that ¢ > 2. For all m > 2, we have

w=0
N k+(m—1p/) - kE+wp
m—1
X .
—(1-—= Wi(m —1)X79.
( k+(m—1)p> - i(m=1)
7=0
Thereby, for all j in {1,...,m — 1}, we obtain that
\I/-,l(m—l)
Ui(m)=",;(m—-1) - L———~

with

1 _OO (71)83 S
k+(m—1)p_§ e P (m =17

Thus, there exists a sequence (U, ),>o of polynomials with coefficients in Z, such that, for all
positive integers N, there exists a nonnegative integer Sy such that, for all » > Sy and all
m > i+ 1, we have

Tir(m) =Tir(m —1) = Tj—1,(m —1)Up(m —1) mod pNZp. (4.8)

But, if V1(X) and V2(X) are polynomials with coefficients in Z, and if there exists a nonnega-
tive integer a such that, for all m > a, we have Vi(m) = Va(m) mod pVZ,, then, for all integers
n, we have Vi(n) = Va(n) mod pVZ,. Indeed, let n be an integer, there exists a nonnegative
integer v such that n 4+ vp" > a. Thus, we obtain that

Vi(n) = Vi(n +vp™) = Va(n +vp™) = Va(n) mod pV7Z,.

In particular, Equation (4.8) also holds for all positive integers m.
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Furthermore, according to A;_1, for all m in {0, ..., —2}, Tj_1 ,(m) tends to zero as r tends
to infinity. Thus, for all positive integers NV, there exists a nonnegative integer Sy such that, for
all r > Sy and all m in {1,...,7 — 1}, we have

T;r(m) = Tir(m —1) mod pV7Z,.
Since T;,,(0) = 0, we obtain that T;,(m) =0 mod pVZ, for all m in {0,...,i — 1} and 7 > Sy,
so that (4.7) holds. This finishes the induction on ¢ and proves (4.1). O

4.2 On the p-adic Gamma function

For every prime p, we write I';, for the p-adic Gamma function, so that, for all nonnegative integers
n, we have

H/\

MA
The aim of this section is to prove Proposition 2.

Proof of Proposition 2. Let p be a fixed prime number. For all nonnegative integers n and m, we

have
Fp ((m I n)p) (m+n)p mp
T, (mp)T, (np) ‘( 11 ~)/ AH:f

A=np
pIA ptA
mp
A=1
pfA p’M
mp np
=11 <1 + A). (4.9)
A=1
pIA

Let X,T1,...,T,, be m+ 1 variables. Then, we have

m

[[x-1) Xm+z Yiomi(Th, ..., Tr) X0
j=1

Therefore, we obtain that

A=1 k=1 w=0
PIA
= > np np
— 1 —Vomi | —, ——
( 2 (Wom < ko k‘—l—(m—l)p>>
k=1 i=1
p—1 0
- (1 + Z(—l)znzpl‘lip7k7i(m)> : (4.10)
k=1 i=1

Let k in {1,...,p — 1} be fixed. By (4.1), for all positive integers i, there exists a sequence
(P ¢)e=0 of polynomial functions with coefficients in Z, which converges pointwise to iW,, 5 ;. We
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fix a nonnegative integer K. For all positive integers N, we set
K+1

fxy—1+2 ”p N).

If n and m belong to {0, ..., K}, then we have

14D ()P Upei(m) = fv(n,m) = Z (~1)'n 5 (8 i (m) = Py (m)) — 0.
Furthermore, we have fy(z,y) € 1+ pZy[x,y]. Indeed, if i = 99 + i1p + -+ + igp® with 4; in
{0,...,p— 1}, then we set s,(i) :=ig+ - - - + 44 so that, for all positive integers 7, we have

p—1 p—1

Hence, by (4.10), we obtain that there exists a function g in SZ such that, for all nonnegative
integers n and m, we have

mp
II(14—75)__1—%gOan
A=1
PtA
which, together with (4.9), finishes the proof of Proposition 2. O

4.3 Last step in the proof of Theorem 1

Let e and f = (1,,...,1x,) be two disjoint tuples of vectors in N? such that |e| = |f|, for
all 7in {1,...,v}, k; isin {1,...,d}, and e is 2-admissible. Let p be a fixed prime and 2 the
Z,-module spanned by & ;. We set B = {Ggf 1 g € Sd} which is obviously constituted of
Z -valued sequences and contains 2. To finish the proof of Theorem 1, we shall prove that &, ¢
and B satisfy Condition (a) in Proposition 1. Hence we have to show that for all B in B, all v

in {0,...,p — 1} and all positive integers n, there exists A" in 2 and a sequence (Bj)k>0, Bk in
B, such that
B(v+np) = A'(n +—j{jpk+¥Bk( — k). (4.11)
k=0

Let g be a fixed function in SZ, that is a function g : N — Zy, such that, for all nonnegative
integers K, there exists a sequence of polynomial functions with coefficients in Z, which converges
pointwise to g on {0,..., K}9. In the rest of the proof, we write Ly, —l—pSZ for the set of functions
of the form a + ph where « is a constant in Z, and h belongs to Sg. Observe that Z, + pSg is
a ring. We consider the sequence B := Ggf. Let a be in {0,...,p — 1}% and m in N%. First we
shall prove that, for every a in {0,...,p — 1}¢ there exists a function 7, in Z, + pgg such that,
for all v in {0,...,p — 1} and n in N, we have

& (v+np) = ) > Qe(m)ra(m). (4.12)
o<a<1(p—1) m>0
la-+mp|=v-+np

To that end, we express Q. f(a+ mp) as a product of Q. r(m) and elements of Z, + p&%. We

have
[Tz (ei - mp)! [[3 (e; - mp + k)

Q&f(a—i-mp): H;} 1( |H (fzmp—l—k)
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For every nonnegative integer n, we have

PR (1)L (),

so that we have
ITiq (e - mp)!
H?:l(fi : mp)
Furthermore, we have
ILiZ 1Hk (e -mp + k)
[Tioy k 4 (fi - mp + k)

[[imy (=1)™Ty(e; - mp)

ple=limg  (m )Hz (—1)f ™, (£ - mp)

[Tz T ?Pfk(el mp + k) . pRes(a/p) [l kezla/pj( m"‘k),
[T T £ mp + ) [T T (6t k)
Since |e| = | f], we obtain that

[Ti,(=1)%"™T,(e; - mp) _ [T 1F (e - mp)
[[i=) (—=1)fmPTy(f; - mp) [Ti=; Tp(fi - mp)

Let o, ..., aq be nonnegative integers with «;, > 1 for some ¢y in {1,...,d}. By Proposition 2,
there exists a function h in Sg such that, for all nonnegative integers my, ..., mq, we have

Fp((alml + -+ Oédmd)p)
Fp((alml + (g — Dmyy + -+ + admd)p)rp(miop)

=1+ h(mq,...,mq)p.

Hence, there exists a function A’ in 3;% such that, for all nonnegative integers myq, ..., mg, we have

Ly ((cimy + -+ 4+ agma)p)
Fp(mlp)al v Pp(mdp)ad

=1+h(my,...,mq)p.

Since f is only constituted by vectors 1y, there exists ¢’ in 3;5 such that, for all m in N?, we have

ITiZ 1F (e; - mp)
Hz 1 Ip(fi - mp)

Furthermore, if k is an integer coprime to p, and d a vector in N%, then for every m in N%, we

have
1 > (d-m)*
- E s s
d-mp+k s:o( Ve P

=1+ ¢'(m)p.

so that there is a function ¢” in &g such that, for all m in N¢, we have
1 1 "
dmp+k &k + g7 (m)p.

Hence, for all a in {0,...,p — 1}%, there exist a p-adic integer A\, and a function g, in Sg such
that, for all m in N%, we have

[T TTES e (ei - map + F)
[Ti= Hk:l,pfk(fi -mp + k)

Since f is only constituted by vectors 1, for all 4 in {1,...,v}, we have |f; - a/p| = 0. Thereby,
for all ain {0,...,p — 1}%, there exists a function h, in Z, +p3§, such that, for all m in N¢, we

= Aa + ga(m)p'
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have
u I.ez a/p

Quslat mp) = Qusmihalmp™ s [T (o1 omt k)

Furthermore, we have either |e; - a/p|] = 0 for all 7, or |e; - a/p| > 1 for some ¢ and so
Ac r(a/p) = 1. In both cases, we obtain that

u |ei-a/p]

meAe,f(a/p)H H (elm+k) EZp +p3g
=1 k=1

Let g be a function in S’g. For all a in {0,...,p — 1}, the function m + g(a + mp) belongs to
Ly +p5g. For all m in N%, we set

u leia/p]
Ta(m) == g(a + mp)ha(m)p®er @M TT H ‘m k),
=1 k=1
so that 7 € Z, —I—pSZ. Therefore, for all v in {0,...,p — 1} and n in N, we have
& (v+np) = Y Y. gla+mp)Q. s(a+mp)
0<a<1(p—1) m2>0

lamp|=v-+np

= Z Qe,f(m)Ta(m)7

0<a<1(p—1) m20
|a+mp|=v-+np

which proves Equation (4.12).

Now if |a + mp| = v + np, then we have |a] = v + jp with
dp—1)—
0<j<min<n, {WJ) =: M.
p

Furthermore, we have ||a|/p] = j and there is k in {1,...,d} such that a®) > (v 4 jp)/d. Since
e is 2-admissible, there are 1 < i; < iy < w such that e;, -a/p > j and e;, - a/p > j. Hence we

obtain that
"~ |e -a .
Ae,f<a/p>=2{ ) J>2y,
i—1

because f is constituted by vectors 1. In particular, there is 7} in SZ such that 7, = p? 7. Hence
we have

M
&l vtnp)= Y Y Qupm)m(m)+) p¥ Y Y Qe p(m)7(m).
0<a<1(p—1) lm|=n Jj=1 0<a<1(p—1) lm|=n—j
la]=v la|=v+jp

For every ain {0,...,p — 1}d, we write T, = aia + pfa Where oy is a constant in Z, and 3, is a
function in Sg. We set

o= Z a €Zp and fB:= Z Ba € gg.
0<a<1(p—1) 0<a<l(p—1)
laj=v la]=v
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Finally, for every j in {1,..., M}, we set

. / d
V= Z Ta €5
0<a<l1(p—1)
lal=v+jp

Hence we obtain that
M .
&7 (v +np) = aB, g (n) + p&. 1 (n) + Zp%c‘ssz(n —J),

where G, ; € 2, 65 € B and 6%]0 € B. For every j, 1 < j < M, we have 27 > j + 1 so that
there exist A" in A and a sequence (B;) >0, with B; in B, such that

GgJ(v—i-np):A( n) + pBo(n +ZPJHB (n—3).

This shows that &, ¢ and B satisfy Condition (a) in Proposition 1, so that Theorem 1 is proved.
O
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