
Arithmetic properties of Apéry-like numbers

É. Delaygue

Abstract

We provide lower bounds for p-adic valuations of multisums of factorial ratios which
satisfy an Apéry-like recurrence relation: these include Apéry, Domb, Franel numbers,
the numbers of abelian squares over a �nite alphabet, and constant terms of powers of
certain Laurent polynomials. In particular, we prove Beukers' conjectures on the p-adic
valuation of Apéry numbers. Furthermore, we give an e�ective criterion for a sequence
of factorial ratios to satisfy the p-Lucas property for almost all primes p.

1. Introduction

1.1 Classical results of Lucas and Kummer

It is a well-known result of Lucas [Lu78] that, for all nonnegative integers m,n and all primes p,
we have (

m

n

)
≡

k∏
i=0

(
mi

ni

)
mod p, (1.1)

where m = m0 +m1p+ · · ·+mkp
k and n = n0 + n1p+ · · ·+ nkp

k are the base p expansions of
m and n.

In particular, a prime p divides the binomial
(
m
n

)
if, and only if there is 0 6 i 6 k such that

mi < ni. Precisely, Kummer proved in [Ku52] that, for all nonnegative integers m > n, the p-adic
valuation (1) of the binomial

(
m
n

)
is the number of carries which occur when n is added to m− n

in base p. As a consequence, we have(
m

n

)
∈ pαZ, where α = #

{
0 6 i 6 k :

(
mi

ni

)
= 0

}
. (1.2)

In this article, we show that many sequences (A(n))n>0 of Apéry-like numbers satisfy congru-
ences similar to (1.1), that is, for all nonnegative integers n and all primes p, we have

A(n) ≡
k∏
i=0

A(ni) mod p,

where n = n0 + n1p + · · · + nkp
k is the base p expansion of n. Furthermore, we prove that an

analogue of (1.2) holds for those numbers, that is

A(n) ∈ pαZ, where α = #
{

0 6 i 6 k : A(ni) ≡ 0 mod p
}
,
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which proves Beukers' conjectures on the p-adic valuation of Apéry numbers.

1.2 Beukers' conjectures on Apéry numbers

For all nonnegative integers n, we set

A1(n) :=

n∑
k=0

(
n

k

)2(n+ k

k

)2

and A2(n) :=

n∑
k=0

(
n

k

)2(n+ k

k

)
.

These sequences were used in 1979 by Apéry in his proofs of the irrationality of ζ(3) and
ζ(2) (see [Ap79]). In the 1980's, several congruences satis�ed by these sequences were proved
(see for example [Be85], [Be87], [CCC80], [Ge82], [Mi83]). In particular, Gessel proved in [Ge82]
that A1 satis�es the p-Lucas property for all prime numbers p, that is, for any prime p, all v in
{0, . . . , p− 1} and all nonnegative integers n, we have

A1(v + np) ≡ A1(v)A1(n) mod p.

Thereby, if n = n0 + n1p+ · · ·+ nNp
N is the base p expansion of n, then we obtain

A1(n) ≡ A1(n0) · · ·A1(nN ) mod p. (1.3)

In particular, p divides A1(n) if, and only if there exists k in {0, . . . , N} such that p divides A1(nk).
Beukers stated in [Be86] two conjectures, when p = 5 or 11, which generalize this property (2).
Before stating these conjectures, we observe that the set of all v in {0, . . . , 4} (respectively v in
{0, . . . , 10}) satisfying A1(v) ≡ 0 mod 5 (respectively A1(v) ≡ 0 mod 11) is {1, 3} (respectively
{5}).

Conjecture A Beukers, [Be86]. Let n be a nonnegative integer whose base 5 expansion is

n = n0 + n15 + · · ·+ nN5N . Let α be the number of k in {0, . . . , N} such that nk = 1 or 3. Then
5α divides A1(n).

Conjecture B Beukers, [Be86]. Let n be a nonnegative integer whose base 11 expansion is

n = n0 + n111 + · · · + nN11N . Let α be the number of k in {0, . . . , N} such that nk = 5. Then
11α divides A1(n).

Similarly, Sequence A2 satis�es the p-Lucas property for all primes p. Furthermore, Beukers

and Stienstra proved in [BS85] that, if p ≡ 3 mod 4, then A2

(
p−1

2

)
≡ 0 mod p, and Beukers

stated in [Be86] the following conjecture.

Conjecture C. Let p be a prime number satisfying p ≡ 3 mod 4. Let n be a nonnegative

integer whose base p expansion is n = n0 + n1p + · · · + nNp
N . Let α be the number of k in

{0, . . . , N} such that nk = p−1
2 . Then pα divides A2(n).

Conjectures A-C have been extended to generalized Apéry numbers and any prime p by
Deutsch and Sagan in [DS06, Conjecture 5.13] but this extension is false for at least one gener-
alization of Apéry numbers. Indeed, a counterexample is given by

A(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)3

,

since A(1) = 9 ≡ 0 mod 3 but A(4) = A(1 + 3) = 1152501 is not divisible by 32.

2If p is 2, 3 or 7, then for all v in {0, . . . , p−1}, A1(v) is coprime to p so that, according to (1.3), for all nonnegative
integers n, A1(n) is coprime to p.
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The main aim of this article is to prove Theorem 1, stated in Section 1.4, which con�rms and
generalizes Conjectures A-C. First, we introduce some notations which we use throughout this
article.

1.3 Notations

In order to study arithmetic properties of sums of products of binomial coe�cients, such as Apéry
numbers, we �rst study families, indexed by Nd, of ratios of factorials of linear forms with integer
coe�cients. For example, we will obtain congruences for A1(n) by studying the factorial ratios

(2n1 + n2)!2

n1!4n2!2
, (n1, n2 ∈ N),

as we have the useful formula

A1(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2

=
∑

n1+n2=n

(2n1 + n2)!2

n1!4n2!2
.

Let d be a positive integer. Given tuples of vectors in Nd, e = (e1, . . . , eu) and f = (f1, . . . , fv),
we shall prove congruences for the factorial ratios

Qe,f (n) :=

∏u
i=1(ei · n)!∏v
i=1(fi · n)!

, (n ∈ Nd),

to deduce arithmetic properties of the numbers (3)

Se,f (n) :=
∑

n∈Nd,|n|=n

Qe,f (n), (n ∈ N). (1.4)

Here · denotes the standard scalar product on Rd and |n| = n1 + · · ·+nd if n = (n1, . . . , nd). For
example, we obtain that Se,f (n) = A1(n) with the tuples

e = ((2, 1), (2, 1)) and f = ((1, 0), (1, 0), (1, 0), (1, 0), (0, 1), (0, 1)).

Because of the summation in (1.4), it is usually di�cult to study arithmetic properties of
Se,f (n), however we will show that, in many interesting cases, we can transfer the p-Lucas
property from Qe,f (n) to Se,f (n). To that purpose, we de�ne the p-Lucas property for families
of p-adic integers indexed by Nd. For all primes p, we write Zp for the ring of p-adic integers.

If A = (A(n))n∈Nd is a Zp-valued family, then we say that A satis�es the p-Lucas property if,
for all vectors v in {0, . . . , p− 1}d and n in Nd, we have

A(v + np) ≡ A(v)A(n) mod pZp. (1.5)

If n is nonzero, then we say that n = n0 + n1p+ · · ·+ nNp
N is the base p expansion of n if, for

all i in {0, . . . , N}, we have ni ∈ {0, . . . , p− 1}d, and nN 6= 0, where 0 := (0, . . . , 0). Hence, if A
satis�es the p-Lucas property, then we have

A(n) ≡ A(n0) · · ·A(nN ) mod pZp.

We write Zp(A) for the set of all vectors v in {0, . . . , p − 1}d such that A(v) belongs to pZp.
Hence A(n) is in pZp if, and only if at least one ni, 0 6 i 6 N , belongs to Zp(A). To state our
generalization of Conjectures A�C we de�ne the following counting function. For every nonzero

3We also provide a proof of Beukers' conjectures which directly uses congruences for Apéry numbers due to their
representation as constant terms of powers of Laurent polynomials.
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vector n in Nd whose base p expansion is n = n0 + n1p+ · · ·+ nNp
N , we write αp(A,n) for the

number of i in {0, . . . , N} such that ni ∈ Zp(A), and we set αp(A,0) = 0. Thereby, to prove
Conjectures A-C, it is enough to show that Ai(n) ∈ pαp(Ai,n)Z with i = 1, p = 5 or 11 and i = 2,
p ≡ 3 mod 4.

Our generalization of Beukers' conjectures will apply to sequences Se,f restricted to the
following two conditions.

The �rst condition (the r-admissibility) ensures that we can transfer the p-Lucas property
from Qe,f (n) to Se,f (n). If m = (m1, . . . ,md) and n = (n1, . . . , nd) belong to Rd, then we write
m > n if, for all i in {1, . . . , d}, we have mi > ni. Furthermore, we set 1 := (1, . . . , 1) ∈ Nd and
we write 1k for the vector in Nd, all of whose coordinates equal zero except the k-th which is 1.
Let S := {1 6 i 6 u : ei > 1}. For every positive integer r, we say that e is r-admissible if

#S + min
16k6d

#{1 6 i 6 u : i /∈ S and ei > d1k} > r.

We will use this de�nition with r = 1 or 2. In the case of the Apéry numbers A1(n), we study the
family Qe,f with the tuple e = ((2, 1), (2, 1)) so that #S = 2 and e is 2-admissible. As another
example, we will also prove a result similar to Beukers' conjectures for the sequence

A6(n) :=

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
.

We can write

A6(n) =
∑

n1+n2=n

(n1 + n2)!(2n1)!(2n2)!

n1!3n2!3
,

so that A6(n) = Se,f (n) with e = ((1, 1), (2, 0), (0, 2)). In this case, we have d = 2, #S = 1 but
e is also 2-admissible because for k = 1 or 2 we have #{2 6 i 6 3 : ei > 21k} = 1.

The second condition is of di�erential type. To apply our main result, we need the generating
series of (Se,f (n))n>0 to be annihilated by a di�erential operator of a special form that we describe
below. We set θ := z d

dz and we say that a di�erential operator L in Zp[z, θ] is of type I if there
is a nonnegative integer q such that:

� L = P0(θ) + zP1(θ) + · · ·+ zqPq(θ) with Pk(X) ∈ Zp[X] for 0 6 k 6 q;

� P0(Z×p ) ⊂ Z×p ;

� for all k in {2, . . . , q}, we have Pk(X) ∈
∏k−1
i=1 (X + i)2Zp[X].

We say that a di�erential operator L in Zp[z, θ] is of type II if

� L = P0(θ) + zP1(θ) + z2P2(θ) with Pk(X) ∈ Zp[X] for 0 6 k 6 2;

� P0(Z×p ) ⊂ Z×p ;
� P2(X) ∈ (X + 1)Zp[X].

For example, the generating series of (A1(n))n>0 is annihilated by the di�erential operator

L1 = θ3 − z(34θ3 + 51θ2 + 27θ + 5) + z2(θ + 1)3,

which is of type I for every prime p. We will also prove a result similar to Beukers' conjectures
for the numbers

A5(n) =
n∑
k=0

(
n

k

)4

.
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The generating series of A5 is annihilated by the di�erential operator

L5 = θ3 − z2(2θ + 1)(3θ2 + 3θ + 1)− z24(θ + 1)(4θ + 5)(4θ + 3),

which is of type II for every prime p.

Our main result con�rms Conjectures A�C, and also provides surprising similar properties
for some deformations of Apéry-like numbers. For example, while proving that, for every prime
p and all nonnegative integers n, we have

A1(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2

∈ pαp(A1,n)Z,

we will also show that, for every nonnegative integer a, we have
n∑
k=0

ka
(
n

k

)2(n+ k

k

)2

∈ pαp(A1,n)−1Z.

More generally, we will obtain congruences for deformations Sg
e,f of the sequences Se,f de�ned

as follows. For any prime p, we write Fdp for the set of all functions g : Nd → Zp such that,
for all nonnegative integers K, there exists a sequence (PK,k)k>0 of polynomial functions with
coe�cients in Zp which converges pointwise to g on {0, . . . ,K}d. For all tuples e and f of vectors
in Nd, all g ∈ Fdp and all nonnegative integers m, we set

Sg
e,f (m) :=

∑
n∈Nd,|n|=m

Qe,f (n)g(n).

1.4 Main results

In the rest of the article, if e = (e1, . . . , eu) is a tuple of vectors in Nd, then we set |e| := e1+· · ·+eu.
The main result of this article is the following.

Theorem 1. Let e and f = (1k1 , . . . ,1kv) be two disjoint tuples of vectors in Nd such that

|e| = |f |, for all i in {1, . . . , v}, ki is in {1, . . . , d}, and e is 2-admissible. Let p be a �xed prime.

Assume that the generating series of Se,f is annihilated by a di�erential operator L ∈ Zp[z, θ]
such that at least one of the following conditions holds:

� L is of type I.

� L is of type II and p− 1 ∈ Zp(Se,f ).

Then, for all nonnegative integers n and all functions g in Fdp, we have

Se,f (n) ∈ pαp(Se,f ,n)Z and Sg
e,f (n) ∈ pαp(Se,f ,n)−1Zp.

In Section 1.6, we show that Theorem 1 applies to many classical sequences. In particular,
Theorem 1 implies Conjectures A-C. Indeed, we have A1 = Se1,f1 and A2 = Se2,f2 with d = 2,

e1 = ((2, 1), (2, 1)) and f1 = ((1, 0), (1, 0), (1, 0), (1, 0), (0, 1), (0, 1)),

and

e2 = ((2, 1), (1, 1)) and f2 = ((1, 0), (1, 0), (1, 0), (0, 1), (0, 1)).

Furthermore, it is well known that fA1 , respectively fA2 , is annihilated by the di�erential operator
L1, respectively L2, de�ned by

L1 = θ3 − z(34θ3 + 51θ2 + 27θ + 5) + z2(θ + 1)3

5
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and

L2 = θ2 − z(11θ2 + 11θ + 3)− z2(θ + 1)2.

Since L1 and L2 are of type I for all primes p, the conditions of Theorem 1 are satis�ed by A1

and A2, and Conjectures A-C hold. In addition, for all primes p and all nonnegative integers n
and a, we obtain that

n∑
k=0

ka
(
n

k

)2(n+ k

k

)2

∈ pαp(A1,n)−1Z and
n∑
k=0

ka
(
n

k

)2(n+ k

k

)
∈ pαp(A2,n)−1Z.

We provide a similar result which applies to the constant terms of powers of certain Laurent
polynomials. Consider a Laurent polynomial

Λ(x) =
k∑
i=1

αix
ai ∈ Zp[x±1 , . . . , x

±
d ],

where ai ∈ Zd and αi 6= 0 for i in {1, . . . , k}. Recall that the Newton polyhedron of Λ is the
convex hull of {a1, . . . ,ak} in Rd. Hence we have the following result.

Theorem 2. Let p be a �xed prime. Let Λ(x) ∈ Zp[x±1 , . . . , x
±
d ] be a Laurent polynomial, and

consider the sequence of the constant terms of powers of Λ de�ned, for all nonnegative integers

n, by

A(n) :=
[
Λ(x)n

]
0
.

Assume that the Newton polyhedron of Λ contains the origin as its only interior integral point,

and that fA is annihilated by a di�erential operator L in Zp[z, θ] such that at least one of the

following conditions holds:

� L is of type I.

� L is of type II and p− 1 ∈ Zp(A).

Then, for all nonnegative integers n, we have

A(n) ∈ pαp(A,n)Zp.

For example, Theorem 2 applies to Apéry numbers A1 thanks to the following formula of
Lairez [Lai13]:

A1(n) =

[(
(1 + z)(yz + z + 1)(1 + x)(xy + x+ y)

xyz

)n]
(0,0,0)

.

By a result of Samol and van Straten [SvS15], if Λ(x) ∈ Zp[x±1 , . . . , x
±
d ] contains the origin as

its only interior integral point, then
(
[Λ(x)n]0

)
n>0

satis�es the p-Lucas property, which is essential
for the proof of Theorem 2. Likewise, the proof of Theorem 1 rests on the fact that Se,f satis�es
the p-Lucas property when |e| = |f |, e is 2-admissible and f = (1k1 , . . . ,1kv). Since those results
deal with multisums of factorial ratios, it seems natural to study similar arithmetic properties for
simpler numbers such as families of factorial ratios. To that purpose, we prove Theorem 3 below
which gives an e�ective criterion for Qe,f to satisfy the p-Lucas property for almost all primes p
(4). Furthermore, Theorem 3 shows that if A := Qe,f satis�es the p-Lucas property for almost all

4Throughout this article, we say that an assertion Ap is true for almost all primes p if it holds for all but �nitely
many primes p.
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primes p, then, for all nonnegative integers n and all primes p, we have A(n) ∈ pαp(A,n)Z.

To state this result, we introduce some additional notations. For all tuples e and f of vectors
in Nd, we write ∆e,f for Landau's function de�ned, for all x in Rd, by

∆e,f (x) :=

u∑
i=1

bei · xc −
v∑
i=1

bfi · xc ∈ Z,

where b·c denotes the �oor function. Therefore, according to Landau's criterion [Lan85] and a
precision of the author [De13], we have the following dichotomy.

� If, for all x in [0, 1]d, we have ∆e,f (x) > 0, then Qe,f is a family of integers;

� if there exists x in [0, 1]d such that ∆e,f (x) 6 −1, then there are only �nitely many primes
p such that Qe,f is a family of p-adic integers.

In the rest of the article, we write De,f for the semi-algebraic set of all x in [0, 1)d such that
there exists a component d of e or f satisfying d · x > 1. Observe that ∆e,f vanishes on the
nonempty set [0, 1)d \ De,f .

Theorem 3. Let e and f be disjoint tuples of vectors in Nd such that Qe,f is a family of integers.

Then we have the following dichotomy.

(i) If |e| = |f | and if, for all x in De,f , we have ∆e,f (x) > 1, then for all primes p, Qe,f satis�es

the p-Lucas property;

(ii) if |e| 6= |f | or if there exists x in De,f such that ∆e,f (x) = 0, then there are only �nitely

many primes p such that Qe,f satis�es the p-Lucas property.

Furthermore, if Qe,f satis�es the p-Lucas property for all primes p, then, for all n in Nd and

every prime p, we have

Qe,f (n) ∈ pαp(Qe,f ,n)Z.

Remark. Theorem 3 implies that Qe,f satis�es the p-Lucas property for all primes p if and only
if all Taylor coe�cients at the origin of the associated mirror maps ze,f,k, 1 6 k 6 d, are integers
(see Theorems 1 and 3 in [De13]). Indeed, if ∆e,f is nonnegative on [0, 1]d and if |e| 6= |f |, then
there exists k in {1, . . . , d} such that the kth component of |e| is greater than the kth component
of |f |.

Coster proved in [Co88] results similar to Theorems 1-3 for the coe�cients of certain algebraic
power series. Namely, given a prime p > 3, integers a1, . . . , ap−1, and a sequence A such that

fA(z) = (1 + a1z + · · ·+ ap−1z
p−1)

1
1−p ,

Coster proved that, for all nonnegative integers n, we have

vp
(
A(n)

)
>

⌊
αp(A,n) + 1

2

⌋
.

1.5 Auxiliary results

The proof of Theorem 1 rests on three important results. The �rst one is stated rather formally
but we believe that it may be useful to study results similar to Beukers' conjectures for other
sequences. Throughout this article, if (A(n))n>0 is a sequence taking its values in Z or Zp, then,
for all negative integers n, we set A(n) := 0.
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Proposition 1. Let p be a �xed prime and A a Zp-valued sequence satisfying the p-Lucas
property with A(0) in Z×p . Let A be the Zp-module spanned by A. Assume that

(a) there exists a set B of Zp-valued sequences with A ⊂ B such that, for all B in B, all v in

{0, . . . , p− 1} and all positive integers n, there exist A′ in A and a sequence (Bk)k>0, Bk in

B, such that

B(v + np) = A′(n) +

∞∑
k=0

pk+1Bk(n− k);

(b) fA(z) is annihilated by a di�erential operator L in Zp[z, θ] such that at least one of the

following conditions holds:

∗ L is of type I.

∗ L is of type II and p− 1 ∈ Zp(A).

Then, for all B in B and all nonnegative integers n, we have

A(n) ∈ pαp(A,n)Zp and B(n) ∈ pαp(A,n)−1Zp.

We will apply Proposition 1 with A = Se,f for some tuples e and f satisfying the conditions
of Theorem 1 for a �xed prime p. Then we will choose the set B to be the set of the deformations
Sg
e,f for g in Fdp. Taking g to be a constant in Zp shows that the set B contains the Zp-module A

spanned byA. The main di�culty in this article is to show, by p-adic techniques, that Assertion (a)
in Proposition 1 holds with these choices. In particular, we shall prove and use several times the
following result.

Proposition 2. Let p be a �xed prime. We write Γp for the p-adic Gamma function. Then, there

exists a function g in F2
p such that, for all nonnegative integers n and m, we have

Γp((m+ n)p)

Γp(mp)Γp(np)
= 1 + g(m,n)p.

Our proof of Theorem 2 does not use Proposition 1 but rests on the beautiful result of Mellit
and Vlasenko [MV16, Lemma 1] which gives useful congruences modulo powers of p for some
constant terms of powers of Laurent polynomials. In this case, the p-adic di�culties are hidden
in the result of Mellit and Vlasenko.

Finally, we give a general result to prove the p-Lucas property for many sums of products of
binomial coe�cients. We recall that a tuple e = (e1, . . . , eu) of vectors in Nd is 1-admissible if
either ei > 1 for some i, or if, for every k in {1, . . . , d}, we have ei > d1k for some i.

Proposition 3. Let e and f be disjoint tuples of vectors in Nd such that |e| = |f | and, for all
x in De,f , ∆e,f (x) > 1. Assume that e is 1-admissible. Then, Se,f is integer-valued and satis�es

the p-Lucas property for all primes p.

1.6 Application of Theorem 1

By applying Theorem 1, we obtain results similar to Conjectures A-C for numbers satisfying
Apéry-like recurrence relations which we list below. Characters in brackets in the last column
of the following table form the sequence number in the Online Encyclopedia of Integer Se-
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quences [OEIS13].

Sequence Qe,f (n1, n2) L Reference

n∑
k=0

(
n

k

)2(
n+ k

k

)2
(2n1 + n2)!2

n1!4n2!2
[AZ06, (γ)] Apéry numbers (A005259)

n∑
k=0

(
n

k

)2(
n+ k

k

)
(2n1 + n2)!(n1 + n2)!

n1!3n2!2
[Za09, D] Apéry numbers (A005258)

(
2n

n

)
=

n∑
k=0

(
n

k

)2
(n1 + n2)!2

n1!2n2!2
type I

Central binomial
coe�cients (A000984)

n∑
k=0

(
n

k

)3
(n1 + n2)!3

n1!3n2!3
[Za09, A] Franel numbers (A000172)

n∑
k=0

(
n

k

)4
(n1 + n2)!4

n1!4n2!4
[Fr94],[Fr95] (A005260)

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
(n1 + n2)!(2n1)!(2n2)!

n1!3n2!3
[AZ06, (d)] (A081085)

n∑
k=0

(
n

k

)2(
2k

k

)
(n1 + n2)!2(2n1)!

n1!4n2!2
[Za09, C]

Number of abelian squares
of length 2n over an alphabet

with 3 letters (A002893)
n∑

k=0

(
n

k

)2(
2k

k

)(
2(n− k)

n− k

)
(n1 + n2)!2(2n1)!(2n2)!

n1!4n2!4
[AZ06, (α)] Domb numbers (A002895)

n∑
k=0

(
2k

k

)2(
2(n− k)

n− k

)2
(2n1)!2(2n2)!2

n1!4n2!4
[AZ06, (β)] (A036917)

All di�erential operators listed in the above table are of type I for all primes p, except the
one associated with A5(n) :=

∑n
k=0

(
n
k

)4
which reads

L5 = θ3 − z2(2θ + 1)(3θ2 + 3θ + 1)− z24(θ + 1)(4θ + 5)(4θ + 3).

Hence L5 is of type II for all primes p. By a result of Calkin [Ca98, Proposition 3], for all primes
p, we have A5(p− 1) ≡ 0 mod p, i. e. p− 1 is in Zp(A5). Thus we can apply Theorem 1 to A5.

Observe that the generating function of the central binomial coe�cients is annihilated by the
di�erential operator L = θ − z(4θ + 2) which is of type I for all primes p.

We set A6(n) :=
∑n

k=0

(
n
k

)(
2k
k

)(2(n−k)
n−k

)
. In 1885, Catalan gave in [Ca85] a recurrence relation

for the Catalan-Larcombe-French sequence 2nA6(n) from which we deduce a recurrence relation
for A6(n) (see also Case (d) in [AZ06]). According to this relation, A6(n) is also Sequence E in
Zagier's list [Za09], that is

A6(n) =

bn/2c∑
k=0

4n−2k

(
n

2k

)(
2k

k

)2

.

Furthermore, according to [RS09], Domb numbers A8(n) =
∑n

k=0

(
n
k

)2(2k
k

)(2(n−k)
n−k

)
are also

the numbers of abelian squares of length 2n over an alphabet with 4 letters.

Now we consider the numbers Ci(n) of abelian squares of length 2n over an alphabet with i

9



É. Delaygue

letters which, for all positive integers i > 2, satisfy (see [RS09])

Ci(n) =
∑

k1+···+ki=n
k1,...,ki∈N

(
n!

k1! · · · ki!

)2

.

According to [BNSW11], Ci(n) is also the 2n-th moment of the distance to the origin after i steps
traveled by a walk in the plane with unit steps in random directions.

To apply Theorem 1 to Ci, it su�ces to show that its generating series fCi is annihilated
by a di�erential operator of type I for all primes p. Indeed, by Proposition 1 and Theorem 2 in
[BNSW11], for all j > 2, Cj(n) satis�es the recurrence relation of order dj/2e with polynomial
coe�cients of degree j − 1:

nj−1Cj(n) +
∑
i>1

(
nj−1

∑
α1,...,αi

i∏
k=1

(−αk)(j + 1− αk)
(

n− k
n− k + 1

)αk−1
)
Cj(n− i) = 0, (1.6)

where the sum is over all sequences of positive integers α1, . . . , αi satisfying αk 6 j and αk+1 6
αk − 2. We consider i > 2 and i positive integers α1, . . . , αi 6 j satisfying αk+1 6 αk − 2. We
have

nj−1
i∏

k=1

(
n− k

n− k + 1

)αk−1

=
nj−1

nα1−1

(
i−1∏
k=1

(n− k)αk−αk+1

)
(n− i)αi−1,

with j − α1 > 0, αk − αk+1 > 2 and αi − 1 > 0. Then, fCj (z) is annihilated by a di�erential
operator L = P0(θ) + zP1(θ) + · · ·+ zqPq(θ) with P0(θ) = θj−1 and, for all i > 2,

Pi(θ) ∈
i−1∏
k=1

(θ + i− k)2Z[θ] ⊂
i−1∏
k=1

(θ + k)2Z[θ],

so that L is of type I for all primes p, as expected.

1.7 Structure of the article

In Section 2, we use several results of [De13] to prove Theorem 3. Section 3 is devoted to the
proofs of Theorem 2 and Proposition 1. In particular, we prove Lemma 1 which points out the
role played by di�erential operators in our proofs. In Section 4, we prove Theorem 1 by applying
Proposition 1 to Se,f . It is the most technical part of this article.

2. Proof of Theorem 3

First, we prove that if |e| = |f |, then, for all primes p, all a in {0, . . . , p− 1}d and all n in Nd, we
have

Qe,f (a + np)

Qe,f (a)Qe,f (n)
∈

∏u
i=1

∏bei·a/pc
j=1

(
1 + ei·n

j

)
∏v
i=1

∏bfi·a/pc
j=1

(
1 + fi·n

j

) (1 + pZp). (2.1)

Indeed, we have

Qe,f (a + np)

Qe,f (a)Qe,f (n)
=
Qe,f (a + np)

Qe,f (a)Qe,f (np)
·
Qe,f (np)

Qe,f (n)
.

10



Arithmetic properties of Apéry-like numbers

Since |e| = |f |, we can apply [De13, Lemma 7] (5) with c = 0, m = n and s = 0 which yields

Qe,f (np)

Qe,f (n)
∈ 1 + pZp.

Furthermore, we have

Qe,f (a + np)

Qe,f (a)Qe,f (np)
=

1

Qe,f (a)

∏u
i=1

∏ei·a
j=1(j + ei · np)∏v

i=1

∏fi·a
j=1(j + fi · np)

=

∏u
i=1

∏ei·a
j=1

(
1 + ei·np

j

)
∏v
i=1

∏fi·a
j=1

(
1 + fi·np

j

)
∈

∏u
i=1

∏bei·a/pc
j=1

(
1 + ei·n

j

)
∏v
i=1

∏bfi·a/pc
j=1

(
1 + fi·n

j

) (1 + pZp),

because, if p does not divide j, then 1 + (ei · np)/j belongs to 1 + pZp. This �nishes the proof of
(2.1).

Now we prove Assertion (i) in Theorem 3. Let p be a �xed prime number. It is well known
that, for all nonnegative integers n, we have

vp(n!) =

∞∑
`=1

⌊
n

p`

⌋
.

We remind the reader that the Landau function ∆e,f is de�ned by

∆e,f (x) =
u∑
i=1

bei · xc −
v∑
j=1

bfj · xc, (x ∈ Rd).

Thus, for all vectors n in Nd, we have

vp
(
Qe,f (n)

)
=
∞∑
`=1

∆e,f

(
n

p`

)
.

Fix n in Nd and a in {0, . . . , p− 1}d. Let {·} denote the fractional part function. For any vector
of real numbers x = (x1, . . . , xd), we set {x} := ({x1}, . . . , {xd}). Since |e| = |f |, we have

vp
(
Qe,f (a + np)

)
=
∞∑
`=1

∆e,f

({
a + np

p`

})
> ∆e,f

(
a

p

)
,

because ∆e,f is nonnegative on [0, 1]d. By assumption, if x belongs to De,f , then ∆e,f (x) > 1.
On the one hand, if a/p is in De,f , then both Qe,f (a + np) and Qe,f (a)Qe,f (n) are congruent to
0 modulo p. On the other hand, if a/p is not in De,f , then by de�nition, for all d in e or f , we
have bd · a/pc = 0 so that (2.1) yields

Qe,f (a + np) ≡ Qe,f (a)Qe,f (n) mod pZp,

as expected. This proves Assertion (i) in Theorem 3.

5The proof of this lemma uses a lemma of Lang which contains an error. Fortunately, Lemma 7 remains true.
Details of this correction are presented in [DRR13, Section 2.4].
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Now we prove Assertion (ii) in Theorem 3. If m = (m1, . . . ,md) is a vector in Rd and
k ∈ {1, . . . , d}, then we set m(k) := mk. If |e| 6= |f | then, since ∆e,f is nonnegative on [0, 1]d,
there exists k in {1, . . . , d} such that |e|(k)−|f |(k) = ∆e,f (1k) > 1. Thereby, for almost all primes
p, we have

vp
(
Qe,f (1k + 1kp)

)
=

∞∑
`=1

∆e,f

(
1k + 1kp

p`

)
> ∆e,f

(
1k
p

+ 1k

)
> 1,

but vp(Qe,f (1k)) = 0 so that Qe,f does not satisfy the p-Lucas property.

Throughout the rest of this proof, we assume that |e| = |f |. According to Section 7.3.2 in
[De13], there exist k in {1, . . . , d} and a rational fraction R(X) in Q(X), R(X) 6= 1, such that, for
all large enough prime numbers p, we can choose ap in {0, . . . , p− 1}d satisfying Qe,f (ap) ∈ Z×p ,
and such that, for all nonnegative integers n, we have (see [De13, (7.10)])

Qe,f (ap + 1knp) ∈ R(n)Qe,f (ap)Qe,f (1kn)(1 + pZp).

We �x a nonnegative integer n satisfying R(n) 6= 1. For almost all primes p, the numbers R(n),
Qe,f (1kn) and Qe,f (ap) are invertible in Zp, and R(n) 6≡ 1 mod pZp. Thus, we obtain

Qe,f (ap + 1knp) 6≡ Qe,f (ap)Qe,f (1kn) mod pZp,

which �nishes the proof of Assertion (ii) in Theorem 3.

Now we assume that |e| = |f | and that, for all x in De,f , we have ∆e,f (x) > 1. Hence, for
every prime p, we have

Zp(Qe,f ) =
{
v ∈ {0, . . . , p− 1}d : v/p ∈ De,f

}
.

Furthermore, if v/p belongs to De,f , then, for all positive integers N and all vectors a0, . . . ,aN−1

in {0, . . . , p− 1}d, we have{
a0 + a1p+ · · ·+ aN−1p

N−1 + vpN

pN+1

}
=

a0 + a1p+ · · ·+ aN−1p
N−1 + vpN

pN+1
>

v

p
,

so that {
a0 + a1p+ · · ·+ aN−1p

N−1 + vpN

pN+1

}
∈ De,f .

Hence, for every n in Nd, n =
∑∞

k=0 nkp
k with nk ∈ {0, . . . , p− 1}d, we have

vp
(
Qe,f (n)

)
=

∞∑
`=1

∆e,f

({∑`−1
k=0 nkp

k

p`

})
> αp(Qe,f ,n),

and Theorem 3 is proved.

3. Proofs of Theorem 2 and Proposition 1

3.1 Induction via Apéry-like recurrence relations

In this section, we �x a prime p. We remind the reader that if A is a Zp-valued sequence, then
Zp(A) is the set of the digits v ∈ {0, . . . , p − 1} such that A(v) ∈ pZp. If n is a nonnegative
integer whose base p expansion is n = n0 + n1p + · · · + nNp

N , then αp(A,n) is the number of i
in {0, . . . , N} such that ni belongs to Zp(A).
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Arithmetic properties of Apéry-like numbers

If A is a Zp-valued sequence, then, for all nonnegative integers r, we write UA(r) for the
assertion �For all n, i ∈ N, i 6 r, if αp(A,n) > i, then A(n) ∈ piZp�. As a �rst step, we shall
prove the following result.

Lemma 1. Let A be a Zp-valued sequence satisfying the p-Lucas property with A(0) in Z×p .
Assume that the generating series of A is annihilated by a di�erential operator L ∈ Zp[z, θ] such
that at least one of the following conditions holds:

� L is of type I.

� L is of type II and p− 1 ∈ Zp(A).

Let r be a nonnegative integer such that UA(r) holds. Then, for all n0 in Zp(A) and all nonnegative

integers m satisfying αp(A,m) > r, we have

A(n0 +mp) ∈ pr+1Zp.

Proof. Since A satis�es the p-Lucas property, we can assume that r is nonzero. The generating
series of A is annihilated by a di�erential operator L = P0(θ)+zP1(θ)+ · · ·+zqPq(θ) with Pk(X)
in Zp[X] and P0(Z×p ) ⊂ Z×p . Thus, for every nonnegative integer n, we have

q∑
k=0

Pk(n− k)A(n− k) = 0. (3.1)

We �x a nonnegative integer m satisfying αp(A,m) > r. In particular, since r is nonzero and
A(0) is invertible in Zp, we have m > 1. Furthermore, for all v in {0, . . . , p − 1}, we also have
αp(A, v + mp) > r. According to UA(r), we obtain that, for all v in {0, . . . , p − 1}, A(v + mp)
belongs to prZp so that A(v +mp) =: β(v,m)pr, with β(v,m) ∈ Zp.

By (3.1), for all v in {q, . . . , p− 1}, we have

0 =

q∑
k=0

Pk(v − k +mp)A(v − k +mp) = pr
q∑

k=0

Pk(v − k +mp)β(v − k,m)

≡ pr
q∑

k=0

Pk(v − k)β(v − k,m) mod pr+1Zp,

because, for all polynomials P in Zp[X] and all integers a and c, we have P (a + cp) ≡ P (a)
mod pZp. Thus, for all v in {q, . . . , p− 1}, we obtain

q∑
k=0

Pk(v − k)β(v − k,m) ≡ 0 mod pZp. (3.2)

We claim that if v is in {1, . . . , q − 1}, then, for all k in {v + 1, . . . , q}, we have

Pk(v +mp− k)A(v +mp− k) ∈ pr+1Zp. (3.3)

Indeed, on the one hand, if L is of type II, then we have q = 2 and P2(X) belongs to
(X + 1)Zp[X] which yields

P2(−1 +mp)A(−1 +mp) ∈ pA
(
p− 1 + (m− 1)p

)
Zp.

Since 0 is not in Zp(A), we have αp(A,m− 1) > r− 1 which, together with p− 1 ∈ Zp(A), leads
to

αp
(
A, p− 1 + (m− 1)p

)
> r.

13
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According to UA(r), we obtain that pA(p− 1 + (m− 1)p) is in pr+1Zp, as expected. On the other
hand, if L is of type I, then for all v in {1, . . . , q − 1} and all k in {v + 1, . . . , q}, we have

Pk(X) ∈
k−1∏
i=1

(X + i)2Zp[X],

so that

vp
(
Pk(v +mp− k)

)
> vp

(
k−1∏
i=1

(v +mp− k + i)2

)
.

Writing k − v = a+ bp with a in {0, . . . , p− 1} and b in N, we obtain k − 1 > a+ bp so that

vp

(
k−1∏
i=1

(mp+ i− a− bp)

)
>

{
b if a = 0;

b+ 1 if a > 1.
,

which yields

vp
(
Pk(v +mp− k)

)
>

{
2b if a = 0;

2b+ 2 if a > 1.
.

Thus to prove (3.3), it is enough to show that

A(v +mp− k) ∈

{
pr+1−2bZp if a = 0;

pr−1−2bZp if a > 1.
. (3.4)

By de�nition of a and b, we have v + mp − k = −a + (m − b)p with a in {0, . . . , p − 1}. If
−a + (m − b)p is negative, then A(v + mp − k) = 0 and (3.4) holds. By assumption, we have
αp(A,m) > r and 0 /∈ Zp(A). Hence, if m− b is nonnegative, then we have αp(A,m− b) > r− b.
Thus, we have either a = 0 and αp(A, v +mp− k) > r − b, or a,m− b > 1 and

αp(A, v +mp− k) = αp
(
A, p− a+ (m− b− 1)p

)
> r − b− 1.

Hence Assertion UA(r) yields

A(v +mp− k) ∈

{
pr−bZp if a = 0;

pr−1−bZp if a > 1.
.

If a = 0, then b > 1 and −b > 1− 2b so that (3.4) holds and (3.3) is proved.

By (3.3), for all nonnegative integers v satisfying 1 6 v 6 min(q − 1, p− 1), we have

0 =

q∑
k=0

Pk(v − k +mp)A(v − k +mp)

≡
v∑
k=0

Pk(v − k +mp)A(v − k +mp) mod pr+1Zp

≡ pr
v∑
k=0

Pk(v − k +mp)β(v − k,m) mod pr+1Zp

≡ pr
v∑
k=0

Pk(v − k)β(v − k,m) mod pr+1Zp.

14
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Thus, for all nonnegative integers v satisfying 1 6 v 6 min(q − 1, p− 1), we have
v∑
k=0

Pk(v − k)β(v − k,m) ≡ 0 mod pZp. (3.5)

Both sequences (β(v,m))06v6p−1 and (A(v))06v6p−1 satisfy Equations (3.2) and (3.5). Fur-
thermore, for all v in {1, . . . , p− 1}, P0(v) and A(0) are invertible in Zp. Hence there exists γ(m)
in {0, . . . , p− 1} such that, for all v in {0, . . . , p− 1}, we have β(v,m) ≡ A(v)γ(m) mod pZp so
that

A(v +mp) ≡ A(v)γ(m)pr mod pr+1Zp.
Since n0 is in Zp(A), we have A(n0) ∈ pZp so that A(n0 +mp) belongs to pr+1Zp and Lemma 1
is proved.

3.2 Proof of Theorem 2

Let p be a �xed prime number. For every positive integer n, we set `(n) := blogp(n)c + 1 the
length of the expansion of n to the base p, and `(0) := 1. For all nonnegative integers n1, . . . , nr,
we set

n1 ∗ · · · ∗ nr := n1 + n2p
`(n1) + · · ·+ nrp

`(n1)+···+`(nr−1),

so that the expansion of n1∗· · ·∗nr to the base p is the concatenation of the respective expansions
of n1, . . . , nr. Then, by a result of Mellit and Vlasenko [MV16, Lemma 1], there exists a Zp-valued
sequence (cn)n>0 such that, for all positive integers n, we have

A(n) =
∑

n1∗···∗nr=n
16r6`(n), nr>0

cn1 · · · cnr and cn ≡ 0 mod p`(n)−1Zp. (3.6)

For every nonnegative integer r, we write U(r) for the assertion: �For all n, i ∈ N, i 6 r,
if αp(A,n) > i, then A(n), cn ∈ piZp�. To prove Theorem 2, it su�ces to show that, for all
nonnegative integers r, Assertion U(r) holds.

First we prove U(1). By Theorem 1 in [MV16], A satis�es the p-Lucas property. In addition,
if v is in Zp(A), then v is nonzero because A(0) = 1, and by (3.6) we have cv = A(v) ∈ pZp.
Now, if a nonnegative integer n satis�es `(n) = 2 and αp(A,n) > 1, then Equation (3.6) yields
A(n) ≡ cn mod pZp, so that cn is in pZp. Hence, by induction on `(n), we obtain that, for all
nonnegative integers n satisfying αp(A,n) > 1, cn belongs to pZp, so that U(1) holds.

Let r be a positive integer such that U(r) holds. We shall prove that U(r + 1) is true. For all
positive integers M , we write UM (r + 1) for the assertion:

�For all n, i ∈ N, n 6M , i 6 r + 1, if αp(A,n) > i, then A(n), cn ∈ piZp�.
Hence UM (r+ 1) is true if `(M) 6 r. Let M be a positive integer such that UM (r+ 1) holds. We
shall prove UM+1(r+1). By Assertions U(r) and UM (r+1), it su�ces to prove that if αp(A,M+1)
is greater than r, then A(M + 1) and cM+1 belong to pr+1Zp. In the rest of the proof, we assume
that αp(A,M + 1) is greater than r.

If u and n1, . . . , nu are nonnegative integers satisfying 2 6 u 6 `(M+1) and n1∗· · ·∗nu = M+1
with nu > 0, then, for all i in {1, . . . , u}, we have ni 6M and

αp(A,n1) + · · ·+ αp(A,nu) = αp(A,M + 1) > r + 1.
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Then there exist a positive integer k, and integers 1 6 a1 < · · · < ak 6 u and 1 6 i1, . . . , ik 6
r + 1 such that αp(A,naj ) > ij and i1 + · · · + ik > r + 1. Thereby, Assertion UM (r + 1) yields
cn1 · · · cnu ∈ pr+1Zp, so that ∑

n1∗···∗nu=M+1

26u6`(M+1), nu>0

cn1 · · · cnu ∈ pr+1Zp.

By (3.6), we obtain

A(M + 1) ≡ cM+1 mod pr+1Zp and cM+1 ≡ 0 mod p`(M+1)−1Zp.

Hence it su�ces to consider the case `(M + 1) = r + 1. In particular, we have M + 1 = v +mp
where v is in Zp(A) and m is a nonnegative integer satisfying αp(A,m) = r. Since U(r) holds,
Lemma 1 yields A(M+1) ∈ pr+1Zp. Thus we also have cM+1 ∈ pr+1Zp and Assertion UM+1(r+1)
holds. This �nishes the proof of U(r + 1) so that of Theorem 2. �

3.3 Proof of Proposition 1

Let p be a prime and A a Zp-valued sequence satisfying the hypotheses of Proposition 1. For every
nonnegative integer n, we write α(n), respectively Z, as a shorthand for αp(A,n), respectively
for Zp(A). For every nonnegative integer r, we de�ne Assertions

U(r) : �For all n, i ∈ N, i 6 r, if α(n) > i, then A(n) ∈ piZp.�,

and

V(r) : �For all n, i ∈ N, i 6 r, and all B ∈ B, if α(n) > i, then B(n) ∈ pi−1Zp�.

To prove Proposition 1, we have to show that, for all nonnegative integers r, Assertions U(r)
and V(r) are true. We shall prove those assertions by induction on r.

Observe that Assertions U(0), V(0) and V(1) are trivial. Furthermore, since A satis�es the
p-Lucas property, Assertion U(1) holds. Let r0 be a �xed positive integer, r0 > 2, such that
Assertions U(r0 − 1) and V(r0 − 1) are true. First, we prove Assertion V(r0).

Let B in B and m in N be such that α(m) > r0. We write m = v+np with v in {0, . . . , p−1}.
Since r0 > 2 and 0 does not belong to Z, we have n > 1 and, by Assertion (a) in Proposition 1,
there exist A′ in A and a sequence (Bk)k>0, with Bk in B, such that

B(v + np) = A′(n) +
∞∑
k=0

pk+1Bk(n− k). (3.7)

In addition, we have α(n) > r0 − 1 and, since 0 is not in Z, we have α(n − 1) > r0 − 2. By
induction, for all nonnegative integers k satisfying k 6 n, we have α(n− k) > r0 − 1− k. Thus,
by (3.7) in combination with U(r0 − 1) and V(r0 − 1), we obtain

A′(n) ∈ pr0−1Z and pk+1Bk(n− k) ∈ pk+1+r0−2−kZp ⊂ pr0−1Zp,

so that B(v + np) belongs to pr0−1Zp and V(r0) is true.

Now we prove Assertion U(r0). We write UN (r0) for the assertion:

�For all n, i ∈ N, n 6 N , i 6 r0, if α(n) > i, then A(n) ∈ piZp�.
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We shall prove UN (r0) by induction on N . Assertion U1(r0) holds. Let N be a positive integer
such that UN (r0) is true. Let n := n0 + mp 6 N + 1 with n0 in {0, . . . , p − 1} and m in N. We
can assume that α(n) > r0.

If n0 is in Z, then we have α(m) > r0 − 1 and, by Lemma 1, we obtain that A(n) belongs to
pr0Zp as expected. If n0 is not in Z, then we have α(m) > r0. By Assertion (a) in Proposition 1,
there exist A′ in A and a sequence (Bk)k>0 with Bk in B such that

A(n) = A′(m) +
∞∑
k=0

pk+1Bk(m− k).

We have m 6 N , α(m) > r0 and α(m− k) > r0 − k, hence, by Assertions UN (r0) and V(r0), we
obtain that A(n) belongs to pr0Zp. This �nishes the induction on N and proves U(r0). Therefore,
by induction on r0, Proposition 1 is proved. �

4. Proof of Theorem 1

To prove Theorem 1, we shall apply Proposition 1 to Se,f . As a �rst step, we prove that this
sequence satis�es the p-Lucas property.

Proof of Proposition 3. For all x in [0, 1]d, we have ∆e,f (x) = ∆e,f ({x}) > 0 so that, by Landau's
criterion, Qe,f is integer-valued. Let p be a �xed prime, v in {0, . . . , p− 1} and n a nonnegative
integer. We have

Se,f (v + np) =
∑

k1+···+kd=v+np

ki∈N

Qe,f (k1, . . . , kd).

Write ki = ai + mip with ai in {0, . . . , p − 1} and mi in N. If a1 + · · · + ad 6= v, then we have
a1 + · · · + ad > p and there exists i in {1, . . . , d} such that ai > p/d. Write a = (a1, . . . , ad) so
that 1 · a/p > 1 and d1i · a/p > 1. Since e = (e1, . . . , eu) is 1-admissible, there exists a j in
{1, . . . , u} such that either ej > 1 or ej > d1i. Hence ej · a/p > 1 and a/p belongs to De,f so
that ∆e,f (a/p) > 1 and Qe,f (k1, . . . , kd) is in pZp. In addition, by Theorem 3, Qe,f satis�es the
p-Lucas property for all primes p. Hence we obtain

Se,f (v + np) ≡
∑

a1+···+ad=v
06ai6p−1

∑
m1+···+md=n

mi∈N

Qe,f (a1 +m1p, . . . , ad +mdp) mod pZp

≡
∑

a1+···+ad=v
06ai6p−1

∑
m1+···+md=n

mi∈N

Qe,f (a1, . . . , ad)Qe,f (m1, . . . ,md) mod pZp

≡ Se,f (v)Se,f (n) mod pZp.

This �nishes the proof of Proposition 3.

If e is 2-admissible then e is also 1-admissible. Furthermore, if f = (1k1 , . . . ,1kv), then, for
all x in De,f , we have

∆e,f (x) =
u∑
i=1

bei · xc > 1.

Hence, if e and f satisfy the conditions of Theorem 1, then Proposition 3 implies that, for all
primes p, Se,f has the p-Lucas property and Se,f (0) = 1 is invertible in Zp. Thereby, to prove
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Theorem 1, it remains to prove that Se,f satis�es Condition (a) in Proposition 1 with the set

B =
{
Sg
e,f : g ∈ Fdp

}
.

First we prove that some special functions belong to F1
p.

4.1 Special functions in F1
p

For all primes p, we write | · |p for the ultrametric norm on Qp (the �eld of p-adic numbers) de�ned
by |a|p := p−vp(a). Note that (Zp, | · |p) is a compact space. Furthermore, if (cn)n>0 is a Zp-valued
sequence, then

∑∞
n=0 cn is convergent in (Zp, | · |p) if and only if |cn|p tends to 0 as n tends to

in�nity. In addition, if
∑∞

n=0 cn converges, then (cn)n∈N is a summable family in (Zp, | · |p).

In the rest of the article, for all primes p and all positive integers k, we set Ψp,k,0(0) = 1,
Ψp,k,i(0) = 0 for i > 1 and, for all nonnegative integers i and m, m > 1, we set

Ψp,k,i(m) := (−1)iσm,i

(
1

k
,

1

k + p
, . . . ,

1

k + (m− 1)p

)
,

where σm,i is the i-th elementary symmetric polynomial of m variables. Let us remind the reader
that, for all nonnegative integers m and i satisfying i > m > 1, we have σm,i = 0.

The aim of this section is to prove that, for all primes p, all k in {1, . . . , p − 1} and all
nonnegative integers i, we have

i!Ψp,k,i ∈ F1
p, (4.1)

that is, for every nonnegative integer M , there exists a sequence of polynomial functions with
coe�cients in Zp which converges pointwise to i!Ψp,k,i on {0, . . . ,M}.

Proof of (4.1). Throughout this proof, we �x a prime number p and an integer k in {1, . . . , p−1}.
Furthermore, for all nonnegative integers i, we use Ψi as a shorthand for Ψp,k,i and N>i as a
shorthand for the set of integers larger than or equal to i. We shall prove (4.1) by induction on
i. To that end, for all nonnegative integers i, we write Ai for the following assertion:

�There exists a sequence (Ti,r)r>0 of polynomial functions with coe�cients in Zp which
converges uniformly to i!Ψi on N�.

First, observe that, for all nonnegative integers m, we have Ψ0(m) = 1, so that Assertion A0

is true. Let i be a �xed positive integer such that assertions A0, . . . ,Ai−1 are true. According to
the Newton-Girard formulas, for all integers m > i, we have

i(−1)iσm,i(X1, . . . , Xm) = −
i∑
t=1

(−1)i−tσm,i−t(X1, . . . , Xm)Λt(X1, . . . , Xm),

where Λt(X1, . . . , Xm) := Xt
1 + · · ·+Xt

m. Thereby, for all integers m > i, we have

iΨi(m) = −
i∑
t=1

Ψi−t(m)Λt

(
1

k
, . . . ,

1

k + (m− 1)p

)
. (4.2)

For all nonnegative integers j and t, we have

1

(k + jp)t
=

1

kt
1

(1 + j
kp)

t
=

1

kt
+

∞∑
s=1

(−1)s

kt

(
t− 1 + s

s

)(
j

k

)s
ps, (4.3)
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where the right hand side of (4.3) is a convergent series in (Zp, | · |p) because k is invertible in Zp.
Therefore, we obtain that

Λt

(
1

k
, . . . ,

1

k + (m− 1)p

)
=
m

kt
+
m−1∑
j=0

∞∑
s=1

(−1)s

kt

(
t− 1 + s

s

)(
j

k

)s
ps

=
m

kt
+
∞∑
s=1

(−1)s

kt+s

(
t− 1 + s

s

)
ps

m−1∑
j=0

js

 . (4.4)

According to Faulhaber's formula (see [CG96]), for all positive integers s, we have

ps
m−1∑
j=0

js =

s+1∑
c=1

(−1)s+1−c
(
s+ 1

c

)
ps
Bs+1−c
s+ 1

(m− 1)c,

where Bk is the k-th �rst Bernoulli number. For all positive integers s and t, we set R0,t(X) :=
X/kt and

Rs,t(X) :=
1

kt+s

(
t− 1 + s

s

) s+1∑
c=1

(−1)1−c
(
s+ 1

c

)
ps
Bs+1−c
s+ 1

(X − 1)c,

so that

Λt

(
1

k
, . . . ,

1

k + (m− 1)p

)
=
∞∑
s=0

Rs,t(m).

In the rest of this article, for all polynomials P (X) =
∑N

n=0 anX
n in Zp[X], we set

‖P‖p := max
{
|an|p : 0 6 n 6 N

}
.

We claim that, for all nonnegative integers s and t, t > 1, we have

Rs,t(X) ∈ Zp[X], ‖Rs,t‖p −→
s→∞

0 and Rs,t(0) = 0. (4.5)

Indeed, on the one hand, if p = 2 and s = 1, then we have

R1,t(X) =
−t
kt+1

(
X − 1 + (X − 1)2

)
∈ XZ2[X].

On the other hand, if p > 3 or s > 2, then we have ps > s + 1 so that vp(s + 1) 6 s − 1.
Furthermore, according to the von Staudt-Clausen theorem, we have vp(Bs+1−c) > −1. Thus,
the coe�cients of Rs,t(X) belong to Zp. To be more precise, we have vp(s+ 1) 6 logp(s+ 1), so
that ‖Rs,t‖p −→

s→∞
0 as expected. In addition, we have

Rs,t(0) = − ps

(s+ 1)kt+s

(
t− 1 + s

s

) s+1∑
c=1

(
s+ 1

c

)
Bs+1−c

= − ps

(s+ 1)kt+s

(
t− 1 + s

s

) s∑
d=0

(
s+ 1

d

)
Bd = 0,

where we used the well known relation satis�ed by the Bernoulli numbers
s∑

d=0

(
s+ 1

d

)
Bd = 0, (s > 1).
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According to A0, . . . ,Ai−1, for all j in {0, . . . , i − 1}, there exists a sequence (Tj,r)r>0 of
polynomial functions with coe�cients in Zp which converges uniformly to j!Ψj on N. According
to (4.2) and (4.5), for all nonnegative integers N , there exists SN in N such that, for all r > SN
and all m > i, we have

i!Ψi(m) ≡ −
i∑
t=1

(i− 1)!

(i− t)!
Ti−t,r(m)

r∑
s=0

Rs,t(m) mod pNZp.

Thus, the sequence (Ti,r)r>0 of polynomial functions with coe�cients in Zp, de�ned by

Ti,r(x) := −
i∑
t=1

(i− 1)!

(i− t)!
Ti−t,r(x)

r∑
s=0

Rs,t(x), (x, r ∈ N), (4.6)

converges uniformly to i!Ψi on N>i. To prove Ai, it su�ces to show that, for allm in {0, . . . , i−1},
we have

Ti,r(m) −→
r→∞

0. (4.7)

Observe that Equations (4.6) and (4.5) lead to Ti,r(0) = 0. In particular, if i = 1, then (4.7)
holds. Now we assume that i > 2. For all m > 2, we have

m∑
j=0

Ψj(m)Xj =
m−1∏
w=0

(
1− X

k + wp

)

=

(
1− X

k + (m− 1)p

)m−2∏
w=0

(
1− X

k + wp

)

=

(
1− X

k + (m− 1)p

)m−1∑
j=0

Ψj(m− 1)Xj .

Thereby, for all j in {1, . . . ,m− 1}, we obtain that

Ψj(m) = Ψj(m− 1)− Ψj−1(m− 1)

k + (m− 1)p
,

with

1

k + (m− 1)p
=

∞∑
s=0

(−1)s

ks+1
ps(m− 1)s.

Thus, there exists a sequence (Ur)r>0 of polynomials with coe�cients in Zp such that, for all
positive integers N , there exists a nonnegative integer SN such that, for all r > SN and all
m > i+ 1, we have

Ti,r(m) ≡ Ti,r(m− 1)− Ti−1,r(m− 1)Ur(m− 1) mod pNZp. (4.8)

But, if V1(X) and V2(X) are polynomials with coe�cients in Zp and if there exists a nonnega-
tive integer a such that, for all m > a, we have V1(m) ≡ V2(m) mod pNZp, then, for all integers
n, we have V1(n) ≡ V2(n) mod pNZp. Indeed, let n be an integer, there exists a nonnegative
integer v such that n+ vpN > a. Thus, we obtain that

V1(n) ≡ V1(n+ vpN ) ≡ V2(n+ vpN ) ≡ V2(n) mod pNZp.

In particular, Equation (4.8) also holds for all positive integers m.

20



Arithmetic properties of Apéry-like numbers

Furthermore, according to Ai−1, for all m in {0, . . . , i− 2}, Ti−1,r(m) tends to zero as r tends
to in�nity. Thus, for all positive integers N , there exists a nonnegative integer SN such that, for
all r > SN and all m in {1, . . . , i− 1}, we have

Ti,r(m) ≡ Ti,r(m− 1) mod pNZp.

Since Ti,r(0) = 0, we obtain that Ti,r(m) ≡ 0 mod pNZp for all m in {0, . . . , i− 1} and r > SN ,
so that (4.7) holds. This �nishes the induction on i and proves (4.1).

4.2 On the p-adic Gamma function

For every prime p, we write Γp for the p-adic Gamma function, so that, for all nonnegative integers
n, we have

Γp(n) = (−1)n
n−1∏
λ=1
p-λ

λ.

The aim of this section is to prove Proposition 2.

Proof of Proposition 2. Let p be a �xed prime number. For all nonnegative integers n and m, we
have

Γp
(
(m+ n)p

)
Γp(mp)Γp(np)

=

(
(m+n)p∏
λ=np

p-λ

λ

)
/

(
mp∏
λ=1
p-λ

λ

)

=

(
mp∏
λ=1
p-λ

(np+ λ)

)
/

(
mp∏
λ=1
p-λ

λ

)

=

mp∏
λ=1
p-λ

(
1 +

np

λ

)
. (4.9)

Let X,T1, . . . , Tm be m+ 1 variables. Then, we have
m∏
j=1

(X − Tj) = Xm +

∞∑
i=1

(−1)iσm,i(T1, . . . , Tm)Xm−i.

Therefore, we obtain that

mp∏
λ=1
p-λ

(
1 +

np

λ

)
=

p−1∏
k=1

m−1∏
ω=0

(
1 +

np

k + ωp

)

=

p−1∏
k=1

(
1 +

∞∑
i=1

(−1)iσm,i

(
−np
k

, · · · , −np
k + (m− 1)p

))

=

p−1∏
k=1

(
1 +

∞∑
i=1

(−1)inipiΨp,k,i(m)

)
. (4.10)

Let k in {1, . . . , p − 1} be �xed. By (4.1), for all positive integers i, there exists a sequence
(Pi,`)`>0 of polynomial functions with coe�cients in Zp which converges pointwise to i!Ψp,k,i. We
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�x a nonnegative integer K. For all positive integers N , we set

fN (x, y) := 1 +
K+1∑
i=1

(−1)ixi
pi

i!
Pi,N (y).

If n and m belong to {0, . . . ,K}, then we have

1 +

∞∑
i=1

(−1)inipiΨp,k,i(m)− fN (n,m) =

K+1∑
i=1

(−1)ini
pi

i!

(
i!Ψp,k,i(m)− Pi,N (m)

)
−→
N→∞

0.

Furthermore, we have fN (x, y) ∈ 1 + pZp[x, y]. Indeed, if i = i0 + i1p + · · · + iap
a with ij in

{0, . . . , p− 1}, then we set sp(i) := i0 + · · ·+ ia so that, for all positive integers i, we have

i− vp(i!) = i− i− sp(i)

p− 1
=
i(p− 2) + sp(i)

p− 1
> 0.

Hence, by (4.10), we obtain that there exists a function g in F2
p such that, for all nonnegative

integers n and m, we have
mp∏
λ=1
p-λ

(
1 +

np

λ

)
= 1 + g(n,m)p,

which, together with (4.9), �nishes the proof of Proposition 2.

4.3 Last step in the proof of Theorem 1

Let e and f = (1k1 , . . . ,1kv) be two disjoint tuples of vectors in Nd such that |e| = |f |, for
all i in {1, . . . , v}, ki is in {1, . . . , d}, and e is 2-admissible. Let p be a �xed prime and A the
Zp-module spanned by Se,f . We set B := {Sg

e,f : g ∈ Fdp} which is obviously constituted of
Zp-valued sequences and contains A. To �nish the proof of Theorem 1, we shall prove that Se,f

and B satisfy Condition (a) in Proposition 1. Hence we have to show that, for all B in B, all v
in {0, . . . , p − 1} and all positive integers n, there exists A′ in A and a sequence (Bk)k>0, Bk in
B, such that

B(v + np) = A′(n) +

∞∑
k=0

pk+1Bk(n− k). (4.11)

Let g be a �xed function in Fdp, that is a function g : Nd → Zp such that, for all nonnegative
integers K, there exists a sequence of polynomial functions with coe�cients in Zp which converges
pointwise to g on {0, . . . ,K}d. In the rest of the proof, we write Zp + pFdp for the set of functions
of the form α + ph where α is a constant in Zp and h belongs to Fdp. Observe that Zp + pFdp is
a ring. We consider the sequence B := Sg

e,f . Let a be in {0, . . . , p − 1}d and m in Nd. First we
shall prove that, for every a in {0, . . . , p − 1}d there exists a function τa in Zp + pFdp such that,
for all v in {0, . . . , p− 1} and n in N, we have

Sg
e,f (v + np) =

∑
06a61(p−1)

∑
m>0

|a+mp|=v+np

Qe,f (m)τa(m). (4.12)

To that end, we express Qe,f (a + mp) as a product of Qe,f (m) and elements of Zp + pFdp. We
have

Qe,f (a + mp) =

∏u
i=1(ei ·mp)!

∏ei·a
k=1(ei ·mp+ k)∏v

i=1(fi ·mp)!
∏fi·a
k=1(fi ·mp+ k)

.
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For every nonnegative integer n, we have

(np)!

n!
= pn(−1)npΓp(np),

so that we have ∏u
i=1(ei ·mp)!∏v
i=1(fi ·mp)!

= p(|e|−|f |)·mQe,f (m)

∏u
i=1(−1)ei·mpΓp(ei ·mp)∏v
i=1(−1)fi·mpΓp(fi ·mp)

.

Furthermore, we have∏u
i=1

∏ei·a
k=1(ei ·mp+ k)∏v

i=1

∏fi·a
k=1(fi ·mp+ k)

=

∏u
i=1

∏ei·a
k=1,p-k(ei ·mp+ k)∏v

i=1

∏fi·a
k=1,p-k(fi ·mp+ k)

· p∆e,f (a/p)

∏u
i=1

∏bei·a/pc
k=1 (ei ·m + k)∏v

i=1

∏bfi·a/pc
k=1 (fi ·m + k)

.

Since |e| = |f |, we obtain that∏u
i=1(−1)ei·mpΓp(ei ·mp)∏v
i=1(−1)fi·mpΓp(fi ·mp)

=

∏u
i=1 Γp(ei ·mp)∏v
i=1 Γp(fi ·mp)

.

Let α1, . . . , αd be nonnegative integers with αi0 > 1 for some i0 in {1, . . . , d}. By Proposition 2,
there exists a function h in Fdp such that, for all nonnegative integers m1, . . . ,md, we have

Γp
(
(α1m1 + · · ·+ αdmd)p

)
Γp
(
(α1m1 + · · ·+ (αi0 − 1)mi0 + · · ·+ αdmd)p

)
Γp(mi0p)

= 1 + h(m1, . . . ,md)p.

Hence, there exists a function h′ in Fdp such that, for all nonnegative integers m1, . . . ,md, we have

Γp
(
(α1m1 + · · ·+ αdmd)p

)
Γp(m1p)α1 · · ·Γp(mdp)αd

= 1 + h′(m1, . . . ,md)p.

Since f is only constituted by vectors 1k, there exists g′ in Fdp such that, for all m in Nd, we have∏u
i=1 Γp(ei ·mp)∏v
i=1 Γp(fi ·mp)

= 1 + g′(m)p.

Furthermore, if k is an integer coprime to p, and d a vector in Nd, then for every m in Nd, we
have

1

d ·mp+ k
=

∞∑
s=0

(−1)s
(d ·m)s

ks+1
ps,

so that there is a function g′′ in Fdp such that, for all m in Nd, we have
1

d ·mp+ k
=

1

k
+ g′′(m)p.

Hence, for all a in {0, . . . , p − 1}d, there exist a p-adic integer λa and a function ga in Fdp such
that, for all m in Nd, we have∏u

i=1

∏ei·a
k=1,p-k(ei ·mp+ k)∏v

i=1

∏fi·a
k=1,p-k(fi ·mp+ k)

= λa + ga(m)p.

Since f is only constituted by vectors 1k, for all i in {1, . . . , v}, we have bfi · a/pc = 0. Thereby,
for all a in {0, . . . , p− 1}d, there exists a function ha in Zp + pFdp, such that, for all m in Nd, we
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have

Qe,f (a + mp) = Qe,f (m)ha(m)p∆e,f (a/p)
u∏
i=1

bei·a/pc∏
k=1

(ei ·m + k).

Furthermore, we have either bei · a/pc = 0 for all i, or bei · a/pc > 1 for some i and so
∆e,f (a/p) > 1. In both cases, we obtain that

m 7→ p∆e,f (a/p)
u∏
i=1

bei·a/pc∏
k=1

(ei ·m + k) ∈ Zp + pFdp.

Let g be a function in Fdp. For all a in {0, . . . , p − 1}d, the function m 7→ g(a + mp) belongs to
Zp + pFdp. For all m in Nd, we set

τa(m) := g(a + mp)ha(m)p∆e,f (a/p)
u∏
i=1

bei·a/pc∏
k=1

(ei ·m + k),

so that τa ∈ Zp + pFdp. Therefore, for all v in {0, . . . , p− 1} and n in N, we have

Sg
e,f (v + np) =

∑
06a61(p−1)

∑
m>0

|a+mp|=v+np

g(a + mp)Qe,f (a + mp)

=
∑

06a61(p−1)

∑
m>0

|a+mp|=v+np

Qe,f (m)τa(m),

which proves Equation (4.12).

Now if |a + mp| = v + np, then we have |a| = v + jp with

0 6 j 6 min

(
n,

⌊
d(p− 1)− v

p

⌋)
=: M.

Furthermore, we have b|a|/pc = j and there is k in {1, . . . , d} such that a(k) > (v + jp)/d. Since
e is 2-admissible, there are 1 6 i1 < i2 6 u such that ei1 · a/p > j and ei2 · a/p > j. Hence we
obtain that

∆e,f (a/p) =

u∑
i=1

⌊
ei · a
p

⌋
> 2j,

because f is constituted by vectors 1k. In particular, there is τ ′a in Fdp such that τa = p2jτ ′a. Hence
we have

Sg
e,f (v + np) =

∑
06a61(p−1)

|a|=v

∑
|m|=n

Qe,f (m)τa(m) +
M∑
j=1

p2j
∑

06a61(p−1)

|a|=v+jp

∑
|m|=n−j

Qe,f (m)τ ′a(m).

For every a in {0, . . . , p− 1}d, we write τa = αa + pβa where αa is a constant in Zp and βa is a
function in Fdp. We set

α :=
∑

06a61(p−1)

|a|=v

αa ∈ Zp and β :=
∑

06a61(p−1)

|a|=v

βa ∈ Fdp.
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Finally, for every j in {1, . . . ,M}, we set

γj :=
∑

06a61(p−1)

|a|=v+jp

τ ′a ∈ Fdp.

Hence we obtain that

Sg
e,f (v + np) = αSe,f (n) + pSβ

e,f (n) +

M∑
j=1

p2jS
γj
e,f (n− j),

where αSe,f ∈ A, Sβ
e,f ∈ B and S

γj
e,f ∈ B. For every j, 1 6 j 6 M , we have 2j > j + 1 so that

there exist A′ in A and a sequence (Bj)j>0, with Bj in B, such that

Sg
e,f (v + np) = A′(n) + pB0(n) +

∞∑
j=1

pj+1Bj(n− j).

This shows that Se,f and B satisfy Condition (a) in Proposition 1, so that Theorem 1 is proved.
�
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