
Arithmetic properties of hypergeometric mirror
maps and Dwork’s congruences

Éric Delaygue

Abstract Mirror maps are power series which occur in Mirror Symmetry as the
inverse for composition of q(z) = exp( f (z)/g(z)), called local q-coordinates, where
f and g are particular solutions of the Picard–Fuchs differential equations associated
with certain one-parameter families of Calabi–Yau varieties. In several cases, it has
been observed that such power series have integral Taylor coefficients at the origin.
In the case of hypergeometric equations, we discuss p-adic tools and techniques that
enable one to prove a criterion for the integrality of the coefficients of mirror maps.
This is a joint work with T. Rivoal and J. Roques. This note is an extended abstract
of the talk given by the author in January 2017 at the conference “Hypergeometric
motives and Calabi–Yau differential equations” in Creswick, Australia.

1 Arithmetic conditions for operators of Calabi–Yau type

An irreducible fourth order differential operator L in Q(z)[d/dz] is of Calabi–Yau
type if it is of Fuchsian type, self-dual, has 0 as MUM-point and it satisfies certain
arithmetic conditions including that

(i) L has a solution ω1(z) ∈ 1+ zC[[z]] at z = 0 which is N-integral1;
(ii) L has a linearly independent solution ω2(z) = G(z)+ log(z)ω1(z) at z = 0

with G(z) ∈ zC[[z]] and exp(ω2(z)/ω1(z)) is N-integral.

An additional condition is usually considered: the instanton numbers nd associated
with L belong to 1

NZ for some non-zero integer N. As far as we know, a systematic
approach to prove the integrality of the nd’s has not yet been developed, even in
the case of hypergeometric equations. In this note, we discuss useful p-adic tools

É. Delaygue
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1 A power series f (z) ∈ 1+ zQ[[z]] is N-integral if there is c ∈Q∗ such that f (cz) ∈ Z[[z]].
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to prove or disprove Conditions (i) and (ii). A classical example of a differential
operator satisfying both (i) and (ii) is

L = θ 4 −5z(5θ +1)(5θ +2)(5θ +3)(5θ +4),

where θ = z d
dz . Consider the two solutions

ω1(z) =
∞

∑
n=0

(5n)!
n!5 zn and ω2(z) = G(z)+ log(z)ω1(z),

with

G(z) =
∞

∑
n=1

(5n)!
n!5 (5H5n −5Hn)zn and Hn :=

n

∑
k=1

1
k
.

Then ω1(z) has integers coefficients and Lian and Yau proved in [10] that

exp
(

ω2(z)
ω1(z)

)
∈ Z[[z]].

We shall see that hypergeometric techniques presented in this note allow to prove
the integrality of the coefficients of q-coordinates associated with non-hypergeometric
operators. For example, consider the differential operator

L = θ 3 − z(34θ 3 +51θ 2 +27θ +5)+ z2(θ +1)3,

whose holomorphic solution is the generating series of the Apéry numbers used by
Apéry in its proof of the irrationality of ζ (3) (see [1]):

ω1(z) =
∞

∑
n=0

n

∑
k=0

(
n
k

)2(n+ k
k

)2

zn.

A second solution is given by the method of Frobenius and reads ω2(z) = G(z)+
log(z)ω1(z), with

G(z) =
∞

∑
n=1

n

∑
k=0

(
n
k

)2(n+ k
k

)2

(2Hn+k −2Hn−k)zn.

As we will see, a consequence of the results of the author [5] is that

exp
(

ω2(z)
ω1(z)

)
∈ Z[[z]].

First, we present criteria on the integrality of hypergeometric terms.
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2 Integrality of hypergeometric terms

2.1 Factorial ratios

Let e = (e1, . . . ,eu) and f = ( f1, . . . , fv) be vectors of positive integers. For every
non-negative integer n, we set

Q(n) =
(e1n)! · · ·(eun)!
( f1n)! · · ·( fvn)!

and we consider the generating series of Q :

F(z) =
∞

∑
n=0

Q(n)zn,

which is a rescaling of a hypergeometric function. We consider the function ∆ of
Landau defined for every x in R by

∆(x) :=
u

∑
i=1

⌊eix⌋−
v

∑
j=1

⌊ f jx⌋.

Let p be a prime number. By Legendre’s formula, we have

vp(n!) =
∞

∑
ℓ=1

⌊
n
pℓ

⌋
,

which yields

vp
(
Q(n)

)
=

∞

∑
ℓ=1

∆
(

n
pℓ

)
.

Furthermore, we have ∆(x) = ∆({x})+ (|e| − |f|)⌊x⌋, where {x} is the fractional
part of x and |e| = e1 + · · ·+ eu. Hence the graph of ∆ is essentially determined by
its values on [0,1]. Landau’s function provides a useful criterion for the N-integrality
of F(z).

Theorem 2.1 (Landau [9], Bober [2]) The following assertions are equivalent.

(i) F(z) is N-integral ;
(ii) F(z) ∈ Z[[z]] ;

(iii) For all x in [0,1], we have ∆(x)≥ 0.

Landau proved the equivalence of (ii) and (iii) in 1900 while Bober proved in
2009 a result which implies the equivalence with (i). One can easily compute the
jumps of ∆ on [0,1] to check Assertion (iii).

The generating series of factorial ratios are rescaling of hypergeometric functions
whose parameters have a certain symmetry. Namely, if α = (α1, . . . ,αr) and β =
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(β1, . . . ,βs) are tuples of parameters in Q∩ (0,1], then there is C ∈Q∗ such that, for
every n ∈ N, we have

Cn (α1)n · · ·(αr)n

(β1)n · · ·(βs)n
=

(e1n)! · · ·(eun)!
( f1n)! · · ·( fvn)!

,

if, and only if
(X − e2iπα1) · · ·(X − e2iπαr)

(X − e2iπβ1) · · ·(X − e2iπβs)

is a ratio of cyclotomic polynomials. We will see that, when this is not the case, we
still have a criterion for the N-integrality of hypergeometric functions but it involves
several Landau’s functions: the functions of Christol.

2.2 Generalized hypergeometric functions

Let α = (α1, . . . ,αr) and β = (β1, . . . ,βs) be tuples of elements in Q\Z≤0. We set

F(z) =
∞

∑
n=0

(α1)n · · ·(αr)n

(β1)n · · ·(βs)n
zn.

If βi = 1 for some i, then F(z) is annihilated by the hypergeometric differential
operator

L =
s

∏
i=1

(θ +βi −1)− z
r

∏
i=1

(θ +αi),

which is irreducible if, and only if αi ̸≡ β j mod Z. Elementary calculations show
that F(z) is N-integral if and only if, for almost all primes p, we have F(z) ∈
Z(p)[[z]], where Z(p) is the set of the rational numbers whose denominator is not
divisible by p.

We introduce some definitions to construct useful functions defined by Christol
in [3]. If x is a rational number, then we set

⟨x⟩=

{
{x} if x /∈ Z,
1 otherwise.

.

We write ⪯ for the total order on R defined by

x ⪯ y ⇐⇒
(
⟨x⟩< ⟨y⟩ or (⟨x⟩= ⟨y⟩ and x ≥ y)).

Let d be the common multiple of the exact denominators of the αi’s and β j’s. For
all a coprime to d, 1 ≤ a ≤ d, we set

ξa(x) := #{1 ≤ i ≤ r : aαi ⪯ x}−#{1 ≤ j ≤ s : aβ j ⪯ x}.
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Then we have the following criterion for the N-integrality of F(z).

Theorem 2.2 (Christol [3]) The following assertions are equivalent.

(i) F(z) is N-integral;
(ii) For all a coprime to d, 1 ≤ a ≤ d, and all x in R, we have ξa(x)≥ 0.

If F(z) is N-integral, then the set of constants c ∈ Q such that F(cz) ∈ Z[[z]] is
CZ for some C ∈Q∗. When F(z) is algebraic over Q(z), then F(z) is N-integral and
C is called the Eisenstein constant of F . Hence we shall also call C the Eisenstein
constant of F(z). Rivoal, Roques and the author gave in [6] a formula for C when
the parameters of the hypergeometric function belong to (0,1].

For every prime p, we set

λp = #{1 ≤ i ≤ r : αi ∈ Z(p)}−#{1 ≤ j ≤ s : β j ∈ Z(p)}.

If α is a rational number, then we write den(α) for its exact denominator. As a
particular case of Theorem 1 in [6], we have the following formula.

Theorem 2.3 If α and β are tuples of elements in (0,1], r = s and F(z) is N-
integral, then the Eisenstein constant of F is

C =
∏r

i=1 den(αi)

∏s
j=1 den(β j)

∏
p|d

p−
⌊ λp

p−1

⌋
.

In the case of factorial ratios, if e = (e1, . . . ,eu) and f = ( f1, . . . , fv) are tuples of
positive integers, then we have

(e1n)! · · ·(eun)!
( f1n)! · · ·( fvn)!

=

(
ee1

1 · · ·eeu
u

f f1
1 · · · f fv

v

)n
∏u

i=1 ∏ei
r=1(r/ei)n

∏v
j=1 ∏ fv

r=1(r/ f j)n
.

If the associated generating series is (N-)integral then the Eisenstein constant is
indeed

C =
ee1

1 · · ·eeu
u

f f1
1 · · · f fv

v
.

2.2.1 Landau-like functions

To prove Theorem 2.3, we use Landau-like functions to calculate the p-adic valua-
tion of Pochhammer’s symbols. To define those functions, we first consider a map
Dp introduced by Dwork as follows.

Let p be a prime and α in Z(p). We write Dp(α) for the unique element in Z(p)
satisfying pDp(α)−α ∈ {0, . . . , p−1}. We have Dp(1) = 1 and if α = r/N with r
coprime to N ≥ 2, 1 ≤ r ≤ N, then
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Dp(α) =
sN
(
πN(p)−1πN(r)

)
N

,

where sN is the section of the canonical morphism πN : Z→ Z/NZ with values in
{0, . . . ,N −1}.

If p does not divide d, then, for all positive integers ℓ, we define the Landau-like
function

∆p,ℓ(x) =
r

∑
i=1

⌊
x−Dℓ

p(αi)−
⌊1−αi⌋

pℓ

⌋
−

s

∑
j=1

⌊
x−Dℓ

p(β j)−
⌊1−β j⌋

pℓ

⌋
+ r− s.

Christol proved in [3] a Legendre-like formula involving Landau-like function.

Theorem 2.4 If p does not divide d, then we have

vp

(
(α1)n · · ·(αr)n

(β1)n · · ·(βs)n

)
=

∞

∑
ℓ=1

∆p,ℓ

(
n
pℓ

)
.

Our first task to prove Theorem 2.3 was to find a convenient analog of Legenre’s
formula when p is a divisor of d. In this case, Dwork’s maps are note defined for
every parameters αi and β j. To that end, we proved in [6] an average formula for
primes dividing d.

Theorem 2.5 Assume that α and β are tuples of r elements in (0,1] such that F(z)
is N-integral. Let p be a prime divisor of d and write d = p f D where D is coprime
to p.

For every a coprime to p, 1 ≤ a ≤ p f , and all positive integers ℓ, we choose a
prime pa,ℓ satisfying pa,ℓ ≡ pℓ mod D and pa,ℓ ≡ a mod p f . Then

vp

(
Cn (α1)n · · ·(αr)n

(β1)n · · ·(βs)n

)
=

1
φ(p f )

p f

∑
a=1

gcd(a,p)=1

∞

∑
ℓ=1

∆pa,ℓ,1

(
n
pℓ

)
+n
{

λp

p−1

}
.

In the case of factorial ratios, we have again

(e1n)! · · ·(eun)!
( f1n)! · · ·( fvn)!

=Cn (α1)n · · ·(αr)n

(β1)n · · ·(βs)n
.

α and β are tuples of elements in (0,1]. For every p not dividing d and every ℓ, the
map Dℓ

p induces a permutation on α and β . Hence we have
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∆p,ℓ(x) =
r

∑
i=1

⌊
x−Dℓ

p(αi)−
⌊1−αi⌋

pℓ

⌋
−

s

∑
j=1

⌊
x−Dℓ

p(β j)−
⌊1−β j⌋

pℓ

⌋
+ r− s

=
r

∑
i=1

⌊
x−Dℓ

p(αi)
⌋
−

s

∑
j=1

⌊
x−Dℓ

p(β j)
⌋
+ r− s

=
r

∑
i=1

⌊x−αi⌋−
s

∑
j=1

⌊
x−β j

⌋
+ r− s

=
u

∑
i=1

⌊eix⌋−
v

∑
j=1

⌊ f jx⌋

= ∆(x).

Hence, in both cases, the formulas of Theorems 2.4 and 2.5 reduce to Legendre’s
one.

3 Integrality of the coefficients of q-coordinates

3.1 A glimpse of Dwork’s result

Consider the power series

F(z) =
∞

∑
n=0

(α1)n · · ·(αr)n

(β1)n · · ·(βs)n
zn,

G(z) =
∞

∑
n=0

(α1)n · · ·(αr)n

(β1)n · · ·(βs)n

(
r

∑
i=1

Hαi(n)−
s

∑
j=1

Hβ j(n)

)
zn,

where, for n ∈ N and x ∈Q\Z≤0, we set Hx(n) = ∑n−1
k=0

1
x+k .

Then G(z)+ log(z)F(z) is annihilated by the hypergeometric operator L if there
are at least two 1’s in β . The q-coordinate is

q(z) = exp
(

G(z)+ log(z)F(z)
F(z)

)
= zexp

(
G(z)
F(z)

)
.

A consequence of a lemma of Dieudonné and Dwork is that, for every prime p,
we have

q(z) ∈ Zp[[z]]⇐⇒ G
F
(zp)− p

G
F
(z) ∈ pZp[[z]].

Let p be a prime not dividing d and write F1(z) (resp. G1(z)) for F(z) (resp. G(z))
with the substitutions
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α ↔ (Dp(α1), . . . ,Dp(αr)) and β ↔ (Dp(β1), . . . ,Dp(βs)).

Then Dwork proved in [7] the following. Assume that r = s, for all ℓ ∈N, Dℓ
p(βi) ∈

Z×
p , plus some fundamental but hard to read interlacing conditions (depending on

p) on elements of α and β . Then we have

G1

F1
(zp)− p

G
F
(z) ∈ pZp[[z]].

In particular, if Dp induces a permutation on α and β , which is the case for
factorial ratios, then F1 = F , G1 = G and Dwork’s result yields

G
F
(zp)− p

G
F
(z) ∈ pZp[[z]],

so that q(z) ∈ Zp[[z]].

3.2 Factorial ratios

If the interlacing conditions hold for every (explicitly) large enough primes p, then
q(z) is N-integral. Methods for the remaining primes were developed by Lian-Yau
(1998, [10]), Zudilin (2002, [11]), Krattenthaler-Rivoal (2009, [8]) for infinite fam-
ilies of factorial ratios, yielding proofs of q(Cz) ∈ Z[[z]] where C is the Eisenstein
constant of F(z).

In the case of factorial ratios, we have

G(z) =
∞

∑
n=0

(e1n)! · · ·(eun)!
( f1n)! · · ·( fvn)!

(
u

∑
i=1

eiHein −
v

∑
j=1

f jH f jn

)
zn

and

∆(x) =
u

∑
i=1

⌊eix⌋−
v

∑
j=1

⌊ f jx⌋.

We gave a criterion for the integrality of the taylor coefficients of q(z) in 2012 (see
[4]).

Theorem 3.1 If F(z) is N-integral with Eisenstein constant C, then the following
assertions are equivalent.

(i) q(z) is N-integral ;
(ii) q(Cz) ∈ Z[[z]] ;

(iii) we have |e| = |f| and, for all x ∈ [1/M,1), we have ∆(x) ≥ 1, where M is the
largest element in e and f.

The proof of (iii)⇒ (i) is essentially a consequence of Dwork’s results. Legen-
dre’s formula and Landau’s functions play an important role in the proof of Theo-
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rem 3.1. When F(z) is the generating series of multisums of binomial coefficients
(such as Apéry numbers), it seems impossible to apply an analog of the proof of The-
orem 3.1. To prove the integrality of the coefficients of the associated q-coordinate,
we prove a generalization of Theorem 3.1 to several variables and then we specialize
the multivariate q-coordinates.

3.3 Factorial ratios of linear forms

Let e = (e1, . . . ,eu) and f = (f1, . . . , fv) be tuples of nonzero vectors in Nd . Consider

F(z) = ∑
n∈Nd

(e1 ·n)! · · ·(eu ·n)!
(f1 ·n)! · · ·(fv ·n)!

zn.

For every k ∈ {1, . . . ,d}, write

Gk(z) = ∑
n∈Nd

(e1 ·n)! · · ·(eu ·n)!
(f1 ·n)! · · ·(fv ·n)!

(
u

∑
i=1

e(k)i Hei·n −
v

∑
j=1

f(k)j Hf j ·n

)
zn,

where e(k)i is the k-th component of ei. The q-coordinates are

qk(z) = zk exp
(

Gk(z)
F(z)

)
, 1 ≤ k ≤ n.

The associated Landau function is

∆(x) =
u

∑
i=1

⌊ei ·x⌋−
v

∑
j=1

⌊f j ·x⌋, (x ∈ Rd).

The non-trivial zone for ∆ is defined by

D :=
{

x ∈ [0,1)d : there is d in e or f such that d ·x ≥ 1
}
.

Observe that if x belongs to [0,1)d \D , then we have ∆(x) = 0. We proved in [5]
the following criterion.

Theorem 3.2 Assume that F(z) ∈ Z[[z]]. Then the following assertions are equiva-
lent:

(i) For every k, we have qk(z) ∈ Z[[z]] ;
(ii) we have |e|= | f | and, for every x ∈ D , ∆(x)≥ 1.

To apply Theorem 3.2 to the case of Apéry numbers (associated with ζ (3)), we
consider the bivariate power series
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F(x,y) = ∑
n1,n2≥0

(2n1 +n2)!2

n1!4n2!2 xn1yn2

and

G2(x,y) = ∑
n1,n2≥0

(2n1 +n2)!2

n1!4n2!2 (2H2n1+n2 −2Hn2)xn1yn2 .

In this case, we have

∆(x,y) = 2⌊2x+ y⌋−4⌊x⌋−2⌊y⌋.

We have
D =

{
(x,y) ∈ [0,1)2 : 2x+ y ≥ 1

}
and if x ∈ D , then ∆(x) ≥ 2. Hence we have q2(x,y) ∈ Z[[x,y]] by Theorem 3.2.
Taking x = y yields

q2(x,x) = exp
(

G2(x,x)
F(x,x)

)
∈ Z[[x]],

where

F(x,x) =
∞

∑
n=0

n

∑
k=0

(
n
k

)2(n+ k
k

)2

xn

and

G2(x,x) =
∞

∑
n=1

n

∑
k=0

(
n
k

)2(n+ k
k

)2

(2Hn+k −2Hn−k)xn,

as expected.

3.4 Generalized hypergeometric q-coordinates

In this section, we briefly comment analog results in the (univariate) general case.
Write m(a) for the smallest element in ({aα1, . . . ,aαr,aβ1, . . . ,aβs},⪯). We con-

sider the following assertion, denoted H: For all a coprime to d, 1 ≤ a ≤ d, for all
x ∈ R satisfying m(a) ⪯ x ≺ a, we have ξa(x) ≥ 1. We consider a product of q-
coordinates whose N-integrality is strongly related to the one of q(z):

q̃(z) =
d

∏
a=1,gcd(a,d)=1

q⟨aα⟩,⟨aβ ⟩(z).

Then we proved in [6] the following criterion.

Theorem 3.3 Assume that L is irreducible and that F(z) is N-integral. Then

(i) if r = s and Assertion H holds, then q̃(z) is N-integral.
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Furthermore, the following assertions are equivalent:

(ii)q(z) is N-integral ;
(iii)̃q(z) is N-integral and q̃(z) = q(z)φ(d).

3.5 A brief overview of the p-adic strategy

The first step is to reduce the problem for each prime by the following classical
result: if x ∈Q, then x ∈ Z if and only if x ∈ Zp for all primes p.

Then we get ride of the exponential by applying the lemma of Dieudonné and
Dwork.

Lemma 3.4

zexp
(

G(z)
F(z)

)
∈ Zp[[z]]⇐⇒ G

F
(zp)− p

G
F
(z) ∈ pzZp[[z]].

Then, in all proofs, one has to generalize a theorem on formal congruences of
Dwork to prove that

Fs−1(zp)F(z)≡ F(zp)Fs(z) mod psZp[[z]], (∀s ≥ 1),

where Fs(z) := ∑ps−1
n=0 anzn and F(z) = ∑∞

n=0 anzn.

The last main step is to prove congruences for harmonic numbers Hα(n) and the
p-adic Gamma function.
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