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ABSTRACT.This paper deals with applications of the “Discrete-Duality Finite Volume” approach
to a variety of elliptic problems. This is a new finite volume method, based on the derivation of
discrete operators obeying a Discrete-Duality principle.An appropriate choice of the degrees
of freedom allows one to use arbitrary meshes. We show that the method is naturally related to
finite and mixed finite element methods.

RÉSUMÉ.Cet article présente des applications de la méthode de “Dualité Discrète” à une varié-
tés de problèmes elliptiques. Cette nouvelle méthode de volumes finis s’appuie d’une part sur la
construction d’opérateurs discrets satisfaisant des propriétés de dualité discrète, et d’autre part
sur un choix judicieux des degrés de liberté. Ceci permet de traiter des maillages arbitraires.
Nous montrons la méthode est intimement liée aux méthodes d’éléments finis et d’éléments finis
mixtes.

KEYWORDS:Finite Volume method, Mixed Finite Element method, Arbitrary Meshes, Laplace
equation, Div-Curl problem, Hodge Decomposition, Stokes problem.
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équation de Laplace, problème Div-Curl, Décomposition de Hodge, problème de Stokes.
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1. Introduction

This paper presents some applications to some elliptic problems of a recent fi-
nite volume method called “Discrete-Duality Finite Volume” method (abbr. DDFV
method). In order to analyse finite volume schemes for elliptic problems, it is natural
to try to recast the finite volume scheme in terms of a variational formulation hope-
fully close to what is known in the theory of finite element methods. In the case of
rectangular meshes, the analogy is rather straightforwardin the case of the classical
Laplace equation with constant coefficients and Dirichlet or Neumann boundary con-
ditions. Indeed, one obtains in that case classical finite difference or finite element
methods. In the case of nonrectangular structured meshes, an analysis was performed
in [13]. A new difficulty arises in the case where one deals with triangular meshes or
more generally unstructured meshes, and several approaches were used. A connection
between finite volume and finite element methods in the case oftriangular meshes was
first performed in the scope of the Finite Volume Element Methods (see [2, 3]). On the
other hand, connections between finite volumes and finite difference techniques were
also performed. In its simpler form, it is based on the possibility of approximating
normal fluxes by finite differences which may be done in the case of meshes having
suitable orthogonality conditions. The analysis of these methods also rely on the pos-
sibilty of writing discrete variational formulations and discrete errors estimates (see
the review [8]).

In order to deal with general self-adjoint elliptic boundary value problems on gen-
eral triangulations, Thomas and Trujillo introduced the Mixed Finite Volume Method,
based on the relation between mixed finite element formulations and finite volume
formulations (see e.g. [11, 12]). In the case of the Laplace problem with Dirichlet and
Neumann boundary conditions, these authors considered themixed problem







p = −∇u, in Ω
divp = f in Ω
u = 0, on∂Ω

and derived a – both finite volume and finite element – discreteproblem involving the
unknownsu andp as well as primal and dual meshes. They proved the convergence
of the method for triangular unstructured meshes or rectangular meshes.

We recently introduced the DDFV method in order to deal with highly stiff Stokes-
like problems on rectangular meshes. The aim was to preserveat the discrete level the
duality of the discrete constraints despite the presence ofstrongly varying coefficients,
as well as stability properties. One key ingredient in this approach is the use ofdis-
crete integration formulas based on the choice of control volumes, which allows us
to definediscrete integration by parts. As a consequence, a discrete gradient opera-
tor could be defined as the discrete adjoint operator of a given discrete divergence and
vice versa. Another key ingredient is the choice of the degrees of freedom. In the case
of rectangular grids, the DDFV method applied to Stokes-like problems was proved
to lead to a Marker And Cell type scheme on staggered grids. The extension of the
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method togeneral unstructured nonconformingmeshes follows the same lines, that
is

– Define control volumes and associated unknowns,

– Define discrete integration, and discrete integration by part formulas,

– Define discrete divergence and gradient operators obeyingthe discrete duality
property,

– Assemble the second order elliptic operator.

As will become clear later, one crucial point here is the choice of the degrees of free-
dom. Not all choices would lead to a well-posed or asymptotically stable problem.
In that direction, we follow the work of F. Hermeline (see [9,10]). In the case of
distorted rectangular meshes or related triangular meshes, he introduced a new finite
volume approach for elliptic problems with possibly discontinuous coefficients. The
scheme he obtains is exactely the DDFV scheme that we derive thanks to the algo-
rithm quoted above. However, his derivation is based on quadrature formulas for both
gradient and divergence operators and relatively involvedalgebra that do not seem
to allow a straightforward analysis. On the converse, the application of the DDFV
method allows us to perform an analysis of the scheme as well as error estimates.
This was done in [7] by emphasizing the relation between the DDFV method and the
classical variational formulation for the usual Laplace equation.

After introducing the general notations, we present the Discrete-Duality Finite Vol-
ume method applied to the Laplace problem and emphasize its relation with Mixed
Finite Element approaches (see [12]). Then, we show how the DDFV method applies
to the Div-Curl and Hodge decomposition problems (see [6]),and finally the Stokes
problem (see [5]).

2. Meshes and Notations

2.1. Meshes,Vertices and Centers

We want to consider general, including nonconforming meshes, made of arbitrary
polygons. The DDFV method uses (i) the primal mesh, (ii) the dual mesh, centered
around the vertices of the primal mesh, (iii) the diamond mesh, centered around the
edges of both the primal and dual meshes, and finally (iv) the sharp mesh, a common
subtriangulation of the previous meshes. The primal mesh and all the unknowns or
operators attached to it are denoted by a circle in superscript. For example,Ω◦

h denotes
the primal mesh,Ω◦

i denotes a polygon of the primal mesh, andG◦
i its center. We shall

use similarlyΩ⋆
h or Ω⋆

j for the dual mesh or cells, andΩ♦
h or Ω♦

k for the diamond mesh
and cells.
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Figure 1. Primal mesh and control
points made of vertices, centers of poly-
gons, and centers of edges.

Figure 2. Dual meshΩ⋆
h, made of the

polygonsΩ⋆
j , and whose centers areS⋆

j .
The primal mesh is in dashed lines.

Figure 3. Diamond meshΩ♦
h (and

dashed primal cells), made of the poly-
gonsΩ♦

k , and whose centers areD♦
k .

Figure 4. Zoom on a diamond cellΩ♦
k .

This cell is composed of two triangles
belonging to the sharp meshΩ#

h .

One may check that the primal and dual mesh play exactely the same role with respect
to the the diamond mesh. Also, all diamond cells are structured objects, quadrilateral,
whose vertices are alternatively primal and dual centers. Finally, each diamond cell di-
vides into two triangles, which allows us to define the corresponding subtriangulation
Ω#

h .

2.2. Boundaries. Non conforming meshes

Notice that the possibility of using polygons of arbitrary type implies that the dis-
cretisation naturally applies to nonconforming meshes. Indeed, when the edges of
two adjacent cells are not identical, it suffices to subdivide the original edges into the
smaller edges involving all the vertices of any of the adjacent cells. This allows to take
into account locally refined meshes (see e.g. [4, 7]). Finally, there are infinitely many
ways of defining a dual mesh given a primal mesh. We use here themedian-dual mesh
based on the primal centers and the mid-point of the edges. Itwould be possible to
deal with Voronoi dual meshes, which simplifies a lot the DDFVscheme due to the
orthogonality properties of this type of discretisation (see the remarks in [10, 7]).

We also need to prescribe some values ofu◦⋆
h at on the boundary. For that, we

introduce some control pointsG◦
i′ on the boundary. For each cellΩ◦

i with center
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G◦
i , we define the correspondingG◦

i′ as the center of the boundary edge. Many other
choices are allowed by the method, but this is beyond the scope of this presentation.

2.3. Discrete integration formulas

Any of the three meshesΩ◦
h, Ω⋆

h, andΩ♦
h is a suitable partition for which we

define the usual discrete integration formulas. Also we willnote in condensed formR◦⋆
h

def
= R◦

h × R⋆
h, Ω◦⋆

h

def
= Ω◦

h × Ω⋆
h and accordingly〈u◦⋆

h , v◦⋆
h 〉Ω◦⋆

h

def
=

1
2 〈u

◦
h , v◦h〉Ω◦

h

+ 1
2 〈u

⋆
h , v⋆

h〉Ω⋆
h

. For example, the spaceR◦
h denotes the real vectors of

size the number of centersG◦
i (including those at the boundary as we detail below).

3. The Discrete-Duality Finite Volume Method

3.1. Discrete Gradient, Divergence, and Trace operators

CONSTRUCTION OF THE DISCRETE GRADIENT OPERATOR

We start by constructing the gradient operator of the scalarfield u◦⋆
h ∈ R◦⋆

h , defined
on Ω◦⋆

h , by using quadrature formulas. LetΩ♦
k be a diamond cell located inside the

domain, that is not a half-diamond cell having a common edge with the boundary of
the domain. Then, consider a functionu(x) defined onΩ, and its averaged gradient

〈∇u〉♦k on Ω♦
k such that| Ω♦

k | 〈∇u〉♦k =
〈

∇u ,1♦k 〉
Ω

where1♦k denotes the

characteristic function ofΩ♦
k and〈· , ·〉Ω denotes the usual scalar product ofL2(Ω).

A direct integration leads to the expression of the mean gradient on a given diamond
cell Ω♦

k = (y◦1, y⋆
3, y◦2, y⋆

4) (these four points are ordered clockwise):

| Ω♦
k | 〈∇u〉♦k = u(y◦1)

l13n13 + l14n14

2
+ u(y◦2)

l23n23 + l24n24

2

+u(y⋆
3)

l13n13 + l23n23

2
+ u(y⋆

4)
l14n14 + l24n24

2
.

We notedl13 = |y◦1y⋆
3|, n13 = (y◦1y⋆

3)
⊥ and so on. The final expression for the discrete

gradient∇♦,◦⋆
h : R◦⋆

h 7→ (R♦
h )2 is written after factorizing with respect to the primal

and dual points:

(∇♦,◦⋆
h u◦⋆

h )♦k = (u(y◦2) − u(y◦1))
l34

2 | Ω♦
k |

n43 +
1

2
(u(y⋆

4) − u(y⋆
3))

l12

2 | Ω♦
k |

n12

This quadrature formula is exact for any linear functionsu(x) = a + b · x, a ∈ R,
b ∈ R2. Notice finally that in the case where the primal and dual meshhave the
orthogonal propertyn12 · n34 = 0 locally in a given diamond cell, then we have
| Ω♦

k |= l12l34/2 and we recover the usual finite difference formulas.
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CONSTRUCTION OF THE DISCRETE DIVERGENCE...

We define now the discrete divergence operator, within the frame of the previous
discretisation and degrees of freedom as thediscrete adjoint operator of minus the
discrete gradient operator just constructed. It is important to notice that this discrete
integration by parts is made possible thanks to the factorisation performed in the dis-
crete gradient formula. At the continuous level, the duality property of the gradient
and divergence operators writes formally as

∀p, ∀u, 〈divp , u〉Ω + 〈p , ∇u〉Ω = 〈p·n , u〉∂Ω = 〈(γ0p)·n , γ0u〉∂Ω (1)

whereγ0 denotes the trace operator. At the discrete level, letp♦
h ∈ (R♦

h )2 be any
test function. First, we consider discrete test functionsp♦

h whose support consist of
diamond cells that arenot located at the boundary. Moreover, we deal first with the
contribution ofu◦

h. For that, we define the partial gradient operators∇
♦,◦
h and∇

♦,⋆
h

by ∇
♦,◦⋆
h u◦⋆

h

def
= ∇

♦,◦
h u◦

h + ∇
♦,⋆
h u⋆

h with obvious notations. For anyu◦
h, we have

that

〈

p♦
h , ∇♦,◦

h u◦
h

〉

Ω♦
h

=
∑

Ω♦
k

(

(u◦
h(y◦2) − u◦

h(y◦1))
l34

2 | Ω♦
k |

p♦
k ·nk

43

)

| Ω♦
k |

= −
1

2

∑

Ω♦
h

u◦
h(y◦2)l34p♦

k ·(−nk
43) + u◦

h(y◦1)l34p♦
k ·nk

43

= −
1

2

∑

Ω◦
i



u◦
h(y◦i )

∑

k;Ω♦
k
∩Ω◦

i
6=∅

l⋆ik
| Ω◦

i |
p♦

k ·nik



Ω◦
i

def
= −

1

2

〈

u◦
h , div◦,♦

h p♦
h

〉

Ω◦
h

.

wherenik is the outward normal to the cellΩ◦
i that belongs toΩ♦

k and wherel⋆ik =
∣

∣S⋆
j1
− S⋆

j2

∣

∣ is the length of the edge ofΩ◦
i that belongs toΩ♦

k . The expression above
only involves the values ofu◦

h located at pointsG◦
i in the interior of the domain,

and doesnot involve the values ofu◦
h located at pointsG◦

i on the boundary. The
last equality in the equation above defines the operatordiv◦,♦

h : (R♦
h )2 → Ω◦

h. The
operatordiv⋆,♦

h : (R♦
h )2 → Ω⋆

h is defined in a similar way, namely

(

div◦,♦
h p♦

h

)◦

i
=

∑

k;Ω♦
k
∩Ω◦

i
6=∅

l⋆ik
| Ω◦

i |
p♦

k ·nik,
(

div⋆,♦
h p♦

h

)⋆

j
=

∑

k;Ω♦
k
∩Ω⋆

j
6=∅

l◦jk

| Ω⋆
j |

p♦
k ·njk

... AND TRACE OPERATORS

Let us consider now discrete functionsp♦
h that are not necessarily zero on the

boundary half-diamond cells. Mimicking Eq. (1) at the discrete level, allows us
to define discrete trace operrators that are consistent (in the sense of the discrete in-
tegration formulas) with the discrete gradient and divergence operators. Let us first
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remind that the complete gradient operator writes as∇
♦,◦⋆
h := ∇

♦,◦
h + ∇

♦,⋆
h and

is defined on the spacesR◦⋆
h → (R♦

h )2. It is natural to introduce its discrete dual
operatordiv◦⋆,♦

h : (R♦
h )2 → R◦⋆

h = R◦
h × R⋆

h. One should convince himself that
we have preciselydiv◦⋆,♦

h = (div◦,♦
h , div⋆,♦

h ) ∈ R◦
h × R⋆

h = R◦⋆
h , or equivalently

(recalling that〈u◦⋆
h , v◦⋆

h 〉Ω◦⋆
h

= 1
2 〈u

◦
h , v◦h〉Ω◦

h

+ 1
2 〈u

⋆
h , v⋆

h〉Ω⋆
h

),

〈

div◦⋆,♦
h p♦

h , u◦⋆
h

〉

Ω◦⋆
h

+
〈

p♦
h , ∇♦,◦⋆

h u◦⋆
h

〉

Ω♦
h

=

(

1

2

〈

div◦,♦
h p♦

h , u◦
h

〉

Ω◦
h

+
〈

p♦
h , ∇♦,◦

h u◦
h

〉

Ω♦
h

)

+

(

1

2

〈

div⋆,♦
h p♦

h , u⋆
h

〉

Ω⋆
h

+
〈

p♦
h , ∇♦,⋆

h u⋆
h

〉

Ω♦
h

)

(2)

Thanks to the previous construction of the discrete divergence operator, almost all
terms cancel except those involving the boundary edges, namely an expression of the
form
〈

div◦⋆,♦
h p♦

h , u◦⋆
h

〉

Ω◦⋆
h

+
〈

p♦
h , ∇♦,◦⋆

h u◦⋆
h

〉

Ω♦
h

=
1

2

〈

(γ♦
0hp♦

h )·n♦
h , γ◦

0hu◦
h

〉

∂Ω◦
h

+
1

2

〈

γ⋆,♦
0h (p♦

h ·n♦
h ) , γ⋆

0hu⋆
h

〉

∂Ω⋆
h

.

Here∂Ω◦
h denotes the set of boundary edges∂Ω◦

h = ∪i∂Ω◦
i , where∂Ω◦

i denotes
the boundary edge ofΩ◦

i (we may assume that there is only one boundary edge for
each primal cell). Each boundary edge∂Ω◦

i is also a the boundary edge∂Ω♦
k of a

half-diamond cell, hence∂Ω◦
h = ∂Ω♦

k . Finally, for each dual pointS⋆
j located on

the boundary, we define the corresponding boundary element∂Ω⋆
j as the union of the

two half-boundary edges whoseS⋆
j is an endpointwhere, that is∂Ω⋆

j = (∂Ω◦
i1(j) ∪

∂Ω◦
i2(j))/2 = (∂Ω♦

k1(j) ∪ ∂Ω♦
k2(j))/2 with obvious notations. The trace operators

write, for all ∂Ω◦
i = ∂Ω♦

k and for all∂Ω⋆
j

(γ◦
0hu◦

h)i = u◦
i , (γ⋆

0hu⋆
h)j = u⋆

j , (γ♦
h p♦

h )k = p♦
k

(γ⋆,♦
0h (p♦

h ·n♦
h ))j = (lk1(j)pk1(j)·nk1(j) + lk2(j)pk2(j)·nk2(j))/(lk1(j) + lk2(j))

(3)
with lk1(j) =

∣

∣∂Ωk1(j)

∣

∣, lk2(j) =
∣

∣∂Ωk2(j)

∣

∣. Notice that the operatorγ⋆,♦
0h is a suitable

average of the trace operatorγ♦
0h.
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3.2. Discrete-Duality Finite Volume scheme for the Laplace problem

VARIATIONAL FORMULATION OF THE DDFV METHOD

We may now consider the discrete Laplace problem with Dirichlet boundary condi-
tions and the corresponding variational formulation:

{

−∆◦⋆,◦⋆
h u◦⋆

h = f◦⋆
h

γ◦⋆
0hu◦⋆

h = 0

{

〈

∇
♦,◦⋆
h u◦⋆

h , ∇♦,◦⋆
h v◦⋆

h

〉

Ω◦⋆
h

= 〈f◦⋆
h , v◦⋆

h 〉Ω◦⋆
h

,

γ◦⋆
0hu◦⋆

h = 0
(4)

for all v◦⋆
h ∈ R◦⋆

h , γ◦⋆
0hv◦⋆

h = 0, and where∆◦⋆,◦⋆
h · = div◦⋆,♦

h ∇
♦,◦⋆
h ·.

M IXED FORMULATION OF THE DDFV METHOD

An alternative approach is to recast the problem in terms of the mixed formulation
for the Laplace problem. It is indeed straightforward to rewrite the problem as: find
(u◦⋆

h , p♦
h ) ∈ U◦⋆

h × P♦
h such that







p♦
h = −∇

♦,◦⋆
h u◦⋆

h , in Ω♦
h

div◦⋆,♦
h p♦

h = f◦⋆
h , in Ω◦⋆

h \∂Ω◦⋆
h

γ◦⋆
0hu◦⋆

h = 0, on ∂Ω◦⋆
h

where we notedP♦
h = Q♦

h = (R♦
h )2, U◦⋆

h = V ◦⋆
h = R◦⋆

h andU◦⋆
0h = γ◦⋆

0hu◦⋆
h = 0. A

straightforward discrete integration yields: find(u◦⋆
h , p♦

h ) ∈ U◦⋆
0h × P♦

h such that










〈

p♦
h , q♦

h

〉

Ω♦
h

+
〈

q♦
h , ∇♦,◦⋆

h u◦⋆
h

〉

Ω♦
h

= 0, ∀q♦
h ∈ Q♦

h
〈

div◦⋆,♦
h p♦

h , v◦⋆
h

〉

Ω◦⋆
h

= 〈f◦⋆
h , v◦⋆

h 〉Ω◦⋆
h

∀v◦⋆
h ∈ V ◦⋆

h

(5)
This is the classical mixed primal-dual formulation for theLaplace equation used
by [12]. Notice however that thanks to the discrete-dualityproperty, we can switch
without any quadrature formula to the equivalent formulation










〈

p♦
h , q♦

h

〉

Ω♦
h

+
〈

q♦
h , ∇♦,◦⋆

h u◦⋆
h

〉

Ω♦
h

= 0, ∀q♦
h ∈ Q♦

h

−
〈

p♦
h , ∇♦,◦⋆

h v◦⋆
h

〉

Ω♦
h

= 〈f◦⋆
h , v◦⋆

h 〉Ω◦⋆
h

∀v◦⋆
h ∈ V ◦⋆

h

(6)

EXISTENCE AND UNIQUENESS

⊳ Using the classical variational formulation (4) of the DDFVmethod, we have

to deal with the discrete Laplace operator−∆◦⋆,◦⋆
h

def
= − div◦⋆,♦

h ∇
♦,◦⋆
h de-

fined fromU◦⋆
0h onto itself. Any functionv◦⋆

h ∈ Ker(−∆◦⋆,◦⋆
h ) satisfies immediately
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〈

∇
♦,◦⋆
h v◦⋆

h , ∇♦,◦⋆
h v◦⋆

h

〉

Ω♦
h

= 0, so that we have constant functionsu◦
h = Cst◦ and

u⋆
h = Cst⋆, and the boundary conditions imposeCst◦ = Cst⋆ = 0. This means

injectivity, therefore surjectivity, and the discrete problem has a unique solution.

⊳ Come now to the mixed variational formulation (5) for the DDFV method. Fol-
lowing the classical procedure of mixed finite element method (see [1]), we denote by
B◦⋆,♦

h the discrete divergence operator and by(Bt)♦,◦⋆
h the discrete gradient operator

B◦⋆,♦
h

def
= div◦⋆,♦

h : Q♦
h −→ V ◦⋆

0h , (Bt)♦,◦⋆
h

def
= −∇

♦,◦⋆
h : V ◦⋆

0h −→ Q♦
h .

The discrete kernels and ranges of these operators are:

KerB◦⋆,♦
h =

{

p♦
h ∈ P♦

h ;
〈

div◦⋆,♦
h p♦

h , v◦⋆
h

〉

Ω◦⋆
h

= 0, ∀v◦⋆
h ∈ V ◦⋆

0h

}

Ker(Bt)♦,◦⋆
h =

{

u◦⋆
h ∈ U◦⋆

0h ;
〈

q♦
h , ∇♦,◦⋆

h u◦⋆
h

〉

Ω◦⋆
h

= 0, ∀qh ∈ Q♦
h

}

Im B◦⋆,♦
h = B◦⋆,♦

h

(

P♦
h

)

=
(

Ker(Bt)♦,◦⋆
h

)⊥◦⋆
h

in V ◦⋆
0h

Im(Bt)♦,◦⋆
h = (Bt)♦,◦⋆

h (U◦⋆
0h) =

(

KerB◦⋆,♦
h

)⊥♦
h

in Q♦
h

where⊥◦⋆
h (resp.⊥♦

h ) denote the orthogonal with respect to the scalar product〈· , ·〉Ω◦⋆
h

(resp. 〈· , ·〉Ω♦
h

), and where the two equalities involving the orthogonal spaces are

straightforward in finite dimension. Clearly, we haveKer(Bt)♦,◦⋆
h = {0}, so that

Im B◦⋆,♦
h = V ◦

h from the definition of the lifting ofB◦⋆,♦
h . As a conclusion, there

existsp♦
1h solution to the second equation of the mixed variational formulation (5). At

that stage,p♦
1h is unique up to elements ofKerB◦⋆,♦

h . Let (p♦
1h, u◦⋆

1h) and(p♦
2h, u◦⋆

1h)
be two solutions. We have that

∀q♦
h ∈ Q♦

h ,
〈

p♦
1h − p♦

2h , q♦
h

〉

Ω♦
h

−
〈

div◦⋆,♦
h q♦

h , u◦⋆
1h − u◦⋆

2h

〉

Ω♦
h

= 0

wherep♦
1h − p♦

2h ∈ KerB◦⋆,♦
h . Taking for exampleq♦

h = p♦
1h − p♦

2h yields triv-
ially the uniqueness ofp♦

h . Then, we want to characterizeu◦⋆
h solution to the first

equation of (5), from which we know immediately thatp♦
h ∈ (KerB◦⋆,♦

h )⊥
♦
h , but

(KerB◦⋆,♦
h )⊥

♦
h = Im(Bt)♦,◦⋆

h yields the existence ofu◦⋆
h . The uniqueness follows

here from the injectivity of(Bt)♦,◦⋆
h already proved in the previous paragraph.

3.3. Convergence Analysis and Error Estimates

A proof of the convergence of the DDFV method for the Laplace equation based
on the classical variational formulation (4) is in [7]. An alternative method of proof
is based on the mixed variational formulations (5) or (6). Inthat case, conforming
approximations are obtained by using both ideas of Thomas and Trujillo [12], and by
observing the DDFV for the Laplace problems is the superimposition of two coupled
discrete Laplace problems such as those investigated in [12].
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4. Div–Curl problem and Hodge Decomposition

The DDFV allows us to generalize to general unstructured meshes previous works
related to the discretization by finite volume techniques ofDiv–Curl or corresponding
Hodge decomposition problems. More details are in [6].

4.1. Discrete Curl, Rot and tangential-trace operators

We introduce here the discrete vectorial (resp. scalar) rotational of a scalar field
(resp. vectorial) field. In the continuous case, we have

rotφ def
= (−∂yφ, ∂xφ) = (∇φ)⊥ = (∇⊥φ)

curlu def
= ∂xu2 − ∂yu1

〈φ , curlu〉Ω − 〈rotφ , u〉Ω = 〈φ , u·τ〉∂Ω

Following the same strategy as before, we may define first the discreterot♦,◦⋆
h acting

on functionsφ◦⋆
h by using quadrature formulas on the cellsΩ♦

k . We have simply, in
terms of the discrete gradient∇

♦,◦⋆
h :

rot♦,◦⋆
h =

(

∇
♦,◦⋆
h

)⊥

Then, integrations by part allow us to define on the one hand the discrete operator
curl◦⋆,♦

h , as the sums

(

curl◦,♦
h p♦

h

)◦

i
=
∑

k;Ω♦
k
∩Ω◦

i
6=∅

l⋆ik
| Ω◦

i |
p♦

k ·n⊥
ik,

(

div⋆,♦
h p♦

h

)⋆

j
=

∑

k;Ω♦
k
∩Ω⋆

j
6=∅

l◦jk

| Ω⋆
j |

p♦
k ·n⊥

jk.

(7)
and on the other hand the tangential trace operators are defined by the constraint that
for all φ◦⋆

h ∈ R◦⋆
h andu♦

h ∈ (R♦
h )2,

〈

φ◦⋆
h , curl◦⋆,♦

h u♦
h

〉

Ω◦⋆
h

−
〈

rot♦,◦⋆
h φ◦⋆

h , u♦
h

〉

Ω♦
h

=
1

2

〈

(γ♦
0hu♦

h )·n♦⊥
h , γ◦

0hφ◦
h

〉

∂Ω◦
h

+
1

2

〈

γ⋆,♦
0h (p♦

h ·n♦⊥
h ) , γ⋆

0hφ⋆
h

〉

∂Ω⋆
h

Finally, if φ◦⋆
h has support strictly inside the domain, we have the orthogonality prop-

erties

div◦⋆,♦
h (rot♦,◦⋆

h φ◦⋆
h ) = 0, curl◦⋆,♦

h (∇♦,◦⋆
h φ◦⋆

h ) = 0
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4.2. Div-Curl problem and Hodge decomposition

Thanks to these discrete operators, we can tackle the discrete Div-Curl problem
and the discrete Hodge decomposition problem. We have for example the problem







div◦⋆,♦
h u♦

h = f◦⋆
h in Ω◦⋆

h

curl◦⋆,♦
h u♦

h = g◦⋆
h in Ω◦⋆

h

u♦
h · n♦

h = h♦
h on ∂Ω♦

h

Classically, by settingu♦
h = ∇

♦,◦⋆
h Φ◦⋆

h + rot♦,◦⋆
h Ψ◦⋆

h , we can relate this problem to
the discrete Hodge decomposition

(R♦
h )2 = ∇

♦,◦⋆
h (R◦⋆

h /(R×R)) ⊕ rot♦,◦⋆
h (R◦⋆

h )

This is possible thanks to the orthogonality properties mentionned above. The poten-
tial functionsΦ◦⋆

h andΨ◦⋆
h are solutions to simple Laplace problems with Dirichlet

or Neumann boundary conditions which constitute an equivalent formulation to the
direct discretisation of the Div–Curl problem. This allowsus to find error estimates
using the previous results for the Laplace problem. These considerations will be par-
ticularly interesting when dealing with Maxwell equations.

5. Stokes Problem

Finally, the DDFV strategy applies to the Stokes problem (please see [5] for more
details and numerical examples). A possible discretisation of the Stokes problem
thanks to the DDFV method writes

{

−div♦,◦⋆
h ∇

◦⋆,♦
h u◦⋆

h + ∇
♦,◦⋆
h p♦h = f◦⋆

h

div♦,◦⋆
h u◦⋆

h = 0
, γ◦⋆

0hu◦⋆
h = 0 (8)

Here, the discrete gradient operator∇
♦,◦⋆
h and discrete divergence operatordiv◦⋆,♦

h

associated to the constraint are the opertors introduced inthe previous sections. As a
consequence, the discrete divergence operatordiv♦,◦⋆

h and discrete gradient operator
∇

◦⋆,♦
h associated to the viscous term are new discrete operators that can be defined

following the general DDFV strategy.

6. Conclusion

We have presented in this note a new framework for the derivation of finite volume
schemes. On the one hand, we use a Discrete-Duality principle for the derivation of
discrete operators. On the other hand, the unknowns are located on different meshes.
This choice may be regarded as a generalisation of the staggered grid strategy to gen-
eral unstructured meshes.
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Numerical experiments show that the method is very stable, even for very distorted
meshes [9, 10, 7]. The discrete-duality approach allows us to preserve at the discrete
level the variational structure of mixed problems, and to perform the error analysis in
this framework. The method has been applied to stiff Sotkes problems or Div-Curl
problems.
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