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ABSTRACTT his paper deals with applications of the “Discrete-Dugliinite Volume” approach
to a variety of elliptic problems. This is a new finite volumetimod, based on the derivation of
discrete operators obeying a Discrete-Duality principhn appropriate choice of the degrees
of freedom allows one to use arbitrary meshes. We show teah#thod is naturally related to
finite and mixed finite element methods.

RESUME Cet article présente des applications de la méthode de “B&i@liscrete” a une varié-
tés de problemes elliptiques. Cette nouvelle méthode denesl finis s’appuie d’'une part sur la
construction d’opérateurs discrets satisfaisant des pedps de dualité discréte, et d’autre part
sur un choix judicieux des degrés de liberté. Ceci permetaltet des maillages arbitraires.
Nous montrons la méthode est intimement liée aux méthoéiésrnts finis et d’éléments finis
mixtes.
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1. Introduction

This paper presents some applications to some ellipticlenob of a recent fi-
nite volume method called “Discrete-Duality Finite Voluhmaethod (abbr. DDFV
method). In order to analyse finite volume schemes for @liptoblems, it is natural
to try to recast the finite volume scheme in terms of a vanatidormulation hope-
fully close to what is known in the theory of finite element trads. In the case of
rectangular meshes, the analogy is rather straightforimattte case of the classical
Laplace equation with constant coefficients and Dirichiddleumann boundary con-
ditions. Indeed, one obtains in that case classical finfferénce or finite element
methods. In the case of nonrectangular structured meshesadysis was performed
in [13]. A new difficulty arises in the case where one deal$itangular meshes or
more generally unstructured meshes, and several appoaehe used. A connection
between finite volume and finite element methods in the cas@aofjular meshes was
first performed in the scope of the Finite Volume Element Méth(see [2, 3]). On the
other hand, connections between finite volumes and finiferéifice techniques were
also performed. In its simpler form, it is based on the palsitof approximating
normal fluxes by finite differences which may be done in thee @faneshes having
suitable orthogonality conditions. The analysis of thes¢hmods also rely on the pos-
sibilty of writing discrete variational formulations andsdrete errors estimates (see
the review [8]).

In order to deal with general self-adjoint elliptic bounglaalue problems on gen-
eral triangulations, Thomas and Truijillo introduced thex&tl Finite Volume Method,
based on the relation between mixed finite element formariatand finite volume
formulations (see e.g. [11, 12]). In the case of the Laplaioblpm with Dirichlet and
Neumann boundary conditions, these authors consideraditesl problem

p = —Vu, inQ
divp = f inQ
U = 0, on 9

and derived a — both finite volume and finite element — disgragblem involving the
unknownsu andp as well as primal and dual meshes. They proved the conveggenc
of the method for triangular unstructured meshes or recangneshes.

We recently introduced the DDFV method in order to deal withly stiff Stokes-
like problems on rectangular meshes. The aim was to preaethie discrete level the
duality of the discrete constraints despite the presensegafgly varying coefficients,
as well as stability properties. One key ingredient in thgpraach is the use afis-
crete integration formulas based on the choice of control volumes, which allows us
to definediscrete integration by parts. As a consequence, a discrete gradient opera-
tor could be defined as the discrete adjoint operator of angligcrete divergence and
vice versa Another key ingredient is the choice of the degrees of foeedn the case
of rectangular grids, the DDFV method applied to Stokes-fikoblems was proved
to lead to a Marker And Cell type scheme on staggered gride. ektension of the
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method togeneral unstructured nonconformingmeshes follows the same lines, that
is

— Define control volumes and associated unknowns,

— Define discrete integration, and discrete integrationday formulas,

— Define discrete divergence and gradient operators obelandiscrete duality
property,

— Assemble the second order elliptic operator.

As will become clear later, one crucial point here is the chaif the degrees of free-
dom. Not all choices would lead to a well-posed or asympéditicstable problem.
In that direction, we follow the work of F. Hermeline (see [4@]). In the case of
distorted rectangular meshes or related triangular mesleastroduced a new finite
volume approach for elliptic problems with possibly distionous coefficients. The
scheme he obtains is exactely the DDFV scheme that we déarks to the algo-
rithm quoted above. However, his derivation is based on iguack formulas for both
gradient and divergence operators and relatively invoklggbra that do not seem
to allow a straightforward analysis. On the converse, thdiegtion of the DDFV
method allows us to perform an analysis of the scheme as wedlrar estimates.
This was done in [7] by emphasizing the relation between th&¥ method and the
classical variational formulation for the usual Laplaceaipn.

After introducing the general notations, we present theiig-Duality Finite Vol-
ume method applied to the Laplace problem and emphasizel#san with Mixed
Finite Element approaches (see [12]). Then, we show how DlE\Dmethod applies
to the Div-Curl and Hodge decomposition problems (see Hjy finally the Stokes
problem (see [5]).

2. Meshes and Notations
2.1. Meshes,Vertices and Centers

We want to consider general, including nonconforming meshmade of arbitrary
polygons. The DDFV method uses (i) the primal mesh, (ii) tbaldnesh, centered
around the vertices of the primal mesh, (iii) the diamondmesgntered around the
edges of both the primal and dual meshes, and finally (iv) blagpsmesh, a common
subtriangulation of the previous meshes. The primal meshatirthe unknowns or
operators attached to it are denoted by a circle in suppis€ior example); denotes
the primal mesh(2? denotes a polygon of the primal mesh, &fdits center. We shall
use similarly(2; or Q* for the dual mesh or cells, af” or 2’ for the diamond mesh
and cells.
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Figure 1.Primal mesh and control Figure 2. Dual meshQs, made of the
points made of vertices, centers of poly- polygond27, and whose centers afe'.
gons, and centers of edges. The primal mesh is in dashed lines.

Figure 3.Diamond mesh®)’ (and Figure 4. Zoom on a diamond cef?y .
dashe%prlmal cells), made of thg POIY- This cell is composed of two triangles
gons(), and whose centers afe,’. belonging to the sharp meﬂf.

One may check that the primal and dual mesh play exactelyate sole with respect
to the the diamond mesh. Also, all diamond cells are strectobjects, quadrilateral,
whose vertices are alternatively primal and dual centeémallly, each diamond cell di-
viies into two triangles, which allows us to define the cqroegling subtriangulation
Q.

2.2. Boundaries. Non conforming meshes

Notice that the possibility of using polygons of arbitraypé implies that the dis-
cretisation naturally applies to nonconforming meshesleéd, when the edges of
two adjacent cells are not identical, it suffices to subdivite original edges into the
smaller edges involving all the vertices of any of the adjécells. This allows to take
into account locally refined meshes (see e.g. [4, 7]). Rinddere are infinitely many
ways of defining a dual mesh given a primal mesh. We use hera¢kdén-dual mesh
based on the primal centers and the mid-point of the edgegoutd be possible to
deal with Voronoi dual meshes, which simplifies a lot the DD$&eme due to the
orthogonality properties of this type of discretisatioagshe remarks in [10, 7]).

We also need to prescribe some values:.pf at on the boundary. For that, we
introduce some control pointS$, on the boundary. For each cél with center
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G?, we define the correspondiiig, as the center of the boundary edge. Many other
choices are allowed by the method, but this is beyond theesobthis presentation.

2.3. Discrete integration formulas

Any of the three mesheQ7, Qy, and Q,? is a suitable partition for which we

define the usual discrete integration formulas. Also we malle in condensed form

d d . def

R Y R xR, 0 Y Qo x Qp and accordinglyug® , v*) ..
h

2 (uf, ’v’3>92 + 3 (up, ’v’t>92' For example, the spadie; denotes the real vectors of

size the number of cente€®’ (including those at the boundary as we detail below).

3. The Discrete-Duality Finite Volume Method
3.1. Discrete Gradient, Divergence, and Trace operators

CONSTRUCTION OF THE DISCRETE GRADIENT OPERATOR

We start by constructing the gradient operator of the sd@llt u;* € IR7*, defined
on p*, by using quadrature formulas. L@é> be a diamond cell located inside the
domain, that is not a half-diamond cell having a common edige tlve boundary of
the domain. Then, consider a functiefx) defined on?, and its averaged gradient

(Vu)¥ on QY such that) QY | (Vu)y = <Vu , 1£>Q where 1 denotes the
characteristic function oﬁ‘lg and(- ,-),, denotes the usual scalar product/&f((2).

A direct integration leads to the expression of the meanigra@n a given diamond
cell Q,? = (¥1,V3,Y5,Ys) (these four points are ordered clockwise):

l13N13 4 l1aN14 l23N23 4 l24N24

| Qk | < Y u>k U(y?) u(y;)
l13! + lo3n 141 + logn
U(yg) 131113 231123 (yZ) 141114 241124 )

We noted3 = |y5y3|, 13 = (y5y5)* and so on. The final expression for the discrete

gradientv $°* : Re* — (IRY)? is written after factorizing with respect to the primal
and dual points:

l 1 l
V(},O* ox\ <> _ oy o 34 Nas 4 = *\ * 12 n
(V" up")y = (ulys) U(y1))2 Tk 5 (u(yi) u(Ys))2 Ak

This quadrature formula is exact for any linear functietis) = « + b - x, a € R,

b € R2 Notice finally that in the case where the primal and dual nfesre the
orthogonal propertyn> - n34 = 0 locally in a given diamond cell, then we have
| Q° |= l1234/2 and we recover the usual finite difference formulas.
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CONSTRUCTION OF THE DISCRETE DIVERGENCE..

We define now the discrete divergence operator, within thenér of the previous
discretisation and degrees of freedom asdiserete adjoint operator of minus the
discrete gradient operator just constructed. It is imptrta notice that this discrete
integration by parts is made possible thanks to the faettiois performed in the dis-
crete gradient formula. At the continuous level, the dyaglitoperty of the gradient
and divergence operators writes formally as

Vp,Vu, (divp,u)q + (P, Vu)g = (PN, u)5q = (0P)N,%0u) s, (1)

where~, denotes the trace operator. At the discrete Ievelpﬁete (]R,?)2 be any
test function. First, we consider discrete test functipﬁswhose support consist of
diamond cells that areot located at the boundary. Moreover, we deal first with the
contribution ofus,. For that, we define the partial gradient operafois° and V<

by VO orugr w2 1+ WOy with obvious notations. For any?, we have
that

©, o o e} o o l
<pg an’ “h>92 = ZQ,? ((“h()’2) - “h(Y1))2 | ?Z? |pk<’>'n{4CB> | Q7 |

1 [e] o o (o) 9
= -3 > U (¥3)lsapy «(—Ns) + uf (¥5)lsapy 0y

QP

> 3l (D DR e Ko
Q°

0°
b k;Qﬁng;&@' ¢ |

def 1/ 4 Lo,
= —3 <uh ,dlvh0p2>

@

wheren;, is the outward normal to the cell; that belongs t(ﬂk<> and wherd}, =

}S;l — S]*2| is the length of the edge 61 that belongs t(ﬂg. The expression above
only involves the values ofij located at point€y{ in the interior of the domain,
and doesot involve the values ot located at pointgr; on the boundary. The

last equality in the equation above defines the opeida'tiqir<> : (]Rﬁ)2 — Q). The
operatorivy® : (RY)? — Q; is defined in a similar way, namely

° I* * e,
. 0,$ 4 s 50 k
D D O A D Vi

k0 NS £0 k20 )

... AND TRACE OPERATORS

Let us consider now discrete functiop% that are not necessarily zero on the
boundary half-diamond cells. Mimicking Eq. (1) at the deterlevel, allows us
to define discrete trace operrators that are consistertigisense of the discrete in-
tegration formulas) with the discrete gradient and diveogeoperators. Let us first
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remind that the complete gradient operator write§gs°* := Vf’o + Vf’* and

is defined on the spacds;” — (RS)Q. It is natural to introduce its discrete dual
operatordiv;* < : (RY)? — Rg* = RS x Ri. One should convince himself that
we have precrselyhv"* 0 = (divy) @ d1vh’<>) € R; x R; = R}, or equivalently
(recalling that(uf” , vj") .. = 1 (uj, Wilgs +3 1 <uh Vh)a: )

<diV2*7<>pg 7u2*>90* + <pg 7v<>,o*uz*>9<>
h

h

= <; <d1vh ph 7uh>sh <ph 7V<>o 0>Q<>) @)
( <d1vh ph ,uh> o <ph ,Vg*u2> a9

Thanks to the previous construction of the discrete divecgeoperator, almost all
terms cancel except those involving the boundary edgeselyaan expression of the
form

LS <y
(aiviropf ug) o+ (pF Vi),
h

<&
1 1
_ & &
=3 <(70hp;<1>)‘”h ’78hu2>an;; + 5 <70h (ph nh) Yot h>aﬂz'

Here 0127 denotes the set of boundary edd#3; = U;07, whered2? denotes
the boundary edge d2; (we may assume that there is onIy one boundary edge for
each primal cell). Each boundary ed@€s is also a the boundary edmk of a
half-diamond cell, hencéQ); = 8Q<>. Finally, for each dual point} located on

the boundary, we define the corresponding boundary ele@ifénas the union of the
two half-boundary edges whosg is an endpointwhere, that 825 = (997 G Y

0F,))/2 = (09F ;) U 99 1)/2 with obvious notations. The trace operators
write, for all 909 = 890 and for alloQ}

o

(rohuh) =u, (pup)i =ul WPy )k =Py
il (O )5 = (g () Pk () Mer () F L) Pra () Mo () (ks ) + Bea ()

with Uy, () = |09k, ()]s lka () = |02, |- Notice that the operatog}; is a suitable
average of the trace operatgf, .
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3.2. Discrete-Duality Finite Volume scheme for the Laplace problem

VARIATIONAL FORMULATION OF THE DDFV METHOD

We may now consider the discrete Laplace problem with Digichoundary condi-
tions and the corresponding variational formulation:

OXx,0% $yox, ok O,0x, ox _ ox ok
{ fAh ’ uz* — }i* { <Vh Up, 7Vh vy, >QO* = < , Up, >QZ*’
O% ,, 0% O h

YorUn = Ok, Ok

Yontn =0
(4)

for all vp* € Ry*, vgrvp* =0, and Whereﬁff"’*- _ divz*’ovg"’*._
MIXED FORMULATION OF THE DDFV METHOD

An alternative approach is to recast the problem in term$efriixed formulation
for the Laplace problem. It is indeed straightforward to nigsmthe problem as: find
(us*,pY) € U* x PY such that

p,? = —Vg’o*uz*, in Q,?

divio¥pe = fox, inQg\o0g*

Yorup* =0, on 9Q7*
where we note®? = QY = (RY)?, Ug* = Vo* = Ry andUS) = 15ius* = 0. A
straightforward discrete integration yields: fitwf*, p,?) € Ugr x PY such that

<p,§> ’q}?>gz§ * <q,§> ,Vﬁ’°*u;*>g<> = 0, vad € QY

h
(divp=Opg o) = Ui VORTE Ve
O* h
h
5)
This is the classical mixed primal-dual formulation for thaplace equation used

by [12]. Notice however that thanks to the discrete-duglityperty, we can switch
without any quadrature formula to the equivalent formulation

(pgag),. +(as Vi) o= o vaj; € Qi
h h
$,0% ) ox O% o33 ox ox
- <p}<z> Vi vy >Q§ = (otge  Yr eV
(6)

EXISTENCE AND UNIQUENESS
<1 Using the classical variational formulation (4) of the DDRwethod, we have

to deal with the discrete Laplace operaton?*°* 4 _ giy?* v de-
fined fromUg; onto itself. Any functionvy* € Ker(—A;*°") satisfies immediately
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<V,?=°*ug* ,Vf’o*v;*%o = 0, so that we have constant functioms = Cst° and
h

u; = Cst*, and the boundary conditions impo€et® = Cst* = 0. This means
injectivity, therefore surjectivity, and the discrete plem has a unique solution.

<1 Come now to the mixed variational formulation (5) for the DDmethod. Fol-
lowing the classical procedure of mixed finite element métfsee [1]), we denote by
Bz*’o the discrete divergence operator andﬁy)ﬁ’o* the discrete gradient operator

;& def . <O &0k def 0%,
BZ* ¢ def leZ* : Qg N Ooh*v (Bt)h ox del 7V2 ox . Vooh* . Qg

The discrete kernels and ranges of these operators are:

Ker BZ*’<> = pg € PY; <divz*’<>p,? ,vz*>522* =0, VYure VOC}:(}

Ker(BY* = {ug* e Ugr <q§ ,Vg"’*u;;*%“ =0, Vg, e Qﬁ}
R ox

ImBZ*’O _ BZ*,Q (P,?) _ (Ker(Bt),?"o*) L Ve

mBO = (B Wg) = (KeBr©) T o Qf

whereL7* (resp.if) denote the orthogonal with respect to the scalar pro(duc-:)gz*
(resp. (- ,o>Qg), and where the two equalities involving the orthogonalcegaare

straightforward in finite dimension. Clearly, we halier(B*)¢°* = {0}, so that
Im By = V2 from the definition of the lifting ofB; . As a conclusion, there
existsp?h solution to the second equation of the mixed variationahigation (5). At

that stagep?), is unique up to elements &fer By, Let (p¥,, uS3) and(pS), , u$k)
be two solutions. We have that

vay € Qy, <p§>h -5, ’q’?>510 B <divz*’<>q,? Ut u§;>m =0
" h

wherep?, — pS, € Ker B;*. Taking for exampley® = p¢, — pS, yields triv-
ially the uniqueness qﬁg. Then, we want to characterizg* solution to the first
equation of (5), from which we know immediately thaf € (Ker Bz*’o)%?, but
(Ker Bz*’o)%? = Im(B"){"°* yields the existence af;*. The uniqueness follows
here from the injectivity O(Bt),?’o* already proved in the previous paragraph.

3.3. Convergence Analysis and Error Estimates

A proof of the convergence of the DDFV method for the Laplageagion based
on the classical variational formulation (4) is in [7]. Artexhative method of proof
is based on the mixed variational formulations (5) or (6).tHat case, conforming
approximations are obtained by using both ideas of Thomad aujillo [12], and by
observing the DDFV for the Laplace problems is the supersitjmm of two coupled
discrete Laplace problems such as those investigated jn [12
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4. Div—Curl problem and Hodge Decomposition

The DDFV allows us to generalize to general unstructurechegprevious works
related to the discretization by finite volume techniqueBiet-Curl or corresponding

Hodge decomposition problems. More details are in [6].

4.1. Discrete Curl, Rot and tangential-trace operators

We introduce here the discrete vectorial (resp. scalagtiotal of a scalar field
(resp. vectorial) field. In the continuous case, we have

rot¢ C(C9,0,0,0) = (Vo) =(Vie)
curlu def Oza — Oyur
= (¢ 7U°T>BQ

(¢ ,curlu),, — (rotg ,u),
©:°% acting

Following the same strategy as before, we may define firstitiueaderot ;
on functionsg;* by using quadrature formulas on the ceﬂlg. We have simply, in

terms of the discrete gradieRt;, °*:

€L
0% &ox
rot,” " = (Vh )

Then, integrations by part allow us to define on the one haedlibcrete operator

curl*¥, as the sums
ZO
ik £0.nL

0,000\’ [ L RPN
(Curlh pg) = Yk naz 0 | 69 |p,§-nik7 (dwz pg)j = Z o |pk Ny
¢ BQgns£0
(7)

i

and on the other hand the tangential trace operators areeddfinthe constraint that

forall p3* € R* anduy € (RY)?,

(o ccuhOuf) = (rotor gt uf) |
h h,

1 1 1 1
= 3 (OGungt Adush)  +5 (SN ety
h h

2
Finally, if 7 has support strictly inside the domain, we have the orthaliyrprop-

erties

ox\ __

divy @ (1ot g7) = 0, eurh (V) =0



Discrete-Duality Finite Volume methods 11

4.2. Div-Curl problem and Hodge decomposition

Thanks to these discrete operators, we can tackle the tisbie-Curl problem
and the discrete Hodge decomposition problem. We have fample the problem

divy~“uf o in Q9
curl*Cu? gy*  inQp
uy-ny = hy ondQy

Classically, by settingy = Vﬁ’o*d);;* + rot,?’o*\llz*, we can relate this problem to
the discrete Hodge decomposition

(R9)? = Vi (R /(R x R)) @ roty ™ (Ry*)

This is possible thanks to the orthogonality propertiestinened above. The poten-
tial functions®;* and 7* are solutions to simple Laplace problems with Dirichlet
or Neumann boundary conditions which constitute an eqeitaiormulation to the
direct discretisation of the Div—Curl problem. This allows to find error estimates
using the previous results for the Laplace problem. Theasiderations will be par-
ticularly interesting when dealing with Maxwell equations

5. Stokes Problem

Finally, the DDFV strategy applies to the Stokes probleradpk see [5] for more
details and numerical examples). A possible discretisatibthe Stokes problem
thanks to the DDFV method writes

{ *divh’o*fo’OU?f + Vﬁ,o*pg = f* LSt — 0 @®)
divy U o o
h h

Here, the discrete gradient operaﬁf"’* and discrete divergence operattiwz*’<>

associated to the constraint are the opertors introducttbiprevious sections. As a
consequence, the discrete divergence opedmfr’o* and discrete gradient operator
VZ*"O associated to the viscous term are new discrete operattrsah be defined
following the general DDFV strategy.

6. Conclusion

We have presented in this note a new framework for the dévivaf finite volume
schemes. On the one hand, we use a Discrete-Duality prénfdplthe derivation of
discrete operators. On the other hand, the unknowns artetboa different meshes.
This choice may be regarded as a generalisation of the stdjgad strategy to gen-
eral unstructured meshes.
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Numerical experiments show that the method is very stabé for very distorted
meshes [9, 10, 7]. The discrete-duality approach allows ysdserve at the discrete
level the variational structure of mixed problems, and tdgren the error analysis in
this framework. The method has been applied to stiff Sotkeblpms or Div-Curl
problems.
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