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Abstract
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1 Introduction

Let Ω be a bounded domain of R2 with Lipschitz boundary Γ. We consider the Navier–Stokes
equations with homogeneous Dirichlet boundary conditions:





−ν∆u + u ·∇u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,∫

Ω
p(x) dx = 0,

(1)

where the viscosity ν and the function f ∈ L2(Ω) are given. The unknowns u and p represent the
velocity field and the pressure of the fluid. Bold fonts are used to represent vectorial variables and
operators.

Note that the right-hand side satisfies the following condition:

∫

Ω
∇ · u(x) dx =

∫

Γ
u(ξ) · n(ξ) dξ = 0. (2)

The rotational formulations are well suited for discretizations on staggered unstructured grids. For
continuous operators, −∆u can be rewritten by

−∆u = ∇×∇× u−∇∇ · u .

Note that, in 2D, we should make a distinction between the scalar curl ∇ × u :=
∂uy

∂x
− ∂ux

∂y
and

the vectorial curl ∇ × φ =

(
∂φ

∂y
,
−∂φ

∂x

)T

. On the other hand, we apply the rotational formulation

of u ·∇u:

u ·∇u = (∇× u) u× ez + ∇
(

u2

2

)
, (3)

for which we associate the Bernoulli pressure:

π = p +
u2

2
. (4)

At last, in order to ensure the uniqueness of π, we enforce
∫
Ω π(x) dx = 0. Therefore, the problem
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(1) can be changed into: given f , find (u, π) such that





ν [∇×∇× u−∇∇ · u] + (∇× u) u× ez + ∇π = f , in Ω

∇ · u = 0, in Ω,

u = 0, on Γ,∫

Ω
π(x) dx = 0.

(5)

When the Navier-Stokes equations are solved by a fixed–point type method (see [22]), we must solve
a linear system to each non–linear iteration. Hence, at each nonlinear step, we have to solve the
Oseen-type problem: for given f and uG,





ν [∇×∇× u−∇∇ · u] + (∇× uG) u× ez + ∇π = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,∫

Ω
π(x) dx = 0,

(6)

where uG is known from the previous non-linear step. We will discretize the linear problem (6) by the
finite volume scheme in discrete duality as described in [7,4], which gives a discretization well suited
for arbitrary meshes. The meshes are built as follows: at first, we start from a polygonal primal mesh
and next, we define the dual mesh as composed of polygons whose vertices are the circumcenters of
the adjacent primal triangles and the midpoints of the adjacent primal edges. At last, we consider a
third mesh composed of quadrilateral cells (called diamond cells) whose vertices are the extremities
of primal and associated dual edges. Thanks to these meshes, we can compute the discrete gradient
and the discrete vectorial curl of a function by their values over the diamond cells; the discrete
divergence and the discrete scalar curl are defined by their values over the primal and the dual cells.
The discretization by finite volume scheme in discrete duality leads to a system–matrix which takes
the form of the following saddle–point problem




A BT

B 0






u

π


 =




f

0


 , (7)

where A is a convection–diffusion–type matrix, B and BT are the discrete divergence and gradient
matrices. The discrete unknown u corresponds to the approximation of the velocity on the diamond
cells and the discrete pressure π is the approximation of the Bernoulli pressure both on the primal
and dual meshes.

The numerical solutions of saddle–point problems have become a center of interest in recent years:
they appear in many applications of scientific computing and engineering (see the survey [16]). As
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it is well known, saddle–point systems can be solved by an Uzawa method or by a block–triangular
preconditioner applied on the complete system matrix inside a Krylov method [14,20]. However, the
real difficulty of the saddle–point problems resolution is to find an efficient preconditioner for the
Schur complement S := −BA−1BT .

Cahouet and Chabard [2] first introduced a way to precondition the Schur complement of the
Stokes saddle–point problem discretized by LBB stable finite elements; they used the formal com-
mutation of the operators

BA−1BT = BBT A−1
p ,

where Ap is the Laplacian matrix on the pressure space, associated to Neumann boundary conditions.
Since BBT corresponds formally to a discretization of −∇ · ∇ = −∆, they approached the Schur
complement by the scaled mass matrix

−ν−1Q. (8)

This preconditioner was also used for Oseen–type problems. It has been proved in [12] that the num-
ber of iterations of the preconditioned problem is independent of the mesh size when the problem is
discretized by stable finite elements; this result remains true for some stabilized discretizations [21,3].
In [18], Olshanskii studied a preconditioner for the Navier–Stokes equation in rotational form. He
proved that, when the problem is discretized by LBB–stable finite elements, applying the precondi-
tioner (8) leads also to an iteration count independent of the mesh size. When this preconditioner is
used for Oseen or Navier–Stokes problems, the number of iterations increases linearly with 1/ν and
this preconditioner is only efficient for a very moderate Reynolds numbers [15]. To take into account
the non symmetry of the convection–diffusion matrix A, Elman [10] introduced a preconditioner for
the Navier–Stokes problem discretized by MAC finite difference method. He proposed to use

−(BBT )(BABT )−1(BBT ). (9)

The number of iterations of the preconditioned saddle–point problem is mildly dependent of ν and
increases in proportion to h−1/2 where h represents the mesh size. Moreover, for constant wind in
Oseen-type problem, Elman showed that the iteration count is independent of the viscosity. However,
−BBT is exactly the Laplacian matrix on a MAC scheme, but this property is not necessarily true
for finite element or finite volume methods. In [13,20,12], the authors propose to precondition the
Schur complement issue from the Navier–Stokes problems discretized by LBB-stable finite elements
by

−HA−1
p Q, (10)

where H is the Laplacian matrix, Ap the convection–diffusion matrix on the pressure space and
Q the mass–matrix. With this preconditioner, the iteration count is independent of the mesh size
and depends of order ν−1/2 on the viscosity. The main drawback of this preconditioner consists in
the computation of the convection–diffusion matrix on the pressure space : for example, this is not
possible with the finite–volume method in discrete duality because of the unknowns locations. In [9],
Elman et al. extended the notion of formal commutators developed in [10]. This new preconditioner
takes the form of

−(BM−1
2 BT )(BM−1

2 AM−1
1 BT )−1(BM−1

1 BT ), (11)
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where M1 and M2 are weighted matrices to be defined. This method can be viewed as an algebraic
extension of preconditioners (9) and (10) : indeed, these preconditioners can be found with appropriate
choice of M1 and M2. This method is particularly interesting since it can be used as a black–box
preconditioner. More recently, Olshanskii et al. [19] proposed to use

−Q(BL−1AL−1BT )−1Q, (12)

where L corresponds to the diffusion part of the matrix A. They proved that their preconditioner
leads to iterative count independent on the mesh size and dependent like ν−1 on the viscosity.

This paper is organized as follows: in section 2, we will define the primal, dual and diamond meshes
with associated discrete gradient, divergence and curl operators. Then, section 3 will be devoted to
the discretization of the Oseen problem. After, we will describe some iterative solvers in section 4
and at last, some numerical results will be presented in section 5.

2 Definitions and notations

2.1 Construction of the primal mesh

We consider a first partition of Ω (named primal mesh) composed of elements Ti, with i ∈ [1, I],
supposed to be convex polygons. To each element Ti of the mesh is associated a node Gi located at
the barycentre of Ti. We assume in what follows that each frontier Ti has only one edge belonging to
the boundary. The area of Ti is denoted by |Ti|. We shall denote by J the total number of sides of this
mesh and by JΓ the number of these edges which are located on the boundary Γ and we associate
with each of these boundary edges its midpoint, also denoted by Gi with i ∈ [I + 1, I + JΓ].

2.2 Construction of the dual mesh

Further, we denote by Sk, with k ∈ [1, K], the nodes of the polygons of the primal mesh. To each
of these points, we associate a polygon denoted by Pk, obtained by joining the points Gi associated
to the elements of the primal mesh (and possibly to the boundary sides) of which Sk is a vertex, to
the midpoints of the edges of which Sk is an extremity. The area of Pk is denoted by |Pk|. The Pks
constitute a second partition of Ω, referenced as dual mesh. Figure 1 displays an example of a primal
mesh and its associated dual mesh.
Moreover, we suppose that the set [1, K] is ordered so that when Sk is not on Γ, then k ∈ [1, K−JΓ],
and when Sk is on Γ, then k ∈ [K − JΓ + 1, K].
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Ti

Gi

Pk
Sk

Figure 1. An example of a primal mesh and its associated dual mesh.

2.3 Construction of the diamond mesh

With each side of the primal mesh, denoted by Aj (whose length is |Aj|), with j ∈ [1, J ], we
associate a quadrilateral named “diamond cell” and denoted by Dj. When Aj is not on the boundary,
this cell is obtained by joining the points Sk1(j) and Sk2(j), which are the two nodes of Aj, with the
points Gi1(j) and Gi2(j) associated to the elements of the primal mesh which share this side. When
Aj is on the boundary Γ, the cell Dj is obtained by joining the two nodes of Aj with the point
Gi1(j) associated to the only element of the primal mesh of which Aj is a side and to the point Gi2(j)

associated to Aj (i.e. by convention i2(j) is element of [I + 1, I + JΓ] when Aj is located on Γ). The
cells Dj constitute a third partition of Ω, which we name “diamond-mesh”. The area of the cell Dj is
denoted by |Dj|. Such cells are displayed on figure 2.
Moreover, we suppose that the set [1, J ] is ordered so that when Aj is not on Γ, then j ∈ [1, J − JΓ],
and when Aj is on Γ, then j ∈ [J − JΓ + 1, J ].

Gi1

2

S

Gi

1

2k

Sk jD
G

G

1i

S 2k
Sk1i2

Dj

Figure 2. Examples of diamond cells.

2.4 Definitions of geometrical elements

The unit vector normal to Aj is denoted by nj and is oriented so that Gi1(j)Gi2(j) · nj ≥ 0.
We further denote by A′

j the segment [Gi1(j)Gi2(j)] (whose length is |A′
j|) and by n′j the unit vector
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normal to A′
j oriented so that Sk1(j)Sk2(j) ·n′j ≥ 0. We define for each i ∈ [1, I] the set V (i) of integers

i2

G
1

S
Sk1

G

i

2k
An

n’

jD

j
j

j

A’j

Figure 3. Notations for the diamond cell.

j ∈ [1, J ] such that Aj is a side of Ti and for each k ∈ [1, K] the set E(k) of integers j ∈ [1, J ] such
that Sk is a node of Aj.
We define for each j ∈ [1, J ] and each k such that j ∈ E(k) (resp. each i such that j ∈ V (i)) the
real-valued number s′jk (resp. sji) whose value is +1 or −1 whether n′j (resp. nj) points outwards or
inwards Pk (resp. Ti). We define n′jk := s′jkn

′
j (resp. nji := sjinj) and remark that n′jk (resp. nji)

always points outwards Pk (resp. Ti).

2.5 Definition of the operators

We may approach the gradient operator ∇• =
(

∂•
∂x

, ∂•
∂y

)
by a discrete gradient operator on the

diamond cells Dj (see [7]).

Definition 1 Given any φ = (φT
i , φP

k ) ∈ RI+JΓ × RK, the discrete gradient ∇D
h is defined by its

values over the diamond cells Dj:

(∇D
h φ)j :=

1

2 |Dj|

{[
φP

k2
− φP

k1

]
|A′

j|n′j +
[
φT

i2
− φT

i1

]
|Aj|nj

}
, (13)

if we set φP
k := φ(Sk) and φT

i := φ(Gi), for any (i, k).

The operator ∇D
h thus acts from RI+JΓ × RK into

(
RJ

)2
.

In the very same way, we may approach the vector curl operator ∇× • by a discrete vector curl
operator:

Definition 2 Given any φ = (φT
i , φP

k ) ∈ RI+JΓ × RK, the discrete vector curl operator ∇D
h × is
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defined by its values over the diamond cells Dj:

(∇D
h × φ)j := − 1

2 |Dj|

{[
φP

k2
− φP

k1

]
|A′

j|τ ′j +
[
φT

i2
− φT

i1

]
|Aj|τj

}
, (14)

where the unit vectors τj and τ ′j are such that (nj, τj) and (n′j, τ
′
j) are orthogonal positively oriented

bases of R2.

Next, we choose to define the discrete divergence of a vector field u by its values both on the
primal and dual cells of the mesh. Supposing that the vector field u is given by its discrete values
uj on the cells Dj, we state the definition of the discrete divergence ∇T

h · on each Ti and the discrete
divergence ∇P

h · on each Pk.

Definition 3 Given any u = (uj) ∈ R2J , the discrete divergence ∇T,P
h · := (∇T

h ·,∇P
h ·) is defined by

its values over the primal cells Ti and the dual cells Pk (see Fig. 4)

(∇T
h · u)i :=

1

|Ti|
∑

j∈V (i)

|Aj|uj · nji ,

(15)

(∇P
h · u)k :=

1

|Pk|


 ∑

j∈E(k)

(
|A′

j1|n′jk1 + |A′
j2|n′jk2

)
· uj +

∑

j∈E(k)∩[J−JΓ+1,J ]

1

2
|Aj|uj · nj


 ,

where we recall that V (i) (resp. E(k)) is the set of integers j ∈ [1, J ] such that Aj is a side of Ti

(resp. Sk is a node of Aj) and that nji (resp. n′jk1 and n′jk2) is the unit vector orthogonal to Aj (resp.
A′

j1 and A′
j2) pointing outward Ti (resp. Pk).

T i

Aj
τ ji

jin jk1
n’

jk1
τ ’

jk2
τ

jk2
n’

k

A’
A’j2

j1

P

’

Figure 4. Edges and unit vectors for the discrete divergence and curl

For more details about the discrete operators, refer to [7,4].
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For a given vector field u, it is straightforward to check that formulae (15) are the exact mean-
values of ∇ · u over Ti, respectively over an inner Pk, if

|Aj|uj · nji =
∫

Aj

u · nji ds ,

resp. if (
|A′

j1|n′jk1 + |A′
j2|n′jk2

)
· uj =

∫

A′j1
u · n′jk1 ds +

∫

A′j2
u · n′jk2 ds.

In the very same way, we may approach the scalar curl operator ∇× • =
(

∂•y

∂x
− ∂•x

∂y

)
by a discrete

scalar curl operator:

Definition 4 Given any u = (uj) ∈ R2J , the discrete scalar curl operator ∇T,P
h × := (∇T

h×,∇P
h×)

is defined by its values over the primal cells Ti and the dual cells Pk:

(∇T
h × u)i : =

1

|Ti|
∑

j∈V (i)

|Aj|uj · τji ,

(16)

(∇P
h × u)k : =

1

|Pk|


 ∑

j∈E(k)

(
|A′

j1|τ ′jk1 + |A′
j2|τ ′jk2

)
· uj +

∑

j∈E(k)∩[J−JΓ+1,J ]

1

2
|Aj|uj · τj


 .

We can also define some discrete scalar products :

Definition 5 (The discrete scalar products) Let (φ, ψ) ∈
(
RI × RK

)2
and (u,v) ∈

(
R2J

)2
, then we

define the following scalar products:

(u,v)D :=
∑

j∈[1,J ]

|Dj|uj · vj, (17)

(φ, ψ)T,P :=
1

2


 ∑

i∈[1,I]

|Ti|φT
i ψT

i +
∑

k∈[1,K]

|Pk|φP
k ψP

k


 , (18)

We also define the trace of u ∈ RJ and φ ∈ RI × RK on the boundary Γ by

(u, φ)Γ,h :=
∑

j∈Γ

|Aj|uj × 1

4

(
φP

k1(j) + 2φT
i2(j) + φP

k2(j)

)
. (19)

These scalar products are built such that the discrete gradient, divergence and curl operators satisfy
some discrete duality principles, expressed in the following proposition.
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Proposition 6 (The discrete Green formulae) The following discrete analogues of the Green formu-
lae hold:

(∇T,P
h · u, φ)T,P = −(u,∇D

h φ)D + (u · n, φ)Γ,h , (20)

(∇T,P
h × u, φ)T,P = (u,∇D

h × φ)D + (u · τ, φ)Γ,h , (21)

for all u ∈
(
RJ

)2
and all φ = (φT , φP ) ∈ RI+JΓ ×RK, where the definitions (17), (18) and (19) have

been used.

3 Discretization of the Oseen equations

3.1 Discrete system

Discretization and linearisation with an iterative process (as fixed–point–like methods (see [22]))
leads us to solve the following linear system, called Oseen equations: given f and uG, find (u, π) such
that 




ν [∇×∇× u−∇∇ · u] + (∇× uG) u× ez + ∇π = f in Ω,

∇ · u = 0 in Ω,

u = 0 in Γ,∫

Ω
π(x) dx = 0.

(22)

More precisely, we will compute the approximation (uj)j∈[1,J ] of the velocity u on the diamond cells
and the approximation (πT

i )i∈[1,I], (πP
k )k∈[1,K] of the Bernoulli pressure π on the primal and dual cells

respectively.

We discretize the first equation of (22) on the interior diamond cells, and the second equation both
on the primal and dual cells. Then, the boundary condition u = 0 is discretized on the boundary di-
amond cells while the condition of vanishing mean pressure is discretized on the primal and dual cells.

We suppose that the locations of the values of uG are the same as those of u, that is on the
diamond cells. Therefore, we may easily calculate ∇× uG on the primal and dual cells according to
the discrete operator ∇T,P

h ×. However, since the first equation in (22) is discretized on diamond cells,
we shall use the following quadrature formula to calculate ∇× uG over any Dj:

(∇× uG)|Dj
≈ (∇T

h × uG)i1 + (∇T
h × uG)i2 + (∇P

h × uG)k1 + (∇P
h × uG)k2

4
. (23)

Then, for all diamond cells, we set:

−
[
∆D

h u
]
j
= (∇D

h ×∇T,P
h × u)j − (∇D

h ∇T,P
h · u)j.
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Now, we can discretize the continuous problem (22) by the following system:

−ν
[
∆D

h u
]
j
+ (∇× uG)|Dj

uj × ez + (∇D
h π)j = fD

j , ∀Dj /∈ Γ, (24a)

(∇T,P
h · u)i,k = 0, ∀Ti,∀Pk, (24b)

uj = fD
j , ∀Dj ∈ Γ, (24c)

∑

i∈[1,I]

|Ti| πT
i =

∑

k∈[1,K]

|Pk| πP
k = 0, (24d)

where we have set fD
j =

1

|Dj|
∫

Dj

f(x) dx, ∀j /∈ Γ and fD
j = 0, ∀j ∈ Γ.

Theorem 1 If each boundary primal cell has only one edge which belongs to the boundary, then the
solution ((uj)j∈[1,J ], (π

T
i )i∈[1,I], (π

P
k )k∈[1,K]) of (24) exists and is unique.

The proof is given in [6]. Once (uj)j∈[1,J ] and (πT
i , πP

k )i∈[1,I],k∈[1,K] have been computed, we can deduce
the physical pressure from the Bernoulli pressure by integration and projection. For more details,
refer to [5].

3.2 Algebraic formulation

In this section, we give the values of the matrices A, B and BT related to (24a)–(24c) which form
the saddle–point problem: 


A BT

B 0






u

π


 =



F

0


 .

Note that, using the Green formula (20), we can prove that the operators −∇T,P
h · and ∇D

h are adjoint
when u satisfies homogeneous Dirichlet boundary conditions.
The 2J × 2J matrix A is defined by A = νL + N, where

(L•)j =




|Dj|

[
(∇D

h ×∇T,P
h × •)j − (∇D

h ∇T,P
h · •)j

]
,∀j /∈ Γ,

|Dj| •j ,∀j ∈ Γ,
(25)

and

(N•)j =




|Dj| (∇× uG)|Dj

(− •jy, •jx)
T ,∀j /∈ Γ,

0 ,∀j ∈ Γ.
(26)
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The (I + K)× 2J matrix B is defined by

(B•)l =





−|Ti|
2

(∇T
h · •)i , if i = l ∈ [1, I],

−|Pk|
2

(∇P
h · •)k , if k = l − I ∈ [1, K].

(27)

and the vector F whose size is 2J is given by

(F•)j =




|Dj| Fj ,∀j /∈ Γ,

0 ,∀j ∈ Γ.
(28)

Remark 1 When u 6= 0 on the boundary and ∇ · u = 0 in Ω (see the numerical tests), we perform
a change of variables such that u0 = u− ũ which vanihes on the boundary (ũ is the null vector with
the boundary conditions only) and, in this case, Bu0 6= 0 in general. Therefore, we are led to solve a
saddle–point problem with a perturbed right-hand side (F̃, g̃):




A BT

B 0






u0

π


 =



F̃

g̃


 . (29)

4 Iterative solvers

Using the discrete inner product definition, it makes sense now to define a finite volume analogous
of the pressure mass–matrix and of the velocity mass–matrix defined for finite element methods. We
denote by Q the pressure mass matrix defined by

∀1 ≤ l ≤ I + K, Ql,l =




|Ti| if i = l ∈ [1, I],

|Pk| if k = l − I ∈ [1, K].

The velocity mass–matrix (in 2D) X is defined on the diamond cells by

∀1 ≤ l ≤ 2J, Xl,l =




|Dj| if j = l ∈ [1, J ],

|Dj| if j = l − J ∈ [1, J ].

We compare three kind of preconditioners S̃−1 of the Schur complement S = −BA−1BT :

• SIMPLE preconditioner: S̃−1 = −(BÂ−1BT )−1 where Â is an approximation of A (for our tests,
we will take for Â the diagonal matrix diag(A) whose diagonal is equal to the diagonal of A).
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• The approximate commutators (called BFBt preconditioner by Elman [9]):

S̃−1 = −(BM−1
2 BT )−1(BM−1

2 AM−1
2 BT )(BM−1

2 BT )−1.

We consider the following candidates for M2 : the identity matrix I, the mass matrix on the
velocity space X and diag(A).

• Olshanskii’s preconditioner [19]:

S̃−1 = −Q−1BL−1AL−1BT Q−1,

where L is the Laplacian matrix (25) with homogeneous boundary conditions.

5 Numerical results

In this section, we consider the computational domain Ω = [0, 1]2. Each boundary edge of Ω
is decomposed into 20 segments of the same length and we compute the Delaunay triangulation of
the domain Ω thanks to the freeware EMC2 [11]. We consider the Oseen problem (influenced by
lid-driven cavity benchmark) in the domain Ω with wind

w =




2(2y − 1)(1− (2x− 1)2)

−2(2x− 1)(1− (2y − 1)2)




and with boundary conditions u(x, 1) = (1, 0)T , u(x, y) = 0 elsewhere. The right-hand side is
supposed to be null. With these conditions, the Reynolds number is equal to Re = 1

ν
.

5.1 Spectra

Figures 5, 6 7 and 8 show the spectra of the preconditioned Schur complement S̃−1S for several
values of the viscosity ν and for all preconditioners described above on the unstructured grid 20×20.
These results were obtained using the eigs function of matlab. We can observe the clustering effect of
the BFBt preconditioner, specially for moderate Reynolds numbers. The spectral condition number
is defined by the modulus of the ratio between the eigenvalue of largest real part and the eigenvalue
of the smallest real part and it is known that the iteration count of an iterative method applied to
the preconditioned problem grows with the spectral condition number. We may observe that, for
ν ≥ 0.01, the box which contains the eigenvalues is almost constant for the BFBt preconditioner
only. We can already predict that this preconditioner gives better results when ν decreases. For
ν = 0.001, the smallest eigenvalue tends to zero for all preconditioners: however, these results are not
really significant because the mesh size is too large for such a small viscosity. Looking at the spectrum
obtained with the Olshankii preconditioner, we can observe that, even for moderate Reynolds number,
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there are some eigenvalues very close to zero : it explains partially the bad performances we had with
this preconditioner.
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Figure 5. ν = 1. Spectrum of the preconditioned Schur complement
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Figure 7. ν = 0.01. Spectrum of the preconditioned Schur complement

5.2 Iteration count

The experiments are done in fortran90 with PETSC [1] and MUMPS libraries [17]. The mesh
is generated by EMC2 [11]. The global algorithm is the preconditioned Uzawa-BICGSTAB [23] de-
scribed in Table 1; it is obtained by applying the classical preconditioned BICGSTAB to the Schur
complement system.
For SIMPLE or BFBt preconditioner, we have to solve systems whose matrices take the form
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Figure 8. ν = 0.001. Spectrum of the preconditioned Schur complement
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BM−1
2 BT , where M2 can be the identity matrix I, diag(A) or the velocity mass matrix X. Since

M2 is chosen to be easily inversible (we have chosen only diagonal matrices), BM−1
2 BT can be com-

puted by a sparse matricial product : the resulting matrix is sparse and its sparsity is the same as
the sparsity of the classical diffusion matrix. Remark that the matrix BM−1

2 BT is singular with a
rank equal to size(BM−1

2 BT )− 2 for all M2 matrices obtained by discretization of a continuous and
coercive form on the velocity space. In order to obtain a non–singular matrix, we add a Dirichlet
boundary condition on two degrees of freedom (since we have two meshes) corresponding to a point
Gi and a point Sk.

The ”real” value of the pressure is computed at the end of the solving by ensuring that the
integral of the pressure is equal to 0. BM−1

2 BT• = ? is solved using the multifrontal method from
MUMPS. The product by A−1 is also done by a MUMPS factorization. For the BFBt preconditioner,
one BICGSTAB iteration corresponds to two inversions of A and four inversions of BM−1

2 BT (only
two inversions of Bdiag(A)−1BT for SIMPLE). The linear iterations are stopped when the stopping
criterions defined in table 1 are satisfied with

tol = 1e− 8.

The maximum number of iterations is fixed to 5000 and DNC (for ”Do Not Converge”) means that
the stopping criterion is not satisfied at the 5000th iteration. Table 2 shows the iteration count of
Uzawa–BICGSTAB preconditioned by SIMPLE and BFBt preconditioners described in section 4.
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Figure 9. Dependences for the BFBt preconditioner.

Numbers of iterations for Olshanskii preconditioner have not be reported in this table because
this preconditioner does not fit at all our discretization. For example, on the grid 40 × 40 and for
ν = 0.1, more than 1000 iterations are necessary to obtain the convergence.

The results for the BFBt preconditioner confirm the spectrum illustration : for large viscosity
(ν ≥ 0.1,), choosing X as weight helps to speed-up the convergence. Then, for smaller values of the
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Let Φ = BA−1f and S = BA−1BT .
initial guess: p, u
r = Φ− Sp
r̃ = r
ω = 1
resid = ‖r‖/‖Φ‖
for i=1, maxiter

if ρ1 = 0, breakdown, EXIT, end if
if i=1 then p=r
else

β =
ρ1

ρ2

α

ω
p = r + β(p− ωv)

end if
p̂ = M−1p
e = A−1BT p̂
v = Be

α =
ρ1

(r̃, v)
s = r − αv
if ‖s‖ < tol ‖Φ‖, x = x + αp̂, convergence, EXIT, end if
ŝ = M−1s
q = A−1BT ŝ
t = Bq
y = y + αp̂ + ωŝ
x = x− αe− ωq
r = s− ωt
ρ2 = ρ1

if ‖r‖ < tol ‖Φ‖, convergence, EXIT, end if
si ω = 0, breakdown, EXIT, end if

end for

Table 1
pseudo-code for the preconditioned Uzawa-BICGSTAB

viscosity, diag(A) should be preferred. Indeed, we have already observed in [5] that the choice of X is
clearly the best choice for the Stokes problem, whereas the preconditioner obtained with M2 = I and
M2 = diag(A) are equivalent but cannot compete with M2 = X. The performance results obtained
for the Navier–Stokes problem with moderate Reynolds number are so a continuation of the results
observed for Stokes problem. However, the discretization of the convective term used in this paper
(using the Bernoulli pressure) is very different than the discretization usually chosen in the literature
on the Navier-Stokes problem, in particular in the works of Elman, Silvester and Wathen [8]. We
observe here that the choice of X does not fit our type of discretization for higher Reynolds number.

Figure 9 shows a mildly dependence of the viscosity which is very similar to the results of literature
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mesh preconditioner ν = 1 ν = 1e− 1 ν = 1e− 2 ν = 1e− 3 ν = 1e− 4

10× 10 M2 = I 8 9 24 DNC DNC

M2 = X 7 8 29 627 DNC

M2 = diag(A) 8 8 24 DNC DNC

SIMPLE 47 46 62 620 DNC

20× 20 M2 = I 11 12 27 335 DNC

M2 = X 10 12 32 602 DNC

M2 = diag(A) 12 13 27 169 DNC

SIMPLE 87 93 92 288 DNC

40× 40 M2 = I 18 19 36 211 DNC

M2 = X 15 15 42 DNC DNC

M2 = diag(A) 17 18 35 205 DNC

SIMPLE 154 166 179 282 DNC

80× 80 M2 = I 33 38 44 191 DNC

M2 = X 19 22 72 DNC DNC

M2 = diag(A) 30 33 40 170 DNC

SIMPLE 310 370 376 394 DNC

160× 160 M2 = I 47 63 63 162 DNC

M2 = X 27 30 96 DNC DNC

M2 = diag(A) 58 60 63 160 DNC

SIMPLE 685 881 909 871
Table 2
Iteration count for the linear solver

[19,9]: indeed, the independence is only obtained for constant wind. Since we have a circulating flow,
the h dependence is more important but of the same order than for the results obtained by Olshanskii
and Vassilevski [19].

6 Conclusion

In this work, we have shown that Elman’s BFBt preconditioner is well adapted to the solution
of Oseen problems with this finite volume discretization and allows to decrease considerably the
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iteration count; this is not the case for all classical preconditioners developed for finite element method
problems, as pointed out in our numerical results. The algebraic framework of the preconditioner
makes it easy to implement to general discretizations (finite elements, finite volumes, ...), so it can
be presented as a robust preconditioner for saddle–point problems. It can be efficiently coupled with
nonlinear iterations for solving Navier-Stokes equations, at least for moderate Reynolds numbers
(Re ' 1000).
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