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1. Introduction. Discretization schemes which are based on a discrete vector
analysis satisfying discrete analogues of the usual continuous theorems lead to robust
and efficient approximations of various physical models. Based on finite volume-like
formulations, they provide discrete approximations of differential operators such as
gradient, divergence and curl.

Such schemes were for example constructed by Hyman, Shashkov and co-workers,
initially on logically rectangular grids. We refer to [13, 14] for the construction of the
discrete operators and to [15] for the proof of a discrete Hodge decomposition. These
schemes were then applied in several different circumstances (see e.g. [16, 17]) and
extended to unstructured [5] or even non-conforming grids [19], although on that type
of meshes, to our knowledge, no discrete Hodge decomposition has been proved.

Our interests in this paper are related to other schemes based on a discrete vec-
tor analysis which were proposed by Nicolaides and co-workers to solve fluid me-
chanics problems [7], div-curl problems [20, 12] or Maxwell equations [21]. In these
works, these so-called covolume schemes are restricted to locally equiangular trian-
gular meshes in the two-dimensional case. Given such a primal triangular mesh, a
dual mesh is constructed by joining the circumcenters of adjacent triangles. Thus the
edges of the primal and dual meshes are orthogonal. This property will be called in
the following “the orthogonality property”. The necessity for the mesh to verify this
property might be in certain cases a severe restriction, in particular with respect to
mesh adaptivity.

In [20], discrete field components are defined normal to the edges of the primal
mesh and therefore, thanks to the orthogonality property, along the edges of the
dual mesh. This single component is enough to permit the definition of a discrete
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divergence operator on the primal mesh and of a discrete curl operator on the dual
mesh. Reciprocally, discrete analogues of the normal (with respect to the edges of
the primal mesh) components of the gradients (respectively vector curls) are obtained
over the edges with the help of scalar quantities defined at the circumcenters (resp.
at the vertices) of the primal cells.

Due to the anisotropy of the media considered in [12], the authors are led to
introduce both components of vector fields on the edges of the mesh, which allows
them to define discrete divergence and curl operators on both the primal and dual
meshes. Nevertheless, they keep on considering only the normal components of the
discrete gradient and curl vectors, thus leaving the generalization of [20] incomplete.

In the present work, we extend the covolume ideas of Nicolaides to almost arbi-
trary two-dimensional meshes, including in particular non-conforming meshes. The
only requirement on the mesh is that the dual cells (which are obtained in a different
way, see below) form a partition of the domain of computation. These meshes do not
necessarily verify the orthogonality property, and we therefore discretize vector fields
by their two components over so-called diamond-cells which are quadrilaterals whose
vertices are the extremities of primal and associated dual edges. Like in [12], these two
field components enable us to define discrete divergence and curl operators both on
the primal and dual meshes. Reciprocally, and in contrast to [12], both components
of discrete gradient and vector curl operators are defined over the diamond-cells with
the help of scalar quantities given on both the primal and dual cells. Together with
the definition of appropriate discrete scalar products, we establish that these discrete
operators verify discrete properties which are analog to those verified by their contin-
uous counterparts: discrete Green formulae, discrete Hodge decomposition of vector
fields, vector curls have a vanishing divergence and gradients have a vanishing curl.
These results thus generalize those obtained in [12, 20], with the major novelty that
they hold on a much wider class of meshes.

Because of the discrete Green formulae, finite volume schemes based on these
ideas have been named “Discrete Duality Finite Volume” (DDFV) schemes in [9] and
their use has started with the construction and analysis of a finite volume method
for the Laplace equation on almost arbitrary two-dimensional meshes [10]. Then,
these ideas have been applied to the discretization of non-linear elliptic equations [2],
drift-diffusion and energy-transport models [6] and electro-cardiology problems [22].

In this article, we apply these ideas to the numerical solution of div-curl problems
which occur for example in fluid dynamics, electro- and magnetostatics. Using the
discrete Hodge decomposition of the discrete unknown vector field, this problem is
recast into two discrete Laplace equations for the discrete potentials, just like in the
continuous problem. Using results obtained in [10], we prove the convergence of the
scheme provided the continuous potentials are smooth enough and under geometrical
hypotheses related to the non-degeneracy of the diamond-cells.

This paper is organized as follows: in section 2, we explain the construction of
the primal, dual and diamond meshes and we define our notations. In section 3 we
construct the discrete differential operators, while section 4 is devoted to the proof of
the properties of the discrete operators. Then, we apply these ideas in section 5 to
discretize the div-curl problem and obtain error estimates. Several numerical experi-
ments are reported in section 6 and conclusions are drawn in section 7.

2. Definitions and notations. Let Ω be a bounded polygon of R
2, not neces-

sarily simply connected, whose boundary is denoted by Γ. We suppose in addition
that the domain has Q holes. Throughout the paper, we shall assume that Q > 0,
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but the results also hold for the case Q = 0.
Let Γ0 denote the exterior boundary of Ω and let Γq , with q ∈ [1, Q], be the

interior polygonal boundaries of Ω, so that Γ = Γ0

⋃

q∈[1,Q] Γq .
The domain Ω will be covered by three different meshes whose constructions are

similar to those given in [10].

2.1. Construction of the primal mesh. We consider a first partition of Ω
(named primal mesh) composed of elements Ti, with i ∈ [1, I ], supposed to be convex
polygons. With each element Ti of the mesh is associated a node Gi located inside Ti.
This point may be the barycentre of Ti, but this is not necessary. The area of Ti is
denoted by |Ti|. We shall denote by J the total number of edges of this mesh. Note
that in the case of a non-conforming mesh, an edge is any segment whose extremities
are nodes of the mesh. We also denote by JΓ the number of edges which are located
on the boundary Γ and we associate with each of these boundary edges its midpoint,
also denoted by Gi with i ∈ [I + 1, I + JΓ]. By a slight abuse of notations, we shall
write i ∈ Γq iff Gi ∈ Γq .

2.2. Construction of the dual mesh. We denote by Sk, with k ∈ [1,K], the
nodes of the polygons of the primal mesh. To each of these points, we associate a
polygon denoted by Pk, obtained by joining the points Gi associated to the elements
of the primal mesh (and possibly to the boundary edges) of which Sk is a node. The
area of Pk is denoted by |Pk|. We shall only consider in the following the cases where
the Pks constitute a second partition of Ω, which we name dual mesh1. Figure 2.1
displays an example of a non-conforming primal mesh and its associated dual mesh.
Moreover, we suppose that the set [1,K] is ordered so that when Sk is not on Γ, then
k ∈ [1,K − JΓ], and when Sk is on Γ, then k ∈ [K − JΓ + 1,K]. We shall also write
k ∈ Γq iff Sk ∈ Γq.

Sk
Pk

Ti

Gi

Fig. 2.1. An example of a primal mesh and its associated dual mesh.

2.3. Construction of the diamond mesh. With each edge of the primal mesh,
denoted by Aj (whose length is |Aj |), with j ∈ [1, J ], we associate a quadrilateral
named “diamond-cell” and denoted by Dj . When Aj is not on the boundary, this cell
is obtained by joining the points Sk1(j) and Sk2(j), which are the two nodes of Aj , with
the points Gi1(j) and Gi2(j) associated to the elements of the primal mesh which share

1It may happen that the Pks overlap, as seen on figure 2 of reference [10]
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this edge. When Aj is on the boundary Γ, the cell Dj is obtained by joining the two
nodes of Aj with the point Gi1(j) associated to the only element of the primal mesh of
which Aj is an edge and to the point Gi2(j) associated to Aj (i.e., by convention, i2(j)
is an element of [I + 1, I + JΓ] when Aj is located on Γ). The cells Dj constitute
a third partition of Ω, which we name “diamond-mesh”. The area of the cell Dj is
denoted by |Dj |. Such cells are displayed on figure 2.2.
Moreover, we suppose that the set [1, J ] is ordered so that when Aj is not on Γ, then
j ∈ [1, J − JΓ], and when Aj is on Γ, then j ∈ [J − JΓ + 1, J ]. We shall also write
j ∈ Γq iff Aj ⊂ Γq.

Sk1
Sk2

Gi1

Gi2

Dj

Gi2
Sk2

Sk1

Gi1

Dj

Fig. 2.2. Examples of diamond-cells.

2.4. Definitions of geometrical elements. The unit vector normal to Aj is
denoted by nj and is oriented so that Gi1(j)Gi2(j) · nj ≥ 0. We further denote by A′

j

the segment [Gi1(j)Gi2(j)] (whose length is |A′
j |) and by n′

j the unit vector normal to
A′

j oriented so that Sk1(j)Sk2(j) · n
′
j ≥ 0.

When Sk ∈ Γ (k ∈ [K − JΓ + 1,K]), we define Ãk as the part of the boundary Γ
which consists of the union of the halves of the two segments Aj located on Γ and of

which Sk is a node, and by ñk the exterior unit normal vector to Ãk (see figure 2.3).
We denote by Miα(j) kβ(j) the midpoint of the segment [Giα(j)Skβ(j)], for each pair of

A k
~

S k Γn~k

Fig. 2.3. Definition of Ãk and ñk for the boundary nodes

integers (α, β) in {1; 2}2 (see figure 2.4). We define for each i ∈ [1, I ] the set V(i) of
integers j ∈ [1, J ] such that Aj is an edge of Ti and for each k ∈ [1,K] the set E(k) of
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Gi2

Gi1

Sk2

Mi2 1k Mi2 k2

Mi1k2

Sk1

Mi1 1k

Aj

jD
nj

n’j

A’j

Fig. 2.4. Notations for the diamond cell.

integers j ∈ [1, J ] such that Sk is a node of Aj .
We define for each j ∈ [1, J ] and each k such that j ∈ E(k) (resp. each i such that
j ∈ V(i)) the real-valued number s′jk (resp. sji) whose value is +1 or −1 whether n′

j

(resp. nj) points outwards or inwards Pk (resp. Ti). We define n′
jk := s′jkn

′
j (resp.

nji := sjinj) and remark that n′
jk (resp. nji) always points outwards Pk (resp. Ti).

For j ∈ [1, J − JΓ], as indicated on figure 2.5, we also denote by Dj,1 and Dj,2,
the triangles Sk1(j)Gi1(j)Sk2(j) and Sk2(j)Gi2(j)Sk1(j)). In the same way, we denote
by D′

j,1 and D′
j,2, the triangles Gi2(j)Sk1(j)Gi1(j) and Gi1(j)Sk2(j)Gi2(j).

Gi1

Gi2

Gi2
Gi2

Gi1

Dj

Gi1

Gi2

D’j,1 D’j,2

Dj,2

Dj,1

Gi1

Sk2
Sk1

Sk1

Sk2

Sk2

Sk2

1
Sk

1
Sk

Fig. 2.5. A diamond-cell may be split into two triangles in two distinct ways.

The characteristic functions of the cells Ti and Pk will be denoted by θT
i and θP

k .

2.5. Definitions of discrete and continuous scalar products and norms.

As will be seen in the following, we shall associate with each point Gi (i ∈ [1, I+JΓ])
and each vertex Sk (k ∈ [1,K]) discrete values. This leads us to the definition of the

following discrete scalar product for all (φ, ψ) =
(

(φT
i , φ

P
k ), (ψT

i , ψ
P
k )
)

∈
(

R
I × R

K
)2

(φ, ψ)T,P :=
1

2





∑

i∈[1,I]

|Ti|φ
T
i ψ

T
i +

∑

k∈[1,K]

|Pk|φ
P
k ψ

P
k



 .(2.1)
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In the same way, we define a discrete scalar product on the diamond mesh for all

(u,v) = ((uj), (vj)) ∈
(

R
2
)J

×
(

R
2
)J

(u,v)D :=
∑

j∈[1,J]

|Dj |uj · vj(2.2)

and a discrete scalar product for the traces of u ∈ R
J and φ ∈ R

I+JΓ

× R
K on the

boundaries Γq

(u, φ)Γq ,h :=
∑

j∈Γq

|Aj |uj ×
1

4

(

φP
k1(j) + 2φT

i2(j) + φP
k2(j)

)

and on Γ

(u, φ)Γ,h :=
∑

q∈[0,Q]

(u, φ)Γq ,h .(2.3)

Further, for any φ ∈ R
I+JΓ

×R
K , we define a discrete H1 semi-norm on the diamond

mesh with the help of the discrete gradient operator to be defined below (see Eq. (3.2)):

|φ|1,D :=
(

∇
D
h φ,∇

D
h φ
)1/2

D
.

Finally, Hm is the space of functions v of L2(Ω) whose partial derivatives (in the
distributional sense) ∂αv, with |α| ≤ m all belong to L2(Ω), while || · ||m,Ω is the
associated norm. The standard L2(Ω) inner product will be denoted by (·, ·)Ω.

3. Construction of the discrete operators. In this section, we approach the
gradient, divergence and curl operators by discrete counterparts. We would like to
stress that in two dimensions, a distinction is usually made between the vector curl

operator from R to R
2, defined by ∇×φ =

(

∂φ
∂y , −

∂φ
∂x

)T

and the scalar curl operator

from R
2 to R, defined by ∇× u =

∂uy

∂x − ∂ux

∂y .
Figure 3.1 shows the stencils of the different operators and of their combinations: The
stencil for the discrete gradient and vector curl operators simply consists of the four
corners of the diamond-cell Dj . The stencil for the discrete divergence and scalar curl
operators consists of the diamonds associated to the edges of the primal and dual cells.
Arrows are displayed on Fig. 3.1 to represent the normal and tengential components
of the vector fields associated to the diamonds. The stencils for the discrete laplacian
on the primal and dual cells respectively consist of the black and white circles on the
left part and on the right part of the figure.

3.1. Construction of the discrete gradient and vector curl operators on

the diamond cells. We define the discrete gradient of a function φ by its values on
the diamond-cells of the mesh. We follow [8, 10] and compute the mean-value of the
gradient of any function φ on such a cell Dj by the following formula:

|Dj |
〈

∇φ|Dj

〉

=

∫

Dj

∇φ(x) dx =

∫

∂Dj

φ(ξ)n(ξ) dξ =
∑

(α,β)

∫

[GiαSkβ
]

φ(ξ)n dξ,(3.1)

where n(ξ) stands for the outward unit normal vector to Dj at point ξ. The integrals
in (3.1) can be approximated by the following formula:

∫

[GS]

φ(ξ) dξ ≈ `GS
[φ(G) + φ(S)]

2
,
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T i

Dj

Pk

Dj

Fig. 3.1. Stencils for the discrete operators. Left part: primal cell. Right part: dual cell.

where `GS denotes the length of the segment [GS]. Summing the contributions of the
different vertices of Dj and using elementary geometrical equalities allows us to give

the definition of the discrete gradient ∇
D
h on Dj .

Definition 3.1. The discrete gradient ∇
D
h is defined by its values over the

diamond-cells Dj :

(∇D
h φ)j :=

1

2 |Dj |

{

[

φP
k2

− φP
k1

]

|A′
j |n

′
j +

[

φT
i2 − φT

i1

]

|Aj |nj

}

,(3.2)

where we set φP
kα

:= φ(Skα
) and φT

iα
:= φ(Giα

), for α ∈ {1; 2}. Note that formula
(3.2) is exact for polynomials of degree one. Computing the discrete gradient only
requires the values of φ at the nodes of the primal and dual meshes. The operator ∇

D
h

thus acts from R
I+JΓ

× R
K into

(

R
2
)J

.

In the same way, we may approach the vector curl operator ∇×• =
(

∂•
∂y , −

∂•
∂x

)T

by a discrete vector curl operator:
Definition 3.2. The discrete vector curl operator ∇

D
h × is defined by its values

over the diamond-cells Dj :

(∇D
h × φ)j := −

1

2 |Dj |

{

[

φP
k2

− φP
k1

]

|A′
j |τ

′
j +

[

φT
i2 − φT

i1

]

|Aj |τ j

}

,(3.3)

where the unit vectors τ j and τ
′
j are such that (nj , τ j) and (n′

j , τ
′
j) are orthonormal

positively oriented bases of R
2.

Remark 3.3. In a connected domain, the discrete gradient and vector curl of a
given φ = ((φT

i ), (φP
k )) vanish if and only if there exist two constants cT and cP , such

that φT
i = cT for all i and φP

k = cP for all k. The fact that cT and cP may differ
one from the other means that such a φ may in general present oscillations. However,
in the applications studied in the present work, such oscillations never appear due to
information on the mean-value of φ (Eq. (4.16) and (5.7d) below), or due to boundary
conditions (Eq. (4.17) and (5.8e)).

3.2. Construction of the discrete divergence and scalar curl operators

on the primal and dual meshes. Next, we choose to define the discrete divergence
of a vector field u by its values both on the primal and dual cells of the mesh. A very
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natural way to do so on the primal cell Ti is to write

|Ti|
〈

∇ · u|Ti

〉

=

∫

Ti

∇ · u(x) dx =

∫

∂Ti

u(ξ) · n(ξ) =
∑

j∈V(i)

∫

Aj

u(ξ) · nji ,

where we recall that V(i) is the set of integers j ∈ [1, J ] such that Aj is an edge
of Ti and that nji is the unit vector orthogonal to Aj pointing outward Ti. Supposing
that the vector field u is given by both of the Cartesian components of its discrete
values uj on the diamond cells Dj , and performing a similar computation over the
cells Pk, we obtain the definition of the discrete divergence ∇T

h · on each Ti and the
discrete divergence ∇P

h · on each Pk.

Definition 3.4. The discrete divergence ∇T,P
h · := (∇T

h ·,∇
P
h ·) is defined by its

values over the primal cells Ti and the dual cells Pk:

(∇T
h · u)i :=

1

|Ti|

∑

j∈V(i)

|Aj |uj · nji

(3.4)

(∇P
h · u)k :=

1

|Pk|





∑

j∈E(k)

|A′
j |uj · n

′
jk +

∑

j∈E(k)∩[J−JΓ+1,J]

1

2
|Aj |uj · nj



 .

Remark that if the node Sk is not on the boundary Γ (i.e. if k ∈ [1,K − JΓ]), then
the set E(k) ∩ [J − JΓ + 1, J ] is empty. On the contrary, if Pk is a boundary dual
cell, then the set E(k)∩ [J − JΓ + 1, J ] is composed of the two boundary edges which

have Sk as a vertex. In this case, the quantity
∑

j∈E(k)∩[J−JΓ+1,J]

1

2
|Aj |uj · nj is an

approximation of

∫

Ãk

u · ñk(ξ) dξ (see figure 2.3).

For a given vector field u, it is easily checked that these formulae are the exact
mean-values of ∇ · u over the primal and the inner dual cells if uj · nji and uj · n′

jk

represent the mean-values of u ·nji over Aj and of u ·n′
jk over A′

j . The operator ∇h·

acts from
(

R
2
)J

into R
I × R

K .

In the same way, we may approach the scalar curl operator ∇×• =
(

∂•y

∂x − ∂•x

∂y

)

by a discrete scalar curl operator:
Definition 3.5. The discrete scalar curl operator ∇T,P

h × := (∇T
h×,∇

P
h ×) is

defined by its values over the primal cells Ti and the dual cells Pk:

(∇T
h × u)i : =

1

|Ti|

∑

j∈V(i)

|Aj |uj · τ ji

(3.5)

(∇P
h × u)k : =

1

|Pk|





∑

j∈E(k)

|A
′

j |uj · τ
′

jk +
∑

j∈E(k)∩[J−JΓ+1,J]

1

2
|Aj |uj · τ j



 .

4. Properties of the operators.

4.1. Discrete Green formulae. Here, we check that the discrete operators
verify some discrete duality principles.

Proposition 4.1. The following discrete analogues of the Green formulae hold:

(∇T,P
h · u, φ)T,P = −(u,∇D

h φ)D + (u · n, φ)Γ,h ,(4.1)
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(∇T,P
h × u, φ)T,P = (u,∇D

h × φ)D + (u · τ , φ)Γ,h ,(4.2)

for all u ∈
(

R
2
)J

and all φ = (φT , φP ) ∈ R
I+JΓ

× R
K , where the definitions (2.1),

(2.2) and (2.3) have been used.
Proof. The proof of (4.1) may be found in [10] and is based on a discrete summa-

tion by parts. The proof of (4.2) follows exactly the same lines.

4.2. Compositions of the discrete operators. The aim of this section is
to verify a discrete analogue of the following continuous identities: ∇ · (∇×) = 0,
∇× ∇ = 0 and ∇× ∇× = −∇ · ∇. For this, we start with a useful lemma.

Lemma 4.2. Recall that sji and s′jk are defined in section 2.4. Then,

∑

j∈V(i)

sji

(

φP
k2(j) − φP

k1(j)

)

= 0, ∀i ∈ [1, I ] ,(4.3)

∑

j∈E(k)

s′jk

(

φT
i2(j) − φT

i1(j)

)

= 0, ∀ k ∈ [1,K − JΓ] .(4.4)

Proof. Let us consider a given primal cell Ti. For each edge Aj of Ti, with
j ∈ V(i), there are two possibilities for the orientation of nj (see figure 4.1): If nj is
the inward unit normal vector to Ti (case 1), then sji = −1 and sji (φP

k2(j) −φ
P
k1(j)) =

φP
k1(j) − φP

k2(j). If nj is the outward unit normal vector to Ti (case 2), then sji = 1

and sji (φP
k2(j) − φP

k1(j)) = φP
k2(j) − φP

k1(j); moreover Sk1
(j) and Sk2

(j) are swapped.

What appears finally is that, whatever the case, the value φP
k associated to the “left”

vertex of the considered edge Aj appears in the sum (4.3) with a positive sign and
the value φP

k associated to the “right” vertex of the considered edge Aj appears in
the sum (4.3) with a negative sign. But each φP

k appears twice in that sum, once
as the value associated to the “right” vertex of a given edge, and once as the value
associated to the “left” vertex of the following edge, so that these two contributions
cancel. This ends the proof of (4.3). The proof of (4.4) follows the same lines.

K1 K1K2 K2

i1 2i

n j

n j

T i T i

i12i

case 1 case 2

Fig. 4.1. Two possibilities of orientation for each edge

Next, the following properties are direct consequences of the computation of the
area |Dj |:
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Lemma 4.3.

|Aj | |A′
j |

2 |Dj |
nj · τ

′
j = 1, ∀j ∈ [1, J ] ,(4.5)

|Aj | |A′
j |

2 |Dj |
n′

j · τ j = −1, ∀j ∈ [1, J ](4.6)

We may now state the following results
Proposition 4.4. Given any φ = (φT

i , φ
P
k ) ∈ R

I+JΓ

× R
K , there holds

(

∇T
h · (∇D

h × φ)
)

i
= 0,∀i ∈ [1, I ] ,(4.7)

(

∇P
h · (∇D

h × φ)
)

k
= 0,∀k ∈ [1,K − JΓ] ,(4.8)

(

∇T
h × (∇D

h φ)
)

i
= 0,∀i ∈ [1, I ] ,(4.9)

(

∇P
h × (∇D

h φ)
)

k
= 0,∀k ∈ [1,K − JΓ] .(4.10)

Moreover, on each boundary dual cell Pk (k ∈ [K − JΓ + 1,K]), (4.8) and (4.10) still
hold if there exist for each boundary Γq, with q ∈ [0, Q], two real numbers (cTq , c

P
q )

such that φT
i = cTq and φP

k = cPq uniformly over Γq.
Proof. Let us first prove (4.7); combining (3.4), (3.3), and the fact that nji ·τ j = 0,

we get:

(∇T
h · (∇D

h × φ))i =
1

|Ti|

∑

j∈V(i)

|Aj |(∇
D
h × φ)j · nji

= −
1

|Ti|

∑

j∈V(i)

|Aj | |A′
j |

2 |Dj |
nj · τ

′
j sji

(

φP
k2(j) − φP

k1(j)

)

, ∀i ∈ [1, I ].

Applying (4.5) and (4.3) successively, we obtain:

(∇T
h · (∇D

h × φ))i = 0, ∀i ∈ [1, I ].

Eq. (4.9) can be proved in a similar way.
Next, for each interior dual cell Pk, with k ∈ [1,K−JΓ], the set E(k)∩ [J −JΓ +1, J ]
is empty, so that (4.8) and (4.10) can be proved like (4.7) and (4.9), using (4.6), (4.4)
and the fact that n′

jk · τ ′
j = 0.

As far as the boundary dual cells Pk are concerned (k ∈ [K − JΓ + 1,K]), similar
computations show that (see Fig. 4.2 for the notations):

(∇P
h · (∇D

h × φ))k =
1

|Pk|

(

φT
I2 − φT

I1

)

+
1

2 |Pk|

(

φP
K1

− φP
K2

)

.(4.11)

If all φT
i are equal to the same constant cTq over Γq and if all φP

k are equal to the same

constant cPq over Γq, then φT
I2

= φT
I1

and φP
K1

= φP
K2

so that

(∇P
h · (∇D

h × φ))k = 0,

for the boundary dual cells, and (4.10) for the boundary dual cells is proved in a
similar way.
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K

K

I

I 2

2

1k
1

Fig. 4.2. Notations for the boundary dual cells

Proposition 4.5. The following equalities hold

(∇T
h × ∇

D
h × φ)i = −(∇T

h · ∇D
h φ)i, ∀i ∈ [1, I ]

(4.12)

(∇P
h × ∇

D
h × φ)k = −(∇P

h · ∇D
h φ)k , ∀k ∈ [1,K]; .

Proof. These formulae follow immediately from the definitions (3.2), (3.3), (3.4)
and (3.5) and from the equality τ j · τ ′

j = nj · n′
j , ∀j ∈ [1, J ].

4.3. Hodge’s decomposition. In the continuous case, the Hodge decomposi-
tion for non simply connected domains reads:

(L2)2 = ∇V
⊥
⊕ ∇ ×W ,(4.13)

with V = {φ ∈ H1 :
∫

Ω
φ = 0} and W = {ψ ∈ H1 : ψ|Γ0

= 0, ψ|Γq
= cq , ∀q ∈ [1, Q]}.

To prove an analogous property in the discrete case, we rely on the following result:
Lemma 4.6 (Euler’s Formula). For a non simply connected bidimensional domain

covered by a mesh with I elements, K vertices, J edges and Q holes, there holds:

I +K = J + 1 −Q .(4.14)

We may now state the following discrete Hodge decomposition:
Theorem 4.7. Let (uj)j∈[1,J] be a discrete vector field defined by its values

on the diamond-cells Dj . There exist unique φ = (φT
i , φ

P
k )i∈[1,I+JΓ],k∈[1,K], ψ =

(ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q] such that:

uj = (∇D
h φ)j + (∇D

h × ψ)j , ∀j ∈ [1, J ] ,(4.15)

∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk |φ
P
k = 0 ,(4.16)

ψT
i = 0 , ∀i ∈ Γ0 , ψP

k = 0 , ∀k ∈ Γ0 ,(4.17)

and

∀q ∈ [1, Q] , ψT
i = cTq , ∀i ∈ Γq , ψP

k = cPq , ∀k ∈ Γq .(4.18)

Moreover, the decomposition (4.15) is orthogonal.
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Proof. There are 2(I +K + JΓ) + 2Q unknowns corresponding to (φT
i , φ

P
k ) and

(ψT
i , ψ

P
k ) and to the constants (cTq , c

P
q ). On the other hand, 2J equations are given

by (4.15), while (4.17) and (4.18) provide with 2JΓ constraints. Finally, (4.16) gives
two supplementary equalities, so that the total number of equations is 2J + 2 +
2JΓ. Consequently, according to (4.14), there are as many equations as unknowns.
Therefore, existence and uniqueness of the decomposition are equivalent, and we shall
prove uniqueness through injectivity.

Proving the orthogonality of (∇D
h φ) and (∇D

h ×ψ) for any (φ, ψ) verifying (4.17)
and (4.18) amounts to showing (∇D

h × ψ,∇D
h φ)D = 0. Thanks to (4.1), there holds

(∇D
h × ψ,∇D

h φ)D = −(∇T,P
h · ∇D

h × ψ, φ)T,P + (∇D
h × ψ · n, φ)Γ,h .

Next, thanks to Prop. 4.4, ∇T,P
h ·∇D

h ×ψ vanishes on all primal and inner dual cells.

Because ψ verifies (4.17) and (4.18), we infer from Prop. 4.4, that ∇T,P
h ·∇D

h ×ψ also
vanishes on the boundary dual cells. Finally, according to (3.3), we have

(∇D
h × ψ)j · nj = −

1

2 |Dj |

(

ψP
k2

− ψP
k1

)

|A
′

j |τ
′

j · nj ,

which also vanishes on the boundary because of (4.17) and (4.18). Thus, orthogonality
is proved. In order to prove injectivity, we suppose uj = 0, ∀j ∈ [1, J ]:

0 = (∇D
h φ)j + (∇D

h × ψ)j , ∀j ∈ [1, J ] .(4.19)

We carry out the scalar product of (4.19) with |Dj | (∇D
h φ)j and sum over j ∈ [1, J ]:

0 = (∇D
h φ,∇

D
h φ)D + (∇D

h × ψ,∇D
h φ)D .(4.20)

Thanks to the orthogonality proved above, Eq. (4.20) implies that (∇D
h φ,∇

D
h φ)D =

∑

j∈[1,J]

|Dj ||(∇
D
h φ)j |

2 = 0, so that (∇D
h φ)j = 0 for all j. Since the domain is connected,

there exist two real constants α and β such that φP
k = α, ∀k ∈ [1,K] and φT

i = β,
∀i ∈ [1, I + JΓ]. Equation (4.16) implies that these two constants vanish, so that

φT
i = 0, ∀i ∈ [1, I + JΓ] and φP

k = 0, ∀k ∈ [1,K] .

Consequently, (4.19) is equivalent to (∇D
h × ψ)j = 0 , ∀j ∈ [1, J ]. Since the domain

is connected, there exist two real constants α and β such as ψP
k = α, ∀ k ∈ [1,K] and

ψT
i = β, ∀ i ∈ [1, I + JΓ]. As ψ = 0 over Γ0 these two constants vanish and

ψT
i = 0, ∀i ∈ [1, I + JΓ] and ψP

k = 0, ∀k ∈ [1,K] .

Remark 4.8. Formulae (4.16) are discrete analogues (respectively stated on the
primal mesh and on the dual mesh) of the condition

∫

Ω φ = 0 that appears in the
definition of the space V in (4.13), while formulae (4.17) and (4.18) are discrete
analogues of the boundary conditions that appear in the definition of W .

5. Numerical solution of the div-curl problem for non simply connected

domains.
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5.1. Discretization of the div-curl problem with normal boundary con-

ditions. We are interested in the approximation of the following continuous problem:
given f , g, σ, (kq)q∈[1,Q], find u such that















∇ · u = f in Ω ,
∇× u = g in Ω ,
u · n = σ on Γ ,
∫

Γq
u · τ = kq , ∀q ∈ [1, Q] .

(5.1)

A necessary condition for the existence of a solution to (5.1) is given by the formula:

∫

Ω

f(x)dx =

∫

Γ

σ(ξ) dξ .(5.2)

We discretize the solution of this problem by a vector field (uj)j∈[1,J] defined by
its values over the diamond-cells of the mesh. Using the discrete differential operators
defined in section 3, and following [12], we write the following discrete equations:

(

∇T
h · u

)

i
= fT

i , ∀i ∈ [1, I ] ,(5.3a)
(

∇P
h · u

)

k
= fP

k , ∀k ∈ [1,K] ,(5.3b)
(

∇T
h × u

)

i
= gT

i , ∀i ∈ [1, I ] ,(5.3c)
(

∇P
h × u

)

k
= gP

k , ∀k ∈ [1,K − JΓ] ,(5.3d)

uj · nj = σj , ∀j ∈ [J − JΓ + 1, J ] ,(5.3e)

(u · τ , 1)Γq ,h = kq, ∀q ∈ [1, Q] ,(5.3f)
∑

k∈Γq

|Pk| (∇P
h × u)k =

∑

k∈Γq

|Pk| g
P
k , ∀q ∈ [1, Q] ,(5.3g)

where the following definitions have been used

fT
i =

1

|Ti|

∫

Ti

f(x) dx ∀i ∈ [1, I ], fP
k =

1

|Pk|

∫

Pk

f(x) dx ∀k ∈ [1,K](5.4)

gT
i =

1

|Ti|

∫

Ti

g(x) dx ∀i ∈ [1, I ], gP
k =

1

|Pk|

∫

Pk

g(x) dx ∀k ∈ [1,K](5.5)

σj =
1

|Aj |

∫

Aj

σ(ξ) dξ, ∀j ∈ [J − JΓ + 1, J ] .(5.6)

Using the discrete Hodge decomposition of (uj)j∈[1,J], problem (5.3) may be split into
two independent problems involving the potentials

Proposition 5.1. Problem (5.3) can be split into two independent problems:
Find (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K] such that

(∇T
h · ∇D

h φ)i = fT
i , ∀i ∈ [1, I ](5.7a)

(∇P
h · ∇D

h φ)k = fP
k , ∀k ∈ [1,K](5.7b)

(∇D
h φ)j · nj = σj , ∀j ∈ [J − JΓ + 1, J ](5.7c)

∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk|φ
P
k = 0(5.7d)
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and Find (ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q] such that

−(∇T
h · ∇D

h ψ)i = gT
i , ∀i ∈ [1, I ](5.8a)

−(∇P
h · ∇D

h ψ)k = gP
k , ∀k ∈ [1,K − JΓ](5.8b)

(∇D
h ψ · n, 1)Γq ,h = −kq, ∀q ∈ [1, Q](5.8c)

−
∑

k∈Γq

|Pk| (∇P
h · ∇D

h ψ)k =
∑

k∈Γq

|Pk | g
P
k , ∀q ∈ [1, Q](5.8d)

ψT
i = ψP

k = 0, ∀i ∈ Γ0 , ∀k ∈ Γ0 ,(5.8e)

∀q ∈ [1, Q] , ψT
i = cTq , ∀i ∈ Γq ,(5.8f)

∀q ∈ [1, Q] , ψP
k = cPq , ∀k ∈ Γq .(5.8g)

The vector u is then reconstructed by

uj = (∇D
h φ)j + (∇D

h × ψ)j , ∀j ∈ [1, J ] .(5.9)

Proof. First, the discrete Hodge decomposition of (uj)j∈[1,J] shows the existence
of (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], (ψT

i , ψ
P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q] such that

(5.9), (5.7d) and (5.8e)-(5.8f)-(5.8g) are verified. Next, (5.7a) is proved using (4.7):

fT
i = (∇T

h · u)i = (∇T
h · (∇D

h φ+ ∇
D
h × ψ))i = (∇T

h · ∇D
h φ)i, ∀i ∈ [1, I ].

Similarly, using (4.8) and ψT
i = cTq and ψP

k = cPq , ∀q ∈ [0, Q], we obtain (5.7b). As
far as the boundary conditions are concerned, using (3.3) shows that

(∇D
h × ψ)j · nj = −

1

2 |Dj |
(ψk2

− ψk1
) |A

′

j |τ
′

j · nj , ∀j ∈ [J − JΓ + 1, J ].(5.10)

Since ψP
k = cPq , ∀q ∈ [0, Q], we infer from (5.10)

(∇D
h × ψ)j · nj = 0, ∀j ∈ [J − JΓ + 1, J ] ,

so that (5.3e) and (5.9) imply (5.7c). Further, using (5.9), (5.3c)-(5.3d), (4.9), (4.10)
and (4.12), we may prove (5.8a)-(5.8b). Moreover, there holds

(∇D
h φ)j · τ j =

1

2|Dj |

(

φT
k2(j) − φT

k1(j)

)

|A′
j |n

′
j · τ j ,

so that, using (4.6),

(∇D
h φ · τ , 1)Γq ,h =

∑

j∈Γq

|Aj | |A′
j |

2 |Dj |
n′

j · τ j

(

φT
k2(j) − φT

k1(j)

)

= −
∑

j∈Γq

(

φT
k2(j) − φT

k1(j)

)

,

which vanishes because Γq is a closed contour. Thus, (5.3f) implies (5.8c) because

(∇D
h × ψ) · τ j = −∇

D
h ψ · nj . Finally, a computation similar to that which led to

(4.11) shows that

(∇P
h × (∇D

h φ))k =
1

|Pk|

(

φT
I2 − φT

I1

)

+
1

2 |Pk|

(

φP
K1

− φP
K2

)

.
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for boundary cells k ∈ [K − JΓ + 1,K] (see Fig. 4.2 for the notations). Thus, when
summing these contributions over a closed contour Γq , we obtain

∑

k∈Γq

|Pk|(∇
P
h × (∇D

h φ))k = 0 ,

so that (5.3g) implies (5.8d).
Proposition 5.2. Problems (5.7) and (5.8) both have a unique solution.
Proof. As far as problem (5.7) is concerned, existence and uniqueness of its

solution have been proved in [10] if the following discrete equivalent of (5.2) is verified
∑

i∈[1,I]

|Ti| f
T
i =

∑

k∈[1,K]

|Pk| f
P
k =

∑

j∈[J−JΓ+1,J]

|Aj | σj ,

which is the case here because thanks to the definitions (5.4) and (5.6) we have

∑

i∈[1,I]

|Ti| f
T
i =

∑

k∈[1,K]

|Pk| f
P
k =

∫

Ω

f(x) dx and
∑

j∈[J−JΓ+1,J]

|Aj | σj =

∫

Γ

σ(ξ) dξ .

As far as problem (5.8) is concerned, there are I + K + JΓ + 2Q unknowns, while
(5.8a) and (5.8b) respectively provide I and K − JΓ equations. Equations (5.8c) and
(5.8d) provide 2Q additional relations. Finally, boundary conditions (5.8e)-(5.8f)-
(5.8g) provide the last 2JΓ equations. Since there are as many equations as unknowns,
it suffices to check the injectivity of the system. Let us set gT

i = gP
k = kq = 0 in system

(5.8) and compute the following discrete scalar product (∇T,P
h ·∇D

h ψ, ψ)T,P (see (2.1)
for the definition). In this scalar product, the sum over the indices i ∈ [1, I ] and the
sum over the indices k ∈ [1,K − JΓ] vanish respectively because of (5.8a) and (5.8b).
Further, due to (5.8e), the contributions of the indices k ∈ Γ0 also vanish, so that

(∇T,P
h · ∇D

h ψ, ψ)T,P =
1

2

∑

q∈[1,Q]

∑

k∈Γq

|Pk| (∇P
h · ∇D

h ψ)k ψ
P
k .

Further, (5.8g) implies that

(∇T,P
h · ∇D

h ψ, ψ)T,P =
1

2

∑

q∈[1,Q]

cPq
∑

k∈Γq

|Pk | (∇P
h · ∇D

h ψ)k ,

which vanishes due to (5.8d). Thanks to the discrete Green formula (4.2), there holds

(∇T,P
h · ∇D

h ψ, ψ)T,P = −(∇D
h ψ,∇

D
h ψ)D + (∇D

h ψ · n, ψ)Γ,h = 0 .(5.11)

Now, due to boundary conditions (5.8e)-(5.8f)-(5.8g), we may write

(∇D
h ψ · n, ψ)Γ,h =

∑

q∈[1,Q]

cTq + cPq
2

(∇D
h ψ · n, 1)Γq,h ,(5.12)

which vanishes thanks to (5.8c). Thus, (5.11), (5.12) and definition (2.2) imply that

(∇D
h ψ,∇

D
h ψ)D =

∑

j∈[1,J]

|Dj ||∇
D
h ψ|

2 = 0 .

Consequently, just like at the end of the proof of Theorem 4.7, we infer that

ψT
i = 0, ∀i ∈ [1, I + JΓ] and ψP

k = 0, ∀k ∈ [1,K] ,

which proves uniqueness and thus existence.
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5.2. The div-curl problem with tangential boundary conditions. We
consider the following continuous problem: given f , g, σ, (kq)q∈[1,Q], find u such that:















∇ · u = f in Ω ,
∇× u = g in Ω ,
u · τ = σ on Γ ,
∫

Γq
u · n = kq , ∀q ∈ [1, Q] .

A necessary condition for the existence of a solution to this system is given by Green’s
formula:

∫

Ω
g(x)dx =

∫

Γ
σ(ξ) dξ. This problem is discretized like in section 5.1 by a

vector field (uj)j∈[1,J] defined by its values over the diamond-cells. Using the discrete
differential operators defined in section 3, we write the following discrete equations:







































(

∇T
h · u

)

i
= fT

i , ∀i ∈ [1, I ] ,
(

∇P
h · u

)

k
= fP

k , ∀k ∈ [1,K − JΓ] ,
(

∇T
h × u

)

i
= gT

i , ∀i ∈ [1, I ] ,
(

∇P
h × u

)

k
= gP

k , ∀k ∈ [1,K] ,
uj · τ j = σj , ∀j ∈ [J − JΓ + 1, J ] ,

(u · n, 1)Γq ,h = kq , ∀q ∈ [1, Q] ,
∑

k∈Γq
|Pk| (∇P

h · u)k =
∑

k∈Γq
|Pk | fP

k , ∀q ∈ [1, Q] .

(5.13)

Existence and uniqueness of the solution of (5.13) are proved similarly to section 5.1;
the main difference is that the Hodge decomposition is modified in the following way

Theorem 5.3. Let (uj)j∈[1,J] be a discrete vector field defined by its values
on the diamond-cells Dj . There exist unique φ = (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], ψ =

(ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q] such that:

uj = (∇D
h ψ)j + (∇D

h × φ)j , ∀j ∈ [1, J ] ,(5.14)

∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk |φ
P
k = 0 ,

ψT
i = 0 , ∀i ∈ Γ0 , ψP

k = 0 , ∀k ∈ Γ0 ,

and

∀q ∈ [1, Q] , ψT
i = cTq , ∀i ∈ Γq , ψP

k = cPq , ∀k ∈ Γq .

Moreover, the decomposition (5.14) is orthogonal.
Further, problem (5.13) decouples into two independent sub-problems involving

the potentials
Proposition 5.4. Problem (5.13) can be split into two independent problems:

Find (φT
i , φ

P
k )i∈[1,I+JΓ],k∈[1,K] such that















−(∇T
h · ∇D

h φ)i = gT
i , ∀i ∈ [1, I ] ,

−(∇P
h · ∇D

h φ)k = gP
k , ∀k ∈ [1,K] ,

−(∇D
h φ)j · nj = σj , ∀j ∈ [J − JΓ + 1, J ] ,

∑

i∈[1,I] |Ti|φT
i =

∑

k∈[1,K] |Pk |φP
k = 0
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µ 1

Fig. 5.1. Notations for the paragraph 5.3

and Find (ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q]







































(∇T
h · ∇D

h ψ)i = fT
i , ∀i ∈ [1, I ] ,

(∇P
h · ∇D

h ψ)k = fP
k , ∀k ∈ [1,K − JΓ] ,

(∇D
h ψ · n, 1)Γq

= kq , ∀q ∈ [1, Q] ,
∑

k∈Γq
|Pk | (∇P

h · ∇D
h ψ)k =

∑

k∈Γq
|Pk| f

P
k , ∀q ∈ [1, Q] ,

ψT
i = ψP

k = 0, ∀i ∈ Γ0 , ∀k ∈ Γ0 ,
∀q ∈ [1, Q] , ψT

i = cTq , ∀i ∈ Γq ,
∀q ∈ [1, Q] , ψP

k = cPq , ∀k ∈ Γq .

The vector u is then reconstructed by

uj = (∇D
h ψ)j + (∇D

h × φ)j∀j ∈ [1, J ] .

5.3. Error estimate for the div-curl problem. Unlike in [20], we shall derive
estimates for the potentials involved in the Hodge decomposition of u; indeed we shall
rely on similar estimates which have been obtained in [10]. For the sake of simplicity,
we shall restrict ourselves to the case where all diamond-cells are convex; the case of
non-convex diamond-cells requires additional hypotheses similar to those given in [10].
We shall obtain error estimates under the following hypothesis (see Fig. 2.5 and Fig.
5.1 for the notations)

Hypothesis 5.5. There exists an angle τ ∗, strictly lower than π and independent
of the mesh, such that :
1. For any interior diamond-cell Dj , the smallest in the maximum angle of the couple
of triangles (Dj,1, Dj,2) or in the maximum angle of the couple of triangles (D′

j,1, D
′
j,2)

is bounded by τ∗:

min (max(α1, β1, µ1 + µ2, α2, β2, ν1 + ν2),max(µ1, ν1, α1 + α2, µ2, ν2, β1 + β2)) ≤ τ∗

2. The greatest angle of any boundary cell Dj is bounded by the angle τ∗.
Obtaining error estimates usually relies on regularity assumptions on the solution

of the problem. In order to apply results given in [10], we shall assume regularity of
the potentials given by the following proposition
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Proposition 5.6. Let (f, g, σ) belong to L2(Ω)
2
×H1/2(Γ) and let (kq)q∈[1,Q] be

a set of given real numbers; let û be the exact solution of problem (5.1). Then, there

exist φ̂ and ψ̂ both in H1(Ω) and a set of real numbers (Cq)q∈[1,Q] such that

û = ∇φ̂+ ∇ × ψ̂ ,

where φ̂ is the solution of







∆φ̂ = ∇ · û = f in Ω ,

∇φ̂ · n = û · n = σ on Γ ,
∫

Ω φ̂ = 0 ,

(5.15)

and ψ̂ is the solution of










−∆ψ̂ = ∇× û = g in Ω ,

ψ̂|Γ0
= 0 ; ψ̂|Γq

= Cq ∀ q ∈ [1, Q]
∫

Γq
∇ψ̂ · n = −kq .

(5.16)

Proof. The Hodge decomposition of û and the determination of φ̂ and ψ̂ through
(5.15) and (5.16) are direct consequences of [11, Theorem 3.2 and Corollary 3.1].

Hypothesis 5.7. We suppose that the potentials φ̂ and ψ̂ given by proposition 5.6
belong to H2(Ω).

We remark that due to reentrant corners related to the internal polygonal bound-
aries Γq, the H2 regularity of the potentials is not a consequence of the regularity of
the data (f, g, σ).

Obviously, we may relate the L2 error between the solution û of (5.1) and the dis-

crete solution (uj)j∈[1,J] of (5.3) to the errors between the solutions φ̂ and ψ̂ of (5.15)
and (5.16) and the discrete solutions (φT

i , φ
P
k ) and (ψT

i , ψ
P
k ) defined in Proposition 5.1

respectively by (5.7) and (5.8). Indeed:

∑

j∈[1,J]

∫

Dj

|uj − û(x)|2 dx ≤2

(

∑

j∈[1,J]

∫

Dj

∣

∣

∣(∇D
h φ)j − ∇φ̂(x)

∣

∣

∣

2

dx

(5.17)

+
∑

j∈[1,J]

∫

Dj

∣

∣

∣(∇D
h ψ)j − ∇ψ̂(x)

∣

∣

∣

2

dx

)

.

5.3.1. Equivalent Finite Element formulations for the potentials. In or-
der to evaluate the errors on the potentials, we follow [10] and rewrite (5.7) and (5.8) in
terms of equivalent (non-conforming) finite element formulations. Recalling that the
points Miα(j) kβ(j) are illustrated on figure 2.4, we construct the following functions:

Proposition 5.8. Let (φT
i , φ

P
k ) ∈ R

I+JΓ

× R
K be given; there exists a function

φh defined by

(φh)|Dj
∈ P 1(Dj) , ∀j ∈ [1, J ] ,

φh(Miα(j) kβ(j)) =
1

2
(φT

iα(j) + φP
kβ(j)) , ∀j ∈ [1, J ] , ∀(α , β) ∈ {1; 2}2

.(5.18)

Moreover, we have the following essential property:

(∇φh)|Dj
= (∇D

h φ)j ∀j ∈ [1, J ] .(5.19)
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Proof. The proof is given in [10]. We recall that the definition of φh through the
four equalities contained in (5.18) is possible because (Mi1k1

Mi1k2
Mi2k2

Mi2k1
) is a

parallelogram and φh(Mi1k1
) + φh(Mi2k2

) = φh(Mi1k2
) + φh(Mi2k1

) .
Definition 5.9. We shall denote by L the linear operator which associates φh,

defined by Proposition 5.8, to a given (φT
i , φ

P
k ) ∈ R

I+JΓ

× R
K . Further, the solution

of (5.7) is in the following space

VN :=







(φT
i , φ

P
k ) ∈ R

I+JΓ

× R
K /

∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk|φ
P
k = 0







.

The solution of (5.8) is in the following space

VD :=
{

(φT
i , φ

P
k ) ∈ R

I+JΓ

× R
K / φT

i = φP
k = 0 ∀ i ∈ Γ0 ∀ k ∈ Γ0 and

∃ (cTq,φ, c
P
q,φ) ∈ (R2)Q s.t. φT

i = cTq,φ ∀ i ∈ Γq , and φP
k = cPq,φ ∀ k ∈ Γq ∀ q ∈ [1, Q]

}

.

Remark 5.10. It is easily proved that the linear operator L introduced in Defini-
tion 5.9 is injective over VN and over VD. Thus, for any Φh in L(VN ) or in L(VD),

there exists a unique Φ = (ΦT
i ,Φ

P
k ) in R

I+JΓ

× R
K , either in VN or in VD such that

Φh = L(Φ). The values (ΦT
i ,Φ

P
k ) are used in the definitions of Φ∗

h and Φ̃h associated
to Φh respectively by (5.22) and (5.23).

With these definitions, we may state the following result
Proposition 5.11. Problem (5.7) amounts to finding φh ∈ L(VN ), such that,

ah(φh,Φh) = `N (Φh) , ∀ Φh ∈ L(VN )(5.20)

with

ah(φh,Φh) :=
∑

j∈[1,J]

∫

Dj

∇φh · ∇Φh (x)dx ,

(5.21)

`N (Φh) := −

∫

Ω

fΦ∗
h(x)dx +

∫

Γ

σ Φ̃h(ξ) dξ ,

where Φ∗
h is defined over Ω by

Φ∗
h(x) :=

1

2





∑

i∈[1,I]

ΦT
i θ

T
i (x) +

∑

k∈[1,K]

ΦP
k θ

P
k (x)



(5.22)

and Φ̃h is defined over Γ by

Φ̃h(ξ) =
∑

j∈[1,J]

1

4

(

ΦP
k1(j)

+ 2ΦT
i2(j)

+ ΦP
k2(j)

)

θΓj (ξ) ,(5.23)

where we recall that θT
i , θP

k and θΓj are respectively the characteristic functions of the
cells Ti, Pk and of the boundary edge Aj .

Proof. Let us suppose that φ ∈ VN is the solution of (5.7); then multiplying the
first equation by 1

2 |Ti|ΦT
i , the second equation by 1

2 |Pk|ΦP
k , and summing over all

i ∈ [1, I ] and all k ∈ [1,K] yields

(∇T,P
h · ∇D

h φ,Φ)T,P = (f,Φ)T,P .(5.24)
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Thanks to the discrete Green formula (4.1), we may write the left-hand-side of (5.24)
in the following way:

−(∇D
h φ,∇

D
h Φ)D + (∇D

h φ · n,Φ)Γ,h = −
∑

j∈[1,J]

|Dj | (∇
D
h φ)j · (∇

D
h Φ)j

+
∑

j∈[J−JΓ+1,J]

|Aj | (∇
D
h φ)j · nj ×

1

4

(

ΦP
k1(j)

+ 2ΦT
i2(j)

+ ΦP
k2(j)

)

.

Next, thanks to (5.19), and because (∇D
h φ)j · (∇

D
h Φ)j is a constant over Dj , we may

write

−
∑

j∈[1,J]

|Dj | (∇
D
h φ)j · (∇

D
h Φ)j = −

∑

j∈[1,J]

∫

Dj

∇φh · ∇Φh (x)dx .

Moreover, according to the boundary conditions given by (5.7c),

|Aj | (∇
D
h φ)j · nj = |Aj |σj =

∫

Aj

σ(ξ)dξ ,

so that

|Aj | (∇
D
h φ)j · nj ×

1

4

(

ΦP
k1

+ 2ΦT
i2 + ΦP

k2

)

=

∫

Aj

σ
(

Φ̃h

)

|Aj

(ξ) dξ .

Finally, the left-hand-side of (5.24) is equal to

−ah(φh,Φh) +

∫

Γ

σ Φ̃h(ξ) dξ .

By Eq. (5.4), and because ΦT
i θ

T
i (x)|Ti

= ΦT
i and ΦP

k θ
P
k (x)|Pk

= ΦP
k , the right-hand

side of (5.24) is equal to:

∫

Ω

f(x)
1

2





∑

i∈[1,I]

ΦT
i θ

T
i (x) +

∑

k∈[1,K]

ΦP
k θ

P
k (x)



 dx ,

which ends this part of the proof.
Conversely, let φh ∈ L(VN ) satisfy (5.20) for all Φh ∈ L(VN ); then φ = L−1(φh)

satisfies (5.7d) by definition of VN . Further, we prove that the boundary condi-
tion (5.7c) is verified along each boundary edge j0 ∈ [J − JΓ + 1, J ] by considering
its corresponding basis element Φ0 ∈ VN defined by (recall that the index i2(j0) is
associated to the unknown located at the center of the segment Aj0)

∀i ∈ [1, I + JΓ] , (Φ0)
T
i = δ

i2(j0)
i and ∀k ∈ [1,K] , (Φ0)

P
k = 0 .

Then, defining (Φ0)h = L(Φ0), we obviously have the following properties

(∇(Φ0)h)|Dj
= 0 if j 6= j0 and (∇(Φ0)h)|Dj0

=
1

2 |Dj0 |
|Aj0 |nj0

and

(Φ0)
∗
h(x) = 0 ∀x ∈ Ω and (Φ̃0)h(ξ) =

1

2
θΓj0(ξ) ∀ξ ∈ Γ .
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We thus have

∑

j∈[1,J]

∫

Dj

∇φh · ∇(Φ0)h (x)dx =
1

2
|Aj0 | (∇φh)|Dj0

· nj0 =
1

2
|Aj0 | (∇

D
h φ)j0 · nj0

and

−

∫

Ω

f(Φ0)
∗
h(x)dx +

∫

Γ

σ (Φ̃0)h(ξ) dξ =

∫

Aj0

1

2
σ(ξ) dξ =

1

2
|Aj0 |σj0 .

Finally, writing (5.20) for (Φ0)h proves that φ satisfies the boundary condition:

(∇D
h φ)j0 · nj0 = σj0 , ∀ j0 ∈ [J − JΓ + 1, J ] .

Next, in order to prove (5.7a) for any primal cell i0 ∈ [1, I ], we consider its corre-
sponding basis element Φ1 ∈ VN defined by

∀i ∈ [1, I + JΓ] , (Φ1)
T
i = δi0

i −
|Ti0 |

|Ω|
and ∀k ∈ [1,K] , (Φ1)

P
k = 0 .

Then, defining (Φ1)h = L(Φ1) and according to (5.20), we may write

∑

j∈[1,J]

∫

Dj

∇φh · ∇(Φ1)h (x)dx = −

∫

Ω

f(Φ1)
∗
h(x)dx +

∫

Γ

σ (Φ̃1)h(ξ) dξ .(5.25)

To evaluate the left-hand-side of (5.25), we consider Φ ∈ R
I+JΓ

× R
K such that

∀i ∈ [1, I + JΓ] , ΦT
i = δi0

i and ∀k ∈ [1,K] , ΦP
k = 0 .

Note that Φ /∈ VN but that its discrete gradient (see (3.2)) obviously equals that
of Φ1. Thanks to this equality and to (5.19), we have

∑

j∈[1,J]

∫

Dj

∇φh · ∇(Φ1)h (x)dx = (∇D
h φ,∇

D
h Φ1)D = (∇D

h φ,∇
D
h Φ)D,

which, in turn, can be transformed thanks to (4.1) into

−(∇T,P
h · ∇D

h φ,Φ)T,P + (∇D
h φ · n,Φ)Γ,h .

Thanks to the definition of Φ, this quantity reduces to the contribution of i0, which
proves that the left-hand-side of (5.25) may be written

∑

j∈[1,J]

∫

Dj

∇φh · ∇(Φ1)h (x)dx = −
1

2
|Ti0 | (∇

T
h · ∇D

h φ)i0 .(5.26)

Next, we compute the right-hand-side of (5.25)

−

∫

Ω

f(Φ1)
∗
h(x)dx = −

1

2

∑

i∈[1,I]

∫

Ti

(

δi0
i −

|Ti0 |

|Ω|

)

f(x) dx

= −
1

2

∫

Ti0

f(x) dx +
1

2

|Ti0 |

|Ω|

∫

Ω

f(x) dx ;

∫

Γ

σ (Φ̃1)h(ξ) dξ =
∑

j∈[J−JΓ+1,J]

∫

Aj

σ(ξ)
1

4

(

−2
|Ti0 |

|Ω|

)

dξ = −
1

2

|Ti0 |

|Ω|

∫

Γ

σ(ξ)dξ ,
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so that the right-hand-side of (5.25) equals

−
1

2

∫

Ti0

f(x) dx +
1

2

|Ti0 |

|Ω|

∫

Ω

f(x) dx −
1

2

|Ti0 |

|Ω|

∫

Γ

σ(ξ)dξ .

Because of (5.2), the last two terms in the previous sum cancel and we get

−

∫

Ω

f(Φ1)
∗
h(x)dx +

∫

Γ

σ (Φ̃1)h(ξ) dξ = −
1

2

∫

Ti0

f(x) dx = −
1

2
|Ti0 | f

T
i0 .(5.27)

Comparing (5.25), (5.26) and (5.27), we infer that

(∇T
h · ∇D

h φ)i0 = fT
i0 .

In a similar way, we can prove (5.7b) for any dual cell k0 ∈ [1,K] by considering its
corresponding basis element Φ2 ∈ VN , defined by

∀i ∈ [1, I + JΓ] , (Φ2)
T
i = 0 and ∀k ∈ [1,K] , (Φ2)

P
k = δk0

k −
|Pk0

|

|Ω|
,

which ends the proof of the equivalence.
Proposition 5.12. Problem (5.8) is equivalent to finding ψh ∈ L(VD), such that

∀Ψh ∈ L(VD),

ah(ψh,Ψh) = `D(Ψh)(5.28)

with

`D(Ψh) :=

∫

Ω

gΨ∗
h(x)dx −

∑

q∈[1,Q]

kq

(

cTq,Ψ + cPq,Ψ

2

)

.

Proof. Let us suppose that ψ ∈ VD is the solution of (5.8); then we may compute
the following discrete scalar product

−(∇T,P
h · ∇D

h ψ,Ψ)T,P = −
1

2

∑

i∈[1,I]

|Ti|(∇
T
h · ∇D

h ψ)iΨ
T
i

−
1

2

∑

k∈[1,K−JΓ]

|Pk|(∇
P
h · ∇D

h ψ)kΨP
k(5.29)

−
1

2

∑

k∈[K−JΓ+1,K]

|Pk|(∇
P
h · ∇D

h ψ)kΨP
k .

Due to (5.8a)-(5.8b), the sum of the first two terms on the right-hand-side of (5.29)
equals

1

2

∑

i∈[1,I]

|Ti|g
T
i ΨT

i +
1

2

∑

k∈[1,K−JΓ]

|Pk|g
P
k ΨP

k .

Next, using the fact that ΨP is equal to a constant cPq,Ψ over each Γq and vanishes
over Γ0, we may write, according to (5.8d)

−
∑

k∈[K−JΓ+1,K]

|Pk|(∇
P
h · ∇D

h ψ)kΨP
k = −

∑

q∈[1,Q]

cPq,Ψ

∑

k∈Γq

|Pk|(∇
P
h · ∇D

h ψ)k =

∑

q∈[1,Q]

cPq,Ψ

∑

k∈Γq

|Pk|g
P
k =

∑

k∈[K−JΓ+1,K]

|Pk|g
P
k ΨP

k .
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Finally, (5.29) may be rewritten in the following way

−(∇T,P
h · ∇D

h ψ,Ψ)T,P = (g,Ψ)T,P .(5.30)

Using the discrete Green formula (4.1), the left-hand-side of (5.30) is equal to

(∇D
h ψ,∇

D
h Ψ)D − (∇D

h ψ · n,Ψ)Γ,h .

Like previously, the first of these terms equals ah(ψh,Ψh). Next, using the fact
that ΨP (respectively ΨT ) is equal to a constant cPq,Ψ (resp. cTq,Ψ) over each Γq and
vanishes over Γ0, and using (5.8c), there holds

(∇D
h ψ ·n,Ψ)Γ,h =

∑

q∈[1,Q]

(

cTq,Ψ + cPq,Ψ

2

)

∑

Γq

(∇D
h ψ)j ·nj = −

∑

q∈[1,Q]

kq

(

cTq,Ψ + cPq,Ψ

2

)

,

which shows that the left-hand-side of (5.30) is equal to

ah(ψh,Ψh) +
∑

q∈[1,Q]

kq

(

cTq,Ψ + cPq,Ψ

2

)

.

This ends this part of the proof.

Conversely, if ψh ∈ L(VD) satisfies (5.28) for all Ψh ∈ L(VD), then ψ = L−1(ψh)
verifies (5.8e), (5.8f) and (5.8g) by definition of VD . Next, in order to prove (5.8a) for
any primal cell i0 ∈ [1, I ], let us consider its associated basis element Ψ1 ∈ VD defined
through

(Ψ1)
T
i = δi0

i , ∀ i ∈ [1, I + JΓ] and (Ψ1)
P
k = 0, ∀ k ∈ [1,K] .

Applying (5.28) for Ψh = L(Ψ1) and using (5.19), (4.1) and (5.5) shows that (5.8a) is
verified for the considered i0 ∈ [1, I ]. Equality (5.8b) can be proved in the same way
for any dual cell k0 ∈ [1,K− JΓ] by considering its associated basis element Ψ2 ∈ VD

defined through

(Ψ2)
T
i = 0, ∀ i ∈ [1, I + JΓ] and (Ψ2)

P
k = δk0

k , ∀ k ∈ [1,K] .

Next, let us consider an internal boundary Γq0
with q0 ∈ [1, Q] and let us consider

Ψ3 ∈ VD which vanishes everywhere but on Γq0
, where it has a constant value:

(Ψ3)
T
i = (Ψ3)

P
k = 0, ∀ i ∈ [1, I ], ∀ k ∈ [1,K] and (Ψ3)

T
i = δq0

q , ∀ i ∈ Γq, ∀ q ∈ [0, Q].

Applying (5.28) for Ψh = L(Ψ3) and using (5.19) and (4.1) shows that (5.8c) is verified
for the considered q0 ∈ [1, Q]. In the same way, we prove (5.8d) for a given q0 ∈ [1, Q]
by choosing Ψ4 ∈ VD defined through

(Ψ4)
T
i = 0, ∀ i ∈ [1, I ] , (Ψ4)

P
k = 0, ∀ k ∈ [1,K − JΓ] ,

(Ψ4)
T
i = δq0

q , ∀ i ∈ Γq and (Ψ4)
P
k = −δq0

q , ∀ k ∈ Γq , ∀ q ∈ [0, Q] .

This ends the proof of Prop. 5.12.
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5.3.2. Error estimates for the potentials. We may now turn to error esti-
mates for the potentials φ̂ and ψ̂. First, given the equivalent finite element formulation
stated by Prop. 5.11 (respectively Prop. 5.12), we may study the numerical error con-

cerning φ̂ (resp. ψ̂) in a traditional way by noting that ah acts on H1 +L(VN ) (resp.
H1 + L(VD)), on which we define |x|1,h :=

√

ah(x, x), and by using the so-called
“Strang second lemma” [24]:

|φ̂− φh|1,h ≤ 2 inf
ωh∈L(VN)

|φ̂− ωh|1,h + sup
ωh∈L(VN)

|ah(φ̂, ωh) − `N (ωh)|

|ωh|1,h
.(5.31)

and

|ψ̂ − ψh|1,h ≤ 2 inf
ωh∈L(VD)

|ψ̂ − ωh|1,h + sup
ωh∈L(VD)

|ah(ψ̂, ωh) − `D(ωh)|

|ωh|1,h
.(5.32)

The first term in (5.31) and (5.32) is named “interpolation error”, while the second
is called “consistency error”.

Interpolation error for φ̂. We start with

Proposition 5.13. If all diamond-cells are convex and under hypotheses 5.5 and
5.7, there exists a constant C(τ ∗) depending only on τ∗ such that

inf
ωh∈L(VN )

|φ̂− ωh|1,h ≤ C(τ∗)h ||φ̂||2,Ω .(5.33)

Proof. Consider the pointwise projection of the exact solution onto R
I+JΓ

×R
K :

∀i ∈ [1, I + JΓ] , (Πφ̂)T
i = φ̂(Gi) and ∀k ∈ [1,K] , (Πφ̂)P

k = φ̂(Sk) .

Then, this element is itself projected onto VN in the following way:

∀i ∈ [1, I + JΓ], (Π̃φ̂)T
i = (Πφ̂)T

i −

∑

i∈[1,I]

|Ti|(Πφ̂)T
i

|Ω|

∀k ∈ [1,K], (Π̃φ̂)P
k = (Πφ̂)P

k −

∑

k∈[1,K]

|Pk|(Πφ̂)P
k

|Ω|
.

Obviously, Π̃φ̂ and Πφ̂ have the same discrete gradient so that the interpolation error
in (5.33) is bounded in the following way

inf
ωh∈L(VN )

|φ̂− ωh|1,h ≤ |φ̂− L(Π̃φ̂)|1,h = |φ̂− L(Πφ̂)|1,h .

Finally, an upper bound for |φ̂ − L(Πφ̂)|1,h has been given in [10] and is based on

the relation between L(Πφ̂) and the standard Lagrange P 1 interpolants on the pairs
(Dj,1, Dj,2) and (D′

j,1, D
′
j,2). It leads to the estimation (5.33). Hypothesis 5.5 is here

to ensure that the so-called maximum angle condition [3, 18] is verified for at least
one of the pairs of triangles (Dj,1, Dj,2) or (D′

j,1, D
′
j,2).
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Consistency error for φ̂. Let ωh = L(ω). Thanks to (5.21), we start by writing

ah(φ̂, ωh)− `N (ωh) =

[

ah(φ̂, ωh) + (f, ωh)Ω −

∫

Γ

σ ω̃h(ξ) dξ

]

− (f, ωh − ω∗
h)Ω.(5.34)

The last term in (5.34) can be bounded by the following lemma:
Lemma 5.14. If all diamond-cells are convex, there exists a constant C indepen-

dent of the grid such that

|(f, ωh − ω∗
h)Ω| ≤ Ch||f ||0,Ω|ωh|1,h .(5.35)

Proof. The proof is identical to that given in [10] for homogeneous Dirichlet
conditions.

Then, we follow [10] with a slight modification due to non-homogeneous Neumann
boundary conditions. We divide each interior diamond-cell Dj (with j ∈ [1, J − JΓ])
either into Dj,1∪Dj,2, or into D′

j,1∪D
′
j,2 (see figure 2.5). Note that this choice is local

to Dj and does not influence the choice which can be made for the division of Dj′ ,
for j′ 6= j. Boundary diamond-cells are such that Dj,1 = Dj and Dj,2 = ∅ and will
never be split into D′

j,1 ∪D
′
j,2. To simplify notations, we shall write Tj,α to represent

either Dj,α or D′
j,α. Further, we define RT (∇φ̂), the Raviart-Thomas interpolation

of ∇φ̂ on each Tj,α (see [23]) by

RT (∇φ̂)|Tj,α
∈ (P0(Tj,α))

2 ⊕

(

x
y

)

P0(Tj,α) and

∫

s

RT (∇φ̂) · n dξ =

∫

s

∇φ̂.n dξ

for any edge s of Tj,α whose normal exterior unit vector is denoted by n. We can
state the following lemma

Lemma 5.15. Let φ̂ be the solution of (5.15) and let ωh ∈ L(VN ). Denote
by 〈ωh〉j,α the average value of ωh over Tj,α. Then, if all diamond-cells are convex

ah(φ̂, ωh) + (f, ωh)Ω −

∫

Γ

σ ω̃h(ξ) dξ =

(5.36)
∑

j∈[1,J]

2
∑

α=1

∫

Tj,α

[

(∇φ̂−RT (∇φ̂)) · ∇ωh − f
(

〈ωh〉j,α − ωh

)]

dx .

Proof. By definition, RT (∇φ̂) · n is a constant on each edge of Tj,α. In addition,

on two neighboring triangles Tj,α, the values of RT (∇φ̂) · n on both sides of their
common edge are opposite one to the other, because of the orientation of the normal
vector n. By noting S the set of all the edges of all the Tj,α and n the normal unit
vector to an edge s in S, and [ωh]s the jump of ωh through s, then

∑

j∈[1,J]

2
∑

α=1

∫

∂Tj,α

RT (∇φ̂) · nωh dξ =
∑

s∈S, s6⊂Γ

RT (∇φ̂) · n

∫

s

[ωh]s dξ

(5.37)

+
∑

s∈S, s⊂Γ

RT (∇φ̂) · n

∫

s

ωh dξ .

Since ωh is in L(VN ), then [ωh]s is a polynomial of degree one, which vanishes at the
midpoint of s (by construction of the functions of L(VN )). Its integral on s is thus null.
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Further, there is an obvious one to one correspondence between a given s ∈ S, s ⊂ Γ
and some boundary edge Aj , with j ∈ [J−JΓ +1, J ] because boundary diamond-cells
are such that Dj = Dj,1 = Tj,α, with α = 1. Therefore, for such s ∈ S, s ⊂ Γ, there
exists a unique j ∈ [J − JΓ + 1, J ] such that

RT (∇φ̂) · n =
1

|Aj |

∫

Aj

RT (∇φ̂) · nj =
1

|Aj |

∫

Aj

∇φ̂ · nj =
1

|Aj |

∫

Aj

σ(ξ) dξ .

Further, on this Aj , the function ωh is a polynomial of degree one, whose integral is
easy to compute:

∫

s

ωh dξ =
|Aj |

4

(

ωP
k1

+ 2ωT
i2 + ωP

k2

)

Recalling the definition (5.23) of the piecewise constant function ω̃h, we may write

∑

j∈[1,J]

2
∑

α=1

∫

∂Tj,α

RT (∇φ̂) · nωh dξ =
∑

s∈S, s⊂Γ

RT (∇φ̂) · n

∫

s

ωh dξ =

∫

Γ

σω̃h(ξ)dξ .

But we may also write the above equality in the following way

∑

j∈[1,J]

2
∑

α=1

(

∫

Tj,α

∇ · (RT (∇φ̂))ωh dx +

∫

Tj,α

RT (∇φ̂) · ∇ωh dx

)

=

∫

Γ

σω̃h(ξ)dξ .

By subtracting this equality from ah(φ̂, ωh), we obtain

ah(φ̂, ωh) −

∫

Γ

σω̃h(ξ)dξ =
∑

j∈[1,J]

2
∑

α=1

∫

Tj,α

(∇φ̂−RT (∇φ̂)) · ∇ωh dx

(5.38)

−
∑

j∈[1,J]

2
∑

α=1

∫

Tj,α

∇ · (RT (∇φ̂))ωh dx .

Let us note 〈ωh〉j,α the mean value of ωh on Tj,α. Since ∇·(RT (∇φ̂)) is by construction
a constant on Tj,α, we may write the following series of equalities

∫

Tj,α

∇ · (RT (∇φ̂))ωh dx = 〈ωh〉j,α

∫

Tj,α

∇ · (RT (∇φ̂)) dx =

〈ωh〉j,α

∫

∂Tj,α

RT (∇φ̂) · n dξ = 〈ωh〉j,α

∫

∂Tj,α

∇φ̂ · n dξ =(5.39)

〈ωh〉j,α

∫

Tj,α

∆φ̂ dx = 〈ωh〉j,α

∫

Tj,α

f dx .

Equality (5.36) follows from (5.38) and (5.39).
The first term in the right-hand side of (5.34) can be bounded by the following

lemma
Lemma 5.16. If all diamond-cells are convex and under hypotheses 5.5 and 5.7,

there exists a constant C independent of the grid such that
∣

∣

∣

∣

ah(φ̂, ωh) + (f, ωh)Ω −

∫

Γ

σω̃h(ξ) dξ

∣

∣

∣

∣

≤ C
h

sin τ∗
|ωh|1,h

(

||f ||0,Ω + ||φ̂||2,Ω

)

.(5.40)
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Proof. By virtue of lemma 5.15, bounding the left-hand-side of (5.40) amounts
to bounding the right-hand-side of (5.36). This was performed in [10]. There again,
hypothesis 5.5 is here to ensure the maximum angle condition needed by the Raviart-
Thomas interpolation of ∇φ̂, see [1].

We end the consistency error estimation with
Proposition 5.17. If all diamond-cells are convex and under hypotheses 5.5 and

5.7, there exists a constant C, independent of the grid such that

sup
ωh∈L(VN )

|ah(φ̂, ωh) − `N (ωh)|

|ωh|1,h
≤ C

h

sin τ∗

(

||f ||0,Ω + ||φ̂||2,Ω

)

.(5.41)

Proof. The result follows from (5.34), (5.35) and (5.40).

Interpolation error for ψ̂. Next, given the equivalent finite element formulation
stated by Prop. 5.12, we may study the numerical error concerning ψ in a very
analogous way: The interpolation error is bounded by choosing ωh = L(Πψ̂) with

Πψ̂ ∈ VD defined by

∀i ∈ [1, I + JΓ] , (Πψ̂)T
i = ψ̂(Gi) and ∀k ∈ [1,K] , (Πψ̂)P

k = ψ̂(Sk)

and we obtain a result analogous to (5.33):
Proposition 5.18. If all diamond-cells are convex and under hypotheses 5.5 and

5.7, there exists a constant C(τ ∗) depending only on τ∗ such that

inf
ωh∈L(VD)

|ψ̂ − ωh|1,h ≤ C(τ∗)h ||ψ̂||2,Ω.(5.42)

Consistency error for ψ̂. Concerning the consistency error, we may prove a result
analogous to Eq. (5.36):

Lemma 5.19. Let ψ̂ be the solution of (5.16) and let ωh ∈ L(VD). Then, if all
diamond-cells are convex

ah(ψ̂, ωh) − (g, ωh)Ω +
∑

q∈[1,Q]

kq

(

cTq,ω + cPq,ω

2

)

=

(5.43)
∑

j∈[1,J]

2
∑

α=1

∫

Tj,α

[

(∇ψ̂ −RT (∇ψ̂)) · ∇ωh + g
(

〈ωh〉j,α − ωh

)]

dx .

Proof. We first write for ψ̂ an equality analogous to Eq. (5.37). For the same
reasons as in the proof of lemma 5.15, this amounts to evaluating the boundary part:

∑

j∈[1,J]

2
∑

α=1

∫

∂Tj,α

RT (∇ψ̂) · nωh dξ =
∑

q∈[1,Q]

∑

j∈Γq

RT (∇ψ̂) · nj

∫

Aj

ωh dξ =

∑

q∈[1,Q]

(

cTq,ω + cPq,ω

2

)

∑

j∈Γq

|Aj |RT (∇ψ̂) · nj =
∑

q∈[1,Q]

(

cTq,ω + cPq,ω

2

)

∑

j∈Γq

∫

Aj

∇ψ̂ · nj =

∑

q∈[1,Q]

(

cTq,ω + cPq,ω

2

)

∫

Γq

∇ψ̂ · nj = −
∑

q∈[1,Q]

kq

(

cTq,ω + cPq,ω

2

)

.
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The end of the proof of (5.43) follows exactly the same lines as that of (5.36) and is
thus skipped.

Next, bounding the right-hand side of (5.43) is performed like in [10] and we
obtain a result analogous to (5.41)

Proposition 5.20. If all diamond-cells are convex and under hypotheses 5.5
and 5.7, there exists a constant C, independent of the grid such that

sup
ωh∈L(VD)

|ah(ψ̂, ωh) − `D(ωh)|

|ωh|1,h
≤ C

h

sin τ∗

(

||g||0,Ω + ||ψ̂||2,Ω

)

.(5.44)

In conclusion of paragraph 5.3.2, estimates (5.31), (5.33) and (5.41) on the one hand
and (5.32), (5.42) and (5.44) on the other hand allow us to state the following theorem:

Theorem 5.21. If all diamond-cells are convex and under hypotheses 5.5 and
5.7, there exists a constant C(τ ∗) independent of the grid such that

|φ̂− φh|1,h ≤ C(τ∗)h
(

||f ||0,Ω + ||φ̂||2,Ω

)

.(5.45)

and

|ψ̂ − ψh|1,h ≤ C(τ∗)h
(

||g||0,Ω + ||ψ̂||2,Ω

)

.(5.46)

To conclude paragraph 5.3, Th. 5.21, along with (5.17) and (5.19) lead to
Theorem 5.22. If all diamond-cells are convex and under hypotheses 5.5 and

5.7, there exists a constant C(τ ∗) independent of the grid such that





∑

j∈[1,J]

∫

Dj

|uj − û(x)|2 dx





1/2

≤ C(τ∗)h
(

||f ||0,Ω + ||g||0,Ω + ||φ̂||2,Ω + ||ψ̂||2,Ω

)

.

6. Numerical results. We test the finite volume method over different types
of meshes and we define the discrete relative L2 error by:

e2(h) :=

∑

j |Dj | |u− Πû|2j
∑

j |Dj | |Πû|2j
,

where (Πû)j is the value of the exact solution at the barycenter of Dj (noted Bj):

∀ j ∈ [1, J ] , (Πû)j = û(Bj).

For the first three families of meshes (triangular unstructured, non-conforming,
degenerating triangular), the domain of computation is the unit square Ω = [0; 1] ×
[0; 1]. We choose the data f , g and the boundary conditions so that the analytical
solution is given by

û(x, y) =

(

exp(x) cos(πy) + π sin(πx) cos(πy)
−π exp(x) sin(πy) − π cos(πx) sin(πy)

)

.

This means that the exact potentials are given by

φ̂(x, y) = exp(x) cos(πy) and ψ̂(x, y) = sin(πx) sin(πy).

In addition, we always choose the points Gi associated to the control volumes of the
primal mesh to be the barycenters of the cell Ti.
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6.1. Unstructured meshes. First of all, we consider a family of six unstruc-
tured grids made up of increasingly small triangles. The first two of these grids are
represented on the left and central parts of figure 6.1. The numerical errors in the
discrete L2 norm are presented in logarithmic scale on the right part of figure 6.1, on
which we also plotted a straight line of slope 1. We remark, as proved previously, a
first-order convergence of the presented scheme.

e(h)

 0.001

 0.01

 0.1

 0.01  0.1
h

error
slope=1

Fig. 6.1. Unstructured triangular meshes.

6.2. Non-conforming meshes. Next, we consider the non-conforming family
of meshes constructed in the following way. Let n be a non-zero integer. We split Ω
into (2n + 1) × (2n + 1) identical squares. Then, every other square is itself divided
into 2n × 2n identical sub-squares. We choose n ∈ [1; 4]N . The left and central parts
of figure 6.2 display the first two of these meshes. Of course, this family of meshes is
not of practical use, but constitutes in our opinion a good choice in order to test the
applicability of the presented method on arbitrarily locally refined non-conforming
meshes. A zoom on the most distorted diamond cell for this type of mesh (with
n = 2) is displayed on figure 6.3. Comparing this figure with Fig. 5.1, we infer that

max(α1, β1, µ1 + µ2, α2, β2, ν1 + ν2) = β2 ,

which is always lower than 3π
4 for all values of n. Moreover, it is easily checked that

the maximum angle of every boundary diamond-cell equals π
2 , so that this family

of meshes satisfies hypothesis 5.5 with an angle τ ∗ = 3π
4 . The discrete L2 error is

displayed in logarithmic scale on the right part of figure 6.2, together with a reference
straight line with a slope equal to one. We observe, on this family of non-conforming,
locally refined meshes, a first-order convergence in the discrete L2 norm.

e(h)

 0.01

 0.1

 0.1
h

error
slope=1

Fig. 6.2. Non-conforming square meshes.
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k1
S

k2
S

G
1i

G
2i

β 2

Fig. 6.3. Zoom on a diamond-cell for the locally refined meshes with n = 2.

6.3. Degenerating meshes. The third family is made up of grids of increas-
ingly flat triangles built in the following way. Let n be a non-zero integer. We divide
Ω into 4n horizontal stripes of the same height and we divide each one of these stripes
into similar triangles (except those at both ends) so that there are 2n bases of trian-
gles in the width of a stripe and we choose n ∈ [1; 6]N . The left and central parts of
figure 6.4 represent the first two of these grids. The numerical errors in the L2 norm
are presented in logarithmic scale on the right part of figure 6.4, as well as a straight
line of slope 1.5. Although such a family of meshes does not verify Hyp. 5.5 (due to
boundary diamond-cells), we observe a superconvergence of the method in this case,
which is due to the fact, as shown in [10], that almost all diamond-cells (except those
at the boundary) are parallelograms.

e(h)

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1
h

error
slope=1.5

Fig. 6.4. Degenerating triangular meshes.

6.4. Non simply connected domains. Here, the domain of computation is
Ω = [0, 1]2 \ [1/3, 2/3]2 and the data and boundary conditions are chosen so that the
analytic solution is given by

û(x, y) =

(

exp(x) cos(πy) + 3π sin(3πx) cos(3πy)
−π exp(x) sin(πy) − 3π cos(3πx) sin(3πy)

)

.

This means that the exact potentials are given by

φ̂(x, y) = exp(x) cos(πy) and ψ̂(x, y) = sin(3πx) sin(3πy) .

We compute the numerical solution on a family of five increasingly fine triangular
meshes. The first two of the meshes are displayed on the left and central parts of
figure 6.5. The numerical errors in the L2 norm are presented in logarithmic scale on
the right part of figure 6.5, as well as a straight line of slope 1. We observe the first
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order convergence of the scheme on this type of non-convex meshes when the solution
is regular enough, which is not the case of the last example.

e(h)

 0.01

 0.1

 0.01  0.1
h

error
slope=1

Fig. 6.5. Non simply connected meshes.

6.5. Non-convex domains and less regular solutions. Here, the domain of
computation is Ω =] − 1/2; 1/2[2\]0; 1/2[2 and the data and boundary conditions are
chosen so that the analytic solution, expressed in polar coordinates centered on (0, 0),
is given by

û(r, θ) = ∇(r2/3 cos(
2

3
θ)) ,

that is to say φ̂(r, θ) = r2/3 cos( 2
3θ) and ψ̂ = 0. Note that φ̂ is still in H1 but not

in H2, so that the error estimate derived in section 5.3 is not valid. More precisely,
φ̂ ∈ (H1+s(Ω))2 with s < 2/3. We use a family of five unstructured triangular grids.
The first two meshes of this family are displayed on the left and central parts of
figure 6.6, while the error curve in the discrete L2 norm is shown on the right part of
figure 6.6, together with a reference line of slope 2/3. The order of convergence of the
scheme seems to be 2/3 in this case, like that obtained in [4].

e(h)

 0.01

 0.1

 0.01  0.1
h

error
slope=2/3

Fig. 6.6. Non-convex meshes

7. Conclusion. We have proposed new discretizations of differential operators
such as divergence, gradient and curl on almost arbitrary two-dimensional meshes.
These discrete operators verify discrete properties analogue to their continuous coun-
terparts. We have applied these ideas to approximate the solution of two-dimensional
div-curl problems and we have given error estimations for the resulting scheme. Fi-
nally, we have demonstrated the possibilities of the method by providing a series of
numerical tests. Extensions of these ideas to problems with inhomogeneous and/or
anisotropic and/or discontinuous coefficients and to the discretization of Stokes-like
problems are currently being investigated.
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