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ABSTRACT. We focus on the Discrete Duality Finite Volume (DDFV) method whose particular-
ity is to allow the use of unstructured or nonconforming meshes. We discretize the non-linear
Navier-Stokes problem, using the rotational formulation of the convection term, associated with
the Bernoulli pressure. With an iterative algorithm, we are led to solve a saddle-point problem
at each iteration. We give a particular interest to this linear problem by testing some precondi-
tioners issued from finite elements, which we adapt to the DDFV method.
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1. Introduction

Let be Ω an open bounded connected domain of R2 with a Lipschitz boundary
denoted by Γ. We consider the numerical resolution of the bidimensional stationnary
Navier-Stokes equations: given f , find (u, p) such that8>><>>:

−ν∆u + u ·∇u + ∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on Γ,R
Ω

p(x) dx = 0.

[1]

The discretization of the Navier-Stokes equations by finite volume schemes has at-
tracted interest these last years but classical finite volume methods work on meshes
with orthogonal constraints like rectangular grids (see Harlow & Welch [HAR 65])
or so-called "admissible meshes" (see [EYM 00, Def. 9.1]), which can be seen as a
generalization of Delaunay-Voronoi meshes.

1. This work was performed when the authors were at the CEA Saclay,
DANS/DM2S/SFME/LMPE, Gif sur Yvette, France.



In what follows, we focus on the DDFV approach described in [DOM 05] for the
Laplace equation. The main interest of this staggered finite volume method is that it
applies on almost all meshes (unstructured and non-conforming meshes) without any
orthogonality constraint. However, the extension of this method to three-dimensional
meshes need some adaptation. Here, we present the DDFV scheme for fluid dynamics
equations and this one can be seen as a generalization of Nicolaides’ scheme [NIC 95]
developed on Delaunay-Voronoi meshes.

This paper is organized as follows: in section 2, we present the construction of the
primal, dual and diamond meshes. Then, we define discrete gradient, divergence and
curl operators on these meshes. In section 3, we focus on the Navier-Stokes equations
and present its discretization. Section 4 is devoted to the description of several kinds
of preconditioners adapted to the DDFV method and some numerical comparisons of
these solvers are given.

2. Definitions and notations

We consider a first partition of Ω (named primal mesh) composed of elements Ti,
with i ∈ [1, I], supposed to be convex polygons.

Further, we denote by Sk, with k ∈ [1, K], the nodes of the polygons of the primal
mesh. With each of these points, we associate a polygon denoted by Pk, obtained by
joining the centers of gravity Gi associated to the elements of the primal mesh (and
possibly to midpoints of the boundary sides) of which Sk is a vertex to the midpoints
of the edges of which Sk is an extremity. The Pks constitute a second partition of Ω,
referenced as dual mesh. Figure 1(a) displays an example of a primal mesh and its
associated dual mesh.

With each edge of the primal mesh, denoted by Aj = [Sk1(j)Sk2(j)], with j ∈
[1, J ], we associate a quadrilateral named “diamond cell” and denoted by Dj . When
Aj is not on the boundary, this cell is obtained by joining the points Sk1(j) and Sk2(j),
which are the two nodes of Aj , with the gravity centers Gi1(j) and Gi2(j) of the
elements of the primal mesh sharing this side. When Aj is on the boundary Γ, the cell
Dj is obtained by joining the two nodes of Aj with the point Gi1(j) associated with the
only element of the primal mesh of which Aj is a side. The cells Dj constitute a third
partition of Ω, named “diamond-mesh”. Such cells are displayed in Figures 1(b) and
1(c). The unit normal vector to Aj and A′j = [Gi1(j)Gi2(j)] are respectively denoted
by nj and n′j . More precisely, nji points outward Ti while n′jk points outward Pk. At
last, the area of the cells Ti, Pk and Dj is denoted by |Ti|, |Pk| and |Dj |.

Definition 1 Given any φ = (φT
i , φP

k ) ∈ RI+JΓ × RK , the discrete gradient ∇D
h is

defined by its values over the diamond cells Dj:

(∇D
h φ)j :=

1

2 |Dj |
�h

φP
k2 − φP

k1

i
|A′j | n′j +

h
φT

i2 − φT
i1

i
|Aj | nj

�
. [2]
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Figure 1. (a) An example of a primal mesh and its associated dual mesh. (b) An inner diamond
cell. (c) A boundary diamond cell.

In the very same way, we may approach the vector curl operator ∇×• =
(

∂•
∂y , − ∂•

∂x

)T

by a discrete vector curl operator ∇D
h × on the diamond cells:

(∇D
h × φ)j := − 1

2 |Dj |
�h

φP
k2 − φP

k1

i
|A′j | τ ′j +

h
φT

i2 − φT
i1

i
|Aj | τj

�
, [3]

where the unit vectors τj and τ ′j are such that (nj , τj) and (n′j , τ
′
j) are orthogonal

positively oriented bases of R2.

Definition 2 Given any u = (uj) ∈ R2J , the discrete divergence∇T,P
h · := (∇T

h ·,∇P
h ·)

is defined by its values over the primal cells Ti and the dual cells Pk:

(∇T
h · u)i :=

1

|Ti|
X

j∈V(i)

|Aj | uj · nji ,

[4]

(∇P
h · u)k :=

1

|Pk|

0@ X
j∈E(k)

|A′j | uj · n′j +
X

j∈E(k)∩[J−JΓ+1,J]

1

2
|Aj | uj · nj

1A .

In the very same way, we may approach the scalar curl operator∇×• =
(

∂•y

∂x − ∂•x

∂y

)

by a discrete scalar curl operator∇T,P
h × := (∇T

h×,∇P
h×) replacing the normal unit

vector n by the tangential unit vector τ in [4].

Definition 3 If (φ, ψ) ∈ (
RI × RK

)2
and (u,v) ∈ (

R2J
)2

, then we define the fol-
lowing scalar products:

(u,v)D :=
X

j∈[1,J]

|Dj |uj · vj , [5]

(φ, ψ)T,P :=
1

2

0@ X
i∈[1,I]

|Ti|φT
i ψT

i +
X

k∈[1,K]

|Pk|φP
k ψP

k

1A . [6]



We also define the trace of u ∈ RJ and φ ∈ RI+JΓ × RK on the boundary Γ by

(u, φ)Γ,h :=
X
j∈Γ

|Aj |uj × 1

4

�
φP

k1(j) + 2φT
i2(j) + φP

k2(j)

�
. [7]

Proposition 1 The following discrete analogues of the Green formulae hold:

(∇T,P
h · u, φ)T,P = −(u, ∇D

h φ)D + (u · n, φ)Γ,h , [8]

(∇T,P
h × u, φ)T,P = (u, ∇D

h × φ)D + (u · τ, φ)Γ,h , [9]

for all u ∈ (
RJ

)2
and all φ = (φT , φP ) ∈ RI+JΓ × RK .

3. Discretization of the Navier-Stokes equations

We are interested in the approximation of non-linear problem [1]. For continuous
operators, −∆u can be rewritten as −∆u = ∇ × ∇ × u −∇∇ · u . On the other
hand, to avoid a problem of definition of the convective term on staggered meshes, we
use the rotational formulation of u ·∇u which reads:

u ·∇u = (∇× u) u× ez + ∇
�

u2

2

�
, [10]

where u× ez = (−uy,ux)T with ux and uy the two components of u, and we intro-

duce the Bernoulli pressure: π = p +
u2

2
. At last, in order to ensure the uniqueness

of π, we set
∫
Ω

π(x) dx = 0.

With an iterative process to solve the non-linearity (the fixed-point method for
example), we are led to solve the following linear system, called Oseen equations:
given f and uG, find (u, π) such that8>><>>:

−ν [∇×∇× u−∇∇ · u] + (∇× uG) u× ez + ∇π = f in Ω,
∇ · u = 0 in Ω,

u = 0 on Γ,R
Ω

π(x) dx = 0.

[11]

Hypothesis 1 We assume that each boundary primal cell has only one edge which
belongs to the boundary Γ.

We look for the approximation (uj)j∈[1,J] of the velocity u on the diamond cells and
the approximation (πT

i )i∈[1,I], (πP
k )k∈[1,K] of the Bernoulli pressure π on the primal

and dual cells respectively.

We discretize the first equation of [11] on the interior diamond cells and the sec-
ond equation of [11] both on the primal and dual cells. Then, the boundary condition
u = 0 is discretized on the boundary diamond cells while the condition of vanishing
mean pressure is discretized on the primal and dual cells.



We shall suppose that the locations of the values of uG are the same as those of u,
that is on the diamond cells. Therefore, we may easily calculate∇×uG on the primal
and dual cells according to the discrete operator ∇T,P

h ×. However, since the first
equation in [11] is discretized on diamond cells, we shall use the following quadrature
formula to calculate ∇× uG over any Dj :

(∇× uG)|Dj
≈ (∇T

h × uG)i1 + (∇T
h × uG)i2 + (∇P

h × uG)k1 + (∇P
h × uG)k2

4
. [12]

Then, for all diamond cells, we set:

−
[
∆D

h u
]

j
= (∇D

h ×∇T,P
h × u)j − (∇D

h ∇T,P
h · u)j .

Now, we can discretize the continuous problem [11] by the following system:

−ν
h
∆D

h u
i

j
+ (∇× uG)|Dj

uj × ez + (∇D
h π)j = fD

j , ∀Dj /∈ Γ, [13a]

(∇T,P
h · u)i,k = 0, ∀Ti, ∀Pk, [13b]

uj = fD
j , ∀Dj ∈ Γ, [13c]X

i∈[1,I]

|Ti| πT
i =

X
k∈[1,K]

|Pk| πP
k = 0, [13d]

where we have set fD
j = 1

|Dj |
∫

Dj
f(x) dx, ∀j /∈ Γ and fD

j = 0, ∀j ∈ Γ.

Property 1 For any vector uj , the convection term of problem [13] satisfies:

(∇× uG)|Dj
(uj × ez) · uj = 0, ∀j ∈ [1, J − JΓ]. [14]

This property allows us to state the following proposition.

Proposition 2 Under Hyp. 1, the solution ((uj)j∈[1,J], (πT
i )i∈[1,I], (πP

k )k∈[1,K]) of
[13] exists and is unique.

Proof 1 Equations [13a] and [13c] provide 2J equations and as many velocity un-
knowns. Then, Eq. [13b] provides I + K equations and as many pressure unknowns.
However, Eqs. [13b] and [13c] are not independent, which is balanced by the 2 Eqs.
of [13d]. Then, we have as many independent equations as unknowns. It remains to
show the injectivity of the system. Multiplying [13a] by uj such that uj = 0 ∀Dj ∈ Γ
and using property 1, it follows that:

ν (∇D
h ×∇T,P

h × u,u)D + (∇D
h π,u)D = 0. [15]

Applying discrete Green formulae [8] and [9] to the previous line, Eqs. [13b] and
[13c] imply that (∇T,P

h × u)i,k = 0 ∀Ti, ∀Pk. Thus, we obtain an homogeneous
Div-Curl problem and it follows from [DEL 07b] that

uj = 0, ∀j ∈ [1, J ]. [16]



Since uj = 0, Eq. [13a] shows that (∇D
h π)j = 0, for all interior diamond cells,

which implies, according to [2], that πT
i2(j)

= πT
i1(j)

and πP
k2(j)

= πP
k1(j)

, ∀Dj /∈ Γ.

Since the domain is connected, any pair of primal cells may be joined by a finite
number of interior dual edges. Concerning the boundary nodes Sk, Hyp. 1 is here to
ensure that all these nodes are vertices of at least one interior diamond-cell. Thus, all
the pT

i (resp. pP
k ) are equal to the same constant cT (resp. cP ). Finally, using [13d],

we conclude that:
∀Ti, πT

i = 0 and ∀Pk, πP
k = 0. [17]

Once the (uj)j∈[1,J] and the (πT
i , πP

k )i∈[1,I],k∈[1,K] have been calculated, we can
easily deduce the approximation (pT

i , pP
k )i∈[1,I],k∈[1,K] of p thanks to the formula

p = π − u2

2 and using quadrature formulae to define the velocity u on the primal and
dual cells.

Many numerical convergence results are detailed about this scheme in [DEL 07a]
on unstructured and non-conforming meshes by comparison to analytical solutions.
On strongly non-conforming meshes, the DDFV scheme seems to converge with an
order one for the velocity u, and an order 0.5 for the pressure p and the vorticity ω =
∇ × u. For unstructured meshes, we observe at best a second order of convergence
for the velocity, the pressure and the vorticity.

4. Preconditionners and numerical results

4.1. Preconditioners

When the Navier-Stokes equations are solved by a fixed-point type method, we
must solve a linear system at each non-linear iteration, which takes the form of a
saddle point-problem and can be solved by an Uzawa method:�

Au + BT p = f ,
−BA−1BT p = −BA−1f ,

[18]

which requires a preconditioner for the Schur complement S = −BA−1BT . Many
efficient preconditioners are known for saddle-point problems arising from finite-
element discretizations, but their adaptation to matrices issued from DDFV discretiza-
tions is not trivial. For example, the preconditioners based on formal commutators
described in [KAY 02] are not well defined on staggered grids. On the other hand,
the preconditioner proposed by Olshanskii and Vassilevski [OLS 07] for the rotational
formulation does not fit the discretization by the DDFV method and the reason is
unclear.

In what follows, we focus on two kinds of preconditioners S̃−1 for the Schur
complement S = −BA−1BT which can be applied to our problem:

– the SIMPLE preconditioner: S̃−1 = −(BÂ−1BT )−1 where Â is an approxima-
tion of A (for example, the diagonal matrix of A).



– approximate commutators (called BFBt method, which is the notation intro-
duced by Elman [ELM 99]):

S̃−1 = −(BM−1
2 BT )−1(BM−1

2 AM−1
2 BT )(BM−1

2 BT )−1,

where the main candidates for M2 are the identity matrix, the diagonal of A or the
diagonal velocity mass-matrix X defined on the diamond cells and whose elements
are the weights |Dj |. Note that this preconditioner is more expensive than SIMPLE
because we need to invert BM−1

2 BT twice whereas for the SIMPLE preconditioner,
we need to invert BÂ−1BT only one time.

For the BFBt method, Elman [ELM 99] shows that, for the MAC finite difference
scheme with Dirichlet boundary conditions, constant uG or mildly ν-dependent vari-
able uG, the iteration count of the Krylov method is independent of ν and increases in
proportion to h−1/2.

4.2. Numerical results

The experiments are done in Fortran 90 with PETSC and MUMPS libraries. The
meshes are unstructured triangulations obtained with Emc2. The domain size is [0, 1]×
[0, 1]. The test case to be considered is a lid-driven cavity type problem with uG =(

2(2y − 1)(1− (2x− 1)2) ,−2(2x− 1)(1− (2y − 1)2)
)T

and with boundary con-
ditions u(x, 1) = (1, 0)T and u(x, y) = 0 elsewhere. The right-hand side is supposed
to vanish.

Mesh size h Preconditioner ν = 1 ν = 10−1 ν = 10−2 ν = 10−3

M2 = I 11 12 27 275
0.0753 M2 = X 10 12 32 440

M2 = diag(A) 12 13 27 178
SIMPLE 84 94 94 293
M2 = I 17 19 36 207

0.0398 M2 = X 15 15 42 NC
M2 = diag(A) 17 18 35 223
SIMPLE 171 175 187 278
M2 = I 32 35 44 189

0.02125 M2 = X 19 22 73 NC
M2 = diag(A) 32 34 40 175
SIMPLE 294 342 346 394
M2 = I 53 58 64 163

0.01129 M2 = X 28 32 101 NC
M2 = diag(A) 66 61 69 160
SIMPLE 614 814 909 830

Table 1. Iteration count for the linear solver.

The use of an incomplete factorization gives some good results, but using exact
solvers for A and BM−1

2 BT produces a better comparison with the results of Elman:
indeed, his tests were done in Matlab using the "backslash" solver.

Table 1 shows the iteration count of a Bicgstab preconditioned by the SIMPLE and
BFBt preconditioners described in section 4.1. The linear iterations are stopped when



the tolerance is smaller than 10−8, and "NC" for "No Convergence" means that the
stopping criterion is not satisfied after 5000 iterations.

The SIMPLE iteration numbers present some small variations with the viscosity
but grows h−1-linearly. On the other hand, we observe that the iteration count of
the BFBt method grows slowly with h−1. The scaling by the velocity mass-matrix
X leads to an improvement with h−1/2 only for large viscosities (greater than 10−2).
The scaling by diag(A) aims to precondition A and is useful only when the mesh is
not sufficiently refined (for example, for ν = 10−3 and h = 0.0753). Since the DDFV
scheme is a MAC-type scheme, M2 = I shows a performance almost similar to that
of Elman [ELM 99] in the case of a circular vortex.

In summary, the BFBt preconditioner seems to be a very robust black-box solver
and it allows us to solve efficiently the 2D linearized Navier-Stokes equations dis-
cretized by the DDFV method for the moderate Reynolds number.
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