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JEAN-LOUIS NICOLAS∗ jlnicola@in2p3.fr
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Abstract. Let p be an odd prime number and a a square modulo p. It is well known that the simple formula
a

p+1
4 mod p gives a square root of a when p ≡ 3 mod 4. Let us write p −1 = 2ns with s odd. A fast algorithm

due to Shanks, with n steps, allows us to compute a square root of a modulo p. It will be shown that there exists a
polynomial of at most 2n−1 terms giving a square root of a. Moreover, if there exists a polynomial in a representing
a square root of a modulo p, it will be proved that this polynomial would have at least 2n−1 terms, except for a
finite set Pn of primes p depending on n.

Résumé. Soit p un nombre premier impair et a un carré modulo p. La formule très simple a
p+1

4 mod p fournit une
valeur de la racine carrée de a lorsque p ≡ 3 mod 4. Plus généralement, si l’on écrit p −1 = 2ns avec s impair, un
algorithme dû à Shanks, comprenant n étapes, permet de calculer la racine carrée de a modulo p. Nous montrerons
qu’il existe un polynôme d’au plus 2n−1 termes et dont la valeur est une racine carrée de a pour tout carré a. De
plus, pour n fixé, nous démontrons que tout polynôme en a représentant la racine carrée de a modulo p a au moins
2n−1 termes, excepté pour un ensemble fini Pn de nombres premiers p ≡ 1 (mod 2n).
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1. Introduction

Any function f from a finite field K into itself is a polynomial the value of which can be
obtained by Lagrange interpolation formula or by Chevalley’s trick (cf. [7], p. 272):

f (X) =
∑
t∈K

f (t)(1− (X − t)q−1)

∗Research partially supported by CNRS, Institut Girard Desargues, UPRES-A 5028 and Région Rhône-Alpes,
contract 99 029744.
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where q is the number of elements of K . In [9] and [10], the authors considered polynomials
representing the discrete logarithm on a finite field GF(q). In the present paper, we wish
to investigate the function square root; we shall restrict ourselves to the fields Fp = Z/pZ,
with p an odd prime. It would be possible to study, in the same way, cubic roots and more
generally, k-th roots, for k > 2 (cf. [1]).

Let p 	= 2 be a prime number. It is well known that there are p−1
2 quadratic residues a in

F∗
p = {1, 2, . . . , p −1} which can be obtained by the congruence involving the Legendre

symbol

1 =
(

a

p

)
≡ a

p−1
2 (mod p). (1)

We shall denote by
√

a to be one of the square roots of a. The two square roots of a square
a 	= 0 will be denoted by ±√

a.
We shall say that a polynomial P(X) ∈ Fp[X ] represents the square root in F∗

p if, for all
quadratic residues a ∈ F∗

p, the relation (P(a))2 = a (i.e., P(a) = ±√
a) holds or, equiva-

lently

∀t ∈ F∗
p, (P(t2))2 = t2. (2)

It is easy to see that F∗
p can be replaced by Fp in (2). This means that an additional

restriction on P , namely P(0) = 0 is to be imposed. However this is not a serious restriction:
if P satisfies (2), the polynomial

P̂(X) = P(X)+ (
X

p−1
2 −1

)
P(0) (3)

also satisfies (2) and moreover P̂(0) = 0.
In Section 2, we shall prove the following theorem.

THEOREM 1. Let p be an odd prime number. Let us call Sp the set of vectors σ =
(σ1, σ2, . . . , σ p−1

2
) such that σi ∈ {−1, +1} for all i (so, there are 2(p−1)/2 vectors σ ∈ Sp).

(i) For every vector σ ∈ Sp, there exists one and only one polynomial Pσ ∈ Fp[X ] such
that

for 1 ≤ i ≤ p −1

2
, Pσ(i2) = σi i (4)

and

deg(Pσ) ≤ p −3

2
· (5)

The value of Pσ is given by

Pσ(X) = −2
(p−3)/2∑

k=0


(p−1)/2∑

j=1

σ j j1−2k


 Xk mod p. (6)

(ii) Let P(X) = ∑(p−3)/2
k=0 ck Xk be a polynomial in Fp[X ] of degree at most (p −3)/2

and representing the square root in F∗
p. Then there exists a vector σ ∈ Sp such that P = Pσ .
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Moreover, for 1 ≤ i ≤ (p −1)/2,

σi ≡ i
(p−3)/2∑

k=0

(τ (i))2−2kck (mod p) (7)

where τ(i) is the only integer j such that (i j)2 ≡ 1 (mod p) and 1 ≤ j ≤ (p −1)/2.
(iii) Any polynomial P̂ ∈ Fp[X ] representing the square root in F∗

p can be written as

P̂(X) = Pσ(X)+ (
X

p−1
2 −1

)
H(X) (8)

where σ belongs to Sp and H is some polynomial in Fp(X). Conversely, any polynomial
P̂ defined by (8) where H is any polynomial in Fp(X) represents the square root in F∗

p.

The computation of polynomials Pσ for small primes shows that most of these polyno-
mials do have many non zero coefficients. However, there exist a few exceptions. To study
this phenomenon, we introduce the following:

Definition. The length of a polynomial P denoted by 
(P) is the number of non zero
terms occuring in the polynomial. So, the monomials are the polynomials of length 1, the
binomials the polynomials of length 2, and so on.

The following Lemma will be useful; for instance, from (8), (5), and Lemma 1, it follows
that 
(P̂) ≥ 
(Pσ).

LEMMA 1. Let m ≥ 1 be an integer, and K be a field. Then, for any polynomial A ∈ K [X ],
the inequality 
(A) ≥ 
(R) holds, where R is the remainder in the Euclidean division of
A(X) by Xm −1.

Proof of Lemma 1. First, we observe that the remainder in the division of Xk by Xm −1 is
Xk̄ where k̄ is the remainder in the division of k by m. Therefore, if A(X) = ∑

i aki Xki , we
shall have R(X) = ∑

i aki Xki , and clearly, 
(R) ≤ 
(A) holds which completes the proof
of Lemma 1.

The explicit calculation of the square root in F∗
p plays nowadays an important role in

cryptography (cf. [5] or [11]). Up to now, there does not seem to exist a good deterministic
algorithm to compute a square root modulo p (cf. [12]) but there is a very fast probabilistic
algorithm which was established by Lehmer (cf. [6]) and whose present form is due to
Shanks (cf. [3] and [2]).

When p ≡ 3 (mod 4) this algorithm works as follows: if a is a square modulo p then
a

p+1
4 mod p is a square root of a modulo p. So, in this case, there is a monomial which

does represent the square root in F∗
p (see the application at the end of Section 2).

More generally, let us write

p −1 = 2ns with s odd. (9)

The case n = 1 corresponds to p ≡ 3 (mod 4). For larger n, Shanks’s algorithm encom-
passes n steps, and works as follows (cf. [2] or [11]). Let b be a non residue modulo p. The
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following sequence of congruences is built

aαi bβi ≡ 1 (mod p), i = 1, . . . , n

with αi = (p −1)/2i , βi even, β1 = 0 and n is defined by (9). Whenever i < n, the value of
βi+1 is obtained in the following way: the value of

εi = aαi /2bβi /2

is equal to ±1. If εi = +1, then βi+1 = βi/2. If εi = −1, then βi+1 = βi/2+ (p −1)/2.
From the definition of n, αn is odd, and the square roots of a are ±a

αn+1
2 bβn/2.

It is possible to modify this algorithm to find a polynomial of length at most 2n−1 and
representing the square root in F∗

p. For instance, if n = 2 (then, it follows from (9) that p ≡ 5
(mod 8)), the above algorithm distinguishes two cases: ε1 = a

p−1
4 = ±1. If ε1 = +1, the

square root is equal to a
α2+1

2 = a
p+3

8 , while, if ε1 = −1, it is equal to a
α2+1

2 bβ2/2 = a
p+3

8 b
p−1

4 .
Both cases are covered in the formula:

√
a = ±1

2

(
a

p+3
8

(
a

p−1
4 +1

)+a
p+3

8 b
p−1

4
(
a

p−1
4 −1

))
= ±

((
1+b

p−1
4

2

)
a

3p+1
8 +

(
1−b

p−1
4

2

)
a

p+3
8

)
(10)

which is a binomial on a. Let us observe that b
p−1

4 is a primitive fourth root of unity. It can
take two different values, so that, formula (10) yields 4 binomials representing the square
root in F∗

p.

We shall prove in Section 3.

THEOREM 2. Let r ≥ 1 and p be a prime such that

p ≡ 2r +1 (mod 4r). (11)

Then there exists at least 2r polynomials P ∈ Fp[X ] of degree deg(P) ≤ p−3
2 , of length


(P) ≤ r and representing the square root in F∗
p.

Setting r = 2n−1 in Theorem 2 gives Theorem 3.

THEOREM 3. Let p be an odd prime number, and n the 2-adic valuation of p −1 defined
by (9). Then there exists at least 22n−1

polynomials P ∈ Fp[X ] of degree deg(P) ≤ p−3
2 , of

length 
(P) ≤ 2n−1 and representing the square root in F∗
p.

In some sense, the following theorem is a converse of Theorem 3.

THEOREM 4. Let n ≥ 1. There exists a finite set Pn of prime numbers such that, for all
prime p, p /∈ Pn and 2n | (p −1), and all P ∈ Fp[X ] representing the square root in F∗

p
(i.e., satisfying (2)), 
(P) ≥ 2n−1 holds.

One has: P1 = P2 = P3 = ∅; P4 = {17}.
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P5 is much bigger; its elements will be given in Section 4 together with the proof of
Theorem 4.

It is easy to show that the only monomials representing the square root in F∗
p and of

degree at most (p −3)/2 are ±X (p+1)/4 with p ≡ 3 (mod 4). It is also possible to show
that the only binomials representing the square root in F∗

p and of degree at most (p −3)/2
are the four binomials given by (10) when p ≡ 5 (mod 8) (the proof is similar to that of
Theorem 5 below, but much easier). In Section 5, we shall prove Theorem 5 which answers
a similar question about trinomials.

THEOREM 5. Let us assume that there exists a trinomial Q(x) ∈ Fp[x] representing the
square root in F∗

p satisfying Q(x) = axα +bxβ + cxγ with

0 ≤ α < β < γ < (p −1)/2 (12)

and abc 	= 0; then p should be of the form 12m +7 (m ≥ 1). Conversely, for such a prime
p, there exist exactly six such trinomials given by the formulae

Q = ± 1
3

[
2x (p+5)/12 − x (p+1)/4 +2x (5p+1)/12

]
(13)

or

Q = ± 1
3

[
(1∓√−3)x (p+5)/12 + x (p+1)/4 + (1±√−3)x (5p+1)/12

]
(14)

where
√−3 is any of the two square roots of −3 modulo p; for instance

√−3 ≡ (−3)
p+1

4 =
(−3)3m+2 (mod p).

In [8] a somewhat similar question has been investigated.

Remark. We have not succeeded yet in extending Theorem 5 to polynomials with more
than three terms. We guess that the 2r polynomials of length at most r which are announced
in Theorem 2 as representing the square root in F∗

p are the only ones, but our method of
proving Theorem 5 becomes too technical for r ≥ 4.

2. The Polynomials Pσ

Proof of Theorem 1, (i). Polynomials Pσ are interpolation polynomials at the points i2,
1 ≤ i ≤ p−1

2 . Their existence and uniqueness are given by Lagrange’s Theorem.
To prove formula (6), it suffices to prove it for X = i2, 1 ≤ i ≤ p−1

2 . By changing the
order of the summation, we get

−2
(p−3)/2∑

k=0


(p−1)/2∑

j=1

σ j j1−2k


 i2k = −2

(p−1)/2∑
j=1

jσ j

(p−3)/2∑
k=0

(i/j)2k .

But the sum in k is a sum of terms in geometric progression. For j 	= i , it vanishes
(by Fermat’s Theorem) while, for j = i , it is equal to (p −1)/2. The value of the above
expression is thus −2iσi (p −1)/2 = iσi , in agreement with (4).
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Proof of Theorem 1, (ii). As P represents the square root in F∗
p, then for all i , 1 ≤ i ≤ p−1

2 ,
we should have P(i2) = ±i ; therefore, from (i), as the degree of P is at most (p −3)/2,
there exists σ ∈ Sp with P = Pσ .

So, we have Pσ(X) = P(X) = ∑(p−3)/2
k=0 ck Xk . Let us associate to Pσ the column vector

D =




d1

d2
...

d p−1
2


 =




c0

c1
...

c p−3
2


 .

Further, let us introduce the square matrix M = (mi, j ), 1 ≤ i, j ≤ p−1
2 defined by

mi, j = −2 j3−2i mod p. (15)

It follows from (6) that

D =




d1

d2
...

d p−1
2


 =




c0

c1
...

c p−3
2


 = M




σ1

σ2
...

σ p−1
2


 = M tσ. (16)

Now, let us set A = tMM = (ai, j ). A simple calculation shows that

ai, j = 4
(p−1)/2∑

k=1

(i j)3−2k mod p. (17)

With the definition of τ(i), it follows from (17) that

for j 	= τ(i), ai, j = 0

while

ai,τ (i) = 4

(
p −1

2

)
iτ(i) ≡ −2iτ(i) (mod p).

So, for any column vector V with components in Fp, we have

AV = tMM




v1

v2
...

v p−1
2


 = −2iτ(i)




vτ(1)

vτ(2)

...

v
τ

(
p−1

2

)


 . (18)

Further, (16) and (18) yield

tMD = tMM tσ = −2iτ(i)




στ(1)

στ(2)

...

σ
τ

(
p−1

2

)


 (19)
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which allows us to calculate

στ(i) = −1

2iτ(i)

(p−1)/2∑
j=1

m j,i d j = −1

2iτ(i)

(p−3)/2∑
k=0

mk+1,i ck

Observing that τ(τ (i)) = i and iτ(i) = ±1, the above formula in conjunction with (15)
becomes

σi ≡ −iτ(i)

2

(p−3)/2∑
k=0

mk+1,τ (i)ck ≡ iτ(i)
(p−3)/2∑

k=0

τ(i)1−2kck (mod p).

which yields (7).

Application. As an application of (7), let us try to determine the vector σ corresponding to
the polynomial P(a) = a

p+1
4 when p ≡ 3 (mod 4). We have, from (7),

σi ≡ iτ(i)2− p+1
2 ≡ iτ(i)τ (i)−

p−1
2 (mod p)

and since iτ(i) = ±1 and p ≡ 3 (mod 4), the Legendre symbol satisfies(
i

p

) (
τ(i)

p

)
=

(
iτ(i)

p

)
= iτ(i)

so that

σi =
(

i

p

) (
τ(i)

p

)
τ(i)−

p−1
2 =

(
i

p

)
·

Proof of Theorem 1, (iii). By the Euclidean division

P̂(X) = (
X

p−1
2 −1

)
H(X)+ R(X), deg (R) ≤ p −3

2
·

By Fermat’s Theorem, we have P̂(i2) = R(i2) = ±i , and so, from (i), there exists σ with
R = Pσ . Conversely, for any polynomials H and Pσ , polynomial P̂ defined by (8) represents
the square root in F∗

p.

3. Existence of Short Polynomials

Proof of Theorem 2. First we observe that, since p ≡ 1 (mod 2r), there are 2r 2r -th roots
of unity in F∗

p: if g is a primitive root in F∗
p, these roots of unity are gs , g2s , g3s, . . . , g2rs = 1,

where s is equal to (p −1)/(2r). Let us introduce now a family Q ⊂ Fp[X ] of polynomials.
A polynomial Q belongs to Q if its degree is at most r −1, and if, when x is a r -th root
of unity (i.e., x = g2 js with 1 ≤ j ≤ r ), its value Q(x) is the inverse of one of the square
roots of x (i.e., Q(x) = ±g− js). From the Lagrange interpolation Theorem, there are 2r

polynomials Q ∈ Q and they satisfy

for x ∈ F∗
p such that xr = 1, Q(x)2 = 1/x . (20)
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Now, for Q ∈ Q, let us consider the polynomial

P(X) = X
p+2r−1

4r Q
(

X
p−1
2r

)
.

From (11), the exponents are integers, and

deg (P) ≤ p +2r −1

4r
+ (r −1)

p −1

2r
= p −1

2
− p −2r −1

4r
. (21)

If p > 2r +1, it follows from (21) that deg (P) ≤ p−3
2 . In the case p = 2r +1, we replace P

by the remainder in the division of P by X
p−1

2 −1, which, from Lemma 1, does not increase
the length. Moreover, if t belongs to F∗

p, and a = t2, then a
p−1
2r is a r -th root of unity since

(
a

p−1
2r

)r = a
p−1

2 = t p−1 = 1

and, by (20),

(P(t2))2 = (P(a))2 = a
p+2r−1

2r Q
(
a

p−1
2r

)2 = a
p+2r−1

2r a− p−1
2r = a = t2

so that, by (2), P represents the square root in F∗
p, and, obviously, 
(P) = 
(Q) ≤ r , which

completes the proof of Theorem 2.

Remark. If Q belongs to the family Q, then trivially, −Q also belongs to it. This family
possesses another symmetry: if

Q(X) = q0 +q1 X +q2 X2 +· · ·+qr−1 Xr−1

belongs to Q, then the polynomial

Q̃(X) = qr−1 +qr−2 X +· · ·+q1 X +q0 = Xr−1 Q

(
1

X

)

by (20) also belongs to Q.

4. Not Too Short Polynomials

Proof of Theorem 4. Let P ∈ Fp[X ] be a polynomial representing the square root in F∗
p,

i.e., satisfying (2). Let w be a primitive 2n-th root of unity in Fp (since 2n | (p −1), such a
root does exist). From (2), we have

(P(w2i ))2 = w2i , 0 ≤ i ≤ 2n−1 −1 (22)

whence P(w2i ) = εi wi with εi ∈ {−1, 1}. Let us define R(X) as the interpolation poly-
nomial of the polynomial P on the points w2i , 0 ≤ i ≤ 2n−1 −1. The classical Lagrange’s
calculation gives

R(X) =
2n−1−1∑

i=0

X2n−1 −1

X −w2i

w2i

2n−1
εi w

i . (23)
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As both polynomials P and R coincide on the 2n−1-th roots of unity, there exists a polynomial
H such that

P(X) = R(X)+ (
X2n−1 −1

)
H(X). (24)

From Lemma 1 with m = 2n−1, we have 
(P) ≥ 
(R), and, in order to prove Theorem 4, it
suffices to show


(R) ≥ 2n−1. (25)

Further, let us calculate, from (23), the coefficients of R. By expanding

X2n−1 −1 = X2n−1 − (w2i )2n−1 = (X −w2i )

2n−1−1∑
h=0

Xhw2i(2n−1−1−h)

we get

R(X) = 1

2n−1

2n−1−1∑
h=0

2n−1−1∑
i=0

Xhεi w
i(1−2h) = 1

2n−1

2n−1−1∑
h=0

ah Xh (26)

with

ah =
2n−1−1∑

i=0

εi w
i(1−2h) = Aε

(
w (1−2h)

)
(27)

where ε denotes the vector ε = (ε0, ε1, . . . , ε2n−1−1) and Aε the polynomial

Aε(X) =
2n−1−1∑

i=0

εi X i . (28)

Let �2n (X) = X2n−1 +1 be the cyclotomic polynomial of index 2n . It is well known that
cyclotomic polynomials are irreducible in Q(X), and since the degree of Aε is, from (28),
smaller than the degree of �2n , the resultant Res(Aε, �2n ), calculated in Z, is a non zero
constant Kε. If the coefficient ah vanishes in Fp, w (1−2h), which is a root of �2n , is also, by
(27), a root of Aε in Fp. So, Res(Aε, �2n ) calculated in Fp should vanish and this means
that p divides Kε . So, we have to consider the product, or more precisely the least common
multiple, of all these constants Kε for all the 2n−1 possible values of ε:

�n = l cm
{

Kε; ε = (ε0, ε1, . . . , ε2n−1−1) ∈ {−1, +1}2n−1}
= l cm

{
Res(Aε, �2n ); ε = (ε0, ε1, . . . , ε2n−1−1) ∈ {−1, +1}2n−1}

.

If p does not divide �n , no coefficient ah , 0 ≤ h ≤ 2n−1 −1, can vanish in Fp and, from
(26), formula (25) holds. So, Theorem 4 is proved, by choosing for Pn the set of prime
factors p of �n satisfying p ≡ 1 (mod 2n).
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With MAPLE, we have computed �n for n = 2, 3, 4, 5:

�1 = 1
�2 = 2
�3 = 23

�4 = 27 × 17
�5 = 215 × 172 × 312 × 972 × 1272 × 193 × 257 ×

353 × 449 × 577 × 641 × 673 × 769 × 929 ×
1153 × 1217 × 1249 × 1409 × 1601 × 1697 × 2017 ×
2081 × 2113 × 2273 × 2593 × 2657 × 2753 × 3041 ×
3137 × 3329 × 3361 × 3457 × 4129 × 4481 × 4673 ×
4801 × 4993 × 5153 × 5281 × 5441 × 6113 × 6337 ×
7297 × 7393 × 8513 × 8609 × 8737 × 9857 × 10273 ×

11681 × 12097 × 12161 × 13121 × 13217 × 13441 × 13633 ×
14401 × 16417 × 16673 × 16993 × 17569 × 17761 × 19073 ×
21121 × 21313 × 31489 × 35393 × 49121 × 49409 × 53441 ×
70529

The set P5 is the set of all prime factors of �5 excluding 2, 17, 31, and 127.

5. The Trinomials

Proof of Theorem 5. First, by setting r = 3 in Theorem 2, it is not difficult to see that,
for p ≡ 7 (mod 12), there are at least 2r = 8 trinomials representing the square root in F∗

p.
Actually, if we carry out the calculation of polynomials Q used in the proof of Proposition 1,
we find exactly the 6 trinomials (13) and (14), and the two last ones are the monomials
±X

p+1
4 . It remains to show that there are no other trinomials representing the square root

in F∗
p.

Let us suppose that Q(X) = aXα +bXβ + cXγ represents the square root in F∗
p, we have

by (2)

∀t ∈ F∗
p, (Q(t2))2 = t2

which implies that the polynomial (Q(X2))2 − X2 is a multiple of X p−1 −1. The polynomial
(Q(X2))2 − X2 on expansion writes

a2 X4α +b2 X4β + c2 X4γ +2abX2α+2β +2acX2α+2γ +2bcX2β+2γ − X2.

But, in the division of the monomial Xk by the binomial X p−1 −1, the remainder is Xk̄

where k̄ is the remainder in the division of k by p −1. As a consequence,

a2 X4α + b2 X4β + c2 X4γ + 2abX2α+2β + 2acX2α+2γ + 2bcX2β+2γ − X2 = 0 (29)

Now, from (12), the three numbers 2α +2β, 2α +2γ and 2β +2γ are distinct. Further,
among the seven terms of the left hand side of (29) there should be at most three different
degrees since none of these terms vanishes and their sum does vanish. So, among these
seven terms there are exactly three different degrees, 2α +2β, 2β +2γ and 2β +2γ , and
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one of them is equal to 2. From (12), 4α cannot be equal to 2α +2β or 2α +2γ ; thus, we
should have

4α = 2β +2γ

and, similarly,

4β = 2α +2γ and 4γ = 2α +2β.

Finally, there is a permutation (u, v, w) of (α, β, γ ) such that 4v = 2u +2w = 2,
4u = 2v +2w and 4w = 2u +2v which, after dividing by 2 can be written as a system
of congruences



u +v −2w ≡ 0
(
mod p−1

2

)
2u −v −w ≡ 0

(
mod p−1

2

)
2v ≡ 1

(
mod p−1

2

)
u +w ≡ 1

(
mod p−1

2

)
.

The third congruence implies that p−1
2 is odd (so that p ≡ 3 (mod 4)). By substracting the

first congruence from the second twice we get the equivalent system


u +v −2w ≡ 0
(
mod p−1

2

)
−3v +3w ≡ 0

(
mod p−1

2

)
2v ≡ 1

(
mod p−1

2

)
u +w ≡ 1

(
mod p−1

2

)
The second congruence implies that p−1

2 is a multiple of 3. Indeed, if 3 does not divide
p−1

2 , we should have v ≡ w (mod p−1
2 ), which, from (12), would imply v = w . So, p ≡ 1

(mod 6), and since p ≡ 3 (mod 4), we can write p = 12m +7. After simplification, the
above system becomes


u +v −2w ≡ 0 (mod 6m +3)

−v +w ≡ 0 (mod 2m +1)

2v ≡ 1 (mod 6m +3)

u +w ≡ 1 (mod 6m +3)

(30)

The solution of (30) is v ≡ 3m +2 (mod 6m +3), w ≡ m +1 (mod 2m +1), u ≡ 1−w
(mod 6m +3) and taking (12) into account, the only possibility is

α = m +1, β = 3m +2, γ = 5m +3.

This implies m ≥ 1, because m = 0 would yield p = 7 and deg Q = 3 = (p −1)/2.
Further, in (29), let us find the sums of the monomials of degree 4α, 4γ and 4β respectively

which vanish. We get

a2 +2bc = 0, c2 +2ab = 0, b2 +2ac = 1. (31)

It remains to check that, when p = 12m +7 (with m ≥ 1), the system (31) on the unknowns
a, b, c in Fp, always has solutions satisfying abc 	= 0. By adding the three equations of (31)
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we see that a +b + c = ±1. Moreover, (a, b, c) is a solution if and only if (−a, −b, −c) is
a solution. So, it is enough to look for solutions satisfying a +b + c = 1, which drives us
to the system{

a2 −2ab −2b2 +2b = 0

−2a2 −2ab +b2 +2a = 1.

The resultant on a of these two equations is

27b4 −36b3 +6b2 +4b −1 = (3b −1)2(b −1)(3b +1).

For b = 1 we get a = 0, which does not fit, since abc 	= 0. For b = −1/3 we get a = c = 2/3
which gives (13). For b = 1/3 we get {a, c} = {(1−√−3)/3, (1+√−3)/3} which gives
(14).
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