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Abstract. In 1969, Andrews [3] proved a theorem on partitions with dif-

ference conditions which generalises Schur’s celebrated partition identity. In
this paper, we generalise Andrews’ theorem to overpartitions. Our proof uses

q-difference equations and recurrences.

1. Introduction

A partition of n is a non-increasing sequence of natural numbers whose sum is n.
An overpartition of n is a partition of n in which the first occurrence of a number
may be overlined. For example, there are 14 overpartitions of 4: 4, 4, 3 + 1, 3 + 1,
3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1 and
1 + 1 + 1 + 1.

One of the most important results in the theory of partitions is Andrews’ gen-
eralization of Schur’s theorem [3] (see Theorem 1.1 below). Not only has Andrews’
identity led to a number of important developments in combinatorics [1, 5, 12]
but it also plays a natural role in group representation theory [4] and quantum
algebra [10].

Now we need to introduce some notation due to Andrews in order to state his
theorem and its generalisation to overpartitions. Let A = {a(1), ..., a(r)} be a

set of r distinct integers such that
∑k−1
i=1 a(i) < a(k) for all 1 ≤ k ≤ r and the

2r − 1 possible sums of distinct elements of A are all distinct. We denote this
set of sums by A′ = {α(1), ..., α(2r − 1)}, where α(1) < · · · < α(2r − 1). Let
us notice that α(2k) = a(k + 1) for all 0 ≤ k ≤ r − 1 and that any α between
a(k) and a(k + 1) has largest summand a(k). Let N be a positive integer with
N ≥ α(2r − 1) = a(1) + · · · + a(r). Let AN denote the set of positive integers
congruent to some a(i) mod N and A′N the set of positive integers congruent to
some α(i) mod N. Let βN (m) be the least positive residue of m mod N . If α ∈ A′,
let w(α) be the number of terms appearing in the defining sum of α and v(α) the
smallest a(i) appearing in this sum.

To illustrate these notations in the remainder of this paper, it might be useful
to consider the example where a(k) = 2k−1 for 1 ≤ k ≤ r and α(k) = k for
1 ≤ k ≤ 2r − 1.

We are now able to state Andrews’ theorem.

Theorem 1.1 (Andrews). Let D(AN ;n) denote the number of partitions of n into
distinct parts taken from AN . Let E(A′N ;n) denote the number of partitions of n
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into parts taken from A′N of the form n = λ1 + · · ·+ λs, such that

λi − λi+1 ≥ Nw(βN (λi+1)) + v(βN (λi+1))− βN (λi+1).

Then D(AN ;n) = E(A′N ;n).

Schur’s theorem [11] corresponds to the case N = 3, r = 2, a(1) = 1, a(2) = 2.
Since Schur’s Theorem was successfully generalised to overpartitions by Lovejoy [9],
it was natural to wonder whether Theorem 1.1 can also be generalised. In a previous
paper [7] we were able to do it for N = 7, r = 3, a(1) = 1, a(2) = 2, a(3) = 4, and
here we extend Andrews’ theorem in its full generality to overpartitions by proving
the following.

Theorem 1.2. Let D(AN ; k, n) denote the number of overpartitions of n into parts
taken from AN , having k non-overlined parts. Let E(A′N ; k, n) denote the number
of overpartitions of n into parts taken from A′N of the form n = λ1 + · · · + λs,
having k non-overlined parts, such that

λi − λi+1 ≥ N
(
w (βN (λi+1))− 1 + χ(λi+1)

)
+ v(βN (λi+1))− βN (λi+1),

where χ(λi+1) = 1 if λi+1 is overlined and 0 otherwise. Then D(AN ; k, n) =
E(A′N ; k, n).

Schur’s theorem for overpartitions [9] corresponds again to the case N = 3, r = 2,
a(1) = 1, a(2) = 2.

The case k = 0 of Theorem 1.2 gives Andrews’ Theorem 1.1. His theorem
corresponds to the infinite product

r∏
k=1

(−qa(k); qN )∞,

while Theorem 1.2 corresponds to the infinite product

r∏
k=1

(−qa(k); qN )∞
(dqa(k); qN )∞

,

where we use the classical notations

(a; q)n :=

n−1∏
j=0

(1− aqj),

(a; q)∞ :=

∞∏
j=0

(1− aqj).

The presence of a denominator makes the proof of Theorem 1.2 much more intricate
than the one of Theorem 1.1 as we need to use induction and a new technique to

eliminate one of the products (−qa(k);qN )∞
(dqa(k);qN )∞

by switching back and forth from q-

difference equations to recurrences.
The remainder of this paper is devoted to the proof of Theorem 1.2. First, we

give the q-difference equation satisfied by the generating function for overpartitions
enumerated by E(A′N ; k, n). Then we prove by induction on r that a function

satisfying this q-difference equation is equal to
∏r
k=1

(−qa(k);qN )∞
(dqa(k);qN )∞

, which is the

generating function for overpartitions counted by D(AN ; k, n).
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2. The q-difference equation satisfied by the generating function

Let pα(i)(k,m, n) denote the number of overpartitions counted by E(A′N ; k, n)
having m parts such that the smallest part is ≥ α(i). Let us define α(2r) :=
a(r + 1) = N + a(1).

The following lemma holds.

Lemma 2.1. If 1 ≤ i ≤ 2r − 1, then

(2.1)

pα(i)(k,m, n)− pα(i+1)(k,m, n)

= pv(α(i))
(
k,m− 1, n− (m− 1)Nw(α(i))− α(i)

)
+pv(α(i))

(
k − 1,m− 1, n− (m− 1)N(w(α(i))− 1)− α(i)

)
,

(2.2) pα(2r)(k,m, n) = pa(1)(k,m, n−mN).

Proof: Let us start by proving (2.1). We observe that pα(i)(k,m, n)−pα(i+1)(k,m, n)
is the number of overpartitions of the form n = λ1 + · · · + λm enumerated by
pα(i)(k,m, n) such that the smallest part is equal to α(i).

If λm = α(i) is overlined, then by definition of E(A′N ; k, n),

λm−1 ≥ α(i) +Nw(α(i)) + v(α(i))− α(i) = Nw(α(i)) + v(α(i)).

In that case we remove λm = α(i) and subtract Nw(α(i)) from each remaining
part. The number of parts is reduced to m− 1, the number of non-overlined parts
is still k, and the number partitioned is now n− (m−1)Nw(α(i))−α(i). Moreover
the smallest part is now ≥ v(α(i)). Therefore we have an overpartition counted by
pv(α(i))(k,m− 1, n− (m− 1)Nw(α(i))− α(i)).

If λm = α(i) is not overlined, then by definition of E(A′N ; k, n),

λm−1 ≥ N (w(α(i))− 1) + v(α(i)).

In that case we remove λm = α(i) and subtract N(w(α(i))−1) from each remaining
part. The number of parts is reduced to m−1, the number of non-overlined parts is
reduced k−1, and the number partitioned is now n− (m−1)N(w(α(i))−1)−α(i).
Moreover the smallest part is now ≥ v(α(i)). Therefore we have an overpartition
counted by pv(α(i))(k − 1,m− 1, n− (m− 1)N(w(α(i))− 1)− α(i)).

To prove (2.2), we consider a partition enumerated by pα(2r)(k,m, n) and sub-
tract N from each part. As pα(2r)(k,m, n) = pN+a(1)(k,m, n), we obtain a partition
enumerated by pa(1)(k,m, n−mN). �

For |d| < 1, |x| < 1, |q| < 1, we define

(2.3) fα(i)(d, x, q) = fα(i)(x) := 1 +

∞∑
n=1

∞∑
m=1

∞∑
k=0

pα(i)(k,m, n)dkxmqn.

We want to find fa(1)(1), which is the generating function for all overpartitions
counted by E(A′N ; k, n). To do so, we establish a q-difference equation relating
fa(1)

(
xqjN

)
, for j ≥ 0. Let us start by giving some relations between generating

functions.
Lemma 2.1 directly implies

Lemma 2.2. If 1 ≤ i ≤ 2r − 1, then
(2.4)

fα(i)(x)−fα(i+1)(x) = xqα(i)fv(α(i))

(
xqNw(α(i))

)
+dxqα(i)fv(α(i))

(
xqN

(
w(α(i))−1

))
,
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(2.5) fα(2r)(x) = fa(1)
(
xqN

)
.

Adding equations (2.4) together for 1 ≤ i ≤ 2k−1 − 1 and using the fact that
α
(
2k−1

)
= a(k), we obtain

(2.6)

fa(1)(x)− fa(k)(x) =
∑

α<a(k)

(
xqαfv(α)

(
xqNw(α)

)
+ dxqαfv(α)

(
xqN(w(α)−1)

))
.

Let us now add equations (2.4) together for 2k−2 ≤ i ≤ 2k−1 − 1. This gives

(2.7)

fa(k−1)(x)−fa(k)(x) =
∑

a(k−1)≤α<a(k)

(
xqαfv(α)

(
xqNw(α)

)
+ dxqαfv(α)

(
xqN(w(α)−1)

))
.

Every a(k − 1) < α < a(k) is of the form α = a(k − 1) + α′, with α′ < a(k − 1).
Hence we can rewrite (2.7) as

fa(k−1)(x)− fa(k)(x)

= xqa(k−1)fa(k−1)
(
xqN

)
+ dxqa(k−1)fa(k−1) (x)

+ qa(k−1)−N
∑

α′<a(k−1)

(
xqα

′+Nfv(α′)

(
xqN(w(α′)+1)

)
+ dxqα

′+Nfv(α′)

(
xqNw(α′)

))
= xqa(k−1)fa(k−1)

(
xqN

)
+ dxqa(k−1)fa(k−1) (x)

+ qa(k−1)−N
(
fa(1)

(
xqN

)
− fa(k−1)

(
xqN

))
,

where the last equality follows from (2.6).
Thus

(2.8)
fa(k)(x) =

(
1− dxqa(k−1)

)
fa(k−1)(x)− qa(k−1)−Nfa(1)

(
xqN

)
+ qa(k−1)−N

(
1− xqN

)
fa(k−1)

(
xqN

)
.

Remember we want to establish a q-difference equation relating functions fa(1)
(
xqkN

)
for k ≥ 0. Before this, we must recall some facts about q-binomial coefficients de-
fined by [

m

r

]
q

:=

{
(1−qm)(1−qm−1)...(1−qm−r+1)

(1−q)(1−q2)...(1−qr) if 0 ≤ r ≤ m,
0 otherwise.

They are q-analogues to binomial coefficients and satisfy q-analogues of the Pascal
triangle identity [8].

Proposition 2.3. For all integers 0 ≤ r ≤ m,

(2.9)

[
m

r

]
q

= qr
[
m− 1

r

]
q

+

[
m− 1

r − 1

]
q

,

(2.10)

[
m

r

]
q

=

[
m− 1

r

]
q

+ qm−r
[
m− 1

r − 1

]
q

.
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As q → 1 this is exactly Pascal’s identity.
We are now ready to state the key lemma which will lead to the desired q-

difference equation.

Lemma 2.4. For 1 ≤ k ≤ r + 1, we have
(2.11)

k−1∏
j=1

(
1− dxqa(j)

)
fa(1)(x) = fa(k)(x)

+

k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
.

Proof: We prove this lemma by induction on k. For k = 1, this reduces to
fa(1)(x) = fa(1)(x). Let us assume that (2.11) is true for some 1 ≤ k ≤ r and
show it also holds for k + 1. In the following let

sk(x) :=

k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
.

Therefore we want to prove that

k∏
j=1

(
1− dxqa(j)

)
fa(1)(x) = fa(k+1)(x) + sk+1(x).

We have
k∏
j=1

(
1− dxqa(j)

)
fa(1)(x)− fa(k+1)(x)

=
(

1− dxqa(k)
)k−1∏

j=1

(
1− dxqa(j)

)
fa(1)(x)− fa(k)(x)


+
(

1− dxqa(k)
)
fa(k)(x)− fa(k+1)(x)

=
(

1− dxqa(k)
)
sk(x)

+ qa(k)−Nfa(1)
(
xqN

)
− qa(k)−N

(
1− xqN

)
fa(k)(xq

N ),

where the last equality follows from the induction hypothesis and equation 2.8.
Thus
k∏
j=1

(
1− dxqa(j)

)
fa(1)(x)− fa(k+1)(x)
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=
(

1− dxqa(k)
)
sk(x) + qa(k)−Nfa(1)

(
xqN

)
− qa(k)−N

(
1− xqN

)k−1∏
j=1

(
1− dxqN+a(j)

)
fa(1)

(
xqN

)
− sk

(
xqN

)
=
(

1− dxqa(k)
)
sk(x) + qa(k)−N

(
1− xqN

)
sk
(
xqN

)
+ qa(k)−N

1−
(
1− xqN

) k−1∏
j=1

(
1− dxqN+a(j)

) fa(1)
(
xqN

)
=
(

1− dxqa(k)
)
sk(x) + qa(k)−N

(
1− xqN

)
sk
(
xqN

)
+ qa(k)−N

1−
(
1− xqN

)1 +

k−1∑
m=1

∑
α<a(k)
w(α)=m

(−dxqN )mqα


 fa(1)

(
xqN

)

=
(

1− dxqa(k)
)
sk(x) + qa(k)−N

(
1− xqN

)
sk
(
xqN

)
+ qa(k)−N

xqN +

k−1∑
m=1

dm
∑

α<a(k)
w(α)=m

xqα+N
(
(−xqN )m−1 + (−xqN )m

) fa(1)
(
xqN

)

=
(

1− dxqa(k)
)
sk(x) + qa(k)−N

(
1− xqN

)
sk
(
xqN

)

+

xqa(k) +

k−1∑
m=1

dm
∑

a(k)<α′<a(k+1)
w(α′)=m+1

xqα
′ (

(−xqN )m−1 + (−xqN )m
)
 fa(1)

(
xqN

)

=

k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)

+

k−1∑
j=1

k−j−1∑
m=0

dm+1
∑

α<a(k)
w(α)=j+m

xqa(k)+α

(
(−x)m

[
j +m− 1

m− 1

]
qN

+ (−x)m+1

[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
+qa(k)−N

(
1− xqN

)
×
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k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

xqα+N

(
(−xqN )m−1

[
j +m− 1

m− 1

]
qN

+ (−xqN )m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xq(h+1)N

)
fa(1)

(
xq(j+1)N

)

+

xqa(k) +

k−1∑
m=1

dm
∑

a(k)<α′<a(k+1)
w(α′)=m+1

xqα
′ (

(−xqN )m−1 + (−xqN )m
)
 fa(1)

(
xqN

)

=

k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)

+

k−1∑
j=1

 k−j∑
m=1

dm
∑

a(k)<α<a(k+1)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 2

m− 2

]
qN

+ (−x)m
[
j +m− 1

m− 1

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)

+

k∑
j=2

 k−j∑
m=0

dm
∑

a(k)<α<a(k+1)
w(α)=j+m

xqα

(
(−xqN )m−1

[
j +m− 2

m− 1

]
qN

+ (−xqN )m
[
j +m− 1

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)

+

xqa(k) +

k−1∑
m=1

dm
∑

a(k)<α′<a(k+1)
w(α′)=m+1

xqα
′ (

(−xqN )m−1 + (−xqN )m
)
 fa(1)

(
xqN

)

=

k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
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+

k−1∑
j=1

 k−j∑
m=1

dm
∑

a(k)<α<a(k+1)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 2

m− 2

]
qN

+ (−x)m
[
j +m− 1

m− 1

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)

+

k∑
j=1

 k−j∑
m=0

dm
∑

a(k)≤α<a(k+1)
w(α)=j+m

xqα

(
(−xqN )m−1

[
j +m− 2

m− 1

]
qN

+ (−xqN )m
[
j +m− 1

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)

=

k−1∑
j=1

 ∑
α<a(k+1)
w(α)=j

xqα

+

k−j∑
m=1

dm

 ∑
α<a(k)

w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)

+
∑

a(k)<α<a(k+1)
w(α)=j+m

xqα

[
(−x)m−1

([
j +m− 2

m− 2

]
qN

+ qN(m−1)
[
j +m− 2

m− 1

]
qN

)

+ (−x)m

([
j +m− 1

m− 1

]
qN

+ qNm
[
j +m− 1

m

]
qN

)]


×
j−1∏
h=1

(
1−xqhN

)
fa(1)

(
xqjN

)
+xqa(1)+···+a(k)

k−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqkN

)
.

Thus by (2.9) of Proposition 2.3, we obtain

k∏
j=1

(
1− dxqa(j)

)
fa(1)(x)− fa(k+1)(x)

=

k−1∑
j=1

 k−j∑
m=0

dm
∑

α<a(k+1)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
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×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
+xqa(1)+···+a(k)

k−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqkN

)

=

k∑
j=1

 k−j∑
m=0

dm
∑

α<a(k+1)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
=sk+1(x).

This completes the proof. �

Now, by setting k = r + 1 in Lemma 2.4, and using (2.5), we obtain the desired
q-difference equation.
(eqN,r)

r∏
j=1

(
1− dxqa(j)

)
fa(1)(x) = fa(1)(xq

N )

+

r∑
j=1

 r−j∑
m=0

dm
∑

α<a(r+1)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− xqhN

)
fa(1)

(
xqjN

)
.

We now need to evaluate fa(1)(1), which we recall is the generating function for
the overpartitions with difference conditions counted by E(A′N ; k, n).

3. Evaluating fa(1)(1) by induction

In this section, we evaluate fa(1)(1). To do so, we prove by induction on r the
following theorem.

Theorem 3.1. Let r be a positive integer. Then for every N ≥ α(2r−1), for every
function f satisfying (eqN,r) and the initial condition f(0) = 1, we have

f(1) =

r∏
k=1

(−qa(k); qN )∞
(dqa(k); qN )∞

.

The idea of the proof is to start from a function satisfying (eqN,r) and to do
some transformations to relate it to a function satisfying (eqN,r−1) in order to use
the induction hypothesis. In order to simplify the proof, we split it into several
lemmas.
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Lemma 3.2. Let f and F be two functions such that

F (x) := f(x)

∞∏
n=0

1− dxqNn+a(r)

1− xqNn
.

Then f(0) = 1 and f satisfies (eqN,r) if and only if F (0) = 1 and F satisfies the
following q-difference equation

(eq′N,r)

1 +

r∑
j=1

dj−1 ∑
α<a(r)

w(α)=j−1

qα + dj
∑

α<a(r)
w(α)=j

qα

 (−x)j

F (x)

= F
(
xqN

)
+

r∑
j=1

r∑
l=1

min(j−1,l−1)∑
k=0

ck,jbl−k,j(−1)l−1xlF
(
xqjN

)
,

where

ck,j := qN
k(k+1)

2 +ka(r)

[
j − 1

k

]
qN
dk,

and

bm,j :=

dm−1 ∑
α<a(r+1)

w(α)=j+m−1

qα + dm
∑

α<a(r+1)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
.

Proof: Directly plugging the definition of f into (eqN,r), we get

(1− x)

r−1∏
j=1

(
1− dxqa(j)

)
F (x) = F (xqN )

+

r∑
j=1

 r−j∑
m=0

dm
∑

α<a(r+1)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)
×
j−1∏
h=1

(
1− dxqhN+a(r)

)
F
(
xqjN

)
.

With the conventions that ∑
α<a(r)
w(α)=n

qα = 0 for n ≥ r,

and ∑
α<a(r)
w(α)=0

qα = 1,

this can be reformulated as1 +

r∑
j=1

dj−1 ∑
α<a(r)

w(α)=j−1

qα + dj
∑

α<a(r)
w(α)=j

qα

 (−x)j

F (x) = F (xqN )



A GENERALISATION OF A PARTITION THEOREM OF ANDREWS 11

+

r∑
j=1

r−j+1∑
m=1

dm−1 ∑
α<a(r+1)

w(α)=j+m−1

qα + dm
∑

α<a(r+1)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN

(−1)m−1xm


×

(
j−1∑
k=0

qN
k(k−1)

2 +ka(r)

[
j − 1

k

]
qN
dk(−x)k

)
F
(
xqjN

)
,

because of the q-binomial theorem [8]

(3.1)

n−1∏
k=0

(1 + qkt) =

n∑
k=0

q
k(k−1)

2

[
n

k

]
q

tk,

in which we replace q by qN , n by j − 1 and t by −dxqN+a(r). Finally, noting
that bl−k,j = 0 if j + l − k − 1 ≥ r, we can rewrite this as (eq′N,r). Moreover,

F (0) = f(0) = 1 and the lemma is proved. �

We can directly transform (eq′N,r) into a recurrence equation on the coefficients
of the generating function F .

Lemma 3.3. Let F be a function and (An)n∈N a sequence such that

F (x) =:

∞∑
n=0

Anx
n.

Then F satisfies (eq′N,r) and the initial condition F (0) = 1 if and only if A0 = 1

and (An)n∈N satisfies the following recurrence equation
(recN,r)(

1− qnN
)
An =

r∑
m=1

dm−1 ∑
α<a(r)

w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα +

r∑
j=1

min(j−1,m−1)∑
k=0

ck,jbm−k,jq
jN(n−m)

 (−1)m+1An−m.

Proof: By the definition of (An)n∈N and (eq′N,r), we have

(
1− qnN

)
An =

r∑
j=1

dj−1 ∑
α<a(r)

w(α)=j−1

qα + dj
∑

α<a(r)
w(α)=j

qα

 (−1)j+1An−j

+

r∑
j=1

r∑
l=1

min(j−1,l−1)∑
k=0

ck,jbl−k,jq
jN(n−l)(−1)l+1An−l.

Relabelling the summation indices and factorising leads to (recN,r). Moreover,
An = F (0) = 1. This completes the proof. �

Let us now do some transformations starting from (eqN,r−1).

Lemma 3.4. Let g and G be two functions such that

G(x) := g(x)

∞∏
n=0

1

1− xqNn
.
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Then g satisfies (eqN,r−1) and the initial condition g(0) = 1 if and only if G(0) = 1
and G satisfies the following q-difference equation
(eq′′N,r−1)1 +

r∑
j=1

dj−1 ∑
α<a(r)

w(α)=j−1

qα + dj
∑

α<a(r)
w(α)=j

qα

 (−x)j

G(x) = G
(
xqN

)

+

r∑
j=1

r−j∑
m=1

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN

(−1)m+1xmG
(
xqjN

)
.

Proof: Using the definition of G and (eqN,r−1), we get

(1− x)

r−1∏
j=1

(
1− dxqa(j)

)
G(x) = G(xqN )

+
r−1∑
j=1

r−j−1∑
m=0

dm
∑

α<a(r)
w(α)=j+m

xqα

(
(−x)m−1

[
j +m− 1

m− 1

]
qN

+ (−x)m
[
j +m

m

]
qN

)G
(
xqjN

)
.

Then, as in the proof of Lemma 3.2, this can be reformulated as (eq′′N,r−1), and

G(0) = g(0) = 1. �

Again, let us translate this into a recurrence equation on the coefficients of the
generating function G.

Lemma 3.5. Let G be a function and (an)n∈N be a sequence such that

G(x) =:

∞∑
n=0

anx
n.

Then G satisfies (eq′′N,r−1) and the initial condition G(0) = 1 if and only if a0 = 1

and (an)n∈N satisfies the following recurrence equation
(rec′′N,r−1)(

1− qnN
)
an =

r∑
m=1

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
qjN(n−m)(−1)m+1an−m.

Proof: By the definition of (an)n∈N and (eq′′N,r−1), we have

(
1− qnN

)
an =

r∑
m=1

dm−1 ∑
α<a(r)

w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα

 (−1)m+1an−m

+

r−1∑
m=1

r−1∑
j=1

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
qjN(n−m)(−1)m+1an−m.
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As the summand of the second term equals 0 when m = r, we can equivalently
write that the second sum is taken on m going from 1 to r. Then we observe
that the first term corresponds to j = 0 in the second term, and factorising gives
exactly (recN,r). Moreover, an = G(0) = 1. This completes the proof. �

Let us do a final transformation and obtain yet another recurrence equation.

Lemma 3.6. Let (an)n∈N and (A′n)n∈N be two sequences such that

A′n := an

n−1∏
k=0

(
1 + qNk+a(r)

)
.

Then (an)n∈N satisfies (rec′′N,r−1) and the initial condition a0 = 1 if and only if

A′0 = 1 and (A′n)n∈N satisfies the following recurrence equation
(rec′N,r−1)(

1− qnN
)
A′n =

r∑
m=1

r−1∑
ν=0

min(m−1,ν)∑
µ=0

fm,µem,ν−µq
νN(n−m)

+ qa(r)
r∑

ν=1

min(m−1,ν−1)∑
µ=0

fm,µem,ν−µ−1q
νN(n−m)

 (−1)m+1A′n−m,

where

em,j :=

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
,

and

fm,k := qN
k(k+1)

2 +ka(r)

[
m− 1

k

]
qN
.

Proof: By definition of (A′n)n∈N, we have

(
1− qnN

)
A′n =

r∑
m=1

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
qjN(n−m)

× (−1)m+1
m∏
k=1

(
1 + qN(n−k)+a(r)

)
A′n−m.

Furthermore

m∏
k=1

(
1 + qN(n−k)+a(r)

)
=

m−1∏
k=0

(
1 + qNk+N(n−m)+a(r)

)
=
(

1 + qN(n−m)+a(r)
)m−1∏
k=1

(
1 + qNk+N(n−m)+a(r)

)
=
(

1 + qN(n−m)+a(r)
)m−1∑
k=0

qN
k(k+1)

2 +kN(n−m)+ka(r)

[
m− 1

k

]
qN
,
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where the last equality follows from (3.1). Therefore(
1− qnN

)
A′n =

r∑
m=1

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
qjN(n−m)

×
(

1 + qN(n−m)+a(r)
)m−1∑
k=0

qN
k(k+1)

2 +kN(n−m)+ka(r)

[
m− 1

k

]
qN

 (−1)m+1A′n−m

=

r∑
m=1

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

[j +m− 1

m− 1

]
qN
qjN(n−m)

×
m−1∑
k=0

qN
k(k+1)

2 +kN(n−m)+ka(r)

[
m− 1

k

]
qN

+

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

qα + dm
∑

α<a(r)
w(α)=j+m

qα

 qa(r)
[
j +m− 1

m− 1

]
qN
q(j+1)N(n−m)

×
m−1∑
k=0

qN
k(k+1)

2 +kN(n−m)+ka(r)

[
m− 1

k

]
qN

 (−1)m+1A′n−m.

Thus

(
1− qnN

)
A′n =

r∑
m=1

r−1∑
j=0

em,jq
jN(n−m)

m−1∑
k=0

fm,kq
kN(n−m)

+ qa(r)
r∑
j=1

em,j−1q
jN(n−m)

m−1∑
k=0

fm,kq
kN(n−m)

 (−1)m+1A′n−m.

Rearranging leads to (rec′N,r−1). As always, A′0 = a0 = 1. The lemma is proved.
�

We now want to show that (An)n ∈ N and (A′n)n ∈ N are in fact equal.

Lemma 3.7. Let (An)n∈N and (A′n)n∈N be defined as in Lemmas 3.3 and 3.6. Then
for every n ∈ N, An = A′n.

Proof: To prove the equality, it is sufficient to show that for every 1 ≤ m ≤
r, the coefficient of (−1)m+1An−m in (recN,r) is the same as the coefficient of
(−1)m+1A′n−m in (rec′N,r−1). Let m ∈ {1, ..., r} and

Sm :=
[
(−1)m+1An−m

]
(recN,r)
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= dm−1
∑

α<a(r)
w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα +

r∑
j=1

min(j−1,m−1)∑
k=0

ck,jbm−k,jq
jN(n−m)

and

S′m :=
[
(−1)m+1A′n−m

]
(rec′N,r−1)

=

r−1∑
ν=0

min(m−1,ν)∑
µ=0

fm,µem,ν−µq
νN(n−m) + qa(r)

r∑
ν=1

min(m−1,ν−1)∑
µ=0

fm,µem,ν−µ−1q
νN(n−m)

= fm,0em,0 +

r∑
ν=1

min(m−1,ν)∑
µ=0

fm,µem,ν−µ + qa(r)
min(m−1,ν−1)∑

µ=0

fm,µem,ν−µ−1

 qνN(n−m),

because em,r−µ = 0 for all µ, as µ ≤ m − 1 so the sums are over α such that
α < a(r) and w(α) ≥ r, which is impossible.

Let us first notice that

fm,0em,0 = dm−1
∑

α<a(r)
w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα.

Now define

Tm,j :=

min(j−1,m−1)∑
k=0

ck,jbm−k,j ,

and

T ′m,j :=

min(m−1,j)∑
k=0

fm,kem,j−k + qa(r)
min(m−1,j−1)∑

k=0

fm,kem,j−k−1.

The only thing left to do is to show that for every 1 ≤ j ≤ r,

Tm,j = T ′m,j .

We have
(3.2)
ck,jbm−k,j

=qN
k(k+1)

2 +ka(r)

[
j − 1

k

]
qN

dm−1 ∑
α<a(r+1)

w(α)=j+m−k−1

qα + dm
∑

α<a(r+1)
w(α)=j+m−k

qα

[j +m− k − 1

m− k − 1

]
qN

=

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

 qN
k(k+1)

2 +ka(r)

[
j − 1

k

]
qN

[
j +m− k − 1

m− k − 1

]
qN

+ qa(r)

dm−1 ∑
α<a(r)

w(α)=j+m−k−2

qα + dm
∑

α<a(r)
w(α)=j+m−k−1

qα

 qN
k(k+1)

2 +ka(r)

×
[
j − 1

k

]
qN

[
j +m− k − 1

m− k − 1

]
qN
,
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in which the last equality follows from separating the sums over α according to
whether α contains a(r) as a summand or not.

We also have
(3.3)

fm,kem,j−k = qN
k(k+1)

2 +ka(r)

[
m− 1

k

]
qN

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

[j +m− k − 1

m− 1

]
qN
,

and
(3.4)

qa(r)fm,kem,j−k−1 = qN
k(k+1)

2 +(k+1)a(r)

[
m− 1

k

]
qN

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−2

qα + dm
∑

α<a(r)
w(α)=j+m−k−1

qα

[j +m− k − 2

m− 1

]
qN
.

By a simple calculation using the definition of q-binomial coefficients, we get the
following result For all j, k,m ∈ N,

(3.5)

[
m− 1

k

]
qN

[
j +m− k − 1

m− 1

]
qN

=

[
j

k

]
qN

[
j +m− k − 1

m− k − 1

]
qN
.

Using (3.5), we obtain

T ′m,j = χ(j ≤ m− 1) qN
j(j+1)

2 +ja(r)

dm−1 ∑
α<a(r)

w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα

[ m− 1

m− j − 1

]
qN

+

min(m−1,j−1)∑
k=0

qN
k(k+1)

2 +ka(r)

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

[jk
]
qN

[
j +m− k − 1

m− k − 1

]
qN

+

min(m−1,j−1)∑
k=0

qN
k(k+1)

2 +(k+1)a(r)

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−2

qα + dm
∑

α<a(r)
w(α)=j+m−k−1

qα

[j − 1

k

]
qN

[
j +m− k − 2

m− k − 1

]
qN
.
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By (2.10) of Lemma 2.3, we have[
j

k

]
qN

=

[
j − 1

k

]
qN

+ qN(j−k)
[
j − 1

k − 1

]
qN
,

[
j +m− k − 2

m− k − 1

]
qN

=

[
j +m− k − 1

m− k − 1

]
qN
− qNj

[
j +m− k − 2

m− k − 2

]
qN
.

This allows us to rewrite T ′m,j as

T ′m,j = χ(j ≤ m− 1) qN
j(j+1)

2 +ja(r)

dm−1 ∑
α<a(r)

w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα

[ m− 1

m− j − 1

]
qN

+

min(m−1,j−1)∑
k=0

qN
k(k+1)

2 +ka(r)

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

[j − 1

k

]
qN

[
j +m− k − 1

m− k − 1

]
qN

+

min(m−1,j−1)∑
k=0

qN
k(k+1)

2 +ka(r)+N(j−k)

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

[j − 1

k − 1

]
qN

[
j +m− k − 1

m− k − 1

]
qN

+

min(m−1,j−1)∑
k=0

qN
k(k+1)

2 +(k+1)a(r)

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−2

qα + dm
∑

α<a(r)
w(α)=j+m−k−1

qα

[j − 1

k

]
qN

[
j +m− k − 1

m− k − 1

]
qN

−
min(m−2,j−1)∑

k=0

qN
k(k+1)

2 +(k+1)a(r)+Nj

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−2

qα + dm
∑

α<a(r)
w(α)=j+m−k−1

qα

[j − 1

k

]
qN

[
j +m− k − 2

m− k − 2

]
qN
.

By (3.2), the sum of the second and fourth term in the sum above is exactly equal
to Tm, j. Let X denote the sum of the third and fifth term. We now want to show
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that

X+χ(j ≤ m−1) qN
j(j+1)

2 +ja(r)

dm−1 ∑
α<a(r)

w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα

[ m− 1

m− j − 1

]
qN

= 0.

By the change of variable k′ = k + 1 in the fourth sum, we get

X =

min(m−1,j−1)∑
k=0

qN
k(k−1)

2 +ka(r)+Nj

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

[j − 1

k − 1

]
qN

[
j +m− k − 1

m− k − 1

]
qN

−
min(m−1,j)∑

k=1

qN
k(k−1)

2 +ka(r)+Nj

×

dm−1 ∑
α<a(r)

w(α)=j+m−k−1

qα + dm
∑

α<a(r)
w(α)=j+m−k

qα

[j − 1

k − 1

]
qN

[
j +m− k − 1

m− k − 1

]
qN

=


0, if j ≥ m,

−qN
j(j+1)

2 +ja(r)

(
dm−1

∑
α<a(r)

w(α)=m−1
qα + dm

∑
α<a(r)
w(α)=m

qα

)[
m−1
m−j−1

]
qN
, otherwise

= −χ(j ≤ m− 1) qN
j(j+1)

2 +ja(r)

dm−1 ∑
α<a(r)

w(α)=m−1

qα + dm
∑

α<a(r)
w(α)=m

qα

[ m− 1

m− j − 1

]
qN
.

This completes the proof. �

We can finally turn to the proof of Theorem 3.1.

Proof of Theorem 3.1: Let us start by the initial case r = 1. Let N ≥ a(1) and
f such that

(eqN,1)
(

1− dxqa(1)
)
f(x) = f

(
xqN

)
+ xqa(1)f

(
xqN

)
.

Then

(3.6) f(x) =
1 + xqa(1)

1− dxqa(1)
f
(
xqN

)
.

Iterating (3.6), we get

f(x) =

∞∏
n=0

1 + xqNn+a(1)

1− dxqNn+a(1)
f(0).

Thus

f(1) =
(−qa(1); qN )∞
(dqa(1); qN )∞

.
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Now assume that Theorem 3.1 is true for some r − 1 ≥ 1. We want to show
that it is true for r too. Let N ≥ α (2r − 1) and f be a function with f(0) = 1
satisfying (eqN,r). Let

F (x) := f(x)

∞∏
n=0

1− dxqNn+a(r)

1− xqNn
.

By Lemma 3.2, F (0) = 1 and F satisfies (eq′N,r). Now let

F (x) =:

∞∑
n=0

Anx
n.

Then by Lemma 3.3 A0 = 1 and (An)n∈N satisfies (recN,r). But by Lemma 3.7,
(An)n∈N also satisfies (rec′N,r−1). Now let

An =: an

n−1∏
k=0

(
1 + qNk+a(r)

)
.

By Lemma 3.6, a0 = 1 and (an)n∈N satisfies (rec′′N,r−1). Let

G(x) :=

∞∑
n=0

anx
n.

By Lemma 3.5, G(0) = 1 and G satisfies (eq′′N,r−1). Finally let

g(x) := G(x)

∞∏
n=0

(
1− xqNn

)
.

By Lemma 3.4, g(0) = 1 and g satisfies (eqN,r−1). Now N is still larger than

α
(
2r−1 − 1

)
and we can use the induction hypothesis which gives

(3.7) g(1) =

r−1∏
k=1

(−qa(k); qN )∞
(dqa(k); qN )∞

.

By Appell’s comparison theorem [6],

lim
n→∞

an = lim
x→1−

(1− x)

∞∑
n=0

anx
n

= lim
x→1−

(1− x)G(x)

= lim
x→1−

(1− x)
g(x)∏∞

n=0 (1− xqNn)

=
g(1)∏∞

n=1 (1− qnN )
.

Thus

lim
n→∞

An =

∞∏
k=0

(
1 + qNk+a(r)

) g(1)∏∞
n=1 (1− qnN )

.
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Therefore, by Appell’s lemma again,

(3.8)

lim
x→1−

(1− x)F (x) = lim
n→∞

An

=

∞∏
k=0

(
1 + qNk+a(r)

) g(1)∏∞
n=1 (1− qnN )

.

Finally,

f(1) = lim
x→1−

f(x)

= lim
x→1−

∞∏
n=0

1− xqNn

1− dxqNn+a(r)
F (x)

=

∏∞
n=1

(
1− qNn

)∏∞
n=0

(
1− dqNn+a(r)

) ∞∏
k=0

(
1 + qNk+a(r)

) g(1)∏∞
n=1 (1− qnN )

by (3.8)

=

(
−qa(r); qN

)
∞(

dqa(r); qN
)
∞
g(1).

Then by (3.7),

f(1) =

r∏
k=1

(−qa(k); qN )∞
(dqa(k); qN )∞

.

This completes the proof. �

Now Theorem 1.2 is a simple corollary of Theorem 3.1.

Proof of Theorem 1.2: By Lemma 2.4, fa(1) satisfies (eqN,r). Therefore

fa(1)(1) =

r∏
k=1

(−qa(k); qN )∞
(dqa(k); qN )∞

.

But fa(1)(1) is the generating function for overpartitions counted by E(A′N ;n, k),
and

r∏
k=1

(−qa(k); qN )∞
(dqa(k); qN )∞

is the generating function for overpartitions counted byD(AN ;n, k). ThusD(AN ;n, k) =
E(A′N ;n, k) and the theorem is proved. �

4. Conclusion

We generalised Andrews’ theorem to overpartitions by using recurrences and
q-difference equations. In [2], Andrews proved another generalisation of Schur’s
theorem similar to Theorem 1.1. It is likely that similar methods would also work
to generalise this theorem to overpartitions. In [5], Corteel and Lovejoy proved an
even more general theorem of which both of Andrews’ theorems are particular cases.
It would be interesting to generalise it to overpartitions too, but new techniques
might be necessary.

It would also be interesting to know if Theorem 1.2 has links with representation
theory and quantum algebra like Theorem 1.1.
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