MULTI-GROUNDED PARTITIONS AND CHARACTER FORMULAS

JEHANNE DOUSSE AND ISAAC KONAN

ABSTRACT. We introduce a new generalisation of partitions, multi-grounded partitions, related to
ground state paths indexed by dominant weights of Lie algebras. We use these to express charac-
ters of irreducible highest weight modules of Kac—-Moody algebras of affine type as generating functions
for multi-grounded partitions. This generalises the approach of our previous paper, where only irre-
ducible highest weight modules with constant ground state paths were considered, to all ground state
paths. As an application, we compute the characters of the level 1 modules of the affine Lie algebras

AP (n>2), D) (n>2), AL)_ (n>3), BV (n > 3), and DL (n > 4).

1. INTRODUCTION AND STATEMENT OF RESULTS

Let g be a Kac-Moody affine Lie algebra and let b* be the dual of its Cartan subalgebra. Let PT be
the set of dominant integral weights, and L(\) an irreducible highest weight g-module of highest weight
A € P*. Then the character of L()\) is defined as

ch(L(A)) = Y dimL(A), - e,
neb*

where e is a formal exponential, and dim L(\),, is the dimension of the weight space L(\), in the weight
space decomposition
L) = L),
ner
More background and definitions can be found in Section 2.1.

Character formulas have been widely studied, starting with the famous Weyl-Kac character formula
[Kac90]:

5w sgnlu)er )0 )
HaeA+(1 — e~)dimga .

where W is the Weyl group of g, AT the set of positive roots of g, sgn(w) the signature of w, p € h* the
Weyl vector, and g, the a root space of g.

Equation (1.1) is beautiful, but it is not so well suited to compute characters in practice. Moreover,
even though by definition e=*ch(L())) is a series with positive coefficients in the e~’s, this positivity
is not explicit from the formulation in (1.1). We now briefly explain what solutions have been given
to work around these issues, and present a new method which allows us to give simple non-specialised
character formulas using perfect crystals and a new generalisation of integer partitions.

ch(L(N)) =

The first solution to obtain simple character formulas is to perform certain specialisations, i.e. for
each of the simple roots «;, applying the transformations e™®* — ¢® for some integer s;. Using this
method, it is possible to transform the Weyl-Kac character formula into infinite products. From this
point of view, the most effective specialisation is the principal specialisation, where e~% — ¢ for all 1.
It has been widely exploited in the theory of partition identities related to representations of affine Lie
algebras, see for example [Cap93, GOW16, MP87, MP99, MP01, Nan14, Pri94, PS16, Sil17]. Lepowsky
and Milne [LM78a, LM78b] were the first to expose the connection by noting that up to the (¢;¢%)oo
factor, the principal specialisation of the Weyl-Kac character formula for level 3 standard modules of
the affine Lie algebra Agl) is the product side of the Rogers—Ramanujan identities:

R

(G Dn (66°)0(0*50%)s0”
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Here and in the whole paper, we use the standard g¢-series notation: for n € NU {oo} and j € N,

n—1

(a;q)n == [ (1 — ad®),
k=0
(a1,-..,a55@)n = (a1;@)n -~ (053 Dn-
Lepowsky and Wilson [LW84, LW85] later gave an interpretation of the sum side by constructing a basis
of these standard modules using vertex operators. Their method has then led to the discovery of many
new g¢-series and partition identities, see e.g. [Cap93, Nanl4, PS16, Sil17].
However, without performing a specialisation, it is in general difficult to reduce the Weyl-Kac character

formula to obtain a combinatorially simple character formula, with perhaps the exception of the Kac—
Peterson formulas [KP84], which still required a lot work using modular forms.

On the other hand, Bartlett and Warnaar [BW15] gave non-specialised formulas with explicitly positive
(2)

2n

Df_?_l as sums using Hall-Littlewood polynomials. This led them to generalisations for the Macdonald

identities for BSY, Y, Aéi)_l, Agzn), and ij_l. Using Macdonald-Koornwinder theory, Rains and
Warnaar [RW] found additional character formulas for these Lie algebras, together with new Rogers—
Ramanujan type identities.

In a different direction, Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki [KKM"92a,
KKM™92b] introduced the theory of perfect crystals to study the irreducible highest weight modules over
quantum affine algebras. The proved the so-called “(KMN)? crystal base character formula” [KKM*92a],

h(IL(V) = 3 e,

peP(N)

coeflicients for the characters of certain highest weight modules of the affine Lie algebras Cﬁll), A7 and

which expresses the character ch(L(\)) as series indexed by A-paths. Here the weight wtp is computed
using the energy function of a perfect crystal. More detail will be given in Section 2.2.

Prime [Pri99] was the first to use this character formula to give new Rogers—Ramanujan type identities
related to the level 1 standard modules of Agl) and Aél). The product side came from the principally
specialised Weyl-Kac character formula again, while the sum side came from the principally specialised
(KMN)? crystal base character formula. In a couple of previous papers [DK19a, DK19b], the authors

generalised Primc’s identities to Agllll for all n, and managed to avoid doing a specialisation, therefore
retrieving the Kac—Peterson character formula with all its parameters. To do this, we established a
bijection between A-paths and a new generalisation of partitions called “grounded partitions”, in the
case where the ground state path is constant.

Recall that a partition 7 of a positive integer n is a non-increasing sequence of natural numbers
(m1,...,ms), called parts, whose sum is n, the partitions of 4 being (4), (3,1), (2,2), (2,1,1), and
(1,1,1,1). Grounded partitions, which are defined more rigorously in Section 2.3, are partitions whose
smallest part is fixed, where all the parts are coloured and satisfy particular difference conditions. In
[DK19b], using a bijection and the (KMN)? crystal base character formula, we obtained new character
formulas expressing the characters directly as generating functions for grounded partitions:

S O(mg = e eh(L V),

7r€796'>g
e~*ch(L(\))
m)g™ = ——— 0 .
3 ctmar = 2 (1)

where P and P> are sets of grounded partitions depending on the module considered and on the
energy function of the corresponding crystal, ¢ = e~/ where § = doag + droy + - - - + dp_10vn—1 is the
null root, and C(r) is the colour sequence of the grounded partition 7. This character formula is stated
more rigorously in Theorem 2.10.

However useful, this formula only applies for standard modules whose ground state paths are constant,
which is not the case of most modules. The goal of this paper is to extend our method to treat all
standard modules, whatever their ground state paths are. To do so, we extend our definition of grounded
partitions and introduce so-called “multi-grounded partitions”. We define them rigorously and prove their
connection with crystals and characters in Section 3, but let us already say that among other conditions,
multi-grounded partitions now have their ¢ smallest parts fixed for some ¢ > 1.
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Again, by establishing a bijection with A-paths, we transform the (KMN)? crystal base character for-
mula into a character formula using generating functions on multi-grounded partitions (all the notations
will become clear once the reader gets to Section 3).

Theorem 1.1. Setting ¢ = e=%/(%DP) and ¢;, = ™ for all b € B, we have Cgo """ Cgi_y = 1, and the
character of the irreducible highest weight U,(g)-module L(X) is given by the following expressions:

> O =Pz,

€90 %9t —1

e ch(
g™ = ———
2 Clma (9% 9% 0

€90 ""C9t—1

,U«Gf’P

S dP

One big advantage of Theorem 1.1 is that one does not need to perform a specialisation, and that,
being generating functions for combinatorial objects, the series always have obviously positive coefficients.
Moreover, as we will see in Section 4, these generating functions are relatively easy to compute in practice.

As examples of application, we use our new method and Theorem 1.1 to compute character formulas
for irreducible highest weight level one modules of classical Lie algebras:

o A for Aéi) (n>2),

Ao and A, for foll(n > 2),

o Ay, A; for Aéil)fl(n > 3),

e Ag and Ay for B,gl)(n > 3),

o Ao, Ay, Ap_1, A, for DSV (n > 4).
All these formulas are non-specialised, with obviously positive coefficients, and are either infinite products
or sums of two infinite products. We restrict ourselves to examples of level 1 in this paper for brevity,
but the method applies in theory to any level.

The first two formulas were already proved by Frenkel and Kac [FK80] by constructing basic represen-
tations using vertex operators from the dual resonance theory in physics. These identities were reproved
by the second author in [Kon20] using another method based on a generalisation of Glaisher’s identity
[Gla83] through a Sylvester-style bijection. Nonetheless, we reprove them here to illustrate that our new
method gives very simple proofs.

Theorem 1.2 (Frenkel-Kac). Let n > 2, and let Ao, ..., A, be the fundamental weights and «y, ..., oy,
be the simple roots of Agi) Let 6 =200 + -+ - + 20¢p—1 + v, be the null root. Let us set

g=e¢%? and ¢; = et tanatoan/2 for gl € {1,...,n}.

We have

n

e och(L(Ao)) = [[(=cr; *)oo (=05 "0 ¢%) o0

k=1
Theorem 1.3 (Frenkel— Kac). Letn > 2, and let Ay, ..., A, be the fundamental weights and ag, ..., ay
be the simple roots of Dn+1 Let 6 = ag + -+ - + «p, be the null root. Let us set

g=e% and c;=e¥TF forallie {1,...,n}.
We have
e Moch(L(Ag)) = H —k 5 0o (=, "5 0o (1.3)
e Mch(L(A,)) = H —c1q% 0% oo (=5 15 6% oo (1.4)

We now turn to character formulas which, to our knowledge, are new. They rely on the parity of the
number of parts, we therefore introduce some notation before stating them.

Let G = G(x1,...,2,) be a power series in several variables x1,...,x,. For k& < n, we denote
by &z ....2.(G) the sub-series of G where we only keep the terms in which the sum of the powers of
x1,..., Tk is even. Note that if G has only positive coefficients, then the same is true for &, . ,, (G) for

all k. There is a simple formula to obtain &, . ,, (G) from G:
3



1

2
We can now state our character formulas in a simple form.

gxl,...,xk(G) = (G(xl,.--,.Tk,$k+1,.--,.Tn)+G(_1'1,-..,—l‘k,xk+17.-.,1‘n))~ (15)

Theorem 1.4. Letn > 3, and let Ag, ..., A, be the fundamental weights and ag, ..., a, be the simple
roots of A2n 1- Let 6 = a9+ a1 +2as - + 20,1 + o, be the null root. Let us set

g=e%? and ¢; = et tanatoan/2 for qil i € {1,...,n}.

We have

e M ch(L(A)) = Euy e ( H —ckd;q°) cglq;qQ)w)

:(qz;f)“(ﬁ(—cw;q) (—c 'a:4%) ]i[cwq (e 414 ) (1.6)

k=1
e Mch(L(A1)) = &y, ((qQ;q‘*)oo(—clq?’;f)oo(—cl1q1; H —crg; ¢°) cqu;qz)oo>
2. 4
7 q o
= % ((—cqu;qQ)oo(—cl ') H =G 0 ) oo (—C G0 ) oo (1.7)

n
+(16% ) e ' ¢ H x5 4% )oo (€ ' 45 0% )oo )

The next theorem concerns the Lie algebra B,(LI). Note that the second author proved a character
formula for L(A,,), another level 1 module, in [Kon20]. However we do not reprove it here as it can be
easily proved using the character formula (1.2) of [DK19b] and does not need any of the innovations of
the current paper. However, the character formulas for the modules L(Ag) and L(A;) are derived using
the new tools from Theorem 1.1.

Theorem 1.5. Let n > 3, and let Ay, ..., A, be the fundamental weights and «y, ..., o, be the simple
roots of B,(Ll). Let 6 = ag + a1 + 2009 - - + 2av,, be the null root. Let us set

g=e2% cy=1, and ¢ =eMttanaten for gl e {1,...,n}.

We have

e_AOCh( (AO)) gco Clyeeey Cn ( —Co4; q H —Ckq;q Ck q q ) ) (18)

k=1

(—erd3 @)oo (—¢1, '@ 6%) oo + (607 o

I
N |
—
3
Ql\?

3
=
s

1

(qu;q2)oo(c;1q;q2)oo> :

—= 7

e Mch(L(A1)) = Ecprorien ((_COQ;qz)oo(_clq3;q2)oc(_cllq_l;q2)oo (—crq; qz)oo(_cqu;q2)oo>

k

||
v

((—q; 0*)oo(—010% %) oo (1 0750700 [ [ (—ex5 4o (€1 "0 4%)oc (1.9)

k=2

[N

+(656%) oo (16%; 6P oo (1105670 H x5 4%)oo (¢, 447 oo )

‘We conclude with the four level 1 standard modules of D,(ll).

Theorem 1.6. Let n > 4, and let Ay, ..., A, be the fundamental weights and «, ..., o, be the simple
roots of Dg). Let § = ag + a1 + 2009 -+ - + 20p—2 + Q1 + vy s the null root. Let us set

g=e? and ¢; =¥t Ton—ztan—a/2en/2 for Il e {1,...,n}.
4



We have

e Mch(L(Ag)) = AT e ) cglq;qz)oo), (1.10)
k=1
C'rm

e Mch(L(A)) =&, .. c< —c1¢%q°%) cl_lq‘l;qz)ooH(—qu;qQ)oo(—c,Zlq;qQ)oo>, (1.11)

k=2
e Mt (D(Ay-1)) = Eay..., H —erg?5q°) ckl;ff)oo), (1.12)
k=1
n—1
M eh(L(AR)) = & ((—cnqz;q% —e b)) H —crg*; 4°) Cz?l;f)oo)- (1.13)

Note that these character formulas for A;i), B, (1) and D +)1 are reminiscent of the specialised character
formulas given by Bernard and Thierry-Mieg usmg string functions in [BTM87]. Formulas of the same

kind, but involving only products (not sums of products), can be found in Wakimoto’s book [Wak01].

The paper is structured as follows. In Section 2, we recall some basics on affine Lie algebras, perfect
crystals, and the theory of grounded partitions introduced in [DK19b]. In Section 3, we introduce multi-
grounded partitions and prove Theorem 1.1. In Section 4, we use our new theory to prove the character
formulas of Theorems 1.2-1.6.

2. PERFECT CRYSTALS AND GROUNDED PARTITIONS

In this section, we briefly recall the connection between grounded partitions and characters of Lie
algebra modules whose ground state path is constant, introduced in our previous paper [DK19b]. Here
we only recall the major definitions. For a more detailed introduction, we refer the reader to the book
of Hong and Kang [HK02] or to our previous paper [DK19b]. Throughout this paper, we follow the
notation of [HK02].

2.1. Affine Lie algebras and character formulas. We start by recalling some basic definitions on
affine Lie algebras.

Let g = g(A) be a Kac-Moody affine Lie algebra with generalised Cartan matrix A = (aivj)i,je{o,.,.,n—l}'
Let h be the Cartan subalgebra of g and h* be its dual. We have h = C ®z PV, where PV =
Zho ® Zhy @ -+ @ Zhp_1 ® Zd with hg, ..., h,_1,d linearly independent. PV is called the dual weight
lattice. Define linear functionals a; and A; (i € {0,...,n — 1}) on b such that

<hj, Oéz'> = Ozi(hj) = aj,i <d, Ozi> = Oéz(d) = 57;70
<hj,A7;> = Az(h]) :(51‘7]‘ <d,AZ> = Al(d) =0 (Z,] S {0,,7171})
The set IT := {e; | i € {0,...,n—1}} C b* is the set of simple roots, and IIV := {h; | i € {0,...,n—1}} C
b is the set of simple coroots. We also set P := {\ € h* | \(PY) C Z} to be the weight lattice. It contains
the set of dominant integral weights PT := {\ € P | A(h;) € Z> for all i € {0,...,n — 1}}.
The quintuple (A, I, 11V, P, PV) is called the Cartan datum of g.
We also define the coroot lattice PV := Zho®Zh, ®- - -®Zh,,_1, and its complexification h = C®z PV.
The Z-submodule P := ZAo ® ZA1 @ - -- & ZA,_1 of P is called the lattice of classical weights.
Let Pt .= Z?:o Z>oA; be the set of dominant weights.

The center Zc = {h € PV : (h,a;) =0 foralli € {0,...,n — 1}} of g is one-dimensional, generated
by the canonical central element ¢ = cohg + + -+ + ¢p—1hn—1. The space of imaginary roots Zd = {\ €
P : (hj;A\) = 0foralli € {0,...,n — 1}} of g is also one-dimensional, generated by the null root
0 =doaog +dioy + -+ dp_10p—1.

The level of a dominant weight A € P is the integer ¢ such that (¢, \) = ¢. We denote by P, (resp.
P}") the set of weights (resp. dominant weights) of level .

Let Uy(g) (vesp. U;(g)) be the quantum affine algebra (resp. derived quantum affine algebra) associated
to g. Let M be an integrable U,(g)-module. It has a weight space decomposition M = @, . p My, where
My={veM|q¢" v=¢ WMy for all h € PV}. Assuming that dim My < oo for all A € wt(M), the
character of M is defined by

Z dim M, - e*,

Aewt(M)
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where wt(M) = {\ € P | My # 0}, and the e*’s are formal basis elements of the group algebra C[h*],
with the multiplication defined by e*et = e H,

Let L(\) be an irreducible highest weight U, (g)-module of highest weight A € P*. Then its character
is given by

e ch(L(N) = Y dimL(\), e € Zle *,ie{0,...,n—1}]].
neb*

In other words, the character e~*ch(L())) is a series with positive coefficients in the e=®¢’s. For a fixed
weight A € P, the irreducible highest weight g-modules of weight A can be identified with the irreducible
highest weight U, (g)-modules of weight A, and we have equality of characters.

2.2. Perfect crystals. We now briefly recall notions on perfect crystals which are necessary to state
the (KMN)? crystal base character formula. We assume that the reader is somewhat familiar with the
basic definitions of crystal bases and quantum algebras, or can quickly catch up by reading Chapters 4
and 10 of [HKO02] or our thorough introduction in [DK19b].

Let O;Znt denote the category of integrable U, (g)-modules. To each module M = @, p My € O;Znt’
one can associate a corresponding crystal base (£, B), which is unique up to isomorphism. There is a
crystal graph associated to B, which has vertex set B, and oriented edges

b—5 ¥ ifandonlyif fib=1b (or equivalently é;b" = b),

where €; and fl are the Kashiwara operators.
For i € {0,...,n — 1}, the functions &;, ¢; : B — Z are defined as follows:
g;(b) = max{k > 0| éfb € B},
©:(b) = max{k > 0| fkb € B}.

Now define
n—1 n—1
e) =Y a)Ai,  and  ob) =Y @i(b)A;.
=0 =0

We then have wtb = ¢(b) — £(b), and for all b € B such that é;b # 0,

An energy function on B® B is a map H : B®& B — Z satistying, for all i € {0,...,n—1} and by, b with
é(b1 ® by) # 0,

H(by @ by) if i 0,
H(éL(bl ® bg)) = H(bl ® bg) +1 if i=0 and (po(bl) Z Eo(bQ)
H(b1®b2)—1 if 4=0and (po(bl) <50(b2).

By definition, in the crystal graph of B® B, the value of H(b; ® by) determines the values H (b} ® bj) for
all vertices b} ® b}, in the same connected component as b; ® bo. Energy functions will play a key role in
the (KMN)? crystal base character formula.

Perfect crystals, introduced by Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki [KKM*92a,
KKM™*92b], provide a construction of the crystal base B()) of any irreducible U, (g)-module L()) corre-
sponding to a classical weight A € PT.

Definition 2.1. ([HK02, Definition 10.5.1]) For a positive integer ¢, a finite classical crystal B is said to
be a perfect crystal of level ¢ for the quantum affine algebra U, (g) if

(1) there is a finite-dimensional Uj(g)-module with a crystal base whose crystal graph is isomorphic
to B (when the 0-arrows are removed);

(2) B® B is connected;

(3) there exists a classical weight Ao such that

1
wt(B) C Ao+ T Zzgoai and  |By,| =1;
0 %0
(4) for any b € B, we have

(c,e(b)) = ‘ ei(b)A;(c) > ¢;



(5) for each A\ € P, := {u € P+ | (¢, u) = £}, there exist unique vectors b* and by in B such that
e(b*) = X and p(by) = \.

Let us fix a perfect crystal B for the remainder of this section. The maps A — &(by) and X — @(b*)
then define two bijections on P,. As a consequence of the vertex operator theory ([HK02, (10.4.4)]), for
any \ € Pf, there is a natural crystal isomorphism

B(\) = B(e(by)) @B (2.1)
UN = Ug(by) ® by.

We now define the famous ground state paths and A-paths, which are related with grounded and
multi-grounded partitions.

Definition 2.2. For \ € 132', the ground state path of weight X is the tensor product

pr= (9o = Qg1 Qg ® - ® g1 ® g,
where g € B for all kK > 0, and
Ao = A go = bx (2.2)
A1 = €(ba,) Gk+1 = by, forall £>0.
A tensor product p = (pi)72 ) = QP41 D Pk ® - - @ p1 @ po of elements py, € B is said to be a A-path

if pp = g for k large enough. Let P()) denote the set of A-paths .
Tterating (2.1), we obtain the following isomorphism.
Theorem 2.3. ([HK02, Theorem 10.6.4]) Let A\ € P,". Then there is a crystal isomorphism
B(A\) = P(N)
Ux = Pa
between the crystal base B(N\) of L(A) and the set P(\) of A-paths.

The crystal structure of P(\) can be described as follows ([HK02, (10.48)]). For any p = (pi)32, €
P(A), let N > 0 be the smallest integer such that p, = gy for all k > N. We have

N-1
wtp = Ay + ) Wipg,

k=0
Eip = - QIN+1®6& (N ® - Rpo),
fip = "'®9N+1®fi(gN®"'®p0)7

gi(p) = max (e;(p') — wi(gn),0),
pi(p) = ¢i(p') + max (¢i(gn) — €i(p'),0) ,
where p' :=py_1 ® -+ ® p1 ® pp, and wt is viewed as the classical weight of an element of B or P(\).

We are now ready to state the (KMN)? crystal base character formula, which gives an explicit expres-
sion for the affine weight wtp and connects it with the character of L(\).

Theorem 2.4 ((KMN)? crystal base character formula [KKM*92a]). Let A € P,", let H be an energy
function on BB, and let p = (pr)5>y € P(A). Then the weight of p and the character of the irreducible
highest weight Uy (g)-module L(X\) are given by the following expressions:
oo 5 o0
wtp = A+ > (Whpp — whg) — — > _(k+ 1)(H(pk+1 ®pr) = H(grs1 ® gk))7 (2.3)
k=0 do (=

=+ Z ( wtpy, — thk Z (Pes1 @ pe) — H(gesr ®94))> )
Z v (2.4)

pEP(N)

A specialisation of Theorem 2.4 gives the following corollary in the special case where the ground
state path is constant.
7



Corollary 2.5. Suppose that A € ]5; is such that by = b* = g, and set H(g ® g) = 0. Then wtg = 0,
gr = g for all k € Z>¢, and we have

oo L 5 o0
wtp = A+ Z <thk T ZH(pe+1 ®m)> :

k=0 =k

2.3. Grounded partitions. To make the connection between character formulas and partitions (in
particular the Prime partition identity), we introduced the concept of grounded partitions in [DK19b].
First, recall the definition of these objects.

Definition 2.6. Let C be a set of colours, and let Z¢ = {k. : k € Z,c € C} be the set of integers coloured
with the colours of C. Let > be a binary relation defined on Z¢. A generalised coloured partition with

relation > is a finite sequence (mg,...,ms) of coloured integers, such that for all i € {0,...,s — 1},
T > T4l
In the following, if 7 = (mo,...,7s) is a generalised coloured partition, then ¢(m;) € C denotes the

colour of the part m;. The quantity |w| = 7y + - -+ + 75 is the weight of 7, and C(7) = ¢(mg) - - - ¢(7s) is
its colour sequence.

Fix a particular colour ¢, € C. Grounded partitions, which are directly related to constant ground
state paths, are defined as follows.

Definition 2.7 ([DK19b]). A grounded partition with ground ¢, and relation > is a non-empty gen-
eralised coloured partition m = (m,...,7s) with relation >, such that w5, = Oc,, and when s > 0,
ms—1 # O, . Let P(: denote the set of such partitions.

For the remainder of this section, we fix B a perfect crystal of level ¢ for Uy(g). Let A be a weight of
p;r such that by = b* = g, i.e. having a constant ground state path py = ---® ¢ ® ¢ ® g. Let H be an
energy function on B ® B such that H(g ® g) = 0. Let Cg = {cp : b € B} be the set of colours indexed
by B. We define the binary relation > on Z¢, by

ke, > ki, if and only if k — &' = H(V' @ b).

’

Then the set of A-paths is in bijection with the set of grounded partitions Pc'>g .

Proposition 2.8 ([DK19b]). Let ¢ be the map between A-paths and grounded partitions defined as
follows:

¢: p'_>(7r07"'77r5717069)7
where p = (pr)k>0 s a A-path in P(N), s > 0 is the unique non-negative integer such that ps_1 # g and
pr =g forallk > s, and for allk € {1,...,s—1}, the part m has colour c,, and size le;kl H(pr1+1Qpk).
Then ¢ is a bijection between P(N) and PC>J Furthermore, by taking c, = e“*, we have for all 7 € 776'>g,

B §|m|
o Mwi($ Ym) — C(m)e” .

We also described a connection with the set 7355 of grounded partitions for the relation > defined by
ke, > kéb, if and only if k — k' > H(V' @ b).

One can view the partitions of 736'>y as the partitions of PZ such that the differences between consecutive
parts are minimal. However, Pc‘>g is not exactly the set of all minimal partitions of PC>_> because, contrarily
to 736'>g, the set 735 has some partitions 7 = (mo,...,7s_1,0.,) such that c¢(m,_1) = c4. Nonetheless,
these two sets of grounded partitions are related by the following proposition.

Proposition 2.9 ([DK19b]). Let P., be the set of grounded partitions where all parts have colour c.
There is a bijection ® between P> and PZ x Pe,, such that if ®(r) = (u,v), then |v| = |u| + |v|, and
by setting ¢, = 1, we have C(m) = C(p).

This allowed us to give a character formula in terms of generating functions for grounded partitions.

Theorem 2.10 ([DK19b]). Let B be a perfect crystal of level £ for Uy(g). Let A € ?zr having a constant
ground state path py = ---QgRg®g. Setting g = e~ %/% and ¢, = ™ for all b € B, we have cg =1, and
8



the character of the irreducible highest weight Uy (g)-module L(\) is given by the following expressions:

S O(m)g™ = ePen(L(),

7r€77>g
e ch(L(N))
)™ = ——— 22
Tgp:g? Clma (45 9)

In [DK19b], we applied Theorem 2.10 to the case of the level 1 irreducible highest weight modules of

Aﬁ} 1, and retrieved the Kac—Peterson character formula [KP84]. Provided that one is able to compute
the generating function for grounded partitions, it can in principle yield character formulas for all the
irreducible highest weight modules of level ¢ having a constant ground state path.

For any Lie algebra and any level, we can always obtain a constant ground state path by considering,
for any perfect crystal B, the tensor product B = B ® BY, where B is the dual of B. However, it is
sometimes difficult to find a nice formula for an energy function on B ® B given an energy function on
B® B. Moreover, it can also be difficult to find a nice expression for the generating function for grounded
partitions corresponding to B. Therefore Theorem 2.10 is difficult to apply in some cases.

We present a solution to this problem in the next section, by introducing multi-grounded partitions
which allow us to directly handle the case where the ground state path is not a constant sequence.

3. MULTI-GROUNDED PARTITIONS

3.1. Definition. In the spirit of grounded partitions, we now define multi-grounded partitions. Con-
trarily to grounded partitions, not only their smallest part is fixed, but their ¢ smallest parts are fixed
for some ¢t > 1. This will allows us to make a connection with characters of irreducible highest weight
modules having a ground state path with period t.

Definition 3.1. Let C be a set of colors, Z¢ the set of integers coloured with colours in C, and > a binary

relation defined on Z¢. Suppose that there exist some colors cg,,...,cq,_, in C and unique coloured
integers ugg()) . ugtg b such that

w© D =, (3.1)

(0) (1 o ... (t=1) (0)

Ugyl > Ug) >t = Ug 0 > U ) (3.2)
Then a multi-grounded partition with ground cg,,...,cy,_, and relation > is a non-empty generalised
coloured partition 7 = (mp, -, Ts— 17u£(g)3)7.. ugtg 1)) with relation >, such that (ms_s, - ,m5-1) #
(ugg()), e ,ug';:}l)) in terms of coloured integers.
We denote by 735; o Cop 1 the set of multi-grounded partitions with ground g, ..., g:—1 and relation >.

Example 3.2. Let us consider the set of colours C = {c1,ca,c3}, the matriz

2 2 2
M=[0 o 2],
—2 0 2

and define the relation = on Zc¢ by ke, = ki, if and only if k — k' > M(b' ®b).

If we choose (go, g1) = (1, 3), the pair (u(o)7 uM) = (1, —1) is the unique pair satisfying (3.1) and (3.2).
The generalised coloured partitions (3cq,3eqy 3crs —less Leys —Lles) and (LegyBeqs Legs 3eqs —Lless Ly, —leg) are
examples of multi-grounded partitions with ground cq,cs and relation =, while (1¢,, —1cs, 1ey, —1¢,) and
(2¢,,1¢,,—1cy) are not.

Remark 3.3. In Definition 3.1, note that Conditions (3.1) and (3.2) are the same for any cyclic permu-
tation of cg,,...,Cq,_,. Thus, if grounded partitions are well-defined for fixed grounds cy,...,cq,_, and
relation >, then grounded partitions for any cyclic permutation

Cgsr+++1Cgi1Cgor---1Cqg,_1 Of the grounds and relation = are also well-defined. Moreover, if the unique

coloured integers corresponding to the ground cy,,...,cq,_, are qug’({, .. u((:’; B , then the unique coloured

integers corresponding to the ground cg,,...,Cq,_,,Cqyy---,Cqg;_, QTE ugg)i, .. ugf 11) , usgz), . 7u£19_11)
Note that grounded partitions are the particular case of multi-grounded partitions where the ground
is just one colour.



3.2. Connection with perfect crystals. As we did with grounded partitions, we now establish a
connection between multi-grounded partitions and ground state paths of perfect crystals. The difference
is that now, multi-grounded partitions allow us to treat the case where the ground state path is not a
constant sequence.

Let B be a perfect crystal of level £, and let A € ]5; be a level £ dominant classical weight with ground
state path py = (gr)r>0- The finitude of the set P, implies the periodicity of the sequence (g;);>0 (see
(2.2)). Let us set t to be the period of the ground state path, i.e. the smallest non-negative integer k
such that g = go. Let H be an energy function on B ® B. Since B ® B is connected, H is uniquely
determined by fixing its value on a particular by ® by € B® B.

We now define the function Hy, for all b,b’ € B® B, by

t—1

1
Hy\(b@ V) =Hbo ) - - > H(grsr ® gr) .- (3.3)
k=0
Thus we have
t—1
> Ha(ger1® gi) = 0. (34)
k=0

The function H) satisfies all the properties of energy functions, except that it only has integer values
when t divides 22;10 H(gr+1 ® gi). In the particular case where t = 1 (where the ground state path is
constant), the function H) is the unique energy function which satisfies Hy(go ® go) = 0. This condition
plays a key role in the connection between grounded partitions and A-paths.

Note that for any energy function H, we always have

t—1 t—1
t+ 1 1
Z(k + 1) Hx(gr+1 ® gr) = Z(lﬂ + D H(gry1 @ gx) — —— ZH (gr+1 @ gk) € 2Z

k=0 k=0 k=0

The quantity above is an integer as soon as t is odd, and is equal to 0 when ¢t = 1. Thus we can choose
a suitable divisor D of 2t such that DHy\(B® B) C Z and + Zk O(k + 1)DH)(gk+1 ® gr) € Z. In the
whole paper, D always denotes such an integer.

For the particular case ¢ = 1, which corresponds to the case of a constant ground state path, we can
always choose D = 1.

Let us now consider the set of colours Cg indexed by B, and let us define, for the remainder of this
paper, the relations > and > on Z¢, by

ke, >k}, <=k — k' = DH)(V @), (3.5)
ke, > k., <=k —k > DH\(' ®0). (3.6)

We can define multi-grounded partitions associated with these relations, as can be seen in the next
proposition.

Proposition 3.4. The set Pio,,,cgtil (resp. Pfjo gy ) of multi-grounded partitions with ground
Cgos- - -1Cq,_, and relation > (resp. >>) is the set of non—empty generalised coloured partitions m =
(70, , Ts—1, ug(;()) ye ugt 11)) with relation > (resp. > ), such that (ms—¢, -+ ,Ts—1) # (ugji, . ,uiif),
and for all k € {0,...,t -1},
= t—1
u®) = Tt Z(g +1)DH)(ge+1 ® ge) + Z DH(ge+1 ® ge) - (3.7)
£=0 =k
Proof. First, we check that the colours cg,,...,cq4,_, and the coloured integers ugjg,.. ugg b satisfy

the conditions in Definition 3.1 for both relations > and >>.
We have u®) — u*+1) = DH, (gr41 ® gx), so (3.2) is true for both > and >>. To check that (3.1) is
true as well, we do the computation:

t—1 t—1
1
Zu(k) = Z <_t ;(f + 1)DHx(ge41 @ ge) + Y DHA(ge11 ® 9@))

k=0 =k
t—1 t—1t—1
==Y ((+1)DHx(9rs1@90) + Y Y DHx(9e11® g0)
£=0 k=0 ¢=k

=0.
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Moreover, the choice of integers u(?), ..., u(*=1) is unique. Indeed, by (3.5) and (3.2), they satisfy
u®) — ) > DHy (gry1 ® gr) for all k € {0,...,t — 1} (with the convention that u(®) = «®). Thus,
by (3.4), they must satisfy

0=0® — @ p o @ oo (02 g (t=1) 4 o (t=1) _ 1, (0)
> DH)(g91 ® go) + DHx(g2 ® g1) + -+ DHx(9t—1 ® gt—2) + DHx(g9: ® g¢—1)
= O,
and this implies that «*) — «*+1) = DH, (gp11 ® gi) for all k € {0,...,t — 1},
Finally, by (3.1), we have

0 = u(o) + -4 u(t_l)
— 0@ — ™ 2@ — @) £ (D = O )

which gives us the value of u(©):
=
0) — _Z
ut == > (k+ 1)DHx(gr+1 ® gi).
k=0
The other values (3.7) are then fully determined by the equalities u*) — u**1) = DH,(gr11 @ gr). O

To make a more general connection between multi-grounded partitions and character formulas, we
define some additional sets of multi-grounded partitions. For any positive integer d, we denote by
d7)>>

o *++Cgy

that for all k € {0,...,s— 1},

) the set of multi-grounded partitions m = (g, - - - ,ws,l,ugj?} Ve ,u&f,jff) of on“'cqtfl such

T — Th1 — DHX(Dry1 @ pi) € dZ> ,
(0)

where ¢(my,) = ¢y, and 75 = ue,, -

Finally, let ?Pc?io"‘%f,_l (vesp. Pz ..c, .+ tPe ., ,) denote the set of multi-grounded partitions
of ’PZO,,.cgt_l (resp. Po e, > Pé.c,, ,) Whose number of parts is divisible by ¢.

Example 3.5. Assume that DHy = M given in Example 5.2. Then ?P., ., is the set of multi-grounded
partitions ™ = (7o, -+ , Ts—1, Ley, —ley) Of Pey,es such that for all k € {0,...,s — 1},

T — Tht1 — DH (P41 @ pr) € 2Z>g,

Given that all the values in the matriz M are even and that these multi-grounded partitions always
end with (1.,,—1¢,), the multi-grounded partitions in ?P., ., only have odd parts. For ezample, the
multi-grounded partition (e, ,5eys 3ess Leas Leys —1Ceq) belongs to 2Pe, oy. It also belongs to 3P, ., as its
number of parts is divisible by 2.

Now that we have introduced all the relevant notation, let us repeat the main theorem from the
introduction, Theorem 1.1, which makes the connection between perfect crystals and multi-grounded
partitions.

Theorem 1.1. Setting ¢ = e~%/(%P) and ¢, = ¢"™ for all b € B, we have Cgo """ Cg,_, = 1, and the
character of the irreducible highest weight U, (g)-module L()) is given by the following expressions:

> C(m)g™ = e eh(L(N)),

ME{P%O regy_q
S o = )
rcip> (4% 9%) o
t

€90 %9t 1
The remainder of this section is dedicated to the proof of Theorem 1.1.
Let p = (pr)r>0 € P(A) be a A-path different from the ground state path py = (gx)r>0. Then, by
definition, there exists a unique positive integer m such that
(p(mfl)ta ooy Pmi—1) 7 (905 -+ Gi—1)
(Pmrts - Pamr41)t—1) = (g0, -+ ge—1)  for all m’ > m.

We start by expression the weight of p in terms of the function Hj.
11
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Lemma 3.6. The weight wt(p) of p is given by the following formula:

wh(p) = A+ z_: (M(pk) - dio <—1 i(é—k 1)Hx(ge+1 @ ge) + z_: Hx(pe+1 ®pe)>> : (3.9)

k=0 £=0 l=k

Proof. For any positive integer m, we have

mt—1 t—1 mt—1
m(mt +
> (k+ 1) H(ge1 @ gi) = Z H(gir1 @ ge) + Y (k+ 1) Ha(ger1 @ gx) by (3.3)
k=0 k=0
m(mt+ 1) « =
= fZH(gk+l ®gk)+m2(k+1)HA(gk+1 ® gk), (3.10)
k=0 k=0
where the last equality follows from the periodicity of py.
On the other hand, we have
t—1
> wi(gr) =0. (3.11)
k=0
Indeed,
t—1
Zﬁ(gk) = Z w(gr) — (gr) by defintion
k=0
t—1
= wlgr) — #(grs1) by (2.2)
k=0
= ¢(90) = #(90)-
Therefore, computing the weight wt(p) given by (2.3) yields:
5 o0
=A+ Z (wt(pr) — wt(gr)) — % > (k+ 1)(H(Pk+1 ®pr) = H(gk+1 ®9k))
k=0
oo mt—1
= A+ (Wilpx) — wigr)) — % > (k+ 1)(H(pk+1 ®pk) — H(ges1 ® gk))
k= k=0
mt—1 5 mt—1 mé t—1
= A+ > wilpk) — T > (k+ 1) Hx(prsr @ pr) + N > (k4 1) Hx(grs1 ® gi),
k=0 k=0 k=0
where the last equality follows from (3.10) and (3.11). Equation (3.9) then follows from the fact that
mt—1 mt—1mt—1
o (k+DHA(pre1 ®@pr) = Y Y Ha(pes1 @ po).
k=0 k=0 t=k

We now give a bijection between A-paths and multi-grounded partitions.

Proposition 3.7. Let us define the map ¢ from P(\) to 73> Car_1 , such that ¢(py) = (ugig, . ,ug:}f),
and for all p = (pr)x>0 € P(A) different from py and m deﬁned in (3.8),

o(p) = (Mo, s Tme—1,u &2) CultY)

’ CEH 1
where for all k € {0,--- ,;mt — 1}, ¢(mg) = ¢, and
t—1 mt—1

Tk = *% ;(5 + 1)DH)(ge+1 @ ge) + ;ﬁ DH\(pe+1 @ pe) -

Then ¢ defines a bijection between P(\) and the set t’Pc'>go_,,
of parts is divisible by t.

Furthermore, by setting ¢, = e™*®) for all b € B, we have for all w € P>

90"""Cgr_1’

. of partitions of P; whose number

Cgy— Cgo " "Cgy_1

3]

e~ AWt (M) = O(r)e DD | (3.12)
12



Proof. Let p € P(\) and m = ¢(p). First, let us check that = belongs to ;P> . The multi-

€90"""Cgt—_1
grounded partition 7 has (m—+1)t parts, so its number of parts is indeed divisible by t. Moreover, we have
7 > for all k € {0, mt—2}, because 7 — 711 = DH(pr+1®pr). By (3.4) and (3.7), we have u® =
—% 22;(1) (L+1)DHx\(ge+1®ge), so that w1 —u® = DH, (Pmt @Pmi—1) and Tpmi—1 >u£23] . Finally, since
(Pm=1)ts -+ Pmi—1) #+ (90, -+ 9t—1), we necessarily have that

(Tm—1)t> """ > Tmt—1) # (ugg()),,ug;_ll)) in terms of coloured integers. Thus 7 is indeed a multi-

grounded partition belonging to tpc.>gg~~cgt,1
Let us now give the inverse bijection ¢ 1. Start with 7 = (70,..., Tmi_1, ugg)z by uﬁf;fl)) € tPC'iO,,,Cgtil
with m > 0 and colour sequence ¢y -+ ¢y Cgy -+ Cq,_,. We set ¢~ () = (pr)rz0, Where prriyi = gi
for all m’ > m and ¢ € {0,...,t — 1}, and py = p), for all k € {0,...,mt — 1}.
o We first show that (p(m—1)t, .-+ Pme—1) # (9o, - .-, g¢—1). Assume for the purpose of contradiction
that (pgrn—1yts-- > Pmt—1) = (9o, - .-, gt—1). We then obtain by (3.5) that

t—1 t—1

1
T(m—1)t+k = ~7 Z(@ +1)DH)(ge+1 ® ge) + ZDH’\(W“ ® ge) = “gil
=0 =k
This contradicts the fact that (7(m_1)s, - -, Tmi—1) 7 (ugg)()), .. 7uétgt__ll)) in terms of colored inte-

gers.
e By (3.5), we also have, for all k € {0,...,mt — 1}, 7 — Tp11 = DHx(pr4+1 ® px). Therefore

mt—1 t—1 mt—1

1
me =u® + Z (Mg — mey1) = 7 Z(Z + 1)DHx(ge+1 ® ge) + Z DH(pey1 @ pe). (3.13)
—k =0 —k

With what precedes, we have ¢(¢~1(7)) = 7 and ¢~ 1(p(p)) = p.
Finally, we obtain (3.12) by Lemma 3.6. O

Similarly to the case of grounded partitions, we end this section with a bijection connecting the
multi-grounded partitions with relations > and >.

Proposition 3.8. Let ¥P be the set of classical partitions where all parts are divisible by d. There is a
bijection ®4 between fpfio,,,cgtﬂ and tPZO,,,CgFl x 4P, such that if ®4(7) = (u,v), then |7| = |u| + |v|,

and by setting cq, - - cq,_, = 1, we have C(7) = C(p).

Proof. The main trick here consists in seeing classical partitions as partitions with number of parts
divisible by t. If v is a classical partition with rt — £ parts, with » > 1 and £ € {0,...,¢t — 1}, it suffices
to add £ parts 0 at the end of v. Then, a non-empty partition v € 4P can be uniquely written as a
non-increasing sequence v = (dvy, - - - ,dvy¢—1) of non-negative multiples of d, with v_yy, > 0.
0 -1 0 -1 . 0 -1

We set @d(uf;g()), e ,u&f]tff) = ((ugj()) b ,u§2t73), (). Let us now consider m = (mg, . .., Tps—1, ugg()), e ,ug]til))
. 0 t—1
in gPngcgt (0) (t=1)

o different from (ue,, ..., u
build ®4(m) = (u,v). We set p = (px)k>0, With pgit; = ¢; for all 8 > s and @ € {0,...,t — 1}, and

s Ue,, . ), With colour sequence ¢,y -+~ ¢y cgy v Cq,_,, and let us
pi =p), for all k € {0,...,st — 1}, and

m = max{k; S {07 sy S} . (p(kfl)ta e apkt—l) 7é (g07 o ,gt—l)}-

Since (Prts - - - P(k+1)t—1) = (9o, -+, ge—1) for all k > m, with the convention ¢y, ---c4,_, = 1, we obtain
that C(W) =Cpo " Cpgy_1 = Cpo """ Cppy_1-
We set

p= (oo e, ul) s ul V) = 6(p).

T Cgp g
By (3.13), for all k € {0,...,mt — 1}, the part py, has colour ¢,, and size

mt—1

u® + " DHx(per1 © po).-
=k

Thus we have C(m) = C'(u).
13



Let us now build v = (vp,...,V—1) in 4P, We distinguish two different cases.

(1) fm < s, weset r=sand v=(1p,...,Vs_1), Where
Vk = Tk — Mk for k € {0,...,mt — 1},
Vhipi = m —u® for ke {m,...,s—1}and i € {0,...,t —1}.

Therefore, for all k € {0,...,mt — 2}, we have
Vi — Vi1 = Tk — Tk4+1 — Mk + HEk+1
=T — Tht1 — DHX(Prt1 @ Pr)
€ dZZo,

and

0
Umt—1 — Vmt = Tmt—1 — Tmt — Pmt—1 T u( )

=7k — Tht1 — DHX(Pmt @ prmt—1)
€ dZZO~
We also have, for all k € {m,...,s—1} and all i € {0,...,t — 1},

_ ; i1
Vktri — Vktridl = Thiri — Thepipr — ul + D

= Thtri — Thttit1 — DHX(Prtviv1 © Driti)
€ dZso.
We finally observe that
Vet—1 = mgr—1 — ult™Y
o — a4y © -

= msi—1 — u® — DH)\(prt ® pri—1)
S dZZO~

We showed that the sequence (Vk)ztz_ol is indeed a non-increasing sequence of multiples of d.
Moreover, we have m(,_1); > w9, Indeed, m < s implies that (p’(sfl)t, ces P 1) = (g0y -, gt—1)-
So if we had m_1) = u(9), then by the difference condition (3.6), it would mean that
(T(s—1)ts -+ s Tst—1) = (uggi, .. ,ug;ll)) as coloured integers, which contradicts the definition
of multi-grounded partitions. Thus v(s_1); = T(s—1)r — u©® > 0.
(2) By definition, we have m < s, so the only other possible case is m = s. As before, we obtain
that (m — uk);cn:tal is a non-increasing sequence of non-negative multiples of d. We set

r=min{k € {0,...,8} : Tt = piret},
and vy, = T — g for all k € {0,...,7t—1}. So, in this case too, v belongs to ¢P and Vir—1yt > 0.

-1 5 d d
The map @, from tPng_,,cqt X P to tPZo'“P

sy simply consists in adding the parts of

o= (/40,...,umt_l,ugi,...,ug:i)) € tPZo"'Cgt_l to those of v = (1, ,vp—1) € “P to obtain a
multi-grounded partition 7 € fPf;o,,,cgtil in the following way:
(1) if m > r, then for all k € {0,...,mt — 1}, 7, has size up + v and color c¢(uy), where we set
vy =0 for all k € {rt,--- ;mt — 1}, and we obtain the multi-grounded partition
™= (7T07 e uﬂ—mtflauz(:(;))a e 7u¢(32:j3)7

(2) if m < r, the first mt parts are defined as in the case m > r, and the remaining parts are
Tht4i = Viesi +u® with color g, forall k€ {m,...,r—1} and i € {0,...,t—1}, and we obtain
the multi-grounded partition

— 0 t—1
™= (7T07 T 77T’l"t715u£g())a s 7U£gt71))-

It is easy to see that &4 and @51 are inverses of each other, the first (resp. second) case of ®4 being the

inverse of the second (resp. first) case of ®;. O

This proposition, along with (2.4) of Theorem 2.4, yields Theorem 1.1.
14



Note that when ¢t = 1, we can choose D = 1, and Theorem 2.10 is then a particular case of Theorem
1.1. The additional parameter d allows us to have a refined equality and to simplify some calculations.
It is particularly useful when DH) (B ® B) € dZ, in which case the parts of our partitions all belong to
the same congruence class modulo d. This is done for example in Section 4.1 for Agn) and in Section 4.2

for Dfﬁl .

4. EXAMPLES OF APPLICATION: CHARACTER FORMULAS FOR SEVERAL CLASSICAL AFFINE LIE
ALGEBRAS

In this last section, we illustrate how multi-grounded partitions and Theorem 1.1 can be used to
compute character formulas for standard level 1 modules where Theorem 2.10 is not easily (or not at all)
applicable. All crystals can be found in the book [HK02].

4.1. The Lie algebra Agi) (n > 2). We start by studying the algebra Aéi) for n > 2 to prove Theorem

1.2. The crystal B of the vector representation of A(Qi) (n > 2) is given by the crystal graph in Figure 1
with the weights

wt(0) = 0,
1 n—1
wt(u) = —wt(u) = 30 + Zai for all u € {1,...,n}.
Here, the null root is § = ay, + 2 Z::Ol ;.
B /07 1 2 n—QDLiln—]\

pa, = (---000) 0 ez =1 = [7]

FicUre 1. Crystal graph B of the vector representation for the Lie algebra Agi) (n>2)

We now compute the energy function H on B® B such that H(0®0) = 0. To do so, we use the crystal
graph of B ® B given in Figure 2. It is connected, so the energy is completely determined by the choice
H(0®0) = 0. Moreover, the energy is constant on each connected component of B ® B after removing
the 0-arrows. More detail on the computation of energy functions can be found in [HK02] or [DK19b].

[0]=[0] el - - - Mol - - - el — @0 - - > @l - - - [O«0] — =0
—> : O-arrow
@ e - - - [l - - -» @l — @el - - - @edl - - - el mEH
— : n-arrow ! ! ! ! ! !
I I I I I I
v v v v v v
— — 5 paths of i-arrows, for consecutive i # 0,n []e] — ([ e - - = ek — BEel] - - - @ [e]| —— |0« [
I I I I I I
I:] connected components without O-arrows 3 3 3 Ny 3 3
@5E — (056 - - » @el @R — @e@ @E - - - DEE— @5
@eFE — @@ - - - @@ - - » [Eed BeE - - - @@ - - - @FE — (@@
I I I I I I
I I I I I I
~ ~ ~ g ~ ~
e — el - - - e e —— R @@ - - - Dol — D
I I I I I I
I I I I I I
v v v v v v
[led — e[ e - - = Mei] — FE=0] - - - [0 @Med — [@=a
[@e e - Well -~ Mol — Fe0] - - - el - - - 0] — [@em)

FIGURE 2. Crystal graph of B ® B for the Lie algebra Agi) (n>2)
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We obtain the following energy matrix:

1 2 -+ n n 2 1 0
1 1
210

. o
n

H=g

: 0*
2] : T
ilo ... .. .. ... ... 0 21
o\l -+ v .. .. ... ... 10

In this case, L(Ag) is the only irreducible highest weight module of level 1, and the corresponding
ground state path is py, = --- 000, which is constant. So in theory, to obtain the character formula of
Theorem 1.2, we could apply Theorem 2.10. But here we will make use of the additional variable d of
Theorem 1.1 to simplify our computations.

Let us apply Theorem 1.1 with D =t =1 and d = 2. We have Hp, = H, and

e~Moch(L(Ay))
v S S /24 )
TFE;)% cime (0% 4% (4.1)

where ¢ = e %/2 and ¢, = "™ for all b € B.
We recall that %P(?s is the set of grounded partitions 7= = (mo,...,ms—1,0,,) with relation > and
ground cp, such that for all k € {0,...,s — 1},

T — Tht1 — H(pry1 @ pr) € 2Z>0, (4.2)

where ¢(m;) = ¢, and 7, = Oc,, -
These grounded partitions are exactly the partitions grounded in ¢y which are finite sub-sequences of

"'25c1 Z4c023q2"'23012250ZlcTZ"'ZlcﬁZlan"'Zlcl20

co

where the parts (2k)., may repeat for & > 0.

Indeed, by (4.2), the size difference between two consecutive parts with colours ¢, and ¢y has the
same parity as H(0' ® b). This implies that all the parts with colours ¢y, cq, ..., ¢y, ¢z have the same
parity, different from the parity of the parts with colour ¢y. Since the ground has size 0 and colour cy,
the parts coloured cg are even and the others are odd, and we obtain the sequence above.

Setting ¢y = 1, we obtain the generating function

S g = (—cig, oV TR e T —cn¢;¢*)oo

retp (4% ¢%)sc

Combining this with (4.1), we obtain
e Mch(L(Ao)) = (—€1q, ¢4, - - -, —CnGs —Ca; §%) s

which is Theorem 1.2.

4.2. The Lie algebra Dﬁ)_l(n > 2). We now turn to the algebra Df_?_l for n > 2 and prove Theorem
()

1.3. The crystal B of the vector representation of D,/
with the weights

(n > 2) is given by the crystal graph in Figure 3
wt(0) = wt(0) = 0,
wi(u) = —wt(u) = Zai for all w € {1,...,n}.

i=u

Here, the null root is § = Y"1, o
16



B /' 1 2 niQ:L—l nfl "
| ol
br, = (---0000) D P P g

F1GURE 3. Crystal graph B of the vector representation for the Lie algebra Dfll(n > 2)

Again, we compute the energy function H on B ® B such that H(0 ® 0) = 0 with the help of the
crystal graph of B ® B given in Figure 4.

—> : O-arrow [0]e[0] @el] - - = el - - - o] —e— @] - - = Ee2l] - - = [T¢0] —— [0]=[0]
—> @ n-arrow
EE el - - - [Wel] - - - [fel] —e— @] - - - @] - - - [T=[0] [oJe[]
—e—> : chains of two n-arrows ! ! ! : ! ! !
v v v v v v v
® : vertex of the form 0® - or -® 0 [0]ef] — [ e - - = [Bel] —e— FEeld] - - = @ Mo — ([«
| | | | | | |
— — % : paths of i-arrows, for consecutive i # 0,n \L \L \L \L L \L \L
el — @of] - - = e [ —e— @[] @el] - - - @] — (D=
I:] : connected components without 0-arrows i i -5 i -5 o I __ s -5
@@ — 5@ - - » @@ - - - EeE 3| @@ - - » @@ - - - @@ — |[@eE
| | | | | | |
| | | | | | |
. . . v " . .
08 — @6 - - - @6 (5@ —— o B8 - - » O — [0
| | | | | | |
~ ~ ~ ~ g ~ ~
[led — [ (e - - = o] —e— [ef] - - - [ @ed — (=
@ S e e ) e ) e 5 e 8
: ()
FIGURE 4. Crystal graph of B ® B for the Lie algebra D,/ (n > 2)
We obtain the following energy matrix:
1 2 n 0 n 2 10
2 ... ... 9 2 2 ... ... 9
210 . 2¢
A . o
n 2 2 2 1
H—0 0 2 2 1 (4.3)
n 2 2
2] e
1lo -« .. o .0 .. .0 21
O\l -+ oo . .. o o100
In this case, there are two irreducible highest weight modules of level 1: L(Ag) and L(A,), and the
corresponding ground state paths are pp, = ---000 and pp, = --- 000, respectively. Again, though both

ground state paths are constant, we make use of the additional variable d of Theorem 1.1 to simplify our
computations.

4.2.1. Character for L(Ag). We start by studying L(Ag). Again, we apply Theorem 1.1 with D=t =1
and d = 2. We have Hy, = H, and
e~Moch(L(Ag))
Y Ol = SR 4.4
() (4% 4%) o 44

ne P

where ¢ = e and ¢, = "™ for all b € B.

Note that the energy matrix (4.3) is exactly the same as in the case of Afn) except that the row and
column 0 were added. So, if we remove the parts coloured cg, the grounded partitions of %Pc>0> are the
same as in the previous section. Moreover, the added parts coloured c; can repeat arbitrarily many
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times, and are located between ¢, and ¢z in the order of colours. Thus, %’P0>0> is the set of grounded
partitions with ground ¢y, which are finite subsequences of

Z3CTZ "'23%23%23% 22301 2200 Z 1CTZ Z 16;2 1%2 10” Z "'Zlcl ZOCO'
where only the parts 2k., and (2k — 1), may repeat for all k > 0.

Thus we obtain the generating function

)

S O = (—c1q, —¢14, -+ s =€ —Cad; %) oo
(c04%; 4%) o0 (505 4%) 0o

ne P

and setting ¢y = c5 = 1, we get

)

Z C(ﬂ')q|ﬂ'| _ <_Clq, —C7q, ..., —Cnq, —Cr{; qz)oo
(4 0)oo

e Ps

Combining this with (4.4), we obtain

— _ _ oy 2
e Moch(L(Ay)) = CAL AL il TG @ )ee
(4:6%) o0

which is (1.3).

4.2.2. Character for L(A,). We now turn to L(A,,). Again, we apply Theorem 1.1 with D =¢ =1 and
d =2. We have Hy,, = H, and

Z C(m)g™ = M7 (4.5)

2. 42
By (4%:¢%)

where ¢ = e~ and ¢, = e"* for all b € B.

The energy matrix, and therefore difference conditions, are still the same. But now the grounded
partitions are grounded in ¢j instead of ¢o. The grounded partitions have smallest part 0., so the parts
with colours cg, ¢1, ¢, - - . , Cn, ci are now even, while the parts with colour cg are odd. Thus the grounded
partitions in %Pf; are exactly the partitions grounded in cg, which are finite subsequences of

"'2401 230022CT222Cﬁ22%22cn222clz]‘c020q2ZO%ZOC@
where for all k£ > 0, the parts (2k — 1)

co and 2k., may repeat.

Thus we obtain that the generating function

9

S Gl = CA 00 ot )
(coq; 4%) 00 (¢50%; 4%) o

e ?79?%

and setting ¢y = c5 = 1, we get

)

Z C(’ﬂ')qlﬂ'l — (_Clq27_CT,-..7—cnq27_cﬁ; qQ)OO
meiPs (¢ @)oo
0

Combining this with (4.5), we obtain

2 2 .2
(_Clq y —CTy ..., TCnqT, —Cus g )OC

e Mnch(L(A,)) = o

which is (1.4).

4.3. The Lie algebra Agi)_l(n > 3). We now move to our first example where the ground state paths
are not constant: the Lie algebra A§§3_1 for n > 3, and prove Theorem 1.4.

The crystal B of the vector representation of Agn)_l(n > 3) is given by the crystal graph in Figure 5

with, for all uw € {1,...,n}, the weights

n—1
_ _ 1
wt(u) = —wt(w) = 30n + Z Q.

18



Here, the null root is

n—1
6:a0+a1+an+22ai.
i=2
B: 1 2 n_ZDLfl n—L
bro =by, =1 M =y, =1 o o n
pa, = (- T1T1T)  pp, =(---1T111) - 5— ' ¢—5 -1 ¢ [n]

F1GURE 5. Crystal graph B of the vector representation for the Lie algebra A;zn)fl(n >3)

We use the crystal graph for B® B given in Figure 6 to compute the energy function H on B® B such
that H1® 1) = —1.

— : Oamow Fel - - - ol — ool T — 2o - - > WeqE FEe&E
. l-arrow ! ! ! ! |
: l-arrow N N | /_‘__ 1 | : ‘
— ‘ T v .
el — e @R, — @G
— : n-arrow | SO

— > : paths of i-arrows, for consecutive i # 0,1,n @el | - » Be 5T B =0 | - - [2] |
[+ comectea component ot 17
R . [mell | - - Elol] — el @e
| | : connected component of 1® 2
I:l : connected component of 1@ 1 @Ele2] - - - >‘< ‘S —— 2‘
I /_t—_ I
[ Blef] — @]  [Hel] —— 2] — [@le[]
@e@ - - - B —» @i eEm — 2=E - - - =E @&
FIGURE 6. Crystal graph of B ® B for the Lie algebra Afn)_l(n > 3)
The energy function such that H(1 ® 1) = —1 is given by the following matrix:
1 2 co n n e § T
1 1 1
21 0 :
. . L
H=" (4.6)
n
. 0"
210 0 K
T\=-1 0o -+ v . . 0 1
These difference conditions correspond the partial order
0 1
RS 1°T Ll - K e, €y € K ey K 2°T K 20 L -0
c1 C1
In this case, there are two irreducible highest weight modules of level 1: L(Ag) and L(A1), with
corresponding ground state paths py, = ---111111 and pp, =---111111.

4.3.1. Character for L(Ag). We start with L(Ag). Here we refer to the notation of Section 3. Recall
that the ground state path of Ag is pa, = (9x)5> With gor = 1 and gog+1 = 1 for all k > 0. Here, the
period of the ground state path is ¢ = 2, and our choice of particular value H(1® 1) = —1 for the energy
function gives

H(gok+2 ® gok+1) = —H(gor+1 @ gox) = 1.
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Thus we have H(1®1)+ H(1®1) =0, and by (3.3), Hy, = H. By (3.7), we obtain that u(®) = —1 and
1) —1
u .
We apply Theorem 1.1 with d = 2 and D = 2, which is allowed because H (g1 ®¢go)+2H (g2 ®g1) = —1.
We obtain

e Mo
S O = (thf)“” (4.7)
TEIPZ,, e

where ¢ = e7%/2 and ¢, = "% for all b € B.

Recall that %7751?51 is the set of multi-grounded partitions m = (mo, ..., T2s—1, —1, 1.,) with relation
> and grounds cg, ¢1, having an even number of parts, such that for all k € {0,...,2s — 1},
T — Tht1 — 2H (prt1 @ pr) € 220, (4.8)
where ¢(my) = ¢, and mos = —1...

We observe that, by (4.8) and the fact that u(®) = —1, the multi-grounded partitions of %Pf?cl have
parts with odd sizes, as the differences between consecutive parts are even and the grounds’ sizes are
odd (indeed, we always have the fixed tail ((—1)c;, 1c,)). Besides, computing the generating function for
partitions in %PE;C . is not too difficult. It suffices to notice that, combined with (4.8), > is the following

partial order the set of coloured odd integers:

-1 1
(1)‘* Ll €K e, €y €00 K gy K 3“1 KBy L oo
c1 (&)

We also note that, since H(b® b) = 1 for all b € B, only parts coloured ¢; and ¢ can appear several
times, in sequences of the form

K2R 1) <2k 1) K2E 1) < K (26— 1) K2R+ 1), <6
The generating function of these sequences for a fixed integer k > 1 is given by

(1 +0Tq2k_1)(1 +Clq2k+1)
(1 —cgeig?)

)

where the denominator generates pairs ((2k — 1), (2k + 1), ) that can repeat arbitrarily many times,
and the numerator accounts for the possibility of having an isolated (2k + 1), on the left end of the
sequence, or an isolated (2k — 1).; on the right end of the sequence.

Note that for k = 0, only the sequence (1.,, (—1)c;, Ic;) can occur at the tail of the partitions grounded
in cg,e1, but not the sequence ((—1)cp, ey, (—1)er, 1e, ), as this would violate the definition of multi-
grounded partitions. So, if we temporarily forget the condition on the even number of parts in %Pf?cl,
the generation function would be

(—c1¢®, —c1q, —caq, —c3q, - - ., —Cn, =i % )oe (=10, —C1G, - . -, —Cnd, —Crl; 4% ) oo
(1 +eciq)- 1. 4 = 14 :
(CTclq yq )Oo (CTclq yq )oo
Now to take into account the fact that there are an even number of parts, we use (1.5). Thus the
multi-grounded partitions in %733;01 have the following generating function:

Z C’(ﬂ-)q|ﬂ'| _ (7clq7 —C1q, ..., —Cnq, —Crq, q2)oo + (Clq, €14, - - -, Cnq, Cng; qz)oo
- 1. 1 .
TE %7’3%1 Q(CTCNJ 3 q )oo

The final expression (1.6) follows by using (4.7).

4.3.2. Character for L(A1). We now turn to L(A;), with a similar reasoning. Recall that the ground
state path of Ay is (gx)72, with gog+1 = 1 and gop, = 1 for all k > 0. We still have Hy, = H, and by
setting D = 2, we have by (3.7) that «° = 1 and u¥) = —1. Theorem 1.1 gives

S g = )
reiPi. (4% 4%) oo

where ¢ = ¢7%/2 and ¢, = "™ for all b € B.
So we need to study the set of multi-grounded partitions with ground c;, cg corresponding to %P(??CT.
We have almost the same set of partitions as in %’Pf;,l, except that now the tail is always (1.,, (—1)1),

and we can end with the sequence ((—1), 1, (—1)1), but not with (1., (—1)1, 1c,, (—1)1)-
20



Thus the generating function where we temporarily omit the condition on the parity of the number
of parts is given by

(1+ch—1)-(_clq3’_ﬁ1q’ —Cad, —Cay -, —Cndy =i G )oo _ (=147, —C1q"1, —C24y —C34, -+ —Cn, —CnGi 4P)oe
! (cre1q*; *)o (cre1a*; q*)o

So the multi-grounded partitions in 2P.>

Cer (with the condition on the even number of parts) are generated
by

Y O = (=16, —erg™h =g, =54, - -+ =y~ 4%) oo + (16°, 67047 20, 654, - s €ngs a4 oo

2(cre19t 4t oo

25>
TE 2P010T

4.4. The Lie algebra Br(ll)(n > 3). We now study the Lie algebra B,(Ll) for n > 3, which has standard
level 1 modules with constant and with non-constant ground state paths.
The crystal B of the vector representation of Bg)(n > 3) is given by the crystal graph in Figure 7

with wt(0) = 0 and for all w € {1,...,n}
wi(u) = —wt(u) = Zai.
i=u

Here, the null root is § = ag + a1 + 2 E?:z ;.

B: L e R e 171 A
pa, = (- 0000) >< \@
o = (- AT1TY) e e e T

FI1GURE 7. Crystal graph B of the vector representation for the Lie algebra B,gl)(n >3)

We compute the energy function H on B ® B such that H(0 ® 0) = 0 with the help of the crystal
graph for B ® B given in Figure 8.

[OJ=[] @e=0 - - - Gl —» @[] MHel] — =[] - - - el —— [O=[0]
— :0acrow L/ | = T~ _
Ol=[@ el —» 2] - - = [z [0]e[al
—» : l-arrow : ! ‘ : : ‘
|
——  wanow @-a 7 o M@ — =G @@ — e
— — > : paths of i-arrows, for consecutive i # 0,1,n ~ i
O f— Ee | - > Be@ el el ~<Red -2 e — o]
I:] : connected component of 1 ® T
==
| I : connected component of 1 ® 2 eI [@le] | - = Elel] — [Tle[d]
.
|:| + connected component of 16 1
g' — el - - - >f f
| | /_t—_
~ ~ v v =l
@R — [@eE el — @ e — @l
| N
~.
mED @0 - - - [Fel] — [e[0] el — 21 - - -~ el —— [0]e[d],

FicUre 8. Crystal graph of B ® B for the Lie algebra By(ll)(n >3)
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The energy H on B ® B such that H(0 ® 0) = 0 is given by the matrix

2 n 0 . 2 1

1 1 T |

5 0 L . . . .

. . y
n 1 1 1 1
H= 0 1 1 (4.9)

i : IR [ |

: : 0* ST T

? 0 0 IR
T\=1 0 - v o . ... 0 1

There are three standard modules of level 1:

e L(A,), with ground state path py, =--- 0000,
e L(Ap), with ground state path py, =--- 11111,
e L(Aq), with ground state path py, =--- 11111.

The character formula for L(A,,), which was already proved by the second author via other methods
in [Kon20], can be proved quite easily with Theorem 2.10 without any of the novelties introduced in this
paper. Therefore we leave this proof to the interested reader.

However, L(Ag) and L(A;) have non-constant ground state paths, so our multi-grounded partitions
are once again useful to prove the character formulas of Theorem 1.5.

4.4.1. Character for L(Ag). We start with L(Ag). Note that the energy in (4.9) is the exactly the same
as the energy in (4.6), except that the row and column 0 were added. Thus, we proceed exactly as we

did for Aggfl(n > 3), except that we add parts coloured cg.
We apply again Theorem 1.1 with d = 2 and D = 2, which gives

oA
> Cm)d™ = W, (4.10)
TEIPZ,, T

where ¢ = e7%/2 and ¢, = "™ for all b € B.

If we temporarily forget the parity of the number of parts, the multi-grounded partitions of %qu in
this section are obtained from the multi-grounded partitions of %Pwn from Section 4.3.1 by adding odd
parts coloured ¢y which can repeat (and placing them between ¢, and ¢z in the partial order). So we
obtain the generating function

(—c1q, =3¢, - - —Cnqy, —CrG; ¢%) o
(e1e10%; ¢*) oo (05 ¢%) o

Now taking into account that the number of parts must be even, we find that P2, is generated by

e
Z C(m)q™! = 5 14. i <(—c1q, _CTq"-"._;n%—cﬁq;qQ)oo N (ClquTCL--~7?ng,cnq;q2)m) |
e3P, (c1c10% ) o (cod; 1)oo I
By taking cp = cgc1 = 1, we then obtain
Z O(w)qlﬂ\ _ (=@, =10, —C70s - - ., —Cnly —Ca: ) oo + (€, 10, €50, - - - Cnly i 02 oo

2(¢%¢%) o ’

TE P,
and using (4.10), we obtain (1.8).

4.4.2. Character for L(Ay). To compute the character for L(A;), we do exactly the same reasoning as

for L(Ag): we start from the generating function corresponding to L(A;) in Aéi)_l, and we add the parts
22



coloured cg. We obtain

I
Y. Cmg™ =5

ﬁ ((_Q7 —01q37 _CTq_l, —C2¢q, —C5(q, . .., —Cnq, —Cuq; q2)
n€3PZer 454" )oo

+ (g, c14°,c1¢7 " 2, 659 - -, g, CrG; qg)),

and (1.9) follows.

4.5. The Lie algebra DY (n > 4). We conclude this section of examples with the Lie algebra DS for
n > 4.

The crystal B of the vector representation of D%l)(n > 4) is given by the crystal graph in Figure 9,
with for all uw € {1,...,n}

n—2
Wi(u) = —wt(@) = % + 0‘7’2*1 +3

Here, the null root is

n—2
5:a0+011+0[n_1+an_|_22ai'
=2
5 ! 2 ”*Q\E n,]\
bAo :bA1: bAleAOZT ) g n n
Pap= (- TITIT)  pa, = (--- 1T1T1) T 7 =1 = [
bAn = bAn,l =N bA"ﬂ _ bAn —n
pa,_, = (--- AnTANT) pr, = (- nanman)

FIGURE 9. Crystal graph B of the vector representation for the Lie algebra Dg)(n > 4)

The crystal graph for B® B is given in Figure 10, where we wrote —1 instead of n—1 for space reasons.

: O-arrow

: —l-arrow

—
—» : l-arrow
—
—»

: n-arrow

— — 5 : paths of i-arrows, for consccutive i # 0,1, ~1,n

: connected component of 1® T

==
L J : connected component of 1 ® 2 [@le(1] BHel] F - - EBlell] — [Tle[l]
|:| : connected component of 16 1
ol — 8o - - - Ee [@er
a#n, 1
! !
_ v v — ]
b#7, =1 ] — Bl — EeH
e Hel - - » @ — Mo
[@el —» @8 [@eE] —» [a=[@
ekl —» B=0] Blelt] —» E=l]

F1GURE 10. Crystal graph of B ® B for the Lie algebra Dél)(n >4)
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The energy H on B ® B such that H(m ® n) = 0 is given by the matrix

1 2 - n—-1 n m n-1 2 1
1 S 1 1
2 0o IR
. . . 1*
n—1 1 1
H=" 0 1 1
n 0 1
n—1]| : 0* 1* 1
2 0 0 S
1 T o T ¢ R |

Note that this is almost the same as the energy matrix (4.6), except that here, we have Hm ®@n) = 0
instead of 1.
These difference conditions correspond the partial order

0 0
L0, €T 0 € 0 T L, €, K
Cm (&)

There are four standard modules of level 1:

e L(Ap), with ground state path py, =--- 11111,
e L(Ay), with ground state path py, =--- 11111,
e L(A,_1), with ground state path pp, , =--- “nmnw,
e L(A,), with ground state path py, =--- nunnn,
We have

and
Hmeon)=Hnh®n)=0,
so the sums of the energies are 0 on all these ground state paths, and we can choose Hy = H for all the
above-mentioned modules.
We show briefly how to apply Theorem 1.1 to obtain Theorem 1.6. The principle is the same as in
the previous sections.

4.5.1. Character for L(Ag). As in the case of Agi)fl, we apply Theorem 1.1 with d =2 and D = 2. We

obtain
e~ Moch(L(A
E C(W)q‘”l = (q;l;)( O)), (4.11)

where ¢ = ¢7%/2 and ¢, = ™™ for all b € B.
Again, the difference between consecutive parts of the multi-grounded partitions in 5730?1?01 is even,

and because u(9) = —1 and «()) = 1 again, all the parts are odd. So the partial order becomes

-1 1 1.
(1)°T Ll, <<, < 16" <l <Ky < 361 K3, K3, K ooe
c1 Cw C1

Here, in addition to the alternating sequences
L2 <2k, <2k -1 <0
already present in Agl)_l, we also have to consider alternating sequences of the form
L (2k+ 1), € 2k + 1), < (2k+ 1), - .
Thus the generating function without the condition on the parity of the number of parts is
(€14, —¢1gs -+ —Cnd, =03 4 )

(e1e10% qY) oo (Cnend®; 1) oo
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So we deduce

1

C(m)g™ = ((*Cl% —C1s s —Cnd, —C; ¢°)

WE%Z%H 2(c1e10%; 4 o (Cnmg®; 1) oo R
+(c1q, 619, - - -, Cnq, Ca(; qz)oo).

By taking c,cy = cicy = 1, we obtain

1
> Cmg™ = v ((—e1q, —e16, -, =, —rG; ) oo + (€14, €14, - -+ En 5 4% )oo)
Tre%P??cl k o

and using (4.11), we deduce (1.10).

4.5.2. Character for L(A1). This case works in the exact same way as the previous one, so we omit the
details. We obtain

1 , B
Z C(m)q™ = ﬁ((fclqd, —c1q ", —Caq, — 3G, - —CnQ i €)oo
— 2(¢%5¢%) 0o
Te zpclcT
3 —1 L2
+(c19°, 61047 7, €24, ¢34 - - -, €nq, Cna; q )oo)a
and we conclude with Theorem 1.1 as usual.

4.5.3. Character for L(A,—1). Since Hm ® n) = H(n ® ©) = 0, we can choose D = 1, and we have
u© =4 =0,
We apply Theorem 1.1 with D = d = 1, and obtain

e Mn=1ch(L(An_1))
E )™ = .
Clma (¢ @)oo ’ (4-12)

>
WeZ'Pchn

where ¢ = ¢ and ¢, = "™ for all b € B.
Now d = 1 so we consider directly the partial order (4.5). By reasoning on the tail (0., 0., ) of the

multi-grounded partitions in 2775; ., in the same way as in the case of A(Qi)fl, and using (1.5) again, we
obtain the generating function:
1
C(r qlﬂ‘ = ( —C1q, —=C{y .-+, =Cn-14, —C,—7, —Cn, —Cpq; (
2, o 2(c1616; %) oo (Cncmd?; 4) oo ( ! ! AT e @)oo

7762735%.;71

+ (61Q7 CTy---3,Cn—-14,Cr—1,Cn, CrQq; q)oo)7

and using (4.12), we deduce (1.12) (note that in Theorem 1.6, we have set ¢ = e~%/2 for the whole
theorem for consistency, so the ¢’s of this formula are squared).

4.5.4. Character for L(A,). We do the same reasoning as before except that now the tail is (0, , O ),
and we obtain

Y. Cme = e

>
WGZ’PCH n

1

16145 4%) oo (Cncmd?; ¢%) o

((_Clq7 —C{y-++y, —Cn—-14, —Co—1, —Cn{q, —Crm; q)oo

+(c1q,¢1, -+, Cn—1G, C=; Cn; Cis q)oo),

and we conclude once again with Theorem 1.1.

5. CONCLUSION

The point of this paper is to introduce the notion of multi-grounded partitions and to show how they
can be used to obtain character formulas, even for modules whose ground state paths are not constant.
As examples, we studied the level 1 standard modules of several classical affine Lie algebras which have
relatively simple energy functions. However, our method can be applied for representations at any level,
which we plan to do in subsequent papers.

ACKNOWLEDGEMENTS

We thank Leonard Hardiman and Ole Warnaar for their comments on earlier versions of this paper
and their helpful suggestions to improve it.
25



[BTMS?7]
[BW15]
[Cap93)]
[DK19a)
[DK19b)]
[FK80]

[Gla83]
[GOW16]

[HK02]

[Kac90]
[KKM+92a]

[KKMT92b)
[Kon20]
[KP84]
[LM78a)]
[LM78b]
[LW84]
[LWS8S5]
[MP87]
[MP99]
[MPO1]
[Nan14]
[Prig4]
[Pri9g]
[PS16]
[RW]

[Sil17]
[Wak01]

REFERENCES

D. Bernard and J. Thierry-Mieg. Level one representations of the simple affine Kac-Moody algebras in their
homogeneous gradations. Commun. Math. Phys., 111:181-246, 1987.

N. Bartlett and S. O. Warnaar. Hall-Littlewood polynomials and characters of affine Lie algebras. Adv. Math.,
285:1066—-1105, 11 2015.

S. Capparelli. On some representations of twisted affine Lie algebras and combinatorial identities. J. Algebra,
154:335-355, 1993.

J. Dousse and I. Konan. Generalisations of Capparelli’s and Primc’s identities, I: Coloured Frobenius partitions
and combinatorial proofs. arXiv:1911.13191, 2019.

J. Dousse and I. Konan. Generalisations of Capparelli’s and Primc’s identities, II: Perfect Afllll crystals and
explicit character formulas. arXiv:1911.13189, 2019.

I. B. Frenkel and V. G. Kac. Basic representations of affine Lie algebras and dual resonance models. Invent.
Math., 62:23-66, 1980.

J. W. L. Glaisher. A theorem in partitions. Messenger of Math., 12:158—-170, 1883.

M. J. Griffin, K. Ono, and S. O. Warnaar. A framework of Rogers—Ramanujan identities and their arithmetic
properties. Duke Math. J., 8:1475-1527, 2016.

J. Hong and S. Kang. Introduction to Quantum Groups and Crystal Bases, volume 42 of Graduate Studies
in Mathematics. American Mathematical Society, 02 2002.

V. Kac. Infinite dimensional Lie algebras. Cambridge UniversityPress, 3rd edition edition, 1990.

S. Kang, M. Kashiwara, K. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki. Affine crystals and vertex
models. Int. Journ. Mod. Phys. A, 7:449-484, 04 1992.

S. Kang, M. Kashiwara, K. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki. Perfect crystals of quantum
affine Lie algebras. Duke Math., 68(3):499-607, 12 1992.

I. Konan. Weighted words at degree two, II: flat partitions, regular partitions, and application to level one
perfect crystals. arXiv:2002.00300, 2020.

V. Kac and D. Peterson. Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math.,
53:125-264, 1984.

J. Lepowsky and S. Milne. Lie algebraic approaches to classical partition identities. Adv. in Math., 29(1):15-59,
1978.

J. Lepowsky and S. Milne. Lie algebras and classical partition identities. Proc. Natl. Acad. Sci. USA,
75(2):578-579, 1978.

J. Lepowsky and R. L. Wilson. The structure of standard modules, I: Universal algebras and the Rogers-
Ramanujan identities. Invent. Math., 77:199-290, 1984.

J. Lepowsky and R. L. Wilson. The structure of standard modules, II: The case ASD, principal gradation.
Invent. Math., 79:417-442, 1985.

A. Meurman and M. Primc. Annihilating ideals of standard modules of sl(2,C)™~ and combinatorial identities.
Adv. Math., 64:177-240, 1987.

A. Meurman and M. Primc. Annihilating fields of standard modules of s/(2,C)~ and combinatorial identities.
Mem. Amer. Math. Soc., 137:viii + 89 pp., 1999.

A. Meurman and M. Primc. A basis of the basic si(3,C)~-module. Commun. Contemp. Math., 3:593-614,
2001.

D. Nandi. Partition Identities Arising from Standard Ag)—modules of Level 4. PhD thesis, Rutgers University,
2014.

M. Prime. Vertex operator construction of standard modules for A, Pacific J. Math., 162:143-187, 1994.
M. Primc. Some crystal Rogers-Ramanujan type identities. Glas. Math. Ser. 111, 34:73-86, 1999.

M. Primc and T. Siki¢. Combinatorial bases of basic modules for affine Lie algebras C,(}). Journal of Mathe-
matical Physics, 57(9):091701, 2016.

E. M. Rains and S. O. Warnaar. Bounded Littlewood identities. arXiv:1506.02755, to appear in Memoirs of
the AMS.

I. Siladié. Twisted sl(3,C)~-modules and combinatorial identities. Glasnik Matematicki,, 52(1):53-77, 2017.
M. Wakimoto. Lectures on Infinite-Dimensional Lie Algebra. World Scientific, 2001.

26



