
On generalizations of partition theorems of Schur and Andrews

to overpartitions

Jehanne Dousse

September 26, 2013

Abstract

In this paper we give three new proofs of Schur’s theorem for overpartitions using recurrences
and generating functions. We also prove two new theorems on overpartitions with difference
conditions. These generalize two partition identities of Andrews.

1 Introduction

A partition of n is a non-increasing sequence of natural numbers whose sum is n. An overpartition of
n is a partition of n in which the first occurence of a number may be overlined. For example, there
are 14 overpartitions of 4: 4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,
2 + 1 + 1, 1 + 1 + 1 + 1 and 1 + 1 + 1 + 1.

The following theorem is known as “Schur’s theorem for overpartitions” [10]:

Theorem 1.1. Let A(k, n) denote the number of overpartitions of n into parts congruent to 1 or 2
modulo 3 with k non-overlined parts. Let B(k, n) denote the number of overpartitions of n with k non-
overlined parts, where parts differ by at least 3 if the smaller is overlined OR both parts are divisible
by 3, and parts differ by at least 6 if the smaller is overlined AND both parts are divisible by 3. Then
A(k, n) = B(k, n).

The case k = 0 is Schur’s celebrated partition theorem [12]. Several proofs of Schur’s theorem
have been given using a variety of different techniques such as bijective mappings [8, 7], the method
of weighted words [1], and recurrences [2, 4, 6].

Theorem 1.1 was discovered using the method of weighted words [10] and was subsequently proved
bijectively [11]. In the first part of this paper we give three new proofs of Theorem 1.1 using recurrences.
Though they are based on ideas originally due to Andrews, the equations and techniques used to solve
them are different and more intricate.

Andrews used his ideas about recurrences not only to prove Schur’s partition theorem, but also to
generalize it in two different ways [3, 5]. These generalizations are indexed by the numbers N = 2n−1,
Schur’s theorem corresponding to N = 3.

In the second part of this paper we take a first step toward the generalization of Andrews’ two
theorems to overpartitions by proving the following:

Theorem 1.2. Let C(k, n) denote the number of overpartitions of n into parts congruent to 1, 2 or
4 modulo 7, with k non-overlined parts. Let D(k, n) denote the number of overpartitions of n with k
non-overlined parts of the form n = λ1 + ...+ λs, where

λi − λi+1 ≥


0 + 7χ(λi+1 is overlined) if λi+1 ≡ 1, 2, 4 (mod 7),

5 + 7χ(λi+1 is overlined) if λi+1 ≡ 3 (mod 7),

3 + 7χ(λi+1 is overlined) if λi+1 ≡ 5, 6 (mod 7),

8 + 7χ(λi+1 is overlined) if λi+1 ≡ 0 (mod 7),
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where χ(λi+1 is overlined) = 1 if λi+1 is overlined and 0 otherwise. Then C(k, n) = D(k, n).

Theorem 1.3. Let U(k, n) denote the number of overpartitions of n into parts congruent to 3, 5 or
6 modulo 7, with k non-overlined parts. Let V (k, n) denote the number of overpartitions of n with k
non-overlined parts of the form n = λ1 + ...+ λs, where

λi − λi+1 ≥


0 + 7χ(λi+1 is overlined) if λi ≡ 3, 5, 6 (mod 7)

5 + 7χ(λi+1 is overlined) if λi ≡ 4 (mod 7),

3 + 7χ(λi+1 is overlined) if λi ≡ 1, 2 (mod 7),

8 + 7χ(λi+1 is overlined) if λi ≡ 0 (mod 7),

and λs 6= 1, 1, 2, 2, 4, 4, 7, 7. Then U(k, n) = V (k, n).

When k = 0, Theorems 1.2 and 1.3 reduce to the case N = 7 in Andrews’ two generalizations
of Schur’s partition theorem mentioned above [3, 5]. Let us illustrate Theorems 1.2 and 1.3 with an
example. For Theorem 1.2, the overpartitions of 4 counted by D(k, 4) are: 4, 4, 3 + 1, 3 + 1, 2 + 2,
2 + 2, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1 and 1 + 1 + 1 + 1. The overpartitions of 4 into parts congruent
to 1,2 or 4 modulo 7 are: 4, 4, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1 and
1+1+1+1. In both cases, we have 1 overpartition with 0 non-overlined parts, 3 overpartitions with 1
non-overlined part, 3 overpartitions with 2 non-overlined parts, 2 overpartitions with 3 non-overlined
parts and 1 overpartition with 4 non-overlined parts. For Theorem 1.3, the overpartitions of 8 counted
by V (k, 8) are: 8, 8, 5 + 3 and 5 + 3. The overpartitions of 4 into parts congruent to 3, 5 or 6 modulo
7 are: 5 + 3, 5 + 3, 5 + 3 and 5 + 3. In both cases, we have 1 overpartition with 0 non-overlined parts,
2 overpartitions with 1 non-overlined part, and 1 overpartition with 2 non-overlined parts.

The proofs of Theorems 1.2 and 1.3 again use recurrences, but the details are even more considerable
for N = 7 than for N = 3. Consequently, it is not clear whether it is feasible to employ these techniques
to give an overpartition identity for all N = 2n − 1.

2 Three new proofs of Schur’s theorem for overpartitions

In this section we give three new proofs of Theorem 1.1. The first one uses recurrences based on the
smallest part of the overpartition, and the other two use recurrences based on the largest part.

2.1 Proof using recurrences based on the smallest part

Let bj(k,m, n) denote the number of overpartitions counted by B(k, n) having m parts such that the
smallest part is > j.

Lemma 2.1.

b0(k,m, n)− b1(k,m, n) = b0(k,m− 1, n− 3m+ 2) + b0(k − 1,m− 1, n− 1), (2.1)

b1(k,m, n)− b2(k,m, n) = b1(k,m− 1, n− 3m+ 1) + b1(k − 1,m− 1, n− 2), (2.2)

b2(k,m, n)− b3(k,m, n) = b3(k,m− 1, n− 3m) + b0(k − 1,m− 1, n− 3m), (2.3)

b3(k,m, n) = b0(k,m, n− 3m). (2.4)

Proof: We observe that bi−1(k,m, n)−bi(k,m, n) is the number of overpartitions counted by bi−1(k,m, n)
such that the smallest part is equal to i. We begin by treating (2.1) : If λm = 1, then λm−1 ≥ 4. In
that case we remove the 1 and subtract 3 from each remaining part. The number of parts is reduced
to m− 1, the number of non-overlined parts is still k, and the number partitioned is now n− 3m+ 2.
So we have an overpartition counted by b0(k,m− 1, n− 3m+ 2). If λm = 1, then λm−1 ≥ 1. In that
case we remove λm. The number of parts is reduced to m − 1, the number of non-overlined parts is
reduced to k − 1, and the number partitioned is now n − 1. We have an overpartition counted by
b0(k − 1,m− 1, n− 1). The equations (2.2), (2.3) and (2.4) are proved in the same way.
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For |x| < 1, |d| < 1 |q| < 1, we define

fi(x, d, q) = fi(x) = 1 +

∞∑
n=1

∞∑
m=1

∞∑
k=0

bi(k,m, n)xmdkqn. (2.5)

We want to find f0(1), which is the generating function for overpartitions counted by B(k, n).
Equations (2.1), (2.2), (2.3) and (2.4) imply:

f0(x)− f1(x) = xqf0(xq3) + dxqf0(x), (2.6)

f1(x)− f2(x) = xq2f1(xq3) + dxq2f1(x), (2.7)

f2(x)− f3(x) = xq3f3(xq3) + dxq3f0(xq3), (2.8)

f3(x) = f0(xq3). (2.9)

Thus by (2.6),
f1(x) = (1− dxq)f0(x)− xqf0(xq3). (2.10)

By (2.8) and (2.9),
f2(x) = (1 + dxq3)f0(xq3) + xq3f0(xq6). (2.11)

Substituting (2.10) and (2.11) into (2.7), we obtain:

(1− dxq)(1− dxq2)f0(x) = (1 + xq + xq2 + dxq3 − dx2q3 − dx2q6)f0(xq3)

+ xq3(1− xq3)f0(xq6).

The following lemma for N = 3 will complete the proof. We prove it for general N because the
case N = 7 will be used in the proof of Theorem 1.2.

Lemma 2.2. Let N be a positive integer and f0(x) a function such that f0(0) = 1 and

(1− dxq)(1− dxq2)f0(x) = (1 + xq + xq2 + dxq3 − dx2q3 − dx2qN+3)f0(xqN )

+ xq3(1− xqN )f0(xq2N ).
(2.12)

Then

f0(1) =

∞∏
k=0

(1 + qNk+1)(1 + qNk+2)

(1− dqNk+1)(1− dqNk+2)
.

Proof: Let

F (x) = f0(x)

∞∏
k=0

(1− dxqNk+1)

(1− xqNk)
.

Then by (2.12),

(1− x)(1− dxq2)F (x) = (1 + xq + xq2 + dxq3 − dx2q3 − dx2qN+3)F (xqN )

+ xq3(1− dxqN+1)F (xq2N ).

Let F (x) =
∑∞

n=0Anx
n. Then A0 = F (0) = f0(0) = 1 and

An −An−1 − dq2An−1 + dq2An−2 =

qNnAn + (qN(n−1)+1 + qN(n−1)+2 + dqN(n−1)+3)An−1

− (dqN(n−2)+3 + dqN(n−1)+3)An−2 + q2N(n−1)+3An−1

− dqN(2n−3)+4An−2.
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Simplifying, we obtain:

(1− qNn)An = (1 + dq2 + qN(n−1)+2)(1 + qN(n−1)+1)An−1

− dq2(1 + qN(n−1)+1)(1 + qN(n−2)+1)An−2.

Let An = an
∏n−1

k=0(1 + qNk+1). Then

(1− qNn)an = (1 + dq2 + qN(n−1)+2)an−1 − dq2an−2.

Let f(x) =
∑∞

n=0 anx
n. Thus

(1− x)(1− dxq2)f(x) = (1 + xq2)f(xqN ).

Thus f(0) = a0 = 1 and

f(x) =

∞∏
k=0

(1 + xqNk+2)

(1− xqNk)(1− dxqNk+2)
f(0) =

∞∏
k=0

(1 + xqNk+2)

(1− xqNk)(1− dxqNk+2)
.

Next,

f(x) =

∞∑
n=0

anx
n =

∞∑
n=0

Anx
n∏n−1

k=0(1 + qNk+1)
=

∞∏
k=0

(1 + xqNk+2)

(1− xqNk)(1− dxqNk+2)
.

By Appell’s Comparison Theorem [9, p. 101],

lim
x→1−

(1− x)

∞∑
n=0

Anx
n∏n−1

k=0(1 + qNk+1)
=

A∞∏∞
k=0(1 + qNk+1)

=

∞∏
k=0

(1 + qNk+2)

(1− qNk+N )(1− dqNk+2)
.

Thus

A∞ =

∞∏
k=0

(1 + qNk+2)(1 + qNk+1)

(1− qNk+N )(1− dqNk+2)
.

Next,

f0(x) =

∞∏
k=0

(1− xqNk)

(1− dxqNk+1)

∞∑
n=0

Anx
n = (1− x)

∞∏
k=0

(1− xqNk+N )

(1− dxqNk+1)

∞∑
n=0

Anx
n.

We apply Appell’s Comparison Theorem again and we obtain:

f0(1) =

∞∏
k=0

(1 + qNk+1)(1 + qNk+2)

(1− dqNk+1)(1− dqNk+2)
.

We apply Lemma 2.2 with N = 3 (we have f0(0) = 1 by (2.5)). We obtain that

f0(1) =

∞∏
n=0

(1 + q3n+1)(1 + q3n+2)

(1− dq3n+1)(1− dq3n+2)
.

So f0(1) is the generating function for overpartitions with parts congruent to 1 or 2 modulo 3, which
proves Schur’s theorem for overpartitions.
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2.2 Proof using recurrences based on the largest part

Let πm(k, n) denote the number of overpartitions counted by B(k, n) such that the largest part is ≤ m
and overlined. Let φm(k, n) denote the number of overpartitions of n counted by B(k, n) such that
the largest part is ≤ m and non-overlined.

Notice that for every m,n, k ≥ 1,

πm(k − 1, n) = φm(k, n) (2.13)

because we can either overline the largest part or not.

Lemma 2.3.

π3m+1(k, n) = π3m(k, n) + φ3m+1(k, n− 3m− 1) + π3m−2(k, n− 3m− 1), (2.14)

π3m+2(k, n) = π3m+1(k, n) + φ3m+2(k, n− 3m− 2) + π3m−1(k, n− 3m− 2), (2.15)

π3m+3(k, n) = π3m+2(k, n) + φ3m+2(k, n− 3m− 3) + π3m−1(k, n− 3m− 3). (2.16)

φ3m+1(k, n) = φ3m(k, n) + φ3m+1(k − 1, n− 3m− 1) + π3m−2(k − 1, n− 3m− 1), (2.17)

φ3m+2(k, n) = φ3m+1(k, n) + φ3m+2(k − 1, n− 3m− 2) + π3m−1(k − 1, n− 3m− 2), (2.18)

φ3m+3(k, n) = φ3m+2(k, n) + φ3m+2(k − 1, n− 3m− 3) + π3m−1(k − 1, n− 3m− 3). (2.19)

Proof: We give a proof of (2.14). The other equations can be proved in the same way. We break the
set of overpartitions enumerated by π3m+1(k, n) into two sets, those with largest part less than 3m+ 1
and those with largest part equal to 3m + 1. The first one is enumerated by π3m(k, n). The second
is enumerated by φ3m+1(k, n − 3m − 1) + π3m−2(k, n − 3m − 1). To see this, we remove the largest
part, so the number partitioned becomes n− 3m− 1. The largest part was overlined so the number of
remaining non-overlined parts is still k. If the second part is overlined, it has to be ≤ 3m− 2 and we
obtain an overpartition counted by π3m−2(k, n− 3m− 1). If it is not overlined, it has to be ≤ 3m+ 1
and we obtain an overpartition counted by φ3m+1(k, n− 3m− 1).

For all m,n, k, let ψm(k, n) = πm(k, n) + φm(k, n).
Adding (2.14) and (2.17), and using (2.13), we obtain

ψ3m+1(k, n) = ψ3m(k, n) + ψ3m+1(k − 1, n− 3m− 1) + ψ3m−2(k, n− 3m− 1). (2.20)

Adding (2.15) and (2.18), and using (2.13), we obtain

ψ3m+2(k, n) = ψ3m+1(k, n) + ψ3m+2(k − 1, n− 3m− 2) + ψ3m−1(k, n− 3m− 2). (2.21)

Adding (2.16) and (2.19), and using (2.13), we obtain

ψ3m+3(k, n) = ψ3m+2(k, n) + ψ3m+2(k − 1, n− 3m− 3) + ψ3m−1(k, n− 3m− 3). (2.22)

We define, for m ≥ 1, |q| < 1, |d| < 1,

am(q, d) = 1 +

∞∑
n=1

∞∑
k=0

ψm(k, n)qndk,

and we set a0(q, d) = a−1(q, d) = a−2(q, d) = 1 and a−m(q, d) = 0 for m ≥ 3.
As m → ∞, am(q, d) → a(q, d) where a(q, d) is the generating function for overpartitions counted

by B(k, n).
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By (2.20), (2.21) and (2.22), we obtain:

(1− dq3m+1)a3m+1(q, d) = a3m(q, d) + q3m+1a3m−2(q, d), (2.23)

(1− dq3m+2)a3m+2(q, d) = a3m+1(q, d) + q3m+2a3m−1(q, d), (2.24)

a3m+3(q, d) = (1 + dq3m+3)a3m+2(q, d) + q3m+3a3m−1(q, d). (2.25)

Substituting (2.24) and (2.25) into (2.23), we obtain:

(1− dq3m+1)(1− dq3m+2)a3m+2(q, d) =

(1 + q3m+1 + q3m+2 + dq3m − dq6m − dq6m+3)a3m−1(q, d)

+ q3m(1− q3m)a3m−4(q, d).

(2.26)

Let αm(q, d) = a3m+2(q, d).
Then, α−1(q, d) = 1, α−2(q, d) = 0 and by (2.26) we have:

(1− dq3m+1)(1− dq3m+2)αm(q, d) =

(1 + q3m+1 + q3m+2 + dq3m − dq6m − dq6m+3)αm−1(q, d)

+ q3m(1− q3m)αm−2(q, d).

The following lemma for N = 3 will complete the proof. We prove it for general N because we use
the case N = 7 in the proof of Theorem 1.3.

Lemma 2.4. Let N be a positive integer and (αn(q, d))n∈N be a sequence such that α0(q, d) = 1,

α1(q, d) = (1+qN−1+qN−2−dq2N−3)
(1−dqN−1)(1−dqN−2)

and:

(1− dqNm−1)(1− dqNm−2)αm(q, d) =

(1 + qNm−1 + qNm−2 + dqNm−3 − dqN(2m−1)−3 − dq2Nm−3)αm−1(q, d)

+ qNm−3(1− qN(m−1))αm−2(q, d).

(2.27)

Then

α∞(q, d) = lim
m→∞

αm(q, d) =

∞∏
k=1

(1 + qNk−1)(1 + qNk−2)

(1− dqNk−1)(1− dqNk−2)
.

Proof: Let

βm(q, d) = αm(q, d)

m∏
k=1

(1− dqNk−1)

(1− qNk)
.

Then by (2.27), we obtain

(1− dqNm−2)(1− qNm)βm(q, d) =

(1 + qNm−1 + qNm−2 + dqNm−3 − dqN(2m−1)−3 − dq2Nm−3)βm−1(q, d)

+ qNm−3(1− dqN(m−1)−1)βm−2(q, d).

(2.28)

For |x| < 1, let

f(x) =

∞∑
m=0

βm(q, d)xm.

From (2.28) we deduce

(1− x)f(x) = (dq−2 + 1 + xqN−2)(1 + xqN−1)f(xqN )

− dq−2(1 + xqN−1)(1 + xq2N−1)f(xq2N ).
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Let

f(x) = F (x)

∞∏
k=1

(1 + xqNk−1).

Thus
(1− x)F (x) = (dq−2 + 1 + xqN−2)F (xqN )− dq−2F (xq2N ).

Let

F (x) =

∞∑
n=0

snx
n.

Then s0 = F (0) = 1 and

sn =
(1 + qNn−2)

(1− dqNn−2)(1− qNn)
sn−1.

So

sn = s0

n∏
k=1

(1 + qNk−2)

(1− dqNk−2)(1− qNk)
=

n∏
k=1

(1 + qNk−2)

(1− dqNk−2)(1− qNk)
.

We have:

f(x) =

∞∑
m=0

βm(q, d)xm =

∞∏
k=1

(1 + xqNk−1)

∞∑
n=0

snx
n.

Thus

lim
x→1−

(1− x)

∞∑
m=0

βm(q, d)xm =

∞∏
k=1

(1 + qNk−1) lim
x→1−

(1− x)

∞∑
n=0

snx
n.

Using Appell’s Comparison Theorem we deduce that

β∞(q, d) =

∞∏
k=1

(1 + qNk−1)s∞ =

∞∏
k=1

(1 + qNk−1)(1 + qNk−2)

(1− dqNk−2)(1− qNk)
.

Finally

αm(q, d) =

m∏
k=1

(1− qNk)

(1− dqNk−1)
βm(q, d).

So

α∞(q, d) =

∞∏
k=1

(1 + qNk−1)(1 + qNk−2)

(1− dqNk−1)(1− dqNk−2)
,

which completes the proof of Lemma 2.4.

We apply Lemma 2.4 for N = 3 to (αm−1)m∈N and we obtain:

α∞(q, d) =

∞∏
k=1

(1 + q3k−1)(1 + q3k−2)

(1− dq3k−1)(1− dq3k−2)
=

∞∏
k=0

(1 + q3k+1)(1 + q3k+2)

(1− dq3k+1)(1− dq3k+2)

which is the generating function for overpartitions with parts congruent to 1 or 2 modulo 3. It completes
this second proof of Theorem 1.1.
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2.3 Proof with the largest part and parts counted twice

The beginning of this proof follows the same principle as the previous proof, except that parts congruent
to 0 modulo 3 are counted twice. This actually gives a refinement of Theorem 1.1.

Let πm(M,k, n) denote the number of overpartitions counted by B(k, n) having M parts, where
parts divisible by 3 are counted twice, such that the largest part is ≤ m and overlined. Let φm(M,k, n)
denote the number of overpartitions counted by B(k, n) having M parts, where parts divisible by 3
are counted twice, such that the largest part is ≤ m and non-overlined.

Notice that for every M,m,n, k ≥ 1,

πm(M,k − 1, n) = φm(M,k, n) (2.29)

because we can either overline the largest part or not.

Lemma 2.5.
π3m+1(M,k, n) = π3m(M,k, n) + φ3m+1(M − 1, k, n− 3m− 1)

+ π3m−2(M − 1, k, n− 3m− 1),
(2.30)

π3m+2(M,k, n) = π3m+1(M,k, n) + φ3m+2(M − 1, k, n− 3m− 2)

+ π3m−1(M − 1, k, n− 3m− 2),
(2.31)

π3m+3(M,k, n) = π3m+2(M,k, n) + φ3m+2(M − 2, k, n− 3m− 3)

+ π3m−1(M − 2, k, n− 3m− 3).
(2.32)

φ3m+1(M,k, n) = φ3m(M,k, n) + φ3m+1(M − 1, k − 1, n− 3m− 1)

+ π3m−2(M − 1, k − 1, n− 3m− 1),
(2.33)

φ3m+2(M,k, n) = φ3m+1(M,k, n) + φ3m+2(M − 1, k − 1, n− 3m− 2)

+ π3m−1(M − 1, k − 1, n− 3m− 2),
(2.34)

φ3m+3(M,k, n) = φ3m+2(M,k, n) + φ3m+2(M − 2, k − 1, n− 3m− 3)

+ π3m−1(M − 2, k − 1, n− 3m− 3).
(2.35)

Proof: We give a proof of (2.30). The other equations can be proved in the same way. We break
the set of overpartitions enumerated by π3m+1(M,k, n) into two sets, those with largest part less than
3m + 1 and those with largest part equal to 3m + 1. The first one is enumerated by π3m(M,k, n).
The second is enumerated by φ3m+1(M − 1, k, n − 3m − 1) + π3m−2(M − 1, k, n − 3m − 1). To see
this, we remove the largest part, so the number partitioned becomes n − 3m − 1. The largest part
was overlined so the number of remaining non-overlined parts is still k and the number of parts is
now M − 1. If the second part is overlined, it has to be ≤ 3m − 2 and we obtain an overpartition
counted by π3m−2(M − 1, k, n − 3m − 1). If it is not overlined, it has to be ≤ 3m + 1 and we obtain
an overpartition counted by φ3m+1(M − 1, k, n− 3m− 1).

For all M,m,n, k, let ψm(M,k, n) = πm(M,k, n) + φm(M,k, n).
Adding (2.30) and (2.33), and using (2.29), we obtain

ψ3m+1(M,k, n) = ψ3m(M,k, n) + ψ3m+1(M − 1, k − 1, n− 3m− 1)

+ ψ3m−2(M − 1, k, n− 3m− 1).
(2.36)

Adding (2.31) and (2.34), and using (2.29), we obtain

ψ3m+2(M,k, n) = ψ3m+1(M,k, n) + ψ3m+2(M − 1, k − 1, n− 3m− 2)

+ ψ3m−1(M − 1, k, n− 3m− 2).
(2.37)
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Adding (2.32) and (2.35), and using (2.29), we obtain

ψ3m+3(M,k, n) = ψ3m+2(M,k, n) + ψ3m+2(M − 2, k − 1, n− 3m− 3)

+ ψ3m−1(M − 2, k, n− 3m− 3).
(2.38)

We define, for |q| < 1, |d| < 1, |t| < 1,

am(q, d, t) = 1 +

∞∑
M=1

∞∑
n=1

∞∑
k=0

ψm(M,n, k)qndktM .

As m → ∞, am(q, d, t) → a(q, d, t) where a(q, d, t) is the generating function for overpartitions
counted by B(k, n) having M parts where parts divisible by 3 are counted twice.

By (2.36), (2.37) and (2.38), we obtain

(1− dtq3m+1)a3m+1(q, d, t) = a3m(q, d, t) + tq3m+1a3m−2(q, d, t), (2.39)

(1− dtq3m+2)a3m+2(q, d, t) = a3m+1(q, d, t) + tq3m+2a3m−1(q, d, t), (2.40)

a3m+3(q, d, t) = (1 + dt2q3m+3)a3m+2(q, d, t) + t2q3m+3a3m−1(q, d, t). (2.41)

By (2.39), (2.40) and (2.41) we obtain:

(1− dtq3m+1)(1− dtq3m+2)a3m+2(q, d, t) =

(1 + tq3m+1 + tq3m+2 + dt2q3m − dt2q6m − dt2q6m+3)a3m−1(q, d, t)

+ t2q3m(1− q3m)a3m−4(q, d, t).

(2.42)

Replacing m by m− 1 and t by tq3 in (2.42), we obtain:

(1− dtq3m+1)(1− dtq3m+2)a3m−1(q, d, tq3) =

(1 + tq3m+1 + tq3m+2 + dt2q3m+3 − dt2q6m − dt2q6m+3)a3m−4(q, d, tq3)

+ t2q3m+3(1− q3m−3)a3m−7(q, d, tq3).

(2.43)

We want to prove that a3m+3(q, d, t) satisfies the same equation (2.43) as a3m−1(q, d, tq3). Using
(2.41) we have

(1− dtq3m+1)(1− dtq3m+2)a3m+3(q, d, t)

− (1 + tq3m+1 + tq3m+2 + dt2q3m+3 − dt2q6m − dt2q6m+3)a3m(q, d, t)

− t2q3m+3(1− q3m−3)a3m−3(q, d, t)

= (1− dtq3m+1)(1− dtq3m+2)×
[(1 + dt2q3m+3)a3m+2(q, d, t) + t2q3m+3a3m−1(q, d, t)]

− (1 + tq3m+1 + tq3m+2 + dt2q3m+3 − dt2q6m − dt2q6m+3)×
[(1 + dt2q3m)a3m−1(q, d, t) + t2q3ma3m−4(q, d, t)]

− t2q3m+3(1− q3m−3)[(1 + dt2q3m−3)a3m−4(q, d, t) + t2q3m−3a3m−7(q, d, t)].

(2.44)

Substituting (2.42) into (2.44) we obtain after simplification:

(1− dtq3m+1)(1− dtq3m+2)a3m+3(q, d, t)

− (1 + tq3m+1 + tq3m+2 + dt2q3m+3 − dt2q6m − dt2q6m+3)a3m(q, d, t)

− t2q3m+3(1− q3m−3)a3m−3(q, d, t)

= t2q3m+3[(1− dtq3m−1)(1− dtq3m−2)a3m−1(q, d, t)

− (1 + tq3m−1 + tq3m−2 + dt2q3m−3 − dt2q6m−3 − dt2q6m−6)a3m−4(q, d, t)

− t2q3m−3(1− q3m−3)a3m−7(q, d, t)]

= 0,
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by (2.42) in which we have replaced m by m− 1.
So a3m+3(q, d, t) satisfies the same recurrence equation as a3m−1(q, d, tq3).
Furthermore, by (2.39), (2.40) and (2.41), we obtain:

a3(q, d, t) =
(1 + tq)(1 + tq2)

(1− dtq)(1− dtq2)
=

(1 + tq)(1 + tq2)

(1− dtq)(1− dtq2)
a−1(q, d, tq3), (2.45)

and

a6(q, d, t) =
(1 + tq)(1 + tq2)

(1− dtq)(1− dtq2)

(1 + tq4 + tq5 − dt2q9)

(1− dtq4)(1− dtq5)

=
(1 + tq)(1 + tq2)

(1− dtq)(1− dtq2)
a2(q, d, tq3).

(2.46)

Using the recurrence equation satisfied by a3m+3(q, d, t) and a3m−1(q, d, tq3) and (2.45) and (2.46),
by mathematical induction, we have for all m ≥ 0 :

a3m+3(q, d, t) =
(1 + tq)(1 + tq2)

(1− dtq)(1− dtq2)
a3m−1(q, d, tq3).

So, if we let m→∞, we obtain:

lim
m→∞

am(q, d, t) =
(1 + tq)(1 + tq2)

(1− dtq)(1− dtq2)
lim

m→∞
am(q, d, tq3). (2.47)

Iteration of (2.47) shows that:

lim
m→∞

am(q, d, t) =

∞∏
n=0

(1 + tq3n+1)(1 + tq3n+2)

(1− dtq3n+1)(1− dtq3n+2)
. (2.48)

This completes the proof.

3 Two new theorems on overpartitions with difference condi-
tions

3.1 Proof of Theorem 1.2

Let di(k,m, n) denote the number of overpartitions counted by D(k, n) having m parts such that the
smallest part is bigger than i. We have the following equations:

Lemma 3.1.

d0(k,m, n)− d1(k,m, n) = d0(k,m− 1, n− 7m+ 6) + d0(k − 1,m− 1, n− 1), (3.1)

d1(k,m, n)− d2(k,m, n) = d1(k,m− 1, n− 7m+ 5) + d1(k − 1,m− 1, n− 2), (3.2)

d2(k,m, n)− d3(k,m, n) = d0(k,m− 1, n− 14m+ 11) + d0(k − 1,m− 1, n− 7m+ 4), (3.3)

d3(k,m, n)− d4(k,m, n) = d3(k,m− 1, n− 7m+ 3) + d3(k − 1,m− 1, n− 4), (3.4)

d4(k,m, n)− d5(k,m, n) = d0(k,m− 1, n− 14m+ 9) + d0(k − 1,m− 1, n− 7m+ 2), (3.5)

d5(k,m, n)− d6(k,m, n) = d1(k,m− 1, n− 14m+ 8) + d1(k − 1,m− 1, n− 7m+ 1), (3.6)

d6(k,m, n)− d7(k,m, n) = d0(k,m− 1, n− 21m+ 14) + d0(k − 1,m− 1, n− 14m+ 7), (3.7)

d7(k,m, n) = d0(k,m, n− 7m). (3.8)
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Proof: We prove (3.3). The other equations are proved in the same way. Now d2(k,m, n)−d3(k,m, n)
denotes the overpartitions with the smallest part λs equal to 3. If λs is overlined, then λs−1 ≥ 15. In
that case we remove 14 from each part and we obtain d0(k,m−1, n−14m+11). If λs is not overlined,
then λs−1 ≥ 8. In that case we remove 7 from each part and we obtain d0(k − 1,m − 1, n − 7m +
4).

For |x| < 1, |d| < 1 |q| < 1, we define

fi(x, d, q) = fi(x) = 1 +

∞∑
n=1

∞∑
m=1

∞∑
k=0

di(k,m, n)xmdkqn. (3.9)

We want to find f0(1), which is the generating function for overpartitions counted by D(k, n).
By (3.1) - (3.8), we have:

f0(x)− f1(x) = xqf0(xq7) + dxqf0(x), (3.10)

f1(x)− f2(x) = xq2f1(xq7) + dxq2f1(x), (3.11)

f2(x)− f3(x) = xq3f0(xq14) + dxq3f0(xq7), (3.12)

f3(x)− f4(x) = xq4f3(xq7) + dxq4f3(x), (3.13)

f4(x)− f5(x) = xq5f0(xq14) + dxq5f0(xq7), (3.14)

f5(x)− f6(x) = xq6f1(xq14) + dxq6f1(xq7), (3.15)

f6(x)− f7(x) = xq7f0(xq21) + dxq7f0(xq14), (3.16)

f7(x) = f0(xq7). (3.17)

By (3.10), we know that
f1(x) = (1− dxq)f0(x)− xqf0(xq7). (3.18)

By (3.10), (3.11) and (3.12), we have

f3(x) =(1− dxq)(1− dxq2)f0(x)

+ (−xq − xq2 − dxq3 + dx2q3 + dx2q10)f0(xq7)

+ xq3(−1 + xq7)f0(xq14).

(3.19)

Summing equations (3.10) - (3.16), and using (3.18), (3.19) and (3.17) to replace respectively f1(x),
f3(x) and f7(x) by expressions using only f0, we obtain

(1− dxq)(1− dxq2)(1− dxq4)f0(x) =

[1 + xq + xq2 + xq4 + dxq3 + dxq5 + dxq6 − dx2q3 − dx2q5 − dx2q6 − dx2q10

− dx2q12 − dx2q13 − d2x2q7 − d2x2q14 + d2x3q7 + d2x3q14 + d2x3q21]f0(xq7)

+ (1− xq7)[xq3 + xq5 + xq6 + dxq7 − dx2q7 − dx2q14 − dx2q21]f0(xq14)

+ (1− xq7)(1− xq14)xq7f0(xq21).

(3.20)

Let

F (x) = f0(x)

∞∏
n=0

(1− dxq7n+4)

(1− xq7n)
.

Then by (3.20) we obtain
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(1− dxq)(1− dxq2)(1− x)F (x) =

[1 + xq + xq2 + xq4 + dxq3 + dxq5 + dxq6 − dx2q3 − dx2q5 − dx2q6 − dx2q10

− dx2q12 − dx2q13 − d2x2q7 − d2x2q14 + d2x3q7 + d2x3q14 + d2x3q21]F (xq7)

+ (1− dxq11)[xq3 + xq5 + xq6 + dxq7 − dx2q7 − dx2q14 − dx2q21]F (xq14)

+ (1− dxq11)(1− dxq18)xq7F (xq21).

Let F (x) =
∑∞

n=0Anx
n. Then A0 = F (0) = f0(0) = 1 by (3.9) and

(1− q7n)An =

(1 + q7n−3)[1 + dq + dq2 + q7n−6 + q7n−5 + dq7n−4 + q14n−11]An−1

− (1 + q7n−3)(1 + q7n−10)[dq + dq2 + d2q3 + dq7n−11 + dq7n−4]An−2

+ (1 + q7n−3)(1 + q7n−10)(1 + q7n−17)d2q3An−3.

Let An = an
∏n−1

k=0(1 + q7k+4). Then a0 = A0 = 1 and

(1− q7n)an =[1 + dq + dq2 + q7n−6 + q7n−5 + dq7n−4 + q14n−11]an−1

− [dq + dq2 + d2q3 + dq7n−11 + dq7n−4]an−2 + d2q3an−3.

Let f(x) =
∑∞

n=0 anx
n. We obtain that f(0) = 1 and

(1− x)(1− dxq)(1− dxq2)f(x)

= (1 + xq + xq2 + dxq3 − dx2q3 − dx2q10)f(xq7) + xq3f(xq14).

Let G(x) = f(x)
∏∞

n=0(1− xq7n). Thus G(0) = 1 and

(1− dxq)(1− dxq2)G(x) = (1 + xq + xq2 + dxq3 − dx2q3 − dx2q10)G(xq7)

+ xq3(1− xq7)G(xq14).
(3.21)

To solve (3.21), we apply Lemma 2.2 with N = 7. We obtain that

G(1) =

∞∏
n=0

(1 + q7n+1)(1 + q7n+2)

(1− dq7n+1)(1− dq7n+2)
.

So we have

(1− x)f(x) = (1− x)

∞∑
n=0

anx
n = G(x)

∞∏
n=1

1

(1− xq7n)
.

By Appell’s Comparison Theorem we obtain

a∞ = G(1)

∞∏
n=0

1

(1− q7n+7)
.

So

A∞ = a∞

∞∏
k=0

(1 + q7k+4) =

∞∏
n=0

(1 + q7n+1)(1 + q7n+2)(1 + q7n+4)

(1− q7n+7)(1− dq7n+1)(1− dq7n+2)
.

We have

f0(x) =

∞∏
n=0

(1− xq7n+7)

(1− dxq7n+4)
(1− x)F (x) =

∞∏
n=0

(1− xq7n+7)

(1− dxq7n+4)
(1− x)

∞∑
n=0

Anx
n.
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We apply Appell’s Comparison Theorem again and we obtain

f0(1) =

∞∏
n=0

(1− q7n+7)

(1− dq7n+4)
A∞

=

∞∏
n=0

(1 + q7n+1)(1 + q7n+2)(1 + q7n+4)

(1− dq7n+1)(1− dq7n+2)(1− dq7n+4)
.

This is the generating function for overpartitions with parts congruent to 1, 2 or 4 modulo 7, which
completes the proof of Theorem 1.2.

3.2 Proof of Theorem 1.3

Let πm(k, n) denote the number of overpartitions counted by V (k, n) such that the largest part is ≤ m
and overlined. Let φm(k, n) denote the number of overpartitions counted by V (k, n) such that the
largest part is ≤ m and non-overlined.

Lemma 3.2.

π7m+1(k, n) = π7m(k, n) + φ7m−2(k, n− 7m− 1) + π7m−9(k, n− 7m− 1), (3.22)

π7m+2(k, n) = π7m+1(k, n) + φ7m−1(k, n− 7m− 2) + π7m−8(k, n− 7m− 2), (3.23)

π7m+3(k, n) = π7m+2(k, n) + φ7m+3(k, n− 7m− 3) + π7m−4(k, n− 7m− 3), (3.24)

π7m+4(k, n) = π7m+3(k, n) + φ7m−1(k, n− 7m− 4) + π7m−8(k, n− 7m− 4), (3.25)

π7m+5(k, n) = π7m+4(k, n) + φ7m+5(k, n− 7m− 5) + π7m−2(k, n− 7m− 5), (3.26)

π7m+6(k, n) = π7m+5(k, n) + φ7m+6(k, n− 7m− 6) + π7m−1(k, n− 7m− 6), (3.27)

π7m+7(k, n) = π7m+6(k, n) + φ7m−1(k, n− 7m− 7) + π7m−8(k, n− 7m− 7). (3.28)

φ7m+1(k, n) = φ7m(k, n) + φ7m−2(k − 1, n− 7m− 1) + π7m−9(k − 1, n− 7m− 1), (3.29)

φ7m+2(k, n) = φ7m+1(k, n) + φ7m−1(k − 1, n− 7m− 2) + π7m−8(k − 1, n− 7m− 2), (3.30)

φ7m+3(k, n) = φ7m+2(k, n) + φ7m+3(k − 1, n− 7m− 3) + π7m−4(k − 1, n− 7m− 3), (3.31)

φ7m+4(k, n) = φ7m+3(k, n) + φ7m−1(k − 1, n− 7m− 4) + π7m−8(k − 1, n− 7m− 4), (3.32)

φ7m+5(k, n) = φ7m+4(k, n) + φ7m+5(k − 1, n− 7m− 5) + π7m−2(k − 1, n− 7m− 5), (3.33)

φ7m+6(k, n) = φ7m+5(k, n) + φ7m+6(k − 1, n− 7m− 6) + π7m−1(k − 1, n− 7m− 6), (3.34)

φ7m+7(k, n) = φ7m+6(k, n) + φ7m−1(k − 1, n− 7m− 7) + π7m−8(k − 1, n− 7m− 7). (3.35)

Proof: We give a proof of (3.22). The other equations can be proved in the same way. We break the
set of overpartitions enumerated by π7m+1(k, n) into two sets, those with largest part less than 7m+ 1
and those with largest part equal to 7m + 1. The first one is enumerated by π7m(k, n). The second
is enumerated by φ7m−2(k, n − 7m − 1) + π7m−9(k, n − 7m − 1). To see this, we remove the largest
part, so the number partitioned becomes n− 7m− 1. The largest part was overlined so the number of
remaining non-overlined parts is still k. If the second part is overlined, it has to be ≤ 7m− 9 and we
obtain an overpartition counted by π7m−9(k, n− 7m− 1). If it is not overlined, it has to be ≤ 7m− 2
and we obtain an overpartition counted by φ7m−2(k, n− 7m− 1).
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For all m,n, k, let ψm(k, n) = πm(k, n) + φm(k, n). By Lemma 3.2,

ψ7m+1(k, n) = ψ7m(k, n) + ψ7m−2(k − 1, n− 7m− 1) + ψ7m−9(k, n− 7m− 1), (3.36)

ψ7m+2(k, n) = ψ7m+1(k, n) + ψ7m−1(k − 1, n− 7m− 2) + ψ7m−8(k, n− 7m− 2), (3.37)

ψ7m+3(k, n) = ψ7m+2(k, n) + ψ7m+3(k − 1, n− 7m− 3) + ψ7m−4(k, n− 7m− 3), (3.38)

ψ7m+4(k, n) = ψ7m+3(k, n) + ψ7m−1(k − 1, n− 7m− 4) + ψ7m−8(k, n− 7m− 4), (3.39)

ψ7m+5(k, n) = ψ7m+4(k, n) + ψ7m+5(k − 1, n− 7m− 5) + ψ7m−2(k, n− 7m− 5), (3.40)

ψ7m+6(k, n) = ψ7m+5(k, n) + ψ7m+6(k − 1, n− 7m− 6) + ψ7m−1(k, n− 7m− 6), (3.41)

ψ7m+7(k, n) = ψ7m+6(k, n) + ψ7m−1(k − 1, n− 7m− 7) + ψ7m−8(k, n− 7m− 7). (3.42)

We define, for m ≥ 1, |q| < 1, |d| < 1,

am(q, d) = 1 +

∞∑
n=1

∞∑
k=0

ψm(k, n)qndk,

and we set a−m(q, d) = 1 for 0 ≤ m ≤ 7, a−m(q, d) = 0 for m > 7, and

a1(q, d) = a2(q, d) = 1,

a3(q, d) = a4(q, d) =
1 + q3

1− dq3
,

a5(q, d) =
1 + q3 + q5 − dq8

(1− dq3)(1− dq5)
,

a6(q, d) = a7(q, d) =
1 + q3 + q5 + q6 − dq8 − dq9 − dq11 + d2q14

(1− dq3)(1− dq5)(1− dq6)
.

This definition is consistent with the condition that λs 6= 1, 1, 2, 2, 4, 4, 7, 7.
As m → ∞, am(q, d) → a(q, d) where a(q, d) is the generating function for overpartitions counted

by V (k, n).
By equations (3.36)-(3.42), we have:

a7m−6(q, d) = a7m−7(q, d) + dq7m−6a7m−9(q, d) + q7m−6a7m−16(q, d), (3.43)

a7m−5(q, d) = a7m−6(q, d) + dq7m−5a7m−8(q, d) + q7m−5a7m−15(q, d), (3.44)

a7m−4(q, d) = a7m−5(q, d) + dq7m−4a7m−4(q, d) + q7m−4a7m−11(q, d), (3.45)

a7m−3(q, d) = a7m−4(q, d) + dq7m−3a7m−8(q, d) + q7m−3a7m−15(q, d), (3.46)

a7m−2(q, d) = a7m−3(q, d) + dq7m−2a7m−2(q, d) + q7m−2a7m−9(q, d), (3.47)

a7m−1(q, d) = a7m−2(q, d) + dq7m−1a7m−1(q, d) + q7m−1a7m−8(q, d), (3.48)

a7m(q, d) = a7m−1(q, d) + dq7ma7m−8(q, d) + q7ma7m−15(q, d). (3.49)

By (3.48),

(1− dq7m−1)a7m−1(q, d) = a7m−2(q, d) + q7m−1a7m−8(q, d). (3.50)

Replacing m by m− 1 in (3.48), multiplying this by −q5 and adding it to (3.46), we get

a7m−3(q, d) = a7m−4(q, d) + q5a7m−8(q, d)− q5a7m−9(q, d). (3.51)

Substituting (3.51) into (3.47) leads to
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(1− dq7m−2)a7m−2(q, d) = a7m−4(q, d) + q5a7m−8(q, d)

+ (−q5 + q7m−2)a7m−9(q, d).
(3.52)

Let (A) denote the equation obtained by replacing m by m − 1 in (3.49), and adding it together
with (3.43) and (3.44). Let (B) denote the equation obtained by adding (3.46), (3.47) and (3.48) and
replacing m by m− 1. Then (A)− q3(B) yields

a7m−5(q, d) = (1 + q3)a7m−8(q, d)− q3a7m−11(q, d). (3.53)

Substituting (3.53) into (3.45), we obtain

(1− dq7m−4)a7m−4(q, d) = (1 + q3)a7m−8(q, d) + (−q3 + q7m−4)a7m−11(q, d). (3.54)

By (3.50), (3.52) and (3.54), we obtain:

(1− dq7m−1)(1− dq7m−2)(1− dq7m−4)a7m−1(q, d) =

[1 + q7m−1 + q7m−2 + q7m−4 + dq7m−3 + dq7m−5 + dq7m−6

− dq14m−3 − dq14m−5 − dq14m−6 − dq14m−10 − dq14m−12 − dq14m−13

− d2q14m−7 − d2q14m−14 + d2q21m−7 + d2q21m−14 + d2q21m−21]a7m−8(q, d)

+ (1− q7m−7)[q7m−3 + q7m−5 + q7m−6 + dq7m−7

− dq14m−7 − dq14m−14 − dq14m−21]a7m−15(q, d)

+ (1− q7m−7)(1− q7m−14)q7m−7a7m−22(q, d).

Let αm(q, d) = a7m−1(q, d) and :

βm(q, d) = αm(q, d)

m−1∏
k=0

(1− dq7k+3)

(1− q7k+7)
.

Thus β0(q, d) = 1, β−1(q, d) = β−2(q, d) = 0 and:

(1− dq7m−1)(1− dq7m−2)(1− q7m)βm(q, d) =

[1 + q7m−1 + q7m−2 + q7m−4 + dq7m−3 + dq7m−5 + dq7m−6

− dq14m−3 − dq14m−5 − dq14m−6 − dq14m−10 − dq14m−12 − dq14m−13

− d2q14m−7 − d2q14m−14 + d2q21m−7 + d2q21m−14 + d2q21m−21]βm−1(q, d)

+ (1− dq7m−11)[q7m−3 + q7m−5 + q7m−6 + dq7m−7

− dq14m−7 − dq14m−14 − dq14m−21]βm−2(q, d)

+ (1− dq7m−11)(1− dq7m−18)q7m−7βm−3(q, d).

(3.55)

For |x| < 1, let

f(x) =

∞∑
m=0

βm(q, d)xm.

From (3.55) we deduce

(1− x)f(x) =

(1 + xq3)[dq−2 + dq−1 + 1 + xq5 + xq6 + dxq4 + x2q11]f(xq7)

− (1 + xq3)(1 + xq10)[dq−1 + dq−2 + d2q−3 + dxq4 + dxq11]f(xq14)

+ (1 + xq3)(1 + xq10)(1 + xq17)d2q−3f(xq21).
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Let

f(x) = F (x)

∞∏
k=0

(1 + xq7k+3).

Thus from (3.55) we deduce

(1− x)F (x) = [dq−2 + dq−1 + 1 + xq5 + xq6 + dxq4 + x2q11]F (xq7)

− [dq−1 + dq−2 + d2q−3 + dxq4 + dxq11]F (xq14)

+ d2q−3F (xq21).

Let

F (x) =

∞∑
n=0

snx
n.

Then s0 = F (0) = 1 and

(1− dq7n−1)(1− dq7n−2)(1− q7n)sn =

(1 + q7n−2 + q7n−1 + dq7n−3 − dq14n−10 − dq14n−3)sn−1

+ q7n−3sn−2.

Let

µn = sn

n−1∏
k=0

(1− q7n+7).

Thus
(1− dq7n−1)(1− dq7n−2)µn =

(1 + q7n−2 + q7n−1 + dq7n−3 − dq14n−10 − dq14n−3)µn−1

+ q7n−3(1− q7n−7)µn−2,

(3.56)

and µ0 = s0 = 1, µ1 = (1+q6+q5−dq11)
(1−dq6)(1−dq5) .

To solve (3.56), we apply Lemma 2.4 with N = 7. We obtain that

µ∞ =

∞∏
k=0

(1 + q7k+5)(1 + q7k+6)

(1− dq7k+5)(1− dq7k+6)
.

So

s∞ =

∞∏
k=0

(1 + q7k+5)(1 + q7k+6)

(1− dq7k+5)(1− dq7k+6)(1− q7k+7)
.

We have
∞∑

n=0

βn(q, d)xn = f(x) = F (x)

∞∏
k=0

(1 + xq7k+3) =

∞∏
k=0

(1 + xq7k+3)

∞∑
n=0

snx
n. (3.57)

We multiply both sides of (3.57) by (1−x) and we apply Appell’s Comparison Theorem. We obtain

β∞(q, d) =s∞

∞∏
k=0

(1 + q7k+3) =

∞∏
k=0

(1 + q7k+3)(1 + q7k+5)(1 + q7k+6)

(1− dq7k+5)(1− dq7k+6)(1− q7k+7)
.

Thus

α∞(q, d) =

∞∏
k=0

(1− q7k+7)

(1− dq7k+3)
βm(q, d)

=

∞∏
k=0

(1 + q7k+3)(1 + q7k+5)(1 + q7k+6)

(1− dq7k+3)(1− dq7k+5)(1− dq7k+6)
.
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This is the generating function for overpartitions with parts congruent to 3, 5 or 6 modulo 7. This
finishes the proof of Theorem 1.3.
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