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Abstract

We investigate in this paper the diffusion magnetic resonance imaging (MRI) in deformable organs
such as the living heart. The difficulty comes from the hight sensitivity of diffusion measurement to
tissue motion. Commonly in literature, the diffusion MRI signal is given by the complex magneti-
zation of water molecules described by the Bloch-Torrey equation. When dealing with deformable
organs, the Bloch-Torrey equation is no longer valid. Our main contribution is then to introduce a
new mathematical description of the Bloch-Torrey equation in deforming media. In particular, some
numerical simulations are presented to quantify the influence of cardiac motion on the estimation
of diffusion. Moreover, based on a scaling argument and on an asymptotic model for the complex
magnetization, we derive a new apparent diffusion coefficient formula. Finally, some numerical exper-
iments illustrate the potential of this new version which gives a better reconstruction of the diffusion
than using the classical one.

keyword: Diffusion magnetic resonance imaging, Bloch-Torrey equation, cardiac diffusion imaging,
diffusion encoding gradient, apparent diffusion coefficient, asymptotic analysis.

1 Introduction

Diffusion magnetic resonance imaging (diffusion MRI) is an imaging technique that is capable of providing
MRI images with a contrast sensitive to the diffusion motion of water molecules [1]. Diffusion MRI plays
a very important role in studying the microscopic structure of biological tissues through the measure
of the diffusion coefficient of water molecules in the tissues. This technique was successfully applied to
static organs such as in brain imaging ([2], [3], [4]). However, its implementation on moving organs like
the beating heart is very difficult because of the cardiac motion during acquisition. The heart has a
pseudo-periodic and fast motion that can be tracked with dynamic series of images ([5], [6]). The tissue
motion induces an attenuation of the signal measured in diffusion MRI which can considerably degrade
the quality of estimation of the diffusion coefficient. Because of the sensitivity to motion, it is difficult to
assess to what extent the diffusion characteristics obtained from diffusion MRI reflect the real properties
of the cardiac tissues. Some experimental studies have investigated the influence of cardiac motion on
the diffusion measurements ([7]–[10]).

The signal measured in diffusion MRI is described by the magnetization density of the water molecules
which can be modeled by the complex valued Bloch-Torrey partial differential equation (PDE) [11].
This equation provides a mathematical description of the diffusion phenomenon of water molecules in
the field of magnetic resonance imaging. In static organs, such as the human brain, several approaches
have been proposed in the literature to model the diffusion MRI signal from the Bloch-Torrey equation.
These different approaches offer the possibility of understanding the link between the diffusion of wa-
ter molecules and the geometric structure of biological tissues. For example, analytical ([12]–[15]) and
numerical models ([16]–[18]) of the solution of the Bloch-Torrey equation have been introduced under
simplified assumptions on the geometry of spatial domains in which the diffusion process takes place.
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Recently, a multi-compartment model for the Bloch-Torrey equation has been developed in [19] within
a more complex geometry and under more realistic experimental conditions. However, very few models
have been proposed to study the influence of physiological motion on the signal measured in diffusion
MRI. For example, in [20] the Bloch-Torrey equation was expressed in generalized curvilinear coordinates
to describe the behavior of magnetization in the heart during its deformation over the cardiac cycle and
a change of basis formulas were used in order to take into account the effect of motion on diffusion.

The focus of this work is firstly presenting a mathematical model based on the Bloch-Torrey equation,
which is capable of taking into account the physiological motion of the heart, and allowing the quan-
tification of tissue deformation on the complex magnetization. This model is obtained by writing the
Bloch-Torrey PDE in a domain that deforms over time according to the laws of continuum mechanics.
Then from the resulting model, the diffusion MRI images are simulated at different moments in the
cardiac cycle by using an analytical motion field mimicking a realistic deformation of the heart, and this
to validate the model by comparing the results of numerical simulations with the existing experimental
results. Secondly, we focus on the mitigation issue of the effect of cardiac motion on the diffusion MRI
images. For this purpose, we propose a method for correcting the diffusion MRI images which were
reconstructed in the presence of cardiac motion. This method is derived from a singular perturbative
model based on an asymptotic analysis of the Bloch-Torrey equation with motion. The resulting model
provides an asymptotic model of ordinary differential equation (ODE) that allows to derive a new formula
of apparent diffusion coefficient for the diffusion correction and reconstruction of diffusion MRI images
free form motion effect.

This paper is organized as follows, in Section 2 the Bloch-Torrey equation in static medium is recalled and
diffusion measurement technique used in practice is described. The Bloch-Torrey equation established
in the presence of physiological motion is introduced in Section 3. Section 4 is dedicated to numerical
simulation of the diffusion MRI images during the cardiac cycle. These images are reconstructed by
means of the complex magnetization obtained by solving the Bloch-Torrey equation with motion by
a finite element method. In section 5, we present a singular perturbation method for correcting the
diffusion MRI images that are affected by heart motion during the cardiac cycle. This method provides an
asymptotic ODE model that allows to derive a relationship between the complex magnetization influenced
by motion and the exact diffusion. This relationship is then used in numerical simulations to correct the
diffusion images reconstructed in the presence of motion.

2 Bloch-Torrey equation and diffusion measurement

The signal measured by diffusion MRI technique can be modeled by the so-called Bloch-Torrey equation,
that gives a mathematical description of the complex magnetization M : Ω ⊂ R3 → C of water molecules
including the effect of molecular diffusion. This equation is given in [11] for all x ∈ Ω by:

∂tM(x, t)− div
(
D(x)∇M(x, t)

)
+

1

T2
M(x, t) = 0 (1)

where x = (x, y, z)t is the spatial position, T2 is a physical parameter called transverse relaxation time,
and D(x) represents a second order diffusion tensor which is a 3x3 symmetric positive definite matrix:

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


where Dxx is the diffusion coefficient of water molecules in the x-direction and Dxy is the correlation
between the diffusion coefficients in the x and y-directions, etc. In diffusion MRI, the water molecules
are subjected to a time dependent magnetic field gradient (called diffusion encoding gradient):

G(t) = (Gx(t), Gy(t), Gz(t))
t,
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in order to encode the diffusion motion of water molecules in the different directions of space. The
Bloch-Torrey equation reads then as:

∂tMxy(x, t)− div
(
D(x)∇Mxy(x, t)

)
+
(
iγx ·G(t) +

1

T2

)
Mxy(x, t) = 0 (2)

where γ is the gyromagnetic ratio of the hydrogen atom such that γ
2π = 42.58MHz/Tesla. To measure the

diffusion motion of water molecules with magnetic resonance imaging, a special shape of diffusion encod-
ing gradients is performed. This shape is usually the spin echo diffusion gradient sequence introduced by
Stejskal and Tanner in [12]. The general idea of this sequence is to excite the water molecules with a 90o

radio-frequency (RF) pulse [21], dephase them and encode their positions in a specific spatial direction
with a time-constant magnetic field gradient of intensity G and duration δ. After that, a 180o RF pulse
[21] is applied to invert the phase of magnetization of water molecules. A second diffusion gradient with
equal intensity and duration to those of the first gradient is applied at a time ∆ after the first gradient
to rephase the water molecules (implying an effect of −G with the 180o RF pulse). The signal is finally
acquired at a time called echo time TE (Fig. 1). Noting that to produce a signal at the time t = TE,
we have the condition that

∫ TE
0

G(t)dt = 0.
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Figure 1: Spin echo diffusion encoding sequence. Two identical gradients are applied around the 180o RF
pulse. G is the gradient intensity, δ the gradient duration and ∆ the gradient spacing.

If the water molecules move due to diffusion during the time ∆, then the effect of the second gradient
will not be exactly opposite to the first gradient. This leads to a phase incoherence of water molecules
resulting in a reduction of the magnitude of the complex magnetizationMxy, and consequently, the signal
will be smaller relative to the case in which there was no diffusion encoding gradients. The decrease in the
acquired signal will reflect the amount of diffusion which occurred during the application of the diffusion
encoding gradients. Hence, measuring the signal decay makes possible the measure of the diffusion
coefficient in the direction of application of the diffusion gradient sequence. In order to estimate the
diffusion coefficient, two MRI images are acquired, one with diffusion encoding gradient and the another
without diffusion encoding gradient. These two images correspond to the MRI signals calculated over
each voxel V at the echo time TE with diffusion gradient as well as with no diffusion gradient:

S =

∫
V

Mxy(x, TE)dx ; S0 =

∫
V

Mxy(x, TE)|G=0dx.

Then, the diffusion coefficient can be estimated for each point of the MRI image through the so-called
Apparent Diffusion Coefficient (ADC) ([12], [22]) as:

ADC := −1

b
ln
(∣∣∣ S
S0

∣∣∣), (3)

with the diffusion weighting factor (or b-value):

b = γ2

∫ TE

0

(∫ t′

0

G(s)ds
)2

dt′.
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In the case of anisotropic diffusion, the apparent diffusion tensor DA can be estimated according to the
relation [23]:

ln
(∣∣∣ S
S0

∣∣∣) := −B : DA,

where the diffusion weighting B-matrix is given by:

B = γ2

∫ TE

0

(∫ t′

0

G(s)ds
)
⊗
(∫ t′

0

G(s)ds
)
dt′.

The apparent diffusion tensor DA is a 3x3 symmetric positive definite matrix. This implies that there are
six apparent diffusion coefficients to be estimated. To do so, a set of diffusion MRI signals is acquired by
the application of the diffusion encoding gradients in at least six non-coplanar spatial directions to get a
linear system of at least six equations that can be resolved to find the coefficients of the tensor DA.

3 Bloch-Torrey equations in deforming media

3.1 Mathematical model

In this section we consider an evolving set Ω(t) ⊂ Rd (d=2 or 3) for all t ∈ [0, T ] with T > 0. Let us
introduce the geometric transformation ϕ which is a regular time-space dependent function:

ϕ : (0, T )× Ω(0) → Ω(t)

(t,x) 7→ ϕ(t,x) = X

and assume that for any point x, the curve t 7→ (t,x) satisfies the system:

∂tϕ(t,x) = v(ϕ(t,x))

ϕ(0,x) = x

for a given velocity field v : Rd → Rd. We assume that the evolving set {Ω(t)}t∈[0,T ] is defined from an
initial domain Ω(0) ⊂ Rd by:

Ω(t) = {X = ϕ(t,x),x ∈ Ω(0), t ∈ (0, T )}.

The following notations will be used in this section: If for some time T > 0, a function g is defined in
Ω(t) as:

g : ∪t∈(0,T )Ω(t)× {t} → R
(X, t) 7→ g(X, t)

then it can be defined in Ω(0) as:

ḡ : Ω(0)× (0, T ) → R
ḡ(x, t) 7→ g(ϕ(t,x), t).

We now give a description of the Bloch-Torrey equation in the moving set Ω(t). The idea consists to
analyze the magnetic flux of M in a elementary volume V (t) ⊂ Rd which evolves by the geometric trans-
formation ϕ from an elementary volume V (0) at time t0 = 0. We denote by M(X, t) the magnetization
at X ∈ V (t) at time t. In order to establish the conservation law for the magnetization density we have
to specify the change of magnetization in the volume V (t) which is given by d

dt

∫
V (t)

M(X, t)dX. We
write the equation of conservation taking into account losses J due to the flux through the boundary of
V (t), which is assumed to be:

J(X, t) = −D(X)∇XM(X, t),
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where D(X) is the diffusion tensor at X. We get:

d

dt

∫
V (t)

M(X, t)dX = −
∫
∂V (t)

J(X, t) · nXdS(X)

=

∫
∂V (t)

D(X)∇XM(X, t) · nXdS(X)

where nX is the normal unit vector to the surface dS at point X. By using the divergence theorem we
get:

d

dt

∫
V (t)

M(X, t)dX =

∫
V (t)

divX(D(X)∇XM(X, t))dX. (4)

Proposition 3.1. If the magnetization M satisfies Equation (4) in the domain V (t), then it satisfies the
following equivalent equations that describe M in the deformed and initial configurations:

∂tM(X, t)− divX(D(X)∇XM(X, t)) + divX(M(X, t)v(X)) = 0, X ∈ Ω(t), t > 0 (5)

∂tM(x, t)− div
(
F−1(t,x)D(x)F−t(t,x)∇M(x, t)

)
+ divX(v)(x, t)M(x, t)

−
[
F−1(t,x)D(x)F−t(t,x)∇

(∫ t

0

divX(v)(x, s)ds
)]
· ∇M(x, t) = 0, x ∈ Ω(0), t > 0, (6)

where F(t,x) := Dϕ(t,x) is the Jacobian matrix of ϕ and F−t the transpose of F−1.

Proof. By Reynolds transport theorem we have:

d

dt

∫
V (t)

M(X, t)dX =

∫
V (t)

(∂tM(X, t) + divX(M(X, t)v(X)))dX.

By identification with Eq. (4) we find:∫
V (t)

(∂tM(X, t) + divX(M(X, t)v(X)))dX =

∫
V (t)

divX(D(X)∇XM(X, t))dX.

Hence equation (5) is obtained for every volume V (t). Now to get Eq. (6), Eq. (4) is expressed in the
domain V (0). We use the change of variable formulas for the gradient and divergence [24]:

∇Xg(X, t) = F−t(t,x)∇g(x, t) ; divX(g(X, t)) =
1

|F(t,x)|
div(|F(t,x)|F−1(t,x)g(x, t)),

and the Liouville-Jacobi formula for the derivative of the determinant:

∂t|F(t,x)| = tr(Dv)(ϕ(t,x))|F(t,x)| = div(v)(ϕ(t,x))|F(t,x)|,

which gives:

|F(t,x)| = exp
(∫ t

0

div(v)(ϕ(s,x))ds
)
.
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Then the second member of Eq. (4) can be written as:∫
V (t)

divX(D(X)∇XM(X, t))dX =

∫
V (0)

1

|F|
div
(
|F|F−1D(x)F−t∇M(x, t)

)
|F|dx

=

∫
V (0)

|F|div
(
F−1D(x)F−t∇M(x, t)

)
dx +

∫
V (0)

[∇|F|] · [F−1D(x)F−t∇M(x, t)]dx

=

∫
V (0)

div
(
F−1D(x)F−t∇M(x, t)

)
|F|dx+

∫
V (0)

[
∇
(∫ t

0

div(v)(x, s)ds
)]
·
[
F−1D(x)F−t∇M(x, t)

]
|F|dx.

(7)

Now, by applying the change of variable formula for the integrals and the Liouville-Jacobi formula, the
first member of Eq. (4) gives:

d

dt

∫
V (t)

M(X, t)dX =
d

dt

∫
V (0)

M(x, t)|F(t,x)|dx

=

∫
V (0)

|F(t,x)|∂tM(x, t)dx +

∫
V (0)

M(x, t)∂t|F(t,x)|dx

=

∫
V (0)

∂tM(x, t)|F(t,x)|dx +

∫
V (0)

M(x, t)div(v)(x, t)|F(t,x)|dx.

(8)

By combining Eqs. (7) and (8), we get:∫
V (0)

(
∂tM(x, t)+div(v)(x, t)M(x, t)

)
|F(t,x)|dx =

∫
V (0)

div
(
F−1(t,x)D(x)F−t(t,x)∇M(x, t)

)
|F(t,x)|dx

+

∫
V (0)

[
F−1(t,x)D(x)F−t(t,x)∇

(∫ t

0

div(v)(x, s)ds
)]
· ∇M(x, t)|F(t,x)|dx.

Which is true for every V (0):

∂tM(x, t)− div
(
F−1(t,x)D(x)F−t(t,x)∇M(x, t)

)
+ h(x, t) · ∇M(x, t) + div(v)(x, t)M(x, t) = 0, (9)

with

h(x, t) = −
[
F−1(t,x)D(x)F−t(t,x)∇

(∫ t

0

div(v)(x, s)ds
)]
. �

Equation (9) allows to take into account the effect of motion in the Bloch-Torrey equation (2). The
frequency term γx ·G(t) in Eq. (2) is transformed into γϕ(t,x) ·G(t) according to the motion. Then
the Bloch-Torrey equation with motion effect is written as follows:

∂tMxy − div(F−1DF−t∇Mxy) + h · ∇Mxy + (iγϕ ·G +
1

T2
+ div(v))Mxy = 0 for x ∈ Ω(0). (10)

When the frequency term γϕ · G is high, the magnetization Mxy becomes highly oscillating and this
limits the time step that can be used in the numerical simulations. To address this limitation, Eq. (10)
is demodulated by writing the magnetization Mxy as follows:

Mxy(x, t) = m(x, t) exp
(
− iγ

∫ t

0

ϕ(x, t′) ·G(t′)dt′
)
. (11)

Substituting (11) into Eq. (10) and multiplying the resulting equation by exp
(
iγ
∫ t

0
ϕ(x, t′) ·G(t′)dt′

)
,
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we get:

∂tm− exp(iΦ)div
(
K∇(m exp(−iΦ)

)
+ exp(iΦ)h · ∇(m exp(−iΦ)) +

( 1

T2
+ div(v)

)
m = 0, (12)

where we noted the new diffusion tensor by:

K = F−1DF−t,

and the phase term by:

Φ(x, t) = γ

∫ t

0

ϕ(x, t′) ·G(t′)dt′,

We have:
exp(iΦ)h · ∇(m exp(−iΦ)) = h · ∇m− imh · ∇Φ, (13)

and

exp(iΦ)div(K∇(m exp(−iΦ)) = div(K∇m)−K∇Φ · ∇Φm− 2iK∇Φ · ∇m
− iK : (D∇Φ)m− i(∇tK)∇Φm (14)

where D∇Φ is the Jacobian matrix of ∇Φ(x, t), and K : (D∇Φ) is the double dot product of K and
D∇Φ. By replacing Eqs. (13) and (14) in Eq. (12), we get the following equation for the magnetization
m:

∂tm− div(K∇m) + c1 · ∇m+ c2m = 0, (15)

with
c1(x, t) = h(x, t) + 2iK(x, t)∇Φ(x, t),

and
c2(x, t) =

1

T2
+ div(v) + K∇Φ · ∇Φ + i

(
K : (D∇Φ)− h · ∇Φ + (∇tK)∇Φ

)
.

Noting that to get the solution of Eq. (10), we solve Eq. (15) to obtain m and by using the expression
(11) we deduce the solution of Eq. (10).

3.2 Existence and uniqueness

Assume that Ω(0) be a bounded Lipschitz subset of Rd, and Q = Ω(0) × [0, T ] for T > 0. We associate
to the Bloch-Torrey equation (10) an initial condition and homogenous Dirichlet boundary condition.
In this case the magnetizations Mxy and m have the same initial and boundary values. Then the same
initial and boundary conditions can be associated to Eq. (15): ∂tm− div(K∇m) + c1 · ∇m+ c2m = 0 in Q,

m = 0 on ∂Ω(0)× [0, T ],
m = m0 on Ω(0)× {0}.

(16)

For each t ∈ [0, T ], we denote by L the second order differential operator given by:

Lm = −div(K(x, t)∇m) + c1(x, t) · ∇m+ c2(x, t)m, (17)

with K(x, t) = (Kij(x, t))1≤i,j≤d and c1(x, t) = (c1i(x, t))1≤i≤d. The deformation function ϕ is sup-
posed in C2(Q,R)d. We recall that the tensor K is given by F−1DF−t, where F is the Jacobian of the
deformation ϕ that can be written in function of the displacement u. We get then F := I +Du.
In order to guarantee the definite positivity of K we suppose that ‖Du(x, t)‖ is small compared to 1 for
each x ∈ Ω(0) and t ∈ [0, T ]. This allows to satisfy the following ellipticity hypothesis for the operator L:

∃δ > 0 such that ∀ξ ∈ Cd, Re K(x, t)ξ · ξ ≥ δ|ξ|2 a.e. , x ∈ Ω, t ∈ [0, T ].

7



The coefficients c1i for i = 1, ..., d, and c2 are supposed in L∞(Q,C). In order to de formulate problem
(16) in a weak sense, let v be a test function in V = H1

0 (Ω(0),C) equipped with the scalar product and
the induced norm:

(u, v)V =

∫
Ω(0)

(∇u · ∇v + uv)dx ; ‖u‖2V =

∫
Ω(0)

(|∇u|2 + |u|2)dx.

By multiplying (16) by v, by integrating by parts on Ω(0), and by using the Green’s formula, a weak
formulation of problem (16) is obtained: Find m ∈ L2([0, T ], H1

0 (Ω(0),C)) ∩H1([0, T ], H−1(Ω(0),C)) such that〈
∂tm, v

〉
+ a(t;m, v) = 0, ∀v ∈ V, a.e. t ∈ [0, T ],

m(x, 0) = m0,

where m0 ∈ H = L2(Ω(0),C) and the sesquilinear form a is given by:

a(t;m, v) =

∫
Ω(0)

(K(x, t)∇m · ∇v + c1(x, t) · (∇m)v + c2(x, t)v)dx, ∀t ∈ [0, T ].

The existence and unicity of this problem can be obtained as a consequence of the following theorem.

Theorem 3.1. (J.L. Lions) [25] Let V ⊂ H two separable Hilbert spaces such that the injection of V
in H is continuous and V is dense in H. We identify H to its dual H ′, and we note V ′ the dual space
of V , then H can be identified to a sub-space of V ′: V ⊂ H ⊂ V ′. If f ∈ V ′ and v ∈ V ,

〈
f, v
〉
is the

pairing of V ′ and V . For t ∈ [0, T ], let a(t;u, v) : V × V → C be a sesquilinear form defined by:

a(t;u, v) =
〈
L(t)u, v

〉
; L(t)u ∈ V ′; L(t) ∈ L(V, V ′)

and satisfies the properties:

(i) ∀u, v ∈ V , the function t 7→ a(t;u, v) is measurable,

(ii) (coercivity) there exists a constants α > 0 and σ ∈ R such that:

α‖v‖2V ≤ Re a(t; v, v) + σ‖v‖2H , ∀v ∈ V, ∀t ∈ [0, T ].

(iii) (continuity) there exists a constant c > 0 such that:

|a(t;u, v)| ≤ c‖u‖V ‖v‖V ,∀t ∈ [0, T ],∀u, v ∈ V.

Then, for all u0 ∈ H, the following problem{ 〈
∂tu, v

〉
+ a(t;u, v) =

〈
f, v
〉
a.e. t ∈ [0, T ], ∀v ∈ V,

u(0) = u0,

admits a unique solution u in W (V ) = {v : [0, T ]→ V ; v ∈ L2([0, T ];V ); ∂tv ∈ L2([0, T ];V ′)}.

3.3 Finite element approximation
We note that to calculate the magnetization Mxy, we solve numerically Eq. (16) for the magnetization
m and by using the relation (11) we deduce Mxy. We use two-dimensional Lagrangian finite element
method for the resolution of Eq. (16). A weak formulation for this problem is written as follows:

d

dt

∫
Ω(0)

mvdx +

∫
Ω(0)

K∇m · ∇vdx +

∫
Ω(0)

c1 · (∇m)vdx +

∫
Ω(0)

c2mvdx = 0.

where v ∈ V is a real test function. We define a mesh for the domain Ω(0), that enables to introduce
an approximation space Vh which is a finite dimension sub-space of V . To discretize Ω(0), we choose
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a triangular mesh Th (Fig. 2), where h is the maximum mesh size. The space of approximation Vh is
the set of continuous functions on Ω(0) and which are polynomials on each triangle K of the mesh. By
choosing an approximation by polynomials of degree less than or equal to 1, we have:

Vh = {v continuous on Ω(0), v|K ∈ P1 for all K ∈ Th}.

This space admits a base functions (ϕj)j that take the value 1 at node xj and 0 at the other nodes xk
of the mesh. We get then the following approximate problem:

Find mh ∈ C1([0, T ], Vh) such that :
d

dt

∫
Ω(0)

mhvhdx +

∫
Ω(0)

K∇mh · ∇vhdx +

∫
Ω(0)

c1 · (∇mh)vhdx

+

∫
Ω(0)

c2mhvhdx = 0 a.e. t ∈ [0, T ], ∀vh ∈ Vh

mh(0) = m0h

(18)

where m0h ∈ Vh is an approximation of the initial condition m0. The unknown function mh is discretized
as follows:

mh(x, t) =

N∑
j=1

mj(t)ϕj(x), t > 0,

where mj is the value of the solution mh at the node xj , and N is the total number of nodes. We set
vh = ϕi, the weak formulation in (18) gives:

N∑
j=1

[
dtmj(t)

∫
Ω(0)

ϕjϕidx +mj(t)
(∫

Ω(0)

K∇ϕj · ∇ϕidx +

∫
Ω(0)

c1 · (∇ϕj)ϕidx +

∫
Ω(0)

c2ϕjϕidx
)]

= 0,

(19)
for i = 1, . . . , N . We Consider m(t) = (mi(t))1≤i≤N . For t ∈ [0, T ], we introduce the matrices:

Mij =

∫
Ω(0)

ϕjϕidx ; Sij(t) =

∫
Ω(0)

K(x, t)∇ϕj · ∇ϕidx,

Kij(t) =

∫
Ω(0)

c1(x, t) · (∇ϕj)ϕidx ; Hij(t) =

∫
Ω(0)

c2(x, t)ϕjϕidx,

for i, j = 1, . . . , N . The weak formulation (19) can be written in matrix form:

M d

dt
m(t) +A(t)m(t) = 0, t > 0, (20)

with
A(t) = S(t) +K(t) +H(t),

and the initial condition m(0) is given. For the temporal discretization of ODE (20) an Euler implicit
scheme is used. The interval [0, T ] is subdivided into nT ∈ N sub-intervals of equal length ∆t := T/nT .
We therefore have the sequence (mn)0≤n≤nT

satisfying:

1

∆t
M(mn+1 −mn) +An+1mn+1 = 0,

with An = A(n∆t) and m0 = m(0) is given.
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4 Application to cardiac diffusion MRI

4.1 Analytical 2D short-axis cardiac motion model
To study the effect of cardiac motion on diffusion MRI images, we implement a 2D cardiac image simu-
lator introduced in [26]. This simulator is based on a spatial-temporal analytical cardiac motion model
mimicking a realistic deformation of the heart. It can be applied to a real short-axis image of the left
ventricle to generate from it a synthetic sequence of MRI images of the beating heart. The resulting
images resemble to a real MRI sequence and can be used to control the dynamics of the heart (Fig. 2).
The initial form of a short-axis slice of the left ventricle can be modeled by a ring delimited by two circles
of internal Rint and external Rext radii, respectively (Fig. 2).

Figure 2: (Left) Cardiac MRI images generated by the simulator introduced in [26]. The region of interest (the left
ventricle zone) is shown inside the yellow squares. (Right) A domain Ω(0) in the form of a ring is chosen for representing
the left ventricle zone.

The heart deformation is defined analytically during the cardiac cycle and controlled by the temporal
function S given by:

S(t) =

{
1
2 (1− cos( πtTs

)) if 0 ≤ t ≤ Ts
1
2 (1− cos(π(t−Ts−Td)

Td
)) if Ts < t < Ts + Td,

where the time Ts is the cardiac contraction duration that is called systolic phase and Td is the cardiac
expansion duration known as diastolic phase. The duration of one cardiac cycle in human heart is about
1000ms. The systolic duration covers one third of the cardiac cycle and the diastolic duration covers two
thirds (Fig.3).
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Figure 3: Behavior of the function S over one cardiac cycle. Ts = 333ms, Td = 667ms.

We denote by (R0, θ0) the polar coordinates at an initial time t0 of a material point c0 in the ring
Ω(0) = [Rint, Rext]×[0, 2π], and by (R(t), θ(t)) its coordinates during deformation. The heart deformation
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ϕ is defined in polar coordinates by [26]:

ϕ : [0, T ]× Ω(0) → Ω(t)

(t, c0) 7→ ϕ(t, c0) = ct

with

ct = ϕ(t, (R0, θ0)) =

{
R(t) =

(
R2

0−R
2
int

λ(t) g(θ0) +Rint(θ0, t)
2
)1/2

θ(t) = θ0 + ψ(t, R0) + χ(t).

The variation of thickening of the myocardial wall over time is given by λ(t) = 1 − 0.2S(t). The radial
contraction is:

Rint(θ0, t) = Rint − (Rint −Rmin)g(θ0)S(t),

with
g(θ0) = 1 + 0.1(cos(θ0 + 3π/4) + 1),

Rmin = Rint− 5(Rext−Rint)/6 is the minimal limit value of the internal radius Rint during systole, and

ψ(t, R0) = −(0.2π/180)S(t)R0 ; χ(t) = (10π/180)S(t).

Then, the heart deformation field in Cartesian coordinates is: ϕ(t, (x, y)) =
(
R(t) cos θ(t), R(t) sin θ(t)

)
.

4.2 Diffusion measurements in cardiac diffusion MRI
There are several forms of diffusion encoding sequences proposed in literature for diffusion measurement
in the beating heart. In this paper we choose a diffusion encoding sequence called STEAM (see [27],
[28]) for the numerical simulations of the diffusion MRI images. The idea of this sequence is to divide
the spin echo diffusion encoding sequence (Fig. 1) into two parts and replace the 180o RF pulse by two
RF pulses of 90o which will be applied in two successive cardiac cycles (Fig. 4). To use this diffusion
encoding sequence, the heartbeat should be regular and the motion is periodic during two consecutive
heart beats. The diffusion encoding gradients must be applied exactly at the same time in two successive
cardiac cycles in order to fix the cardiac position and compensate the two phase terms that are equal
in amplitude and opposite in sign. A duration equal to TE/2 separates between the first and second
RF pulse 90o, and between the third RF pulse and the acquisition of diffusion MRI signal. The time ∆
is equal to the duration of one cardiac cycle, and the two parts of the diffusion encoding sequence are
separated by a period called mixing time TM := ∆ − TE/2. In cardiac diffusion imaging, the diffusion
encoding sequences are synchronized with the electrocardiogram (ECG). This serves to trigger acquisi-
tions at different times of the cardiac cycle by varying the trigger delay (TD) that corresponds to the
time between the beginning of the cardiac cycle and the beginning of the sequence of diffusion encoding
magnetic field gradients. Synchronization makes it possible to define an optimal acquisition windows
during which the influence of cardiac motion on the diffusion MRI images is reduced.
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Figure 4: STEAM diffusion encoding sequence.
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4.3 Numerical simulations
In this section we study numerically the influence of cardiac motion on diffusion MRI images at different
moments of the cardiac cycle. A STEAM diffusion encoding gradients (Fig. 4) is applied and for the
cardiac motion, the analytical cardiac deformation field introduced in Section 4.1 is used. The magne-
tization Mxy is calculated by solving the Bloch-Torrey equation with motion by finite element method
as described in Section 3.3. The initial condition is m(x, 0) = 1. The transverse relaxation time is
T2 = 60ms. The diffusion is supposed homogeneous and isotropic D = 2.5× 10−3mm2/s. The diffusion
encoding gradient is applied in the x-direction. The parameters of the diffusion encoding sequence are
∆ = 1000ms, δ = 1ms, TE = 6ms, G = 79.5mTesla/m. The duration of the simulated cardiac cycle
is 1000ms, the trigger delay TD varies between 0 and 950ms, and the position of the diffusion encoding
sequence in the cardiac cycle varies according to TD. On figure 5 we show the norm of Du at different
values of TD where u is the displacement during the application of the diffusion encoding gradients. As
we can see the assumption ‖Du‖<1 made in Section 3.2 is satisfied.

Figure 5: ‖Du‖ calculated during the application of the diffusion encoding gradients for different values of TD.

The diffusion MRI images are reconstructed from the acquired diffusion MRI signal at the echo at time
T = TE + TM , according to the ADC formula (3), for different values of the trigger delay TD. The
resulting images are shown on Figure 6 as well as the exact diffusion coefficient. Noting that these images
are presented in the deforming configuration in order to show the results according to the cardiac motion.
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Figure 6: (Top) Diffusion MRI images at different moments of cardiac cycle. (Bottom) Exact diffusion coefficient.

The relative error in diffusion is calculated on the whole domain Ω(0), over the cardiac cycle, and presented
on Figure 7(a). This result confirms that the diffusion is unaffected by the cardiac deformation at two
points in the cardiac cycle called sweet spots that correspond to times when the cardiac deformation
approximates its time average during the cardiac cycle. These time points are identified at mid-systole
and mid-diastole (Fig. 7(b)).

These numerical simulations were already published in [29] in a comparative framework for evaluating dif-
ferent forms of diffusion encoding sequences used in cardiac diffusion MRI. These results are in agreement
with the previous experimental studies (see [28], [30], [31] for example). In literature, it was proposed to
perform diffusion measurements at sweet spots when the deformation effect is minimized. However, this
prevents acquisitions at the other time points of cardiac cycle.

5 Generalization of ADC formula

As we have seen in the previous section, the classical ADC formula does not give a sufficiently good
reconstruction of the diffusion in the case of moving organ. To address this limitation we propose a
new motion correction method of the diffusion MRI images which were reconstructed in the presence of
motion. This method is established from an asymptotic model based on a particular scale of coefficients
of the Bloch-Torrey equation with motion for the demodulated magnetization m (Eq. (16)).

The derivation of the asymptotic model for the complex magnetization Mxy is based on an analysis of
order of magnitude of the diffusion D and the gradient of phase ∇Φ which are present in the coefficients
of problem (16) for the magnetization m. In the biological tissues, the diffusion D is usually in the order
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Figure 7: (a) Relative error in diffusion coefficient. (b) Localization of the sweet spots when the cardiac deformation is
approximately equal to its temporal mean during the cardiac cycle.

of 10−8cm2/ms [32]. The phase term Φ in the case of tissue deformation is given by:

Φ(x, t) = γ

∫ t

0

ϕ(x, t′) ·G(t′)dt′,

where G is the diffusion encoding gradient and ϕ is the cardiac deformation. The constant γ is the gyro-
magnetic ratio of the hydrogen atom that satisfies γ

2π = 42.58MHz/Tesla, and thus γ = 2.67513× 105rad
ms−1Tesla−1. We calculate the evolution of the squared norm of ∇Φ(x, t) at different times of the cardiac
cycle. The results are shown in Figure 8.

(a) (b) (c)

(d) (e)

Figure 8: The squared norm of ∇Φ(x, t) calculated at different moments of the cardiac cycle: (a) TD=50ms, (b)
TD=200ms, (c) TD=350ms, (d) TD=600ms, (e) TD=900ms.

As we can see, the quantity ‖∇Φ(x, t)‖22 is in the order of 106. Thus we can choose a strictly positive
small parameter ε that is in the order of 10−4, and consider D = ε2D̃ and ∇Φ = 1

ε ∇̃Φ. Then problem
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(16) can be transformed into the following problem, where its solution will be denoted mε: ∂tmε − div(ε2K̃∇mε) + εc̃1 · ∇mε + (εC̃2 + C3)mε = 0 in Q,
mε = 0 on ∂Ω(0)× [0, T ],
mε = m0 on Ω(0)× {0},

(21)

with K = ε2K̃ and the coefficients c̃1, C̃2, and C3 are given by:

c̃1 = εh̃ + 2iK̃∇̃Φ ; h̃ = K̃∇
(∫ t

0

div(v)(x, s)ds
)
,

C̃2 = i(K̃ : (D∇̃Φ)− h̃ · ∇̃Φ +∇tK̃∇̃Φ),

C3 =
1

T2
+ div(v) + K̃∇̃Φ · ∇̃Φ

=
1

T2
+ div(v) + K∇Φ · ∇Φ.

Now we study the asymptotic behavior of the solution mε of problem (21) when ε tends to 0. We write
this solution as an asymptotic series with ε:

mε = m0 + εm1 + · · ·

We substitute this approximation in (21), we find that mε tends formally to m0 when ε → 0 where m0

satisfies:

∂tm0(x, t) + C3(x, t)m0(x, t) = 0 in Q with m0(x, 0) = m0(x) on Ω(0). (22)

5.1 Existence and unicity of solution mε

For each time t ∈ [0, T ], we denote by Lε the differential operator given by:

Lεu = −div(ε2K̃∇u) + εc̃1 · ∇u+ (εC̃2 + C3)u

where the components of c̃1, and the coefficients K̃ij , C̃2, C3 are supposed in L∞(Q). Under the assump-
tion of small deformations, as in Section 3.2 the operator Lε, ε > 0 is elliptic in the sense:

∃δ(ε) > 0, δ(ε)→ 0 with ε, such that ∀ξ ∈ Cd,Re ε2K̃ξ · ξ ≥ δ(ε)|ξ|2 p.p., x ∈ Ω(0), t ∈ [0, T ].

A weak formulation for problem (21) can be written as follows: Find mε ∈ L2([0, T ], H1
0 (Ω(0),C)) ∩H1([0, T ], H−1(Ω(0),C)) such that〈

∂tmε, v
〉

+ a(t; ε;mε, v) = 0, ∀v ∈ V, a.e. t ∈ [0, T ],
mε(x, 0) = m0,

(23)

where a(t; ε;mε, v) : V × V → C, ε > 0, is a family of sesquilinear forms given by:

a(t; ε;mε, v) =
〈
Lε(t)mε, v

〉
=

∫
Ω(0)

(ε2K̃∇mε · ∇v + εc̃1 · ∇mεv + (εC̃2 + C3)mεv)dx.

Then as previously, the unique existence of solution u of the problem (23) can be obtained as a consequence
of theorem (3.1). notice that the coercivity of a can then be obtained by the following lemma.

Lemma 5.1. The form a associated to the operator Lε is coercive if there exists α(ε) > 0, σ(ε) ∈ R, and
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α(ε)→ 0, σ(ε)→ σ, when ε→ 0, satisfying:

α(ε)‖v‖2V ≤ Rea(t; ε; v, v) + σ(ε)‖v‖2H , ∀t ∈ [0, T ], ∀u, v ∈ V.

Proof. By using the ellipticity of Lε, we have:

δ(ε)

∫
Ω(0)

|∇v|2dx ≤ Re a(t; ε, v, v)− Re
∫

Ω(0)

(εc̃1 · ∇vv + (εC̃2 + C3)|v|2)dx

≤ Re a(t; ε; v, v) + ε‖|c̃1|‖L∞(Q)

∫
Ω(0)

|∇v||v|dx

+ (ε‖C̃2‖L∞(Q) + ‖C3‖L∞(Q))

∫
Ω(0)

|v|2dx

≤ Re a(t; ε; v, v) + ε‖|c̃1|‖L∞(Q)

∫
Ω(0)

|∇v||v|dx

+ (ε‖C̃2‖L∞(Q) + ‖C3‖L∞(Q))

∫
Ω(0)

|v|2dx.

By using the Young’s inequality with ε > 0, we have:

(δ(ε)− εε‖|c̃1|‖L∞)

∫
Ω(0)

|∇v|2dx ≤ Re a(t; ε; v, v)

+ (
ε

4ε
‖|c̃1|‖L∞ + ε‖C̃2‖L∞ + ‖C3‖L∞)

∫
Ω(0)

|v|2dx.

We add (δ(ε)− εε‖|c̃1|‖L∞)
∫

Ω(0)
|v|2dx to each member of the inequality, it yields:

α(ε)‖v‖2V ≤ Re a(t; ε; v, v) + σ(ε)‖v‖2H

with
σ(ε) = δ(ε) + (

ε

4ε
− εε)‖|c̃1|‖L∞ + ε‖C̃2‖L∞ + ‖C3‖L∞ (24)

and
α(ε) = δ(ε)− εε‖|c̃1|‖L∞

where ε is chosen such that ∃α > 0 satisfying 0 < ε2α < α(ε). We have α(ε) tends to 0 and σ(ε) tends
to σ = ‖C3‖L∞(Q) when ε tends to 0. �

5.2 Convergence of mε to m0

A convergence result of mε to m0 when ε tends to zero is given by the following theorem:

Theorem 5.1. Under the ellipticity assumption of Lε, ε > 0, and c̃1 ∈ C1(Q,C)d, the solution mε of
problem (23) converges weakly in L2([0, T ], H) to m0 solution of (22). In addition,

√
α(ε)mε converges

weakly to 0 in L2([0, T ], H), and ∂tmε converges weakly in L2((0, T ), V ′) to ∂tm0, when ε tends to 0.

Proof. We have: 〈
∂tmε(t), v

〉
+ a(ε; t;mε(t), v) = 0, for v ∈ V.

We take v = mε, we get:
1

2

d

dt
‖mε‖2H + Rea(ε; t;mε(t),mε(t)) = 0.

According to Lemma 5.1, the form a is coercive. Then:

d

dt
‖mε(t)‖2H + 2α(ε)‖mε(t)‖2V ≤ 2σ(ε)‖mε(t)‖2H . (25)
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This implies:
‖mε(t)‖H ≤ exp(σ(ε)t)‖m0‖H . (26)

According to (24) we have: ∃ε0 such that ∀ε < ε0, σ(ε) ≤ 2‖C3‖L∞(Q). By integrating (26) between 0
and T , we get the estimation:

‖mε‖L2([0,T ],H) ≤ C‖m0‖H ,

with C a constant independant of ε. We deduce that the function mε est bounded in L2((0, T ), H)
independently of ε.
By substituting the inequality (26) in (25) and integrating between 0 and T , we find:

‖mε(T )‖2H + 2α(ε)‖mε‖2L2([0,T ],V ) ≤ exp(2σ(ε)T )‖m0‖2H .

Then:
‖
√
α(ε)mε‖L2([0,T ];V ) ≤ C ′‖m0‖H , (27)

with C ′ a constant independent of ε. Then
√
α(ε)mε is bounded in L2([0, T ];V ), and likewise for the

function εmε since we have ε2α < α(ε).
We show now that ∂tmε is bounded in L2([0, T ], V ′). We have:

|
〈
∂tmε(t), v

〉
| ≤ |a(t; ε;mε, v)|

≤ ε2‖‖K̃‖2‖L∞(Q)

∫
Ω(0)

|∇mε||∇v|dx + ε‖|c̃1|‖L∞(Q)

∫
Ω(0)

|∇mε||v|dx

+ (ε‖C̃2‖L∞(Q) + ‖C3‖L∞(Q))

∫
Ω(0)

|mε||v|dx

≤
(
ε‖‖K̃‖2‖L∞‖εmε‖V + ‖|c̃1|‖L∞‖εmε‖V + ‖C̃2‖L∞‖εmε‖V

+ ‖C3‖L∞‖mε‖H
)
‖v‖V .

Since 0 < ε ≤ 1, then:

‖∂tmε‖V ′ := sup
v∈V,‖v‖≤1

|
〈
∂tmε(t), v

〉
| ≤

(
‖‖K̃‖2‖L∞ + ‖|c̃1|‖L∞ + ‖C̃2‖L∞

)
‖εmε‖V

+ ‖C3‖L∞‖mε‖H .

By integrating between 0 and T , and using the fact that ‖εmε‖L2([0,T ],V ) and ‖mε‖L2([0,T ],H) are bounded,
we have:

‖∂tmε‖L2([0,T ],V ′) ≤ C ′′‖m0‖H ,

where C ′′ is a constant independent of ε. Then we deduce that the function ∂tmε is bounded in
L2([0, T ], V ′).
We can then extract a subsequence of mε that converges weakly in L2([0, T ], H) to a function u1 ∈
L2([0, T ], H), and a subsequence of

√
α(ε)mε weakly converging to a function u2 in L2([0, T ], V ). By

using the result of compactness of the canonical injection of V in H (Theorem Rellich-Kondrashov), the
convergence of

√
α(ε)mε to u2 is in L2([0, T ], H). As the convergence of mε to u1 is in L2([0, T ], H), and

α(ε) tends to 0 with ε, we have that
√
α(ε)mε tends to 0 in L2([0, T ], H). By uniqueness of the limit, it

comes u2 = 0. Similarly, we have the weak convergence of ∂tmε in L2([0, T ], V ′) to a function u3. By the
continuity of derivation in the space distributions D′(Q), ∂tmε converges weakly to ∂tu1 in L2([0, T ], V ′).
We use these weak convergences to go to the limit as ε tends to 0 in the weak formulation (23):

〈
∂tmε, v

〉
+

∫
Ω(0)

(ε2K̃∇mε · ∇v + εc̃1 · ∇mεv + (εC̃2 + C3)mεv)dx = 0,

and to show that the second term tends to zero we use the fact that ε∇mε is bounded in L2([0, T ], H).
For the third term we integrate by parts which is possible because c̃1 ∈ C1(Q,C)d, then we use the fact
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that mε is bounded in L2([0, T ], H) to show that it tends to zero. Finally, we get the problem:{ 〈
∂tu1, v

〉
+
∫

Ω(0)
C3u1vdx = 0, ∀v ∈ V p.p. t ∈ [0, T ],

u1(x, 0) = m0,

where u1(·, 0) has a sense because we have u1, ∂tu1 ∈ L2([0, T ], V ′), then u1 ∈ C0([0, T ], V ′). By comparing
this problem to Eq. (22), we get u1 = m0. Hence the weak convergences of mε to m0 in L2([0, T ], H),
and of ∂tmε to ∂tm0 in L2([0, T ], V ′). �

5.3 Analysis of the ADC formula and correction
We recall that in the case static domain, the ADC formula reads as:

ln
(∣∣∣ S(x)

S0(x)

∣∣∣) ' ln
(∣∣∣ Mxy(x, TE)

Mxy(x, TE)|G=0

∣∣∣) ' −B : D(x),

where the diffusion weighting B-matrix is given by:

B = γ2

∫ TE

0

(∫ t′

0

G(s)ds
)
⊗
(∫ t′

0

G(s)ds
)
dt′.

We have seen in the previous section that this formula is not valid in the case of moving media. By
using the explicit expression of m0 and the convergence result of mε to m0, we can derive the following
generalized ADC formula:

ln
(∣∣∣ S(x)

S0(x)

∣∣∣) = ln
(∣∣∣ Mxy(x, T )

Mxy(x, T )|G=0

∣∣∣) ' −Bϕ(x) : D(x), (28)

where T = TE + TM , and Bϕ represents a B-matrix modified according to the deformation ϕ:

Bϕ(x) = γ2

∫ T

0

w(x, t′)⊗w(x, t′)dt′,

with

w(x, t) = F−t(x, t)∇Φ(x, t) ; Φ(x, t) =

∫ t

0

ϕ(x, t′) ·G(t′)dt′.

Indeed, remark that using the asymptotic ODE model (22), the magnetization m0 satisfies:

m0(x, t) = m0(x) exp(−t/T2) exp
(
−
∫ t

0

∇Φ(x, t′)tK(x, t′)∇Φ(x, t′)dt′
)

exp
(
−
∫ t

0

div(v)(x, t′)
)
,

and then we have the magnetization:

Mxy(x, t) ' m0(x) exp(−t/T2) exp
(∫ t

0

div(v)(x, t′)
)

exp(−iΦ(x, t′)dt′)×

exp
(
−
∫ t

0

∇Φ(x, t′)tK(x, t′)∇Φ(x, t′)dt′
)
.

From a practical point of view the deformation field ϕ is supposed to be known at each time interval
during which the diffusion encoding sequence is applied in order to be able to calculate the modified
diffusion weighting matrix Bϕ for the estimation of the diffusion tensor D.

5.4 Numerical simulations
In Section 4.3 we have seen that the diffusion images (see Fig. 6) are influenced by cardiac motion during
the cardiac cycle. This results show the need to correct the diffusion images by comparing them with
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the image of exact diffusion. In this section the diffusion MRI images will be corrected according to
Eq. (28) to reconstruct new diffusion images without motion effect. On figures 9 and 10 we present the
diffusion images reconstructed at different times in the cardiac cycle before and after motion correction.
These results are shown in the deforming configuration because the image reconstruction is done when
the deformation takes place. The images of the error between the exact diffusion and the diffusion re-
constructed without motion effect are also shown. We observe that the corrected diffusion is close to the
exact diffusion shown on Figure 6.
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Figure 9: Diffusion images reconstructed in systole. 1st column: Before correction at: TD=0ms, TD=100ms, TD=350ms.
2nd column: After correction. 3rd column: Absolute error between the exact diffusion and the corrected diffusion images.
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Figure 10: Diffusion images reconstructed in diastole. 1st column: Before correction at: TD=750ms, TD=900ms. 2nd

column: After correction. 3rd column: Absolute error between the exact diffusion and the corrected diffusion images.

A case of non-homogeneous isotropic diffusion in also tested. On Figure 11 the exact diffusion coefficient is
shown. Figures 12 and 13 present the reconstruction results of the diffusion MRI images before and after
motion correction in systole and diastole, at TD=250ms and TD=850ms, respectively. As we can see on
the figures, the corrected diffusion obtained in systole and diastole is close to the exact diffusion coefficient.

Figure 11: Exact diffusion.
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Figure 12: Images constructed at TD=250ms. 1st row: Diffusion encoding gradient applied in x-direction: (a) Diffusion
before correction. (b) Diffusion after correction. (c) Absolute error between the exact diffusion and the corrected diffusion
images. 2nd row: Diffusion encoding gradient applied in y-direction: (d) Diffusion before correction. (e) Diffusion after
correction. (f) Absolute error between the exact diffusion and the corrected diffusion images.
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Figure 13: Images constructed at TD=850ms. 1st row: Diffusion encoding gradient applied in x-direction: (a) Diffusion
before correction. (b) Diffusion after correction. (c) Absolute error between the exact diffusion and the corrected diffusion
images. 2nd row: Diffusion encoding gradient applied in y-direction: (d) Diffusion before correction. (e) Diffusion after
correction. (f) Absolute error between the exact diffusion and the corrected diffusion images.
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6 Conclusion

In this paper, we introduced a modified model of the Bloch-Torrey equation that describes the behavior
of the complex magnetization and the diffusion MRI signal in the presence of physiological motion.
Then, we quantified, by using numerical simulations, the effect of cardiac motion on the diffusion MRI
images reconstructed at different moments of the cardiac cycle. Two time points called sweet spots have
been identified in the cardiac cycle, wherein the diffusion images are not affected by cardiac deformation.
However, when the diffusion encoding sequence is performed at time points of the cardiac cycle other than
sweet spots, a motion correction is necessary after the reconstruction of the diffusion MRI images. For this
purpose, we have proposed a motion correction method by means of a new apparent diffusion coefficient
formula which is based on an asymptotic ODE model for the complex magnetization. This model has been
obtained by an asymptotic analysis of the Bloch-Torrey equation with motion. This motion correction
method has been used to correct the simulated diffusion MRI images which were reconstructed at different
moments in the cardiac cycle. This method is valid at any time of the cardiac cycle, since it is based on
a mathematical expression that shows explicitly the influence of cardiac deformation on the diffusion.
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