
LEARNING PHASE FIELD MEAN CURVATURE FLOWS WITH NEURAL
NETWORKS

ELIE BRETIN, ROLAND DENIS, SIMON MASNOU, AND GARRY TERII

Abstract. We introduce in this paper new, efficient numerical methods based on neural networks
for the approximation of the mean curvature flow of either oriented or non-orientable surfaces. To
learn the correct interface evolution law, our neural networks are trained on phase field represen-
tations of exact evolving interfaces. The structure of the networks draws inspiration from splitting
schemes used for the discretization of the Allen-Cahn equation. But when the latter approximates
the mean curvature motion of oriented interfaces only, the approach we propose extends very natu-
rally to the non-orientable case. In addition, although trained on smooth flows only, our networks
can handle singularities as well. Furthermore, they can be coupled easily with additional constraints
which allows us to show various applications illustrating the flexibility and efficiency of our approach:
mean curvature flows with volume constraint, multiphase mean curvature flows, numerical approx-
imation of Steiner trees, numerical approximation of minimal surfaces.

1. Introduction

Many applications in physics, biology, mechanics, engineering, or image processing involve in-
terfaces whose shape evolves to decrease a particular surface energy. A very common example is
the area energy that explains for instance the shapes of soap bubbles, of bee honeycombs, of the
interface between two fluids, of some crystalline materials, of some communication networks, etc.
In image processing, the area energy is used to quantify regularity, for instance in the celebrated
TV (total variation) model. It is well-known that the L2-gradient flow of the area energy, i.e. the
flow which decreases the energy in the direction of steepest descent with respect to the L2 metric,
is the mean curvature flow.

The mean curvature flow is classically defined for smooth, embedded (N−1)-surfaces in RN with-
out boundary: each point of the surface moves with the velocity vector equal to the (vector) mean
curvature, see [1]. Such a flow is well defined until the onset of singularities. Various definitions
of mean curvature flows have been proposed to handle singularities as well, but also to handle non
orientable sets (typically planar networks with triple points satisfying the Herring’s condition [2]),
higher codimensional sets, or sets with boundaries, see the many references in [1].

We propose in this paper to learn with neural networks a numerical approximation of a phase field
representation of either the mean curvature flow of an oriented set, or the mean curvature flow of a
possibly non orientable interface. Interestingly, as will be seen later, we train our neural networks
on few examples of smooth sets flowing by mean curvature but, once trained, some networks can
handle consistently sets with singularities as well.

There is a vast literature on the numerical approximation of mean curvature flows, and the
methods roughly divide in four categories (some of them are exhaustively reviewed and compared
in [3]):

(1) Parametric methods [4, 5] are based on explicit parameterizations of smooth surfaces. The
numerical approximation of the parametric mean curvature flow is quite simple in 2D and
the approach can be extended to non-orientable surfaces since there is no need for the surface
to be the boundary of a domain nor to separate its interior from its exterior. The numer-
ical approximation is however more difficult in dimensions higher than 2 for the method
can hardly handle topological changes. The processing of singularities is difficult even in
dimension 2, see for instance the recent work [6].

2020 Mathematics Subject Classification. 74N20, 35A35, 53E10, 53E40, 65M32, 35A15.
Key words and phrases. Phase field approximation, mean curvature flow, neural networks, non orientable surfaces,

Steiner problem, minimal surfaces.

1

(2) The level set method was introduced by Sethian and Osher [7] for interface geometric evo-
lution problems, see also [8, 9, 10, 11]. The main idea is to represent implicitly the interface
as the zero level-set of an auxiliary function ϕ (typically the signed distance function asso-
ciated with the domain enclosed by the interface) and the evolution is described through
a Hamilton-Jacobi equation satisfied by ϕ. The level set approach provides a convenient
formalism to represent the mean curvature flow in any dimension. In a strong contrast with
the parametric approach, it can handle topological changes and it can be defined rigorously
beyond singularities using the theory of viscosity solutions for the Hamilton-Jacobi equation.
There are however several difficult issues regarding the numerical approximation of the level
set approach. First, the Hamilton-Jacobi equation is nonlinear and highly degenerate, thus
difficult to approximate numerically and, secondly, delicate methods are needed to preserve
some needed properties of the level set function ϕ. Moreover, the method is basically de-
signed to represent the evolution of the boundary of an oriented domain and, to the best
of our knowledge, there is no level set method that can handle the mean curvature flow of
non-orientable interfaces.

(3) Convolution/thresholding type algorithms [12, 13, 14] involve a time-discrete scheme alter-
nating the convolution with a suitable kernel of the characteristic function at time tn of the
domain enclosed by the interface, followed by a thresholding step to define the set at time
tn+dt. The asymptotic limit of the scheme coincides with the smooth mean curvature flow.

(4) Phase field approaches [15, 16] are the fourth category of methods for the numerical ap-
proximation of the mean curvature flow. In these approaches, the sharp interface between
is approximated by a smooth transition, the interfacial area is approximated by a smooth
energy depending on the smooth transition, and the gradient flow of this energy appears
to be a relatively simple reaction-diffusion system. Phase field approaches are widely used
in physics since the seminal works of van der Waals’ on liquid-vapor interfaces (1893), of
Ginzburg & Landau on superconductivity (1950), and of Cahn & Hilliard on binary alloys
(1958). However, most phase field methods are designed to approximate the mean curva-
ture flow of the boundary of a domain but cannot handle the evolution of non-orientable
interfaces.

Our work starts with the following question: can we design and train neural networks to approx-
imate the mean curvature flow of either oriented or non-orientable interfaces? Our strategy is to
draw inspiration from phase field approaches and their numerical approximations.

The phase field approach to the mean curvature flow of domain boundaries. A time-
dependent smooth domain Ω(t) ⊂ Rd evolves under the classical mean curvature flow if its inner
normal velocity satisfies Vn(t) = H(t), where H(t) denotes the scalar mean curvature of the bound-
ary ∂Ω(t) (with the convention that the scalar mean curvature on the boundary of a convex domain
is positive). This evolution coincides with the L2-gradient flow of the perimeter of Ω(t)

P (Ω(t)) =
∫
∂Ω(t)

dHd−1,

where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure. In the phase field approach, the
perimeter functional is approximated (up to a multiplicative constant) in the sense of Γ-convergence
[15, 16] by the Cahn-Hilliard energy Pε defined for every smooth function u by

Pε(u) =
∫
Rd

(ε |∇u|
2

2 + 1
ε
W (u))dx,

where ε is a real positive parameter which quantifies the accuracy of the approximation, and W is
a double-well potential, typically W (s) = 1

2s
2(1 − s)2. It follows from the Γ-convergence as ε → 0

of Pε to cWP (cW is a constant depending only on W) that when u is a smooth approximation of
the characteristic function of Ω(t), Pε(u) is close to cWP (Ω(t)).

The L2-gradient flow of the Cahn-Hilliard energy Pε leads to the celebrated Allen-Cahn equation
[17] which reads as, up to a rescaling:

(1) ∂tu = ∆u− 1
ε2W

′(u)

2

The existence and uniqueness of a solution to the Allen-Cahn equation and the fact that it sat-
isfies a comparison principle are well-known properties, see for instance [18, Chapter 14].

With the choice W (s) = 1
2s

2(1− s)2, a smooth evolving set associated naturally with the Allen-
Cahn equation is

Ωε(t) =
{
uε(·, t) ≤

1
2

}
,

where uε denotes the solution to (1) with the well-prepared initial data

(2) uε(x, 0) = q

(
d(x,Ω(0))

ε

)
.

Here, d(·,Ω(0)) denotes the signed distance function to Ω(0) with the convention that d(·,Ω(0)) <
0 in Ω(0) and q : R → [0, 1] is a so-called optimal profile which minimizes the parameter-free one-
dimensional Allen-Cahn energy under some constraints:

q = argmin
p

{∫
R

(|p
′(s)|2

2 +W (p(s)))ds, p ∈ C0,1(R), p(−∞) = 1, p(0) = 1
2 , p(+∞) = 0

}

Note that in the particular case W (s) = 1
2s

2(1 − s)2, one has q(t) = 1
2(1 − tanh(t2)). The initial

condition uε(x, 0) = q
(
d(x,Ω(0))

ε

)
is considered as well-prepared initial data because q

(
d(x,Ω(0))

ε

)
is

almost energetically optimal: with a suitable gluing q̃ of q to 1 on the left and 0 on the right, one
gets that

Pε

(
q̃

(
d(x,Ω(0))

ε

))
−→ cWP (Ω(0))

as ε→ 0+.
A formal asymptotic expansion of the solution uε to (1)-(2) near the associated interface ∂Ωε(t) =

∂
{
uε(·, t) ≤ 1

2

}
gives (see [1])

(3) uε(x, t) = q

(
d(x,Ωε(t))

ε

)
+O(ε2),

with shows that uε remains energetically quasi-optimal with second-order accuracy. Furthermore,
the velocity Vε of the boundary ∂Ωε(t) satisfies

Vε(t) = Hε(t) +O(ε2).

where Hε(t) denotes the scalar mean curvature on ∂Ωε(t), which suggests that the Allen-Cahn
equation approximates a mean curvature flow with an error of order ε2 [1].

A rigorous proof of the convergence to the smooth mean curvature flow for short times (in
particular before the onset of singularities) has been proved in [16, 19, 20] with a quasi-optimal
error on the Hausdorff distance between Ω(t) and Ωε(t) given by

distH(Ω(t),Ωε(t)) ≤ Cε2| log(ε)|2,

where the constant C depends on the regularity of Ω(t).

These convergence results, combined with the good suitability of the Allen-Cahn equation for
numerical approximation, make the phase field approach a very effective method to approximate
the mean curvature flow. This is true however only for the mean curvature motion of domain bound-
aries, i.e. codimension 1 orientable interfaces without boundary. There do exist some phase field
energies to approximate the perimeter of non-orientable interfaces, as for instance in the Ambrosio-
Torterelli functional [21], but these energies need to be coupled with additional terms and cannot
be used to approximate directly the mean curvature motion of the interfaces.

3

Neural networks and phase field representation. We introduce in this paper neural networks
that learn, at least approximately, how to move a set by mean curvature. Our networks are trained
on a collection of sets whose motion by mean curvature is, preferentially, known exactly. However,
these networks are not designed to work with exact sets, but rather with an implicit, smooth
representation of them. A key aspect of our approach is the choice of this representation. A first
option (see Table 1, left column) is to choose the representation provided by the Allen-Cahn phase
field approach, i.e., given a set Ω(0), we compute the solution uε(·, t) to the Allen-Cahn equation (1)
with initial data uε(·, 0) = q

(
d(·,Ω(0))

ε

)
. Recall that with the particular choice W (s) = 1

2s
2(1− s)2,

the 1/2–isosurface of uε(·, 0) is exactly ∂Ω(0). However, using the Allen-Cahn phase field approach
introduces a bias: if t 7→ Ω(t) denotes the motion by mean curvature starting from Ω(0) (Table 1,
middle column), the 1/2–isosurface of uε(·, t) is no more than a good approximation of ∂Ω(t), in
general it is different (and the same holds for other isosurfaces of uε(·, t)). Instead, we use another
phase field representation which introduces no bias, see Table 1, right column: for all t (before the
onset of singularities), the 1/2–isosurface at time t of q

(
d(·,Ω(t))

ε

)
is exactly ∂Ω(t) (still assuming

that W (s) = 1
2s

2(1− s)2 but the argument can obviously be adapted for other choices of W). With
such a choice, we ensure that our neural networks will be trained on exact implicit representations
of the sets moving by mean curvature.

�� ��Ω(0)

Mean curvature flow

�� ��Ω(t)

Mean curvature flow

�� ��Ω(t+ δt)

�

�
	uε(·, 0) = q

(
d(·,Ω(0))

ε

)

Allen-Cahn flow

�� ��uε(·, t)

Allen-Cahn flow

�� ��uε(·, t+ δt)

�

�
	q

(
d(·,Ω(0))

ε

)

�

�
	q

(
d(·,Ω(t))

ε

)

�

�
	q

(
d(·,Ω(t+δt))

ε

)
Table 1. Approximate vs exact phase field representations of mean cur-
vature flows. Middle column: a smooth motion by mean curvature t 7→ Ω(t).
Left column: the solution to the Allen-Cahn equation starting from the energetically
quasi-optimal and exact phase field representation q

(
d(·,Ω(0))

ε

)
. Right column: exact

phase field representations q
(
d(·,Ω(t))

ε

)
of the Ω(t)’s.

It is obviously more accurate to train our networks with the above choice of exact phase field rep-
resentations, rather than with the Allen-Cahn phase field approximate solutions. Beyond accuracy,
there is another key advantage of this choice: the possibility to address situations which are beyond
the capacity of the classical Allen-Cahn phase field approach. Indeed, instead of working with the
representation q

(
d(·,Ω(t))

ε

)
which is well suited for domain boundaries, other implicit representations

can be used which do not require any interface orientation. A typical example is the phase field
q′
(
d(·,Ω(t))

ε

)
where the optimal profile q has been simply replaced by its derivative q′. In the case

W (s) = 1
2s

2(1− s)2, one has q(t) = 1
2(1− tanh(t2)) and its derivative q′(t) = 1

4(tanh2(t2)−1) is even
so q′

(
d(·,Ω(t))

ε

)
is symmetric on both sides of ∂Ω(t), therefore

q′
(
d(·,Ω(t))

ε

)
= q′

(dist(·, ∂Ω(t))
ε

)
where dist denotes the classical distance function. Note that q′

(
d(·,Ω(t))

ε

)
is another exact phase

field representation: its 1
4–isosurface coincides with ∂Ω(t). However, in contrast with q

(
d(·,Ω(t))

ε

)
,

the phase field is identical on both sides of ∂Ω(t). To illustrate this idea of another phase field

4

representation which does not carry any orientation information, Figure 1 shows the two phase field
representations of a circle obtained using either q(t) = 1

2(1−tanh(t2)) or q′. Obviously, the approach
can be adapted for other choices of the profile q.

Figure 1. Two phase field representations of the same circle C using the profile
q(t) = 1

2(1 − tanh(t2)) and its derivative: on the left, q
(
d(·,D
ε

)
with D the disk

enclosed by C. On the right, q′
(

dist(·,C)
ε

)
. The first phase field representation carries

an orientation information, the second one does not.

Our contribution in this paper is a new class of neural networks aimed to learn, at least approx-
imately, the flow by mean curvature of either oriented or non orientable sets. Since the classical
motion by mean curvature of a smooth set can be defined with nonlinear partial differential equa-
tions, our contribution falls in the category of learning methods for PDEs. Let us give a brief
overview of the literature on neural network-based numerical methods for approximating the solu-
tions to PDEs.

• A first category of approaches relies on the fact that very general functions can be approxi-
mated with neural networks [22, 23] so it is natural to seek the solution to a PDE as a neural
network [24, 25, 26, 27, 28]. Such a method is accurate and useful for specific problems, but
not convenient: for each new initial condition, a new neural network must be trained. An-
other approach considers a neural network as an operator between Euclidean spaces of same
dimension depending on the discretization of the PDE [29, 30, 31, 32, 33]. This approach
depends on the discretization and requires to modify the architecture of the network when
the discrete resolution or the discretization are changed;
• Most neural network architectures can be interpreted as numerical schemes [34, 35]. Neu-
ral networks can therefore be seen as operators acting between infinite-dimensional spaces
(typically spaces of functions): for instance, for a time-dependent PDE, the forward prop-
agation of an associated neural network can be viewed as the flow associated to the PDE
when a time-step δt is fixed. Consequently, the neural network is trained only once: for each
new initial condition, the solution is obtained by applying the neural network to the initial
condition. This reduces significantly the computational cost in comparison with the first
category of approaches mentioned above. This second category of approaches is mesh-free
and fully data-driven, i.e., the learning procedure, as well as the neural network, do not
require any knowledge of the underlying PDE, only the knowledge of particular solutions
to the PDE. This can be very advantageous when very limited information is given about
the PDE, which is often the case in physics. Recently, several works have followed this
idea, see [36, 37, 38, 39, 40, 41]. In [36] the authors propose a network architecture based
on a theorem of approximation by neural networks of infinite dimensional operators. Very
recently, the authors of [41] developed a new neural network based on the Fourier transform.
The latter has the advantage of being very simple to implement and computationally very
cheap thanks to the Fast Fourier Transform.
• Lastly, there are also methods based on a stochastic approach which uses the links between
PDEs and stochastic processes (see [42] and references therein for more details).

The approach proposed in this paper falls in the second category of approaches, i.e., our neural
networks approximate the action of semi-group operators for which only few information is known,
they are fully data-driven and enough training data is available to get an accurate approximation.

5

Outline of the paper. The paper is organized as follows: we first present in Section 2 the strategy
we adopt for the construction of our numerical schemes based on neural networks. In particular,
we introduce the different semigroups involved in our study and detail the whole learning protocol
starting with the choice of the training data and the metrics used in the learning procedure. The
different neural network architectures are described in Section 2, the architectures being inspired
by the discretization schemes of the Allen-Cahn equation in the same spirit as in [43, 44]. We focus
on two particular networks denoted as SNN

θ,1 and SNN
θ,2 , and we address in Section 3 their capacity to

approximate the mean curvature flows of either oriented or non-orientable surfaces. In the oriented
case, we provide some numerical experiments and we give quantitative error estimates to highlight
the accuracy and the stability of the numerical schemes associated with our networks. In the non
orientable case, both networks seem to learn the flow but a first validation shows that SNN

θ,1 fails
to maintain the evolution of a circle while SNN

θ,2 succeeds perfectly. To test the reliability of SNN
θ,2

to approximate the mean curvature flow, evolutions starting from different initial sets are shown in
Section 3. We observe in particular that SNN

θ,2 is able to handle correctly non-orientable surfaces,
even with singularities, and the Herring’s condition [45] seems to be respected at points with triple
junction. This is somewhat surprising because only evolving smooth sets are used to train our
networks (e.g., circles in 2D, spheres in 3D). Finally, we propose various applications in Section 4
(multiphase mean curvature flows, Steiner trees, minimal surfaces) to bring out the versatility of
our approach and to show that the schemes derived from our trained networks are sufficiently stable
to be coupled with additional constraints such as volume conservation or inclusion constraints, and
sufficiently stable to be extended to the multiphase case.

2. Neural networks and phase field mean curvature flows

A first possible way, which is not the one we will opt for, to associate neural networks and phase
field mean curvature flows is to compute approximations to the solutions of the Allen-Cahn equation
(1) by training a neural network SNN

θ (depending on a parameter vector θ) to reproduce the action
of the Allen-Cahn semigroup SAC

δt,ε
defined by

SAC
δt,ε[uε(·, t)] = uε(·, t+ δt),

where uε is solution to the Allen-Cahn equation (1) and the parameters δt and ε are fixed. From
this neural network, it is possible to derive the simple numerical scheme

un+1 = SNN
θ [un],

where the iterate un is expected to be a good approximation of uε at time tn = nδ. However, as
explained previously, learning to compute solutions to the Allen-Cahn equation is not necessarily of
great interest since extremely simple and robust numerical schemes for computing these solutions
already exist.

The idea we propose in this paper is rather to train a network SNN
θ to approximate the semigroup

Sqδt,ε
defined by

Sqδt,ε
[vε(·, t)] = vε(·, t+ δt),

where vε = q
(
d(x,Ω(t)

ε

)
is an exact phase field representation of an exact mean curvature flow

t 7→ Ω(t). This second approach is by nature more accurate than the above one since the Allen-
Cahn equation is only an approximation to the mean curvature flow whereas vε encodes exactly the
flow. However, the convergence results of the Allen-Cahn equation to the mean curvature flow show
that the two semigroups SAC

δt,ε
and Sqδt,ε

are very closed. And since very efficient numerical schemes
exist for the Allen-Cahn equation, it makes sense to take inspiration from their structures to design
efficient networks.

In a second step, we will adapt our strategy to approximate the mean curvature flow of possibly
non-orientable sets by simply replacing the phase field profile q. More precisely, we will introduce
a network SNN

θ to learn an approximation of the semigroup Sq
′

δt,ε
defined by

Sq
′

δt,ε
[wε(·, t)] = wε(·, t+ δt),

where wε = q′
(

dist(x,Γ(t))
ε

)
with t 7→ Γ(t) the mean curvature flow of a possible non orientable set.

6

2.1. Training database and loss function.
Before providing details about the structure of our neural networks, let us describe the data on
which they will be trained and the training energy (the so-called loss function in the literature of
neural networks). As before, we shall denote with t 7→ Ω(t) the mean curvature flow associated
with an initial smooth open set Ω(0), and with t 7→ Γ(t) the mean curvature flow associated with
an initial, possibly non-orientable set Γ(0).

Recall that our idea is to obtain an approximation of the operator Sϕδt,ε
, where ϕ = q or ϕ = q′,

by training a neural network SNN
θ on a suitable dataset. We expect that the numerical scheme

un+1 = SNN
θ [un]

coupled with the initial data

u0(x) =

q
(
d(x,Ω(0))

ε

)
if ϕ = q,

q′
(

dist(x,Γ(0))
ε

)
if ϕ = q′,

will be a good approximation of the mean curvature flows starting from either Ω(0) or Γ(0).

The training of the network SNN
θ consists in a gradient descent for the parameter vector θ with

respect to a loss energy defined from the exact mean curvature flows of various circles in 2D, of
various spheres in 3D, etc.

Let us describe more precisely how the dataset and the associated loss energy are constructed in
dimension d = 2, the construction being similar in higher dimension. Recall that a circle of radius
R0 evolving under mean curvature flow remains a circle of radius R(t) =

√
R2

0 − 2t which decreases

until the extinction time TR0 = R2
0

2 . We select a finite family of radii Ri for i ∈ {1, · · · , Ntrain} and
we define the training dataset as follows:

{(Xi, Yi)}i∈{1···Ntrain} =
(
ϕRi , ϕ

√
R2

i−2δt

)
i∈{1···Ntrain}

where

ϕR(x) =

q
(

d(x,BR)
ε

)
if ϕ = q,

q′
(

dist(x,∂BR)
ε

)
if ϕ = q′.

with BR the ball of radius R centered at 0.
We introduce a first loss function:

J1(θ) = 1
Ntrain

Ntrain∑
i=1
‖SNN

θ [Xi]− Yi‖2 = 1
Ntrain

Ntrain∑
i=1

∫
Q

(
SNN
θ [ϕRi]− ϕ√R2

i−2δt

)2
dx.

To stabilize the training of the network SNN
θ , one can opt for a multipoint version which consists

in introducing the enriched data set

{(Xi, Yi,j)}{i∈{1,··· ,Ntrain}, j∈{1,··· ,k}} =
(
ϕRi , ϕ

√
R2

i−2jδt

)
{i∈{1,··· ,Ntrain}, j∈{1,··· ,k}}

and in minimizing the loss functional Jk defined by

Jk(θ) = 1
Ntrain

Ntrain∑
i=1

k∑
j=1
‖(SNN

θ)(j)[Xi]−Yi,j‖2 = 1
Ntrain

Ntrain∑
i=1

k∑
j=1

∫
Q

(
(SNN
θ)(j)[ϕRi]− ϕ√R2

i−2jδt

)2
dx.

where (SNN
θ)(j) is the iterated j times composition of SNN

θ .

In all our experiments, the computational domain is [0, 1]d and 2D/3D training data consists of
an average of Ntrain = 100 circles/spheres with a range of radii ranging from 0.05 to 0.45 to capture
enough information about the curvatures.

2.2. From the numerical approximation of the Allen-Cahn semigroup to the structure
of neural networks. We introduce in this section efficient neural network structures to approxi-
mate the semigroups Sqδt,ε

and Sq
′

δt,ε
. The design of a network architecture is a very delicate question

because there is no single generic choice of network that can accurately approximate an operator.
The approach developed in this paper consists in deriving the architecture of our networks from
splitting methods, which are often used to solve numerically evolution equations having a gradient

7

flow structure. Doing so, we draw on the rich knowledge of numerical analysis to guide us in de-
signing new and more efficient networks.

To derive the structure of our networks, let us start by recalling the principle of splitting schemes
[46] to approximate the solutions of the Allen-Cahn equation defined in the domain Q = [0, 1]d with
periodic boundary conditions.(for a recent review of numerical methods for phase field approxima-
tion of various geometric flows see [47]). As the two semigroups SAC

δt,ε
and Sqδt,ε

are closely related
in the case of smooth mean curvature motion, our expectation is that imitating splitting schemes
will lead us to very efficient networks to approximate first Sqδt,ε

, but also Sq
′

δt,ε
.

Given a time step δt, we construct an approximation sequence (un)n≥0 of the solution uε of (1)
at time nδt using various splitting approaches.

First-order neural network SNN
θ,1

The first splitting method is the semi-implicit approach where the sequence (un) is defined recur-
sively from

un+1 − un

δt
= ∆un+1 − 1

ε2W
′(un),

i.e.,

(4) un+1 = (Id − δt∆)−1
(
un − δt

ε2W
′(un)

)
.

More precisely, this numerical scheme can be written as a combination of a convolution kernel K1
and an activation function ρ1:

un+1 = K1 ∗ ρ1(un),
with ρ1(s) = s− δt

ε2W
′(s) and

K1(x) = F
[
ξ 7→ 1

1 + δt4π2|ξ|2
]

(x),

where F denotes the Fourier transform. This scheme is stable as soon as δt < sup
s∈[0,1]

∣∣W ′′(s)∣∣ε2.

Moreover, the operator SAC
δt,ε,1 : u 7→ K1 ∗ρ1(u) that encodes the semi-implicit scheme can be viewed

as an approximation of order 1 of the Allen-Cahn semigroup SAC
δt,ε

. This method has also the ad-
vantage of decoupling the action of the diffusion operator and the reaction operator, therefore each
operator can be handled independently.

The previous stability constraint can be avoided using a convex-concave splitting of the Cahn-
Hilliard energy. Following the idea introduced by Eyre [43], the functional Pε = E1 +E2 is decom-
posed as the sum of a convex energy E1 and a concave energy E2 defined by

E1(u) =
∫
Q

(
ε
|∇|2

2 + α

ε

u2

2

)
dx and E2(u) = 1

ε

∫
Q

(
W (u)− αu

2

2

)
dx,

with α a sufficiently large stabilization parameter. Treating the convex energy implicitly and the
concave energy explicitly yields the scheme

un+1 = un − δt
ε

(
∇E1(un+1) +∇E2(un)

)
,

i.e.,

(5) un+1 =
(
Id − δt

(
∆− α

ε2 Id

))−1 (
un − δt

ε2 (W ′(un)− αun)
)

= K2 ∗ ρ2(un),

Again, this numerical scheme is of the form
un+1 = K2 ∗ ρ2(un)

where the convolution operator K2 is now given by

K2(x) = F

ξ 7→ 1
1 + δt

(
4π2|ξ|2 + α

ε2

)
 (x)

and the activation function ρ2 satisfies ρ2(s) = s− δt
ε2 (W ′(s)− αs).

8

The advantage of this scheme is to be unconditionally stable – in the sense that it decreases the
Cahn-Hilliard energy – as soon as the stabilization parameter α satisfies α > sups∈[0,1]|W ′′(s)| = 1
(to be complete, note that choosing a large value for α has also a bad influence on the dynamics of
the flow). It is also an approximation of order 1 to the Allen-Cahn semigroup SAC

δt,ε
. T

This stabilization effect leads us to believe that other such schemes could be obtained by directly
learning the diffusion kernel K and the activation function ρ from the training data. The extension
to networks is then straightforward since the latter operations can be interpreted as networks.
Indeed, the schemes (4) and (5) are reminiscent of the structure of convolutional neural networks
(CNN) [48, 49]: a convolution operation coupled with a nonlinear activation function, where the
nonlinearity is given by ρ1 (or ρ2 for (5)) and the learning parameters are the parameters of the
kernel associated with the convolution. A first idea of neural network would be to use a CNN with
ρ1 (for instance) as nonlinearity but it is restrictive because of the choice of ρ1 that depends on the
parameters δt and ε. We propose instead a neural network SNN

θ,1 constructed as the composition of
a pure convolution neuron and a multilayer perceptron (MLP) [50] that will act as a nonlinearity.
The network SNN

θ,1 we propose can be represented by the following diagram:

Figure 2. Definition of SNN
θ,1 where D represents a convolution neuron (or diffusion

neuron in reference to diffusion operators), and R represents a multilayer perceptron
(called reaction network in reference to reaction operators). The parameter θ is the
vector of learning parameters, it contains all weights of the D and R networks.

The choice of representing the reaction network by a MLP comes from the fact that the action
of the reaction operator is totally encoded by a 1D function. According to the fundamental neural
network approximation theorem [51, 52, 53] which states that any function can be approximated
by a two-layer MLP, it is quite natural to consider a MLP to represent the action of the reaction
operator. However, we also choose to use a multilayer perceptron (MLP) as a non-linearity in order
to keep some flexibility and not to depend on the context in which we work. The characteristics of
the non-linearity are therefore entirely determined during the training stage.

Remark 2.1. Note that in contrast to the splitting schemes (5) and (4), we have chosen to define
the network SNN

θ,1 by starting with a diffusion neuron D followed by a non-linearity R to have a
structure similar to the usual convolutional network. The other architecture where we start with R
followed by D is also very legitimate and gives training results which are similar to those obtained
with SNN

θ,1 . However, better numerical results are observed in the test phase when we use SNN
θ,1 so we

shall study only this network.

Higher-order neural networks SNN
θ,2 and SNN

θ,3
The network SNN

θ,1 provides us with the basic block to design more complex and deeper networks as
is often the case in deep learning. One can mention, for instance, deep convolutional neural networks
(where the basic block is the convolution operation) and deep residual neural networks (with the
residual block). Many different networks can derive from SNN

θ,1 . In particular, in order to obtain
more complex and efficient networks, we now try to adapt the structure of these networks from the
higher order semi-implicit schemes developed in [44] in the case of a gradient flow structure. These
schemes are structured as follows: starting from U0 = un, we set un+1 = UM where UM is defined
recursively from U0 as

(6) Um = U0 −
δt
ε

(
m∑
i=0

γi,m∇E1(Ui) +
m−1∑
i=0

γ̃i,m∇E2(Ui)
)

for m = 1, . . . ,M

where the parameters γi,m and γ̃i,m are predefined to ensure the numerical scheme to be highly
accurate, see [44] for more information about the choice of the coefficients γi,m and γ̃i,m. As can
be observed in this scheme (6), the diffusion and reaction operators are applied in chain but also in
parallel in order to keep the information of each Ui for i = 1, . . . ,M − 1.

9

The second-order network SNN
θ,2 which is shown in Figure 3 is inspired by the scheme (6) with

M = 2, which reads
U2 = K2 ∗ [ρ3(U1) + [U0 + ρ2(U1)],

with U1 = K1 ∗ [ρ1(U0)], and γ0,1 = γ0,2 = γ0,1 = 0.

Figure 3. Representation of the 2nd order neural network DR SNN
θ,2 . We adopt

the same formalism as for MLPs by assimilating the D and R networks to neurons.
Here all the blocks D and R are different networks. The dotted lines mean that the
output of the source neuron is multiplied by a weight. The curved line corresponds
to a skip connection and means that the network R is equipped with a residual
structure.

Remark 2.2. The residual structure is also a consequence of different experiments we have done
where networks with this type of structure had better learning scores and the learning process was
faster. In the particular case of the network SNN

θ,2 we can make the following conjecture: in the
classical schemes (4) and (5) reaction operators are related to the double-well potential but also to
the phase field profile. In the case of the network SNN

θ,2 , the residual structure allows to maintain this
profile after each iteration. Indeed, several recent works [54] highlight the particularity of residual
networks to stay close to the inputs by adding the identity.

We can go further in the complexity and the depth of our networks by taking inspiration again
from the structure of the scheme (6) with M = 3. For instance, following the principle of the
previous network, we obtain the architecture shown in figure (4).

Figure 4. Representation of the 3rd order neural network DR SNN
θ,3 . The same idea

used for the structure of the network SNN
θ,2 is applied to design SNN

θ,3 .

In this paper, we will limit ourselves to the first two networks SNN
θ,1 and SNN

θ,2 for the reason that
they already give very satisfactory results and it appeared more relevant to us to focus on these
first two structures.

2.3. Discretization and specification of our neural networks. In practice, we will consider
some approximations of phase field mean curvature flow defined on a square-box Q = [0, 1]d using
Cartesian grid with N nodes in each direction and using periodic boundary conditions. We consider
the approximation parameter ε = 2/N and the fixed timestep δt = ε2. Our neural networks are
applied to discrete images Uni,j which correspond to a sampling of the function un(xi,j) at the points
xi,j = ((i−1)/N, (j−1)/N). Our networks depend on the specific choice of the parameters (δx, ε, δt)
which have been fixed before the learning procedure. In particular, in all the numerical experiments
presented below, we set δx = 1/N = 1/28, ε = 2δx and δt = ε2.

10

Remark 2.3. Our approach does not correspond exactly to a method based on neural operators since
the definition of the convolutional kernel depends on the discretization in space. It will therefore not
be possible to use the trained networks for other choices of discretization parameters. Nevertheless,
it is possible to use the trained networks on different sizes of computational box as long as the value
of the parameter δx remains unchanged. For instance, we can consider a square-box Q = [0, 2]d
discretized with N = 29 nodes in each direction. In this sense, our method remains resolution-
invariant thanks to multi-scale techniques.

Diffusional network based on a discrete kernel convolution.
As D corresponds to a convolution operation, one needs to specify its hyper-parameters, especially
the kernel size NK which is related to the domain discretization and the timestep δt. In practice,
we consider a discrete square kernel K of size NK = 17 where the kernel convolution reads as

(K ∗ uN)k =
∑
`∈LN

K` uNk−`

with LN = [−(NK − 1)/2, (NK − 1)/2]d. Here, we assume that the padding extension of uN
is periodic. Moreover, the convolution product is computed in practice using the Fast Fourier
transform. Here, recall that the FourierK-approximation of a function u defined in a boxQ = [0, L]d
is given by

uN (x) =
∑
k∈KN

cke
2iπξk·x,

where KN = [−N
2 ,

N
2 − 1]d, k = (k1, . . . , kd) and ξk = (k1/L, . . . , kd/L). In this formula, the

ck’s denote the Kd first discrete Fourier coefficients of u. The inverse discrete Fourier transform
leads to uNk = IFFT[ck] where uNk denotes the value of u at the points xk = (k1h, · · · , kdh) and
where h = L/N . Conversely, ck can be computed as the discrete Fourier transform of uKk , i.e.,
ck = FFT[uNk].

Remark 2.4. In practice, it can be interesting to use kernels with sufficiently small size to facilitate
their training but it is necessary to choose a size large enough to avoid anisotropy phenomena due
to its square shape.

Remark 2.5. As we have seen previously, the characteristic size of K depends strongly on the
choice of the time step δt. In our case, using the time step δt = ε2 = (2/N)2, as shown in Figure5,
the support of the heat kernel Kδt is contained in the interval [−8/N, 8/N] which suggests a good
approximation by a discrete kernel of size NK = 17. On the other hand, a time step four times
larger δt = 4ε2 would have required a kernel twice as large, i.e., NK = 33.

Figure 5. Discrete kernel K. Left: sampling of the heat kernel; Right: example of
learned kernel K for the network SNN

θ,1 trained to approximate the semigroup Sqε,δt
.

Reaction network based on a 1D multilayer perceptron
The reaction network is a multilayer perceptron seen as a real function. In practice, the number of
hidden layers is set to 2 with 8 neurons on the first layer and 3 neurons on the second layer. We
also select the appropriate activation function in the reaction network by testing different choices of
activation functions (ReLU, ELU, Sigmoid, SiLU, Tanh, Gaussian) in our numerical experiments. In
the end, the Gaussian model seems to have the best properties by presenting more efficient learning
rates and speeds.

11

Figure 6. Reaction network based on a 1D multilayer perceptron using two hidden
layers with respectively 8 and 3 neurons

2.4. Neural network optimization, stopping criteria and Pytorch environment.
We now turn to the question of how the learning parameters of our networks are estimated. The
learning procedure consists in seeking an optimal vector parameter θ minimizing the energy J1 (or
Jk, k > 1 depending on the problem) using a mini-batch stochastic gradient descent algorithm with
adaptive momentum [55, 56, 57] on a set of training data.

Remark 2.6. The number of learning parameters of each network is small enough with Nθ = 336
for the first-order network SNN

θ,1 and Nθ = 724 for the second-order network SNN
θ,2 .

The reason for this is that our problem is a high-dimensional non-convex optimization problem.
It is then often recommended to optimize on mini-batches rather than on the whole dataset to
reduce the computational cost but also the memory cost. This strategy is also commonly used to
escape saddle points of the non-convex energy J1 (see [58] on this subject).

More precisely, the training strategy is as follows:
Step 1: Define the neural network Sθ with the training vector parameter θ.
Step 2: Generate data using mini-batch: Randomly sample a mini-batch of size B of

training labeled couples (Xik , Yik), k = 1, · · · , B over the training dataset {(Xi, Yi)}i=1,··· ,Ntrain .
This means that the training dataset is organized into Ntrain/B mini-batches and the pa-
rameter θ will be updated for each of these batches. The training batch size B is set to
B = 10 over all experiments.

Step 3: Compute the loss of the mini-batch J1(θ) = 1
B

B∑
k=1
‖Sθ[Xik]− Yik‖

2.

Step 4: Compute the gradient of the previous loss using back-propagation.
Step 5: Update the learning parameter θ using the stochastic gradient descent algorithm

with adaptive momentum (Adam [55] in our case) and using with the gradient computed
at the previous step.

Step 6: Repeat the steps 2 to 5 until all mini-batches have been used. Once all the mini
batches have been used, an epoch is said to have passed. In practice, the epoch is set to
epoch = 20000 for all experiments.

Step 7: Repeat steps 2 to 6 until a stopping criterion is satisfied.

Remark 2.7. Very roughly speaking, stochastic gradient descent algorithms are parametrized by the
learning rate, i.e. the step parameter just next to the gradient. The choice of the learning rate is a
challenge. Indeed, a too small value may lead to a long training process that could get stuck, while
a value that is too large may lead to a selection of sub-optimal learning parameters or an unstable
learning process. In practice, schedulers are often used to gradually adjust the learning rate during
training. In our case we use the Adam algorithm in step 5 which has the advantage of adjusting the
learning rate according to the obtained value of the gradient in step 4.

Stopping criterion.
It may happen that after the training process the learning parameters are biased according to the
training data. To prevent this and to avoid under- or over-fitting, it is recommended to add an
intermediate step during the training procedure. This is called the validation step which consists
in evaluating the model on new data (the so-called validation data) and then measuring the error

12

made on these data using one or more metrics. In our case, the validation step is applied at regular
intervals every 100 epochs. It is important to note that the parameters of the network are not
updated during this procedure.

This step is used as a stopping criterion with the following validation metric based on the evo-
lution of the volume of a sphere flowing under mean curvature. This second metric measures the
error committed on the evolution of the volume of a given sphere. In some sense, this metric is also
used to enforce the stability of the scheme derived from the neural network. In practice we select
the learning parameter for which the validation metric gives the best score.

To be more precise, the validation metric is given by

El(θ) =
l∑

i=1

ni
max∑
n=0

∣∣∣∣∫
Q
uni −

∫
Q
ϕ√

R2
i−2nδt

∣∣∣∣
where the sequence (uni) is defined iteratively by{

un+1
i = Sθ[uni],
u0
i = ϕRi

and nimax = max{n ∈ N, nδt < TRi} where TRi = R2
i

2 is the extinction time of the mean curvature
flow of the initial sphere with radius Ri for i = 1, . . . , l.

Note that this choice of metric is not meaningless and stems from the following observation: the
evolution of the volume of a sphere with initial radius R0 evolving under mean curvature flow is
explicitly given by V (t) = 2πR(t)2 = 2π

(
R2

0 − 2t
)
.

Moreover, if ϕ = q, as ϕR ≈ 1BR
one can show that∫

Q
ϕR(t) = Vol(BR(t)) +O(ε2) = V (t) +O(ε2)

In addition, it can also be shown with a similar argument that for ϕ = −1
εq
′,∫

Q
ϕR(t) = Hd−1(∂BR(t)) +O(ε2)

In this way, one can see t 7→
∫
Q ϕR(t) as a good measure of the evolution of the volume (or the

perimeter when ϕ = −1
εq
′) of a sphere with initial radius R0 that evolves by mean curvature flow.

In this sense, the energy El allows to preserve some stability over time (at least on circles or spheres).

All these networks, datasets, visualization tools, etc., have been developed in a Python module
dedicated to machine learning for the approximation of interfaces that evolve according to a geo-
metric law (as the mean curvature flow) and are represented by a phase field. This module uses
the machine learning framework PyTorch [59] and the high-level interface PyTorch Lightning [60]
as the machine learning back-end. Source code will be made available on line beside a forthcoming
description.

Training computation has been made on a computational server hosted at the Camille Jordan In-
stitute and using a general-purpose graphical processing unit Nvidia V100S. Typical training (20000
epochs) used in the following numerical experiments requires less than 30 minutes of computation
without the validation steps.

3. Validation

In this first numerical section, we test the ability of two neural networks to learn either the mean
curvature flow t 7→ Ω(t) or oriented domains or the mean curvature flow t 7→ Γ(t) of a possible
non-orientable sets. These two neural networks are:

• The 1st-order DR network SNN
θ,1 which combines successively a diffusion neuron and a reaction

network.
• The 2nd-order network SNN

θ,2 , which uses two diffusion neurons and three reaction networks,
according to the architecture illustrated on Figure 3.

More specifically, in each case we will propose a methodology to learn the action of the semigroups
Sqδt,ε

and Sq
′

δt,ε
where the model parameters are set to ε = 2δx and δt = ε2.

13

First, the learning of the two networks SNN
θ,1 and SNN

θ,2 allows us to obtain sufficiently accurate
and efficient approximations of the semigroup Sδt,ε,q to get an approximation of the mean curvature
flow of oriented domains whose quality is at least comparable with what would be obtained by
solving the Allen-Cahn equation. Going further, a numerical error analysis in the particular case
of the evolution of a circle shows that both networks make it possible to reduce the phase field
approximation error related to the convergence of the Allen-Cahn equation to the motion by mean
curvature in O(ε2).

In the case of the mean curvature flow of possibly non-orientable sets, the first order DR network
SNN
θ,1 fails to learn a sufficiently accurate approximation of the semigroup Sq

′

δt,ε
and reveals that the

basic block architecture DR is not well adapted to this specific setting. On the other hand, the
structure of the second order DR network seems much more suitable and presents an interesting
approximation of the semigroup Sq

′

δt,ε
allowing to obtain at least qualitatively approximation of

evolutions of interface under mean curvature flow even in the case of non-orientable Γ interface with
multiple junctions.

3.1. Oriented mean curvature flow t 7→ ∂Ω(t) and approximation of Sqδt,ε
.

We now present some preliminary results about the approximation of the semigroup Sqδt=ε2,ε based
on the training of both neural networks SNN

θ,1 and SNN
θ,2 on circles evolving by mean curvature flow

and using exact oriented phase field representation. We first plot on Figure 7 the evolution of the
training loss energy throughout the optimization process, in blue for the network SNN

θ,1 and in orange
for the second one SNN

θ,2 . Clearly, we observe that we manage to learn an approximation of Sqδt=ε2,ε

with both networks. However, the second order DR network NN
θ,2 reaches more quickly acceptable

errors on the learning loss, which suggests that the structure of this network is better suited to our
problem.

0 25000 50000 75000 100000 125000 150000 175000 200000
step

10 7

10 5

10 3

10 1

train_loss
DR network
2nd order DR network

Figure 7. Learning procedure via optimization of the error J1 over training data.
Training losses of SNN

θ,1 and SNN
θ,2 plotted in blue and orange, respectively.

We now want to check that both trained networks achieve accurate approximations of the mean
curvature flow. To do so, we test the two associated numerical schemes un+1 = SNN

θ,α [un] with
α ∈ {1, 2}, coupled with an initial condition u0 given by u0 = q(d(Ω0, ·)/ε) where Ω0 corresponds
to a disk of radius R0 = 0.3.

More precisely, we plot in each line of Figure 8 the numerical approximation un obtained at
different times tn = nδt using respectively the classical Lie splitting scheme SAC

δt=ε2,ε,1, the first order
network SNN

θ,1 and the second order one SNN
θ,2 . All three approximations of the mean curvature flow

are so similar that it is difficult to observe any difference between them. At least on this particular
example, the networks provide qualitatively the expected evolution.

In order to have more quantitative error estimates, we display on Figure 9 the error on the integral
of the phase field function ϕR(t) of a circle of radius R(t) during the iterations knowing that the
evolution by mean curvature of an initial disk of radius R0 is a disk of radius R(t) =

√
R2

0 − 2t, at

14

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.015259 ; it = 250

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.042725 ; it = 700

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.015259 ; it = 250

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.042725 ; it = 700

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.015259 ; it = 250

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.042725 ; it = 700

Figure 8. Comparison of the numerical semigroups SAC
δt,ε,1, S

NN
θ,1 and SNN

θ,2 for the
approximation of the mean curvature flow of a circle; each row corresponds to the
evolution obtained at different time t using respectively the numerical semigroup
SAC
δt,ε,1 and the networks SNN

θ,1 and SNN
θ,2 .

least until the extinction time t0 = 1
2R

2
0. More precisely, we plot the error

n 7→ |
∫
Q
un(x)dx−

∫
Q
ϕ√

R2
0−2nδt

(x)dx|

using
• the trained network SNN

θ,1 in blue
• the trained network SNN

θ,2 in orange
• the Lie splitting scheme SAC

δt,ε,1 with δt = ε2 in green
• the Lie splitting scheme SAC

δt,ε,1 with δt = ε2/10 in red
These results clearly show that both our neural networks SNN

θ,1 and SNN
θ,2 provide more accurate

numerical schemes than the classical discretization of the Allen-Cahn equation, even using a smaller
time step δt.

This first validation test shows also that the training of our networks manages to correct both the
errors of discretization of the Allen-Cahn equation, and the modeling errors of the approximation
by the Allen-Cahn equation of the mean curvature flow.

We also plot on Figure 10 a last numerical comparison in the case of a non-convex initial set Ω(0)
and as before, we can clearly observe that each flow is qualitatively very similar.

In conclusion, the use of neural networks not only allows us to obtain good approximations of
the mean curvature motion but these approximations are also of better quality than what would be
obtained by a phase field approach and a solution of the Allen-Cahn equation.

These results are therefore very encouraging and show even more the interest of neural networks
for phase field approximations in the even worser case where the models would not be as accurate
as the Allen-Cahn equation or the numerical schemes would not be as efficient and accurate.

3.2. Non orientable mean curvature flow t 7→ Γ(t) and approximation of Sq
′

δt,ε
.

Let us describe some numerical results on the approximation of the Sq
′

δt,ε
semigroup, still using the

same architecture for the two neural networks SNN
θ,1 and SNN

θ,2 but with a learning on data built from
evolutions of circles in the exact non-oriented phase field representation. Let us recall here that to
the limit of our knowledge, there is no phase field model allowing to approximate such a flow by

15

0.00 0.02 0.04 0.06 0.08 0.10
t

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
volume error of disk along the iteration

DR network
2nd order DR network
Lie splitting
Lie splitting dt/10

Figure 9. Comparison of different schemes on the evolution of the radius of a circle
evolving by mean curvature flow. Plots in blue, orange, green and red correspond to

the error n 7→
(∫

Q u
n(x)dx−

∫
Q ϕ
√
R2

0−2nδt
(x)dx

)2
along iterations of respectively

the trained networks SNN
θ,1 and SNN

θ,2 , and the schemes SAC
δt=ε2,ε,1 and SAC

δt,ε,1 with δt =
ε2/10.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0091553 ; it = 150

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0091553 ; it = 150

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0091553 ; it = 150

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

Figure 10. Comparison of numerical semigroups SAC
δt,ε,1, S

NN
θ,1 and SNN

θ,2 to approx-
imate the mean curvature flow of a non convex initial set ; each line corresponds
respectively to the evolution obtained at different time t by using respectively the
numerical semigroups SAC

δt,ε,1, S
NN
θ,1 and SNN

θ,2 .

16

solving an Allen-Cahn-type PDE. As before, the idea is to train both our networks on a database
still made of circles evolution on a δt time step, but using the q′ profile instead of q.

We first plot on Figure 11 the evolution of the training loss energy during the learning process,
respectively in blue and orange for the networks SNN

θ,1 and SNN
θ,2 . Here, both networks seem to succeed

in learning the flow, although the train loss value seems much better for the second network SNN
θ,2 .

0 10000 20000 30000 40000 50000
step

10 6

10 5

10 4

10 3

10 2

10 1

train_loss
LieBlock_zeros
Complex_network_zeros

Figure 11. Learning process by optimizing the training losses Jk with k = 5 with
respect to the networks SNN

θ,1 and SNN
θ,2 , respectively plotted in blue and orange.

In contrast, when we test both networks to approximate the motion by the mean curvature of a
circle, we clearly observe on Figure 12 that the first order network SNN

θ,1 does not manage to keep the
profile q′ in a stable way and to decrease the radius of the circle. The good news is that the second
network SNN

θ,2 leads to a numerical scheme that is stable enough to reproduce well the evolution of the
circle while keeping the q′ profile along the evolution. In order to have a more quantitative criterion
on the evolution of the circle, we draw on Figure 13 the evolution n 7→ π(1

2πε
∫
un(x)dx)2 which

should correspond to the evolution of the area of a circle of radius R(t) given by t 7→ π(R2
0 − 2t).

This is indeed clearly the case on Figure 13 which shows that the obtained evolution law corresponds
well to the motion by mean curvature.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.00091553 ; it = 15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0042725 ; it = 70

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.024414 ; it = 400

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.042725 ; it = 700

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.045776 ; it = 750

Figure 12. Numerical comparison of networks SNN
θ,1 and SNN

θ,2 to approximate the
mean curvature flow of a circle in the non oriented setting; each row corresponds to
the evolution obtained at different times using SNN

θ,1 and SNN
θ,2 , respectively.

In order to test the reliability of the network SNN
θ,2 to approximate motions by mean curvature in

a general way, we also compare the evolution obtained with the scheme deriving from our network
with the one deriving from the discretization of the Allen Cahn equation.

Here, although the starting set Ω(0) is the same in both numerical experiments, the initial phase
field solution u0 is different and depends on the profile used. We then plot on the figure the solution
un computed at different times tn using the two different numerical schemes. In particular, we can

17

0.00 0.02 0.04 0.06 0.08 0.10
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6
DR network
2nd order DR network
theoretical area

Figure 13. Comparison of different schemes on the evolution of the radius of a
circle evolving by mean curvature flow. Plots in blue, orange correspond to n 7→
π(1

2πε
∫
un(x)dx)2 along iterations using respectively SNN

θ,1 and SNN
θ,2 . In green, the

theoretical evolution of the circle area n 7→ π(R2
0 − 2nδt).

clearly observe a similar flow that validates the methodology and the use of our neural networks to
approximate the motion by mean curvature in the case of a non-orientable set.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0091553 ; it = 150

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0091553 ; it = 150

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.030518 ; it = 500

Figure 14. Approximation of the mean curvature flow of a non convex initial
set: numerical comparison of the classical discretisation of the Allen Cahn equa-
tion SAC

δt=ε2,ε,1 (first line) with the network SNN
θ,2 trained on the non oriented phase

field q′(dist(x,Γ)/ε) (second line). In each line, we plot the solution un at different
times tn.

We also plot on the (15) the numerical approximation of the mean curvature flow obtained in the
case of non-orientable initial sets. In each of these experiments, we observe the evolution of points
with triple junction which seem to satisfy the Herring condition [45]. This result is all the more
surprising since our learning base contained only circle evolutions and no interface with the triple
point. The presence of stable triple points is therefore very good news and shows the potential of
this approach for the general case of mean curvature motion.

We give a last example in (16) of an approximation of mean curvature flow in the case of an
initial non-closed interface. Here the example is quite pathological since it is very difficult to make
sense of the motion by mean curvature, and we expect the interface to disappear in infinitesimal
time. Surprisingly, the evolution seems relatively stable with a speed of the end points of the order
of 1/ε.

18

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0054932 ; it = 90

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.018311 ; it = 300

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.036621 ; it = 600

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0045776 ; it = 75

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.012207 ; it = 200

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.016785 ; it = 275

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0030518 ; it = 50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.010681 ; it = 175

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.018311 ; it = 300

Figure 15. Approximation of the mean curvature flow of a non orientable initial
set. Each line corresponds to a different choice of the initial set Γ(0). We display
the solution un at different times tn along the iterations.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0015259 ; it = 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0076294 ; it = 125

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.012207 ; it = 200

Figure 16. Approximation of the motion by mean curvature of an initial open curve.

4. Applications: multiphase mean curvature flows, Steiner trees, and minimal
surfaces

We highlight in this section how the previous schemes derived from our trained networks SNNθ,α , α ∈
{1, 2} are sufficiently stable to be coupled with additional constraints such as volume conservation
(
∫
Q u

ndx = const) or inclusion constraints (reformulated as an inequality un ≥ uin(x), see [61]),
and sufficiently stable to be extended to the multiphase case. The main idea is not to reproduce
the training procedure on new networks according to the intended application but rather to couple
the action of our trained networks with an additional constraint, showing the adaptability of our
neural network approach.

Partition problem in dimension 2. The first application concerns the approximation of
multiphase mean curvature flow with or without volume conservation. We recall that the evolution
of a partition with N phases Ω(t) = (Ω1(t),Ω2(t), · · ·ΩN (t)) can be obtained as the L2-gradient
flow of a multiphase perimeter

P (Ω) = 1
2

N∑
i=1

∫
∂Ωi

dσ,

with the normal velocity Vi,j of each interface Γi,j = ∂Ωi ∩ ∂Ωj satisfying

Vi,j = Hi,j ,

19

where Hi,j represents the mean curvature at the interface Γi,j .

The Steiner problem in dimension 2. The second application is the approximation of Steiner
trees in dimension 2, i.e. solutions of the Steiner problem. Recall that the Steiner problem consists,
given a collection of points a1, . . . , aL ∈ Ω, in finding a compact connected set K ⊂ Ω containing all
the ai’s and having minimal length. In other words, it is equivalent to finding the optimal solution
to the following problem

min
{
H1(K), K ⊂ Ω,K connected, ai ∈ K, ∀i = 1, · · · , L

}
where H1(K) corresponds to the one-dimensional Hausdorff measure of K. As the optimal set K
needs not be orientable, our idea is to combine the network SNNθ,2 trained on the non-oriented phase
field database with the inclusion constraints associated to all points ai’s.

The Plateau problem in dimension 3. The last application focuses on the Plateau problem
in dimension 3 and co-dimension 1. Recall that it consists in finding, for a given closed boundary
curve Γ, a compact set E in Ω with minimal area and whose boundary coincides with Γ [62]. In
other words, it amounts to solving the minimization problem
(7) min{H2(E);E ⊂ Ω, connected and such as ∂E = Γ},
where H2(E) stands for the two-dimensional Hausdorff measure of E. Analogously to the method
proposed for the Steiner problem, the approximation method we propose consists in

(1) training a SNNθ,2 network on databases built from 3D spheres evolving under mean curvature
flow with a non-oriented phase field representation,

(2) coupling the trained network SNNθ,2 with the inclusion constraint to force the boundary
constraint ∂E = Γ.

4.1. Evolution of a partition in dimension 2. As explained previously, the motivation in this
first application is to approximate multiphase mean curvature flows. Recall that the phase field
approach consists in general [63, 64, 65, 66, 67] in introducing a multiphase field function u =
(u1, u2, · · · , uN), solution of an Allen Cahn system obtained as the L2-gradient flow of the multiphase
Cahn-Hilliard energy Pε defined by

Pε(u) =
{

1
2
∑N
k=1

ε
2 |∇uk|

2 + 1
εW (uk) if

∑N
k=1 uk = 1

+∞ otherwise

More precisely, the Allen-Cahn system [68, 45] reads as

∂tuk = ∆uk −
1
ε2W

′(uk) + λ
√

2W (uk), k = 1, · · · , N

where the Lagrange multiplier λ is associated with the partition constraint
∑L
k=1 uk = 1. As

explained in [68, 45], this PDE can be for instance computed in two steps:
(1) Solve the decoupled Allen-Cahn system

u
n+1/2
k = SAC

δt,ε,1[unk], k = 1, · · · , N.

(2) Project onto the partition constraint
∑
k u

n+1
k = 1:

un+1
k = u

n+1/2
k + λn+1

√
2W (un+1/2

k), k = 1, · · · , N.

Notice that the Lagrange multiplier λn+1 is computed following the expression

λn+1 = 1−
∑N
k=1 u

n+1/2
k∑N

k=1

√
2W (un+1/2

k)
,

in order to satisfy exactly the partition constraint.
This discretization scheme associated with the Allen-Cahn system suggests to simply replace the

Lie splitting Allen-Cahn operator SAC
δt,ε,1 by our network SNNθ,1 trained on oriented mean curvature

flow in section (3.1). A numerical experiment obtained with such a strategy is presented on the
first row of Figure 17. More precisely, we consider here an evolution of a multiphase system with
four phases and we observe at least qualitatively that the flow seems to be correct with a triple
junction forming angles of 2π/3. The second row of Figure 17 gives a similar numerical experiment

20

with additional constraint on the volume of each phase. Here, following the approach developed in
[69, 68], the idea is to consider the Allen-Cahn system with volume conservation

∂tuk = ∆uk −
1
ε2W

′(uk) + λ
√

2W (uk) + µk

√
2W (uk),

where the new Lagrange multiplier µk is defined to satisfy Volk =
∫
Q uk =

∫
Q u0. The previous

scheme can then be modified by considering now a projection on the partition and the volume
constraints as

un+1
k = u

n+1/2
k + (λn+1 + µn+1

k)
√

2W (un+1/2
k),

where the Lagrange multipliers (λn+1, µn+1
1 , µn+1

2 , · · ·µn+1
N) are for instance given by

µn+1
k =

Volk −
∫
Q u

n+1/2
k∫

Q

√
2W (un+1/2

k)
, and λn+1 =

1−
∑N
k=1

[
u
n+1/2
k + µn+1

k

√
2W (un+1

k)
]

∑√
2W (un+1/2

k)
which allows each of the constraints to be satisfied. As previously, the idea consists simply to replace
the Lie splitting Allen-Cahn operator SAC

δt,ε1
by our network SNNθ,1 . In particular, the numerical

experiment plotted on the second row of Figure 17 shows a stable multiphase evolution where the
volume of each phase seems to be conserved. These two numerical examples clearly show that our
networks previously trained on mean curvature motion flow can be re-exploited in more complex
situations.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.0073242 ; it = 120

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.018311 ; it = 300

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t = 0.025635 ; it = 420

Figure 17. Mean curvature flows of three interconnecting circles without (first row)
and with (second row) additional volume constraint.

4.2. Approximation of Steiner trees in 2D.
Variational phase field models have been recently introduced [70, 71, 72, 73, 74] to tackle the Steiner
problem. For example, the model introduced in [70] proposes the Ambrosio-Tortorelli functional

Fε(u) =
∫

Ω
ε|∇u|2 + 1

ε
(1− u)2dx,

coupled with an additional penalization term Gε(u) which forces the connectedness of the set K
and which is defined by

Gε(u) = 1
ε

N∑
i=1

D(u2; a0, ai), with D(w; a, b) := inf
Γ:a b

∫
Γ
w dH1 ∈ [0,+∞],

where the notation Γ : a b means that Γ is a rectifiable curve in Ω connecting a and b.
Intuitively, the phase field function uε is expected to be of the form uε = ϕ(dist(x,K)/ε), the

Ambrosio-Torterelli term approximates the length ofK, and the geodesic term Gε forces the solution
uε to vanish on K, and K to connect the different points ai. An analysis of this model and, more
precisely, a Γ-convergence result established in [70] suggest that the minimization of this phase field
model should give an approximation of a Steiner solution, i.e. a Steiner tree. However, numerical

21

experiments as proposed in [70] and in [71] show the ability of this coupling to approximate solutions
of the Steiner problem in dimensions 2 and 3 but show also all the difficulties to minimize efficiently
the geodesic term Gε to preserve the connectedness of the set K. The conclusions are quite similar
for the approaches developed in [72, 73, 74] where the idea is rather to use the measure-theoretic
notion of current and the connectedness of the set K is ensured by adding a divergence constraint
of the form div(τ) =

∑
αiδai .

We propose a completely different approach by considering a non oriented mean curvature flow
t 7→ Γ(t) of an initial connected set Γ(0) containing all the points ai coupled with the additional
inclusion constraint {ai, i = 1, · · · , N} ⊂ Γ(t). Indeed, we expect that the stationary state of such
an evolution is at least a local minimum of the Steiner problem. From a phase field point of view,
the strategy is to consider the non-oriented phase field representation q′(dis(x,Γ(t)/ε)), to use the
non oriented trained network SNNθ,2 to let the interface evolve by mean curvature, and to incorporate
the inclusion constraint by using an additional inequality constraint

u ≤ uin(x) =
N∑
i=1

q′(dist(ai, x)/ε),

in the spirit of [75, 61]. Finally, the scheme reads as follows:
(1) Approximation of a non-oriented mean curvature flow step

un+1/2 = SNN
θ,2 [un].

(2) Projection on the inclusion constraint u ≤ uin(x):

un+1
k = min(uin, u

n+1/2).

We present in Figure 18 three numerical experiments using respectively 4, 5 and 6 points ai
arranged non-uniformly on a circle. The first picture of each line corresponds to the initial set
Γ(0) constructed in such a way to connect the point a1 in a linear way to all the other points
{ai}i∈{2···N}. We then clearly observe an evolution of the set Γ(t) which seems to converge to
a Steiner tree connecting all the points ai. In particular, the triple points seem to be handled
accurately enough. In the end, the method seems extremely effective, simple to implement, and the
computation of Steiner solutions is really fast compared to other methods proposed in the literature.
These results illustrate that our network trained on non-oriented mean curvature flows has sufficient
numerical stability properties to be coupled with inclusion constraints.

4.3. Approximation of minimal surfaces in 3D.
The Plateau problem was formulated by Lagrange in 1760 and consists in showing the existence of a
minimal surface in R3 with prescribed boundary Σ. Existence and regularity of solutions have been
studied in different contexts, see for instance [76] for smooth and orientable solutions and [77] for
existence and uniqueness of soap films including orientable and non orientable surfaces and possibly
multiple junctions.

From the numerical point of view, there exist many methods to compute minimal surfaces, as for
instance the first one [78] and others [79, 80] which use a parametric representation of the surface.
In the same spirit, the papers [81, 82] exploit a finite element method to compute numerical ap-
proximations of minimal surfaces. Finally, note also some numerical approaches using an implicit
representation of the minimal surface in [83, 84] where a level set method is used. As for phase field
approaches, a current-based method was proposed and analyzed in [85], and provides numerical
approximations in the case of oriented surfaces.

We propose in this section to extend to 3D the phase field approach used for the Steiner problem.
The idea is very similar in the sense that

(1) We train a new network SNNθ,2 to approximate the semigroup Sδt,ε,q′ in dimension 3. Here we
consider the case of the mean curvature flow of co-dimension 1. The training of the network
is performed on a database consisting of spheres involving under motion by mean curvature
which is also explicit in this case.

22

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.0018311 ; it = 30

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.012207 ; it = 200

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.13428 ; it = 2200

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.0091553 ; it = 150

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.036621 ; it = 600

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.24719 ; it = 4050

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.0 ; it = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.0061035 ; it = 100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.019836 ; it = 325

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
u

t = 0.24414 ; it = 4000

Figure 18. Approximation of Steiner trees in 2D using a non oriented mean cur-
vature flow coupled with inclusion constraints according to the scheme (4.2); Each
line presents an evolution of the numerical solution un along the iterations with,
respectively, 4, 5, and 6 points ai.

(2) We apply the previous scheme where the function uin is now defined by

uin(x) =
N∑
i=1

q′(dist(Σ, x)/ε)

We present in Figures 19 and 20 four numerical experiments using respectively the boundary
of a Mobius strip, a trefunknot, a union of rings, and a pit. The prescribed boundary Σ and the
boundary of {x ∈ Q;un(x) ≥ −0.2} are respectively plotted in red and green along the iterations.
We display in Figure 19 the evolution of an interface along the iterations towards the stationary
numerical solution. We show in Figure 20 only the stationary solutions, i.e. the minimal surfaces
associated with the respective prescribed boundaries.

These numerical results are very encouraging because they are examples of non-orientable solu-
tions with more or less complex topologies and possibly with triple line singularities.

Figure 19. Approximation of a minimal surface using a non-oriented mean curva-
ture flow coupled with an inclusion constraint. The images represent the numerical
solution un at four different times. The prescribed boundary Σ and the boundary of
{x ∈ Q;un(x) ≥ −0.2} are plotted in red and green, respectively .

23

Figure 20. Approximation of minimal surfaces using a non-oriented mean curva-
ture flow coupled with an inclusion constraint; Each picture shows the numerical
stationary solution un in green and the prescribed boundary Σ in red.

Acknowledgments

The authors acknowledge support from the French National Research Agency (ANR) under grants
ANR-18-CE05-0017 (project BEEP) and ANR-19-CE01-0009-01 (project MIMESIS-3D). Part of
this work was also supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program "Investissements d’Avenir" (ANR-11-IDEX- 0007) operated by the French
National Research Agency (ANR), and by the European Union Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 777826 (NoMADS).

References
[1] G. Bellettini, Lecture notes on mean curvature flow, barriers and singular perturbations, Vol. 12 of Appunti.

Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)],
Edizioni della Normale, Pisa, 2013. doi:10.1007/978-88-7642-429-8.
URL https://doi.org/10.1007/978-88-7642-429-8

[2] C. Mantegazza, M. Novaga, A. Pluda, Lectures on curvature flow of networks, in: Contemporary research in
elliptic PDEs and related topics, Vol. 33 of Springer INdAM Ser., Springer, Cham, 2019, pp. 369–417.

[3] K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial differential equations and mean curva-
ture flow, Acta Numer. 14 (2005) 139–232. doi:10.1017/S0962492904000224.
URL http://dx.doi.org/10.1017/S0962492904000224

[4] K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial differential equations and mean curva-
ture flow, Acta Numer. 14 (2005) 139–232.

[5] J. W. Barrett, H. Garcke, R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces
in R3, J. Comput. Phys. 227 (2008) 4281–4307.

[6] P. Pozzi, B. Stinner, On motion by curvature of a network with a triple junction, The SMAI journal of compu-
tational mathematics 7 (2021) 27–55. doi:10.5802/smai-jcm.70.
URL https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.70/

[7] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi
formulations, J. Comput. Phys. 79 (1988) 12–49.

[8] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag New York, Applied
Mathematical Sciences, 2002.

[9] S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision and Graphics, Springer-Verlag, New
York, 2003.

[10] L. C. Evans, J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (3) (1991) 635–681.
[11] Y. G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow

equations, Proc. Japan Acad. Ser. A Math. Sci. 65 (7) (1989) 207–210.
[12] J. Bence, B. Merriman, S. Osher, Diffusion generated motion by mean curvature, Computational Crystal Growers

Workshop,J. Taylor ed. Selected Lectures in Math., Amer. Math. Soc. (1992) 73–83.
[13] H. Ishii, G. E. Pires, P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts,

J. Math. Soc. Japan 51 (2) (1999) 267–308.
[14] S. J. Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature, J. Comput. Phys. 144 (2)

(1998) 603–625. doi:10.1006/jcph.1998.6025.
URL http://dx.doi.org/10.1006/jcph.1998.6025

[15] L. Modica, S. Mortola, Un esempio di Γ−-convergenza, Boll. Un. Mat. Ital. B (5) 14 (1) (1977) 285–299.
[16] X. Chen, Generation and Propagation of Interfaces in Reaction-Diffusion Systems, Transactions of the American

Mathematical Society 334 (2) (1992) 877–913. doi:10.2307/2154487.
URL https://www.jstor.org/stable/2154487

[17] L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in: Calculus of variations
and partial differential equations (Pisa, 1996), Springer, Berlin, 2000, pp. 5–93.

24

https://doi.org/10.1007/978-88-7642-429-8
http://dx.doi.org/10.1007/978-88-7642-429-8
https://doi.org/10.1007/978-88-7642-429-8
http://dx.doi.org/10.1017/S0962492904000224
http://dx.doi.org/10.1017/S0962492904000224
http://dx.doi.org/10.1017/S0962492904000224
http://dx.doi.org/10.1017/S0962492904000224
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.70/
http://dx.doi.org/10.5802/smai-jcm.70
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.70/
http://dx.doi.org/10.1006/jcph.1998.6025
http://dx.doi.org/10.1006/jcph.1998.6025
http://dx.doi.org/10.1006/jcph.1998.6025
https://www.jstor.org/stable/2154487
http://dx.doi.org/10.2307/2154487
https://www.jstor.org/stable/2154487

[18] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase
domain coarsening, Acta Metallurgica 27 (6) (1979-06-01) 1085–1095. doi:10.1016/0001-6160(79)90196-2.
URL http://www.sciencedirect.com/science/article/pii/0001616079901962

[19] P. De Mottoni, M. Schatzman, Geometrical Evolution of Developed Interfaces, Transactions of the American
Mathematical Society 347 (5) (1995) 1533–1589. doi:10.2307/2154960.

[20] G. Bellettini, M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term, Differ-
ential and Integral Equations 8 (4) (1995) 735–752.

[21] L. Ambrosio, V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-
convergence, Comm. Pure Appl. Math. 43 (8) (1990) 999–1036. doi:10.1002/cpa.3160430805.
URL https://doi.org/10.1002/cpa.3160430805

[22] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and
Systems (MCSS) 2 (4) (1989) 303–314.

[23] P. Kidger, T. Lyons, Universal Approximation with Deep Narrow Networks, in: J. Abernethy, S. Agarwal (Eds.),
Proceedings of Thirty Third Conference on Learning Theory, Vol. 125 of Proceedings of Machine Learning
Research, PMLR, 2020, pp. 2306–2327.
URL https://proceedings.mlr.press/v125/kidger20a.html

[24] X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow approximation, in: Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 481–490.

[25] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncer-
tainty quantification, Journal of Computational Physics 366 (2018) 415–447.

[26] J. Adler, O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems
33 (12) (2017) 124007.

[27] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, S. Kaushik, Prediction of aerodynamic flow fields using convo-
lutional neural networks, Computational Mechanics 64 (2) (2019) 525–545.

[28] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks, European Journal of
Applied Mathematics 32 (3) (2021) 421–435.

[29] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational
Physics 378 (2019) 686–707.

[30] L. Bar, N. Sochen, Unsupervised deep learning algorithm for pde-based forward and inverse problems, arxiv,
arXiv preprint arXiv:1904.05417.

[31] J. D. Smith, K. Azizzadenesheli, Z. E. Ross, Eikonet: Solving the eikonal equation with deep neural networks,
IEEE Transactions on Geoscience and Remote Sensing.

[32] S. Pan, K. Duraisamy, Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with
guaranteed stability, SIAM Journal on Applied Dynamical Systems 19 (1) (2020) 480–509.

[33] B. Yu, The deep ritz method: A deep learning-based numerical algorithm for solving variational problems,
commun. math, Stat 6 (2018) 1–12.

[34] Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond finite layer neural networks: Bridging deep architectures and numerical
differential equations, in: International Conference on Machine Learning, PMLR, 2018, pp. 3276–3285.

[35] T. Alt, K. Schrader, M. Augustin, P. Peter, J. Weickert, Connections between numerical algorithms for pdes and
neural networks, arXiv preprint arXiv:2107.14742.

[36] L. Lu, P. Jin, G. E. Karniadakis, Deeponet: Learning nonlinear operators for identifying differential equations
based on the universal approximation theorem of operators, arXiv preprint arXiv:1910.03193.

[37] K. Bhattacharya, B. Hosseini, N. B. Kovachki, A. M. Stuart, Model reduction and neural networks for parametric
pdes, arXiv preprint arXiv:2005.03180.

[38] N. H. Nelsen, A. M. Stuart, The random feature model for input-output maps between banach spaces, SIAM
Journal on Scientific Computing 43 (5) (2021) A3212–A3243.

[39] A. Anandkumar, K. Azizzadenesheli, K. Bhattacharya, N. Kovachki, Z. Li, B. Liu, A. Stuart, Neural operator:
Graph kernel network for partial differential equations, in: ICLR 2020 Workshop on Integration of Deep Neural
Models and Differential Equations, 2020.

[40] R. G. Patel, N. A. Trask, M. A. Wood, E. C. Cyr, A physics-informed operator regression framework for extracting
data-driven continuum models, Computer Methods in Applied Mechanics and Engineering 373 (2021) 113500.

[41] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural
operator for parametric partial differential equations, arXiv preprint arXiv:2010.08895.

[42] J. Blechschmidt, O. G. Ernst, Three ways to solve partial differential equations with neural networks—a review,
GAMM-Mitteilungen (2021) e202100006.

[43] D. J. Eyre, Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation, MRS Online Proceedings
Library Archive 529. doi:10.1557/PROC-529-39.

[44] A. Zaitzeff, S. Esedoḡlu, K. Garikipati, High order, semi-implicit, energy stable schemes for gradient flows, Journal
of Computational Physics 447 (2021) 110688.

[45] E. Bretin, A. Danescu, J. Penuelas, S. Masnou, Multiphase mean curvature flows with high mobility contrasts:
a phase-field approach, with applications to nanowires, Journal of Computational Physics 365 (2018) 324–349.

[46] H. G. Lee, J.-Y. Lee, A semi-analytical Fourier spectral method for the Allen–Cahn equation, Computers &
Mathematics with Applications 68 (3) (2014) 174–184. doi:10.1016/j.camwa.2014.05.015.

[47] Q. Du, X. Feng, Chapter 5 - The phase field method for geometric moving interfaces and their numerical approx-
imations, in: A. Bonito, R. H. Nochetto (Eds.), Handbook of Numerical Analysis, Vol. 21 of Geometric Partial
Differential Equations - Part I, Elsevier, 2020-01-01, pp. 425–508. doi:10.1016/bs.hna.2019.05.001.
URL http://www.sciencedirect.com/science/article/pii/S1570865919300043

25

http://www.sciencedirect.com/science/article/pii/0001616079901962
http://www.sciencedirect.com/science/article/pii/0001616079901962
http://dx.doi.org/10.1016/0001-6160(79)90196-2
http://www.sciencedirect.com/science/article/pii/0001616079901962
http://dx.doi.org/10.2307/2154960
https://doi.org/10.1002/cpa.3160430805
https://doi.org/10.1002/cpa.3160430805
http://dx.doi.org/10.1002/cpa.3160430805
https://doi.org/10.1002/cpa.3160430805
https://proceedings.mlr.press/v125/kidger20a.html
https://proceedings.mlr.press/v125/kidger20a.html
http://dx.doi.org/10.1557/PROC-529-39
http://dx.doi.org/10.1016/j.camwa.2014.05.015
http://www.sciencedirect.com/science/article/pii/S1570865919300043
http://www.sciencedirect.com/science/article/pii/S1570865919300043
http://dx.doi.org/10.1016/bs.hna.2019.05.001
http://www.sciencedirect.com/science/article/pii/S1570865919300043

[48] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten digit recognition
with a back-propagation network, Advances in neural information processing systems 2.

[49] S. Mallat, Understanding deep convolutional networks, Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 374 (2065) (2016) 20150203.

[50] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain.,
Psychological review 65 (6) (1958) 386.

[51] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural networks 4 (2) (1991) 251–257.
[52] K. Hornik, Some new results on neural network approximation, Neural networks 6 (8) (1993) 1069–1072.
[53] F. Scarselli, A. C. Tsoi, Universal approximation using feedforward neural networks: A survey of some existing

methods, and some new results, Neural networks 11 (1) (1998) 15–37.
[54] K. Greff, R. K. Srivastava, J. Schmidhuber, Highway and residual networks learn unrolled iterative estimation,

arXiv preprint arXiv:1612.07771.
[55] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.
[56] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT’2010,

Springer, 2010, pp. 177–186.
[57] D. Masters, C. Luschi, Revisiting small batch training for deep neural networks, arXiv preprint arXiv:1804.07612.
[58] R. Ge, F. Huang, C. Jin, Y. Yuan, Escaping from saddle points—online stochastic gradient for tensor decompo-

sition, in: Conference on learning theory, PMLR, 2015, pp. 797–842.
[59] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
S. Chintala, Pytorch: An imperative style, high-performance deep learning library, in: Advances in Neural
Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.
URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[60] W. Falcon, et al., Pytorch lightning, GitHub. Note: https://github. com/PyTorchLightning/pytorch-lightning 3
(2019) 6.

[61] E. Bretin, F. Dayrens, S. Masnou, Volume reconstruction from slices, SIAM J. Imaging Sci. 10 (4) (2017) 2326–
2358. doi:10.1137/17M1116283.
URL https://doi.org/10.1137/17M1116283

[62] G. David, SHOULD WE SOLVE PLATEAU’S PROBLEM AGAIN?, lecture for the conference in Honor of E.
Stein, 2011 (Jul. 2012).
URL https://hal.archives-ouvertes.fr/hal-00718979

[63] H. Garcke, B. Nestler, B. Stoth, A multi phase field concept: Numerical simulations of moving phase boundaries
and multiple junctions, SIAM J. Appl. Math 60 (1999) 295–315.

[64] H. Garcke, B. Nestler, B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp
interface limits, Physica D: Nonlinear Phenomena 115 (1-2) (1998) 87 – 108. doi:http://dx.doi.org/10.1016/
S0167-2789(97)00227-3.
URL http://www.sciencedirect.com/science/article/pii/S0167278997002273

[65] H. Garcke, R. Haas, Modelling of non-isothermal multi-component, multi-phase systems with convection, Tech.
rep. (2008).

[66] E. Oudet, Approximation of partitions of least perimeter by Gamma-convergence: around Kelvin’s conjecture,
Experimental Mathematics 20 (3) (2011) 260–270.
URL http://projecteuclid.org/euclid.em/1317924419

[67] E. Bretin, S. Masnou, A new phase field model for inhomogeneous minimal partitions, and applications to droplets
dynamics, Interfaces and Free Boundaries 19 (2) (2017) 141–182.

[68] Bretin, Élie, Denis, Roland, Lachaud, Jacques-Olivier, Oudet, Édouard, Phase-field modelling and computing for
a large number of phases, ESAIM: M2AN 53 (3) (2019) 805–832. doi:10.1051/m2an/2018075.
URL https://doi.org/10.1051/m2an/2018075

[69] M. Brassel, E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the
volume, Mathematical Methods in the Applied Sciences 34 (10) (2011) 1157–1180. doi:10.1002/mma.1426.
URL http://dx.doi.org/10.1002/mma.1426

[70] M. Bonnivard, A. Lemenant, F. Santambrogio, Approximation of length minimization problems among compact
connected sets, SIAM J. Math. Anal. 47 (2) (2015) 1489–1529. doi:10.1137/14096061X.
URL https://doi.org/10.1137/14096061X

[71] M. Bonnivard, E. Bretin, A. Lemenant, Numerical approximation of the Steiner problem in dimension 2 and 3,
Math. Comp. 89 (321) (2020) 1–43. doi:10.1090/mcom/3442.
URL https://doi.org/10.1090/mcom/3442

[72] M. Bonafini, G. Orlandi, E. Oudet, Variational approximation of functionals defined on 1-dimensional connected
sets: the planar case, SIAM J. Math. Anal. 50 (6) (2018) 6307–6332. doi:10.1137/17M1159452.
URL https://doi.org/10.1137/17M1159452

[73] M. Bonafini, E. Oudet, A convex approach to the Gilbert-Steiner problem, Interfaces Free Bound. 22 (2) (2020)
131–155. doi:10.4171/ifb/436.
URL https://doi.org/10.4171/ifb/436

[74] A. Chambolle, L. A. D. Ferrari, B. Merlet, A phase-field approximation of the Steiner problem in dimension two,
Adv. Calc. Var. 12 (2) (2019) 157–179. doi:10.1515/acv-2016-0034.
URL https://doi.org/10.1515/acv-2016-0034

26

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1137/17M1116283
http://dx.doi.org/10.1137/17M1116283
https://doi.org/10.1137/17M1116283
https://hal.archives-ouvertes.fr/hal-00718979
https://hal.archives-ouvertes.fr/hal-00718979
http://www.sciencedirect.com/science/article/pii/S0167278997002273
http://www.sciencedirect.com/science/article/pii/S0167278997002273
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-2789(97)00227-3
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-2789(97)00227-3
http://www.sciencedirect.com/science/article/pii/S0167278997002273
http://projecteuclid.org/euclid.em/1317924419
http://projecteuclid.org/euclid.em/1317924419
https://doi.org/10.1051/m2an/2018075
https://doi.org/10.1051/m2an/2018075
http://dx.doi.org/10.1051/m2an/2018075
https://doi.org/10.1051/m2an/2018075
http://dx.doi.org/10.1002/mma.1426
http://dx.doi.org/10.1002/mma.1426
http://dx.doi.org/10.1002/mma.1426
http://dx.doi.org/10.1002/mma.1426
https://doi.org/10.1137/14096061X
https://doi.org/10.1137/14096061X
http://dx.doi.org/10.1137/14096061X
https://doi.org/10.1137/14096061X
https://doi.org/10.1090/mcom/3442
http://dx.doi.org/10.1090/mcom/3442
https://doi.org/10.1090/mcom/3442
https://doi.org/10.1137/17M1159452
https://doi.org/10.1137/17M1159452
http://dx.doi.org/10.1137/17M1159452
https://doi.org/10.1137/17M1159452
https://doi.org/10.4171/ifb/436
http://dx.doi.org/10.4171/ifb/436
https://doi.org/10.4171/ifb/436
https://doi.org/10.1515/acv-2016-0034
http://dx.doi.org/10.1515/acv-2016-0034
https://doi.org/10.1515/acv-2016-0034

[75] E. Bretin, V. Perrier, Phase field method for mean curvature flow with boundary constraints, ESAIM Math.
Model. Numer. Anal. 46 (6) (2012) 1509–1526. doi:10.1051/m2an/2012014.
URL https://doi.org/10.1051/m2an/2012014

[76] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1) (1931) 263–321. doi:10.2307/
1989472.
URL https://doi.org/10.2307/1989472

[77] E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Bull.
Amer. Math. Soc. 66 (1960) 312–313. doi:10.1090/S0002-9904-1960-10482-X.
URL https://doi.org/10.1090/S0002-9904-1960-10482-X

[78] J. Douglas, A method of numerical solution of the problem of Plateau, Ann. of Math. (2) 29 (1-4) (1927/28)
180–188. doi:10.2307/1967991.
URL https://doi.org/10.2307/1967991

[79] H.-J. Wagner, A contribution to the numerical approximation of minimal surfaces, Computing 19 (1) (1977/78)
35–58. doi:10.1007/BF02260740.
URL https://doi.org/10.1007/BF02260740

[80] C. Coppin, D. Greenspan, A contribution to the particle modeling of soap films, Appl. Math. Comput. 26 (4)
(1988) 315–331. doi:10.1016/0096-3003(88)90068-9.
URL https://doi.org/10.1016/0096-3003(88)90068-9

[81] G. Dziuk, J. E. Hutchinson, The discrete Plateau problem: algorithm and numerics, Math. Comp. 68 (225) (1999)
1–23. doi:10.1090/S0025-5718-99-01025-X.
URL https://doi.org/10.1090/S0025-5718-99-01025-X

[82] G. Dziuk, J. E. Hutchinson, The discrete Plateau problem: convergence results, Math. Comp. 68 (226) (1999)
519–546. doi:10.1090/S0025-5718-99-01026-1.
URL https://doi.org/10.1090/S0025-5718-99-01026-1

[83] D. L. Chopp, Computing minimal surfaces via level set curvature flow, J. Comput. Phys. 106 (1) (1993) 77–91.
doi:10.1006/jcph.1993.1092.
URL https://doi.org/10.1006/jcph.1993.1092

[84] T. Cecil, A numerical method for computing minimal surfaces in arbitrary dimension, J. Comput. Phys. 206 (2)
(2005) 650–660. doi:10.1016/j.jcp.2004.12.022.
URL https://doi.org/10.1016/j.jcp.2004.12.022

[85] A. Chambolle, L. A. D. Ferrari, B. Merlet, Variational approximation of size-mass energies for k-dimensional
currents, ESAIM Control Optim. Calc. Var. 25 (2019) Paper No. 43, 39. doi:10.1051/cocv/2018027.
URL https://doi.org/10.1051/cocv/2018027

Univ Lyon, INSA de Lyon, CNRS UMR 5208, Institut Camille Jordan, 20 avenue Albert Einstein,
F-69621 Villeurbanne, France, elie.bretin@insa-lyon.fr

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 boule-
vard du 11 novembre 1918, F-69622 Villeurbanne, France, Denis@math.univ-lyon1.fr

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 boule-
vard du 11 novembre 1918, F-69622 Villeurbanne, France, masnou@math.univ-lyon1.fr

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 boule-
vard du 11 novembre 1918, F-69622 Villeurbanne, France, terii@math.univ-lyon1.fr

27

https://doi.org/10.1051/m2an/2012014
http://dx.doi.org/10.1051/m2an/2012014
https://doi.org/10.1051/m2an/2012014
https://doi.org/10.2307/1989472
http://dx.doi.org/10.2307/1989472
http://dx.doi.org/10.2307/1989472
https://doi.org/10.2307/1989472
https://doi.org/10.1090/S0002-9904-1960-10482-X
http://dx.doi.org/10.1090/S0002-9904-1960-10482-X
https://doi.org/10.1090/S0002-9904-1960-10482-X
https://doi.org/10.2307/1967991
http://dx.doi.org/10.2307/1967991
https://doi.org/10.2307/1967991
https://doi.org/10.1007/BF02260740
http://dx.doi.org/10.1007/BF02260740
https://doi.org/10.1007/BF02260740
https://doi.org/10.1016/0096-3003(88)90068-9
http://dx.doi.org/10.1016/0096-3003(88)90068-9
https://doi.org/10.1016/0096-3003(88)90068-9
https://doi.org/10.1090/S0025-5718-99-01025-X
http://dx.doi.org/10.1090/S0025-5718-99-01025-X
https://doi.org/10.1090/S0025-5718-99-01025-X
https://doi.org/10.1090/S0025-5718-99-01026-1
http://dx.doi.org/10.1090/S0025-5718-99-01026-1
https://doi.org/10.1090/S0025-5718-99-01026-1
https://doi.org/10.1006/jcph.1993.1092
http://dx.doi.org/10.1006/jcph.1993.1092
https://doi.org/10.1006/jcph.1993.1092
https://doi.org/10.1016/j.jcp.2004.12.022
http://dx.doi.org/10.1016/j.jcp.2004.12.022
https://doi.org/10.1016/j.jcp.2004.12.022
https://doi.org/10.1051/cocv/2018027
https://doi.org/10.1051/cocv/2018027
http://dx.doi.org/10.1051/cocv/2018027
https://doi.org/10.1051/cocv/2018027

	1. Introduction
	2. Neural networks and phase field mean curvature flows
	2.1. Training database and loss function
	2.2. From the numerical approximation of the Allen-Cahn semigroup to the structure of neural networks
	2.3. Discretization and specification of our neural networks
	2.4. Neural network optimization, stopping criteria and Pytorch environment

	3. Validation
	3.1. Oriented mean curvature flow t(t) and approximation of St,q
	3.2. Non orientable mean curvature flow t(t) and approximation of St,q'

	4. Applications: multiphase mean curvature flows, Steiner trees, and minimal surfaces
	4.1. Evolution of a partition in dimension 2
	4.2. Approximation of Steiner trees in 2D
	4.3. Approximation of minimal surfaces in 3D

	Acknowledgments
	References

