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Abstract

In this paper, we propose a new scheme for anisotropic motion by mean
curvature in R?. The scheme consists of a phase-field approximation of the
motion, where the nonlinear diffusive terms in the corresponding anisotropic
Allen-Cahn equation are linearized in the Fourier space. In real space, this
corresponds to the convolution with a kernel of the form

Kya(w) = F 71 [e471°O)] (),

We analyse the resulting scheme, following the work of Ishii-Pires-Souganidis
on the convergence of the Bence-Merriman-Osher algorithm for isotropic
motion by mean curvature. The main difficulty here, is that the kernel Ky ;
is not positive and that its moments of order 2 are not in L'(R9). Still,
we can show that in one sense the scheme is consistent with the anisotropic
mean curvature flow.

1 Introduction and motivation

In the last decades, a lot of attention has been devoted to the motion of interfaces,
and particularly to motion by mean curvature. Applications concern image pro-



cessing (denoising, segmentation), material sciences (motion of grain boundaries
in alloys, crystal growth), biology (modelling of vesicles and blood cells).
1.1 Motion by isotropic mean curvature

The simplest case of motion by isotropic mean curvature concerns the evolution
of a set ©; C R? with a boundary 9§ of codimension 1, whose normal velocity
V., is proportional to its mean curvature s

Vo(z) = k(z), a.e. x €Ty, (1)

with the convention that x is negative if {J; is a convex set. It at ¢ = 0 the initial
set {2y is smooth, then the evolution is well-defined until some time 7" > 0 when
singularities may develop [2].

Viscosity solutions provide a more general framework, that defines evolution
past singularities, or evolution from non-smooth initial sets. If g is a level set
function of (g, i.e.,

ng{xeRd; g(w)g()}, GQO:{xGRd; g(x):()},
and if u denotes the viscosity solution to the Hamilton-Jacobi equation
= div (\VUI) |Vul
’LL(O, iL‘) - (:B)a

then the generalized mean curvature flow §2; starting from €2y is defined by the
0-level set of w [21], B0, 17, 22]

Qt:{xeRd; u(t, x) SO}, o0(t) = {xeRd; u(t,x)zO}.

Alternatively, one can define the motion by mean curvature as the limit of
diffuse interface approximations obtained by solving the Allen-Cahn equation

ou ,
at—AU**W() (2)

where € is a small parameter (that determines the width of the diffuse interface)

and where W(s) = M is a double well potential. This equation can be
viewed as a gradient flow for the energy

Jo(u) = /Rd (;\w? + 1W(u)) da.
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Modica and Mortola [29] 28] have shown that J. approximates (in the sense of
I'- convergence) the surface energy cy J where

1
J(Q) = ldo and ¢ :/ 2W(s) ds.
=/ w= [ 2w

Existence, uniqueness, and a comparison principle have been established for
(see for example chapters 14 and 15 in [2] and the references therein).
Let u, solve with the initial condition

12|

€

ue(z,0) =¢q (

where d(z,Q) denotes the signed distance of a point x to the set 2 and where
the profile ¢ is defined by

g = argmin {/R <;fy’2(s) + W('y(s))) ds;y € Hige(R), 7(—00) = +1,

1(+00) = 1, 2(0) = 3 |

Then, for smooth motion by mean curvature [14} [7], or for generalized motion
by mean curvature without fattening [3, 21], the set

1
Qc(t) = {x eR?; w(x,t) > 2},
approximates §)(t) at the rate of convergence O(€%|log €|?).
The Bence-Merriman-Osher algorithm [9] is yet another approximation to

motion by mean curvature. Given a closed set £ C R, and denoting xz its
characteristic function, one defines

—_

T, FE = {xeRd; u(z, h) > 2},

where u solves the heat equation

ot

{8“(30,15) = Au(z,t), t>0 zcR?
u(z,0) = xp(z).

Setting Ej(t) = T/ME, where [t/h] is the integer part of ¢t/h, Evans [20], and
Barles and Georgelin [4] have shown that Ej(t) converges to Ey, the evolution by
mean curvature from E.



1.2 Motion by anisotropic mean curvature

We use the framework of the Finsler geometry as described in [§]. Let ¢ : R —
[0, +00[ denote a strictly convex function in C2(R%\{0})), which is 1-homogeneous
and bounded, i.e.,

p(t€) = [t[o(8) £eRY teR,
MEI< o(&) < AlE] € eRY,

for two positive constants 0 < A < A < 4o00. We assume that its dual function
#° : RN — [0, +o0], defined by

¢°(€7) = sup{£".€ 5 @(§) < 1}

is also in C2(RV\ {0})). Given a smooth set £ and a smooth function u : R* — R
such that OF = {JJ eRY; u(z) = 0}, we define

o the Cahn-Hoffman vector field ny = ¢¢(Vu).
o the ¢-curvature kg = div(ng).

We say that E(t) is the evolution from E by ¢-curvature, if at each time ¢, the
normal velocity V,, is given by

Vn = —RepNe-

As in the case of isotropic flows, one can define motion by ¢-curvature using a
level set formulation, i.e., following the level lines of the solution to the anisotropic
Hamilton-Jacobi equation

w = ¢°(Vu) ¢2e(Vu) : Viu. (3)

Existence, uniqueness and a comparison principle have been etablished in [18] 16,
6l [5].

The anisotropic surface energy
J(Q) = ¢°(n) do.
o0

can be approximated by the Ginzburg-Landau-like energy

Jep(u) = /R ) (;¢°(Vu)2 + iW(u)) dr,



and its gradient flow leads to the anisotropic Allen-Cahn equation [I]

ou

_ Lo
5 Agu — €2W (u). (4)

The operator Ay := div (¢Z (Vu)gi)o(Vu)) is called the anisotropic Laplacian.

The Bence-Merriman-Osher algorithm has also been extended to anisotropic
motion by mean curvature. One generalization was proposed by Chambolle and

Novaga [12] as follows: Given a closed set E, let T),(E) = {:): € R?; u(x,h) > %},
where u(z,t) is the solution to

ot

{é)u(@t) = Ayu(z,t), t>0 zeR?
u(z,0) = xp(z).

Define then FEj(t) = T}[Lt/ "E. The convergence of Ejp(t) to the generalized
anisotropic mean curvature flow from FE is established in [I2]. The result holds
for very general anisotropic surface tensions and even in the cristalline case. How-
ever, because of the strongly nonlinear character of Ay, the numerical resolution
of is much harder than in the isotropic case.

Another generalization of the Bence-Merriman-Osher algorithm has been stud-
ied by Ishii, Pires and Souganidis [27]. The main idea is to represent the solution
u of as the convolution of yg with a geometric kernel. More precisely, Let
f:R? = R be a function which satisfies the following conditions

(A1) Positivity and symmetry :
f@) 20, f(=2) =), and [ fle)de=1
(A2) Boundedness of the moments :
/Rd 2|2 f (2)dz < +o0,
0< /},L(l |22 f(2)dHI < 0o,  for all p e ST
(A3) Smoothness :

p— /L f(x)dHt and p — /L zix; f(x)dHY  are continous on S,
P p



Given E C R%, define TR F = {af € R ; w(x,h) > %}, where

ule )= [ Kuly) xely—=)dy.

with the kernel 1
% _ d

They showed [27] that T,[Lt/ "p converges to the set E(t) obtained from E as
the generalized motion by anisotropic mean curvature via the Hamilton Jacobi
equation

uy = F(D?*u, Du)

where

Fox) = ([ s@an @) (=5 [ e st ).

This result raises a natural question: Given an anisotropy ¢°, can one find a
kernel f, so that the generalized fromt JFE(t) defined by the associated Hamilton
Jacobi equation evolves by ¢-mean curvature ? This problem has been addressed
by Ruuth and Merriman [33] in dimension 2: They propose a class of kernels and
study the corresponding numerical schemes, which prove very efficient. However,
their appraoch cannot be generalized to higher dimensions. In contrast, our
algorithm is not specific to the dimension 2.

1.2.1 A new algorithm for motion by anisotropic mean curvature

In this work, our objective is to extend Ishii-Pires-Souganidis’ analysis to study
the following algorithm. Starting from a bounded closed set £ C R?, we define
an operator T, E by

b 5)

( {%Z(a;,t):A(z,u(x,t), t>0 zeR?
u(,0) = x&(x)-

T E = {x eR?; u(z, h) >

DN |

where u solves the following parabolic equation:

Denoting by F(u) the Fourier transform of a function u,
F(© = [ ule)e s,
Rd
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the operator Aqg is defined by

Agu=F 1 (—4x26°()*F(u)(©)) -

and can be seen as a linearization of Ay in the Fourier space. The solution v of
(2) can be expressed as a convolution product of the characteristic function of E
and of the anisitropic kernel

Kyy(z) = F! <674ﬂ2t¢0(§)2) (z).

However, this kernel (more precisely Ky ;~1) does not satisfy the hypotheses (A1)
and (As) above: Ky is not positive and x — [pa |2[2Ky(x) is not in L}(R). In
section 2, we etablish some properties of the anisotropic heat kernel K. Precisely,
we prove that the associated Hamiltonian flow is

F(X,p) = (/L K¢de1)_1 (; /L < Xz,z > K¢(ac)d7-[dl>
= ¢°(p)ge(p) : X,

which establishes a link between K, and ¢-anisotropic mean curvature flow.

In section 3, we establish the consistency of a Bence-Merriman-Osher scheme
based on ([5). We have however not been able to prove the convergence of the
algorithm to ¢-anisotropic mean convergence in the general setting of uniformly
bounded and continuous functions. The main difficulty in trying to extend the
argument of [27]. is the thresholding and the lack of monotonicity of our sheme
that may not preserve the continuity of the front.

Therefore, in the last section, we present numerical evidence of the conver-
gence of a modified scheme. In this scheme, the thresholding is obtained via a
reaction term, in the spirit of phase-field approximation. Computationally, the
scheme proves very efficient and very fast, even when the anisotropy ¢° is not
smooth.

2 The operator A¢ and properties of the anisotropic
kernel K

Let ¢ = ¢(&) denote a strictly convex smooth Finsler metric and let ¢° denote its
dual (see [§]). We assume that that ¢° is a 1-homogenous, symmetric function
in C°(R%\ {0}) that satisfies

Al < ¢°(€) < Al¢]. (6)



In particular, it follows that for any ¢ € R% and t € R,

The associated anisotropic mean curvature is defined as the anisotropic Laplacian
operator

Agu = div (6°(Vu)gg(Vu)), Vu € HX(Q)

A direct computation shows that for any ¢ € R?,

{A¢ [cos(27m€.2)] = —4nm2¢°(€)? cos(2m€.x)
Ay [sin(2n€.x)] = —4r2¢°(€)? sin(27€.z),

Le., that plane waves are eigenfunctions of the anisotropic Laplacian (albeit non-
linear). We define A, : H2(R?) — L%(RY) by

Agu = F [-4n26°(&)2Flu](€)]
Given an initial condition ug € L?(R%), we study the solution u of,

{ut(t,m) = Ayu(t, ),
u(0,x) = ugp

The function u can also be expressed as the convolution product u = Ky * ug,
where the anisotropic heat kernel K ; is defined by

Kgu = F [emimtio(@?]

We also set Ky = Ky 1. In the rest of this section, we establish some properties
of this operator.

Proposition 1 (Regularity of f(¢)
The function X¢ L &= e AT O g in WIHLYRY) | and the distribution Dd+2I€¢
is a regular function.

Proof. First, we claim that the Hessian of IQ, is a regular distribution since

DE(€) = —8m2¢2(€)¢°(€)e 7 97O,



and
D2K¢(€) = 647T4(;§O(§)2 <¢g(€) ® ¢g(§)) 674#2@50(&)2
=872 (6°(€)0%(€) + B2(8) ® 62()) e~ 1™,

We note that ¢¢ is discontinuous at { = 0. Nevertheless, we next prove that the

d — 1" derivative of Dzlﬁb is a regular distribution, without Dirac mass at £ = 0.
Assume that f = D"+2X¢ is an integrable function on R? for some integer n < d.
The homogeneity of ¢° shows the existence of a constant (), such that

|D”+2K | < Chp We_)‘lﬂ , forall £ € R%\ {0}.

Since f is smooth away from £ = 0, the distributional derivative of f is the sum
of a regular function and of possibly a Dirac mass at £ =0 :

Df={Vf}+c,

where ¢ is a constant and V f denotes the pointwise derivative of f. Let ¢ €
DR and let € > 0. Then

(Df,p) = —(f,divp) = /fdlvgodx

= —/ f.divgodx—/ f.divepdx
R4\ B(0,¢) B(0,¢)

_ / V fopdy — / F(p.it)do — / F.diveds,
R4\ B(0,¢) 0B(0,¢) B(0,€)

Since we assumed that f € Ll(Rd)dn+2, the last integral above tends to 0, as
€ — 0. Moreover as n < d, we have

/ frodidol < ellpe / 7€_>“§|2d0
9B(0,¢) 9B(0,¢) |§|n

< lellL=Cn /83(0 )6_"d0 < CanOHLooed—l—n,

J€
so that
lim / f @.ido| = 0.

e—0 dB(0,¢)

It follows that ¢ = 0, which concludes the proof. 0



Proposition 2 (Decay properties of K).
Let s € [0,1[. There exists a constant Cyo s, which only depends on the anisotropy
¢° and on s, such that

Coo.s Vz € R%.

|Ky(2)] < Tof [ drTFs (7)

Remark 1. The case s = 0 is easy: According to proposition (1|, the function
d+1

ATK¢(£) is in LY(RY). The continuity of the Fourier transform from L' to
L shows that

N d+1 A
I+ [ Kyl e < CIE(6) + A7 Ko(€)ll 1 ey,

and since K¢(§) = ¢4 9%(9)?

Cyo
Ko()] < § $°,0 vz € RY,

+ |x|d+l’

The proof uses properties of interpolation spaces [I0]. Consider X, Y two
Banach spaces, and for u € X +Y and t € RT, let

k(t,u) = _inf {uollx + tluilly}-
o+u1

U=U

For s € [0,1] and p > 1, the interpolation space [X,Y],, beetween X and Y is
defined by

[(X,Y]sp = {ue X+Y; t°K(t,u) e L <1)}

In particular, given a strictly positive function h : R — R, consider the weighted
space L}° defined by

L (RY) = {u € L°(RY) ; sup {h(z)u(z)} < oo} .
zERY
One can interpolate between L> and L7° according to the following lemma.
Lemma 1. Let h be a strictly positive function R* — R, and let s €]0,1[. Then
[L(R), L (R)]s 00 = Li2(R)
P'roof.d 1) Assume that u € L3S(R?). There exists a constant C such that for a.e.
r € RY

C
h(z)

u(@)| < ;- (8)

To estimate k(t,u) = infy—yg+u, {Hu0||Loo + 75HU1||L;Z°°}, we note that
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o If t > 1, the choice up = u and u; = 0, shows that K (t,u) < ||u||fe.

o If t < 1, we consider the set A = {1‘ e R |u(x)|h(z) < ts_l}, and we
choose ug = xac v and u; = x4 u, so that ||U1||L;L°° < t5~1. Moreover, we
remark that for all z € A, |u(z)|h(x) > t*~! so that, in view of

lug(xz)] < Ch(z)™® < C|u0(:c)|sts(1*s)’
and thus k(t,u) < (C + 1)t5.

In summary, these estimates show that

T (CH D it <,

which proves that u € [L*°, L°]s -
2) Conversely, we consider u € [L™, Ly°]s ». For all t > 0, there exists a decom-
position u = wup + u1 such that

|u07t|Loo + t‘u1,t|Lzo S Cts
It follows that for all t > 0, we have
h(.’L’)SIU(ZL’)’ S ’h(x)s ’uO,t(x) -+ uLt('fL')‘ S C <h(.’IJ)8ts + h($>8_1t8_1> )

Choosing t = h(z)~! in the above inequality shows that for all 2 € R?,
h(z)® |u(x)| < 2C, which concludes the proof. O

We use the following properties of interpolation spaces:

(P1) if T is continous from X — X and from Y — Y, then T is continous from
[X, Y]sp to [X,Y]sp.

(Pp) if p<p/, then [X,Y],, C [X,Y]s, forany0<s<1andp>1.
(P3) [L=(RY), Ly 1y BRD]s00 = LY gpys (RY)  for any 0 < s < 1.
In the following, we consider the case where T is the Fourier transform, X =

LY(RY), Y = L®(R?), X = WH(RY) and ¥ = L, ) (RY).

11



Proof of Proposition[3 We claim that it suffices to show that for any 0 < s < 1

d+1l A~

u(§) = ATTE(E) €[X, Y] (9)

Indeed, the inclusion [X,Y]s1 C [X,Y]s o implies then that v € [X,Y]s o, s0O
that in view of (P;) and (Ps3) we obtain

i € [X, Y500 = [LZRY), L 12y RY)]s.00 = LTy oy (RY),
and consequently
|(1+ |z a(z)| = [(1+ |2|T™) Kg(2)(1 + |2])| < Cgos, for all z € R
It follows that for some constant Cgyo

Cge.s

| < W, for all z € RY.
x

Ky (x)

We now prove @ The homogeneity of ¢° shows that for some ¢; > 0 and
ca > 0, and for £ € R?\ {0},

o e
lu()] < ’§|dl—1e NP and |Vu()] < @e Al

which shows that u € X = L'(R?). However, u may not belong to Y = L>®(RY).
We now estimate k(u,t), for t € RT. If t > 1, we set up = u, ug = 0, so that

E(t,u) < |lul|x, Vt>1. (10)
If t < 1, consider the function p;(§) defined by

0 if |zl <t
pr(€) = {1 it Ja] > 2t
sin (g HT_t) otherwise.

We choose ug = (1 — py)u and u; = pyu and check that

C
< d </ ———d¢ < 2C|8%t.
wligy < [ W@ [ e < 20181

Moreover,
IVurllpigay < [IVpru+ peVul| g1 e
S o | TPH@E S [ (el
<

i O -xeP / O e
i — ¢ d¢ + —e dg.
2t /B(O,Qt)\B(O,t) ||t . RA\B(0,t) |€]4 :

12



First, we have

2 d
1/ S_lef)‘mzdf < g|sd’ dr < S ‘CW'
2t JB(0,200\B(0,t) €] 2t ¢ 2
Second,
C e / g2 / C e
—e d —e d€ + —e d
/Rd\B(O,t) €| § BO,)\B(0,) |€|? R4\ B(0,1) €] $
1 e’}
< C|sd|/ 1dr+C’|Sd|/ e dr
¢ r 1
.
< d Vv
< C|S |<|ln(t)|+ﬁ 5 ),
so that
N
< a (T, VT ,
ually < c[\5|<2+ﬁ . +rln<t>|)]

Consequently, this decomposition of u shows that
E(u,t) < C(1+|In(t))t, Vt<1, (11)

for some constant C' > 0. In summary,

Fut) < w| x if t>1
T le@+ m@))t if t<1,

and therefore we obtain

1
-5 1 _ -5
O I

' (Co+ Ci[In(?)]) > Jullx
< /0 p dt+/1 Kt < o,
which proves that u € [X,Y]s1 as claimed. O

Corollary 1. For any s € [0,1] and p € S¢,

2" Ky € L'RY),  (Ky),. € 'R, (z@xKy), € L'R").
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Proposition 3 (Decay of averages of K, on spheres).
The integral

I(R) = / KydHi !,
9B(0,R)
is stricly positive, and decays rapidly as

R4- 1|Sd 1’ _ R2
T <1 <

- (47r)d/2)\d
where X and A are bounds for ¢° as in @

RA- 1|Sd 1| _ R

e4>\

Proof. Since the measure p := dgp(o,r) has finite mass, its Fourier transform is
the continuous and bounded function

ﬂ(f) _ /e—Qm':c{dM :/ e—27rix~§.
R4 OB(0,R)

As p is radially symmetric, i can be expressed in the form

pE) = RTUI(RIE),

where J is a function RT — R. It follows that
— — A2 40 2
IR) = (bonom . Ko) = (RTI(RIE), )

= R / N / LI (Rr)e 47 0O gragy =, (12)
Sd—1

We use the particular case when ¢°(§) is isotropic, i.e., ¢°(§) = |£| to estimate the

previous integral. In this case, Ky = ~T is the heat kernel, and by a direct

1
(@m)a2°¢
calculation We see that the corresponding integral is I(R) =< dp(o,r): Ky >=

d—1|gd—1
% . Comparing this expression to (|12]) and using the radial symmetry

of K4 shows that

+oo 1 Rr2
d—1 —4m2r2 _R%
J(R dr = ———=
/0 7 (Rr)e r (47r)d/26 T,
or, after a change of variable, that
+oo 1 __R%
—47’I’2¢D(9)2T‘2 - - ¢o(9)2
/0 rJ(Rr)e dr (4W)d/2¢0(9)de 4 . (13)

Returning to a general kernel K4, we deduce from and that

RA-1 1 __R?
I R — o - 4¢o(@)2 d d—1
( ) (47T)d/2 ~/Sd71 ¢o(9)de HE
which in view of @ concludes the proof. O

14



Proposition 4 (Positivity on hyperplanes).
For all p € S?, the integral fpl K¢d7-[d_1 is well defined, and satisfies

1
K.d -1 _ -~
/pi = o)

In particular, we have

1 d—1
<
2/7A = / Kod# 2f N

Proof. Let p € S?. We already know from Corollary 1] that fp 1 K¢d7-[d_1 is well
defined. Consider for y1 > 0, the approximating functions f,, defined by

f#(é‘) 747r2¢"(€)2 e~ TH3IE?

The function f,, belongs to the Schwartz space S (R%). Moreover, fu — I@ in
We=LL(RY), and the trace trace theorem [26] shows that one also has

lim /Rfu(SP)dS = /Rlqu(sp)ds. (14)

H—00

On the other hand, it follows from the Lebesgue dominated convergence theorem
and from that

: d—1 _ d—1
lim /pi JudH = /pL KpdH". (15)

U—>00
As f, € S(R?), we infer that
| fudH = = (b0 ) = 60 FlD = [ Fulsp)d
P
so that and yield
/ KydH¥™ = /If'¢(sp) ds:/e_47r252‘750(1@2 ds
pt R

R

_ —n(2vmsr)s) gg 1
/Re T 2w (p)’

which concludes the proof. O
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Proposition 5 (Moments of order 2).
Let p € S®. Then %pr T® xK¢de*1 is well defined and satisfies

Pl /m
Proof. Corollary [f states that the integral [ |2[2K 3dH4~ 1 is well defined. Re-

calling the sequence f, used in the previous proposition, we observe that D? fu —
D?K, in W4=LL(R?), so that the trace theorem implies

1 d—1
2 /pl T@zKodHT = o

lim /R D*f,(sp)ds = /R D*K 4(sp)ds. (16)

H—+00

From proposition [2] and the Lebesque dominated convergence, we obtain

lim Lx@:}cf#(x) dH1 —>/

| r@w Ky(x) dHO (17)

Moreover, we have

d— 1 ;
/pla:®:cfu(x)d?-[ Vs (b a@afu) =15 (8, D)
_ 1 27

— 47r2/RD Ju(sp)ds,

so that in view of

1 N
/L x @ rKy(x)dH = ) /]R D*K 4(sp)ds.
P

We next estimate the above right-hand side by a direct calculation:

1

_R/RDQIQ)(S])) ds = [2¢0(p)¢gg(p)+2¢g(p)®¢g<p)} /]1{6747#52(1,0(}3)2 ds

_ 71.252 o 2
~ |208(0) ® 52(p)] /R%%%%m% A0 w)? g,
Further, we see by integration by parts that
JLsmstor e s = [ amasgep)e 0 ) ds
R R

. _47r252¢o (p)2 d o 1
= e § = ————,
/JR 2y/m¢°(p)

16



and we conclude that

Corollary 2 (The operator F'(X,p)).
Given X € R™? and p € S¢, let

F(X,p) = (/pL K¢(x)d?-[d1>_l (; /pL < Xz,x> K¢(a;)d7-ld1> . (18)

This operator is elliptic and satisfies

F(X,p) = ¢°(p)dg(p): X. (19)
Proof. Equation is a direct consequence of propositions [4| and [5, while the
ellipticity of F' follows from the convexity of ¢°. O

Remark 2. In the next section, we introduce an algorithm for motion by anisotropic

mean curvature, and show its consistency with an evolution equation of the form

\Y%
up = —F(D?u, W—u) where F' is defined by . The expression shows that
u

this operator is precisely the one corresponding to motion by anisotropic mean
curvature (see [8]).

Proposition 6 (Positivity of order moment s). Let V be a subspace of R? of
dimension 1 < m < d, and let 0 < s < 2. Then

/ ] K ydH™ > 0.
y

Proof. We first consider the case m = d and V = R%. we consider the finite part
Pf (W) as a temperate distribution, defined for ¢ € S(R?) by

<Pf (\:UEHJ ’ S0> =% {/Rd\B(O,e) de}'

This function happens to be the Fourier transform of the distribution |z|*. More
precisely,

Fz|*] = CsaPf (@) . with Cyg= 2S+dwd/2w, (20)
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(see for instance [25], ' denotes the Gamma function). We can thus write

s _ s _ 1 747r2¢>0(£)2
[t Rade = ol ) = (Coapt (b e @)
Cugl ! 0 922
— C,4lim S ——Y
. E—>0/Rd\B(O,E) |2mg |+ (22)

a stricly positive quantity, in view of the sign of C; 4.

Suppose now that m < d and consider the subspace V' = Vect{ey,...,en}.
We write z = (2/,2"), £ = (¢,&P"™¢), with 2/,&’ € V. A straightforward
computation shows that

/V |$/|8K¢ dH™ = <|Jj”8 , K¢($/,O)>D’(Rm),D(Rm)

_ d—m /8 1o
B <HL ¢'"=0} ® |2, K¢($ L )>D’(Rd),D(Rd)

1
— (ConPt (gmgrrs ) + 1) ,
< |2mg |t © D/(R™),D(R™)

where the function h : R™ — R is defined by
N — —4m2¢°((§'.6"))° g¢
ney=[ e ae".

The next lemma states that h is C' and maximal at ¢ = 0, which in view of
and of the sign of Cj ,, concludes the proof. O

Lemma 2. The function h : R™ — R, defined by
"N — —Am2¢0((€/,6")? gt
ney=[ e d

is Ct, with fast decay as |¢'| — oo, and is maximal at &' = 0.
Proof. recalling @, we first remark that

P G L L
so that the functions & — e~4m9°(€6)% and their derivatives are uniformly
bounded in L!(R4™™). The C' regularity of h is thus a consequence of the
Lebesgue theorem. The above estimate also shows that

_471.2)\25/2

1
(¢! </ —ATINEGHE D e, dey < ———
| (&- )| < i e 6 +1 gd — 2Am\/7_rm6
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To determine the maximal value of h, we consider the sets Ag ;, defined for
all ¢ € R™ and t €]0, 1] by

Agy = {5// e REM . A€ E)? > t}

Figure 1:

Fix &, € R™. The set Ag(z),t can be defined as the intersection of the hyperplane
{{ eR?; ¢ = 56} with the Frank shape

Bure = {€ e RY; 0°(€) < ooy/~nio) |

s

The set Bgo; is convex since ¢° is convex. Moreover, from the symmetry of ¢°,

(¢°(&) = ¢°(—€)), we have
|A£6,t| = |A—§6,t|-

Next, let
e 1
A{é,t = 5 (Afé,t + A£67t>
1

= {erertm i e aguixAgn € =3E+)

We remark that the convexity of ¢° implies that fl%,t C Ap;. Indeed, let
5// € A{(),tv

(0.6 = ¢ (5D +(-6.)
5 (07 ((Eh €0) + 0° (& &) < 5/ —inl0),

IN
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so that e~4m¢°((0.€")" > t, ie. & € Agy. Invoking the Brunn-Minkowski in-
equality, we obtain

A —-m 1 —-m
|A£(’),t‘1/(d ) — §|A§6¢+A*€6,t‘1/(d ) (23)

> % (|A§(’),t

1(d=m) || Af%,tyl/@—m)) > | Agr o[ (24)

and finally that,
[Aot| = [Agy el = [Agy ol

As this equality holds for any &, € R™, it follows that h is maximal at ¢ = 0. O

3 The Bence-Merriman-Osher-like algorithm

Barles and Souganidis [6] have studied the convergence of a general approximation
scheme to viscosity solutions of nonlinear second-order parabolic PDE’s of the

type
ug + F(D*u, Du) = 0. (25)
The main assumption on the function F' is its ellipticity, i.e., F' satisfies
VpeRIN\{0},VX,Y e MP X <Y « F(X,p)<F(Y,p). (26)

Barles and Souganidis study a family of operators G}, : BUC(R?) — BUC(R?)
for h > 0, which satisfy, for all u,v € BUC(R?)

o Continuity

VeeR, Gplu+c)=Ghu, (27)

o Monotonicity
u<v < Gpu < Grv+o(h) (28)
(see remark 2.1 in [6])

o (Consistency

limy,_g h_l(Gh(QP) —p)(z)

oo (md
V¢ € CT(RY, {hmh% h=H(Gnl(p) — ¢)(x)
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For all T > 0 and for all partitions P = {O =ty < ... < t,, = T'} of [0,T7], one
can then define a sequence of fonctions up : R? x [0,7] — R by

Gy (up(, 1)) if ¢ € (ti,tisa],
up(.,t) = t—t; (up (., ti)) 1 (tis tiva] (30)
g if t=0,
If additionnally the following condition holds,
o Stability
there exists w € C([0, 00, [0,00]), independent of P and depending
on g only through the modulus of continuity of g, (31)

such that w(0) = 0 and for all ¢ € [0, ],
[up(.,t) — gl < w(?),

then the following theorem holds [6] :

Theorem 1. Assume that Gy, : BUC(R?) — BUC(R?) satisfies (27)), (28), (29),
and for all T > 0, g € BUC(RY) and all partitions P of [0,T]. Then, up
defined in (@) converges uniformly in R x [0,T] to the viscosity solution of .

This result was used by H. Ishii, G. Pires and P.E. Souganidis in [27] to study
anisotropic mean curvature flow. These authors introduce a kernel f, which
satisfies:

(Hy) f(z) >0, f(—2)=f(z) forallz € R and [gaf(z)dz=1
(H2) [,o(1+ |z|?)|f(2)|dHIt < 0o for all pe 59

(Hs) the functions p — [ 1 fx)dH*=t p— Jor vz f(z)dHIL,
s 1<i,j<d, arecontinuous on S¢

(Ha) Jpa |2?|f(2)ldz < oo

(Hs) For all collections {R(p)}o<p<1 C R such that R(p) — oo and pR(p)?
0 as p — 0, and for all functions g : R™! — R of the form g(¢&)
a+ (A€, €) with a € R and A € ST,

—

lim sup sup
P—07e0(d) 0<r<p

Lo dulerg©)leds - fU<5,o>g<§>ds‘ -0,
B(0,R(p)) Ra-1

where O(n) denotes the group of d x d orthogonal matrices, and where
fu : R? — R is defined for all U € O(d) by fy(z) = f(U*z).
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Theorem [I] has been applied to schemes for anisotropic mean curvature motion
(see theorem 3.3 in [27]) with G}, defined by

Gh\IJ(JJ) = Ssup {/\ ER; Sh]lxpz)\(m') > Qh} (32)
= inf {)\ ER; Sh]hpz)\(x) < 9h} (33)

where

Shg(a) =27 (/VRY < gla) =02 [y Rg(o —y)dy, 6= 5+ eV

and where F'(X,p) is given by

Fotn) == ([ s@an @) (3 [ G0 s@ant ) + ).

(the last term in this integral models a forcing term).

In this section, we follow the proof in [27] to show a consistency result in our
case when f is a non positive kernel and does not have moments of order two (
ie. z — |z|2f(z) ¢ LY(RY)). We introduce two operators G; and G, defined by

GiU(z) = sup{X€R; Splygsa(z) > 0} (34)
G;‘P(aj) = inf {)\ eER; Shﬂ\pz)\({ﬂ) < Gh} (35)

which are not necessarly equal as our kernel is not being nonnegative.

3.1 A consistency result in the case where f = K,

To adapt these results to our context we modify the assumptions (H;), (H4) and
(Hs) as follows

(H) [y fx)dH?™t > 0forallp e 59, f(—z) = f(x) and [ f(x)dz =1,
(H}) Jgalz* Pf(x)]de < oo for0< p <2,
(H5)

HY) Assume that p €]0,1/2]. Then for all collections { R(p) }o<p<1 C R such that
R(p) — oo and pR(p)®>™* — 0 as p — 0, and for all functions g : Rt — R
of the form g(¢) = a + (A€, &) with a € R and A € S,

lim sup sup
r=0yeo(d) 0<r<p

[ gulerg@g©ds - [ fU<s,0)g<s>d5| -0,
B(0,R(p)) Rd-1

lim sup sup
p—0 UeOo(d) 0<r<p

| lutergnlgds— | fU(é“,O)Ig(ﬁ)dé‘:O,
B(0,R(p)) Rd-1

In this last statement, B(0, R(p)) denotes the (n — 1)-dimensional ball, cen-
tered at 0 and of radius R(p).
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3.1.1 K, satisfies (Ho, H3) and (H{, Hj, H})
We remark that K¢(£) = K¢(—§) and F(Ky)(0) = 1, so that

Ky(—x) = Kg(z) for all z € R, and ) Ky(x)dx = 1.
R

Moreover, proposition (4f) shows that
1

d-1 < d

/pLK(b(x)d”H _(47r)d/2Ad>O for all pe S¢,

so that (Hj) is satisfied. Propositions and also imply that K, satisfies
(H2)> i'e'7

/L(l + |2)|Ky(z)|dH?™ < oo forall pe S (36)
P

Concerning (Hs), we note that
1

1
- Ky(z)dH! =
2/pLx®x o(z) NG

Pee(p),

and that

1
Kydit! = — —
/pl st 2/7¢°(p)

Since ¢° is smooth on R?\ {0} and positive (in particular ¢° > X on S ) we see
that the functions

p— /L qu(a:)d?-[d*l p— /l a:ia?jK(p(x)de*l, 1<i,j <d,
P P

are continuous on S¢.
We next prove that if 0 < p < 2, then

[ a1 @)da < .
Rd
Indeed, proposition [2f with s = 1 — u/2 shows that

B Cyo |2+ C
2 12 ¢ 5S
/]Rd 2T (@)l de < /Rd 1+ ’x‘d+1+(1—#/2)dx < /Rd 1+ |z[d+n/2 da

o 1
d
C|S |/0 (1+7~1+#/2)dr < o0,

IN
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for some generic constant C. It remains to prove (H{): Let 0 < p < 1/2 and let
R : RT — R* such that, as p — 0, R(p) — oo and pR(p)>~* — 0. Setting
fu(z) = K4(U*x), we consider

/B(O,R(p)) fo(Z,rg(Z))g(T)dT = /B (OvR(p)Q,Tu) fu (&, rg(2))g()di (37)

! /B(OzR(p))\B (0.8 fu(@,rg(2)g()ds.  (38)

Let h,, h: R?1 — R denote the functions
{hp,r@) = Jo(Brg@Ng@x, o e
hz) = fu(z,0)9(2).

When r < p, h, () converge to h(Z) pointwise as p — 0, and

for some constant C' independent of p, r and U. Invoking the Lebesque dominated
convergence theorem, we conclude that

p_}l[%rrl(p i hpr(Z)dZ — s h(z)dz,

uniformly with respect to U and r. The second term in converges to 0
uniformly with respect to U and r as p — 0, since

/ 2y |fU(Z,79(2))g(Z)| di
B(O,R(p»\B(o,R(p) z )

C/ 1 5 < C|Sd_1| /R(P) 1 d
_ — 7 - ar = ., T ————ar
B(O,R(p»\B(o,R(p)QT“) 1+ |g|d-T+s R(p) 2" 1+ |r|lFs

- R(p)s) :

<

—(2—p)s
2

IN

c[s*!| (Rip)

for some generic constant C'. We conclude that

lim sup sup
P=0e0(d) 0<r<p

/ fo(&,rg(2))g(T) dE —/ fu(2,0)g9(%) di‘ = 0.
B(0,R(p)) Rd—1
The second statement in (H{) is established similarly.
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3.1.2 The consistency proof

Proposition 7. Let ¢ € C?(R?). For all z € R% and € > 0, there exists § > 0
such that for all x € B(z,0) and h € (0,6], if Vo(x) # 0 we have

Gyrola) < la)+ (~F(D*0(2), Dp(2)) + €)h
and Gp(z) > ¢(z) + (~F(D%p, Dp(2)) — e)h.

Proof. We closely follow the argument in [27].

1. We only prove the first inequality. The other one is obtained similarly.

2. Without loss of generality, we can assume that z = 0. Let us fix a € R,
such that

a > —F(D?*(0), Dyp(0)).
The inequality is proved if we can exhibit a 6 > 0 such that, for all z € B(0, )
and h € (0, ],
Sh]Lngp(x)-i-ah(x) < Op.

3. Fix §; > 0, such that Dy # 0 on B(0,6;) and choose a continuous family
{U(z)}2eB(0,5,) C O(d), such that for all z € B(0,41),

vle) (@:ﬁiii‘) =ed,

where e; denotes the unit vector with components (0,0, ...,0,1) € R?. Note that
if z € B(0,01), then

Sh]lapch(m)—o—ah = /]Rd fU(m) (y) ﬂango(x)—i—ah(x - \/EU(:U)*y)dy
4. Choosing ¢ smaller if necessary, (H{) implies the inequality
a > —F(D%p,Dy) in B(0,6),

or in other words,

1
2 Ra-1

(PU@D @U@ PE. €) o€ 0ds — a [ - fup(€ 0
< —dDe(@),  (39)

where P denotes the d x (d — 1) matrix with components P;; = d;;.
5. We next fix € > 0, and 2 € (0, d1], such that for all z € B(0,d2),

;/R (PUO)(D*0(0) + 31U (0) P, €) fuw) (&, 0)d€

~a=) [ fuw (€0 < ~(E+ D). (40)
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6. The Taylor theorem yields a v > 0 such that for all A > 0, y € R%, and
z € B(0,6,), if Vh|y| <, then
ple = VhU(2)"y) < ¢(x) = Vh(De(x), Ulz)"y)
P (U@ (D%p(a) + DUy, v)
¢(2) = Vh|Deo(@)|ya + Chyj

+5 (PU@DA() + 2200 Py o).

IN

and
pla—VRU@)Y) 2 olw) Vi (Dela), U)y)
5 (V@) (D%(a) — DUy, )
p(@) — VA Do(x)|ys — Chyj

F(PU)(D%la) — 2 DU (@) Py o),

v

where we write y = (¢/,y4) € R¥™! x R, and where C is a positive constant.
7. Reducing v and J- if necessary, the previous inequalities imply that for
y € B(0,7/vh) and z € B(0,6s),

o if o(x — VAU (x)*y) > @(x) + ah, then

v 1D¢($)|\/_Ec\/5yd (_a + % <P*U($)(D2w(x) + 221U (2)* Py, y'>>
W\/(E(m (—a +e+ % <P*U(0)(D2cp(0) +3&2)U(0)* Py, y’>)
. if
v= ID\;(EO)I <_a —e+ % (P*U(0)(D%p(0) — 3 1)U(0)" Py, y/>> :
then
oz — \/EU(az)*y) > p(z) + ah.
We define

) (D?p(0) + 3€2I) U(0)* P
Ac = [Dp(0)| "L P*U(0) (D?p(0) — 36X1) U(0)* P,



and for 3/ € R4~!
/ 1 ro / 1 ro
9 = (—ae +5 (A% y >> 9:(y') = (—ae +5 (A y >) :
We also set
Vie = {y € R'5 oo = VAU (2)'y) = p(2) +ah
and

El =1y eR; gy < Vhg(y)
yeR?; g < Vhg(y)t.

We check that for all x € B(0,d5),

Via N BO,7/VR) € (B, 0 BO/Vh)
ha NBOAVE) - (Ve 0 B0,/ V)

eh,x

€,h,x

8. The assumption (Hj4) yields the existence of a decreasing fu