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Abstract

The aim of this paper is to develop new Coherent Interferometry (CINT) algo-
rithms to correct the effect of an unknown cluttered sound speed (random fluctuations
around a known constant) on photoacoustic images. By back-projecting the correla-
tions between the pre-processed pressure measurements, we show that we are able to
provide statistically stable photo-acoustic images. The pre-processing is exactly in the
same way as when we use the circular or the line Radon inversion to obtain photo-
acoustic images. Moreover, we provide a detailed stability and resolution analysis of
the new CINT-Radon algorithms. We also present numerical results to illustrate their
performance and to compare them with Kirchhoff-Radon migration functionals.
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1 Introduction

In photoacoustic imaging, optical energy absorption causes thermo-elastic expansion of the
tissue, which leads to the propagation of a pressure wave. This signal is measured by trans-
ducers distributed on the boundary of the object, which in turn is used for imaging optical
properties of the object. The major contribution of photo-acoustic imaging is to provide im-
ages of optical contrasts (based on the optical absorption) with the resolution of ultrasound
[21]. The absorbed energy density is related to the optical absorption coefficient distribution
through a model for light propagation such as the diffusion approximation or the radiative
transfer equation. Although the problem of reconstructing the absorption coefficient from
the absorbed energy is nonlinear, efficient techniques can be designed, specially in the con-
text of small absorbers [2]. The absorbed optical energy density is the initial condition in the
acoustic wave equation governing the pressure. If the medium is acoustically homogeneous
and has the same acoustic properties as the free space, then the boundary of the object
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‡Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, site Chevaleret,
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plays no role and the absorbed energy density can be reconstructed from measurements of
the pressure wave by inverting a spherical or a circular Radon transform [15, 16, 13, 14].

Recently, we have been interested in reconstructing initial conditions for the wave equa-
tion with constant sound speed in a bounded domain. In [1, 3], we developed a variety of
inversion approaches which can be extended to the case of variable but known sound speed
and can correct for the effect of attenuation on image reconstructions. However, the situa-
tion of interest for medical applications is the case where the sound speed is perturbed by
an unknown clutter noise. This means that the speed of sound of the medium is randomly
fluctuating around a known value. In this situation, waves undergo partial coherence loss
[12] and the designed algorithms assuming a constant sound speed may fail.

Interferometric methods for imaging have been considered in [9, 19, 20]. Coherent in-
terferometry (CINT) was introduced and analyzed in [5, 6]. While classical methods back-
propagate the recorded signals directly, CINT is an array imaging method that first computes
cross-correlations of the recorded signals over appropriately chosen space-frequency windows
and then back-propagates the local cross-correlations. As shown in [5, 6, 7, 8], CINT deals
well with partial loss of coherence in cluttered environments.

In the present paper, combining the CINT method for imaging in clutter together with a
reconstruction approach for extended targets by Radon inversions, we propose CINT-Radon
algorithms for photoacoustic imaging in the presence of random fluctuations of the sound
speed. We show that these new algorithms provide statistically stable photoacoustic images.
We provide a detailed analysis for their stability and resolution and numerically illustrate
their performance.

The paper is organized as follows. In Section 2 we formulate the inverse problem of
photoacoustics and describe the clutter noise considered for the sound speed. In Section 3
we recall the reconstruction using the circular Radon transform when the sound speed is
constant and describe the original CINT algorithm. We then propose a new CINT approach
which consists in pre-processing the data (in the same way as for the circular Radon inver-
sion) before back-projecting their correlations. Section 4 is devoted to the stability analysis
of this new algorithm. Section 5 adapts the results presented in Sections 3 and 4 to the case
of a bounded domain. We make a parallel between the filtered back-projection of the circu-

lar Radon inversion in free space and of the line Radon inversion when we have boundary
conditions. Both algorithms end with a back-projection step. We propose to back-project
the correlations between the (pre-processed) data in the same way as in Section 3. The
paper ends with a short discussion.

2 Problem Formulation

In photoacoustics, a pressure wave p(x, t) is generated by an electromagnetic energy deposit
p0(x): 





∂2p

∂t2
(x, t) − c(x)2∆p(x, t) = 0,

p(x, 0) = p0(x),
∂p

∂t
(x, 0) = 0.

The imaging problem is to reconstruct the initial value of the pressure p0 from boundary
measurements. Most of the reconstruction algorithms assume constant (or known) sound
speed. However, in real applications, the sound speed is not perfectly known. It seems more
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relevant to consider that it fluctuates randomly around a known distribution. For simplicity,
we will consider the model with random fluctuations around a constant:

1

c(x)2
=

1

c20

(
1 + σcµ

( x

xc

))
, (2.1)

where µ is a normalized stationary random process, xc is the correlation length of the
fluctuations of c and σc is their relative standard deviation.

3 Imaging Algorithms

Consider the two-dimensional case. Define the Fourier transform by

f̂(ω) =

∫

R

f(t)eiωt dt, f(t) =
1

2π

∫

R

f̂(ω)e−iωt dω. (3.1)

In free space, it is possible to link the measurements of the pressure waves p(y, t) on the
boundary ∂Ω to the circular Radon transform of the initial condition p0(x) as follows [11]:

RΩ[p0](y, r) = W[p](y, r), y ∈ ∂Ω, r ∈ R
+,

where the circular Radon transform is defined by

RΩ[p0](y, r) :=

∫

S1

rp0(y + rθ)dσ(θ), y ∈ ∂Ω, r ∈ R
+,

and

W[p](y, r) := 4r

∫ s

0

p(y, t/c0)√
s2 − t2

dt, y ∈ ∂Ω, r ∈ R
+.

Here S1 denotes the unit circle. When Ω is the unit disk with center at 0 and radius X0 = 1,
in order to find p0 we can use the following exact inversion formula [17]:

p0 =
1

4π2
R?

ΩBW[p], (3.2)

where R?
Ω (the adjoint of the circular Radon transform) is a back-projection operator given

by

R?
Ω[f ](x) =

∫

∂Ω

f(y, |x − y|)dσ(y) =
1

2π

∫

∂Ω

∫

R

f̂(y, ω)e−iω|x−y|dωdσ(y), x ∈ Ω,

and B is a filter defined by

B[g](y, t) =

∫ 2

0

d2g

dr2
(y, r) ln(|r2 − t2|) dr, y ∈ ∂Ω.

Note that (3.2) holds only in two dimensions. Moreover, in the Fourier domain, it reads

p0(x) =
1

(2π)3

∫

∂Ω

∫

R

B̂W[p](y, ω)e−iω|x−y|dωdσ(y), x ∈ Ω.
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Hence, we introduce the Kirchhoff-Radon migration imaging functional:

IKRM(x) =
1

4π2
R?

ΩBW[p](x) =
1

2π

∫

∂Ω

∫

R

q̂(x, ω)e−iω|x−y|dωdσ(y), (3.3)

where

q =
1

4π2
BW[p] (3.4)

is the pre-processed data.
A second imaging functional is to simply back-project the raw data [4]:

IKM(x) = R?
Ω[p](x) =

1

2π

∫

∂Ω

∫

R

p̂(y, ω)e−iω|x−y|dωdσ(y), x ∈ Ω. (3.5)

As will be seen later, this simplified functional is sufficient for localizing point sources in
homogeneous media, but may fail for imaging extended targets and/or in the presence of
clutter noise.

When the sound speed varies, the phases of the measured waves are shifted according to
the unknown clutter. To correct this effect, the idea of the original CINT algorithm is to
back-project the space and frequency correlations between the data [6]:

ICI(x) =
1

(2π)2

∫

∂Ω

∫

|y2−y1|≤Xd

∫

R

∫

|ω2−ω1|≤Ωd

p̂(y1, ω1)e
−iω1|x−y1|

×p̂(y2, ω2)e
iω2|x−y2|dω1dω2dσ(y1)dσ(y2).

(3.6)

Note that, when Ωd → ∞ and Xd → ∞, then ICI is the square of the Kirchhoff migration
functional:

ICI(x) = |IKM(x)|2.
The purpose of the CINT imaging functional is to keep in (3.6) the pairs (y1, ω1) and (y2, ω2)
for which the data p̂(y1, ω1) and p̂(y2, ω2) are coherent and to remove the pairs that do not
bring information. As will be shown later, ICI is quite efficient in localizing point sources
in cluttered media but not in finding the true value of p0. Moreover, when the support of
the initial pressure p0 is extended, ICI may fail in recovering a good photoacoustic image.
We propose two things. First, in order to avoid numerical oscillatory effects, we replace
the sharp cut-offs in the integral by Gaussian convolutions. Then instead of taking the
correlations between the back-projected raw data, we pre-process them like we do for the
Radon inversion. We thus get the following CINT-Radon imaging functional:

ICIR(x) =
1

(2π)2

∫

∂Ω

∫

∂Ω

∫

R

∫

R

e
−

(ω2−ω1)2

2Ω2
d e

−
|y1−y2|2

2X2
d

×q̂(y1, ω1)e
−iω1|x−y1|q̂(y2, ω2)e

iω2|x−y2|dω1dω2dσ(y1)dσ(y2),

(3.7)

where q is given by (3.4). Note again that, when Ωd → ∞ and Xd → ∞, then ICIR is the
square of the Kirchhoff-Radon migration functional:

ICIR(x) = |IKRM(x)|2.

The purpose of the CINT-Radon imaging functional is to keep in (3.7) the pairs (y1, ω1)
and (y2, ω2) for which the pre-processed data q̂(y1, ω1) and q̂(y2, ω2) are coherent and to
remove the pairs that do not bring information.
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4 Stability and Resolution Analysis

4.1 Noise Model

We assume that the operating bandwidth of the sensors is of the form [ω0 −B/2, ω0 +B/2]
with B � ω0 and consider the following noise model. We assume that there is an error
ν(x,y) between the theoretical travel time τ0(x,y) with the background velocity c0 and the
real travel time τ(x,y) where y is a point of the surface of the observation disk ∂Ω and x

is a point of the search domain. Therefore, we have

τ(x,y) = τ0(x,y) + ν(x,y),

where ν(x,y) is a random process. This model can be used in the presence of low-frequency
(i.e., xc � 2πc0/ω0) cluttered noise µ(x) in (2.1) which induces perturbations to travel
times up to leading order:

ν(x,y) = −σc|y − x|
2c0

∫ 1

0

µ
(x + (y − x)s

xc

)
ds. (4.1)

This is the so-called geometrical optics perturbations method [18, Chapter 1] that allows
us to analyze the effect of random fluctuations of the sound speed on the resolution and
statistical stability of the imaging functionals. This method was developed in [18, Chapter
1] to compute statistics of the travel times and other quantities that characterize wave
propagation in random media.

Assuming that the search window is relatively small we can assume that ν depends only
on the sensor position y and we can neglect the variations of ν with respect to x. This is
perfectly correct if we analyze the expectations and the variances of the imaging functionals
for a fixed test point x (then the search region is just one point). This is still correct if we
analyze the covariance of the imaging functional for a pair of test points x and x′ that are
close to each other (closer than the correlation radius xc of the clutter noise). This model
can also be used when the positions of the sensors are poorly characterized.

We assume that the random process µ is a random process with Gaussian statistics,
mean zero, and covariance function:

E
[
σcµ

( x

xc

)
σcµ

(x′

xc

)]
= σ2

c exp
(
− |x − x′|2

2x2
c

)
.

Using (4.1) and xc � X0 we find that ν is a random process with Gaussian statistics, mean
zero, and covariance function:

E[ν(y)ν(y′)] = τ2
c ψ

( |y − y′|
xc

)
, ψ(r) =

1

r

∫ r

0

exp
(
− s2

2

)
ds, (4.2)

where τ2
c =

√
2πσ2

c lX0/(4c
2
0) is the variance of the fluctuations of the travel times. Here E

stands for the expectation (mean value).
Using the Gaussian statistics it is straightforward to compute the moments

E[eiων(y)] = exp
(
− ω2τ2

c

2

)
,

E[eiων(y)−iω′ν(y′)] = exp
(
− (ω − ω′)2τ2

c

2
− ωω′τ2

c

(
1 − ψ

( |y − y′|
xc

)))
.
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If we assume that ω0τc � 1, then for ω, ω′ ∈ [ω0 −B/2, ω0 +B/2], we have

E[eiων(y)] ' exp
(
− ω2

0τ
2
c

2

)
, (4.3)

E[eiων(y)−iω′ν(y′)] ' exp
(
− (ω − ω′)2τ2

c

2
− |y − y′|2

2X2
c

)
, (4.4)

with X2
c = 3x2

c/(2ω
2
0τ

2
c ).

4.2 Kirchhoff-Radon Migration

Recall that the Kirchhoff-Radon migration functional is

IKRM(x) =
1

2π

∫

∂Ω

∫

R

q̂(y, ω)e−iω|y−x|dωdσ(y) =

∫

∂Ω

q(y, |y − x|)dσ(y), (4.5)

where q = BW[p]/(4π2). The functional applied to the perfect pre-processed data

q(0) =
1

4π2
BW[p(0)] (4.6)

is

I(0)
KRM(x) =

1

2π

∫

∂Ω

∫

R

q̂(0)(y, ω)e−iω|y−x|dωdσ(y) =

∫

∂Ω

q(0)(y, |y − x|)dσ(y), (4.7)

and it is equal to the initial condition p0(x).
We consider the random travel time model to describe the recorded data set:

q(y, t) = q(0)(y, t− ν(y)). (4.8)

We first consider the expectation of the functional. Using (4.3) we find that

E[IKRM(x)] = exp
(
− ω2

0τ
2
c

2

)
I(0)

KRM(x),

which shows that the mean functional undergoes a strong damping compared to the unper-

turbed functional I(0)
KRM(x). This phenomenon is standard when studying wave propagation

in random media and is sometimes called extinction [18].
The statistics of the fluctuations can be characterized by the covariance

E
[
IKRM(x)IKRM(x′)

]
=

1

(2π)2

∫∫

∂Ω×∂Ω

q̂(0)(y1, ω1)q̂(0)(y2, ω2)e
−iω1|y1−x|eiω2|y2−x′|

× exp
(
− (ω1 − ω2)

2τ2
c

2
− |y1 − y2|2

2X2
c

)
dω1dσ(y1)dω2dσ(y2).

In the regime in which τ−1
c > B and Xc > X0 we find that the amplitude of the fluctuations

is of the order of
Var

(
IKRM(x)

)
∼ (I(0)

KRM(x))2.

Here, Var stands for the variance. In the regime in which τ−1
c < B and Xc < X0 we find

that

Var
(
IKRM(x)

)
∼ (I(0)

KRM(x))2
( 1

Bτc

)(Xc

X0

)
.
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Define the signal-to-noise ratio (SNR) by

SNRKRM =
|E[IKRM(x)]|

Var(IKRM(x))1/2
. (4.9)

The following holds.

Proposition 4.1 We have

SNRKRM ∼ exp
(
− ω2

0τ
2
c

2

)(
1 +Bτc

) 1
2
(
1 +

X0

Xc

) 1
2

.

Note that SNRKRM is very small in this regime (ω0τc � 1).

4.3 CINT-Radon

We consider the random travel time model (4.8). We first note that coherence in (3.7) is
maintained as long as exp(iω2ν(y2)− iω1ν(y1)) is close to one. From (4.4) this requires that
|ω1−ω2| < τ−1

c and |y1−y2| < Xc. We can therefore anticipate that the cut-off parameters
Xd and Ωd should be related to the coherence parameters Xc and τ−1

c . In the following we
study the role of the cut-off parameters Xd and Ωd for resolution and stability. For doing
so, we compute the expectation and variance of the imaging functional ICIR.

We have

E[ICIR(x)] =
1

(2π)2

∫∫
dω1dω2

∫∫

∂Ω×∂Ω

dσ(y1)dσ(y2)q̂
(0)(y1, ω1)q̂(0)(y2, ω2)

×e−iω1|y1−x|eiω2|y2−x| exp
(
− (ω1 − ω2)

2

2
(τ2

c +
1

Ω2
d

) − |y1 − y2|2
2

(
1

X2
d

+
1

X2
c

)
)
,

where q(0) is the perfect pre-processed data defined by (4.6). Using the change of variables

ω1 = ωa +
ha

2
, ω2 = ωa − ha

2
, y1 = Ya +

ya

2
, y2 = Ya − ya

2
,

the expectation of the CINT-Radon functional can be written as

E[ICIR(x)] =
1

(2π)2

∫

∂Ω

dσ(Ya)

∫
dha

∫

Y ⊥
a

dσ(ya)Q̂(Ya, ha,ya;x)

× exp
(
− h2

a

2
(τ2

c +
1

Ω2
d

) − |ya|2
2

(
1

X2
d

+
1

X2
c

)
)
, (4.10)

where
Y ⊥

a =
{
ya ∈ R

2 , Ya − ya

2
∈ ∂Ω and Ya +

ya

2
∈ ∂Ω

}

and

Q̂(Ya, ha,ya;x) =

∫
dωaq̂

(0)(Ya +
ya

2
, ωa +

ha

2
)q̂(0)(Ya − ya

2
, ωa − ha

2
)

×e−i(ωa+ ha

2 )|Ya+ ya

2 −x|ei(ωa−
ha

2 )|Ya−
ya

2 −x|.
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We assume that Xd is much smaller than X0, so that y1 − y2 is approximately orthogonal
to (y1 + y2)/2 when y1,y2 ∈ ∂Ω and |y1 − y2| ≤ Xd. Then

Y ⊥
a = {ya ∈ R

2 , Ya · ya = 0},

and

Q̂(Ya, ha,ya;x) '
∫
dωaq̂

(0)(Ya +
ya

2
, ωa +

ha

2
)q̂(0)(Ya − ya

2
, ωa − ha

2
)

×eiωa
x−Ya

|x−Ya|
·ya−iha|x−Ya|

' 1

(2π)2

∫
dωa

∫
dτa

∫

Y ⊥
a

dσ(κa)Wq(Ya, ωa;κa, τa)

×ei(ωa
x−Ya

|x−Ya|
−κa)·ya+(τa−|x−Ya|)ha ,

where Wq is the Wigner transform of q(0):

Wq(Ya, ωa;κa, τa) =

∫
dha

∫

Y ⊥
a

dσ(ya)q̂(0)(Ya +
ya

2
, ωa +

ha

2
)q̂(0)(Ya − ya

2
, ωa − ha

2
)

×eiκa·ya−ihaτa . (4.11)

Therefore, we get

E[ICIR(x)] =
1

(2π)3( 1
X2

d

+ 1
X2

c

)
1
2 (τ2

c + 1
Ω2

d

)
1
2

∫

∂Ω

dσ(Ya)

∫
dωa

∫

Y ⊥
a

dσ(κa)

∫
dτa

×Wq(Ya, ωa;κa, τa)

× exp
(
−

∣∣κa − ωa

(
x−Ya

|x−Ya|
− ( Ya

|Ya|
· x−Ya

|x−Ya|
) Ya

|Ya|

)∣∣2

2( 1
X2

d

+ 1
X2

c

)
− (τa − |Ya − x|)2

2(τ2
c + 1

Ω2
d

)

)
.

Since, for any s,
Wq(Ya, ωa;κa + sYa, τa) = Wq(Ya, ωa;κa, τa),

we obtain the following result.

Proposition 4.2 We have

E[ICIR(x)] =
1

(2π)3( 1
X2

d

+ 1
X2

c

)
1
2 (τ2

c + 1
Ω2

d

)
1
2

∫

∂Ω

dσ(Ya)

∫
dωa

∫

Y ⊥
a

dσ(κa)

∫
dτa

×Wq(Ya, ωa;κa, τa) exp
(
−

∣∣κa − ωa
x−Ya

|x−Ya|

∣∣2

2( 1
X2

d

+ 1
X2

c

)
− (τa − |Ya − x|)2

2(τ2
c + 1

Ω2
d

)

)
. (4.12)

Formula (4.12) shows that the coherent part (i.e., the expectation) of the CINT-Radon
functional is a smoothed version of the Wigner transform of the pre-processed data. It
selects a band of directions and time delays that are centered around the direction and the
time delay between the search point x and the point Ya of the sensor array.

We observe that:
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- if Ωd > τ−1
c and Xd > Xc then the cut-off parameters Ωd and Xd have no influence

on the coherent part of the functional which does not depend on (Ωd,Xd).

- if Ωd < τ−1
c and Xd < Xc then CINT has an influence and reduces the resolution of the

coherent part of the functional (it enhances the smoothing of the Wigner transform).

We next compute the covariance of the CINT-Radon functional. If

ω1 = ωa +
ha

2
, ω2 = ωa − ha

2
, ω3 = ωb +

hb

2
, ω4 = ωb −

hb

2
,

y1 = Ya +
ya

2
, y2 = Ya − ya

2
, y3 = Yb +

yb

2
, y4 = Yb −

yb

2
,

then

E
[
eiω1ν(y1)−iω2ν(y2)eiω3ν(y3)−iω4ν(y4)

]
' exp

(
− (ha − hb)

2τ2
c

2
− |ya − yb|2

2X2
c

)
,

and therefore,

E
[
ICIR(x)ICIR(x′)

]
=

1

(2π)4

∫∫∫
dσ(Ya)dhadσ(ya)dσ(Yb)dhbdσ(yb)

×Q̂(Ya, ha,ya;x)Q̂(Yb, hb,yb;x′)

× exp
(
− (h2

a + h2
b)

2Ω2
d

− (|ya|2 + |yb|2)
2X2

d

)

× exp
(
− (ha − hb)

2τ2
c

2
− |ya − yb|2

2X2
c

)
.

Using (4.10) we can see that, if Ωd < τ−1
c and Xd < Xc, then we have

E[ICIR(x)] =
1

(2π)2

∫∫∫
dσ(Ya)dhadσ(ya)Q̂(Ya, ha,ya;x) exp

(
− h2

a

2Ω2
d

− |ya|2
2X2

d

)
.

Using

1 − exp
(
− (ha − hb)

2τ2
c

2
− |ya − yb|2

2X2
c

)
' (ha − hb)

2τ2
c

2
+

|ya − yb|2
2X2

c

,

it follows that

Var
(
ICIR(x)

)
= E

[∣∣ICIR(x)
∣∣2] −

∣∣E
[
ICIR(x)

]∣∣2 ∼
(
(Ωdτc)

2 +
(Xd

Xc

)2
)∣∣E

[
ICIR(x)

]∣∣2.

Therefore, the following proposition, where the SNR is defined analogously to (4.9), holds.

Proposition 4.3 When Ωd < τ−1
c and Xd < Xc, we have

SNRCIR ∼ 1√
(Ωdτc)2 +

(
Xd

Xc

)2
. (4.13)

Note that the SNR is greater than one when Ωd < τ−1
c and Xd < Xc.

To conclude, we notice that the values of the parameters Xd ' Xc and Ωd ' τ−1
c achieve

a good trade-off between resolution and stability. When taking smaller values Ωd < τ−1
c

and Xd < Xc one increases the signal-to-noise ratio but one also reduces the resolution. In
practice, these parameters are difficult to estimate directly from the data, so it is better
to determine them adaptively, by optimizing over Ωd and Xd the quality of the resulting
image. This is exactly what is done in adaptive CINT [7].
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4.4 Two Particular Cases

We now discuss the following two particular cases:

(i) If we take Xd → 0 then the CINT functional has the form

ICIR(x) =
1

(2π)2

∫

R

∫

R

dω1dω2

∫

∂Ω

dσ(y)e
−

(ω1−ω2)2

2Ω2
d q̂(y, ω1)e

−iω1|y−x|q̂(y, ω2)e
iω2|y−x|.

(4.14)
This case could correspond to the situation in which Xc is very small, which means
that the signals recorded by different sensors are so noisy that they are independent
from each other.
If Ωd > B, then (4.14) is equivalent to the incoherent matched field functional

ICIR(x) '
∫

∂Ω

dσ(Ya)
∣∣q(Ya, |Ya − x|)

∣∣2.

If Ωd ≤ B (or, more generally, for any Ωd), then (4.14) is a smoothed (in time) version
of this functional given by

ICIR(x) =
Ωd√
2π

∫

∂Ω

dσ(Ya)

∫

R

dt
∣∣q(Ya, |Ya − x| + t)

∣∣2 exp
(
− Ω2

dt
2

2

)
.

(ii) If we take Xd → ∞ then the CINT functional has the form

ICIR(x) =
1

(2π)2

∫

R

∫

R

dω1dω2

∫∫

∂Ω×∂Ω

dσ(y1)dσ(y2)e
−

(ω1−ω2)2

2Ω2
d

×q̂(y1, ω1)e
−iω1|y1−x|q̂(y2, ω2)e

iω2|y2−x|. (4.15)

This case could correspond to the situation in which Xc is very large, which means
that the signals recorded by different sensors are strongly correlated with one another.
This is a typical weak noise case.
If Ωd > B, then (4.14) is equivalent to the coherent matched field function (or square
KRM functional):

ICIR(x) '
∣∣∣
∫

∂Ω

dσ(Ya)q(Ya, |Ya − x|)
∣∣∣
2

.

If Ωd ≤ B (or, more generally, for any Ωd), then (4.15) is a smoothed (in time) version
of this functional:

ICIR(x) =
Ωd√
2π

∫

R

dt
∣∣∣
∫

∂Ω

dσ(Ya)q(Ya, |Ya − x| + t)
∣∣∣
2

exp
(
− Ω2

dt
2

2

)
.

5 CINT-Radon Algorithm in a Bounded Domain

When considering photoacoustics in a bounded domain, we developed in [3] an approach
involving the line Radon transform of the initial condition. We will consider homogeneous
Dirichlet conditions:






∂2p

∂t2
(x, t) − c(x)2∆p(x, t) = 0, x ∈ Ω,

p(x, 0) = p0(x),
∂p

∂t
(x, 0) = 0, x ∈ Ω,

p(y, t) = 0, y ∈ ∂Ω.
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Here, Ω is not necessarily a disk. Let n denote the outward normal to ∂Ω. When c(x) = c0,
we can express the line Radon transform of the initial condition p0(x) in terms of the
Neumann measurements ∂np(y, t) = n(y) · ∇p(y, t) on ∂Ω × [0, T ]:

R[p0](θ, s) = W[∂np](θ, s),

where the line Radon transform is defined by

R[p0](θ, r) :=

∫

R

p0(rθ + sθ⊥)ds, θ ∈ S
1, r ∈ R,

and

W[g](θ, s) :=

∫ T

0

∫

∂Ω

g(x, t)H

(
x · θ
c0

+ t− s

)
dσ(x)dt, θ ∈ S

1, s ∈ R.

Here H denotes the Heaviside function. We then invert the Radon transform using the
back-projection algorithm

p0 = R?BW[∂np],

where R? is the adjoint Radon transform:

R?[f ](x) =
1

2π

∫

S1

f(θ,x · θ)dσ(θ) =
1

(2π)2

∫

S1

∫

R

f̂(θ, ω)e−iωx·θdωdσ(θ), x ∈ Ω,

and B is a ramp filter

B[g](θ, s) =
1

4π

∫

R

|ω|ĝ(θ, ω)e−iωsdω, θ ∈ S
1.

Here, the hat stands for the Fourier transform (3.1) in the second (shift) variable. In the
Fourier domain, the inversion reads

p0(x) =
1

(2π)2

∫

S1

∫

R

̂BW[∂np](θ, ω)e−iωx·θdωdσ(θ), x ∈ Ω.

Therefore, a natural idea to extend the CINT imaging to bounded media is to consider the
imaging functional:

ICIR(x) :=
1

(2π)4

∫

S1

∫

S1

∫

R

∫

R

e
−

(ω2−ω1)2

2Ω2
d e

−
|θ2−θ1|2

2Θ2
d

× ̂BW[∂np](θ1, ω1)e
−iω1x·θ1 ̂BW[∂np](θ2, ω2)e

iω2x·θ2dω1dω2dσ(θ1)dσ(θ2).

The stability and resolution analysis in Section 4 applies immediately to ICIR.

6 Numerical Illustrations

In this section we present numerical experiments to illustrate the performance of the CINT-
Radon algorithms and to compare them with the Kirchhoff-Radon. The wave equation
(direct problem) is solved via a Lie-splitting method. It can be rewritten as a first order
partial differential equation:

∂tP = AP + BP,
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where

P =

(
p
∂tp

)
, A =

(
0 1
c20∆ 0

)
, and B =

(
0 0

(c2 − c20
)
∆ 0

)
.

The operator A is solved exactly in the Fourier space while the operator B is treated
explicitly with a finite difference method and a PML formulation in the case of free space.
The inverse circular Radon formula is discretized as in [10].

In Figure 1, we consider 6 point sources which emit pulses of the form

f(t) = cos(2πω0t)tδω exp(−πt2δ2ω), with δω = 10, ω0 = 3δω.

We use the random velocity c1, visualized in Figure 1. Figure 2 presents the pressure p(y, t)
computed without and with noise, and the reconstruction of the source locations obtained
by the Kirchhoff migration functional IKM. Figure 2 illustrates that in the presence of noise,
IKM becomes very instable and fails to really localize the targets. The images obtained by
ICI are plotted in Figure 3 and compared to those obtained by IKM. Note that ICI presents
better stability properties when Xd and Ωd become small as predicted by the theory.
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Figure 1: Left: positions of the sensors; center: random velocity c1 with high frequencies;
right: random velocity c2 with low frequencies.
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Figure 2: Test1: measured data p(y, t) and source localization using Kirchhoff migration
IKM with (right) and without (left) noise.

We now consider the case of extended targets and test the imaging functional ICIR.
We use the random velocity c2 shown in Figure 1. Reconstructions of the initial pressure
obtained by IKRM are plotted in Figures 4 and 6. Figures 4 and 6 clearly highlight the fact
that the noise significantly affects the reconstruction. In fact, the whole line is not found.

On the other hand, plots of ICIR presented in Figures 5 and 7 provide more stable
reconstructions of p0(x). However, note that choosing small values of the parameters Xd

and Ωd can affect the reconstruction in the sense that ICIR becomes very different from the
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Figure 3: Test1: source localization using the standard CINT functional ICI, with param-
eters Xd and Ωd given by Xd = 0.25, 0.5, 1 (from left to right) and Ωd = 25, 50, 100 (from
top to bottom).

expected value, p2
0, when Xd and Ωd tend to zero. This is a manifestation of the trade-off

between resolution and stability discussed in Section 4.
In the case of a bounded domain, we consider the low frequency cluttered speed of

Figure 1, on a square medium, with homogeneous Dirichlet conditions. We illustrate the
performance of ICIR on the Shepp-Logan phantom. Figure 8 shows the reconstruction using
the inverse Radon transform algorithm. We notice that the outer interface appears twice.
In fact, ICIR can correct this effect. Figure 9 shows results for different values of Θd and Ωd.
The imaging functional ICIR can get the outer interface correctly but seems to focus too
much on it. To check if ICIR reconstructs the inside of the target with the good contrast,
we show in Figure 10 the same images with a colormap saturated at 80% of their maximum
values.
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Figure 4: Test2: measured data p(y, t) and reconstruction of p0(x) using IKRM with (right)
and without (left) noise.
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Figure 5: Test2: source localization using ICIR, with Xd and Ωd given by Xd = 0.5, 1, 2
(from left to right) and Ωd = 50, 100, 200 (from top to bottom).

 

 

50 100 150 200 250

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120  

 

50 100 150 200 250

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 6: Test3: measured data p(y, t) and reconstruction of p0 using IKRM with (right)
and without (left) noise.
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Figure 7: Test3 : source localization using ICIR, with Xd and Ωd given by Xd = 0.5, 1, 2
(from left to right) and Ωd = 50, 100, 200 (from top to bottom).

Figure 8: Reconstruction of an extended target using line Radon transform in the case of
imposed boundary conditions.
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Figure 9: Extended target reconstruction with boundary conditions using ICIR, with Θd

and Ωd given by Θd = 1, 3, 6 (from top to bottom) and Ωd = 50, 100, 200 (from left to right).
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Figure 10: Extended target reconstruction with boundary conditions using ICIR, with Θd

and Ωd given by Θd = 1, 3, 6 (from top to bottom) and Ωd = 50, 100, 200 (from left to right).
Colormaps are saturated at 80% of the maximum values of the images.
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7 Conclusion

In this paper we have introduced new CINT-Radon type imaging functionals in order to
correct the effect on photoacoustic images of random fluctuations of the background sound
speed around a known constant value. We have provided a stability and resolution analysis
of the proposed algorithms and found the values of the cut-off parameters which achieve a
good trade-off between resolution and stability. We have presented numerical reconstructions
of both small and extended targets and compared our algorithms with Kirchhoff-Radon
migration functionals. The CINT-Radon imaging functionals give better reconstruction than
Kirchhoff-Radon migration, specially for extended targets in the presence of low-frequency
medium noise.
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