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Examples of geometric energies

2pm .
red blood cells

Applications : biology, material sciences, image processing, shapes
optimization ...



@ Introduction
@ Examples of applications in image processing
@ Definitions of the curvature
@ Shape derivative of classical geometric energies
@ Numerical algorithms for mean curvature flow

e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

Q Approximation of Willmore energy and flow:
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Mumford Shah functional [Mumford Shah 1989]

@ Approximate an image I(x) with piecewise smmooth function u(x) by
minimizing the functional

E(u,K) = fﬂ (u(x) = I(x))?dx + « fQ K|Vu|2dx + BLength(K).

(a) Input image

(b) Approximation

fig : Example of regularization obtained with Mumford Shah approach
[Pock,Cremers, Bischof and Chambolle, 2009]

4175
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Mumford Shah approximation
@ Ambrosio Tortorelli approximation [Ambrosio, Tortorelli,90]
Ec(up) = f (u(x) = I(x))?dx + a f ¢lVulPdx
Q Q

1
48 [ elTol + 11 - g
Q

v
-~

@ Example of denoising obtained with Ambrosio Tortorelli approximation
Left ; I, middle u and right : ¢
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Piecewise constant Mumford-Shah (¢ — o)

@ An image segmentation model :
Find a partition {€;};—1.ny and a color vector ¢ = (c1,Cp, -+ ,Cn) @s @
minimizer of

J(Q1, 0, ,Qn.c) = Z( fQ | (x) = ¢;)%dx + ﬁP(Q,-)).

i=1
@ An approximation :

N

swe) = 3 [ o) - oo

i=1
+,BZU Ivui® (1 - up)2dx

for all u = (u1, U2, -, uy) satisfying >, uj = 1.
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Examples of image segmentation
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Regularization of discrete contour by Willmore energy

Find the set 2* such as

Q" = argmin W(Q), with W(Q) = f H2dH"!
Q1cQcQf 0

where Q1 and Q. are two given set such as 4 C Qg
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Numerical experiments
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Motivation : Magnetic resonance Imaging




Surface reconstruction from orthogonal slice

@ Find the set Q* as a minimizer of

Ja,.0,(Q)

JQ) it cQcQf
+o0o  otherwise

where J is a surface geometric energy as the perimeter or the
Willmore energy.

—

11175
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Example of reconstruction in dimension 3

Bonm
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@ Shape derivative of classical geometric energies
@ Numerical algorithms for mean curvature flow

e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

Q Approximation of Willmore energy and flow:
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Curvature of a smooth curve in R?

@ A parametric representation of I

I ={X(s) = (x(s).y(s)) € R% s € [0, 1]}.
@ Normal and curvature at X(s)

(s = X = L x(0)

FIORSZOE
RS X)) -y (S)X(s)
«X(©) = i (55 nxto - eyl

141175



Curvature of a smooth surface in R

planes
of principal
natures =

_narmal

mngent
plane

@ Principal curvature : k1, k2

@ The mean curvature : H = k1 + ko

@ The Gauss curvature : G = kqk»

15175



Using the second fundamental form :

Let I' c RY be a smooth manifold of co-dimension 1
@ Tyl isthetangentplanatx el
@ Second fundamental form : By : Ty X Ty — R defined by

Bx(é:’ 77) = <‘f’ aﬂn>’ V(f, 77) € TX X TX

Note that By is bilinear and symmetric with eigenvalues «1, k2 - - -

@ Mean and Gauss curvature

H = Trace(Bx) = ZK,

16175

Kd—1.-
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Using surface differential operators

Let¢ : RY - Rand X : RY — R? be a smooth scalar field and vectorfield
@ Tangential gradient operator
V¢ = (ld = n®n)V¢) = V¢ — (Vo, nyn
@ Tangential divergence operator
div (X) = Trace ((Id — n® n)VX) = div(X) = ((n- V)X, n)

@ Remark that
divi (,X) = fdivi (X) + X - V' f

@ Mean curvature

H = div" (n) = div(n) as |nf* = 1
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Gauss Green and Stokes formula

@ The divergence formula : if Yis a C’ tangential vectorfield, then
f div' (Y)do(x) =0
r
e if X is a C' vectorfield, then

fr divh (X)do(x) = j; H X - ndor(x).

@ Moreover,

ffdivr(X)d(r:—frvr(f)-Xda+fox-nda(x).

r r
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Notion of shape derivative

@ First example of geometric energies

Ji(Q) = fQ f(x)dx and Ja(Q) = fa _g(x)ox

@ Shape derivative in the direction 6

F(@)(6) — tim JUAE 0D - JQ)

e—0 €

where 6 : RY — R is a vectorfield

o (I+6)Q2
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Case of J;

@ Substitution in the integral :
let 7 be a diffeomorphism in R9, then

fT o (005 = fQ F(x(x))/detVridx

@ With 7 = Id + €6, we have
f(r(x)) = f(x + €9(x)) = f(x) + €Vf(x) - 0 + o(e),
detVr =1 + ediv(6) + 0(0),

and then

J(Q)(0) = fQ V- 0+ fdiv(6)dx = fa ()0 ndor(x).



Case of J>

@ Substitution in the integral :
let 7 be a C' diffeomorphism in RY, then

f g(x)do(x) —f g(7(x)) |detVr| |((VT)_1)TI’7’ do(x)
a(r(%)) aQ

@ With v = Id + €0, we have
|(V2)™)Tn| = 1 - &(Von, ny + o(e)

and then

LQ)O) = fa _gaiv(6) - g(Vem. ) + Vg - 6 (x)
= f 9ng 0-n+ (gdiv' (6) + V'g - 6) do(x)
519}

= f dng60-n+Hg6-ndo(x)
oQ

22/175
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Application for the Volume and the Perimeter energy
@ With VoI(Q) = [, 1dx, then
’ Q — .
Vol' (22)(0) fm1 0 - ndo(x),

and it's L2-gradient flow = the normal velocity V,, satisfies
Vn — _1 .

o With P(Q) = [, 1dx, then

P'(Q)(6) = fm H - ndo(x),

and it's L2-gradient flow = the normal velocity V,, satisfies

Vn - _H.
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General result

@ Consider Energy on the form

J(Q) = faﬂ F(x,n, H)do,

where F = F(x,y, z) is assumed to be sufficiently smooth.
@ Shape derivative

J(Q)(6) = f (AN [V, FI" = Ar[0,F] + FH — . FIAP® + VF - n)¢-ndo-
/]9

where
div [V, F]" = div' (V,F) - HV,F - n

AR =" k2.

and
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Application to Willmore energy

@ Willmore energy :

N

1
W(Q) = = f H?do,
oQ
@ Shape derivative
1
W (Q)(6) = f (—Ar[H] +sH-HY |A|2)0- nde
Ty} 2
and it's L2-gradient flow = the normal velocity V,, satisfies

1 1
Vo = Ar[H] - 5H + HYIAR = Ar[H] + SH(H - 4G)



Application to anisotropic perimeter

@ Anisotropic perimeter :

where vy is a smooth function, positively homogeneous of degree 1 :

@ Some properties of y

y(Ay) = ly(y), and Vy[y]-y =v(y)

@ Shape derivative

J(Q)(0) = LQ (divr[Vyy]r + yH)H- ndo = \faQ H,6 - ndo

where H, = div (n,) and n, = V,y(n)

26/175
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Application to anisotropic perimeter

@ Anisotropic curvature in dimension 2
H, = div' (V,y(n)) = H (Vay(n)n*, n*)
@ In polar coordinate system :

¥(y) = pp(0) with p = [y? + y3 and 6 = atan(yz/y+).

then, the anisotropic curvature reads

H, = H(¢(6) + ¢"(6))
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Mean curvature flow

@ mean curvature flow :
P(Q) = f TadH"!
Flo)
@ Shape derivative
P’(Q)(G):f H6.n dH" !,
Flo)

where n and H denote the normal and the mean curvature.
@ L2 gradient flow of P = the normal velocity V,, satisfies

Vn — _H.

|—O

AN
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Some properties of mean curvature flow t — (1)

@ Local existence for convex initial set. The set Q(t) stay convex,
converges to a point and becomes asymptotically spherical

@ In dimension 2, local existence for smooth closed curves. The set
Q(t) becomes convex in finite time, converges to a point and becomes
asymptotically spherical

@ In dimension n > 2 : singularities in finite time
@ Inclusion principle

Q1(0) c Q2(0) then Q4(t) c Qo(t), Vte [0, T]



Example of mean curvature flow in dimension two

311175
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Example of mean curvature flow in dimension three

0001312

00005

£=0006127
08
08
04
02
L e
05 - ]
I b
04 gy 9
03 03
=] 5

08Tt




331175

A Parametric approach ( )

@ A parametric representation
M= {X(s) = (x(s), ¥(s))}sefo.n
@ Normal vector n(s) at X(s) :

_Xs(s)t  (y'(s),—x'(s, 1)
n(X(s)) = IXs(s) X' (52 + y'(3)

~—

N

@ Mean curvature at X(s)

1 Xs(s)
KX = %@ (

@ Mean curvature flow

Xi(s) = k(X(s))n(X(s)) orequivalently X; = — (—) .
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An explicit discretization :

@ Discretization of X(s, t) :
X(ids, né) =~ X' = (x", /")

@ Approximation of n and «

n(Xi ) = (v — O =X )
n n n 2 n n \2 172
NI (i AR
i n=2yityl ) (X =x )= (X" =2xi+xT ) (v =y
K(X;]) — 4(yl+1 ! i—1 i+1 -1 41 ! i—1 i+1 Yi-1

3/2
(A N (R )

@ An Euler explicit scheme

XM = X"+ 6; k(X]) n(X}).
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A semi-implicit discretization,

@ A weak formulation

X = - (XS) =>f2ﬂX|X|¢ds—f2” Xs¢dsv¢eH1
XXl T e TR Ty X

@ A finite element approach :

M
X(s,1) = " Xi(t)g(s)
i=1

@ Spatial discretization
Xig1 = Xi  Xi — Xi

1 .
E(%(X,‘)(h,‘ + hiy1) = . with by = | X; — Xj_4]

hi 1 h;
@ Semi-implicit time discretization
+1 n+1 n+1 n+1
1 » X,.']r1 - X X = X"
2_(51(Xin - Xin)(hin + hZﬂ) = hn - — hn ’

i+1 i
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A semi-implicit discretization,

@ the scheme presents no problem of stability but

@ Extension in greater dimension ? (see [Barett,Garcke and Nurnberg]
@ Problem : how to deal with topology change



The level set method ( [Osher,Sethian])

@ An implicit representation of the interface
M={x: ¢(x.t) =0}

@ Normal vector n and curvature « :

n(e) = Iz_zl and «(¢) = div(—)

@ Mean curvature flow

Orp = k(¢)IVgl = div(—Z) Vol

37175
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The level set method

@ A Hamilton-Jacobi equation

" _ (VPpVyp, Vy)
0 div [Vo| = —_
v (w |) Y V9P
@ Weak solution in sense of viscosity )

@ Numerical approach : fast marching method (for transport equation)
where the velocity x(¢) is estimated explicitly

@ Stability problems as for the explicit parametric approach
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The Allen Cahn equation as an approximate level set
equation

@ Idea : Choose a particular form of level set function

d(x, t))’

u(x,t) = q(

where q is a profile satisfying q”(s) = W’(q) and d is the signed
distance function to a evolving set Q(t).
@ Remarks that
\ Véd ,(d\ VdevVvd ,(d
Vu= ?dq’ (d) and Viu= Tq’(—) + Lq” (—)

€ € €2 €
@ Then the Hamilton-Jacobi equation reads now as

(V2uVu, Vu) 1, (dist\ 1
6tu:Au—W: u—?q — —Au—€—2W(u)

€



The Allen Cahn equation as an approximate level set
equation
@ We obtain a reaction diffusion equation
1
ou = Au—- —W'(u),
€
@ It's the L2 gradient flow of Cahn Hillard energy

P.(u) = f (6|V2“|2 + %W(u))dx,

@ Numerical scheme :
A splitting approach with implicit treatment of diffusion term

@ Link with mean curvature flow ?

401175
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@ Introduction

e Phase field approximation of mean curvature flow
@ Cahn Hilliard energy
@ Allen Cahn equation : existence and comparison principle
@ Asymptotic expansion of the Allen Cahn equation and convergence
@ Numerical point of view

e Conserved and multiphase mean curvature flow

Q Approximation of Willmore energy and flow:
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Principe of phase field method

@ Approximation of energy

@ Perimeter
1
P(Q):f 1do v Pe(u):deuler;W’(u)dx
Fl9)
@ Willmore energy

1 1 1 2
W(Q) = Ef H3do s W(u) = 2_f (eAu - —W’(u)) dx
Fle] € Rd €
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Notion of I'-convergence [Dal Maso 93]

Definition (I'-convergence)

Let (X, d) be a metric space and let G : X — R be functions. We say that
G I'-convergesin Xto G : X - R if

(1) Yue — uin X, lim i(r)1f Ge(ue) = G(u)
€
(2) Yu Au. —> uin X suchthat limsup Ge(ue) < G(u)

e—0
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Properties of the ['-convergence

Property

Let (X, d) be a metric space and let Ge : X — R be functions which
[-convergeto G : X — R. Then

@ G is lower semi-continuous on X

e if F: X - R is continuous, then G, + F [-converges to G + F.
o If G¢ is equi-coercive, i.e.

VYt e R,dK; cc X such as {G, < t} C K},
then G is coercive and reaches it's minimum on X. Moreover

min{G(u)} = lim inf {G¢(u)}

ueX e—0 ueX
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Definition of a Generalized perimeter P
@ The total variation |Dul is defined Yu € L1(R") by
|Dul(R") = sup{Ln udiv(e)dx; ¢ € CH(R",R") and [|¢]le < 1}
@ If it exits a smooth set Q2 such as u = yq then
P(Q) = fm 1do(x) = |Dyal(RY)

@ Generalized perimeter (Caccioppoli) : Yu e L',

Dul(R™) ifu=
P(u) = | DIED) U= e
00 otherwise

and P is lower semi-continuous on L.



Approximation with the Cahn Hilliard energy

Definition (Cahn Hilliard energy)
P, is defined Yu € L1 (R") by

>

Ivu lWu)dx ifue H'(R"
by — [ o[ + W) e (%)
400 otherwise

where W is positive, continuous and satisfies W(s) = 0 if and only if
t € {0,1}. See for instance W(s) = 1s%(1 - s)?

46/175

fig: s — W(s)



Modica-Mortola I'-convergence result

Theorem ([Modica-Mortola77])

]
M= lim Pe = ¢y P inL", Withcwzfo \J2W(s)ds,

which means that,

(1) Yue — u, lim ig]f Pc(ue) > cwP(u)

(2) Yu 3Ju.— u suchthat limsup Pc(uc) < cwP(u)

e—0

47175




Lower bound inequality :

Yue — U, lim i51f Pe(ue) > ewP(u)
€

@ We can assume that liminf P.(u,) < oo then

Ue = U= xq

P.(u)> [ udow(uax = [1o(ucyor.
with ¢(s) = [ v2W(s)ds
o

|;r5pf|D¢(ue)lzf|D¢CvQ)I=¢(1)PCm)=CwPCm)

48/175
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Upper bound inequality:

Yu, due — u suchthat limsup Pc(uc) < cwP(u)

e—0

@ By density argument, we can assume that there is a smooth set Q2
such as u = yq.
[ dist(x.Q) , .
@ The we can choose u(x) = q(—) where the profile function g

€

NE nm
o) e
o) o

fig : s = g(s) and u.(x)

depends only on W.
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Some properties of the profile function q

@ The profile q is defined as

g = argmin {fR(%bf’(snz + W(y(s)))ds ; y(—00) = 1,y(c0) = 0}

1
veH . (R)

with g(0) = 1/2.
@ Euler equation shows that g satisfies

q’ = W(q).
@ When W is C?, then g satisfies g’ = — 1/2W(q) and then

cw = j: \J2W(s)ds :L@ + W(s)ds.

o Note that for W(s) = 1s?(1 - s)?, q(s) = 5 — tanh (%)

=



Upper bound inequality:

Recall that u = yq and consider the sequence

() = o T — e

Then

P(u) = fR d(6|V;E|2+1ZW(u€))dx

_ lfRd(q'(Z/E) +1;W(q(d/e))) IVd|dx

€

Property (Co-area formula)

Let Q2 be an open set of R" and ¢ be a real-valued Lipschitz function on Q.

ThenVu e L1(Q),

Lu(x)quﬁldx: j};(j;_%) u(x)d?-(“‘l)ds

51/175
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Upper bound inequality:

P(u) = fR d(q(g/e)+ W(q(d/e)))Iledx

L, 6

_ 1Lg(s)[|¢(32/6)|2 —i—W(q(s/e))] ds

€

_ f :o g(es) ['ql(s)'z 4 W(q(s))] ds

2

with g(s) = |DX{dist(x,Q)ss}|-
Then, by smoothness of 2, g(es) — g(0) = P(u) as € — 0, and

Iim0 Pe(ue) < cwP(u).
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@ Introduction

e Phase field approximation of mean curvature flow
@ Cahn Hilliard energy
@ Allen Cahn equation : existence and comparison principle
@ Asymptotic expansion of the Allen Cahn equation and convergence
@ Numerical point of view

e Conserved and multiphase mean curvature flow

Q Approximation of Willmore energy and flow:



Allen Cahn equation

@ Cahn Hilliard energy:

P.(u) = fRd (e'vé"z + %W(u))dx,

@ L2 gradient flow of P, = Allen Cahn equation

1
oiu = Au- W (u)
€

@ Existence, comparison principle

54/175



Existence of solution

Theorem

Consider the Allen Cahn equation in a box Q = [0, 1] with periodic
boundary conditions and with a C? double well potential which satisfies

W” el (R), and W(t)>at®+p, witha >0,f€R
Then, for all up €€ H'(Q) N L*(Q), there exists a function

ue LR, H'(Q)) nHL (RT, L3(Q)),

with u(x,0) = up such as for all $ € CZ(RT x Q)

1
f ugrdxdt = f (W' (u)¢ + Vu- Vo)dxdt.
QxR+ QxR+ €

55/175
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Outline of the proof

1 Build a linear piecewise approximating solution

up = uLf/h]( ) (t/h _ [t/h])(ULt/h+1](X) _ U’[:/h](x)),

e _ 1 1
= ggmn e [

2 Prove that up is uniformly bounded in L*(R*, H'(Q)) n H..(RT,L?(Q))

and extract a limit u (up to a subsequence) such as Vt € [0, T].
up(t) = u(t) in H'(Q)

3 Show that u is the solution of our problem : for all ¢ € CZ(R™ x Q)

where

f uprdxdt = f (l2 W' (u)¢ + Vu - V¢)dxdt.
QxR+ Q

xR+ €
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Comparison principle and uniqueness

Theorem
Lete >0 and u,v e L*([0, T], H'(R)) n H'([0, T], L3(R)) such as

U — Au+ SW(u) 2 vi — Av 4+ SW(v), inR¥x [0, T]
u(x,0) > v(x,0), inRY

then
u(x,t) = v(x,t) inRIx[0,T]

Lemma (Gronwall)

Let ¢ : [0, T] — R be continuous such as V't € [0, T|,
¢(t) < C+ L [ ¢(s)ds, then ¥t € [0, T], ¢(t) < Ce'’.

y

Consider the function y(t) = (C + L fotgo(s))e‘“ and show that y’(t) < 0.
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Proof of comparison principle
@ For all positive function ¢ € L=([0, T], H'(R)) n H'([0, T], L3(R)),
1
f (Vi = up)gdx < f V(u - v)Vedx +f LW/ (w) - w(v)gax.
RY Rd Rd €
@ Consider ¢ = max(v — u,0) and then

if <p2dx§£f (W' (u) — W' (v))gdx.
dt Jga €2 Jpd

@ Using a decomposition of W’ on the form W’ = W/ + W/ where Wi is
increasing and W, is M-Lipschitz leads to

%(p(t) < 26—2/’¢(t), with ¢(t) = f @(x, t)dx

RA

@ Apply the Gronwall lemma to conclude.
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Formal asymptotic expansion

@ Let u, be a solution of the Allen Cahn equation and introduce the set

QE:{XERC]; ue(x,t)zé}.

@ In a small neighborhood of I'. = 9€2., consider the stretched variable

d(x,t)  dist(x, )
€ N €
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Outer and inner expansion

@ Outer expansions (far from the interface)
Ue(x, 1) = UE(t) + euf(t) + Eus(t) + O(e®),

for x € Q. (corresponding to u;") and for x € Q \ Q,) (corresponding to
ub).
]

@ Inner expansions (around the interface)
Ue(x, 1) = U(z,x, t) = Up(z, x, 1) + €Uy (2, x, t) + €2 Ua(z, x, t) + O(€%),

with the assumption : V,U - Vd(x, t) = 0.
@ Matching condition

lim Ui(z,x,t) = u:(t).

Z—+00 !
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Outer expansion and Matching condition
@ Order e 2 :
W'(up) =0= uy =1and u; =0.

This implies that Uy satisfies the following boundary conditions

Up(0,x,t) =0, lim Uy(z,x,t)=1and lim Uy(z x,t)=0.

Z——00 Z——+00

@ Ordere'and 1 :
W’ (uo)uy = 0 = uy =0,

and
W (up)up = 0 = u; = 0.

Then we obtain that

Ui(0,x,t) = 0 and lim Ui(z,x,t) = 0forie{1,2}.
Z—>+00
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Formal asymptotic expansion
@ Velocity of the front
Ve = —0id(x, t) = Vo + €Vy + O(€?)
@ About derivative of u

Vue = VyUc + € 'mo,U.  where m = Vd(x, )
Aue = AU + € 10g0,Uc +€20%,U, as VyU-m=0
0tle = 0¢U, — e 'V.0,U.

@ Geometric properties of the signed distance

Ki 2 2
Ad(x, 1) = TR d eZlAP 4 O(€?)

where |A2 = 3 k2.
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Formal asymptotic expansion

@ Order €2
05,Uo — W (Ug) = 0 = Up(z,x.1) = g(2)

@ Order ¢!
0,Uo(H + Vo) + 5§zU1 - W"(Uo)U1 =0

Multiplying by 0, Uy and integrating in z over R leads that Vy = —H.
Moreover, U; = 0 satisfies

92.Us = W”(q)Us =0,

and is on the form Uy(x, z,t) = c¢(x, t)q’(z). The boundary condition
on the surface (Ui(x, 0, t) = 0) finally shows that

Uy =0.



65/175

Formal asymptotic expansion

@ Order €°
—V48,Up = |1A%|20,Uq + 82,Uz — W' (Up) Us,
implies that
Vi = 0and Ux(z,x, t) = —A(X)Pn1(2),
where 74 is the function defined as the solution of

ny =W’ (Qn = sq’, with  limni(s) = 0and n:(0) = 0.
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Formal asymptotic expansion

@ In conclusion, the solution u, as expected on the form
dist(x, Q. dist(x, Q.
ue(x, t) = q(%) - E|A(X)P 1 (%) + O(€),

where the normal velocity V. satisfies

VE = H+ O(é).



Convergence of the Allen Cahn equation

@ Let Q(t) a regular motion by mean curvature, t € [0, T]
@ Allen Cahn equation solution u, with initial condition

dist(x, Q(O)))

€

Ue(x,0) = q(

@ Convergence of Q¢ — Q:

sup dist (AQ°(t),09(t)) = O(e2 Iog(e)z)
te[0,T]
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|dea of the proof

1 Construct a sub and a super solution of the Allen Cahn equation on
the form

. . (dist¥(x,t . [distZ(x,t
vitx) = o (S gy (FHED ) ooy,
where

dist® = dist(Q(t), x) ¥ c1€%log(€)?.

2 From comparison principle, deduce that

vo(x,t) < ue < vE(x,t),

- "€

and then that
dist(0Q€, dQ) < Ce?log(€)?.
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@ Introduction

e Phase field approximation of mean curvature flow
@ Cahn Hilliard energy
@ Allen Cahn equation : existence and comparison principle
@ Asymptotic expansion of the Allen Cahn equation and convergence
@ Numerical point of view

e Conserved and multiphase mean curvature flow

Q Approximation of Willmore energy and flow:



Resolution of Allen Cahn equation

Resolution of the Allen Cahn equation in Q = [0, 1]” with periodic
boundary condition :

ur(x, ) = Au(x,t) = W’ (u(x, 1)), for (x,t) € Q x [0, T],
u(x,0) = up € [0,1]

@ An Euler explicit scheme : u" ~ u(né;) where

1
un—i—1 —y" = 6t(Au”) _ —2W’(Un),
€

but stability issue.

701175



Euler implicit

@ An Euler implicit scheme :

un—i—1 —u" = 5 (Aun—H _ 1—W'(Un+1)),

€2

or

1 1
U — argumin {EF’E(U) + 26, f(u - u”)ZdX}-

@ Resolution with a fixed point iteration

o) = (1-68) " (" = Sw(w),

€

which locally converges if 6; < M~"€® where M = supge(o ;{IW"(s)I}

71175



Lie and Strang splitting algorithm

@ Lety: [0, T] — R" be solution of
yi(t) = (A+ B)y(t), Vte[0,T]
y(0) = yo

and satisfies y(t) = e(AtB)ty,
@ Lie splitting
2
e(ATB)t — gAlgBt | %[A, B] + O(t%),
where [A, B] = AB — BA.
@ Symmetric Strange splitting

3
oA B — Al2BGAIZ 1 ([A, [A, B]] - 2[B,[A, BI]) + O(t").

721175



73175

A splitting algorithm

@ Allen-Cahn equation :

S(t) :total flow

etA

Y(t) :reaction part

{(%u(x, t) = AU(X, t) - 51_2 W,(U(X’ t)) - diffusion part

u(x,0) = up € W' (RY)

@ A Splitting Lie formula with L(t) = Y(t)e'4,

M
IL(6)"vo = S(nét)uollLe(re) < = Vit IV Ul (e
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Resolution of each operator

@ Exact resolution of diffusion part in Fourier space : with

N/2
n — n S 2imk-x
ki,ko,-kn=—N/2+1
then
N/2
_A4-21k|2 P
U;\’IH(X) = &P Un(x,t) = Z eIk o, Q2inkx

ky,kp,-kn=—N/2+1
@ Treatment of the reaction part

By ODE integration — unconditionally stable
Explicitly — Stability under condition

-1
W// 2
o= gyl )
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Matlab code

i parameters XXNHORGHN
N = 2A8 % spatial resolution
epsilon = 2/N;
delta_t = 2%epsilonA2; % Tine step
T =0.05;

K% initialisation u(x,0) : \Omega 0 s a circle radius of size 0.3
ones(M,1)*Tinspace(-1/2,1/2,N);

X2 =X1';

dist = sqrt(X1.A2 + X2.A2) - 0.3;

Ul = 1/2 - tanh(dist/(2%¥epsilon))/2;

#% Heat kernel 53
[0:N/2,-N/241:-1]"*ones(1,N);
K1':

M = exp(-delta_t*4*pin2*(K1.A2 + (K2).A2)):

¥%  Allen Cahn solution computation MHHHEMERNN
=] for n=1:T/deTta_t

W_prim = Ul.*(Ul-1).*(2*U1 -1);

fl = Afft2(M. *FFe2(Ul - delta_t/epsilonA2% (W_prim)));

plot the solution all the 10 iterations

1f (mod(n,1)==0)
imagesc(Ul);
caxis([0,1])
pause(0.01);

~end
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Validation of this numerical method

@ Initial set : a circle of radius Ry
@ The motion by mean curvature remains a circle of radius

R(t) = \JR2 -2t,

@ Extinction time : te = $R2

0.0305328

fig : 0Q¢(t) at different times t fig : Error € — |tex — 5]
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@ Introduction
9 Phase field approximation of mean curvature flow

e Conserved and multiphase mean curvature flow
@ Conserved mean curvature flow
@ Inclusion-Exclusion boundary constraints
@ Multiphase mean curvature flow

e Approximation of Willmore energy and flow:
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Conserved mean curvature flow

@ L2-gradient flow of the perimeter under the constraint Vol(Q) = C :
V, = —H+ A1,

where A is the Lagrange multiplier associated to the constraint.
e Then, the equality & Vol/(Q(t)) = 0 implies that

fV,ﬂdO':O = /I:JCHda-:F.
oQ N

@ Conserved mean curvature law

V,=—-H+H.
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Some properties of conserved mean curvature flow

@ Local existence of smooth solution in dimension 2

@ Local existence of smooth solution in arbitrary dimension + global
solution for initial set sufficiently closed to the sphere

@ Global existence and uniqueness for convex initial set
@ Singularities in finite time and no inclusion principle !
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An example of conserved mean curvature flow

@ Initial set € : union if two disjoint circles of radii Ry and Ry with
Ro < Ry

@ Then, Q(t) remains the union of two circles of radii Ry(t) and Ry(t),
defined as the solutions of

dhy _ 1, 2
da Ro Ro+Rj
dy _ T 2!
da R Ro+ R

@ Singularities in finite time

tS:

_RoRs +R§+R$I |4 _2RoR:
2 4 (Ry — Ro)2)’
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Phase field versus
@ Approximation of the volume :
Vol(Q2) = fudx if u=yxq.

@ L2-gradient flow of P, under the constraint fudx = Const.
@ Conserved Allen Cahn equation

1
ur = Au-— (W(u) + el)
€

where

A= 1;JL‘W’(u)dx.

@ Convergence to conserved mean curvature flow
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Numerical experiments in dimension 3

@ Scheme : a Fourier-splitting approach with a explicit traitement of the
reaction terms :

un—|—1/2 — eAéfun
yntt = ynt1/2 + % (W/(un+1/2) _ JC W'(Un'H/z)dX)

=000

tnaonsse e

: e : e : : o

o o o o

o o o o2

¢ o e —— [ -
[ - T e e

@ Losses of volume observed but f u"dx does not moved !
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Asymptotic expansion

@ Conserved Allen Cahn equation

1 1
ur = Au— — (W' (u) + €1) with 2 = p f W’ (u)dx.
€

@ Inner expansions (around the interface)
Ue(x, 1) = U(z, x, 1) = Up(z, x, t) + €Uy (2, x, 1) + €2Ua(z, x, t) + O(€3).
@ Expansion of the Lagrange multiplier A

A(t) = Ao + €y + €22 + O(€%)
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Formal asymptotic expansion

@ Order €2
32,Uy — W' (Up) = 0 = Up(z,x,t) = q(2)
@ Order ¢!
8,Uo(H + Vo) = g + 0%,Uy — W (Up)U;s =0
Multiplying by d,Up and integrating in z on R leads that
Vo = —H + Ao/cw.
Moreover, Uy = c*—y‘i/n(s) where 7 is solution of

{77"(8) - W(q)n = q(s) - cw
n(0) = 0.
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Formal asymptotic expansion

@ The solution u, is then expected on the form

(dBK:AT))+642S)n(dBK:,Qﬂ

u(x,t) =q ) + O(€?)

@ Approximation of the volume :

wmwnzf%@nm+qamy

©® = = o

@ Losses of volume observed of order O(e)!
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How to obtain a more efficient model ?

@ Asymptotic expansion of u; :

d:Uo(H + Vo) = Ao + 02,U1 = W' (Up)Uy =0
@ Remark that if

0zUo(H + Vo — o) + 85,Us = W (Up)Us = 0,

then
Vo=-H+gand U; =0
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A modified conserved Allen Cahn equation

@ A conserved Allen Cahn equation
Au——z(W’( )+eﬁ,/2W(u)) with 1= 1 S Wox
e € [ J2W(u)ax. de
@ Asymptotic expansion

(€%)

Ue(x,t) = q(w) +0

@ Approximation of the volume :

Vol(Q5(t)) = fug(x, t)dx + O(€?).

@ Convergence to conserved mean curvature flow
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Numerical evidence of order of convergence

Case of two disjoint circles of radii Ry and Ry with Ry < R4

joo] C

fig : Left : ACC, Center : ACCM, Right : € — |tey —

€
text |
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Comparison of the two models in dimension 3

o o o5 o
as o o8 o
as os 05 0s
o o 03 0
o o 02 o2
or] or o1 or

9 9

5 s g a

oo 1o 1o
o o o5 o
o7 or or o
as o o0 o
os os 05 0s
o o 03 0
o o 02 o2
or] or o1 or
- - B -
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@ Introduction
9 Phase field approximation of mean curvature flow

e Conserved and multiphase mean curvature flow
@ Conserved mean curvature flow
@ Inclusion-Exclusion boundary constraints
@ Multiphase mean curvature flow

e Approximation of Willmore energy and flow:
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Inclusion-Exclusion boundary constraints

Minimization of

P(Q) ifQ1 CQCQZ
400 otherwise,

PQqu(Q) = {

for two given smooth sets Q1 and Qp with dist(9€24,91) > 0.

Ho, Hon M Q
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Dirichlet boundary conditions :

@ Dirichlet Cahn Hilliard energy approximation

w2 o 1 .
IBE,Q1,QZ(U) _ J;22\Q1 (2|VU| + P W(U)) dx ifue )(.91’92
+o0 otherwise.
with
XQ1,QZ :{U€H1(92\Q1); Upo, = 1 , U, :0}’
@ I-convergence of Peg, .0, 10 cwPeq, .0, inthe

L"(RY) topology :
@ Order of convergence ? But dist(92, 921) > € and dist(9,9521) > € !
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Dirichlet boundary conditions :

@ Allen Cahn equation with boundary Dirichlet conditions

up=au— LW (u), on Qp\Q
s, =1, Usn, =0
U(O, X) = Ug € XQLQZ.

@ Numerical scheme : Implicit Euler scheme in time and finite elements
discretization in space.

@ A numerical experiment with Freefem++
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An other penalized Cahn Hilliard energy

@ Cahn Hilliard Energy

Pe(u)  ifuge<u<1—uoe

b

Peq,0,(u) = {

400 otherwise,

where uy and up . are defined by

dist(x, dist(x, Q2
Ul e = q(M) and Upe = q(M)

€ €

@ [-convergence of P q, q, to cwPa, q, ?
Yes, slightly adaptation of Modica-Mortola proof !

@ Order of convergence ? but dist(9$2, 921) and dist(9$2, 921) can be
equal to zero !



Numerical scheme

@ An Euler implicit scheme

U™t = argmin {Pg(v) + Lf(v— u”)2dx}.
20;

U, e<V<T-Ua e

@ The solution u™*' can be obtained by a fixed point iteration

(u) = Projy, .u,. [(Id NG (u” - gW’(u))]

where the projector Py, <v<1-u,, is defined by
Proju, <u<t-u, [V] = min(max(uy ¢, v), 1 — Uo,),

and (1 - 6;A)™" can be solved in Fourier space

96/175



971175

Matlab code

1

ol

£hies

Figs

5 O He al %

B ones{N,1)*[0:N/2,-N/2+1:-17;

= M=1. /(1+4"p1'\2”de'|ta_t*(Kl A2 K1 A2Y);
1 @% Minimization scheme %%

9 - [ for n=1:T/delta_t,

10 - U=Uu1.0;

L= Ul1_0_fourier = FFt2(U1_0);

1= res'="1;

13

14 HHHBPHHT Tixed point iteration ¥HENHOHRARHE
15 - while res > 10A(-4),

alEe U_plus = ifft2( M.*(U1_O_fourier - delta_t/epsilonA2*ffe2(U.*(U-1).*(2*U-1))));
Bl U_plus = max(min(1-U2,U_plus),U1);

1z res = norm{ (U_pTus-UJ7J;

19 - U = U_plus;

20-  end

R U1_o = U;

22

23 - ‘Ltend
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Numerical experiments

ik
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Numerical experiment : example of minimal surface
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Case of thin constraints

@ Find the set Q* as a minimizer of

P(Q) ifQcQcQs
+o00  otherwise

PQ1 o2 (Q) = {

°

with Qo1 = Qz = 0.

=
f
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Application in Magnetic Resonance Imaging




About semi-continuity of Pq, o, in L'-topology

@ Note that Pq, q, is not lower
semi-continuous

P(Q ifQy cQcQf
PQ1,§22(Q):{ (1) it 2

+o0o  otherwise

@ Relaxation of the penalized perimeter

102/175

Pa,.0,(R) = inf{liminf Po, ,(Qn), 82 € C%, Qn — Qin L'(Q)).

@ Identification of Pq, o, ?

Pa,.0,(Q) = P(Q) + 2H™ 1 (Q° N Qy) + 2H"1(Q' N Qp)
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Numerical experiment

The constraint are not satisfied at the limit when e — 0 !

0.5

041

0.3F /—\

0.2F

0.1f
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An idea : Use some thickened constraints

dist(x,€25)
P, e g, where u,E = q(—)

e"$

0.3 \ 0.3 / \
- . r

1 NG S
. - T
: - : \
-03 \ / -03 \ /
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@ Introduction
9 Phase field approximation of mean curvature flow

e Conserved and multiphase mean curvature flow
@ Conserved mean curvature flow
@ Inclusion-Exclusion boundary constraints
@ Multiphase mean curvature flow

e Approximation of Willmore energy and flow:
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Multiphase perimeter

N
1
P(Q4,Q,...,0N) = = f 1do(x),
(1, Q... W) 2;9,«@ (x)
where {Q},—1.n formed a partition of Q :
Q=UN,Q, and QNQ=0,Vi#]j

Motivations : Image segmentation, optimal partition, bubble conjecture !
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Multiphase Cahn Hilliard Energy

@ Generalized Perimeter

N
-1 30wl
>

if it exists a partition {€;}i=1.n of Q suchasu = (1q,, -+, 1qy)-
@ Multiphase Cahn Hilliard Energy,

P.(u) = {% YiPe(u), ifuekX,

+oootherwise

where ¥ = {u = (U, Uz, -+ ,uy) € RN ; I 0 = 1).

Property
P. T-converges to cwP for the L' topology. J
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[ liminf inequality :

Yu, - u = lim ig]f Pc(ue) = cwP(u)

@ Modica Mortola applied to u; shows that the existence of a set 2;
such as u; = 1g, and

1
lim mff%quE,,-l2 + ZW(uE,,-)dx > cwP(Q)).

e—0

@ Moreover, the constraint u. € X shows that {€;}i—1.nis a partition of Q
and then

lim inf Pe( ZN: = cwP(u).

e—0
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[ limsup inequality :
YU = (xa,. X0, - - Xay), Where {Q}Y . is a partition of ©,

it exists a sequence {u¢}e-o such as limsup Pe(u,) < cwP(u).

e—0

@ We would like to take

N .
dist(x,
“E:ZQ(—’S(X ’))ei,
i=1

€

butu, ¢ 3,!
@ Restriction to polygonal partition
@ Approximation g. of g = (1 —tanh(s))/2 such as

ge(s) =0ifs<-s,
Qe(s) =1ifs>se , with s, = O(e)
qe(s) =q(s)ifls| <s¢/2
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[" limsup inequality

@ New partition of the domain

Q : o W
@ Construction of u. :
N € if x € QfF,
u(x)= > 9 e = L ge(dh/e)es + (1 - qel(dife))ey ifx T
€ —.1Qe pl ge(di/e)ei + (1 — ge(di/e))ej ifx e i
I: .« ..

if x € B¢

@ It works as |B€| = O(€?s?), and u, has the good profile in T°€ ...
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Multiphase Allen Cahn equation

@ Multi Cahn Hilliard energy : ifu e &
1
2P
I
@ The L2 gradient flow of M, reads
1 1
oy = = Auj— =W (Ui) + /I(X) (1)
2 €2

where A(x) is a Lagrange multiplier associated to the constraint u € &

and satisfies
N
1
Z W

Z |
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Application to image segmentation

@ Data : Image I : Q — R, color coefficient c = (cy, C2, - - - CN)
@ Image segmentation model : Minimize

N
QDo ) = (;—a fﬂ (1(x) - c5)2ax + P(Q,-)),
i=1 i

on the set of all partition {€;}i—1.n oOf Q.

@ Phase field approximation

1

Jlw) = 5 L(I(x) —c-u)Pdx+ C1—WPE(u).
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Numerical experiments for different values of @ and N
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Additional constraint on the volume of each phase

@ Minimization of the Cahn Hilliard energy

P.(u) = ZP up),

under the constraint u € > and
@ The L2 gradient flow of M, reads

1, [
otuj = Au; - gW (ui) + pi+2W(ui) + A(x),

where A and y; are respectively the Lagrange multipliers associated
to the constraintu € ¥ and [u; = V;foralli=1:N.



Additional constraint on the volume of each phase

@ One degree of freedom : 1 = [ A(x)adx
@ Integrating the Allen Cahn equation over €2 gives

o 2—2fW'(U,')dX—/_1
o T 2 W)

@ Summing the Allen Cahn equations gives

Ax) = lZN: %W’(Ui)_ﬂi\pw(ui)_
N €
i=
B[y AW 8
= N;(EW(“’) [ V2W(a)dx ] Zf

@ In practice, choose 1 = 0.

115175

2W u,

VW (uj)dx
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Numerical experiment : Evolution of three bubbles in 2D
and 3D
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0 50|
100 100
150 150
200 200
250 250

50 100 150 200 250

fig : Optimal partition in 2D with respectively N = 3, N =5 and N = 16 phases

fig : Optimal partition in 2D with respectively N = 8 and N = 16 phases. Right :
Weaire and Phelan structure
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@ Introduction
9 Phase field approximation of mean curvature flow

e Conserved and multiphase mean curvature flow
@ Conserved mean curvature flow
@ Inclusion-Exclusion boundary constraints
@ Multiphase mean curvature flow

e Approximation of Willmore energy and flow:



Willmore Flow

@ Willmore Energy
W(Q):—f H2dH™ !,
oQ

@ L2 gradient flow
’
Vn = AgH+ |APH - EHS’

where |AR = 3 &%

@ In dimension 2 : @ In dimension 3 :

1 3
Vn:AsH—l-EH, Vn= AgH + — H(

- 4G),

119/175
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Existence and regularity of Willmore Flow,

@ Long time existence : single curve — ,
@ Long time existence : higher dimension (small energy)

@ But in general, singularities in finite time |




Example of Willmore flow in dimension three

1211175

fig : Two smooth evolutions by Willmore flow ; a Clifford’s torus and a
Lawson-Kusner surface

[m]

=
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@ Introduction
e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

e Approximation of Willmore energy and flow:
@ Classical phase field approximation of Willmore energy
@ Gradient flow and asymptotic expansion
@ About humerical scheme
@ Application to the optimal shape of red cells
@ Application in image processing



Classical approximation of Willmore energy

@ Phase field approximation

ue—q(M), with ¢/(s) = ~\2W(q(s)).

@ Remarks that

1(eAue—%W’(uE)) = (Adist(x,Q))? %q’(

dist(x, Q) \?
€

€

- H(X)ZCWéaQ

@ Then, at least for smooth set 2, we have

e—0

1 1 2 1
_ _ W . _ H2 n—1
We(ue) 2 Ld (eAue 6W (u )) ax = Cw2 fm dH

123175



De Giorgi conjecture : [ -convergence of W, “

Definition ( Classical approximation of Willmore energy )

We(u) = 2%11; (eAu— 1;W’(u))2 ax

124175

Gamma-convergence of W, to cwW ?
Ok in the case of C? Set adding a perimeter term

F—Iir%(WE+PE):CW(‘W+P)

But W is not lower semi-continuous !
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A relaxation of Willmore energy

@ Semi-continuous envelope of W for L'-topology of set

W(Q) = inf{liminf W(Qp), dQn € C2, Qn — Qin L'(Q)).

@ Characterization of finite relaxed Willmore energy in dimension 2 :

if W(E) < +oco, then a non oriented tangent must exist everywhere
on the boundary of E.
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[-convergence of W, to cyW ?

@ Existence of Allen Cahn solutions

such as U, — yg with W(E) = +oo
@ Example of Allen Cahn solutions

@ Find another relaxation (see varifold) but requirement of a
classification of all Allen Cahn solutions !
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Others approximations of Willmore Energy
Definition (Bellettini’s approximation in dimension N > 2)

WB(u) = %fdiv(lz—t”l)z(;vmz + @)dx

if u, = q(d"St(EX’Q)), then

dist(x, Q) )2

€

div(|VVLle|)2(§|VUGIZ+w) = (Ad"St(X’Q))Z%q/(

= H(x)?cwdan

Then, at least for smooth set 2, we have

1 . Vu, 2 € 2 W(US) 1 2 -1
(U) = = —|Vu, — H n
W(U) ~f»dIV(|V e|) (2| Uel ClX:)e 0CWE‘Lv dH
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Gamma-convergence of Bellettini’s approximation

@ Control of the mean curvature of the isolevel surfaces

1 vu, \?
WB(u) > —f Vu.| 2W(uE)dlv( Ue ) dx
2 J(vunl20) Vue|
Vu,
> ,/2Wtf div( ) dH"" dt
f (U =1)"{|Vu |0} Vue|
> wa(Q),
if Ue = XQ-

@ I-convergence of W8 + P, to cyw(W + P)
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Mugnai’s approximation of Willmore Energy in dimension

Mugnai’s approximation in dimension n = 2
@ We have H? = |AJ? in dimension 2

o ifu, = q(w), then

1 1 \Y Vu |2 ist(x, Q)\?
- @ T dist(x, )
€ [Vul

€

]
|Vzo/ist(x,Q)|2Z q’(

- JA(X)Pewdaq

Definition (Mugnai’s approximation in dimension N = 2)

wiw =5 [

Vu Vul?

Vzu— W’ Q —
€ WS ® v
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Gamma-convergence of Mugnai’s approximation

@ As for the Bellettini approximation, we have a control of the mean
curvature of the isolevel surfaces which is given by the following
inequality

Vu Vu

Vu
div —
IVUI [Vl

IVul

1
—‘ Vuf——W’( )~y

@ I-convergence of WM + P, to cy(W + P)
in dimension 2.
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@ Introduction
e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

e Approximation of Willmore energy and flow:
@ Classical phase field approximation of Willmore energy
@ Gradient flow and asymptotic expansion
@ About humerical scheme
@ Application to the optimal shape of red cells
@ Application in image processing



Approximating the Willmore flow with the classical
approach

@ Willmore energy

@ lts L2 gradient flow
1 ’ 1 7’ 1 7
dtu = —A(Au -5W (u)) + W (u) (Au— W (u)),
€ € €
or

v = W' (u) - €Au.

@ Well-posedness and existence at fixed parameter ¢ :
with volume and area constraints

{EZa,u = Ay - SW (u)y

132175
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Inner expansion

@ Stretched variable
z = dist(x,Q(t))/e = d(x,t)/e.
@ Inner expansions of u. and pe :
Uc(x, t) = Up(x, 2, t) + €Us(x, 2, t) + €2Ua(x, 2, t) + O(€%),

W (x, 1) = Wo(x, 2, t) +eWq(x, 2, t) +€2Wp(x, z, 1) + 3 V3(x, 2, 1) O(€%),

@ Velocity of the front

Ve = —0id(x,t) = Vo + €Vy + O(€?)
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Formal asymptotic expansion

@ About derivative of u

Vue = ViU + € 'mo,U.  where m = Vd(x,1)
At = AgU, + €' Ad0,U, + €202,U, as VyU-m=0
Ot = 01U, — € V.0, UL,

@ Geometric properties of the signed distance

_ ki g 2 2
Ad(x, 1) =’ TRdT = Ad = H-ezlA2 + O(éd),

where |AZ = 3 2.
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Formal asymptotic expansion

The phase field Willmore PDE

Eou =Dy - SW(u)y
W =W (u) - Au.
implies (equation (1))

1 1 1 1
e (atue - —veue) = 5PV + —Ad Ve + AV — 5 W (U)W,
€ € € €

and (equation (2))

W, = W(U,) - 8%,U. — eAd 3, U, — A, U..
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Order 0

@ Order €72 in equation (1) and order 0 in equation (2) implies that

0 =05V - SW’(Uo)Vo
Vo = W/(Up) - 82, Up,

with the following boundary conditions (matching condition)

lim Uo(x,z,t) =1, ”T Uo(x,z,t) =0and lim Wy(x,z,t)=0
Z—+00 Z—+00

Z——00

@ Then
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Order 1

@ Order €' in equation (1) and order 1 in equation (2) implies that
0 =82,V - ZW(Up)Vy
W1 = W"(Uo)U1 —6§ZU1 - H(X)@ZUO
with the following boundary conditions (matching condition)

lim Ui(x,z,t) =1, Iim0 Ui(x,z,t) =0and lim Wy(x,z,t)=0.
z—

Z—+00 Z—oto0
@ Then the first equation shows that Wy = ¢(x, t)q’(z) and the second

one that
Ui(x,z,t) =0
Vi(x.2.t) = ~H(x)q ()



Order 3

@ Order €° in equation (1) and order 2 in equation (2) implies that

0 =8,V — LW (Up)Va + HI, W,
Wy = W (Up)Us — 82,Us + |AR23, Uy

with the following boundary conditions (matching condition)
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lim Ux(x,z,t) =1, Iim0 Uz(x,z,t) = 0 and zlim Vy(x,2z,t) = 0.
z— —+00

Z—+00

@ The first equation shows that
V2 = c(x, 1)q'(2) + H(x)?n2(2),
where the profile 1, is defined as the solution of
my = W'(qn2 = q”,  with lim 72(z) =0,

and satisfies 2(z) = zq'(2).
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Order 3

@ The second equation reads now

02 Us — W (Up)Uz = (AR - )2/(2) + clx. D (2)

@ Then, multiplying by @’ and integrating over R leads to

c(x,t) =0, and Usx(x,z1) = (JA(X)]? - m2),
where the profile 11 is defined as the solution of
- W' (g1 = zq', with Z|iIII n1(z) = 0.

@ To conclude,

Wa(x,z,t) = H(x)?n2(2)  and Uz(x, z,t) = (JA(X)? - 5 )m(2).



Order 4

@ The first equation reads

~“Voq'(z) = [03Ws- W (q)Ws] - WO)(q)UaWy + (HO, V2 — |APZ0,W1) + AWy
[02Ws — W (q) W3] + H(IAP — H?/2)W®)(q)q'n1
+(H*/2- ArH)q + (H*/2 + |APH)zq”

@ Remark also that
[ a(sy0 = cw. [ 20/ (s)q/(2)dz =~ 0w, and [ WO(a)(@emdz = 5w
as ¢ satisfies
ny = W’(qym =2q' andn}” - W (q)n} - W (q)q'ns = (2q')',
@ Then multiplying the equation by @’ and integrating over R leads to
Vo = H(AP-H/2)/2~ (H*/2~ ArH) + (H*/2 +|APH)/2
= ArH+ HA? - %Ha
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Asymptotic expansion in smooth case

@ Formal asymptotic expansion in smooth case

We(x,t) =~ —eHq (M) + 2H2r (d(x,QE(t))) ,

where
{n;’(S) - W”(q(s))m(s) = sq'(s)
15 (s) = W”(a(s))n2(s) = q”(s)
@ Formal convergence

’
V€ = AsH + |APH - EH3 + O(€)

@ the velocity limit depends on the second term of order 2 in the
asymptotic expansion of u. and pu.!
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Approximating the Willmore flow with the Mugnai’s model

Wi =5 |

@ lts L? gradient flow

@ Willmore

1 Vu Vul?
D?u—- -W'(u)— ® —| dx.
€ W )|VU| vl

0 = Ay — W (u)y + W' (u)B(u)
v = W'(u) - €Ay,

where
Vu\) Vu Vu\) Vu
B(u) = div(divl — | — ] — di — | =].
(u) dlv(dlv(IVul)IVul) dIV(V(IVul)IVUI)

@ Well-posedness and existence at fixed parameter € ? Requires
presumably a regularization of the term B(u) as done numerically



Asymptotic expansion in smooth case

@ Formal asymptotic expansion in smooth case

Uelxt) = q L) 4 2y, (L2

Ye(x, 1) = -qu'(m) L Azng(d(x,ize(t)),
@ Formal convergence
€ 3 1 5
Ve =AsH+B% - SHIAP + O(e),

where B3 = 3 «3.

@ This corresponds to Willmore flow in dimension 2 and 3 !

143175
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@ Introduction
e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

e Approximation of Willmore energy and flow:
@ Classical phase field approximation of Willmore energy
@ Gradient flow and asymptotic expansion
@ About humerical scheme
@ Application to the optimal shape of red cells
@ Application in image processing
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An implicit spectral scheme based on a fixed point
iteration

@ Phase field system to solve
ou = Au - S—QW"(U)M
= LW'(u) - Auw.

@ Implicit discretization in time

gt = St [A,un'H _ 51_2Wu(un+1)'un+1] +un

’un+1 — e1_2W/(un—|—1) —AU”"H,
@ Computed with a Fixed-point iteration

un+1 -1 ( Id 5tA )( un — %Wu(un—H )’un-H )
= (lg + 6:A &
¢('un+1 ) (d t ) _A Iy 61_2W(Un+1)

@ Used a Fourier discretization in space

@ Stability :
0t < Cmin {64,5)2(62}.
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Matlab code

IRIOENH  Initialization HHEHEEGGNGER
% U, T U_fourier, w , epsilon, delta_t

KHEINN® diffusion| operator in Fourier space %%

=

1 = ones(N,1)*[0:N/2,-N/2+1:-1];

Ml = exp(-4*piA2*delta_t2*(K1.A2 + K1'.A2));
M=1./(1 + delta_t*16*piA4*(K1.A2 + K1'.A2).A2);
M2 = -4*piA2*(KL.AZ + K1'.A2);

1for i=1:T/delta_t,

Uk = U
wk = w;
res = 1;

IEHHK Tixed point iteration KESOEOSHOOOR

while res > 10A(-8);

potentiel_1 = (2¥Uk.A3 - 3*Uk.A2 + Uk)
potentiel 2 = (6*Uk.A2 - 6%Uk + 1);
tenpl = ffr2(potentiel_1);

tenp2 = Ffr2(potentiel_2.*wk);

Uk_plus = ifft2(M.*(U_fourier + delta_t/epsilonr2*(M2.%*tenpl + temp2)));
wk = IFFL2(M.*(M2.* (U_fourier + delta_t/epsilonAZ*tenp2) - 1/epsilonAZ*templ));

ras = norn((Uk_plus-Uk));
Uk = Uk_plus;
end

w = wk;
U= Uk;
U_fourier = Fft2(U);

end
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Validation of this numerical method

@ Willmore flow of a initial circle with radius equals to Ry :
R(t) = (Rs + 2t)1/4

yyyyy



Validation of this numerical method
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fig : Two smooth evolutions by Willmore flow ; a Clifford’s torus and a
Lawson-Kusner surface
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Union of two disjoint circles
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Comparison phase field // parametric
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Parametric Willmore flow of two disjoint circles

param 1
param 2
param 3
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Other experiments
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An implicit spectral scheme based on a fixed point
iteration

@ An Implicit discretization in time, Fourier discretization in space and a
fixed point iteration to solve

Ot = L — ZW”(u)u+ SW (u)B(u)
u=W{(u)-eAu.
Where

K [ L et

@ In practice, use a regularization of B(u) :

B, (u) = [(|Vvu,(,|2 - |div vugg|2) —rot (rot (vy.)) - vu,g]

Vu

where vy, =



Validation of this numerical method
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@ Willmore flow of a initial circle with radius equals to Ry,

@ Clifford’s torus




Other experiments
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Other experiments

P o
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@ Introduction
e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

e Approximation of Willmore energy and flow:
@ Classical phase field approximation of Willmore energy
@ Gradient flow and asymptotic expansion
@ About humerical scheme
@ Application to the optimal shape of red cells
@ Application in image processing



Willmore flow with conservation of area and volume
@ Minimization of Willmore energy
1
W(Q) = = f H?dH"!,
2 Joa
under area and volume constraints

fmw"_vo, andf 1dH" = Ao.
Q o0

@ It's L2 gradient flow reads as
1
Vo = AsH+IAPH = SH + v + AaH,
where Ay and A4 are two Lagrange multipliers defined such as

f VodH" =0, and f HV,dH" = 0,
Q Q
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Phase field versus

@ Minimization of

We(u) = é fRd (eAu - 1ZW’(U))2 ax,

under discrete area and volume constraints

\v, 2
dedXZ Vo, and d( | ;JI (u ))dx:cWAo.
R R

@ It's L2 gradient flow reads as
0t = Du— W (U)u + ey + Aap,
u= W (u)-eAu.
where Ay and A4 are two Lagrange multipliers defined such as

Jpo urdx = 0 and [, uurdx = 0.
@ Well-posedness and existence at fixed parameter €
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A slightly variant

@ Alocal Lagrange multiplier Ay :

0t = Dp— SW” (u)u + ey 2W(u) + Aap,
u=W{(u)-eAu.

@ Sharp interface limit ?
y
Ve=DsH+|APH = SH® + Ay + 1aH + O(e)
@ Explicit expression of 14 and Ay :

(/lv)__( [ey2W(u)dx [ pdx )‘1( [ B~ LW (upudx )
)\ [e2W(uudx [ pPdx [ (D= ZwW” (u)u) pox
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About numerical scheme

@ Implicit discretization in time

utt =y g [A/Jn+1 _ éw//(un+1)ﬂn+1
+e/l'\’/+1 zw(un+1)+/1;7\+1’un+1]
'un+1 — Wz(un+1) _ €2Aun+1,

@ Resolution with a fixed point iteration and Fourier space.
@ But numerical experiments show some important losses on the
volume and the area : = use a penalty formulation [Du,Liu,Wang
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A variant approach : minimization and projection

@ A splitting approach
yntire — yn + % [A,u”‘H/z _ 2—2W"(U"+1/2)ﬂ”+1/2
ﬂn+1/2 — Wz(un+1/2) _ €2Aun+1/2’
and

yttt = 12 5_;(6/1\/ /2W(u”+1/2) _|_/1Aﬂn+1/2)
€

@ The two Lagrange multiplier 1y and A4 are defined as the solution of
F(u") = 0, with

[ udx - Vo ]

F(u) = ( S (€52 + 1w(w)) o - ewho

@ In practice, we use a Newton method to obtain an approximation of
Ay and A4 !
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@ With implicit discretization of the continuous PDE

@ With splitting approach : minimization and projection

: |
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Numerical experiments in 3 dimension
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@ Introduction
e Phase field approximation of mean curvature flow
e Conserved and multiphase mean curvature flow

e Approximation of Willmore energy and flow:
@ Classical phase field approximation of Willmore energy
@ Gradient flow and asymptotic expansion
@ About humerical scheme
@ Application to the optimal shape of red cells
@ Application in image processing
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Regularization of discrete contour by Willmore energy

Find the set 2* such as

Q" = argmin W(Q), with W(Q) = f H2dH"!
Q1cQcQf 0

where Q1 and Q. are two given set such as 4 C Qg
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Phase field versus

@ Let us introduce uy ¢ and up . defined by

dist(x, 2 dist(x, Q2
dist(x, 1) 1)), and U = q(—ls (: 2))
€

Ut,e = 67(

@ Find the solution of

1 w’ 2
ut = argmin  We(ue), Withwe(u)zz—f(eAu— (U)) dx

U1 «CUCT—Up ¢ € €

@ Numerical scheme : an implicit Euler scheme based on a projection
fixed point iteration.

@ Remark that if Q1 = Qf, then u” = q(w)
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Numerical experiments
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Motivation : Magnetic resonance Imaging
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Mathematical formulation

@ Find the set Q* as a minimizer of

WEQ) it cQcQf

w. Q) =
Q1,92( ) {—|-c>o otherwise
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Penalized Willmore energy : Waq, q,

@ Note that Wq, o, is not lower semi-continuous

W(EQ) ifQcQcQs

Wa,.0,(Q) = 2
0;.9,(€2) {_|_00 otherwise

@ Relaxation of the penalized Willmore energy ?
@ Phase field approximation

We(u) fures<u<t—ug,

W, u) =
e (U) {+oo otherwise,

with u;, = q(—d"st(j’ﬂ")).
@ About numerical scheme : an implicit Euler scheme based on a
projection fixed point iteration.
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Matlab code

HROOOOEE  nitialization KEKEESOOHENN
¢ U, T U_fourier, w , epsilon, delta t,Ul,uZ

SOSEEIEOEEE% di Ffusion operator in Fourier space X066

Kl = ones(N,1)*[0:N/2,-N/2+1:-1];

M1 = exp(-4*piAZ*delta_t2* (K1.A2 + K1'.A2));
M=l./(1 + delta t¥16*pird*(K1.A2 + K1'.A2).A2);
M2 = -4%piAZ*(K1.A2 + K1'.A2);

Clfor i=1:T/delta_t,

K Tixed point iteration HESGEOMEEHOGH

Clwhile res = 10A(-8);
potentiel_1 = (2*¥Uk.A3 - 3*Uk.A2 + Uk)
potentiel_2 = (6*Uk.A2 - 6*Uk + 1);
tenpl = ffr2(potentiel_1);
temp2 = ffr2(potentiel _2.*wk);

Uk_plus = 1FFL2(M.*(U_fourier + delta_t/epsilonAZ* (M2.*tenpl + temp2)));
wk = iFFL2(M.*(M2.*(U_fourier + delta_t/epsilonA2*temp2) - l/epsilonAZ*templ));
Uk_plus = max(min(1-U2,Uk_plus),Ul);

ras = norm{(Uk_pTus-Uk));
Uk = Uk_plus;
end

wk;
Uk;
ur

_fourier = FFt2(U);

end
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Numerical experiments
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Numerical experiments
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