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Abstract. This paper tackles the approximation of surface diffusion flow using a Cahn–
Hilliard-type model. We introduce and analyze a new second order variational phase field
model which associates the classical Cahn–Hilliard energy with two degenerate mobilities. This
association allows to gain an order of approximation of the sharp limit. In a second part, we
propose some simple and efficient numerical schemes to approximate the solutions, and we pro-
vide numerical 2D and 3D experiments that illustrate the interest of our model in comparison
with other Cahn–Hilliard models.

1. Introduction

This paper addresses the approximation of surface diffusion flow, which is the evolution of a
time-dependent surface Γ : t 7→ Γ(t) moving with normal velocity at every time t:

V (t) = ∆Γ(t)H(t),

where H(t) is the mean curvature vector on Γ(t), and ∆Γ(t) the Laplace-Beltrami operator
defined on the surface. For simplicity, we shall frequently omit the time dependence.
The starting point of our approximation model is the classical Cahn–Hilliard equation

ε2∂tu = ∆
(
W ′(u)− ε2∆u

)
,

where u : (t, x) 7→ u(t, x) is a smooth function whose level surface {u(t, ·) = 1
2} approximates

Γ(t), ε > 0 is a small parameter, and W is a reaction potential, typically W (s) = 1
2s

2(1− s)2.
The Cahn–Hilliard equation has been introduced as a mathematical model for phase separa-

tion and phase coarsening in binary alloys [15, 17], but it has also been used for applications as
diverse as the modeling of two evolving components of intergalactic material or the description
of a bacterial film, see the references in [34], or the modeling of multiphase fluid flows [7, 8].
More recently it was proposed as an inpainting model in image processing, see [6, 14, 21]. We
refer to [34] for an inspiring general introduction to the Cahn–Hilliard equation, see also the
recent book [32] where state-of-art results and many applications of the Cahn–Hilliard equation
are presented.

Sharp interface limit and mobilities.
Pego determined with formal arguments in [35], and Alikakos et al proved rigorously in [3], that
the sharp limit flow of the Cahn–Hilliard equation (for suitable time regimes as ε → 0) is the
Mullins-Sekerka interface motion.

Observe now that the Cahn–Hilliard equation can be equivalently written as

(1) ε2∂tu = div
(
M(u)∇(W ′(u)− ε2∆u)

)
with the particular choice M(u) ≡ 1. If M is now chosen to be non constant, it plays the role
of a concentration-dependent mobility. Cahn et al. showed formally in [16] that if one uses a
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degenerate mobility M(u) = u(1 − u) (degenerate in the sense that there is no motion where
u = 0 or 1) and a logarithmic potential

W (s) = 1
2θ [s ln(s) + (1− s) ln(1− s)] + 1

2s(1− s),

the sharp limit motion is the surface diffusion flow. However, the singularity of such a logarith-
mic potential makes the model not well suited for numerical simulations. We shall see in this
paper that a different model can be proposed which leads to the surface diffusion flow as well,
but involves rather the smooth potential

W (s) = s2(1− s)2

2 .

The choice of appropriate degenerate mobility and potential is important. It was observed
in the review paper [29] that some choices lead to inconsistencies, in the sense that depending
on how terms are identified in the matched asymptotic analysis expansion, one can either show
the convergence to surface diffusion flow, or to a stationary flow with null velocity. The authors
of [30, 31] suggested that such inconsistencies come from the presence of an additional bulk
diffusion term is the limit motion, i.e. the limit velocity is:

V = 2
3∆ΓH + αH∇nH

This has been corroborated numerically in [22, 23] where undesired coarsening effects are ob-
served. The additional term in the velocity depends on the derivative of the mobility M ′(u0),
where u0 is the outer solution in the matched asymptotics which equal 0 or 1. To obtain
a pure motion by surface diffusion, one needs to take a higher order mobility, for example
M(s) = s2(1 − s)2 [31]. With such a choice, the bulk diffusion appears in higher order terms
and the correct velocity is recovered (with a different multiplicative constant):

V = α∆ΓH

These conclusions have been extended to the anisotropic case in [25].
Positivity property and order of phase field model.
We now turn to the following question: starting from an initial u(0) with values in [0, 1] and
using the above mobility, does the solution u remain valued in [0, 1] ? This is often referred to
as the positivity condition as it implies that all phase functions remain positive in a multiphase
context. This condition is important also because it means the function remains within the
pure state phase boundaries.

The theoretical results of [31, 40] and the numerical evidences of [22, 23] establish that it is
not the case with the Cahn–Hilliard model with mobility (1). More precisely the profile of the
solution shows some oscillations when reaching the pure states. This comes from the influence
in the asymptotic expansion of the solution of the first order error term which does not vanish
for this kind of phase field models.

To circumvent this problem a non variational model has been introduced in [36]:

(2)
{
ε2∂tu = div (M(u)∇µ)
g(u)µ = W ′(u)− ε2∆u

with g(s) = γ|s|p|1− s|p, p ≥ 0.
The idea is to add another degenerate term g that acts as a diffusion preventing term and

forces the aforementioned error term to be smaller and to converge to zero far from the interface.
This model is known to achieve better numerical accuracy than the classical model (1), and it
has been successfully adapted in various applications, see for example [1, 33, 38, 37].

Several choices have been made for p, the most acclaimed ones being p = 1 and p = 2 but
they were motivated by better numerical results rather than from a theoretical standpoint. In
this paper we explain why p = 1 is the correct choice as it imposes the leading error term of
the solution to be zero. This result is new to the extent of our knowledge.
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While it has excellent numerical properties, the above model (2) does not derive from an
energy and it is thus more difficult to prove rigorously theoretical properties and to extend the
model to complex multiphase applications. Therefore, a variational adaptation is proposed in
[40]: 

ε2∂tu = div (M(u)∇µ)

µ = g(u)W ′(u)− ε2 div (g(u)∇u) + g′(u)
(
W ′(u) + ε2

2 |∇u|
2
)

The idea is to inject the second degeneracy g in the energy. The model conserves the same
advantages as the non variational version, in particular the fact that the choice p = 1 remains
the correct one and nullifies the leading error term of the solution. However it relies on changing
the energy, thus making it harder to extend to complex multiphase application or to add an
anisotropy. Also, it seems more appropriate to incorporate the mobility in the metric rather
than in the geometry of the evolution problem. This is what we propose in this paper.

A new variational Cahn–Hilliard model of order two.
Like in [40], we want to approximate the surface diffusion flow using a second order variational
phase field model, but we want it closer to the original Cahn–Hilliard model.

The new Cahn–Hilliard model we propose reads as:{
ε2∂tu = N(u) div (M(u)∇(N(u)µ))
µ = W ′(u)− ε2∆u,

and at least in the case where

W (s) = 1
2s

2(1− s)2, M(s) = s2(1− s)2 and N(s) = 1
s(1− s) ,

we will show that this model is of order two and converges to the surface diffusion flow. Conse-
quently, this model has all desired properties while conserving the correct energy to dissipate.

Moreover, as the conservation of volume is one key feature of the Cahn–Hilliard equation,
we review how well each model manages to preserve this property. Furthermore, because of the
higher consistency of the solution profile, we will show that we achieve very good numerical
approximation in this area as in [9, 13].

Outline of the paper: The paper is organized as follows. First, we review in Section 2
the properties of the Cahn–Hilliard model with mobility and the drawbacks that need to be
improved. In Section 3 we present our new variational Cahn–Hilliard model and review its prop-
erties. We prove these properties in Section 4 using the formal method of matched asymptotic
expansion. The necessary tools are presented at the beginning of the proof. In the numerical
section 5, we first explain how to derive a simple and efficient scheme using a convex splitting
of Cahn–Hilliard energy and exploiting the variational mobility structure. Finally, we propose
some numerical experiments that compare the various Cahn–Hilliard models and highlight the
advantages of our new model.

2. Review of the properties of the Cahn–Hilliard equation with mobility

In this section we summarize the properties of the existing models and explain why we will
introduce a new one in the next section. A motion by surface diffusion can be obtained as the
sharp limit of the Cahn–Hilliard equation with mobility if we choose a mobility M that is of
sufficiently high order.

2.1. The Cahn–Hilliard model with mobility to approximate surface diffusion flow.
We recall that the normal velocity associated with a surface diffusion flow is:

V = ∆ΓH
3



We also recall that, if Ω denotes the inner domain enclosed by Γ, the phase field method
consists in approximating the characteristic function 1Ω by a smooth function of the form
uε = q(dist(·,Ω)/ε) where q is the so-called optimal profile associated with the potential W ,
ε represents the thickness of the smooth transition from 0 to 1, and dist denotes the signed
distance function. The one associated with our choice W (s) = 1

2s
2(1− s)2 verifies the following

properties:

(3)


q(z) = 1− tanh(z)

2
q′(z) = −

√
2W (q)

q′′(z) = W ′(q)

We denote: 
cW =

∫
R

(q′(z))2dz = 1
6

cM =
∫
R

M(z)
q(z)(1− q(z))dz

With the choice M(s) = s(1 − s), we have cM = 1 and with the choice M(s) = s2(1 − s)2,
we have cM = 1

6 . A higher order mobility M will inevitably lower the constant in front of the
velocity but will prove to be necessary to find the right motion as stated in Result 2.1.

We start off with the classical Cahn–Hilliard model with non negative mobility M and po-
tential W (s) = s2(1−s)2

2 , that we refer to as M-CH from now on:

(4)
{
ε2∂tu = div (M(u)∇µ)
µ = W ′(u)− ε2∆u

When the mobilityM is a scalar positive weight independent of u, we recall that the equation{
ε2∂tu = div (M∇µ)
µ = W ′(u)− ε2∆u

is the H−1 gradient flow of the Cahn–Hilliard energy

(5) E(u) =
∫
Q

ε

2 |∇u|
2 + 1

ε
W (u) dx

when considering the following scalar product in H1
0 weighted by the mobility M :

(6) 〈f, g〉H1
0

=
∫
Q
M∇f · ∇g dx.

It is important to note that the mobility is incorporated in the metric with respect to which
the gradient flow is computed, and not as a geometric parameter in the energy.

Equation (4) is an extension of the above equation to the case where M depends on u.

The M-CH model has been extensively studied and it is well understood that the mobility
needs to be a polynomial of order at least 2. Indeed, a mobility of order 1 would give a
quicker motion, but as already mentioned the authors of [31] showed that it yields an additional
undesired bulk diffusion term in the limit velocity. This term can be removed the pure surface
diffusion motion can be recovered by choosing a higher order mobility, which is what we will
do.

2.2. Properties of the classical Cahn–Hilliard model with mobility. The properties of
M-CH are summarized in the following result, see [31]:
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Proposition 2.1. With the choice M(s) = s2(1− s)2, the solution uε to (4) expands formally
near the interface Γε(t) =

{
uε(t, ·) = 1

2

}
as:

(7) uε(t) = q

(dist(x,Ωε(t))
ε

)
+O(ε)

with Ωε(t) =
{
uε(t, ·) ≤ 1

2

}
. The associated normal velocity satisfies:

(8) V = cW cM∆ΓH +O(ε)
If we do not require M ′(0) = M ′(1) = 0, i.e. M to be a double well polynomial mobility with
roots 0 and 1 of multiplicity at least two, then the velocity contains an additional undesired bulk
diffusion term. For example, if we set M(s) = s(1− s), then
(9) V = cW cM∆ΓH ± c2

W cMH∇nH
Moreover, the volume is preserved only up to an order O(ε):
(10) |Ωε(t)| = |Ωε(0)|+O(ε)

From now on, we fix the mobility M to be
M(s) = s2(1− s)2.

M-CH has a well identified drawback. The leading error term in (7) is of order ε and has a
dependence in the curvature. This means it becomes relevant in high curvature regions. This is
especially problematic when reaching the pure states because an overshoot due to oscillations
occurs, and the solution does not stay within its physical range [0, 1]. This problem proves to
be even more problematic in the multiphase case because the solutions may not be positive
anymore and phantom phases may appear.

The volume conservation is a standard property of the Cahn–Hilliard model on a domain Q
with periodic or Neumann homogeneous boundary conditions on ∂Q:

d

dt

∫
Q
u dx =

∫
Q
∂tu dx =

∫
Q

div (M(u)∇µ) dx = 0.

However, numerically, the quality of the conservation is constrained by the quality of the
approximation of the solution uε. As we will see with the later models, a more accurate solution
uε will also lead to a more accurate conservation of the volume.

3. A new variational model with two mobilities

In this section, we propose a new variational Cahn–Hilliard model with two mobilities. In
contrast with [40] where the energy is modified, we propose to incorporate the additional degen-
eracy in the metric used for defining the gradient flow. First, we derive our model and explain
the right choice for its parameters. Then we review its theoretical properties, that appear to
be similar as those of the previous model when we choose p = 1. We compare the numerical
behavior of each method in the next section devoted to numerics.

3.1. Derivation of the model. Our model derives from the classical Cahn–Hilliard energy:

E(u) =
∫
Q

ε

2 |∇u|
2 + 1

ε
W (u)dx

Let us consider a H1
0 scalar product with two scalar positive weights M and N :

〈f, g〉H1
0

=
∫
Q
M∇(Nf) · ∇(Ng)dx

Taking the H−1 gradient flow of the energy E with respect to this scalar product, we obtain
the following equation: {

ε2∂tu = N div(M∇(Nµ))
µ = −ε2∆u+W ′(u)

5



Considering now a dependence on u of M and N gives the following equation, that we refer
to as the NMN-CH model:

(11)
{
ε2∂tu = N(u) div(M(u)∇(N(u)µ))
µ = −ε2∆u+W ′(u)

This model has the advantage of conserving the minimized energy and being variational in
the following sense:

d

dt
E(u) =

∫
Q

(
−ε∆u+W ′(u)

)
∂tudx

=
∫
Q
N(u)µ div (M(u)∇(N(u)µ)) dx

= −
∫
Q
M(u)|∇(N(u)µ)|2dx+

∫
∂Ω
M(u)N(u)µ∇(N(u)µ) · ndσ

= −
∫
Q
M(u)|∇(N(u)µ)|2dx ≤ 0

in the case of periodic or Neumann homogeneous boundary conditions on ∂Q.

3.2. Choosing N . As previously stated, M is set to be:
M(s) = s2(1− s)2.

We want to choose N so that it has an antagonist effect to M and forces the leading error term
U1 to be zero, see below. We will show that the correct choice for N is:

(12) N(s) = 1√
M(s)

= 1
s(1− s)

Indeed, the following equation is obtained for U1 (see details below):
∂zzU1 −W ′′(U0)U1 = H∂zU0 −µ1

and with the above choice for N we have:
H∂zU0 = µ1

Thus U1 = 0 while other choices for N only impose U1 → 0 far from the interface.
We define the following integral:

cN =
∫ +∞

−∞

q′(z)
N(q(z))dz

In conclusion, the correct choice for N is (12).

3.3. Properties of the NMN-CH model. They are summarized in the following result, to
be compared with Proposition 2.1.

Proposition 3.1. If we choose M(s) = s2(1− s)2 and N(s) = 1√
M(s)

= 1
s(1−s) , the solution uε

to (11) expands formally near the interface Γε(t) as:

(13) uε = q

(dist(x,Ωε(t))
ε

)
+O(ε2)

with Ωε(t) =
{
uε ≤ 1

2

}
. The associated normal velocity satisfies:

(14) V = cW cM
c2
N

∆ΓH +O(ε)

Moreover, the volume is preserved up to an order O(ε2):

(15) |Ωε(t)| = |Ωε(0)|+O(ε2)
6



4. Proof of Proposition 3.1

In this section we prove Proposition 3.1 which summarizes the properties of NMN-CH. We
start with the volume conservation (15), assuming the other properties as in [9]. Then, we
introduce the tools and notations to derive the formal asymptotics and demonstrate (13) and
(14).

4.1. Proof of the volume conservation. In this part, we demonstrate (15) when assuming
the profile (13), which we will prove in the next part. We recall the following relations linking
W with M and N :

W (s) = 1
2s

2(1− s)2, M(s) = 2W (s), and N(s) = 1√
2W (s)

.

The proof is done in two steps. First, we give the expression of the volume in terms of an
integral of the function G(s) =

∫ s
0
√

2W (s)ds and use it to show the volume conservation of the
NMN-CH model using the form of the profile u given by (13). Then we show the validity of
this expression to conclude the proof.

The formula linking the volume of Ωε(t) with G is the following:

(16) |Ωε(t)| =
∫
Q

6(G ◦ q)
(
d(x,Ωε(t))

ε

)
dx+O(ε2)

where d is the signed distance function to the interface of Ω and d(x,Ω) < 0 for x ∈ Ω.
Under the assumption that the profile uε is given by:

uε(x, t) = q

(
d(x,Ωε(t)

ε

)
+O(ε2),

we have by composition by G and integration:∫
Rd
G(uε(x, t)) =

∫
Rd

(G ◦ q)
(
d(x,Ωε(t)

ε

)
+O(ε2)

Using (16), we conclude:

∀t ≥ 0, |Ωε(t)| =
∫
Rd
G (uε(x, t)) dx+O(ε2)

Considering periodic or Neumman boundary condition on Q leads to a conservation of the
integral of G along the time:

d

dt

∫
Q
G(uε) =

∫
Q
G′(uε)∂tuε

= 1
ε2

∫
Q

(√
2W (uε)N(uε)

)
div (M(uε)∇(N(uε)µ))

= 1
ε2

∫
Q

div (M(uε)∇(N(uε)µ))

= 1
ε2

∫
∂Q
M(uε)∇ (N(uε)µ) · n = 0

This means that the volume is conserved over time and (15) is verified if (16) is satisfied.
We now turn to the proof of (16). For the simplicity of the notations of the bounds of the

integrals, we work in Rd, but the result remains true for any regular bounded domain Q. Using
the coarea formula, we have:∫

Rd
6(G ◦ q)

(
d(x,Ωε(t)

ε

)
= 6

∫
R
h(s)G

(
q

(
s

ε

))
ds

where h(s) =
∣∣∣Dχ{d(x,Ωε(t)≤s)}

∣∣∣ is the perimeter of the signed distance function to Ωε(t). Using
the fact that:

6G(q(−s)) = 6G(1− q(s)) = 1− 6G(q(s))
7



We deduce:∫
Rd

6(G ◦ q)
(
d(x,Ωε(t)

ε

)
=
∫ 0

−∞
h(s) +

∫
h(s)

(
6G

(
q

(
s

ε

))
− 1

)
+ 6

∫ +∞

0
h(s)G

(
q

(
s

ε

))
dx

= |Ωε(t)| −
∫ 0

−∞
h(s)G

(
q

(−s
ε

))
+ 6

∫ +∞

0
h(s)G

(
q

(
s

ε

))
dx

= |Ωε(t)|+ 6ε
∫ +∞

0
[h(εs)− h(−εs)]G(q(s))ds

Equation (16) is verified if we manage to show that the second term of the right hand side is
O(ε2). Using the regularity of Ωε(t), we have:

∀s ∈ ]0, | log(ε)|[h(εs)− h(−εs) = 2εh′(0) +O(s2ε2)

As q(s) = 1−tanh(s)
2 and G is an increasing polynomial function, the moments

∫+∞
0 snq(s)ds are

finite. Then,∣∣∣∣∣
∫ | log(ε)|

0
(h(εs)− h(−εs))G(q(s))ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ | log(ε)|

0

(
2sεh′(0) + Cs2ε2

)
G(q(s))ds

∣∣∣∣∣
= O(ε)

On the other hand, we know that h(s) ∼s→+∞ sd−1:∫ +∞

| log(ε)|
h(εs)G(q(s))ds ≤ Cεd−1

∫ +∞

| log(ε)|
sd−1G(q(s))ds = O(εd−1)

and that h is bounded in R∗−:∫ +∞

| log(ε)|
h(−εs)G(q(s))ds ≤ C

∫ +∞

| log(ε)|
G(q(s))ds = O(ε)

Globally, we conclude that:

6ε
∫ +∞

0
[h(εs)− h(−εs)]G(q(s))ds = O(ε2)

and that (16) is true and the property (15) is established under the condition that (13) is
verified. This is the object of the next part of this section.

4.2. Formal asymptotics toolbox. Before the actual computations, we first recall the tools
necessary to derive our formal asymptotic derivation, following the notations of [2, 19, 12] and
the results in differential geometry of [4]. The principle is to study separately the behavior of
the solution near the interface and far from it. We will do the derivations in dimension 2 for
the sake of simplicity of the notations and readability, but the principle is identical in higher
dimension.

To derive the method we require that the interface Γ(t, ε) remains smooth enough and that
there exists a neighbourhood N = Nδ(Γ(t, ε)) = {x ∈ Ω/|(x, t) < 3δ} in which the signed
distance function d is well-defined. N is called the inner region near the interface and its
complementary the outer region.

Outer variables: Far from the interface, we consider the outer functions (u, µ) depending on
the standard outer variable x. The system remains the same:

(17)
{
ε2∂tu = N(u) div(M(u)∇(N(u)µ))
µ = −ε2∆u+W ′(u)

8



Inner variables: Inside N , we define the inner functions (U,µ) depending on the inner vari-
ables (z, s), where z is the variable along the normal and s is the variable in the direction of
the arc-length parametrization S of the interface Γ:

U(z, s, t) := U

(
d(x, t)
ε

, S(x, t), t
)

= u(x, t)

µ(z, s, t) := µ
(
d(x, t)
ε

, S(x, t), t
)

= µ(x, t)

In order to express the derivatives of U , we first need to calculate the gradient and the lapla-
cian of d and S. The properties of d are common knowledge in differential geometry, see for
instance [4]: 

∇d(x, t) = n(x, t)

∆d(x, t) =
d−1∑
k=1

κk(π(x))
1 + κk(π(x))d(x, t)

= H

1 + εzH
in dimension 2

Let X0(s, t) be a given point of the interface, then deriving the equation connecting the variable
s and the function S gives:

s = S(X0(s, t) + εzn(s, t), t)

with respect to z:
0 = εn · ∇S

= ε∇d · ∇S

This means that there are no cross derivative terms. We now derive the same equation with
respect to s:

1 = (∂sX0 + εzH∂sn) · ∇S
= (1 + εzH)τ · ∇S

We know that ∇S is orthogonal to n, meaning it is colinear to the tangent τ , then:

∇S = 1
1 + εzH

τ

Taking the divergence, we find ∆S:

∆S = div
( 1

1 + εzH
τ

)
= ∇

( 1
1 + εzH

)
· τ + 1

1 + εzH
div(τ)

= 1
1 + εzH

∂s

( 1
1 + εzH

)
+ 1

1 + εzH
τ · ∂sτ

= − εz∂sH

(1 + εzH)3

To express the connection between the derivatives of U,µ and u, µ, we come back to the defi-
nition of the inner functions:

(18) u(x, t) = U

(
d(x, t)
ε

, S(x, t), t)
)

9



Successive derivations with respect to x give the following equations

(19)



∇u = ∇d1
ε
∂zU +∇S∂sU

∆u = ∆d1
ε
∂zU + 1

ε2∂zzU + ∆S∂sU + |∇S|2∂ssU

div (M(u)∇(N(u)µ)) = 1
ε2 (∂zM∂z(Nµ)) + M

ε
∆d∂z(Nµ)

+ |∇S|2∂s (M∂s(Nµ)) + ∆SM∂s(Nµ)

The inner system of the NMN-CH model finally reads:

(20)



ε2∂tU + ε2∂tS∂sU − εV ∂zU = N

ε2 ∂z (M∂z(Nµ)) + NM

ε
∆d∂z(Nµ) + T1(s)

µ = W ′(U)− ∂zzU − ε∆d∂zU − ε2T2(s)

T1(s) = −εz∂sHNM(1 + εzH)3∂s(Nµ) + N

(1 + εzH)2∂s(M∂s(Nµ))

T2(s) = − εz∂sH

(1 + εzH)3∂sU + 1
(1 + εzH)2∂ssU

∆d = H

1 + εzH

Independence in z of the normal velocity V:. The normal velocity of the interface V (s, t)
is defined by:

V (s, t) = ∂tX0(s, t) · n(s, t)
In the neighbourhood N , we have the following property (which is a direct consequence of the
definition of the signed distance function):

d(X0(s, t) + εzn(s, t), t) = εz

Deriving this with respect to t yields:

V (s, t) = ∂tX0(s, t) · ∇d(X0(s, t) + εzn(s, t), t) = −∂td (X(z, s, t), t)

Thus, the function ∂td(x, t) is independent of z and we can extend the function everywhere in
the neighbourhood by chosing:

V (X0(s, t) + εzn, t) := −∂td(X0(s, t) + εzn, t) = V (s, t)

This property of independence is crucial to be able to extract the velocity from integrals in z
in the following derivations.

Taylor expansions: We assume the following Taylor expansions for our functions:

u(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + · · ·
U(z, s, t) = U0(z, s, t) + εU1(z, s, t) + ε2U2(z, s, t) + · · ·
µ(x, t) = µ0(x, t) + εµ1(x, t) + ε2µ2(x, t) + · · ·
µ(z, s, t) = µ0(z, s, t) + εµ1(z, s, t) + ε2µ2(z, s, t) + · · ·

We can then compose these expansions with a regular function F :
F (U) = F (U0)+

+ εF ′(U0)U1+

+ ε2
[
F ′(U0)U2 + F ′′(U0)

2 U2
1

]
+

+ ε3
[
F ′(U0)U3 + F ′′(U0)U1U2 + F ′′′(U0)

6 U3
1

]
+ · · ·

10



We can now investigate order by order the behavior of the system. We have to study four orders
as the velocity appears in the fourth order of the first equation of the Cahn–Hilliard system.

To simplify the notation within the asymptotics, we adopt the following notations for M(u):

M(u) = m0 + εm1 + ε2m2 + · · · ,

where each term corresponds to:
m0 = M(u0)
m1 = M ′(u0)u1

m2 = M ′(u0)u2 + M ′′(u0)
2 (u1)2

We adopt the same convention for any generic outer function F (u) or inner function F (U):

F (u) = f0 + εf1 + ε2f2 + ε3f3 + · · ·
F (U) = F0 + εF1 + ε2F2 + ε3F3 + · · ·

We can now investigate order by order the behavior of system (11). We have to study up to the
fourth order where the leading order of the velocity will appear in the first equation of (17).

Flux matching condition between inner and outer equations: Instead of using the
matching conditions directly between the first equations of the inner and outer systems, it is
more convenient to perform the matching on the flux j = M(u)∇(σµ+ λ). It has the following
Taylor expansion:

(21)

j = [m0∇(nµ)0]
+ ε [m1∇(nµ)0 +m0∇(nµ)1)]
+ ε2 [m2∇(nµ)0 +m1∇(nµ)1 +m0∇(nµ)2]
+O(ε3)

In inner coordinates, we only need to express the normal part Jn := J · n = M(U)
ε ∂zµ because

the tangential part terms are of higher order. It expands as:

(22)

Jn = 1
ε

[M0∂z(Nµ)0]

+ [M1∂z(Nµ)0 +M0∂z(Nµ)1]
+ ε [M2∂z(Nµ)0 +M1∂z(Nµ)1 +M0∂z(Nµ)2]
+ ε2 [M3∂z(Nµ)0 +M2∂z(Nµ)1

+M1∂z(Nµ)2 +M0∂z(Nµ)3]
+O(ε3)

The flux matching conditions allow to match the limit as z → ±∞ of terms of (21) with the
correspond order terms of (22).

4.3. Formal matched asymptotic analysis for the new NMN-CH model. Now that all
the tools necessary are defined, we start the derivation of the proof of Proposition 3.1. At first
order, we determine the profile of the solution. At second order, we link the curvature with
the leading term of µ and prove that the leading error term is zero. The third order is used
to establish certain relations between different terms and finally we recover the velocity in the
fourth order.

11



First order: At order (O(1),O(1)) the outer system (17) reads:

(23)
{

0 = N0 div(M0∇(N0µ0))
µ0 = W ′(u0)

At order (O(ε−2),O(1)) the inner system (20) reads:{
0 = N0∂z (M0∂z(N0µ0))
µ0 = W ′(U0)− ∂zzU0

The first equation gives that M0∂z(N0µ0) = B0 is constant in z. The matching conditions on
the outer flux (21) and the inner flux (22) at order ε−1 impose this constant to be zero. Then
N0µ0 is constant. The matching conditions with the outer system (23) give that:

µ0 = 0
Then U0 satisfies the differential equation:

∂zzU0 −W ′(U0) = 0
The solution to this equation is the profile q given by (3). Thus the first order results in:

µ0 = 0

U0 = q(z) :=
1− tanh( z2)

2
Second order: At order (O(ε),O(ε)) the outer system (17) reads:

(24)
{

0 = N0 div(M0∇(N0µ1))
µ1 = W ′′(u0)u1 = u1

At order (O(ε−1),O(ε)) the inner system (20) reads:

(25)
{

0 = N0∂z (M0∂z(N0µ1))
µ1 = W ′′(U0)U1 − ∂zzU1 −H∂zU0

The first equation of (25) shows that N0µ1 is a certain constant B1. The matching conditions
between the inner flux (22) and the outer flux (21) at order 0 require that (by removing all null
terms):

B1 = lim
z→+∞

M0∂z(N0µ1) = 0

Then there exists a function A1 constant in z such that N0µ1 = A1. The matching from inner
to outer for µ yields:

µ1 = lim
z→±∞

µ1 = lim
z→±∞

A1
N0

= 0

From the matching conditions with the second equation of (24) we have:
u1 = µ1 = 0

We now determine the value of A1 using the second equation of (25). We multiply it by ∂zU0
and integrate it. We divide the equation in three terms. The left hand side term gives:∫

µ1∂zU0 =
∫
N0µ1

∂zU0
N0

= A1

∫ +∞

−∞

∂zU0(z)
N(U0(z))dz = A1cN

The first two terms in the right hand side vanish:∫
W ′′(U0)U1∂zU0 − ∂zzU1∂zU0 =

∫
∂z
(
W ′(U0)

)
U1 − ∂zzU1∂zU0

= −
∫

(W ′(U0)− ∂zzU0)︸ ︷︷ ︸
=0

∂zU1

+
[
W ′(U0)U1 − ∂zU0∂zU1

]+∞
−∞

= 0
12



The fact that the functions in the bracket term vanishes at the limit z → ±∞ comes from the
matching conditions. The second right hand side term results in the curvature:∫

−H(∂zU0)2dz = −H
∫ +∞

−∞
q′(z)2dz = −cWH

Then:
(26) N0µ1 = A1 = −cW

cN
H

In conclusion, we have the following properties:
µ1 = −cW

cN

H

N(q)
∂zzU1 −W ′′(U0)U1 = Hq′(z)−µ1
µ1 = u1 = 0

Reminding that N(z) = − 1
q′(z) , the equation verified by U1 is:

∂zzU1 −W ′′(U0)U1 = 0
To solve this equation, we use the following Lemma, which is now rather standard, see for
example [3, 2]:

Lemma 4.1. Let A(z) be a bounded function on −∞ < z <∞. Then the problem:{
∂zzψ −W ′′(q(z))ψ = A(z)
ψ (0) = 0, ψ ∈ L∞(R)

has a solution if and only if:

(27)
∫ +∞

−∞
A(z)q′(z)dz = 0

Moreover the solution, if it exists, is unique, satisfies:
(28) ∀z ∈ R, |ψ(z)| ≤ C ‖A‖L∞

and is given by the formula:

(29) ψ(z) = q′(z)
∫ z

0

( 1
(q′(s))2

∫ s

−∞
A(σ)q′(σ)dσ

)
ds

Sketch of the proof: Multiplying the equation by q′ and integrating by parts, we see that
condition (27) is necessary. Reciprocally, if the condition (27) is verified, we can perform the
method of variation of constants to find the solution explicitely (29).

Using Lemma 4.1 with A = 0, we have that U1 = 0. Therefore the leading error term in U is
of magnitude ε2 and (13) of Result (3.1) is verified.
Third order: At order (O(ε2),O(ε2)) the outer system (17) reads:

(30)


0 = n0 div (m0∇(n0µ2 + n1µ1))

µ2 = W ′′′(u0)(u1)2

2 +W ′′(u0)u2 −∆u0 = u2

At order (O(1),O(ε2)) the inner system (20) reads:

(31)


0 = N0∂z (M0∂z(N0µ2 +N1µ1))

µ2 = W ′′′(U0)(U1)2

2 +W ′(U0)U2 − ∂zzU2 −H∂zU1 + zH2∂zU0

Similarly to previous orders, there exists a constant B2 in z so that:
M0∂z(N0µ2 +N1µ1) = B2

13



The matching of the flux terms from (21) and (22) of order ε (removing all the null terms)
yields:

B2 = lim
z→±∞

M0∂z(N0µ2 +N1µ1) = 0

Thus:

(32) N0µ2 +N1µ1 = A2

The derivative in z of this term would have appeared at the next order. Now that we know it
is constant, we can omit it in the next paragraph.

Fourth order: At order (O(ε3),O(ε3)) the outer system (17) reads:

(33)


0 = n0 div (n0∇(n2µ1 + n1µ2 + n0µ3))

µ3 = W ′′(u0)u3 +W ′′′(u0)u1u2 + W ′′′′(u0)
6 (u1)3 −∆u1

At order (O(ε),O(ε3)) the inner system (20) reads:

(34)


− V0∂zU0 = N0∂z (M0∂z(N2µ1 +N1µ2 +N0µ3)) +N0∂s (M0∂s(N0µ1))

µ3 = W ′′(U0)U3 +W ′′′(U0)U1U2 + W ′′′′(U0)
6 (U1)3 − ∂zzU1

−H3z2∂zU0 + zH2∂zU1 −H∂zU2 − ∂ssµ1

We determine the velocity V0 by multiplying by 1
N0

and integrating the first equation of (34).
We divide the equality in three terms. The left hand side term isolates the velocity:

−V0

∫
∂z

U0
N(U0) = −cNV0

The first term of the right hand side is a pure derivative:∫
∂z (M0∂z(N2µ1 +N1µ2 +N0µ3))

Then, by using the matching conditions between the fluxes (22) and (21) at order ε2 (the
equations (32) and (26) ensuring that the other inner terms are zero) and the fact that M goes
to 0 faster than the terms in N goes to infinite, we have:

[M0∂z(N2µ1 +N1µ2 +N0µ3)]+∞−∞ = 0

Finally, using (26), the second term of the right hand side gives the surface diffusion part:∫
M0∂ss(N0µ1) = −cMcW

cN
∂ssH

In conclusion, we obtain the desired motion (14):

V0 = cMcW
(cN )2 ∂ssH

This concludes the proof of Proposition 3.1.

5. Numerics: discretization and experiments

In this section, we propose a generic numerical scheme to solve the three different Cahn–
Hilliard models:

• The classical Cahn–Hilliard equation (C-CH){
∂tu = ∆µ
µ = 1

ε2W
′(u)−∆u,

where W (s) = 1
2s

2(1− s)2.
14



• The Cahn–Hilliard model with classical mobility (M-CH){
∂tu = div(M(u)∇µ)
µ = 1

ε2W
′(u)−∆u.

where the mobility is defined as M(u) = c2
N2W (u). Here, the constant cN = 6 is added

to get the same limit law as using our new Cahn–Hilliard model.
• New second order variational Cahn–Hilliard equation: (NMN-CH){

∂tu = N(u) div(M(u)∇(N(u)µ))
µ = 1

ε2W
′(u)−∆u

where the mobility is defined as M(u) = W (u) + γε2 and N(u) =
√
M(u). Here γ > 0

is a smoothing parameter and we take γ = 1 for all numerical experiments presented
below,

Our numerical algorithm is constructed as a semi-implicit Fourier spectral method in the
spirit of [18, 9, 11, 13, 10], see [24] for a recent review of numerical methods for the phase field
approximation of various geometric flows.

All schemes proposed here are based on a convex splitting of the Cahn–Hilliard energy, which
was first proposed by Eyre [27] and became popular as a simple, efficient, and stable scheme to
approximate various evolution problems with a gradient flow structure [20, 43, 28, 26, 41, 42].
More recently, a first- and second-order splitting scheme was proposed in [5, 40, 39] to address
the case of the Cahn–Hilliard equation with mobility. However, these approaches are based on
the finite element method and are not compatible with a Fourier spectral discretization.

In this paper, we therefore propose to generalize the idea of convex splitting using an addi-
tionally convex splitting of the variational metric associated to the mobility. The advantage is to
make it a very simple and efficient scheme, even in the case of highly contrasted and degenerate
mobilities. As an illustration, we present above a numerical implementation of our scheme in
Matlab that requires less than 40 lines.
In this section, we then give some details about these schemes and propose a numerical com-
parison of phase field models in space dimensions 2 and 3.

5.1. Spatial discretization: a Fourier-spectral approach. All equations are solved on a
square-box Q = [0, L1] × · · · × [0, Ld] with periodic boundary conditions. We recall that the
Fourier K-approximation of a function u defined in a box Q = [0, L1]× · · · × [0, Ld] is given by

uK(x) =
∑
k∈KN

cke
2iπξk·x,

where KN = [−N1
2 ,

N1
2 − 1] × [−N2

2 ,
N2
2 − 1] · · · × [−Nd

2 ,
Nd
2 − 1], k = (k1, . . . , kd) and ξk =

(k1/L1, . . . , kd/Ld). In this formula, the ck’s denote the Kd first discrete Fourier coefficients of
u. The inverse discrete Fourier transform leads to uKk = IFFT[ck] where uKk denotes the value
of u at the points xk = (k1h1, · · · , kdhd) and where hα = Lα/Nα for α ∈ {1, · · · , d}. Conversely,
ck can be computed as the discrete Fourier transform of uKk , i.e., ck = FFT[uKk ].

5.2. Time discretization. Given a time discretization parameter δt > 0, we construct a se-
quence (un)n≥0 of approximations of u at times nδt.

5.2.1. An IMEX scheme for the C-CH model. We propose now to use a simple scheme to
discretize the classical Cahn–Hilliard equation{

∂tu = ∆µ
µ = ∇uE(u) = 1

ε2W
′(u)−∆u,

15



where the Cahn–Hilliard energy reads as

E(u) =
∫
Q
ε
|∇u|2

2 + 1
ε
W (u)dx.

A semi-implicit scheme based on a convex-concave splitting of E: Following the idea
of [27], we propose to split the energy E as the sum of a convex energy and a concave energy

E(u) = Ec(u) + Ee(u),

with, respectively, an implicit and an explicit integration of the convex and concave parts:{
(un+1 − un)/δt = ∆µn+1

µn+1 = ∇uEc(un+1) +∇uEe(un)

Notice that this scheme can also be interpreted as an implicit discretization of the semi linearized
PDE {

∂tu = ∆µ
µ = ∇uEun(u) = ∇uEc(u) +∇uEe(un)

,

where the new associated energy Eun reads as

Eun(u) = Ec(u) + Ee(un) + 〈∇uEe(un), (u− un)〉.

This continuous point of view shows that Eun(u) is clearly decreasing along the flow
d

dt

(
Eun(u)

)
= 〈Eun(u), ut〉 = −‖∇Eun(u)‖2 < 0.

and then
Eun(un+1) ≤ Eun(un) = E(un),

Finally, the assumption on the concavity of Ee implies that E(u) ≤ Eun(u) and gives the
decreasing of E,

E(un+1) ≤ E(un).
without requiring any assumption on the time step δt.

Application in the case of the Cahn–Hilliard energy: In the case of the Cahn–Hilliard
equation using the smooth double well potentialW (s) = 1

2s
2(1−s)2, a standard splitting choice

is

Ec(u) = 1
2

∫
Q
ε|∇u|2 + α

ε2u
2dx and Ee(u) =

∫
Q

1
ε

(W (u)− αu
2

2 )dx.

Notice that Ee is clearly concave as soon as α ≥ maxs∈[0,1] |W ′′(s)|. In particular, this approach
leads to the semi-implicit scheme(un+1 − un)/δt = ∆µn+1

µn+1 =
(
−∆un+1 + α

ε2u
n+1

)
+
(

1
ε2 (W ′(un)− αun)

)
,

which also reads as (
Id −δt∆

∆− α/ε2 Id

)(
un+1

µn+1

)
=
(

un
1
ε2 (W ′(un)− αun).

)
Finally, the couple (un+1, µn+1) can be expressed as

un+1 = L

[
un + δt

ε2
∆
(
W ′(un)− αun

)]
and µn+1 = L

[ 1
ε2

(W ′(un)−∆un
]
.

Here, the operator L =
(
Id + δt∆(∆− α/ε2Id)

)−1 can be easily computed in Fourier space like
a symbol operator associated to

L̂(ξ) = 1/(1 + δt4π2|ξ|2(4π2|ξ|2 + α/ε2)).
16



5.2.2. A numerical scheme for the M-CH model. We now consider the case of theM-CHmodel,
which reads {

∂tu = div (M(u)∇µ)
µ = 1

ε2W
′(u)−∆u.

As previously, it should be interesting to consider the following scheme{
(un+1 − un)/δt = div

(
M(un)∇µn+1)

µn+1 = ∇uEc(un+1) +∇uEe(un).
It can also be interpreted as an implicit discretization of the modified Cahn–Hilliard system{

∂tu = div (M(un)∇µ)
µ = ∇uEun ,

which shows that E(un+1) ≤ E(un) as
d

dt

(
Eun(u)

)
= 〈Eun(u), ut〉 = −‖

√
M(un)∇Eun(u)‖2 < 0.

However, such an approach requires the computation of the new operator LM,un defined
by LM,un =

(
Id + δt div(M(un)∇(∆ + α/ε2)

)−1
, which cannot be made in Fourier space. No-

tice also that this approach has been recently proposed in [5, 40, 39] where the resolution of
(un+1, µn+1) has been made using finite elements.
Imex approach on the variational mobility term: We then propose another approach in
this paper keeping in mind the variational property of mobility:{

∂tu = −∇µJu(µ)
µ = ∇uEun

where
Ju(µ) = 1

2

∫
Q
M(u)|∇µ|2dx.

As for the energy E, we then propose to split also J as the sum of a convex and a concave term
Ju = Ju,c + Ju,e with respectively an implicit and explicit treatment of the convex and concave
part: {

(un+1 − un)/δt = −∇µJun,c(µn+1)−∇µJun,e(µn),
µn+1 = ∇uEc(un+1) +∇uEe(un).

As previously, this scheme can be interpreted as an Euler implicit discretization of{
∂tu = −∇µJun,µn(µ)
µ = ∇uEun ,

where the new mobility energy Jun,µn is given by
Jun,µn(µ) = Jun,c(µ) + Jun,e(µn) + 〈∇µJun,e(µn), µ− µn〉.

Then, to ensure the decrease of t 7→ Eun(u(·, t)) along the flow, we require at least the semi-
implicit metric Jun,µn to be non negative. This corresponds to the concavity condition on Ju,e,
meaning that we have

0 ≤ Jun(µ) ≤ Jun,µn(µ).
Moreover, from the identity

d

dt
Eun(u) = 〈∇uEun , ut〉 = −〈µ,∇µJun,µn(µ)〉,

we conclude that it is sufficient to show that
〈µ,∇µJun,µn(µ)〉 ≥ 0.

to ensure the decrease of the energy.
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Application to the M-CH model: Motivated by the previous section, we propose the fol-
lowing splitting of J :

Jun,c(µ) = 1
2

∫
m|∇µ|2dx and Jun,e(µ) = 1

2

∫
(M(un)−m)|∇µ|2dx

with m > 0. We take m = maxs∈[0,1] {M(s)} in order to obtain the concavity of Jun,e(µ), and
the scheme reads(un+1 − un)/δt = m∆µn+1 + div((M(un)−m)∇µn)

µn+1 =
(
−∆un+1 + α

ε2u
n+1

)
+
(

1
ε2 (W ′(un)− αun)

)
,

or in a matrix form(
Id −δtm∆

∆− α/ε2 Id

)(
un+1

µn+1

)
=
(
un + δt div((M(un)−m)∇µn)

1
ε2 (W ′(un)− αun).

)
=
(
B1
un,µn

B2
un,µn

)
Finally, the couple (un+1, µn+1) can be expressed as

un+1 = LM
[
B1
un,µn + δtm∆B2

un,µn

]
and

µn+1 = LM
[
(−∆B1

un,µn + α/ε2B1
un,µn) +B2

un,µn

]
,

where the operator LM is now given by LM =
(
Id + δtm∆(∆− α/ε2Id)

)−1, which can be com-
puted efficiently in Fourier space.

5.2.3. Case of the NMN-CH model. We now turn to the NMN-CH model:{
∂tu = N(u) div(M(u)∇(N(u)µ))
µ = 1

ε2W
′(u)−∆u,

where N(u) = 1√
M(u)

and M(u) = W (u) + γε2.
In a similar manner to the other models, we study the model rewritten in a variational form{

∂tu = −∇µJu(µ)
µ = ∇uEun

with
Ju(µ) = 1

2

∫
Q
M(u) |∇(N(u)µ)|2 dx.

Ju can be split in three parts:

Ju(µ) = 1
2

∫
Q
|∇µ|2dx+

∫
Q
G(u) · ∇µµdx+ 1

2

∫
Q
|G(u)|2µ2dx,

with
G(u) = −1

2∇(log(M(u)))

as N(u) = 1√
M(u)

and
√
M(u)∇(N(u)) = −1

2
∇M(u)
M(u) = −∇(log(M(u))).

This suggests that we could use the following splitting of Ju(µ) = Ju,c(µ) + Ju,e(µ) with

Ju,c(µ) = 1
2

∫
Q
m|∇µ|2dx+ 1

2

∫
Q
βµ2dx

and
Ju,e(µ) =

∫
Q
G(u) · ∇µµdx+ 1

2

∫
Q

(|G(u)|2 − β)µ2dx+ 1
2

∫
Q

(1−m)|∇µ|2dx,

with β > 0 and m > 0. Moreover, as soon as G(u) is bounded is H1(Q), a sufficiently large
choice fo m and β should ensure the concavity of Ju,e(µ). In practice, we take m = 1 and
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β = 1/ε2 for our numerical experiments and these values did not show any sign of instability
regardless of the choice of the time step δt. In particular, this leads to the following system(un+1 − un)/δt = m∆µn+1 − βµn+1 +H(un, µn)

µn+1 =
(
−∆un+1 + α

ε2u
n+1

)
+
(

1
ε2 (W ′(un)− αun)

)
,

where
H(un, µn) = N(un) div((M(un)∇(N(un)µn))−m∆µn + βµn

The couple (un+1, µn+1) is then solution of the system(
Id −δt(m∆− βId)

∆− α/ε2 Id

)(
un+1

µn+1

)
=
(
un + δtH(un, µn)
1
ε2 (W ′(un)− αun).

)
=
(
B1
un,µn

B2
un,µn

)
satisfying

un+1 = LNMN

[
B1
un,µn + δt(m∆B2

un,µn − βB2
un,µn)

]
and

µn+1 = LNMN

[
(−∆B1

un,µn + α/ε2B1
un,µn) +B2

un,µn

]
.

Here the operator LNMN is given by LNMN =
(
Id + δt(m∆− βId)(∆− α/ε2Id)

)−1, which can
be still computed efficiently in Fourier space.

5.3. Matlab code. We present in Figure (1) an example of Matlab script with less than 40
lines which implements the scheme approximating the solutions of the NMN-CH model. In
particular :

• We consider here a computation box Q = [−1/2, 1/2]2 discretized with N = 29 nodes in
each direction. The initial condition of u is a uniform noise and the numerical parameters
are given by ε = 2/N , δt = 4ε2, α = 2, β = 2/ε2 and m = 1.
• Line 14 corresponds to the definition of the Fourier-symbol associated with operator
LNMN . The application of LNMN can then be performed using a simple multiplication
in Fourier space with the array MLNMN .
• The computation of N(u) div(M(u)∇(N(u)µ)) is made on line 28 and is based on the
following equality

N(u) div(M(u)∇(N(u)µ)) =
√
M(u)∆N(u)µ+N(u)∇(M(u)) · ∇(N(u)µ)

=
√
M(u)∆N(u)µ+ 2∇

[√
M(u)

]
· ∇(N(u)µ),

as N = 1/
√
M(u).

• Each computation of gradient and divergence operator are made in Fourier space. For
instance the gradient of

√
M(u) is computed on line 23.

• Figure (2) shows the phase field function un computed at different times tn by using
this script.

We believe that this implementation shows the simplicity, efficiency and stability of our numer-
ical scheme.

5.3.1. Asymptotic expansion and flow: numerical comparison of the different models. The first
numerical example concerns the evolution of an initial connected set. For each Cahn–Hilliard
model, we plot on figure (3) the phase field function un computed at different times t. Each
experiment is performed using the same numerical parameters: δx = 1

28 , ε = 2δx, δt = ε4,
α = 2/ε2, m = 1, and β = 2/ε2. The first, second and third lines on (3) correspond respectively
to the solution u given by the C-CH model, the M-CH model and the NMN-CH model. The
first remark is that, as expected, the C-CH model, whose limit flow is the Hele-Shaw model
[35, 3]) gives a slightly different flow compared to the other two models. On the other hand, the
numerical experiments obtained using the M-CH model and the NMN-CH model are very
similar and should give a good approximation of the surface diffusion flow. In addition, for each
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1 clear all;
2 %%%%%%%%%%%%%%%%% Numerical parameters %%%%%%%%%%%%%%%%%%%%%%%%
3 N = 2^9; epsilon =1/N; dt =epsilon^4; T =1;
4 %%%%%%%%%%%%%%%%% Double well potential, mobilities %%%%%%%%%%%
5 W = @(U) 1/2*(U.*(U-1)).^2;
6 W_prim = @(U) (U.*(U-1).*(2*U-1));
7 MobM = @(U) 1/2*((((U).*(1-U)).^2+epsilon^2) );
8 MobN = @(U) 1./sqrt(MobM(U) );
9

10 %%%%%%%%%%%%%%% Fourier operators %%%%%%%%%
11 k = [0:N/2,-N/2+1:-1]; [K1,K2] = meshgrid(k,k);
12 Delta = -4*pi^2*((K1.^2 + (K2).^2));
13 alpha = 2; beta = 1/epsilon^2; m = 1;
14 M_LNMN = 1./(1 + dt*(m*Delta - beta) .*(Delta - alpha/epsilon^2));
15
16 %%%%%%%%%%%%%%%%%% Initial condition %%%%%%%%%%%
17 U = rand(N,N); U_fourier = fft2(U);
18 Mu = zeros(N,N); Mu_fourier = zeros(N,N);
19 %%%%%%%%%%%%%%%%%% Scheme loop %%%%%%%%%%%
20 for i=1:T/dt,
21 mobMU = MobM(U); mobNU = MobN(U);
22 sqrtM = sqrt(mobMU); sqrtM_fourier = fft2(sqrtM);
23 nabla1_sqrtM= real(ifft2(2*pi*1i*K1.*sqrtM_fourier )); nabla2_sqrtM= real(ifft2(2*pi*1

i*K2.*sqrtM_fourier ));
24
25 muN_fourier = fft2(Mu.*mobNU); muN = real(ifft2(muN_fourier));
26 nabla1_muN = real(ifft2(2*pi*1i*K1.*muN_fourier )); nabla2_muN = real(ifft2(2*pi*1i*K2

.*muN_fourier ));
27 laplacien_muN = real(ifft2(Delta.*muN_fourier ));
28 NdivMgradNMu = sqrtM.*laplacien_muN + 2*(nabla1_sqrtM.*nabla1_muN +nabla2_sqrtM.*

nabla2_muN);
29
30 B1 = U_fourier + dt*(fft2(NdivMgradNMu) - (m*Delta-beta).*Mu_fourier);
31 B2 = fft2(W_prim(U)/epsilon^2 - alpha/epsilon^2*U);
32
33 U_fourier = M_LNMN.*(B1 + dt*(m*Delta-beta).*B2);
34 U = real(ifft2(U_fourier));
35 Mu_fourier = M_LNMN.*((alpha/epsilon^2 - Delta).*B1 + B2);
36 Mu = real(ifft2(Mu_fourier));
37
38 end

Figure 1. Example of Matlab implementation of the previous scheme in di-
mension 2 to approximate the solutions to the NMN-CH model.
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Figure 2. First numerical experiment using the NMN-CH model; the solu-
tions u are computed with the Matlab script of Figure 1.
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model, the stationary flow limit appears to correspond to a ball of the same mass as that of the
initial set.

To illustrate the asymptotic expansion performed in Section 4, we plot on (4) (first two pic-
tures) the slice x1 7→ u(x1, 0) at the final time T = 10−4. The profil associated to the C-CH
model is plotted in red and clearly indicates that the solution u does not remain in the interval
[0, 1] with an overshoot of order O(ε). As for the M-CH model (in blue), we can also observe a
perturbation of order O(ε) of the best profile q(z) and u does not remain in [0, 1]. In contrast,
the profile obtained using the NMN model (in green) seems to be very close to q and remains
in [0, 1] up to an error of order O(ε2). Finally, we plot the evolution of the Cahn–Hilliard energy
along the flow for each model on the last picture of (4). We can clearly observe a decrease of
the energy in each case.

In conclusion, this first numerical experiment confirms the asymptotic expansion obtained
in the previous section, and highlights the interest of our NMN model to approximate surface
diffusion flows.
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Figure 3. First numerical comparison of the three different CH models: Evo-
lution of u along the iterations; First line using the C-CH model, Second line,
using the M-CH model; last line using the NMN-CH model.

5.3.2. Influence of the mobility: a local conservation of mass. The second numerical experiment
is intended to show the advantage of adding mobility to the classical Cahn–Hilliard model to
preserve a local conservation of the mass. As previously, we use the same numerical parameter
in each case: δx = 1

28 , ε = 2/N , δt = ε4, α = 2/ε2, m = 1, and β = 2/ε2. Then we plot on figure
(5) the phase field function u obtained at different times t using the different phase field models
(first line: C-CH model, second line: M-CH model, third line NMN-CH model). Here, the
initial set is a disjoint union of five small sets. As expected, the evolutions obtained using the
M-CH and the NMN-CH models show an independent evolution of each small disjoint set
that converges to a ball of equivalent volume. This last point is clearly not the case using the
C-CH model where the limit appears to be the union of three balls only. It suggests that the
mass of the smaller set moves towards the larger set. This emphasizes the interest of adding
mobility in the Cahn–Hilliard model to get a local conservation of mass, which is particularly
relevant for various physical applications, for example the simulation of dewetting phenomena.
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Figure 4. Comparison of the three different models: profil and energy; C-CH
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of u: x1 7→ u(x1, 0) ; Second figure: zoom on the slice of u; last figure: evolution
of the Cahn–Hilliard energy along the flow.
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Figure 5. Numerical comparison of the three different phase field models: Local
conservation of the mass; Evolution of u along the iterations; First line with the
C-CHmodel. Second line with theM-CHmodel; Last line with theNMN-CH
model.

5.3.3. Numerical experiments with thin structures in dimension 3. We propose now a numerical
experiment in dimension 3 where the initial set is a thin tube. Our motivation here is to show
the importance of having a model of order 2 in the phase field function u in the complicated case
of a thin structure evolution. Similarly to the previous computations, the numerical parameters
are given by δx = 1

28 , ε = 2/N , δt = ε4, α = 2/ε2, m = 1, and β = 2/ε2. We plot on each picture
of (6) the 1/2-level set of u for different times t. The first, second and third line correspond,
respectively, to the C-CH, M-CH and NNM-CH models. We observe that the evolutionary
set disappears using the C-CH and M-CH models whereas the NMN-CH model seems to
have better volume conservation properties and the stationary set is given as the sum of five
small spheres.

The results are surprising at first glance as the mass of u (
∫
Q udx) is well preserved using the

C-CH and M-CH models. So, to convince oneself that the problem arises from the phase field
model order and not the numerical discretization, we plot on figure (7) the numerical evolution
of the mass t 7→

∫
Q udx along the flow for each model. We observe a very good conservation in

the case of C-CH and M-CH models despite the disappearance of the structure.
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Moreover, recall that we plot on figure (6) the 1/2-level set of u:
Ωε(t) = {x ∈ Q;u(x, t) ≤ 1/2} ,

and that for a phase field model of order 1 only, we have

V ol(Ωε(t)) =
∫
Q
u(x, t)dx+O(ε).

This means that even if the mass of u is conserved, we observe an error of order O(ε) on the
volume of Ωε. The consequence is all the more dramatic in our example as the volume of the
thin structure is of order ε2. In the end, the whole volume is lost because of this approximation
error. Concerning the NMN-CH model, we proved a volume approximation of order 2,

V ol(Ωε(t)) =
∫
Q
u(x, t)dx+O(ε2),

This explains the good numerical behavior of the NMN-CH model in comparison with the
other models.

In conclusion, this 3D numerical experiment showcases the inefficiency of models C-CH and
M-CH to approximate the evolution of a thin structure, where a much smaller ε is required.
On the other hand, the second order NMN-CH phase field model seems to give a good ap-
proximation of surface diffusion even if the mass of u is not perfectly conserved (Green plot on
Figure (7)).
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Figure 6. Comparison of the different models in the case of a thin structure
in dimension 3. First line corresponds to the C-CH model, second line to the
M-CH model, and third line to the NMN-CH model.

5.3.4. Dewetting and surface diffusion of a thin plate. The last numerical example is the evo-
lution of a thin plate using the NMN-CH model. As previously, the parameters are chosen as
δx = 1

28 , ε = 2/N , δt = ε4, α = 2/ε2, m = 1, and β = 2/ε2. We can observe on figure (8) an
evolution similar to the one observed in real dewetting experiments[5].
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