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Abstract

We propose and analyze in this paper a new derivation of a phase-field model to approximate
inhomogeneous multiphase perimeters. It is based on suitable decompositions of perimeters under
some embeddability condition which allows not only an explicit derivation of the model from the
surface tensions, but also gives rise to a Γ-convergence result. We propose a simple and robust scheme
to simulate the gradient flow of the approximating energy. We illustrate the efficiency of our approach
with a series of numerical simulations in 2D and 3D, and we address in particular the dynamics of
droplets evolving on a fixed solid.

1 Introduction

This paper is devoted to the approximation with a phase field model of a N-phase perimeter of the form

P(Ω1, ...ΩN) =
1
2

N

∑
i,j=1

σi,j area(Γi,j) (1)

where Ω1, . . . ,ΩN are relatively closed subsets of an open domain Ω ⊂Rd which form a partition of Ω,
i.e. Ω =

⋃N
i=1 Ωi and Γi,j = Ωi ∩Ωj = ∂Ωi ∩ ∂Ωj ∩Ω for i 6= j (with the additional convention Γi,i = ∅),

and σi,j is the surface tension associated with Γi,j for i, j = 1, · · · , N. It is physically sound to assume that
the surface tensions satisfy σi,j = σj,i > 0 whenever i 6= j and σi,i = 0. We will denote in the sequel

SN = {σ = (σi,j) ∈RN×N , σi,j = σj,i > 0 if i 6= j and σi,i = 0}

In order to guarantee the lower semicontinuity of the N-phase perimeter, it is necessary and sufficient
to assume that the surface tensions satisfy the triangle inequality [35, 13, 32], i.e.

σi,j + σj,k ≥ σi,k for any i, j,k.

Although mathematically sound, this property is however not fulfilled by all physical systems, so that
the approximation issue needs also to be addressed in the non triangle case.

From the mathematical viewpoint, the study of the lower semicontinuity of the above energy re-
quires to rephrase it in a suitable setting, namely the space of sets of finite perimeter [2, 32]. In this
setting, the perimeter can be written as

P(Ω1, ...ΩN) =
1
2

N

∑
i,j=1

σi,jHd−1(∂∗Ωi ∩ ∂∗Ωj)

where Ω1, · · · ,ΩN are now assumed to be sets of finite perimeter in Ω such that Ω =
⋃N

i=1 Ωi up to
a Lebesgue negligible set, |Ωi ∩ Ωj| = 0 for all i 6= j (denoting as | · | the Lebesgue measure), Γi,j =
∂∗Ωi ∩ ∂∗Ωj for all i, j, with ∂∗Ωi the reduced boundary of Ωi in Ω (i.e. the sets of boundary points of
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Ωi in Ω where an approximate normal exists), andHd−1 is the (d− 1)-dimensional Hausdorff measure
– see [2, 32] for details on functions of bounded variation (BV) and sets of finite perimeter. We shall
denote as P the BV perimeter, i.e., if A ⊂ Ω has finite perimeter in Ω we denote P(A) =Hd−1(∂∗A). In
the BV context, the lower semicontinuity of the perimeter holds with respect to the strong convergence
in L1 of characteristic functions of sets.

There are many applications where the multiphase perimeter plays a role. It is for instance the nat-
ural energy associated with a polycrystalline material, i.e. a material which is an aggregation of tiny
grains with different crystalline orientations, like most metals and ceramics. As such material is heated,
the grains configuration evolves in order to decrease the multiphase perimeter (considering each grain
as a phase), see [25] for more details and references on connexions of the model with material science.
Such energetic dependence is actually common to many multiphase situations, either with uniform
surface tensions (soap foams, honeycombs, etc) or with nonuniform surface tensions as in material syn-
thesis, nanowires growth, etc. We focus in this paper on possibly nonuniform but isotropic surface
tensions, which is coherent with many physical situations, but notice that many other physical situ-
ations (e.g. nanowire growth) involve anisotropic surface tensions (this is the topic of another paper
in preparation). Only applications to material science have been mentioned so far but image process-
ing is another field where multiphase perimeters are very useful, in particular in the context of image
segmentation, image restoration, optical flow estimation or stereo reconstruction [36, 15, 43].

A multiphase system which energetically depends on the multiphase perimeter rearranges so as
to decrease the perimeter, and the rearrangement consists in the evolution of the interfaces between
phases. The classical physical theory states that this evolution must follow at least two rules :

1. at every interfacial point which is not a junction point between three of more interfaces, the normal
velocity Vi,j of the interface Γi,j is proportional to the product of its mean curvature κi,j with its
surface tension σi,j :

Vi,j(x) = σi,jµi,jκi,j(x) a.e. x ∈ Γi,j. (2)

where µi,j is the interface mobility coefficient.

2. the Herring’s angle condition holds at every triple junction, e.g. if x is a junction between phases
i, j and k then

σi,jni,j + σj,knj,k + σk,ink,i = 0,

where ni,j denotes the unit normal at x to Γi,j, pointing from Ωi to Ωj.

Notice however that these two rules are not sufficient in general to characterize fully the L2 gradient
flow of the multiphase perimeter, since they do not constrain the evolution of the multiple points with
multiplicity at least 4 (they do not even guarantee that the evolution of such multiple points is well-
posed).

It is natural for numerical purposes to try to approximate the multiphase perimeter but there are
several difficulties: the high singularity of the perimeter, the necessity of a good notion of convergence
of the approximating energies, and the necessity to guarantee that, at each scale of approximation, the
L2-gradient flow with respect to the approximating energy is coherent (at least asymptotically) with
both evolution rules mentioned above.

The most simple instance of a multiphase system is the binary system with constant surface ten-
sion whose perimeter’s gradient flow is the celebrated mean curvature flow. There is a vast literature
on numerical methods for the approximation of mean curvature flows. The methods can be roughly
classified into five categories (some of them are exhaustively reviewed and compared in [21]):

1. parametric methods [22, 5] where typically the interface is approximated by a point cloud, a tri-
angulated surface or more complex discrete patched surfaces;

2. level set methods [39, 37, 38, 26, 19], where the problem is rewritten in terms of a suitable function
of which the interface of interest is an isolevel; this lifting turns the flow into an equation which is
easier to handle both theoretically and numerically, in particular regarding topology changes.
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3. convolution/thresholding type algorithms [8, 31, 41], where the mean curvature flow is the asymp-
totic limit of a time-discrete scheme alternating the convolution of the characteristic function of
the set at time t delimited by the interface, followed by a thresholding step in order to define the
set at time t + dt.

4. convexification methods [14] where it is observed first that minimizing the perimeter of a set is
equivalent to minimizing the total variation of the set’s characteristic function on the non convex
class of functions with values in {0,1}. Then it turns out that the mean curvature flow can be
numerically approximated by convexifying the constraint and using a nice and simple projection
algorithm.

5. phase field approaches [34, 18], where the sharp transition between the two phases at the inter-
face is approximated by a smooth transition, the perimeter is approximated by a smooth energy
depending on the smooth transition, and the gradient flow turns into a relatively simple reaction-
diffusion system. Phase field approaches have a long history in physics that dates back to the Van
der Waals’ model for liquid-vapor transition (1893), and later with the supraconduction model of
Landau & Ginzbug (1950), and the binary alloy model of Cahn & Hilliard (1958).

The literature on the approximation of multiphase perimeters is more reduced, but there have
been contributions in the same five categories of methods. For instance, a parametric approach for
anisotropic surface tensions is introduced in [4], various level set methods have been proposed in
[33, 49, 42] (the latter reference proposes a method to encode a large variety of evolution laws at the
interfaces). Convexifications approaches are much more involved for multiphase perimeters than for
the binary perimeter. A simple convexification of the constraint is not enough as shown in [16] where
a general method is proposed first for the homogeneous case σi,k = 1, then for more general surface
tensions of the form σi,j = σ(|i− j|) where σ is a concave, positive, and nondecreasing function.

As for convolution/thresholding type methods, [24] addresses the case of uniform surface tension
σi,j = 1 and in [44], some constraints on the volume of each phases are added. More recently, an im-
portant step forward has been achieved by Esedoḡlu and Otto in [25]. For a large category of tensions
matrices Esedoḡlu and Otto proposed a scheme which is able to decrease the multiphase perimeter in a
way which yields asymptotically the correct evolution laws at simple and triple points. The major dif-
ficulty of a convolution/thresholding strategy in a multiphase setting is to handle correctly the variety
of interfacial speeds yielded by different surface tensions. The key contribution of Esedoḡlu and Otto
is precisely a consistent way of doing this using a smart combination of delay functions which manage
consistently the communications between the various interfaces. The surface tensions matrices that the
method can handle are negative forms on (1,1, · · · ,1)⊥, i.e. the matrices σ = (σi,j) ∈ SN such that

N

∑
i,j=1

σi,juiuj ≤ 0 for all (ui) ∈RN such that
N

∑
i=1

ui = 0.

There is an interesting discussion in [25] about the properties of such matrices which are called condi-
tionally semi-definite matrices.

The method that we propose in this paper belongs to the fifth category of approaches for the approx-
imation and the minimization of multiphase perimeters, that is the category of phase field methods.
Both theoretical and numerical contributions are related to this topic, see for instance [3, 40, 29, 28, 27,
30, 48, 9] and the numerous references therein. Before entering into more details, let us sketch the main
properties of the model that will be derived in the paper:

(P1) it is a phase-field model with a potential term that can be derived consistently and explicitly from
a given matrix σ ∈ SN of surface tensions, as soon as σ can be associated with `1 distances between
vectors in RM for a suitable dimension M (such σ is called `1-embeddable, see more details below).
As will be discussed later, the consistent derivation of the potential is a major difference with the
derivations that can be found in the literature;
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(P2) in the strict `1-embeddability case (see below), the Γ-convergence of our approximating model
to the multiphase perimeter can be proven. In view of the previous item, it is to the best of our
knowledge the first contribution where one can derive the model from the surface tensions and
recover them back from the Γ-convergence;

(P3) our approximating perimeter falls in a large category of phase field models studied with great
accuracy by Garcke, Nestler, and Stoth in [28] where it is shown using the matched asymptotic ex-
pansion method that the correct evolution laws for simple and triple points are recovered asymp-
totically;

(P4) the L2-gradient flow yields an Allen-Cahn system with a linear diffusive part, which allows simple
and robust numerical schemes with a very good spatial accuracy;

(P5) various interesting constraints can be easily added to the model, e.g. volume constraints or sta-
tionarity constraint on a phase, which can be very useful for simulating wetting phenomena.

2 Phase fields models for multiphase perimeters

Let us first examine the standard and simple case where all surface tensions are constant, i.e. σi,j = 1
therefore

P(Ω1, ...ΩN) =
1
2

N

∑
i,j=1
Hd−1(Γi,j) =

1
2

N

∑
i=1
Hd−1(∂∗Ωi).

(recall from the introduction that all boundaries are considered in Ω i.e. ∂∗Ωi = ∂∗Ωi ∩Ω). An interest-
ing property of the latter formulation is the dependence of the energy on full interface boundaries ∂∗Ωi
(full with respect to Ω), and not partial interface boundaries Γi,j = ∂∗Ωi ∩ ∂∗Ωj. Indeed, the dependence
on full boundaries is well-suited for phase-field approximations: denoting u = (u1,u2, · · · ,uN) ∈ RN

and

Σ =

{
u ∈RN ;

N

∑
i=1

ui = 1

}
,

P can be easily approximated by

Pε(u) =


1
2

N

∑
i=1

∫
Ω

(
ε

2
|∇ui|2 +

1
ε

F(ui)

)
dx, if u ∈ Σ

+∞ otherwise

where ε is a small parameter that characterizes the width of the diffuse interface, and F(s) = s2(1−s)2

2 is
a double-well potential. This follows from Modica-Mortola’s theorem [34] which states that the family
of functionals Jε defined by

Jε(u) =
∫

Ω

(
ε

2
|∇u|2 + 1

ε
F(u)

)
dx

approximates (in the sense of Γ- convergence) cFP with cF =
∫ 1

0

√
2F(s)ds and

P(u) =
{
|Du|(Ω) when u ∈ BV(Ω,{0,1}
+∞ otherwise,

where the total variation |Du|(Ω) of a function u ∈ BV(Ω) (see [2]) is defined by

|Du|(Ω) =
∫

Ω
|Du| = sup

{∫
Ω

udiv gdx; g ∈ C1
0(Ω,Rn), |g| ≤ 1

}
.

Using this approximation for every phase ui yields Pε, of which the Γ-convergence to cW P can be
obtained as in [3, 40].
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Moreover, the L2-gradient flow of Pε reads

∂tui =
1
2

(
∆ui −

1
ε2 F′(ui)

)
+ λ(t), for all i = 1, . . . , N,

where λ(t) is a Lagrange multiplier associated to the constraint u ∈ Σ that can be explicitly computed as
λ(t) = 1

Nε2 ∑N
i=1 F′(ui). The flow is an Allen-Cahn system that can be easily approximated numerically,

for instance using a splitting method with an implicit resolution of the diffusion term in Fourier space
coupled with an explicit treatment of the reaction term [17].

The case of a general surface tension σ ∈ SN is more involved. In [29, 28], Garcke et al studied
phase-field approximations of the general form

Pε(u) =


∫

ε f (u,∇u) +
1
ε

W(u)dx if u ∈ Σ

+∞ otherwise.

The category of functions f and W for which the results obtained in the paper apply is quite general,
but the authors have a preference for

f (u,∇u) =
N

∑
i,j=1

αi,j

2

∣∣ui∇uj − uj∇ui
∣∣2 , with (αi,j)i,j ∈ SN , (3)

and W a positive multi-well potential defined on Σ and vanishing only at each standard unit vector of
the canonical basis (e1, . . . , eN) of RN . Each vector ei corresponds to a phase, and a N-phase system is
given by u = ∑N

i=1 uiei with ∑ ui = 1. The authors of [29] propose a multi-well potential of the form

W(u) =
N

∑
i,j=1

1
2

αi,ju2
i u2

j + ∑
i<j<k

αi,j,ku2
i u2

j u2
k (4)

It is explained in [28] that to expect the Γ-convergence of Pε to P the following equality must be true

σi,j(n) = 2inf
p

∫ 1

−1

√
W(p) f (p, p′ ⊗ n)ds, for all n ∈ S(Rd), (5)

where p ranges over all Lipschitz continuous functions p : [−1,1] → Σ, connecting the vectors ei to
ej. This condition raises a central issue in all phase-field models for the approximation of multiphase
perimeters: given a set of surface tensions (σi,j), how to define W so that the previous equality holds
and the Γ-convergence is guaranteed? It is really not a purely formal question: Γ-convergence does not
only allow to approximate the energy of local minimizers, it also guarantees that minimizers of Pε do
converge, up to a subsequence, to a minimizer of P [20, 10].

So far, the only results in this direction are due to Haas, who proved in [30] that, if W is a polynomial
of order at most four, then only polynomials of the form

N

∑
i,j=1

αi,ju2
i u2

j + ∑
i,j,k

αi,j,kuiuju2
k + ∑

i,j,k,l
αi,j,k,luiujukul

prevent from the creation of ghost phases in the limit, i.e. a geodesic defined as in the right term of (5)
and connecting two phases ei and ej passes only through the points tei + (1− t)ej. However, no way
is provided in [30] of consistently deriving the parameters αi,j, αi,j,k, and αi,j,k,l from the σi,j’s so that (5)
holds.

We will show in this paper that, assuming a `1-embeddability condition for σ (see below), there is a
consistent and explicit way to construct a polynomial W. As for the gradient term, the choice (3) yields a
gradient flow corresponding to a reaction-diffusion system where the diffusion terms are nonlinear and
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ill-conditioned, which raises numerical issues. Another choice will be shown to be more convenient.
More precisely, we propose an energy of the form

Pε(u) =


∫

Ω
− ε

4
σ∇u · ∇u +

1
ε

Wσ(u)dx if u ∈ Σ

∞ otherwise,

where the diffusion term reads σ∇u · ∇u = ∑N
i,j=1 σi,j∇ui · ∇uj and Wσ(u) is defined from the σi,j’s as

Wσ(u) =
1
4

N

∑
i,j=1

σi,ju2
i u2

j +
1
2 ∑

i<j,k 6=i,k 6=j
σi,k,juiuju2

k + ∑
i<j<k<l

σi,j,k,luiujukul ,

with
σi,j,k = (σi,k + σj,k − σi,j), σi,j,k,l = 6σ∗i,j,k,l − ∑

(i′ ,j′)⊂{i,j,k,l}, i′<j′
σi′ ,j′

where σ∗i,j,k,l is arbitrarily chosen in the interval

Ii,j,k,l =

 min
i′∈⊂{i,j,k,l}

 ∑
{j′ ,k′ ,l′}⊂{i,j,k,l}\{i′}

σi′ ,j′ + σi′ ,k′ + σi′ ,l′

2

 , max
{i′ ,j′ ,k′ ,l′}∈⊂{i,j,k,l}

{
σi′ ,j′ + σk′ ,l′

2

} .

We will prove that this model fulfills properties (P1)-(P5) mentioned above.
The next section is devoted to the derivation of our phase field energy Pε. In section 3, we give a

proof of the Γ-convergence result of Pε to cFP. Section 4 addresses the L2-gradient flow of Pε, and some
extensions to incorporate additional constraints of volume and partial phase stationarity, in particular
for the evolution of multi-droplets. Finally, we present some numerical experiments in section 5 which
highlight the good behavior of our model.

3 Derivation of the phase field model

We first consider the particular case of additive surface tensions, and then the more general `1-embeddable
surface tensions, for which it turns out that the perimeter P can be expressed as the sum of perimeters
associated with union of different phases. This particular form of perimeter is the key for deriving our
Γ-convergent phase-field model.

3.1 Additive surface tensions

The simplest case of inhomogeneous surface tensions σi,j is the case of additive surface tensions, i.e.
surface tensions (σi,j) for which there exist some positive coefficients (σ1,σ2, . . . ,σN) ∈ (R+)N such that

σi,j = σi + σj, with σi > 0, for all i, j = 1, . . . , N.

In this situation we have

P(Ω1, ...ΩN) =
1
2

N

∑
i,j=1

σi,jHd−1(Γi,j) =
N

∑
i=1

σiHd−1(∂∗Ωi),

which is, once again, a rewriting of the multiphase perimeter as a linear combination of simple perime-
ters. It leads to the following natural approximating candidate (denoting as before, and in the sequel as

well, F(s) = s2(1−s)2

2 ):

Pε(u) =


N

∑
i=1

σi(
∫

Ω

ε

2
|∇ui|2 +

1
ε

F(ui))dx, if u ∈ Σ

+∞ otherwise
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An easy adaptation of the homogeneous case to this inhomogeneous setting yields the Γ-convergence
of Pε to cFP as ε goes to 0. Remark also that, as ∇∑N

j=1 uj =∇1 = 0, one has

−1
4

σ∇u · ∇u = −1
4

N

∑
i,j=1

(σi,j)∇ui · ∇uj =
1
4

N

∑
i,j=1,i 6=j

(σi + σj)∇ui · ∇uj

= −1
2

N

∑
i=1

N

∑
j=1

σi∇ui · ∇uj +
1
2

N

∑
i=1

σi|∇ui|2

=
1
2

N

∑
i=1

σi|∇ui|2.

This implies that Pε can be expressed as:

Pε(u) =


∫

Ω
(− ε

4
σ∇u · ∇u +

1
ε

Wσ(u))dx if u ∈ Σ

+∞ otherwise,

where the multi-well potential Wσ is defined as

Wσ(u) =
N

∑
i=1

σiF(ui).

3.1.1 Potential for triphasic systems (N = 3) with triangle inequality

It is easily seen that all surface tension matrix σ ∈ S3 satisfying the triangle inequality is actually addi-
tive. Indeed, we have

σ1 =
σ1,2 + σ1,3 − σ2,3

2
, σ2 =

σ2,1 + σ2,3 − σ1,3

2
, and σ3 =

σ3,1 + σ3,2 − σ1,2

2
,

We deduce from the previous section the form of the potential term:

Wσ(u) = σ1F(u1) + σ2F(u2) + σ3F(u3)

=
σ1,2

2
(F(u1) + F(u2)− F(u3)) +

σ1,3

2
(F(u1) + F(u3)− F(u2)) +

σ2,3

2
(F(u2) + F(u3)− F(u1))

More precisely, remark that for all u ∈ Σ,

F(u1) + F(u2)− F(u3) =
1
2

u2
1(1− u1)

2 +
1
2

u2
2(1− u2)

2 − 1
2

u2
3(1− u3)

2

=
1
2

u2
1(u2 + u3)

2 +
1
2

u2
2(u1 + u3)

2 − 1
2

u2
3(u1 + u2)

2

= u2
1u2

2 + u2
1u2u3 + u2

2u1u3 − u2
3u1u2.

In particular, this shows that

Wσ(u) =
1
2

σ1,2u2
1u2

2 +
1
2

σ1,3u2
1u2

3 +
1
2

σ2,3u2
1u2

3

+
1
2
(σ1,2 + σ13 − σ2,3)u2u3u2

1 +
1
2
(σ1,3 + σ2,3 − σ1,2)u1u2u2

3 +
1
2
(σ1,2 + σ2,3 − σ1,3)u1u3u2

2

=
1
4

N

∑
i,j=1

σi,ju2
i u2

j +
1
2 ∑

i<j,k 6=i,k 6=j
σi,j,kuiuju2

k ,

where
σi,j,k = σi,k + σk,j − σi,j.
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3.1.2 Potential for additive surface tensions when N > 3

The additive case N > 3 follows from the computation above. Let us assume the existence of some
positive coefficients (σ1,σ2, . . . ,σN) ∈ (R+)N such that

σi,j = σi + σj, with σi > 0, for all i = 1, . . . , N.

Then, for all u ∈ Σ, the multi-well potential W is as before :

Wσ(u) =
N

∑
i=1

σiF(ui) =
1
2

N

∑
i=1

σiu2
i (1− ui)

2 =
1
2

N

∑
i=1

σiu2
i (

N

∑
j=1,j 6=i

uj)
2

=
1
2

N

∑
i,j=1,i 6=j

σiu2
i u2

j +
N

∑
j<k,i 6=j,i 6=k

σiujuku2
i

=
1
4

N

∑
i,j=1

σi,ju2
i u2

j +
1
2

N

∑
i<j,i 6=k,j 6=k

σi,j,kuiuju2
k ,

where
σi,j = σi + σj, and σi,j,k = σi,k + σk,j − σi,j = 2σk.

We now synthetize the results of this section on additive surface tensions:

Proposition 3.1 Let (σ1,σ2, . . . ,σN) ∈ (R+)N such that σi,j = σi + σj with σi > 0 for all i = 1, . . . , N. Then the
phase-field perimeter

Pε(u) =


∫

Ω
(− ε

4
σ∇u · ∇u +

1
ε

Wσ(u))dx if u ∈ Σ

+∞ otherwise,

where Wσ(u) =
1
4

N

∑
i,j=1

(σi + σj)u2
i u2

j +
N

∑
i<j,i 6=k,j 6=k

σkuiuju2
k ,

Γ-converges to cFP as ε→ 0+.

We conclude this section observing that the Γ-convergence follows from a rewriting of the multi-
phase perimeter in terms of full boundaries. Let us now describe how the same idea can be applied
as well for a much more general class of surface tensions, namely the `1-embeddable surface tensions
whose definition is given in the next section.

3.2 `1-embeddable surface tensions

Definition 3.2 A matrix σ = (σi,j) ∈ SN is called `1-embeddable if there exist some integer M and N points
pi ∈RM such that σi,j = ‖pi − pj‖1 where ‖ · ‖1 is the `1 metric in RM.

The notion of embeddability in metric spaces plays an important role in graph theory, see the remark-
able survey [23]. Interestingly, it has connections with conditionally semi-definite matrices for which
the minimizing scheme proposed in [25] applies. More precisely, the following properties hold [25, 23]:

1. All `1-embeddable matrices satisfy the triangle inequality. The converse is true if and only if
N ≤ 4. Every `1-embeddable matrix is conditionally negative semi-definite, but the converse is
false according to the next item.

2. Being conditionally negative semi-definite is neither a necessary nor a sufficient condition for a
matrix to satisfy the triangle inequality; as an important consequence, Esedoḡlu-Otto’s scheme [25]
is also valid for many matrices which violate the triangle inequality, which is useful for the con-
sistent simulation of wetting and nucleation phenomena.
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3. For every conditionally negative semi-definite matrix σ = (σi,j) ∈ SN there exist some integer M
and N points pi ∈RM such that σi,j = ‖pi − pj‖2

2 where ‖ · ‖2 is the `2 metric in RM. In particular
the matrix (

√
σi,j) is `2-embeddable.

4. Given a set of N points P = {p1, . . . , pN} ∈RM, a metric d on P is a cut-metric if there exists S⊂P
such that

d(pi, pj) = dS(pi, pj) =

{
1 if δS(pi) 6= δS(pj),
0 otherwise,

where δS(pi) = 1 if pi ∈ S and 0 otherwise. A fundamental property of `1-embeddable matrices is
that they can be expressed in terms of cut-metrics [23]. We will refer to it as the Cut Cone Property
in the sequel:

(Cut Cone Property)
there exists a collection of coefficients σS ≥ 0, S ⊂ {1, . . . , N}, such that

σi,j = ‖pi − pj‖1 = ∑
S⊂{1,...,N}

σSdS(pi, pj), i, j ∈ {1, . . . , N}. (6)

It is important to notice that this decomposition involves all subsets of {1, . . . , N}.

This latter property has a very interesting consequence for multiphase perimeters [25, 23] which is
stated below, and which plays a key role for exhibiting Γ-converging approximation perimeters in the
general context of `1-embeddable surface tensions (see the next section).

Lemma 3.3 If σ = (σi,j) ∈ SN is `1-embeddable then

P(Ω1,Ω2, . . . ,ΩN) =
1
2

N

∑
i,j=1

σi,jHd−1(Γi,j) = ∑
S⊂{1,··· ,N}

σSP(∪i∈SΩi)

where P denotes the perimeter and σS ≥ 0 for all S ⊂ {1, · · · , N}.

PROOF The result follows directly from the decomposition σi,j = ‖pi − pj‖1 = ∑S⊂{1,...,N} σSdS(pi, pj).
Indeed,

P(Ω1,Ω2, . . . ,ΩN) =
1
2

N

∑
i,j=1

∑
S⊂{1,...,N}

σSdS(pi, pj)Hd−1(Γi,j) =
1
2 ∑

S⊂{1,...,N}
σS

N

∑
i,j=1

dS(pi, pj)Hd−1(Γi,j).

However, dS(pi, pj)Hd−1(Γi,j) vanishes when i, j are either both in S or both outside, therefore the only
remaining interfaces Γi,j are those between a phase in S and a phase outside S. Therefore, given S ⊂
{1, . . . , N},

1
2

N

∑
i,j=1

dS(pi, pj)Hd−1(Γi,j) =Hd−1(∂∗(∪i∈SΩi)) = P(∪i∈SΩi),

and the lemma ensues.

The model introduced in this paper will be proved to Γ-converge whenever the surface tension matrix
is strictly `1-embeddable, according to the following definition.

Definition 3.4 A matrix σ = (σi,j) ∈ SN is called strictly `1-embeddable if the Cut Cone Property (6) holds for
a collection {σS ≥ 0, S ⊂ {1, . . . , N}} such that σ{i} > 0, ∀i ∈ {1, . . . , N}.

Remark 3.5 A necessary condition for strict `1-embeddability is the strict triangle inequality, i.e. σi,j +
σj,k < σi,k whenever i 6= j 6= k. Indeed, we have that σi,j + σj,k = ∑ σS[dS(pi, pj) + dS(pj, pk)]. Then,
observe that dS(pi, pj) + dS(pj, pk) ≥ dS(pi, pk) since the right term is either 0 or 1, it equals 1 as soon as
δS(pi) 6= δS(pk) i.e. pi and pk are not both in S or both outside S, and in this case the left term equals
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at least 1 since pk is either in S or outside S. Then, we focus on the case S = {j}: since i,k 6= j and
σi,j,σj,k > 0 (because σ ∈ SN), d{j}(pi, pk) = 0 but d{j}(pi, pj) + d{j}(pj, pk) = 2. It follows from σ{j} > 0
that σi,j + σj,k < σi,k.

In the case N ≥ 4, the strict triangle inequality if also a sufficient condition for strict `1-embeddability,
see Remark 3.6.

3.3 Derivation of the approximation perimeter for `1-embeddable surface tensions

In the case of additive surface tensions, as we saw above, the multiphase perimeter can be directly
written as a nonnegative combination of integrals on boundaries of sets (and not subsets of boundaries),
which allows a multiphase approximation. As it follows from Lemma 3.3, a similar decomposition
holds for `1-embeddable surface tensions. Thus, a multiphase approximation is again possible, and a
natural candidate to approximate P is given by

Pε(u) =


∫

Ω

 ∑
S⊂{1,2,··· ,N}

σS

 ε

2

∣∣∣∣∣∇(∑i∈S
ui)

∣∣∣∣∣
2

+
1
ε

F(∑
i∈S

ui)

dx if u ∈ Σ

+∞ otherwise

where the coefficients σS are given by the Cut Cone Property (6). Note that for N≥ 4, the decomposition
is not unique.

This expression has a drawback: the σS’s are unknown. We will now derive another expression
which can be explicitly computed from the surface tension matrix σ = (σi,j) as soon as σi,j > 0 whenever
i 6= j.

3.3.1 A condensed form for the approximating multiphase perimeter

Let αi = ∑S⊂{1,2,··· ,N} σSδi∈S and αi,j = ∑S⊂{1,2,··· ,N} σSδi∈Sδj∈S with δi∈S = 1 if i ∈ S, 0 otherwise. Since σ

is assumed to be `1-embeddable, it follows from the Cut Cone Property (6) that

σi,j = ∑
S⊂{1,2,··· ,N}

σS
(
δi∈Sδj 6∈S + δi 6∈Sδj∈S

)
= αi + αj − 2αi,j.

Then we have for all u ∈ Σ:

∑
S⊂{1,2,··· ,N}

σS

∣∣∣∣∣∇(∑i∈S
ui)

∣∣∣∣∣
2

= ∑
S⊂{1,2,··· ,N}

σS∇
[
∑
i∈S

ui

]
· ∇
[
∑
j∈S

uj

]

=
N

∑
i,j=1

 ∑
S⊂{1,2,··· ,N}

σSδi∈Sδj∈S

∇ui · ∇uj

=
N

∑
i,j=1,i 6=j

αi,j∇ui · ∇uj +
N

∑
i=1

αi|∇ui|2

= −1
2

N

∑
i,j=1,i 6=j

σi,j∇ui · ∇uj +
N

∑
i,j=1,i 6=j

αi∇ui · ∇uj +
N

∑
i=1

αi|∇ui|2

= −1
2

σ∇u · ∇u +
N

∑
i=1

αi∇ui · ∇
(

N

∑
j=1

uj

)

= −1
2

σ∇u · ∇u.

To conclude, the approximating perimeter introduced above can be rewritten as

Pε(u) =


∫

Ω
− ε

4
σ∇u · ∇u +

1
ε

Wσ(u)dx if u ∈ Σ,

+∞ otherwise,
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where the multi-well potential Wσ(u) reads

Wσ(u) = ∑
S⊂{1,2,··· ,N}

σSF(∑
i∈S

ui). (7)

3.3.2 Rewriting the potential when N = 4

When N = 4, any surface tension matrix satisfying the triangle inequality is `1–embeddable [23], thus
the perimeter is decomposable as:

P(Ω1,Ω2, . . . ,Ω4) =
1
2

4

∑
i,j=1

σi,jHd−1(Γi,j) = ∑
S⊂{1,2,··· ,4}

σSHd−1(∂∗(∪i∈SΩi)), (8)

but no explicit formula is known for the coefficients σS. Let us try to reformulate the decomposition
in order to make it more explicit. Considering the whole collection of sets ∪i∈SΩi, S ⊂ {1, · · · , N} we
define :

Q1 = Ω1, Q2 = Ω2, Q3 = Ω3, Q4 = Ω4

and 
Q5 = Ω1 ∪Ω2 = (Ω3 ∪Ω4)

c

Q6 = Ω1 ∪Ω3 = (Ω2 ∪Ω4)
c

Q7 = Ω2 ∪Ω3 = (Ω1 ∪Ω4)
c

Remark first that for all i, j

2Hd−1(∂∗Ωi ∩ ∂∗Ωj) =Hd−1(∂∗Ωi) +Hd−1(∂∗Ωj)−Hd−1(∂∗(Ωi ∪Ωj)).

Then we define 
σ̃1 = (σ12 + σ13 + σ14)/2
σ̃2 = (σ12 + σ23 + σ24)/2
σ̃3 = (σ13 + σ23 + σ34)/2
σ̃4 = (σ14 + σ24 + σ34)/2

and


σ̃5 = − (σ12 + σ34)/2
σ̃6 = − (σ13 + σ24)/2
σ̃7 = − (σ14 + σ23)/2,

and we calculate from (8) that

P(Ω1,Ω2,Ω3,Ω4) =
7

∑
i=1

σ̃iHd−1(∂∗Qi).

This new formulation is however not convenient because σ̃5, σ̃6 and σ̃7 are negative, which is an obstacle
to the Γ-convergence. However, the fact that

4

∑
i=1
Hd−1(∂∗Ωi) =Hd−1(∂∗(Ω1 ∪Ω2)) +Hd−1(∂∗(Ω1 ∪Ω3)) +Hd−1(∂∗(Ω1 ∪Ω4)),

implies that

P(Ω1,Ω2,Ω3,Ω4) =
4

∑
i=1

(σ̃i − σ∗)Hd−1(∂∗Qi) +
7

∑
i=5

(σ̃i + σ∗)Hd−1(∂∗Qi),

for all σ∗ ∈R. In particular, the previous equality gives one degree of freedom depending on the value
of σ∗. Remark now that

σ̃1 + σ̃5 =
(σ12 + σ13 + σ14)

2
− (σ12 + σ34)

2
=

(σ13 + σ14 − σ34)

2
,
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which is always positive as σ satisfies the triangle inequality. Therefore, for all i ∈ {1,2,3,4} and for all
j ∈ {5,6,7}, we have σ̃i + σ̃j ≥ 0. Denoting

σmin = max
i=5,6,7

{−σ̃i} , and σmax = min
i=1,2,3,4

{σ̃i} ,

we deduce that σmin ≤ σmax. Let us now choose arbitrarily σ∗ ∈ [σmin,σmax] and define{
σi = σ̃i − σ∗ for i = 1, . . . ,4,
σi = σ̃i + σ∗ otherwise ,

Obviously

P(Ω1,Ω2,Ω3,Ω4) =
7

∑
i=1

σiHd−1(∂∗Qi),

and, from our observations above, σi ≥ 0 for all i ∈ {1, . . . ,7}.

Remark 3.6 In the particular case where (σi,j) satisfies the strict triangle inequality, then σmin < σmax

thus one can choose σ∗ = (σmin + σmax)/2 so that σi > 0 for every i ∈ {1, . . . ,7}, i.e. σ is strictly `1-
embeddable.

The previous argument shows also that for all decompositions of P of the form

P(Ω1,Ω2,Ω3,Ω4) =
7

∑
i=1

αiHd−1(∂∗Qi),

with αi ≥ 0, we can associate a coefficient σ∗ ∈ [σmin,σmax] such that{
αi = σ̃i − σ∗ for i = 1, . . . ,4,
αi = σ̃i + σ∗ for i = 5, . . . ,7.

The decomposition that we have obtained leads to a natural potential for the phase-field approxi-
mation, i.e. Wσ can be chosen as

Wσ(u) =

(
4

∑
i=1

σiF(ui)

)
+ σ5F(u1 + u2) + σ6F(u1 + u3) + σ7F(u1 + u4)

=
1
2

4

∑
i,j=1,i<j

σi,j
(

F(ui) + F(uj)− F(ui + uj)
)
+ σ∗

(
4

∑
i=2

F(u1 + ui)−
4

∑
i=1

F(ui)

)

Moreover, remark that for all u ∈ Σ, we have

4

∑
i=1

F(ui) = F(u1) + F(u2) + F(u3) + F(u4)

=
1
2

[
u2

1(u2 + u3 + u4)
2 + u2

2(u1 + u3 + u4)
2 + u2

3(u1 + u3 + u4)
2 + u2

4(u1 + u2 + u3)
2
]

= ∑
i<j

u2
i u2

j + ∑
i<j,k 6=i,k 6=j

uiuju2
k ,

4

∑
i=2

(F(u1 + ui)) = F(u1 + u2) + F(u1 + u3) + F(u1 + u4)

=
1
2

[
(u1 + u2)

2(u3 + u4)
2 + (u1 + u3)

2(u2 + u4)
2 + (u1 + u4)

2(u2 + u3)
2
]

= ∑
i<j

u2
i u2

j + ∑
i<j,k 6=i,k 6=j

uiuju2
k + 6u1u2u3u4
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and

F(u1) + F(u2)− F(u1 + u2) =
1
2

(
u2

1(u2 + u3 + u4)
2 + u2

2(u1 + u3 + u4)
2 − (u1 + u2)

2(u3 + u4)
2
)

= u2
1u2

2 + u2
1u2u3 + u2

1u2u4 + u2
2u1u3 + u2

2u1u4

= −u2
3u1u2 − u2

4u1u2 − 2u1u2u3u4.

In particular, this shows that the potential Wσ has the form

Wσ(u) =
1
4

N

∑
i,j=1

σi,ju2
i u2

j +
1
2 ∑

i<j,k 6=i,k 6=j
σi,j,kuiuju2

k + λu1u2u3u4

where λ = (6σ∗ −∑i<j σi,j) and σi,j,k = σi,k + σj,k − σi,j.

To conclude, remark that λ is positive for the triangle inequality yields 1
6 ∑i<j σi,j ≤ σmin. Moreover,

λ = 0 if and only if
σ1,2 + σ3,4 = σ1,3 + σ2,4 = σ1,4 + σ2,3,

which corresponds to the class of additive surface tensions, i.e. our potential is consistent with the
results of Section 3.1.

3.3.3 Extension to N ≥ 5

We deduce from (7) that

Wσ(u) = ∑
S⊂{1,2,··· ,N}

σSF(∑
i∈S

ui) =
1
2 ∑

S⊂{1,2,··· ,N}
σS(∑

i∈S
ui)

2(∑
j 6∈S

uj)
2

=
1
2 ∑

i<j
αi,ju2

i u2
j + ∑

i<j,k 6=i,k 6=i
αi,j,kuiuju2

k + 2 ∑
i<j<k<l

αi,j,k,luiujukul ,

where 
αi,j = ∑S⊂{1,2,··· ,N} σS

(
δi∈Sδj 6∈S + δi 6∈Sδj∈S

)
αi,j,k = ∑S⊂{1,2,··· ,N} σS

(
δk∈Sδi 6∈Sδj 6∈S + δk 6∈Sδi∈Sδj∈S

)
αi,j,k,l = ∑S⊂{1,2,··· ,N} σS

(
δk∈Sδl∈Sδi 6∈Sδj 6∈S + δk 6∈Sδl 6∈Sδi∈Sδj∈S + δk∈Sδl 6∈Sδi∈Sδj 6∈S

+δk 6∈Sδl∈Sδi 6∈Sδj∈S + δk∈Sδl 6∈Sδi 6∈Sδj∈S + δk 6∈Sδl∈Sδi∈Sδj 6∈S
) .

A first key observation is that no more than four phases are considered simultaneously in the above
decomposition. Recall then that

P(Ω1,Ω2, . . . ,ΩN) =
1
2

N

∑
i,j=1

σi,jHd−1(Γi,j) = ∑
S⊂{1,2,··· ,N}

σSHd−1(∂∗ (∪i∈SΩi)).

A second key observation is the following: according to the Cut Cone Property (6), the coefficients
σS depend only on the surface tensions σi,j, but absolutely not on the values Hd−1(Γi,j). Therefore,
to identify the contribution of four phases, the remaining phases can be assumed empty! Now if one
assumes for instance that only Ω1,Ω2,Ω3 and Ω4 are non-empty, then

P(Ω1,Ω2,Ω3,Ω4,∅, · · · ,∅) =
1
2

4

∑
i,j=1

σi,jHd−1(Γi,j)

= ∑
S⊂{1,2,··· ,N}

σSHd−1(∂∗
(
∪i∈S,i∈{1,2,3,4}Ωi

)
)

=
4

∑
i=1

βiHd−1(∂∗Ωi) +
4

∑
i=2

β1,iHd−1(∂∗(Ω1 ∪Ωi)),
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where 
β1 = ∑S⊂{1,2,··· ,N} σS

(
δ1∈Sδ2 6∈Sδ3 6∈Sδ4 6∈S + δ1 6∈Sδ2∈Sδ3∈Sδ4∈S

)
β2 = ∑S⊂{1,2,··· ,N} σS

(
δ2∈Sδ1 6∈Sδ3 6∈Sδ4 6∈S + δ2 6∈Sδ1∈Sδ3∈Sδ4∈S

)
β3 = ∑S⊂{1,2,··· ,N} σS

(
δ3∈Sδ2 6∈Sδ1 6∈Sδ4 6∈S + δ3 6∈Sδ2∈Sδ1∈Sδ4∈S

)
β4 = ∑S⊂{1,2,··· ,N} σS

(
δ4∈Sδ2 6∈Sδ3 6∈Sδ1 6∈S + δ4 6∈Sδ2∈Sδ3∈Sδ1∈S

)
and 

β12 = ∑S⊂{1,2,··· ,N} σS
(
δ1∈Sδ2∈Sδ3 6∈Sδ4 6∈S + δ1 6∈Sδ2 6∈Sδ3∈Sδ4∈S

)
β13 = ∑S⊂{1,2,··· ,N} σS

(
δ1∈Sδ2 6∈Sδ3∈Sδ4 6∈S + δ1 6∈Sδ2∈Sδ3 6∈Sδ4∈S

)
β14 = ∑S⊂{1,2,··· ,N} σS

(
δ1∈Sδ2 6∈Sδ3 6∈Sδ4∈S + δ1 6∈Sδ2∈Sδ3∈Sδ4 6∈S

)
.

From the case N = 4, we deduce that there exists σ∗1,2,3,4 ∈ I1,2,3,4, with

Ii,j,k,l =

 max
i′ ,j′ ,k′ ,l′∈{i,j,k,l}

i′ 6=j′ 6=k′ 6=l′

{
σi′ ,j′ + σk′ ,l′

2

}
, min
i′ ,j′ ,k′ ,l′∈{i,j,k,l}

i′ 6=j′ 6=k′ 6=l′

{
σi′ ,j′ + σi′ ,k′ + σi′ ,l′

2

}
such that

β12 = σ∗1,2,3,4 −
(

σ12 + σ34

2

)
, β13 = σ∗1,2,3,4 −

(
σ13 + σ24

2

)
, β14 = σ∗1,2,3,4 −

(
σ14 + σ23

2

)
.

and

β1 =
σ12 + σ13 + σ14

2
− σ∗1,2,3,4, β2 =

σ12 + σ23 + σ24

2
− σ∗1,2,3,4,

β3 =
σ13 + σ23 + σ34

2
− σ∗1,2,3,4, and β4 =

σ14 + σ24 + σ34

2
− σ∗1,2,3,4.

As was shown in the previous section, the triangle inequality guarantees that Ii,j,k,l 6= ∅ for i 6= j 6= k 6=
l. Furthermore, if the strict triangle inequality is satisfied then Ii,j,k,l is an interval of positive length.
Using the same argument for any collection of four regions Ωi, Ωj, Ωk, Ωl , we can conclude that for all
{i, j,k, l} ∈ {1,2, · · ·N}, i 6= j 6= k 6= l, there exists σ∗i,j,k,l ∈ Ii,j,k,l (we can choose it in the interior if the strict
triangle inequality holds) such that

Wσ(u) =
1
2 ∑

i<j
αi,ju2

i u2
j + ∑

i<j,k 6=i,k 6=i
αi,j,kuiuju2

k + 2 ∑
i<j<k<l

αi,j,k,luiujukul

with

αi,j,k,l = ∑
S

σS
(
δk∈Sδl∈Sδi 6∈Sδj 6∈S + δk 6∈Sδl 6∈Sδi∈Sδj∈S + δk∈Sδl 6∈Sδi∈Sδj 6∈S

+δk 6∈Sδl∈Sδi 6∈Sδj∈S + δk∈Sδl 6∈Sδi 6∈Sδj∈S + δk 6∈Sδl∈Sδi∈Sδj 6∈S
)

= βi,j + βi,k + βi,l

= 3σ∗i,j,k,l −
1
2 ∑
(i′ ,j′)⊂{i,j,k,l}, i′<j′

σi′ ,j′ .

and

αi,j,k = ∑
S

σS
(
δk∈Sδi 6∈Sδj 6∈S + δk 6∈Sδi∈Sδj∈S

)
= βk + βi,j =

σi,k + σk,j − σi,j

2
=

1
2

σi,j,k

αi,j = ∑
S

σS
(
δi∈Sδj 6∈S + δi 6∈Sδj∈S

)
= βi + β j + βi,k + βi,l = σi,j.

The following result is proved:
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Theorem 3.7 Let σ ∈ SN be `1-embeddable and let {σS ≥ 0, S⊂ {1, · · · , N}} satisfy the Cut Cone Property (6).
For all {i, j,k, l} ∈ {1,2, · · ·N}, i 6= j 6= k 6= l the interval

Ii,j,k,l =

 max
i′ ,j′ ,k′ ,l′∈{i,j,k,l}

i′ 6=j′ 6=k′ 6=l′

{
σi′ ,j′ + σk′ ,l′

2

}
, min
i′ ,j′ ,k′ ,l′∈{i,j,k,l}

i′ 6=j′ 6=k′ 6=l′

{
σi′ ,j′ + σi′ ,k′ + σi′ ,l′

2

}
is non empty. Let σ∗i,j,k,l ∈ Ii,j,k,l . Then any potential of the form Wσ(u) = ∑S⊂{1,2,··· ,N} σSF(∑i∈S ui) can be
rewritten as

Wσ(u) =
1
4

N

∑
i,j=1

σi,ju2
i u2

j +
1
2 ∑

i<j,k 6=i,k 6=j
σi,k,juiuju2

k + ∑
i<j<k<l

σi,j,k,luiujukul ,

where σi,j,k = σi,k + σk,j − σi,j and σi,j,k,l = 6σ∗i,j,k,l −∑(i′ ,j′)⊂{i,j,k,l}, i′<j′ σi′ ,j′ are non-negative.
Furthermore, if σ satisfies the strict triangle inequality then every interval Ii,j,k,l has positive length and every

coefficient σ∗i,j,k,l can be chosen in the interior of Ii,j,k,l so that all coefficients σi,j,σi,j,k,σi,j,k,l are positive for all
i 6= j 6= k 6= l.

3.3.4 Remarks on geodesics in the `1 embeddable case

In the case of either additive or `1 embeddable surface tensions, we have derived a specific form of
multi-well potential Wσ and we will prove in the next section the Γ-convergence of the associated
approximation perimeter Pε to cW P. This Γ-convergence result yields an explicit formula linking the
surface tensions and the interface energy:

cFσi,j = inf
p∈Σi,j

∫
R
− ε

4
σp′(s) · p′(s) + 1

ε
Wσ(p(s))ds,

where Σi,j is the set of all Lipschitz continuous functions p : R→ Σ, connecting the vectors ei to ej i.e
p(−∞) = ei, p(+∞) = ej and satisfying p(0)i =

1
2 .

Note that the Euler-Lagrange equations of this minimization problem reads ε
2 σp

′′
+ 1

ε ∂uWσ(p) = 0.
The scalar product of this equation by p′ and a simple integration yields a constant, which can be
identified with zero simply passing to the limit. This shows the equipartition of the energy− ε

4 σp
′ · p′ =

1
ε Wσ(p), and then we have

cFσi,j = inf
p∈Σi,j

∫
R

√
Wσ(p(s))(−σp′(s) · p′(s))ds, for all (i, j) ∈ {1,2, . . . , N} (9)

We can also introduce the profile-geodesic qi,j defined as

qi,j = argminp∈Σi,j
inf

p∈Σi,j

∫
R
−1

4
σp′(s) · p′(s) + Wσ(p(s))ds,

Equation (9) proves that qi,j = eiq + (1− q)ej where the scalar profile q satisfies q(s) = 1−tanh(s)
2 . Indeed,

remark that if p is expressed as eiq + (1− q)ej, then

inf
p

∫
R

√
Wσ(p)(−σp′ · p′)ds = inf

q

∫
R

√
σi,j

1
2

q2(1− q)22σi,j|q′|2ds

= σi,j inf
q

∫
R

√
2F(q)|q′|ds

= σi,j

∫ 1

0

√
2F(s)ds = cFσi,j,

where the last equality holds only for the profile function q(s) = 1−tanh(s)
2 . In particular, it means that

the geodesic qi,j which minimizes equation (9) does not introduce artificial phases between phases i
and j.
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3.3.5 Consequences for the non `1 embeddable case

What happens now in the case of a surface tension matrix σ which is not `1 embeddable? Then Pε needs
not to Γ-converge to cW P. If there is Γ-convergence, then, again, the geodesic between two phases
do not meet any other phase. However, we believe that the Γ-convergence does not hold in general,
as confirmed by numerical experiments. It implies that there should exist two phases i and j and a
geodesic pi,j ∈ Σi,j such that

cFσi,j >
∫

R
− ε

4
σp′i,j(s) · p′i,j(s) +

1
ε

Wσ(pi,j(s))ds,

We claim that this geodesic meets at least five phases, because otherwise, using a localization argument,
we could reduce to a situation with at most four phases, and we know that when N ≤ 4 every surface
tension matrix which satisfies the triangle inequality is `1-embeddable.

To force the Γ-convergence, it is necessary to modify the potential, introducing an additional term
which penalizes the configurations where more than five phases coexist at the same location. For in-
stance a suitable modified potential is

Wσ(u) =
1
4

N

∑
i,j=1

σi,ju2
i u2

j +
1
2 ∑

i<j,k 6=i,k 6=j
σi,k,juiuju2

k + ∑
i<j<k<l

σi,j,k,luiujukul + Wpen(u)

where

Wpen(u) =
N

∑
m=5

[
∑

1≤i1<i2<···<im≤M
σi1,i2,··· ,im ui1 ui2 · · ·uim

]
.

and the coefficients σi1,i2,··· ,im are taken large enough.
As a consequence, we claim that there are surface tension matrices which are not `1-embeddable,

and for which there is no fourth-order polynomial potential which guarantees the Γ-convergence of the
approximating multiphase perimeter. In other words, in the non `1-embeddable case with a polynomial
potential, a necessary condition for the Γ-convergence to be true is to use a polynomial of degree at
least 5.

4 Convergence of the approximating multi-phase perimeter

Recall from the previous sections that if a surface tension σ is strictly `1-embeddable then there exists a
collection of nonnegative coefficients (σS), S ⊂ {1, . . . , N} such that σ{i} > 0 for all i ∈ {1, . . . , N} and

P(Ω1, · · · ,ΩN) = ∑
S⊂{1,··· ,N}

σS

∫
∂∗(∪i∈SΩi)

1dσ.

The purpose of this section is to prove the following result:

Theorem 4.1 In the strict `1– embeddable case, the phase-field perimeter Pε defined by

Pε(u) =


∫

Ω

 ∑
S⊂{1,2,··· ,N}

σS

 ε

2

∣∣∣∣∣∇(∑i∈S
ui)

∣∣∣∣∣
2

+
1
ε

F(∑
i∈S

ui)

dx if u ∈ Σ ∩ [W1,2(Ω)]N

+∞ otherwise

,

Γ-converges in the L1 topology to cF P̃, with

P̃(u) =


∑

S⊂{1,··· ,N}
σS|D(∑

i∈S
ui)|(Ω) if u = (1Ω1 , · · · ,1ΩN ) ∈ Σ ∩ [BV(Ω)]N

+∞ otherwise
.

Remark 4.2 Notice that if u = (1Ω1 , · · · ,1ΩN ) ∈ Σ∩ [BV(Ω)]N then P̃(u) = P(Ω1, . . . ,ΩN). Remark also
that P̃ is a lower semicontinuous extension of P for the L1 topology. In [3], S. Baldo used another
extension which obviously coincides with ours on finite partitions.
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4.1 Equi-coerciveness and liminf inequality

Let (u(n))n∈N be a sequence in Σ ∩ [W1,2(Ω)]N such that (Pε(u(n)))n is uniformly bounded. With our

assumption that σ{i} > 0 for every i ∈ {1, · · · , N}, it follows that for every i ∈ {1, · · · , N},
∫

Ω
(

ε

2
|∇u(n)

i |
2 +

1
ε

F(u(n)
i ))dx is uniformly bounded. We deduce from Modica-Mortola’s Theorem [34], possibly extract-

ing a subsequence, that (u(n)
i )n converges in L1 to a function ui ∈ BV(Ω,{0,1}) for every i ∈ {1, · · · , N},

and denoting Ωi = {x ∈Ω, ui = 1} it holds that

cF|D1Ωi |(Ω) ≤ liminf
n→∞

∫
Ω
(

ε

2
|∇u(n)

i |
2 +

1
ε

F(u(n)
i ))dx.

Define u = (u1, · · · ,uN) and observe that u ∈ [BV(Ω,{0,1}]N . Since u(n) ∈ Σ, taking a subsequence
which converges a.e. in Ω yields u ∈ Σ ∩ [BV(Ω,{0,1}]N . In particular, ∪iΩi is a Caccioppoli partition
of Ω [2, 32], i.e. a partition made of sets with finite perimeter which are pairwise disjoint (up to a
Lebesgue negligible set).

We can now apply Modica-Mortola’s Theorem to every sequence (∑i∈S u(n)
i )n and we get that

cF

∣∣∣∣∣D
(

∑
i∈S

ui

)∣∣∣∣∣ (Ω) ≤ liminf
n→∞

∫
Ω

 ε

2

∣∣∣∣∣∇(∑i∈S
un

i )

∣∣∣∣∣
2

+
1
ε

F((∑
i∈S

un
i )

dx,

and finally

cFP(Ω1, · · · ,ΩN) = cF P̃(u) = cF ∑
S⊂{1,··· ,N}

σS

∣∣∣∣∣D
(

∑
i∈S

ui

)∣∣∣∣∣ (Ω) ≤ liminf Pε(u(n)).

4.2 limsup inequality

Let us consider u = (1Ω1 , · · · ,1ΩN ), with Ω1, . . . ,ΩN pairwise disjoint sets with finite perimeter in Ω
such that |Ω \ ∪N

i=1Ωi| = 0.
The aim of this section is to construct a sequence {uε}ε>0 which converges to u in L1(Ω) and such that

lim
ε→0

Pε(uε) ≤ cF P̃(u).

4.2.1 Restriction to a polygonal partition

Note that, by density (see Lemma 3.1 in [3]), we can assume that each Ωi is a finite union of polygonal
domains. We consider the signed distance function hi associated with each domain Ωi, i.e.

hi(x) =

{
dist(x,Ωi) if x /∈Ωi

−dist(x,Ωi) if x ∈Ωi.

Then, Lemma 3.3 in [3] establishes the existence of a constant η > 0 such that for all i = 1, . . . , N, hi is
Lipschitz-continuous on Hη,i = {x ∈Ω; |hi(x)| < η}, and |∇hi| = 1 for almost all x ∈ Hη,i.

4.2.2 ε-partition of Ω

Let δ > 3 and assume that ε is sufficiently small so that

sε = 2δ| log(ε)| < η

ε
.

Let
Ωε

i = {x ∈Ω; hi(x) ≤ −εsε}, for all i = 1, . . . , N,
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and for all 1≤ i < j ≤ N let us define

Γε
i,j = {x ∈Ω; |hi(x)| ≤ εsε, |hj(x)| ≤ εsε, and |hk| > εsε for all k /∈ {i, j}}.

Then, with

Bε =
{

x ∈Ω, ∃i, j,k ∈ {1,2 · · · , N} such that |hi(x)| > εsε, |hj(x)| > εsε and |hk(x)| > εsε

}
,

we have the following partition of Ω (see Figure 4.2.2 :

Ω = {∪N
i Ωε

i } ∪ {∪1≤i<j≤NΓε
i,j} ∪ Bε.

Moreover, it is not difficult to see that

|Bε| ≤O
(

ε2| log(ε)|2
)

.

Indeed, to be convinced, consider the case of dimension 2. As (Ω1,Ω2, · · · ,ΩN) is a polygonal partition
of Ω, there exists a finite number M of multiple junctions x1, x2, · · · , xM. Let αi denote the minimal angle
between any two branches at junction xi. Then, it is not difficult to see that Bε ⊂ ∪M

i=1B(xi,εsε/sin(αi)),
where B(x,r) is the ball centered at x with radius r. In particular, this shows that

|Bε| ≤ Mπ
ε2s2

ε

mini{sin(αi)2} .
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Figure 1: ε-partition of Ω

4.2.3 Profile approximation

Recall that the Allen-Cahn profile function q is defined as

q = argmin
p

{∫
R

√
F(p(s)|p′(s)|ds; p(−∞) = 1, p(0) = 1/2, p(+∞) = 0

}
,

where p ranges over all Lipschitz continuous functions p : R→R. It is a well-known fact that

q′(s) = −
√

2F(q(s)) and q′′(s) = W ′(q(s)), for all s ∈R,

which implies that q(s) = (1 − tanh(s))/2 in the case of the standard double well potential F(s) =
1/2s2(1− s)2.
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We will now introduce an approximation qε of q of which the support of variation is bounded.
Following [6], we take

qε(s) = q(s), ∀|s| ≤ sε/2
qε(s) = 1 if s < −sε, and qε(s) = 0 if s > sε,
qε(s) = p−(s), ∀s ∈ I−ε = [−sε,−sε/2], and qε(s) = p+(s), ∀s ∈ I+ε = [sε/2, sε],

where p− and p+ are two polynomials of degree 3, defined in such a way that qε ∈ C1(R). Note that
these polynomials are unique (by the standard interpolation theory) and it can be proven (see [6]) that

qε − q = o(ε2δ−1), q′ε −W ′(qε) = o(ε2δ−1), and q
′
ε +

√
2F(qε) = o(ε2δ−1).

4.2.4 Recovery sequence

We are now able to define an approximation uε of u = (1Ω1 , · · · ,1ΩN ) as

uε(x) = TΣ

[
N

∑
i=1

eiqε

(
hi
ε

)]
=


ei if x ∈Ωε

i ,
qε(hi/ε)ei + (1− qε(hi/ε))ej if x ∈ Γε

i,j

TΣ[∑i eiqε(hi/ε)] otherwise

,

where TΣ is the projection onto the tangent space TΣ = {u ∈RN , ∑N
i=1 ui = 0} of Σ, defined as

TΣ[u] = u− 1
N

(
N

∑
i=1

ui

)
1N , with 1N = (1,1, . . . ,1) ∈RN .

Here we use that for all x ∈ Γε
i,j, hi(x) = −hj(x) and that qε satisfies the following symmetry principle

qε(s) = 1− qε(−s), for all s ∈R.

Moreover, as sε = δ| log(ε)| < η
2ε , uε is a Lipschitz continuous function and uε clearly converges to

u in L1(Ω).

4.2.5 Final convergence

Recall that

Pε(uε) =
∫

Ω

[
− ε

4
σ∇uε · ∇uε +

1
ε

Wσ(uε)dx
]

.

First, remark that ∫
Ωε

i

[
− ε

4
σ∇uε · ∇uε +

1
ε

Wσ(uε)dx
]
= 0.

and that ∫
Bε

[
− ε

4
σ∇uε · ∇uε +

1
ε

Wσ(uε)dx
]
= O((εd−1| log(ε)|d),

as uε is Lipschitz on Bε and Wσ is bounded.

It is sufficient now to evaluate for all 1≤ i < j ≤ N the integral

Jε
i,j =

∫
Ωε

i,j

[
− ε

4
σ∇uε · ∇uε +

1
ε

Wσ(uε)

]
dx.
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Recall that for all x ∈Ωε
i,j, we have uε = qε(hi/ε)ei + (1− qε(hi/ε))ej and so{

−σ∇uε · ∇uε = 2σi,j|∇qε(hi/ε)|2,
Wσ(uε) = σi,j

1
2 qε(hi/ε)2(1− qε(hi/ε))2.

In particular, this shows that

Jε
i,j = σi,j

∫
Ωε

i,j

[
ε

2
|∇qε(hi/ε)|+ 1

ε
F(qε(hi/ε))

]
dx = σi,j

∫
Ωε

i,j

[
1
2
|q′ε(hi/ε)|+ F(qε(hi/ε))

]
|∇hi|

ε
dx.

Thus, the coarea formula proves that

Jε
i,j =

∫ sε

−sε

Hd−1(∂Γε,εs
i,j )

[
1
2
|q′ε(s)|2 + F(qε(s))

]
ds,

where the set Γε,s
i,j is defined as

Γε,s
i,j = {x ∈ Γε

i,j; hi(x) ≤ s}, ∀s ∈R.

Finally, taking the limit as ε goes to zero leads to

lim
ε→0

Jε
i,j = σi,jHd−1(Γi,j)

[∫
R

1
2
|q′(s)|2 + F(q(s)ds

]
= cFσi,jHd−1(Γi,j).

and then

lim
ε→0

Pε(uε) =
cF
2

N

∑
i,j=1
Hd−1(Γi,j) = cFP(u)

This concludes the proof of Theorem 4.1.

5 L2-gradient flow and some extensions

We now derive the L2-gradient flow of

Pε(u) =


∫

Ω
− ε

4
σ∇u · ∇u +

1
ε

Wσ(u)dx if u ∈ Σ

+∞ otherwise.

The gradient of Pε is

∇Pε(u) =
ε

2
σ∆u +

1
ε

∂uWσ(u),

thus the L2-gradient flow of Pε yields, up to time rescaling, the following Allen-Cahn system

∂tu = −TΣ

[
1
2

σ∆u
]
− 1

ε2 TΣ [∂uWσ(u)]

where TΣ is, as before, the projection onto the tangent space of Σ defined as

TΣ[u] = u− 1
N

(
N

∑
i=1

ui

)
1N , with 1N = (1,1, . . . ,1) ∈RN .

Moreover, we have

TΣ[σ∆u] = ∆TΣ[σu] = ∆TΣ[σ]u = TΣ[σ]∆u where TΣ[σ]i,j = TΣ[σ·,j]i,

and the Allen-Cahn system can be written as

∂tu = −1
2

TΣ[σ]∆u− 1
ε2 TΣ [∂uWσ(u)]
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Since ∑N
i=1 ui = 1, one has ∑N

i=1 ∆ui = 0, thus the system

∂tu = −1
2
(TΣ[σ]− λ1N ⊗ 1N)∆u− 1

ε2 TΣ [∂uWσ(u)] , (10)

is equivalent to the previous one. The existence and uniqueness of solutions to this system follow easily
from standard results on semi-linear systems of reaction-diffusion. Furthermore, this new form is easier
to handle numerically. In particular, λ is a parameter which can be chosen large enough to force the
matrix (TΣ[σ]− λ1N ⊗ 1N) to be negative definite. This is of course a requirement for the scheme to
be stable. Note that it is always possible to find such a Λ ∈ R as soon as σ defines a negative form on
(1,1, · · · ,1)⊥ ⊂ RN (which is the case of all `1-embeddable matrices). This assumption also appears in
the convergence of the algorithm introduced in [25], and simple examples show that it is necessary. For
instance, if N = 3 and σi,j = 1 whenever i 6= j, then

σ =

0 1 1
1 0 1
1 1 0

 , TΣ[σ] =

−2/3 1/3 1/3
1/3 −2/3 1/3
1/3 1/3 −2/3

 and TΣ[σ]−
1
3

13 ⊗ 13 =

−1 0 0
0 −1 0
0 0 −1

 ,

and it is easily seen that TΣ[σ] is not invertible whereas TΣ[σ]− 1
3 13 ⊗ 13 is negative definite.

5.1 Sharp interface limits

As mentioned earlier, Garcke et al studied in [28] the flow associated with energies of the general form

Pε(u) =
∫

ε f (u,∇u) +
1
ε

W(u)dx,

where f : RN ×RN×n→R+ is such that:

• f (u,λX) = λ2 f (u, X) for all λ ∈R,

• f (u, X) is positive on Σ,

• f (u, .) is convex for all u ∈ Σ,

and where the potential W is assumed to take exactly N local minima on the hypersurface Σ.
Obviously, our model falls into this class with

f (u, X) = −1
4

σX · X and W = Wσ.

The Allen-Cahn system corresponding to the gradient flow of the general energy is, up to time
rescaling,

∂tu = div (TΣ[∂X f (u,∇u)− ∂u f (u,∇u)])− 1
ε2 TΣ[∂u W(u)]

Using the formal asymptotic expansion method, Garcke et al showed that the sharp interface limit of
the solution to this system is an anisotropic multiphase mean curvature flow which satisfies

µi,j(ni,j)Vi,j =
(

σ̃i,j(ni,j) + σ̃
′′
i,j(ni,j)

)
κi,j,

where

• ni,j denotes the normal at the interface Γi,j pointing from Ωi to Ωj;

• Vi,j is the normal velocity of the flow at the interface Γi,j;

• κi,j is the mean curvature at the interface;

• σ̃i,j(n) = infp∈Σi,j

∫
R

2
√

W(p) f (p, p′ ⊗ n)ds is the anisotropic surface energy;
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• µi,j(n) =
∫

R
|∂sqi,j(s,n)|2ds is the anisotropic mobility, denoting

qi,j(.,n) = argminp∈Σi,j

∫
R

2
√

W(p) f (p, p′ ⊗ n)ds

the anisotropic geodesic;

In addition, it is shown also in [28] that Herring’s angle condition is satisfied at every triple junction.
Let us now focus on the gradient term used in our model, i.e. f (u,λX) = − 1

4 σX · X. Then the
multiphase mean curvature flow is isotropic as

f (p, p′ ⊗ n) = −1
4
(σp′ · p′)(n · n) = −1

4
σp′ · p′.

Moreover as written earlier,

σ̃i,j = inf
p∈Σi,j

∫
R

√
Wσ(p(s))(−σp′(s) · p′(s))ds = cWσi,j.

The geodesics qi,j(.,n) satisfy

qi,j(s,n) = qi,j(s) = q(s)ei + (1− q(s))ej,

where q is the classical Allen-Cahn profile q(s) = 1−tanh(s)
2 which satisfies the equation q′ = −

√
2F(q).

In particular, it follows that the mobility equals

µi,j(n) =
∫

R
|∂sqi,j(s,n)|2ds =

∫
R

2|q′(s)|2ds = 2cF.

In conclusion, it follows from the results of [28] that the sharp interface limit of our phase field model
follows a mean curvature motion with speed

Vi,j =
1
2

σi,jκi,j,

which corresponds to the multiphase mean curvature flow (2) with interface mobility µi,j = 1/2.

5.2 Additional volume constraints

In view of applications to droplets, we also consider the L2-gradient flow of Pε with additional con-
straints on the volume of each phases ui:

∂t

(∫
uidx

)
= 0.

Plugging this constraint into the problem yields the following mass conservation Allen-Cahn system:

∂tu = −1
2

TΣ[σ]∆u− 1
ε2 TΣ [∂uWσ(u)−Λ] ,

where Λ is a local Lagrange multiplier [11, 1] associated to the constraint ∂t (
∫

uidx) = 0, which can be
calculated as

Λi =

∫
(∂uWσ(u))idx∫ √

2F(ui)dx

√
2F(ui), i = 1, . . . , N.
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Figure 2: Wetting of droplets on a solid surface. The contact angle θ satisfies Young’s law.

5.3 Application to the wetting of multiphase droplets on solid surfaces

The behavior of liquids on solid surfaces has been of interest to academic and engineering communities
for many decades. Capillarity theory is a well established theory, and two centuries ago, Young [46]
determined the optimal shape of a drop in equilibrium on a solid surface. More precisely, the drop
shape can be seen as the solution to the minimization of the following energy:

P(ΩL) =
∫

ΓL,S

σL,SdHn−1 +
∫

ΓL,V

σL,VdHn−1 +
∫

ΓL,V

σS,VdHn−1,

under a constraint on the volume of the set ΩL which represents the droplet. Here, σL,S, σL,V and σL,V
are the surface tensions between liquid (L), solid (S), and vapor (S) phases. In particular, minimizers of
this energy satisfy Young’s law for the contact angle θ of the droplet on the solid, see Figure 5.3 :

cos(θ) =
σS,V − σS,L

σL,V
.

The wetting phenomenon was modeled by Cahn in [12] in a phase-field setting. Cahn proposed to ex-
tend the Cahn-Hilliard energy by adding a surface energy term which describes the interaction between
liquid and solid. This approach has been recently used in [45] for numerical simulations of one droplet
but can not be used in the case of angle θ ≥ π

2 . Another approach [47], using the smoothed boundary
method, proposes to compute the Allen-Cahn equation using generalized Neumann boundary condi-
tions to force the correct contact angle condition. Note that an extension of these approaches to many
droplets can be found in [7].

Our approach in this paper is slightly different and the novelty is to formulate the optimal drop shape
problem as the minimization of the multiphase perimeter

P(ΩV ,ΩL,ΩS) =
∫

ΓL,S

σL,SdHn−1 +
∫

ΓL,V

σL,VdHn−1 +
∫

ΓL,V

σS,VdHn−1,

under a volume constraint on the set ΩL and an additional constraint on ΩS, which is given and as-
sumed to be fixed. The advantage of this approach is that the contact angle condition is implicitly
incorporated in the phase field approximation of P. The case of many droplets is a natural extension of
the single droplet case. Let us introduce for instance N− 2 droplets, denoted by ΩL1 , ΩL2 ... ΩLN−2 , and
take by convention

ΩN = ΩS, ΩN−1 = ΩV , and Ωi = ΩLi for all i = 1, . . . , N − 2.

Then, the optimal shapes of the droplets can be viewed as regions of a minimizer of the multiphase
perimeter

P(Ω1, ...ΩN) =
1
2

N

∑
i,j=1

∫
Γi,j

σi,jdσ

under a volume constraint on the droplets ΩLi and a constancy constraint of ΩN . Here the coefficients
σi,N−1 and σi,N represent the surface tensions at the interfaces between droplets on one hand and, re-
spectively, vapor and solid phases.
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Our phase field approximation to this model is

Pε(u) =


∫

Ω
− ε

4
σ∇u · ∇u +

1
ε

Wσ(u)dx if u ∈ Σ

+∞ otherwise

under volume constraints and the additional solid constancy constraint

∂tuN = 0.

Denoting ũ = (u1,u2, · · · ,uN−1)
T , let us consider the projection T̃Σ : RN→RN−1 onto the tangent space

in RN−1 of {ũ,
N−1

∑
i=1

ui = constant = 1− uN}, defined as

T̃Σ[u] = ũ− 1
N − 1

(
N−1

∑
i=1

ui

)
1N−1, with 1N−1 = (1,1, . . . ,1) ∈RN−1

The L2-gradient flow of the above problem is the following Allen-Cahn system:

∂tũ = −1
2

T̃Σ [σ∆u]− 1
ε2 T̃Σ [∂uWσ(u)−Λ] .

where Λ = (Λ1, · · · ,ΛN) are Lagrange multipliers associated to the volume constraints:

Λi =

∫
(∂uW(u))idx∫ √

2F(ui)dx

√
2F(ui), for i = 1, . . . , N.

Note also that as
T̃Σ [σ∆u] = T̃[σ]∆u, where T̃[σ]i,j = T̃[σ·,j]i,

we can consider the following variant equation

∂tũ = −1
2
(
T̃Σ [σ]− λ1̃N−1 ⊗ 1̃N−1

)
∆u− 1

ε2 T̃ [∂uWσ(u)−Λ] .

where, as before, λ is assumed to be sufficiently large so that σ̃ = T̃ [σ]− λ1N−1 ⊗ 1N−1 is a negative
definite matrix.

6 Numerical experiments

We use a Fourier spectral splitting scheme [17] to compute numerically the solution to the Allen-Cahn
system

∂tu = −1
2

σ̃∆u− 1
ε2 TΣ [∂uWσ(u)] .

where σ̃ = TΣ[σ] − λ1N ⊗ 1N with λ sufficiently large so that σ̃ is negative definite. We compute the
solution for any time t∈ [0, T] in a box Ω = [0,1]d with periodic boundary conditions. Then, the splitting
scheme consists in handling:

• the diffusion term exactly in Fourier space

un+1/2 = exp
(

1
2

δtσ̃∆
)

un,

• the reaction term explicitly in the space domain

un+1 = un+1/2 − δt

ε2 T
(

∂uW(un+1/2)
)

.
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Note that the space discretization is built with Fourier series. It has the advantage of preserving a high
order approximation in space while allowing a fast and simple processing of the homogeneous operator
(Id + δtT(σ)∆)

−1. In practice, the solutions u(x, tn) at time tn = nδt are approximated by the truncated
Fourier series :

un
P (x) = ∑

‖p‖∞≤P
un

pe2iπx·p,

where ‖p‖∞ = max1≤i≤d |pi| and P is the maximal number of Fourier modes in each direction. Then,
the implicit treatment of the diffusion term in Fourier space can be written as

un+1/2 = ∑
‖p‖∞≤P

un+1/2
p e2iπx·p with un+1/2

p = exp
(

2π2|p|2δtσ̃
)

un
p.

Here, exp
(
2π2|p|2δtσ̃

)
is the exponential of the matrix

(
2π2|p|2δtσ̃

)
, which can be computed numeri-

cally with the function exp in Matlab.
Note that this scheme (as for the classical Allen-Cahn equation) appears to be stable under a condi-

tion of the form
δt ≤

cW

ε2 ,

where cW is a constant which depends only on the multi-potential W (and not onε, δt or P).

The experiments presented in the remaining of the paper have been realized using Matlab. The
isolevel sets Ωi(t) = {x : ui(x, t) = 1

2} are computed and drawn using the Matlab functions contour
in 2D and isosurface in 3D. We use the double-well potential F(s) = 1

2 s2(1− s)2 in the expression of
the Lagrange multiplier associated to the volume constraint, and we consider the PDE system{

∂tu(x, t) = − 1
2 σ̃∆u(x, t)− 1

ε2 TΣ [∂uWσ(u(x, t))]
u(x,0) = u0(x)

where the initial condition u0(x) is given by

(u0)i(x) =
(ũ0)i(x)

∑N
j=1(ũ0)j(x)

and (ũ0)i(x) = q
(

dist(x,Ωi)

ε

)
.

Here, Ωi is the ith set of the given initial partition, dist(x,Ωi) is the signed distance function to Ωi and q
is the profile function associated to F(s) = 1

2 s2(1− s)2. Note that u0 ∈ Σ.

6.1 Experimental consistency

The aim of this section is to compare numerically the behavior of our scheme associated to three differ-
ent multi-well potentials W :

W1(u) = 1
4 ∑i,j σi,ju2

i u2
j

W2(u) = 1
4 ∑i,j σi,ju2

i u2
j +

1
2 ∑i<j<k 50 u2

i u2
j u2

k ,

Wσ(u) = ∑N
i,j=1

1
4 σi,ju2

i u2
j +

1
2 ∑i<j,k 6=i,k 6=j σi,k,juiuju2

k + ∑i<j<k<l σi,j,k,luiujukul

In particular, the potentials W1 and W2 are currently used in the literature [29].

More precisely, we compute numerically the geodesics pi,j and the numerical values of the surface
tension coefficients δi,j :

δi,j =
1
cF

inf
p

∫ 1

−1

√
W(p(s))(−σp′(s) · p′(s))ds.

The geodesics are obtained by resolution of the phase field system in dimension one with a "good" initial
condition for u. We consider the case N = 3 associated with the following surface tension coefficients:
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σ12 = 1, σ13 = 0.6 and σ23 = 0.8. We also take the numerical parameters equal to P = 211, ε = 16/P ,
and δt = ε2/10. The geodesics between every pair among {e1,e2,e3} are represented in black on the
first line of Figure 3 for each potential. A focus on the values of u along the geodesic g12 is shown in
the second line. We observe that only the potential Wσ ensures that only two phases are visited along
the geodesic. Moreover, the numerical estimations of the surface tensions δi,j (shown on the top of each
figure) show a good approximation of σi,j only in the case of the potentials W2 and Wσ. To conclude,
the potential W1 is unusable here, whereas W2 approximates correctly the multiphase perimeter P, and
Wσ does even better.

Figure 3: First line: Geodesics pij between phases ei and ej, i, j ∈ {1,2,3}, Second line: values of u1, u2,
u3 along geodesic p12 (from left to right: with potentials W1, W2 and Wσ)

The second test concerns the evolution of an initial partition defined by :

• Ω1 is a circle of radius R0 = 0.25,

• Ω2 = Ω \Ω1,

• Ω3 is empty.

Then, the L2-gradient flow of P is explicit and satisfies

• Ω1(t) is a circle of radius R(t) =
√

R2
0 − 2 t

• Ω2(t) = Ω \Ω1(t)

• Ω3 remains empty.

The first line on Figure 4 shows the error between the numerical radius Rε(t) and the theoretical radius
R(t), at different times t and for three different values of ε. The other numerical parameters are equal
to P = 27 and δt = 1/(10P2). It is reasonable to believe that this experiment illustrates the convergence
of Rε to R as ε goes to zero only in the case of the potentials W2 and Wσ. More precisely, the second
line of (4) presents a zoom on each figure which shows a convergence order O(ε) in the case of the
potential W2 and O(ε2) for the potential Wσ. Note that the bad convergence order for the potential W2
is certainly the consequence of the presence of a third phase along the geodesics.

26



Figure 4: The graphs of t → Rε(t) for ε = 1/P , ε =
√

2/P and ε = 2/P , compared with the exact
solution. Left to right: with potentials W1, W2, and Wσ. Second line: Zoom on the first line.

6.2 Evolution of partitions

We present now some experiments obtained with the following numerical parameters: P = 28, ε = 1/P
and δt = ε2/4. In all examples, N = 4, and Ω1, Ω2, Ω3 and Ω4 are plotted in blue, red, light blue and
green, respectively.
Figure 5 shows two evolutions of three bubbles obtained with the following set of surface tensions

σ1 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 and σ2 =


0 1 1 1
1 0 1/2 1
1 1/2 0 1
1 1 1 0

 .

In particular, we observe a slightly different evolution of the same initial partition, and the triple junc-
tions between phases 1,2,3 and 2,3,4 are clearly different .

The second test is inspired by a similar experiment in [25], and shows an example of wetting phe-
nomenon when the triangle inequality fails. Let us consider the two sets of surface tension coefficients

σ3 =


0 3/2 1 1

3/2 0 1 1
1 1 0 1
1 1 1 0

 and σ4 =


0 3/2 1 1/2

3/2 0 1 1/2
1 1 0 1

1/2 1/2 1 0

 .

Note that σ3 satisfies the triangle inequality assumption, but not σ4 as

(σ2)1,4 + (σ2)2,4 < (σ2)1,2.

We consider an initial partition with an empty fourth phase. The first and second lines of Figure 6 show
the evolution of this initial partition at different times t with σ3 and σ4, respectively. We can observe a
nucleation phenomenon with the spontaneous growth of the fourth phase when σ4 is used.

The last example shows that nucleation phenomena can occur even for a matrix σ satisfying the
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Figure 5: Evolution of a 4-partition; first line: σi,j = 1; second line: σ1,2 = 1, σ1,3 = 1, σ2,3 = 0.5, σ1,4 = 1,
σ2,4 = 1, σ3,4 = 1.

Figure 6: Starting from 3 phases out of 4, a nucleation may occur when the triangle inequality is not
satisfied. First line: σ1,2 = 1.5, σ1,3 = 1 σ2,3 = 1 σ1,4 = 1, σ2,4 = 1 σ3,4 = 1 (no nucleation, triangle inequality
holds); Second line with σ1,2 = 1.5, σ1,3 = 1 σ2,3 = 1 σ1,4 = 0.5, σ2,4 = 0.5 σ3,4 = 1 (nucleation occurs,
σ1,2 > σ1,4 + σ2,4).
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triangle inequality, as observed also in [25]. Let

σ5 =


0 1 1 1/2 + ε
1 0 1 1/2 + ε
1 1 0 1/2 + ε

1/2 + ε 1/2 + ε 1/2 + ε 0


where ε ∈ [0,3/2] to ensure the triangle inequality. For ε ∈ [0, 2−

√
3

2
√

3
] a triple point between phases 1,2,

and 3 cannot be stable, for it has larger energy than a triangle containing only phase 4. This can be
easily seen on an optimal triple point configuration with all angles equal to 2π/3: the energy of the
triple point in a unit ball of which it is the center is 3; instead, the maximal equilateral triangle with
same center and full of phase 4 has energy 3

√
3( 1

2 + ε). Therefore the choice 0 ≤ ε < 2−
√

3
2
√

3
guarantees

that 3
√

3( 1
2 + ε) < 3, i.e. a triangle full of phase 4 is more favorable. We plot in Figure 7 an evolution of

a partition with ε = 0.9(2−
√

3)
2
√

3
and with ε = 1.1(2−

√
3)

2
√

3
, and we observe the nucleation of phase 4 at each

unstable triple junction only in the first case.

Figure 7: A nucleation example in the case σ1,2 = 1, σ1,3 = 1, σ2,3 = 1, σ1,4 = 1/2 + ε, σ2,4 = 1/2 + ε,

σ3,4 = 1/2 + ε. First line with ε = 0.9(2−
√

3)
2
√

3
(triple points are unstable, the triangle inequality holds but

the configuration with a triple point between phases 1,2,3 has larger energy than a triangle containing

only phase 4 ; second line with ε = 1.1(2−
√

3)
2
√

3
(triple points are stable).

6.3 Wetting of multiphase droplets on solid surfaces

We now consider the system {
∂tũ = T̃Σ[σ∆u]− 1

ε2 T̃Σ [∂uW(u)−Λ] ,
u(x,0) = u0(x),

As before ũ = (u1,u2, · · · ,uN−1)
T and T̃ : RN →RN−1 denotes the projection defined by

T̃[u] = ũ− 1
N − 1

(
N−1

∑
i=1

ui

)
1N−1, where 1N−1 = (1,1, . . . ,1) ∈RN−1,
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and Λ = (Λi) are the Lagrange multipliers associated to droplets volume constraints:

Λi =

∫
(∂uWσ(u))idx∫ √

2F(ui)dx

√
2F(ui), for i = 1, . . . , N.

In practice, we use the double-well potential F(s) = 1
2 s2(1− s)2 in the expression of Λ.

Moreover, for a given initial partition {Ωi}i=1N , recall that the boundary of the Nth phase ΩN is
assumed to be the solid surface, and we take as initial condition u0 such that

(u0)N(x) = q
(

dist(x,ΩN)
ε

)
(ũ0)i(x) = q

(
dist(x,Ωi)

ε

)
for i = 1, . . . , N − 1

(u0)i(x) = (ũ0)i(x)
∑N−1

j=1 (ũ0)i(x)+(u0)N(x)
for i = 1, . . . , N − 1.

As before, the numerical scheme is a Fourier spectral splitting scheme with implicit resolution of the
diffusion term in Fourier space and explicit resolution of the reaction term in spatial space.

The first experiment highlights the good behavior of our approach. We compute the optimal shape
of a single droplet (Ω2 in red) localized on a solid line (Ω3 in green) with numerical parameters P =
28,ε = 1/P , and δt = ε2/4 . We show in Figure 8 the different approximated optimal shapes obtained
with our approach for the following surface tension matrices:

σ1 =

 0 1 1/2
1 0 1

1/2 1 0

 , σ2 =

0 1 1
1 0 1
1 1 0

 , and σ3 =

0 1 1
1 0 1/2
1 1/2 0


We also plot in each figure the optimal shape given by Young’s law

cos(θ) =
σ1,3 − σ2,3

σ1,2
,

and we can observe a quasi-perfect reconstruction of the optimal shape by the phase-field method. We
emphasize that the angle condition is not prescribed, it follows naturally from the minimization of the
multiphase perimeter.

Both final tests are inspired by the experiments in [7]. We now approximate the evolution of two
droplets on a solid line with two different sets of surface tensions:

σ4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 and σ5 =


0 1 1 1
1 0 0.9 0.7
1 0.9 0 1.3
0 0.7 1.3 0


We plot in Figure 9 the evolution of both droplets in 2D at different times t with P = 28,ε = 1/P

and δt = ε2/4. The same experiment is done in 3D in Figure 10.
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