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Stable IMEX schemes for a Nitsche–based approximation of

elastodynamic contact problems. Selective mass scaling

interpretation

Élie Bretin ∗ Yves Renard †

February 11, 2020

Abstract

We introduce some IMEX schemes (implicit-explicit schemes with an implicit term being
linear) for approximating elastodynamic contact problems when the contact condition is taken
into account with a Nitsche method. We develop a theoretical and numerical study of the
properties of the schemes, especially in terms of stability, provide some numerical comparisons
with standard explicit and implicit scheme and propose some improvements to obtain a more
reliable approximation of motion for large time steps. We also show how selective mass scaling
techniques can be interpreted as IMEX schemes.

Key words: unilateral contact, elastodynamics, Nitsche’s method, IMEX schemes, stability, finite
element method, selective mass scaling.

1 Introduction

This paper concerns the construction of implicit-explicit time integration schemes for the dynam-
ics of deformable solids that can impact each other. The main addressed issue is to build schemes
close to the computational cost of explicit ones but allowing not to be under the constraint of
a CFL condition, i.e. allowing the use of large or very large time steps. One characteristic of
the dynamic with impact of deformable bodies is the very low regularity of the solutions and the
potential ill-posedness of the semi-discretized problem (see the analysis in [25] and the discussion
in [13] for example). A consequence is that time integration schemes must be chosen carefully,
since most schemes, even the implicit ones, are subject to instabilities (see [25, 21, 48]), except
the most dissipative ones such as implicit Euler scheme (see [24]).

This ill-posed character can then be adressed by adding an impact law, which is a classical
approach in the rigid body case, but lacks a clear physical interpretation in the context of de-
formable bodies. Most of the stable schemes that have been developed so far correspond to a
vanishing restitution coefficient, which implies that they generally dissipate energy at each im-
pact, regardless of the size of the time step (this dissipation decreases, however, when the mesh
size decreases). Among the first stable schemes proposed are those of LM Taylor and DP Flana-
gan [45] (see also [23]), which are explicit schemes based on Verlet’s scheme (also called Leapfrog
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or central difference scheme) for which the contact force is treated implicitly. The scheme is
not fully explicit, in the sense that it remains a non-linear problem to solve at each time step,
restricted to the contact boundary, which, in [23], is solved iteratively. J.J. Moreau’s work on the
sweeping process and its numerical approximation [30, 31] has led to many developments, mainly
in the context of rigid bodies but also in the context of deformable ones (for instance in [47]).
The developed schemes are implicit ones, often based on an expression of the contact condition
in term of sliding velocity and an implicit consideration of the coefficient of restitution (see also
[41] for a generalization using time discontinuous Galerkin schemes). In parallel, L. Paoli and
M. Schatzman also developed and mathematically analyzed in [34, 35] central difference schemes
with an implicitation of contact condition which also implicitly takes into account the restitution
coefficient.

Notice that the ill-posed character of the finite element semi-discretization is not present in the
case of the approximation of the contact condition by a penalty method [6, 26, 17]. The penalty
method is however not consistent in the strong sense and induces an additional approximation.
The interest of Nitsche’s methods in this context (see [8, 4]) is that it combines the fact of being
strongly consistent and the well-posed character of semi-discretization (see [10, 11]).In [13] fully
explicit schemes based on Verlet’s scheme have been introduced, analysed and compared to other
schemes previously introduced for impact dynamics. Of course, the disadvantage of schemes
based on an explicit time integration is their conditional stability, which makes it necessary to
consider a time step that can be extremely small.

In this context, using an implicit-explicit (IMEX) scheme can be advantageous. Indeed, follow-
ing D.J. Eyre approach [19], by breaking down the operators in the difference of two monotonous
parts, it is possible to build unconditionally stable schemes, i.e. without constraint on the time
step size, with the cost of a single linear system resolution per time step. This cost is not so far
from an explicit time integration scheme when the mass matrix is not lumped. These schemes
therefore present an interesting compromise by avoiding the resolution of a non-linear problem
at each time step and having stability properties close to the implicit schemes. We refer to [38]
for a comprehensive theory of unconditional stability of such IMEX schemes.

It should also be remembered that certain techniques has been developed in the context of
explicit schemes to allow the use of a larger time step than the critical one imposed by the CFL
condition. The simplest technique, the mass scaling, consists in adding some mass to the struc-
ture in order to obtain a greater critical time step. However, for rapid transient dynamics, this
additional inertia may fundamentally change the solution. An alternative, called selective mass
scaling has been proposed in [33, 32] and further developed in [15, 46] for instance. It consists in
perturbing the mass matrix using the stiffness matrix which has the advantage not to modify too
much the lowest eigenmodes of the structure. We will show that this latter strategy is equivalent
to the use of an IMEX scheme, and that it may shed light on the choice of the terms that can be
used to perturb the mass matrix.

In the continuity of the work presented in [10, 11, 13] respectively for implicit and explicit
schemes, we present in this paper some IMEX schemes adapted to the contact problem approxi-
mated by Nitsche’s method. The rest of the paper is described as follows. Section 2 is dedicated
to the description of the semi-discrete formulation. Then, our IMEX schemes are proposed and
their energy conservation properties are analyzed in Section 3. Some numerical tests are presented
in Section 4 that confirm the presented properties but reveal a slowing down of the motion for
large time steps. The section 5 provides an analysis of this phenomenon and interprets IMEX
schemes in terms of selective mass scaling. We then propose different techniques to improve the
approximation for large time step and end the document with a conclusion.
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2 Problem setting and Nitsche’s formulation

2.1 Problem setting

Let Ω in Rd with d = 1, 2, 3 be the reference configuration of a linearly elastic body (with plain
strain assumption for d = 2). Let us describe its dynamic evolution submitted to a contact
condition with a rigid obstacle. We suppose that ∂Ω consists in three non-overlapping parts ΓD,
ΓN and the contact boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The body is clamped
on ΓD for the sake of simplicity. It is subjected to volume forces f in Ω and to surface loads g on
ΓN . The body is in potential contact on ΓC with a rigid foundation. We assume for simplicity a
vanishing gap in the reference configuration. Considering T > 0 the final time, the evolution of
the displacement field u : [0, T ]× Ω→ Rd satisfies the equations and conditions (1)–(2):

ρü− divσ(u) = f , σ(u) = A ε(u) in (0, T ]× Ω,

u = 0 on (0, T ]× ΓD,

σ(u)n = g on (0, T ]× ΓN ,

u(0, ·) = u0 u̇(0, ·) = u̇0 in Ω,

(1)

where the following notations have been used: the time derivative of a quantity x is denoted ẋ, ρ
is the density which is assumed to be constant for simplicity, u0 and u̇0 are initial displacement
and velocity, σ = (σij), 1 ≤ i, j ≤ d, is the Cauchy stress tensor field, div denotes the divergence

operator of tensor valued functions, ε(v) = (∇v+∇v
T

)/2 represents the linearized strain tensor
field, A is the fourth order symmetric elasticity tensor and n is the outward normal unit vector
on ∂Ω. We consider the following decomposition into normal and tangential components

v = vnn + vt and σ(v)n = σn(v)n + σt(v),

for any displacement field v and density of surface forces σ(v)n defined on ∂Ω. This allows to
express the frictionless unilateral contact condition on ΓC as follows:

un ≤ 0 σn(u) ≤ 0 σn(u)un = 0 σt(u) = 0. (2)

with u0 satisfying the compatibility condition u0n ≤ 0 on ΓC .
We refer to [18] for the mathematical analysis of elastodynamic contact problems. Apart for

the one-dimensional case, the well-posedness of Problem (1)–(2) is still an open issue. A few
existence results has been proposed for simplified models (scalar wave equations, thin structures,
one-dimensional case) in [39, 40, 29, 27, 16, 2, 36].

We note the Hilbert space

V :=
{
v ∈

(
H1(Ω)

)d
: v = 0 on ΓD

}
,

where Hs(D), s ∈ R stands for the classical Sobolev space (see [1]) on the domain D. The usual
scalar product of V will be denoted (·, ·)s,D and the corresponding norm ‖ · ‖s,D. We consider the
following forms, for any u and v in V, for all t ∈ [0, T ]:

a(u,v) :=

∫
Ω
σ(u) : ε(v) dΩ, L(t)(v) :=

∫
Ω
f(t) · v dΩ +

∫
ΓN

g(t) · v dΓ. (3)

Note that, introducing the mechanical energy

E(t) :=
1

2
ρ‖u̇(t)‖20,Ω +

1

2
a(u(t),u(t)), ∀t ∈ [0, T ],
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and assuming that the contact force does not dissipate any energy (i.e. that the so-called persis-
tency condition σn(u(t))u̇n(t) = 0 is satisfied, which is expected from a mechanical viewpoint but
difficult to prove mathematically, see, e.g., [28, 5, 22]) then the solution to the dynamic contact
problem (1)–(2) is such that

d

dt
E(t) = L(t)(u̇(t)). (4)

2.2 A finite element Nitsche approach

Let us now present the Nitsche-based finite element semi-discretization of the dynamic contact
problem (1)–(2) which was introduced in [10, 11] together with some basic properties of well-
posedness and energy conservation.

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [14]) indexed by h coming
from a finite element method on a family T h of triangulations, supposed regular in Ciarlet’s sense,
of the domain Ω (h = maxK∈T h hK where hK is the diameter of the element K). For instance,
for a standard Lagrange finite element method of degree k > 0, we have

Vh :=
{
vh ∈ (C 0(Ω))d : vh|K ∈ (Pk(K))d,∀K ∈ T h,vh = 0 on ΓD

}
.

However, any C 0-conforming finite element method would be convenient.
With the use of a piecewise constant parameter γh > 0 defined on the contact boundary ΓC

satisfying for every K ∈ T h having a face on ΓC

γh|K∩ΓC
=

γ0

hK
, (5)

where γ0 is a positive given constant (the so-called Nitsche’s parameter), we use the following
equivalent reformulation of the contact condition (2) (see [3, 9]):

σn(u) = −(σn(u)− γh un)− = −(γh un − σn(u))+ (6)

where (·)+, the positive part is defined by (x)+ := (x + |x|)/2 and (·)−, the negative part by
(x)− := (−x)+.

As in [10, 11] we consider a family of methods indexed by an additional parameter Θ ∈ R
(generally, Θ = −1, 0, 1, see, e.g., [12]) which leads to the following expression of the space
semi–discretized elastodynamic contact problem (see, e.g, [8, 10]):

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

(ρüh(t),vh)0,Ω + a(uh(t),vh)−
∫

ΓC

Θ

γh
σn(uh)σn(vh) dΓ

−
∫

ΓC

1

γh

(
σn(uh)− γhuhn(t)

)
−

(
Θσn(vh)− γhvhn

)
dΓ = L(t)(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,

(7)

where uh0 (resp. u̇h0) is an approximation in Vh of the initial displacement u0 (resp. the initial
velocity u̇0).

Following [10], we consider the following mesh–dependent norms for any v ∈ L2(ΓC):

‖v‖
− 1

2 ,h,ΓC
:= ‖ (hK)

1
2 v‖0,ΓC

, ‖v‖ 1
2 ,h,ΓC

:= ‖ (hK)−
1
2 v‖0,ΓC

,

the scalar product for all vh,wh ∈ Vh:

(vh,wh)γh := (vh,wh)1,Ω + (γh
1
2 vhn, γh

1
2whn)0,ΓC

,
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and ‖ · ‖γh := (·, ·)
1
2
γh the corresponding norm.

Then we reformulate (7) as a system of non-linear second-order differential equations, using
Riesz’s representation theorem in (Vh, (·, ·)γh). Let Mh : Vh → Vh, be the mass operator defined
for all vh,wh ∈ Vh by (Mhvh,wh)γh := (ρvh,wh)0,Ω, and Bh : Vh → Vh, for all vh,wh ∈ Vh

the non-linear operator defined by

(Bhvh,wh)γh := a(vh,wh)−
∫

ΓC

Θ

γh
σn(vh)σn(wh) dΓ

−
∫

ΓC

1

γh

(
σn(vh)− γhvhn

)
−

(
Θσn(wh)− γhwhn

)
dΓ.

(8)

Finally, we denote by Lh(t) the vector in Vh such that, for all t ∈ [0, T ] and for every wh in Vh:
(Lh(t),wh)γh := L(t)(wh). Problem (7) then reads:

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

Mhüh(t) + Bhuh(t) = Lh(t),

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(9)

The following theorem together with the boundedness of ‖(Mh)−1‖γh (see [10]) show that
Problem (7) (or equivalently Problem (9)) is well-posed.

Theorem 1. The operator Bh is Lipschitz-continuous in the following sense: there exists a
constant C > 0, independent of h, Θ and γ0 such that, for all vh1 ,v

h
2 ∈ Vh:

‖Bhvh1 −Bhvh2‖γh ≤ C(1 + γ−1
0 )(1 + |Θ|)‖vh1 − vh2‖γh . (10)

As a consequence, for every value of Θ ∈ R and γ0 > 0, Problem (7) admits one unique solution
uh ∈ C 2([0, T ],Vh).

Concerning the energy evolution, and considering the discrete energy as follows:

Eh(t) :=
1

2
ρ‖u̇h(t)‖20,Ω +

1

2
a(uh(t),uh(t)), ∀t ∈ [0, T ].

associated to the solution uh(t) to Problem (7). we define also, as in [13], the modified energy
more suited to Nitsche’s method

Eh1 (t) := Eh(t)− 1

2γ0

∥∥∥σn(uh(t))
∥∥∥2

− 1
2 ,h,ΓC

−
∥∥∥∥(σn(uh(t))− γhuhn(t)

)
−

∥∥∥∥2

− 1
2 ,h,ΓC

 . (11)

The two following results are stated in [13]:

Proposition 2. For γ0 large enough, there exists C > 0 independent of h, of γ0 and of the
solution to Problem (7), such that, for all t ∈ [0, T ]:

Eh(t) ≤ CEh1 (t).

Theorem 3. Suppose that the system associated to (1)–(2) is conservative, i.e., that L(t) ≡ 0
for all t ∈ [0, T ]. The solution uh to (7) then satisfies the following identity:

d

dt
Eh1 (t) = −(1−Θ)

∫
ΓC

1

γh

((
σn(uh(t))− γhuhn(t)

)
−

+ σn(uh(t))

)
σn(u̇h(t)) dΓ.

Remark 4. As a result, Eh1 (t) is conserved for the symmetric variant Θ = 1, and, for Θ 6= 1 the
variations of Eh1 (t) come from the non-fulfillment of the contact condition (6) by uh.
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3 IMEX schemes

As mentioned in the introduction, most of the difficulties come from the treatment of the non-
linear contact term.

Indeed, It raises some instability issues when using an explicit treatment while an implicit
one leads to the resolution of a non-linear system at each time step. The main idea of the IMEX
scheme is then to split the non-linear term Bh as

Bh = Kh −Ah,

using

• an implicit integration of Kh as a linear symmetric positive operator

• an explicit treatment of Ah which contains all the non-linear contributions of Bh.

In our context, a first idea is to treat implicitly the stiffness operator and explicitly the Nitsche
contact term. It leads to define the following splitting:

(Kh
−1v

h,wh)γh := a(vh,wh),

(Ah
−1v

h,wh)γh :=

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)
−

(
Θσn(wh)− γhwhn

)
dΓ +

∫
ΓC

Θ

γh
σn(vh)σn(wh) dΓ.

However, the stability of the IMEX scheme requires that Ah is a monotonous operator which is
clearly not the case using this splitting. More precisely, this means that for all vh,wh ∈ Vh,
vh 6= 0,

(Khvh,vh)γh > 0, (Ahvh −Ahwh,vh −wh)γh ≥ 0.

Then, a more adequate choice of splitting decomposition for the dynamic contact problem (9)
verifying these properties for γ0 large enough and Θ ∈ [−1, 1] is the one defined by

(Kh
0v

h,wh)γh := a(vh,wh)−
∫

ΓC

Θ

γh
σn(vh)σn(wh) dΓ

+

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)(
σn(wh)− γhwhn

)
dΓ

+(1−Θ)

∫
ΓC

1

γh
σn(vh)σn(wh) + γhv

h
nw

h
ndΓ,

(12)

(Ah
0v

h,wh)γh :=

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)
+

(
σn(wh)− γhwhn

)
dΓ

−(1−Θ)

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)
−
σn(wh)dΓ

+(1−Θ)

∫
ΓC

1

γh
σn(vh)σn(wh) + γhv

h
nw

h
ndΓ,

(13)

where the last term of the two operators has been added for Θ 6= 1 to ensure the monotonicity
of Ah

0 .

Remark 5. Such a splitting decomposition is not unique and the basic idea is of course to consider
the simplest non-linear operator Ah satisfying the monotonous assumption.

Proposition 6. The operator Ah
0 is a monotonous one for Θ ∈ [−1, 1].
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Proof. Due to the monotonicity of the positive part, the first term of (13) is monotonous and
then

(Ah
0v

h −Ah
0w

h,vh −wh)γh ≥

−(1−Θ)

∫
ΓC

1

γh

((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
σn(vh −wh)dΓ

+(1−Θ)

∫
ΓC

1

γh
(σn(vh −wh))2 + γh(vhn − whn)2dΓ.

However, using again the monotonicity of the positive part and its Lipschitz-continuity, one
obtains

−
((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
σn(vh −wh)

≥ −1

2

((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
σn(vh −wh)

−1

2

((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
γh(vhn − whn)

≥ −1

2
|σn(vh −wh)− γh(vhn − whn)|

(
|σn(vh −wh) + γh(vhn − whn)|

)
≥ −1

2

(
|(σn(vh −wh))2 − γh2(vhn − whn)2|

)
≥ −1

2
(σn(vh −wh))2 − γh

2

2
(vhn − whn)2,

which allows to conclude. �

Remark 7. Note that operator Kh
0 derives of course from the potential

ψKh
0
(vh) :=

1

2
(Kh

0v
h,vh)γh

and, in the case Θ = 1, the operator Ah
0 also derives from the convex potential

ψAh
0
(vh) :=

∫
ΓC

1

2γh

(
σn(vh)− γhvhn

)2

+
dΓ.

3.1 A semi-implicit β-Newmark scheme

Let us now consider a uniform discretization of the time interval [0, T ]: (t0, . . . , tN ), with tn = nτ ,
n = 0, . . . , N where τ = T/N is the time step. In the following, we will use the notation
xh,n+α := (1 − α)xh,n + αxh,n+1, xh,n−α := (1 − α)xh,n + αxh,n−1 for α > 0 and arbitrary
quantities xh,n−1,xh,n,xh,n+1 ∈ Vh. Moreover, we denote by uh,n (resp. u̇h,n and üh,n) the
discretized displacement (resp. velocity and acceleration) at time step tn.

We present a family of schemes indexed by two parameters β ∈ [1
4 ,

1
2 ] and α ∈ [0, 1

2 ]. We
propose first the following two-step scheme:

Find uh,n+1 ∈ Vh such that:

Mh

(
uh,n+1 − 2uh,n + uh,n−1

τ2

)
+ Kh

(
βuh,n+1 + (1− 2β)uh,n + βuh,n−1

)
−Ahuh,n−α = Lh,n,

(14)
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with initial conditions uh,0 = uh0 and uh,1 = uh1 . Note that only a linear system corresponding
to Mh + βτ2Kh is to be solved at each time step. This scheme is based on a β-Newmark scheme
for the linear part Kh and when α = 0, a central difference scheme (Störmer-Verlet scheme) for
the non-linear part Ah (a similar choice is presented in [44], for instance). This scheme is second
order accurate for α = 0 and only first order accurate otherwise.

From a numerical viewpoint, it is also useful to introduce the following two equivalent schemes:

• The one-step Newmark-like scheme:

Find uh,n+1, u̇h,n+1 ∈ Vh such that:

Mhuh,n+1 = Mhuh,n + τMhu̇h,n − τ2

2
Kh
(

2βuh,n+1 + (1− 2β)uh,n
)

+
τ2

2

(
Lh,n + Ahuh,n

)
,

Mhu̇h,n+1 = Mhu̇h,n +
τ

2

(
Lh,n+1 + Lh,n −Kh(uh,n+1 + uh,n)

)
+
τ

2

(
2Ahuh,n+1−α −Ahuh,n+1 + Ahuh,n

)
,

(15)
associated with the initial conditions uh,0 = uh0 , vh,0 = vh0 ,

• The Leapfrog-like scheme
Find uh,n+1, u̇h,n+ 1

2 ∈ Vh such that:

Mhu̇h,n+ 1
2 = Mhu̇h,n−

1
2 + βτ2Kh

(
u̇h,n−

1
2 − u̇h,n+ 1

2

)
+ τ

(
Lh,n −Khuh,n + Ahuh,n−α

)
,

uh,n+1 = uh,n + τ u̇h,n+ 1
2 ,

(16)

associated with the initial conditions uh,0 = uh0 , vh,
1
2 = vh1

2

.

Note that the latter scheme is a one-step scheme only for α = 0, however, even for α 6= 0
starting from uh,0 and vh,

1
2 , the value of uh,1 is given by the second relation of (16) then the first

relation gives vh,
3
2 from uh,1, uh,0 and vh,

1
2 .

Proposition 8. Apart from the initial conditions, the three family of schemes (14), (15) and
(16) are equivalent.

Proof. Subtracting the first relation of (15) with itself replacing n by n − 1 and using the
second relation of (15) to eliminate the velocity, one obtains directly (14). In a similar manner,
subtracting the second relation of (16) with itself replacing n by n− 1, multiplying the result by
Mh + βτ2Kh and using it in the first relation of (16) leads also to (14). �

3.2 Discrete Energy evolution

We make the additional assumption that the non-linear operator Ah derives from a positive
convex potential ψAh(uh) in the sense

(Ahuh,vh)γh = DψAh(uh)[vh],

where DψAh(uh)[vh] := lim
ε→0

ψAh(uh + εvh)− ψAh(uh)

ε
is the directional derivative of ψAh at uh

in the direction vh. This means in particular that ψBh(uh) =
1

2
(Khuh,uh)γh − ψAh(uh) is the

potential of Bh and we assume also ψBh(uh) positive and convex.

8



For the sake of simplicity, we consider the case of a constant source term Lh,n = Lh and we
integrate the source term potential to the energy. We consider the energy at mid-point

Eh,n+ 1
2 :=

1

2
(Mhu

h,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ
)γh + ψBh(uh,n+ 1

2 )− (Lh,uh,n+ 1
2 )γh . (17)

A more adapted energy for the β-Newmark scheme can then be deduced as

E
h,n+ 1

2
imex1 := Eh,n+ 1

2 +
1

2

(
β − 1

4

)(
Kh(uh,n+1 − uh,n),uh,n+1 − uh,n

)
γh
, (18)

which is ensured to be positive for β ≥ 1
4 and can be rewritten equivalently

E
h,n+ 1

2
imex1 =

1

2
(Mhu

h,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ
)γh + (1− 2β)(Khuh,n+ 1

2 ,uh,n+ 1
2 )γh

+

(
β − 1

4

)(
Khuh,n+1,uh,n+1

)
γh

+

(
β − 1

4

)(
Khuh,n,uh,n

)
γh

(19)

−ψAh(uh,n+ 1
2 )− (Lh,uh,n+ 1

2 )γh .

Proposition 9. When ψAh and ψBh are both convex potentials, for a constant source term

Lh,n = Lh and in the case α = 1
2 and 0 ≤ β ≤ 1

2 the energy E
h,n+ 1

2
imex1 decreases with respect to n.

Proof. The evolution of this discrete energy can be computed for schemes (14), (15) and (16)
taking the scalar product of the relation (14) with

uh,n+ 1
2 − uh,n−

1
2 =

uh,n+1 − uh,n−1

2
=

uh,n+1 − uh,n

2
+

uh,n − uh,n−1

2
,

and using the decomposition

βuh,n+1+(1−2β)uh,n+βuh,n−1 =

(
1

2
− β

)
(uh,n+1+2uh,n+uh,n−1)+

(
2β − 1

2

)
(uh,n+1−uh,n−1).

This leads to

1

2

(
Mhu

h,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ

)
γh

− 1

2

(
Mhu

h,n − uh,n−1

τ
,
uh,n − uh,n−1

τ

)
γh

+ (1− 2β)
(
Khuh,n+ 1

2 ,uh,n+ 1
2

)
γh
− (1− 2β)

(
Khuh,n−

1
2 ,uh,n−

1
2

)
γh

+

(
β − 1

4

)(
Khuh,n+1,uh,n+1

)
γh
−
(
β − 1

4

)(
Khuh,n−1,uh,n−1

)
γh

−(Ahuh,n−α,uh,n+ 1
2 − uh,n−

1
2 )γh = (Lh,uh,n+ 1

2 − uh,n−
1
2 )γh ,

which can be rewritten thanks to (19)

E
h,n+ 1

2
imex1 = E

h,n− 1
2

imex1 − ψAh(uh,n+ 1
2 ) + ψAh(uh,n−

1
2 ) + (Ahuh,n−α,uh,n+ 1

2 − uh,n−
1
2 )γh . (20)

The results follows directly from the convexity of ψAh , since it implies ψAh(x) ≥ ψAh(uh) +(
Ahvh,uh − vh

)
γh

for all uh,vh ∈ Vh.
�
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This ensure the unconditional stability of the scheme α = 1
2 for 1

4 ≤ β ≤ 1
2 . However, α = 1

2
corresponds to first order dissipative schemes where the schemes with α = 0 are second order and
reversible in time schemes. The reversibility in time of the schemes for α = 0 make it impossible to
have a strict dissipativity property. Proving a strict conservation of energy, when this is possible,
means to find the particular conserved discrete energy. Even in the very simple case where ψAh

is a quadratic potential (i.e. Ah a linear symmetric monotonous operator), the energy Eh,n+ 1
2

is not strictly conserved. In order to obtain a strict conservation in that case, it is necessary to
consider the slightly modified energy

E
h,n+ 1

2
imex2 = E

h,n+ 1
2

imex1 +
1

8

(
Ahuh,n+1 −Ahuh,n,uh,n+1 − uh,n

)
γh
. (21)

Note that the additional term is a non-negative one whenever Ah is monotonous. The follow-
ing result can be deduced from basic simplifications in equation (20) with the additional term
considered in (21).

Proposition 10. When ψAh and ψBh are both quadratic convex potentials, for a constant source

term Lh,n = Lh and in the case α = 0 and 0 ≤ β ≤ 1
2 the energy E

h,n+ 1
2

imex2 is constant with respect
to n.

This leads also to the unconditional stability of the corresponding scheme α = 0 for 1
4 ≤ β ≤ 1

2
in the case of quadratic potentials.

4 First numerical comparison

We now perform a numerical comparison of the IMEX schemes described in section 3 with some
standard implicit and explicit schemes. The comparison is done first on a 1D case where an
exact solution is available and then in a 2D Hertz-like case with the help of our freely available
finite element library GetFEM++ (see [37] and http://getfem.org). The explicit scheme is
Verlet’s one which corresponds to scheme (14) for Ah = −Bh and Kh = 0 (see also [13]) and the
implicit scheme is Crank-Nicolson one (also called trapezoidal rule) which corresponds conversely
to Ah = 0 and Kh = Bh when β = 1

4 . The Nitsche variant used is the energy conserving one
Θ = 1 which gave the most satisfactory results for the approximation of elastodynamic contact
problems in [13].

4.1 1D numerical experiments: multiple impacts of an elastic bar

We first consider the one-dimensional case d = 1 described in [16] corresponding to a single
contact point. It consists in an elastic bar Ω = (0, L) with ΓC = {0}, ΓD = {L} and ΓN = ∅.
The elastodynamic equation is then reduced to find u : (0, T ]× (0, L)→ R such that

ρü− E∂
2u

∂x2
= f, in (0, T ]× (0, L), (22)

where E is the Young modulus and the Cauchy stress tensor is given by σ(u) = E
∂u

∂x
. We

consider a finite element space using linear finite elements and a uniform subdivision of [0, L].
Let us denote Un := [Un0 , . . . , U

n
N ]T (resp. U̇n, Ün) the vector of all the nodal values of uh,n

(resp. u̇h,n and üh,n). The component of index 0 corresponds to the node at the contact point
ΓC .

We take the following values for the parameters: f = 0, E = 1, ρ = 1, L = 1, u0(x) = 1
2 − x

2
and u̇0(x) = 0. The bar is initially compressed. Then, it is released without initial velocity. It

10



x = 0

L

t = 0 t2 = 2 t3 = 3t1 = 1

Figure 1: Multiple impacts of an elastic bar. The bar is clamped at x = L and the contact node
is located at the bottom. The displacement is periodic of period 3, with one impact during each
period (here between t = 1 and t = 2).

impacts first the rigid ground, located at x = 0, and then gets compressed again (see Figure 1).
This problem admits a closed-form solution u which derivation and expression is detailed in [16].
Notably, it has a periodic motion of period 3. At each period, the bar stays in contact with the
rigid ground during one time unit. The chosen simulation time is T = 12, so that we can observe
four successive impacts.

We discretize the bar with 50 linear finite elements (h = 0.02) and take τ = 0.01 (νC = 0.5)

and τ = 0.05 (νC = 2.5), for νC := c0
τ
h =

√
E
ρ
τ
h the Courant number and c0 the wave speed.

The numerical tests are presented for a time step smaller than the critical one on Figure 2
and a time step larger than the critical one on Figure 3. For these two figures, the left plots
correspond to the displacement on the contact point (uh,n(0) = Un0 ). The dotted red curve is the
exact solution. The right plots correspond to the evolution of the discrete energy. The plotted

energy is Eh,n+ 1
2 for Verlet and Crank-Nicolson schemes, E

h,n+ 1
2

imex1 for IMEX α = 1
2 and E

h,n+ 1
2

imex2

for IMEX α = 0. In addition to the plots for the explicit Verlet scheme and for the implicit
Crank-Nicolson one, two versions of the IMEX scheme are considered: the version α = 1

2 which
has been proved to be unconditionally stable and the version α = 0 which is second order an
reversible in time. For both cases, we consider β = 1

4 and Nitsche’s parameter is set to γ0 = 5 for
all experiments.

We see in Figure 2 that for a time step slightly lower and close to the critical time step,
Verlet’s, Crank-Nicolson and IMEX scheme for α = 0 give some accurate and similar results.
This is not the case for the IMEX scheme for α = 1

2 . In addition to be first order while the other
schemes are second order, it is exaggeratedly dissipative. Despite it guaranteed unconditional
stability property, it seems to be unfeasible in that context since it would necessitate a too much
small time step to recover an acceptable dissipation.

This is confirmed on Figure 3 where for a time step ten times larger (and larger than the
critical time step), the dissipation is so important that the motion do not look like the exact
solution at all. Since one of the goal of the IMEX scheme is to be able to treat large time steps,
this completely disqualifies this version of the IMEX scheme. On this figure, the fact that the time
step is larger than the critical one make that Verlet’s explicit scheme is no longer stable, which was
the expected behavior. The implicit Crank-Nicolson scheme still gives a reasonable approximation
of the motion and still has a good energy conserving property. The IMEX scheme for α = 0 gives
a reasonable approximation on the two first periods with a good energy conservation. However,
there is then a degradation of the solution, accompanied by a significant lengthening of the period
of the solution.
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Figure 2: Simulation on the one-dimensional case for the time step τ = 0.01 (below CFL) and
the other numerical parameters Θ = 1, γ0 = 5, h = 0.02, β = 0.25 for the different schemes.

4.2 2D numerical experiments: multiple impacts of a disc

Numerical experiments are then carried out in 2D on the impact of a disc on a rigid support
at y = 0. The physical parameters are the following: the diameter of the disc is D = 40, the
Lamé coefficients are λ = 3× 104 and µ = 3× 104, and the material density is ρ = 1. The total
simulation time is T = 30. The volume load in the vertical direction is set to ‖f‖ = 0.1 (gravity,
oriented towards the support). The upper part of the boundary is a traction free boundary and
the lower part is the contact zone ΓC . We consider an initial vertical displacement (u0 = (0, 2))
and no initial velocity (u̇0 = 0). We use a P2 isoparametric finite element method, whose mesh
is represented on Figure 4.

A first comparison is presented on Figure 5 for a time step τ = 0.0025 chosen smaller but
close to the critical time step for the explicit scheme. For each scheme, the three plots correspond
to the evolution of the normal displacement at the lowest point of the disc (the first point which
enter into contact with the rigid support), the contact stress at this lowest point and the evolution

of the discrete energy. The plotted energy is still Eh,n+ 1
2 for Verlet and Crank-Nicolson schemes

and E
h,n+ 1

2
imex2 for IMEX α = 0. We can see a good accordance between the three schemes : Verlet’s,

Crank-Nicolson and IMEX α = 0 schemes. We no longer compare with the IMEX scheme with
α = 1

2 which gives a too poor approximation. There is some overshoots of the discrete energy at
impact when using the IMEX scheme, probably due to the non-regularity of the contact terms.

A comparison for a time step ten times larger is presented on Figure 6. The result for Verlet’s
scheme is not presented since the time step is larger than the critical value for stability. The
implicit Crank-Nicolson still gives a good approximation of the solution. The IMEX scheme for
α = 0 is stable and do not present some spurious oscillations, however, as in 1D, there is a
significant increase of the time between two impacts.

At this point, we can conclude that the built IMEX schemes have very good stability properties
for the contact problem. However, there is a slowing down of motion for large time steps that is
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Figure 3: Simulation on the one-dimensional case for the time step τ = 0.05 (above CFL) and
the other numerical parameters Θ = 1, γ0 = 15, h = 0.02, β = 0.25 for the different schemes.

not present with the Crank-Nicolson scheme. The next section is devoted to give an interpretation
of this phenomenon.

5 Selective mass scaling effects, difficulty and improvements

In this section, we will try to understand the reason for the alteration of the observed motion
when the IMEX scheme is used for large time steps and the link with the existing works on the
selective mass scaling. We also propose some variants to try to reduce theses alterations.

We remark first that the IMEX scheme in the central difference form (14) for α = 0 can easily

Figure 4: P2 mesh used for the disc.
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Figure 5: Simulation on the two-dimensional case for the time step τ = 0.0025 (below CFL) and
the other numerical parameters Θ = 1, γ0 = 5× 105, β = 0.25 for the different schemes.

be rewritten 
Find uh,n+1 ∈ Vh such that:(
Mh + βτ2Kh

)(uh,n+1 − 2uh,n + uh,n−1

τ2

)
+ Bhuh,n = Lh,n,

(23)

and the discrete energy (18) can be rewritten in a form more related to (23):

E
h,n+ 1

2
imex1 =

1

2

((
Mh +

(
β − 1

4

)
τ2Kh

)
uh,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ

)
γh

+ ψBh(uh,n+ 1
2 ).

It is particularly noteworthy that (23) corresponds exactly to a central difference scheme
(Verlet’s scheme) applied to the original problem but with a mass operator Mh replaced by
Mh + βτ2Kh.

A perturbation of the mass matrix in order to increase the critical time step in an explicit
time integration scheme is generally called a mass scaling. The perturbation of the mass matrix
with a term proportional to the stiffness matrix has been proposed in [33] and further studied
in [32, 15, 46] under the name “selective mass scaling”. As far as we know, the interpretation in
term of an implicit-explicit scheme has not been given yet, although this seems to be the most
straightforward one.

The numerical study in [32] (Figure 1 in this reference) reveals a thresholding of the highest
eigenfrequencies and a moderate modification of the lowest eigenfrequencies, the rigid modes not
being impacted. Our stability result imply that the thresholding of the highest eigenfrequencies
is obtained not only for the stiffness matrix of the problem, but for any symmetric matrix Kh

such that both Kh and Ah = Kh −Bh are monotonous operators.
However, in our case, even if we recover the increase of the critical time step (even finding

unconditionally stable methods), there is a consequent alteration of the rigid modes. These rigid
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Figure 6: Simulation on the two-dimensional case for the time step τ = 0.025 (above CFL) and
the other numerical parameters Θ = 1, γ0 = 5× 105, β = 0.25 for the different schemes.

modes are however not impacted by a standard stiffness matrix, of course, since the rigid modes
lie in its kernel. Indeed, in our situation, the operator

(Kh
0v

h,wh)γh = a(vh,wh)−
∫

ΓC

1

γh
σn(vh)σn(wh) dΓ

+

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)(
σn(wh)− γhwhn

)
dΓ

(24)

contains, additionally to the stiffness terms, the Nistche’s contact terms in which we can extract
the penalty term ∫

ΓC

γhv
h
nw

h
ndΓ. (25)

This term is in fact the only one being non-zero for a rigid motion. This is a term on the
contact boundary which adds a significant mass on the boundary in the modified mass matrix
Mh + βτ2Kh. This term is necessary to stabilize the explicit treatment of the non-linear Nitsche
contact term but causes rigid body motion alterations even in the absence of contact.

Remark 11. About the implicit Crank-Nicolson scheme, it can also be rewritten in the form

close to (23) for Kh = Bh and β =
1

4
replacing Kh(uh,n+1 − 2uh,n + uh,n−1) by Bh(uh,n+1) −

2Bh(uh,n) + Bh(uh,n−1). The reason why the rigid body motions are not perturbed using the
Crank-Nicolson scheme is simply that the additional penalty term in Bh is only present when
contact occurs which has a limited influence since in that case the normal displacement is close
to zero.

Unfortunately, keeping a constant Kh, it is not possible to add the penalty term in Kh only
in the occurrence of contact and keeping a monotonous operator Ah and so it is not possible to
obtain the desired increase of the critical time step. We will however see in the next sections some
possible ways to overcome this difficulty and improve the approximation for large time steps.
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5.1 A non-constant splitting decomposition of Bh

Since the perturbation of the additional penalty term in Kh occurs mainly in absence of contact,
a first idea is to add this term only when there is contact with a non-constant operator Kh. This
can be done, for instance, by considering the following splitting decomposition

(Kh
1(vh,0)vh,wh)γh := a(vh,wh)−

∫
ΓC

1

γh
σn(vh)σn(wh) dΓ

+

∫
ΓC

H(γhv
h,0
n − σn(vh,0))

[
1

γh

(
σn(vh)− γhvhn

)(
σn(wh)− γhwhn

)]
dΓ,

(26)

and

(Ah
1v

h,wh)γh :=

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)
+

(
σn(wh)− γhwhn

)
dΓ

−
∫

ΓC

H(γhv
h,0
n − σn(vh,0))

[
1

γh

(
σn(vh)− γhvhn

)(
σn(wh)− γhwhn

)]
dΓ.

(27)

Here H(·) is the Heaviside function (H(x) = 1 for x ≥ 0, H(x) = 0 for x < 0) and vh,0 is the
displacement at the previous time step.

This is of course a clear drawback that the matrix of the implicit term is changing from an
iteration to another. Moreover, the stability results of Section 3.2 no longer apply. Finally, this
scheme can be viewed as a special implicit-explicit scheme where the contact status is taken at
the previous time step. Some numerical tests in the two-dimensional case are shown on Figure 7.
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Figure 7: IMEX scheme with non-constant implicit term. Simulation on the two-dimensional
case for different time steps and Θ = 1, γ0 = 5× 105, β = 0.25.

Compared to Figure 6 for our first IMEX scheme, it can be seen that a good approximation of the
motion is recovered. The stability is preserved for the time step τ = 0.025 but this is not the case
for a larger time step τ = 0.1. In conclusion, this first approach allows to overcome the problem
of perturbation of the motion due to the additional contact term and allows the use of larger
time steps than with explicit Verlet’s scheme. However, the unconditional stability property is
not preserved.
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5.2 Small number of fixed points iterations

Another way to improve the accuracy of IMEX schemes, proposed for instance in [20], is to add
a small number of fixed points iterations taking the solution to the IMEX scheme as a predictor
step. At time step n+ 1, the quantities uh,n−1 and uh,n being known, we consider the following
linear system which consists to find uh,n+1

(i) solution to

(
Mh + βτ2Kh

)uh,n+1
(i) − 2uh,n + uh,n−1

τ2

+ Khuh,n −Gh
(i) = Lh,n. (28)

Notice that uh,n+1
(0) , defined as the solution to (28) for Gh

(0) = Ahuh,n, is the solution to our IMEX

scheme (14) (or (23)) for α = 0. Then, one obtains uh,n+1
(i+1) from uh,n+1

(i) by the recurrence relation

uh,n+1
(i+1) solution to (28) for Gh

(i+1) = βAh
(
uh,n−1

)
+ (1− 2β)Ah

(
uh,n

)
+ βAh

(
uh,n+1

(i)

)
.

In particular, it leads to the following fixed point iteration

uh,n+1
(i+1) = Hn −

(
Mh

βτ2 + Kh

)−1

Ah
(
uh,n+1

(i)

)
,

which is a contraction for τ small enough. Here

Hn = 2uh,n−uh,n−1+τ2
(
Mh + βτ2Kh

)−1 (
Lh,n −Khuh,n − βAh

(
uh,n−1

)
− (1− 2β)Ah

(
uh,n

))
,

and the iteration converges toward the solution of the implicit β-Newmark scheme.
The numerical results on the two-dimensional case of Section 4.2 is presented on Figure 8.

Comparing with the results on Figure 6, one notices that even with only one fixed point iteration,
there is an important correction of the period of the motion. However, the initial period is
reached for ten fixed point iterations, which corresponds to a non-negligible computational cost.
Compared for instance with a Newton method on the implicit scheme, note that the matrix
of the linear system to be solved at each iteration do not vary, allowing for instance a unique
factorization.

5.3 Compensate the penalty term in Kh

Since the main difficulty comes from the penalty term∫
ΓC

γhv
h
nw

h
ndΓ

in the operator Kh, another option is to try to substitute it by a stiffness term which do not
perturbate the rigid body motion. When the bilinear form a(u, v) defined by (3) is coercive (i.e.
in the present case when the Dirichlet boundary ΓD is of non-zero measure in ∂Ω), then, using
additionally a trace inequality, there exists a constant αh > 0 such that

a(u,u) ≥ αh
∫

ΓC

γhu
2
ndx, ∀u ∈ V.

The fact that −
∫

ΓC

γhu
2
ndx +

1

αh
a(u,u) ≥ 0 indicates that this term can be added to the

operators Kh and Ah without altering their monotonicity. By arguments similar to those of
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Figure 8: IMEX scheme with fixed point iterations. Simulation on the two-dimensional case for
the time step τ = 0.025 (above CFL) and the other numerical parameters Θ = 1, γ0 = 5×105, β =
0.25 for the different schemes.

Proposition 6, we can conclude, that in the coercive case, the following splitting corresponds to
two monotonous operators for γ0 large enough:

(Kh
2v

h,wh)γh :=

(
1 +

2

αh

)
a(vh,wh)−

∫
ΓC

1

γh
σn(vh)σn(wh) dΓ, (29)

(Ah
2v

h,wh)γh :=

∫
ΓC

1

γh

(
σn(vh)− γhvhn

)
−

(
σn(wh)− γhwhn

)
dΓ +

2

αh
a(vh,wh). (30)

The numerical results are presented on Figure 9 for the one-dimensional case of Section 4.1
and on Figure 10 for the two-dimensional case of Section 4.2. The important difference between
the two test-cases is that in the one-dimensional case the stiffness term is coercive due to the
Dirichlet condition on the top of the bar while this is not the case in the two-dimensional case.
Nevertheless, the numerical results are similar in both the two cases. For a time step approxi-
mately five time larger than the critical time step, a reasonable approximation is obtained without
the augmentation of the period noticed in the initial IMEX scheme. However, some fluctuation
of the energy are noted. For a larger time step, the motion is perturbed by this augmentation
of the stiffness term (the approximation with Crank-Nicolson implicit scheme has been added for
comparison).
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Figure 9: Penalty term replaced by a stiffness one. Simulation on the one-dimensional case for the
time steps τ = 0.05 (IMEX) and τ = 0.1 (Crank-Nicolson and IMEX) and the other numerical
parameters Θ = 1, γ0 = 4, h = 0.02, β = 0.25, αh = 0.2 for the different schemes.

5.4 A penalty free variant of Nitsche’s method

Another possibility to avoid the occurrence of the penalty term is to turn to the penalty-free
variant of Nitsche’s method. An alternative to the presented Nitsche-based approximation (7)
which has been proposed in [7], is based on the following reformulation of the contact condition (2):

γhun = − (γhun − σn(u))− ,

and can be written as follows:

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

(ρüh(t),vh)0,Ω + a(uh(t),vh)−
∫

ΓC

σn(uh)vhn dΓ

+

∫
ΓC

(
uhn(t) +

(
uhn(t)− σn(uh)

γh

)
−

)
σn(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,

(31)

There is indeed no penalty term of the form (25) in (31). Additionally, as it is noted in [42, 43],
and since

uhn(t) +

(
uhn(t)− σn(uh)

γh

)
−

= uhn(t)− σn(uh)

γh
+

(
uhn(t)− σn(uh)

γh

)
−

+
σn(uh)

γh

=
1

γh

(
σn(uh) +

(
σn(uh)− γhuhn(t)

)
−

)
,
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Figure 10: Penalty term replaced by a stiffness one. Simulation on the two-dimensional case
for the time steps τ = 0.025 (IMEX) and τ = 0.1 (Crank-Nicolson and IMEX) and the other
numerical parameters Θ = 1, γ0 = 5× 105, β = 0.25, αh = 0.2 for the different schemes.

this formulation is equivalent to the following one still based on (6):

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

(ρüh(t),vh)0,Ω + a(uh(t),vh)−
∫

ΓC

σn(uh)vhn dΓ

+

∫
ΓC

1

γh

(
σn(uh) +

(
σn(uh)− γhuhn(t)

)
−

)
σn(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(32)

This formulation is not symmetric and consequently it does not derive from a potential. An exam-
ple of splitting that both Kh and Ah are monotonous operators is the following (the monotonicity
of Ah

3 can be proved thanks to an adaptation of the proof of Proposition 6):

(Kh
3v

h,wh)γh := a(vh,wh)−
∫

ΓC

σn(vh)whndΓ +

∫
ΓC

vhnσn(wh)dΓ

+

∫
ΓC

4

γh
σn(vh)σn(wh) + 3γhv

h
nw

h
ndΓ,

(33)

(Ah
3v

h,wh)γh := −
∫

ΓC

1

γh

(
σn(vh) +

(
σn(vh)− γhvhn

)
−

)
σn(wh)dΓ

+

∫
ΓC

vhnσn(wh)dΓ +

∫
ΓC

4

γh
σn(vh)σn(wh) + 3γhv

h
nw

h
ndΓ.

(34)

However, one can note in this splitting the appearance of a penalty term. We did not find a
splitting verifying the monotonicity of the two operators that do not contain a penalty term.
Moreover, the numerical results presented on Figure 11 for a time step lower than the critical one
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Figure 11: Penalty free approximation. Simulation on the two-dimensional case and a time step
τ = 0.001 (below CFL) and the other numerical parameters Θ = 1, γ0 = 5× 104, β = 0.25 for the
different schemes.

and on Figure 12 for a time step ten times larger make appear some instabilities for the IMEX
scheme. We did not find any splitting that avoid these instabilities for large time steps.
Note that the contact stress at lowest point in Figure 11 and 12 has smaller negative values during
impact than in Figure 5 and 6 for instance. This means that the contact area is larger with this
variant of Nitsche’s method than with the classical one. This is due to the fact that a lower
Nitsche parameter γ0 as been considered. Unlike the classical Nitsche’s method, the stability of
this variant is obtained for small values of γ0.

5.5 Second order correction of the β-Newmark scheme

A last proposed improvement is to consider a perturbed version of β-Newmark scheme in order
to minimize the influence of the penalty term in the implicit treatment of Kh.

Recall that the first splitting introduced here reads as Bh = Kh
−1 − Ah

−1 where only the
stiffness part is treated implicitly. This then leads to the following β-Newmark scheme

uh,n+1 = 2uh,n − uh,n−1 +
(
Mh + βτ2Kh

−1

)−1
(Lh,n −Bhuh,n), (35)

which is unstable in practice. Indeed, the last part of the instabilities comes from the integration
of the non-monotonous contact term Ah

−1 which corresponds to(
Mh + βτ2Kh

−1

)−1
(Ah
−1u

h,n).

We then proposed to use the splitting Bh = Kh
0−Ah

0 where Ah
0 can be viewed as a monotonous

relaxation of Ah
−1. As expected, the new scheme

uh,n+1 = 2uh,n − uh,n−1 +
(
Mh + βτ2Kh

0

)−1
(Lh,n −Bhuh,n), (36)
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Figure 12: Penalty free approximation. Simulation on the two-dimensional case and a time step
τ = 0.01 (above CFL) and the other numerical parameters Θ = 1, γ0 = 5× 104, β = 0.25 for the
different schemes.

is numerically stable but the presence of the penalty term

∫
ΓC

γhv
h
nw

h
ndΓ in Kh

0 gives some alter-

ations of the rigid modes even when there is no contact. Notice that theses perturbations can be
localized on both source and stiffness terms:(

Mh + βτ2Kh
0

)−1
(Lh,n −Kh

−1u
h,n).

Our idea here is then to combine the benefits of the two previous schemes by introducing a
correction of the source term Lh,n and the stiffness term Kh

−1u
h,n before applying the selective

mass scaling effect
(
Mh + βτ2Kh

0

)−1
. We can then consider the following scheme

uh,n+1 = 2uh,n − uh,n−1 +
(
Mh + βτ2Kh

0

)−1
(C1

τL
h,n −C2

τK
h
−1u

h,n − (Bh −Kh
−1)uh,n).

where the consistence of the scheme requires that the two correction operators C1
τ and C2

τ satisfy
the limits

lim
τ→0

C1
τ = lim

τ→0
C2
τ = Id.

In that case, it is not difficult to see that the scheme is still a β-Newmark one

Mh

(
uh,n+1 − 2uh,n + uh,n−1

τ2

)
+ Kh

(
βuh,n+1 + (1− 2β)uh,n + βuh,n−1

)
− Ãhuh,n−α = L̃h,n

(37)
where the source and the explicit term are now given by

Ãh = Ah
0 − (C2

τ − Id)Kh
−1 and L̃h,n = C1

τL
h,n.

A second order correction can then be made by constructing two operators C1
τ and C2

τ satisfying(
Mh + βτ2Kh

0

)−1
[C1
τ Lh,n] = (Mh)−1Lh,n +O(τ2), (38)

and (
Mh + βτ2Kh

0

)−1
[C2

τ Kh
−1 uh,n] =

(
Mh + βτ2Kh

−1

)−1
Kh
−1u

h,n +O(τ2). (39)
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Here is an example of these operators

C1
τ =

(
Mh + βτ2Kh

0

)
(Mh)−1 and C2

τ =
(
Mh + βτ2Kh

0

)(
Mh + βτ2Kh

−1

)−1
. (40)

However, recall that the stability of the associated β-Newmark scheme requires the monotonous
property of the operator Ãh = Ah

0 − (C2
τ − Id)Kh

−1 which is satisfied only asymptotically when
τ goes to zero.

Figure 13 shows the result of the simulation in the two-dimensional case for the correction
(40). The numerical results shows a good correction of the slowing down noted in Figure 6 for
IMEX scheme (36). The plotted energy is the discrete one (21) adapted to the modified operators
given in (37). It is well conserved but its level is different to the uncorrected schemes.
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Figure 13: Second order correction. Simulation on the two-dimensional case and a time step
τ = 0.025 (above CFL) and the other numerical parameters Θ = 1, γ0 = 5× 104, β = 0.25.

Conclusion

The interest of our IMEX schemes is to allow an acceleration of the simulation compared to
explicit schemes by using larger time steps and with a cost corresponding only to the resolution
of a (constant) linear system at each time step.

We exhibited some theoretical stability results in Section 3.2 and the numerical tests of Section
4 confirm the possibility of obtaining some unconditionally stable IMEX schemes.

The first order IMEX scheme (α = 1
2) for which we have a proof of unconditional stability is

however too much dissipative in practice. The second order schemes do not raise any stability
issues in our tests, despite we do not have such a proof of stability.

A less positive aspect is that our numerical tests have revealed a drawback of IMEX schemes
in the treatment of the penalty contact term: a slowing down of the motion is observed for large
time steps.

An analysis of this phenomenon in Section 5 shows that it is due to the addition of the contact
penalty term to the mass matrix in the IMEX scheme (this also occurs for the implicit schemes
but only when contact occurs).

In this section we also provide an interpretation of the IMEX scheme in terms of selective
mass scaling, which has not been proposed before, as far as as we know. We then proposed five
different techniques to try to overcome the difficulty of too large time steps.

In subsection 5.1, we first tested a non-constant implicit term where the idea is to apply the
penalty term only when contact occurs. This effectively removes the slowing down of the motion,
but a non-constant linear system must be solved at every time step, and the unconditional
stability of the scheme is now loose. In subsection 5.2, we also tested to add a few fixed points
iterations. It is then possible to recover a good approximation with this method for large time
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steps, but at the price of several (but constant) linear resolutions. In subsection 5.3, we tested
to replace the penalty term with a stiffness one, exploiting the coercivity of the problem. This
also partially overcome the difficulty but only for moderately large time steps. In subsection 5.4,
we tested the penalty-free version of Nitsche’s method proposed in [7]. However, we did not find
any stable splitting using this approach. Finally, in subsection 5.5, we proposed a framework
for a second-order correction of the β-Newmark scheme and we give an example leading to a
second-order correction with a numerical example showing that adapted corrections can improve
the approximation for large time steps.
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