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Summary. The aim of this chapter is to consider two challenging problems in
photo-acoustic imaging. We provide algorithms to correct the effects of imposed
boundary conditions and that of attenuation as well. We consider extended optical
sources in an attenuating acoustic background. By testing our measurements against
an appropriate family of functions, we show that we can access the Radon transform
of the initial condition in the acoustic wave equation, and thus recover quantitatively
the absorbing energy density. We also show how to compensate the effect of acoustic
attenuation on image quality by using the stationary phase theorem.

1.1 Introduction

In photo-acoustic imaging, optical energy absorption causes thermo-elastic
expansion of the tissue, which leads to the propagation of a pressure wave.
This signal is measured by transducers distributed on the boundary of the
object, which in turn is used for imaging optical properties of the object. The
major contribution of photo-acoustic imaging is to provide images of optical
contrasts (based on the optical absorption) with the resolution of ultrasound
[33].

If the medium is acoustically homogeneous and has the same acoustic
properties as the free space, then the boundary of the object plays no role and
the optical properties of the medium can be extracted from measurements of
the pressure wave by inverting a spherical Radon transform [23].

In some settings, free space assumptions does not hold. For example, in
brain imaging, the skull plays an important acoustic role, and in small ani-
mal imaging devices, the metallic chamber may have a strong acoustic effect.
In those cases, one has to account for boundary conditions. If a boundary
condition has to be imposed on the pressure field, then an explicit inversion
formula no longer exists. However, using a quite simple duality approach, one
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can still reconstruct the optical absorption coefficient. In fact, in the recent
works [2, 3], we have investigated quantitative photoacoustic imaging in the
case of a bounded medium with imposed boundary conditions. In a further
study [1], we proposed a geometric-control approach to deal with the case
of limited view measurements. In both cases, we focused on a situation with
small optical absorbers in a non-absorbing background and proposed adapted
algorithms to locate the absorbers and estimate their absorbed energy.

A second challenging problem in photo-acoustic imaging is to take into
account the issue of modelling the acoustic attenuation and its compensation.
This subject is addressed in [25, 7, 28, 19, 21, 26, 29, 31]. The reader is in
particular referred to [20] for a very nice discussion on the attenuation models
and their causality properties.

In this chapter, we propose a new approach to image extended optical
sources from photo-acoustic data and to correct the effect of acoustic attenu-
ation. By testing our measurements against an appropriate family of functions,
we show that we can access the Radon transform of the initial condition, and
thus recover quantitatively any initial condition for the photoacoustic prob-
lem. We also show how to compensate the effect of acoustic attenuation on
image quality by using the stationary phase theorem. We use a frequency
power-law model for the attenuation losses.

The chapter is organized as follows. In Section 1.2 we consider the photo-
acoustic imaging problem in free space. We first propose three algorithms to
recover the absorbing energy density from limited-view and compare their
speeds of convergence. We then present two approaches to correct the effect
of acoustic attenuation. We use a power-law model for the attenuation. We
test the singular value decomposition approach proposed in [25] and provide a
new a technique based on the stationary phase theorem. Section 1.3 is devoted
to correct the effect of imposed boundary conditions. By testing our measure-
ments against an appropriate family of functions, we show how to obtain the
Radon transform of the initial condition in the acoustic wave equation, and
thus recover quantitatively the absorbing energy density. We also show how
to compensate the effect of acoustic attenuation on image quality by using
again the stationary phase theorem. The chapter ends with a discussion.

1.2 Photo-acoustic imaging in free space

In this section, we first formulate the imaging problem in free space and
present a simulation for the reconstruction of the absorbing energy density us-
ing the spherical Radon transform. Then, we provide a total variation regular-
ization to find a satisfactory solution of the imaging problem with limited-view
data. Finally, we present algorithms for compensating the effect of acoustic
attenuation. The main idea is to express the effect of attenuation as a con-
volution operator. Attenuation correction is then achieved by inverting this
operator. Two strategies are used for such deconvolution. The first one is based
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on the singular value decomposition of the operator and the second one uses
its asymptotic expansion based on the stationary phase theorem. We compare
the performances of the two approaches.

1.2.1 Mathematical formulation

We consider the wave equation in Rd,

1
c20

∂2p

∂t2
(x, t)−∆p(x, t) = 0 in Rd × (0, T ),

with
p(x, 0) = p0 and

∂p

∂t
(x, 0) = 0.

Here c0 is the phase velocity in a non-attenuating medium.
Assume that the support of p0, the absorbing energy density, is contained

in a bounded set Ω of Rd. Our objective in this part is to reconstruct p0

from the measurements g(y, t) = p(y, t) on ∂Ω× (0, T ), where ∂Ω denotes the
boundary of Ω.

The problem of reconstructing p0 is related to the inversion of the spherical
Radon transform given by

RΩ [f ](y, r) =
∫

S

rf(y + rξ) dσ(ξ), (y, r) ∈ ∂Ω × R+,

where S denotes the unit sphere. It is known that in dimension 2, Kirchhoff’s
formula implies that [14]

p(y, t) =
1
2π
∂t

∫ t

0

RΩ [p0](y, c0r)√
t2 − r2

dr,

RΩ [p0](y, r) = 4r
∫ r

0

p(y, t/c0)√
r2 − t2

dt.

Let the operator W be defined by

W[g](y, r) = 4r
∫ r

0

g(y, t/c0)√
r2 − t2

dt for all g : ∂Ω × R+ → R. (1.1)

Then, it follows that

RΩ [p0](y, r) = W[p](y, r). (1.2)

In recent works, a large class of inversion retroprojection formulae for the
spherical Radon transform have been obtained in even and odd dimensions
when Ω is a ball, see for instance [14, 24, 13, 27]. In dimension 2 when Ω is
the unit disk, it turns out that
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p0(x) =
1

(4π2)

∫
∂Ω

∫ 2

0

[
d2

dr2
RΩ [p0](y, r)

]
ln |r2 − (y − x)2| dr dσ(y). (1.3)

This formula can be rewritten as follows:

p0(x) =
1

4π2
R∗

ΩBRΩ [p0](x), (1.4)

where R∗
Ω is the adjoint of RΩ ,

R∗
Ω [g](x) =

∫
∂Ω

g(y, |y − x|) dσ(y),

and B is defined by

B[g](x, t) =
∫ 2

0

d2g

dr2
(y, r) ln(|r2 − t2|) dr

for g : Ω × R+ → R.
In Figure 1.1, we give a numerical illustration for the reconstruction of p0

using the spherical Radon transform. We adopt the same approach as in [13]
for the discretization of formulae (1.1) and (1.3). Note that in the numerical
examples presented in this section, Nθ denotes the number of equally spaced
angles on ∂Ω, the pressure signals are uniformly sampled at N time steps,
and the phantom (the initial pressure distribution p0) is sampled on a uniform
Cartesian grid with NR ×NR points.

1.2.2 Limited-view data

In many situations, we have only at our disposal data on Γ × (0, T ), where
Γ ⊂ ∂Ω. As illustrated in Figure 1.2, restricting the integration in formula
(1.3) to Γ as follows:

p0(x) '
1

(4π2)

∫
Γ

∫ 2

0

[
d2

dr2
RΩ [p0](y, r)

]
ln |r2 − (y − x)2| dr dσ(y), (1.5)

is not stable enough to give a correct reconstruction of p0.
The inverse problem becomes severely ill-posed and needs to be regularized

(see for instance [34, 15]). We apply here a Tikhonov regularization with a
total variation term, which is well adapted to the reconstruction of smooth
solutions with front discontinuities. We then introduce the function p0,η as
the minimizer of

J [f ] =
1
2
‖Q [RΩ [f ]− g] ‖2L2(∂Ω×(0,2)) + η‖∇f‖L1(Ω),

where Q is a positive weight operator.
Direct computation of p0,η can be complicated as the TV term is not

smooth (not of class C1). Here, we obtain an approximation of p0,η via an iter-
ative shrinkage-thresholding algorithm [12, 10]. This algorithm can be viewed
as a split, gradient-descent, iterative scheme:
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Fig. 1.1. Numerical inversion using (1.3) with N = 256, NR = 200 and Nθ = 200.
Top left: p0 ; Top right: p(y, t) with (y, t) ∈ ∂Ω × (0, 2); Bottom left: RΩ [p0](y, t)
with (y, t) ∈ ∂Ω × (0, 2); Bottom right: 1

4π2R∗ΩBRΩ [p0].
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Fig. 1.2. Numerical inversion with truncated (1.3) formula with N = 128, NR =
128, and Nθ = 30. Left: p0; Right: 1

4π2R∗ΩBRΩ [p0].
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• Data g, initial solution f0 = 0;
• (1) Data link step: fk+1/2 = fk − γR∗

ΩQ
∗Q [RΩ [fk]− g];

• (2) Regularization step: fk = Tγη[fk+1/2],

where γ is a virtual descent time step and the operator Tη is given by

Tη[y] = arg min
x

{
1
2
‖y − x‖2L2 + η‖∇x‖L1

}
.

Note that Tη defines a proximal point method. One advantage of the al-
gorithm is to minimize implicitly the TV term using the duality algorithm
of Chambolle [8]. This algorithm converges [12, 10] under the assumption
γ‖R∗

ΩQ
∗QRΩ‖ ≤ 1, but its rate of convergence is known to be slow. Thus,

in order to accelerate the convergence rate, we will also consider the variant
algorithm of Beck and Teboulle [6] defined as

• Data g, initial set: f0 = x0 = 0, t1 = 1;
• (1) xk = Tγη (fk − γR∗

ΩQ
∗Q [RΩ [fk]− g]);

• (2) fk+1 = xk + tk−1
tk+1

(xk − xk−1) with tk+1 + 1+
√

1+4t2k
2 .

The standard choice of Q is the identity, Id, and then it is easy to see that
‖RΩR

∗
Ω‖ ' 2π. It will also be interesting to use Q = 1

2πB
1/2, which is well

defined since B is symmetric and positive. In this case, R∗
ΩQ

∗Q ' R−1
Ω and

we can hope to improve the convergence rate of the regularized algorithm.
We compare three algorithms of this kind in Figure 1.3. The first and the

second one correspond to the simplest algorithm with respectively Q = Id
and Q = 1

2πB
1/2. The last method uses the variant of Beck and Teboulle with

Q = 1
2πB

1/2. The speed of convergence of each of these algorithms is plotted
in Figure 1.3. Clearly, the third method is the best and after 30 iterations, a
very good approximation of p0 is reconstructed.

Two limited-angle experiments are presented in Figure 1.4 using the third
algorithm.

1.2.3 Compensation of the effect of acoustic attenuation

Our aim in this section is to compensate for the effect of acoustic attenuation.
The pressures p(x, t) and pa(x, t) are respectively solutions of the following
wave equations:

1
c20

∂2p

∂t2
(x, t)−∆p(x, t) =

1
c20
δ′t=0p0(x),

and
1
c20

∂2pa

∂t2
(x, t)−∆pa(x, t)− L(t) ∗ pa(x, t) =

1
c20
δ′t=0p0(x),

where L is defined by
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Fig. 1.3. Iterative shrinkage-thresholding solution after 30 iterations with η = 0.01,
N = 128, NR = 128, and Nθ = 30. Top left: simplest algorithm with Q = Id and
µ = 1/(2π); Top right: simplest algorithm with Q = 1

2π
B1/2 and µ = 0.5; Bottom

left: Beck and Teboulle variant with Q = 1
2π
B1/2 and µ = 0.5; Bottom right: error

k → ‖fk − p0‖∞ for each of the previous situations.

Test 1:  
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Test 2:  
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Fig. 1.4. Case of limited angle with Beck and Teboulle iterative shrinkage-
thresholding after 50 iterations, with parameters equal to η = 0.01, N = 128,
NR = 128, Nθ = 64 and Q = 1

2π
B1/2. Left: p0; Center: 1

4π2R∗ΩBRΩ [p0]; Right: f50.
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L(t) =
1√
2π

∫
R

(
K2(ω)− ω2

c20

)
eiωtdω. (1.6)

Many models exist for K(ω). Here we use the power-law model. Then K(ω)
is the complex wave number, defined by

K(ω) =
ω

c(ω)
+ ia|ω|ζ , (1.7)

where ω is the frequency, c(ω) is the frequency dependent phase velocity and
1 ≤ ζ ≤ 2 is the power of the attenuation coefficient. See [30]. A common
model, known as the thermo-viscous model, is given by K(ω) = ω

c0
√

1−iaωc0

and corresponds approximately to ζ = 2 with c(ω) = c0.
Our strategy is now to:

• Estimate p(y, t) from pa(y, t) for all (y, t) ∈ ∂Ω × R+.
• Apply the inverse formula for the spherical Radon transform to reconstruct

p0 from the non-attenuated data.

A natural definition of an attenuated spherical Radon transform Ra,Ω is

Ra,Ω [p0] = W[pa]. (1.8)

1.2.4 Relationship between p and pa

Recall that the Fourier transforms of p and pa satisfy(
∆+ (

ω

c0
)2
)
p̂(x, ω) =

iω√
2πc20

p0(x) and
(
∆+K(ω)2

)
p̂a(x, ω) =

iω√
2πc20

p0(x),

which implies that

p̂(x, c0K(ω)) =
c0K(ω)
ω

p̂a(x, ω).

The issue is to estimate p from pa using the relationship pa = L[p], where L
is defined by

L[φ](s) =
1
2π

∫
R

ω

c0K(ω)
e−iωs

∫ ∞

0

φ(t)eic0K(ω)t dt dω.

The main difficulty is that L is not well conditioned. We will compare two
approaches. The first one uses a regularized inverse of L via a singular value
decomposition (SVD), which has been recently introduced in [25]. The second
one is based on the asymptotic behavior of L as the attenuation coefficient a
tends to zero.

Figure 1.5 gives some numerical illustrations of the inversion of the at-
tenuated spherical Radon transform without a correction of the attenuation
effect, where a thermo-viscous attenuation model is used with c0 = 1.
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Fig. 1.5. Numerical inversion of attenuated wave equation with K(ω) = ω
c0

+iaω2/2
and a = 0.001. Here N = 256, NR = 200 and Nθ = 200. Top left: p0; Top right:
pa(y, t) with (y, t) ∈ ∂Ω × (0, 2); Bottom left: Wpa(y, t) with (y, t) ∈ ∂Ω × (0, 2);
Bottom right: 1

4π2R∗ΩB (W[pa](y, t)).

1.2.5 A SVD approach

La Rivière, Zhang, and Anastasio have recently proposed in [25] to use a
regularized inverse of the operator L obtained by a standard SVD approach:

L[φ] =
∑

l

σl〈φ, ψ̃l〉ψl,

where (ψ̃l) and (ψl) are two orthonormal bases of L2(0, T ) and σl are positives
eigenvalues such that 

L∗[φ] =
∑

l σl〈φ, ψl〉ψ̃l,

L∗L[φ] =
∑

l σ
2
l 〈φ, ψ̃l〉ψ̃l,

LL∗[φ] =
∑

l σ
2
l 〈φ, ψl〉ψl.

An ε-approximation inverse of L is then given by

L−1
1,ε [φ] =

∑
l

σl

σ2
l + ε2

〈φ, ψl〉ψ̃l,
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where ε > 0.
In Figure 1.6 we present some numerical inversions of the thermo-viscous

wave equation with a = 0.0005 and a = 0.0025. We first obtain the ideal
measurements from the attenuated ones and then apply the inverse formula for
the spherical Radon transform to reconstruct p0 from the ideal data. We take
ε respectively equal to 0.01, 0.001 and 0.0001. The operator L is discretized
to obtain an NR × NR matrix to which we apply an SVD decomposition. A
regularization of the SVD allows us to construct L−1

1,ε .
As expected, this algorithm corrects a part of the attenuation effect but is

unstable when ε tends to zero.

Fig. 1.6. Compensation of acoustic attenuation with SVD regularization: N = 256,
NR = 200 and Nθ = 200. First line: a = 0.0005; second line: a = 0.0025. Left to
right: using L−1

1,ε respectively with ε = 0.01, ε = 0.001 and ε = 0.0001.

1.2.6 Asymptotics of L

In physical situations, the coefficient of attenuation a is very small. We will
take into account this phenomenon and introduce an approximation of L and
L−1 as a goes to zero:

Lk[φ] = L[φ] + o(ak+1) and L−1
2,k[φ] = L−1[φ] + o(ak+1),

where k represents an order of approximation.

Thermo-viscous case: K(ω) = ω
c0

+ iaω2/2

Let us consider in this section the attenuation model K(ω) = ω
c0

+ iaω2/2 at
low frequencies ω � 1

a , such that
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1
1 + iac0ω/2

' 1− i
ac0
2
ω.

The operator L is approximated as follows

L[φ](s) ' 1
2π

∫ ∞

0

φ(t)
∫

R

(
1− i

ac0
2
ω
)
e−

1
2 c0aω2teiω(t−s) dω dt.

Since
1√
2π

∫
R
e−

1
2 c0aω2teiω(t−s)dω =

1√
c0at

e−
1
2

(s−t)2

c0at ,

and

1√
2π

∫
R

−iac0ω
2

e−
1
2 c0aω2teiω(t−s)dω =

ac0
2
∂s

(
1√
c0at

e−
1
2

(s−t)2

c0at

)
,

it follows that

L[φ] '
(
1 +

ac0
2
∂s

) 1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−

1
2

(s− t)2

c0at dt

 .

We then investigate the asymptotic behavior of L̃ defined by

L̃[φ] =
1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−

1
2

(s− t)2

c0at dt. (1.9)

Since the phase in (1.9) is quadratic and a is small, by the stationary phase
theorem we can prove that

L̃[φ](s) =
k∑

i=0

(c0a)i

2ii!
Di[φ](s) + o(ak), (1.10)

where the differential operators Di satisfy Di[φ](s) = (tiφ(t))(2i)(s). See Ap-
pendix A.2. We can also deduce the following approximation of order k of
L̃−1

L̃−1
k [ψ] =

k∑
j=0

ajψk,j , (1.11)

where ψk,j are defined recursively by

ψk,0 = ψ and ψk,j = −
j∑

i=1

1
i!
Di[ψk,j−i], for all j ≤ k.

Finally, we define
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Lk =
(
1 +

ac0
2
∂s

)
L̃k and L−1

2,k = L̃−1
k

(
1 +

ac0
2
∂t

)−1

. (1.12)

We plot in Figure 1.6 some numerical reconstructions of p0 using a thermo-
viscous wave equation with a = 0.0005 and a = 0.0025. We take the value of
k respectively equal to k = 0, k = 1 and k = 8. These reconstructions seem to
be as good as those obtained by the SVD regularization approach. Moreover,
this new algorithm has better stability properties.
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Fig. 1.7. Compensation of acoustic attenuation with formula (1.12): N = 256,
NR = 200 and Nθ = 200. First line: a = 0.0005; second line: a = 0.0025. Left: L̃−1
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with k = 0; Center: L̃−1
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General case: K(ω) = ω + ia|ω|ζ with 1 ≤ ζ < 2

We now consider the attenuation model K(ω) = ω
c0

+ ia|ω|ζ with 1 ≤ ζ < 2.
We first note that this model is not causal but can be changed to a causal
one [20, 9]. However, since our main purpose here is to give insights for the
compensation of the effect of attenuation on image reconstruction, we work
with this quite general model because of its simplicity. As before, the problem
can be reduced to the approximation of the operator L̃ defined by

L̃[φ](s) =
∫ ∞

0

φ(t)
∫

R
eiω(t−s)e−|ω|

ζc0at dωdt.

It is also interesting to see that its adjoint L̃∗ satisfies

L̃∗[φ](s) =
∫ ∞

0

φ(t)
∫

R
eiω(s−t)e−|ω|

ζc0as dωdt.

Suppose for the moment that ζ = 1, and working with the adjoint operator
L∗, we see that
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L̃∗[φ](s) =
1
π

∫ ∞

0

c0as

(c0as)2 + (s− t)2
φ(t)dt.

Invoking the dominated convergence theorem, we have

lim
a→0

L̃∗[φ](s) = lim
a→0

1
π

∫ ∞

− 1
ac0

1
1 + y2

φ(s+ c0ays)dy =
1
π

∫ ∞

−∞

1
1 + y2

φ(s)dy = φ(s).

More precisely, introducing the fractional Laplacian ∆1/2 as follows

∆1/2φ(s) =
1
π

p.v.
∫ +∞

−∞

φ(t)− φ(s)
(t− s)2

dt,

where p.v. stands for the Cauchy principal value, we get

1
a

(
L̃∗[φ](s)− φ(s)

)
=

1
a

∫ ∞

−∞

1
πc0as

1

1 +
(

s−t
c0as

)2 (φ(t)− φ(s)) dt

=
∫ ∞

−∞

1
π

c0s

(c0as)2 + (s− t)2
(φ(t)− φ(s)) dt

= lim
ε→0

∫
R\[s−ε,s+ε]

1
π

c0s

(c0as)2 + (s− t)2
(φ(t)− φ(s)) dt

→ lim
ε→0

∫
R\[s−ε,s+ε]

1
π

c0s

(s− t)2
(φ(t)− φ(s)) dt

= c0s∆
1/2φ(s),

as a tends to zero. We therefore deduce that

L̃∗[φ](s) = φ(s)+c0as∆1/2φ(s)+o(a) and L̃∗[φ](s) = φ(s)+c0a∆1/2 (sφ(s))+o(a).

Applying exactly the same argument for 1 < ζ < 2, we obtain that

L[φ](s) = φ(s) + Cc0a∆
ζ/2(sφ(s)) + o(a),

where C is a constant, depending only on ζ and ∆ζ/2, defined by

∆ζ/2φ(s) =
1
π

p.v.
∫ +∞

−∞

φ(t)− φ(s)
(t− s)1+ζ

dt.

1.2.7 Iterative shrinkage-thresholding algorithm with correction of
attenuation

The previous correction of attenuation is not so efficient for a large attenu-
ation coefficient a. In this case, to improve the reconstruction, we may use
again a Tikhonov regularization. Let R−1

Ω,a,k be an approximate inverse of the
attenuated spherical Radon transform RΩ,a:

R−1
Ω,a,k = RΩ−1WL−1

2,kW
−1.

Although its convergence is not clear, we will now consider the following iter-
ative shrinkage-thresholding algorithm:
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• Data g, initial set: f0 = x0 = 0, t1 = 1;
• (1) xj = Tγη

(
fj − γR−1

Ω,a,k (RΩ,afj − g)
)
;

• (2) fj+1 = xj + tj−1
tj+1

(xj − xj−1) with tj+1 +
1+
√

1+4t2j
2 .

Figure 1.8 shows the efficiency of this algorithm.
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Fig. 1.8. Numerical results using iterative shrinkage-thresholding algorithm with
η = 0.001 and a = 0.0025. Left up: f50 with k = 0; Top right: f50 with k = 1;
Bottom left: f50 with k = 6; Bottom right: error j → ‖fj − p0‖ for different values
of k.

1.3 Photo-acoustic imaging with imposed boundary
conditions

In this section, we consider the case where a boundary condition has to be
imposed on the pressure field. We first formulate the photo-acoustic imaging
problem in a bounded domain before reviewing the reconstruction procedures.
We refer the reader to [32] where the half-space problem has been considered.
We then introduce a new algorithm which reduces the reconstruction problem
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to the inversion of a Radon transform. This procedure is particularly well-
suited for extended absorbers. Finally, we discuss the issue of correcting the
attenuation effect and propose an algorithm analogous to the one described
in the previous section.

1.3.1 Mathematical formulation

Let Ω be a bounded domain. We consider the wave equation in the domain
Ω: 

1
c20

∂2p

∂t2
(x, t)−∆p(x, t) = 0 in Ω × (0, T ),

p(x, 0) = p0(x) in Ω,
∂p

∂t
(x, 0) = 0 in Ω,

(1.1)

with the Dirichlet (resp. the Neumann) imposed boundary conditions:

p(x, t) = 0
(

resp.
∂p

∂ν
(x, t) = 0

)
on ∂Ω × (0, T ). (1.2)

Our objective in the next subsection is to reconstruct p0(x) from the mea-

surements of
∂p

∂ν
(x, t) (resp. p(x, t)) on the boundary ∂Ω × (0, T ).

1.3.2 Inversion algorithms

Consider probe functions satisfying
1
c20

∂2v

∂t2
(x, t)−∆v(x, t) = 0 in Ω × (0, T ),

v(x, T ) = 0 in Ω,
∂v

∂t
(x, T ) = 0 in Ω.

(1.3)

Multiplying (1.1) by v and integrating by parts yields (in the case of Dirich-
let boundary conditions):∫ T

0

∫
∂Ω

∂p

∂ν
(x, t)v(x, t)dσ(x)dt =

∫
Ω

p0(x)
∂v

∂t
(x, 0)dx. (1.4)

Choosing a probe function v with proper initial time derivative allows
us to infer information on p0 (right-hand side in (1.4)) from our boundary
measurements (left-hand side in (1.4)).

In [2], considering a full view setting, we used a 2-parameter travelling
plane wave given by

v
(1)
τ,θ(x, t) = δ

(
x · θ
c0

+ t− τ

)
, (1.5)
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and we determined the inclusions’ characteristic functions by varying (θ, τ).
We also used in three dimensions the spherical waves given by

wτ,y(x, t) =
δ
(
t+ τ − |x−y|

c0

)
4π|x− y|

, (1.6)

for y ∈ R3 \Ω, to probe the medium.
In [1], we assumed that measurements are only made on a part of the

boundary Γ ⊂ ∂Ω. Using geometric control, we could choose the form of
∂v

∂t
(x, 0) and design a probe function v satisfying (1.3) together with

v(x, t) = 0 on ∂Ω\Γ̄ ,

so that we had∫ T

0

∫
Γ

∂p

∂ν
(x, t)v(x, t)dσ(x)dt =

∫
Ω

p0(x)
∂v

∂t
(x, 0)dx. (1.7)

Varying our choice of
∂v

∂t
(x, 0), we could adapt classical imaging algorithms

(MUSIC, back-propagation, Kirchhoff migration, arrival-time) to the case of
limited view data.

Now simply consider the 2-parameter family of probe functions:

v
(2)
τ,θ(x, t) = 1−H

(
x · θ
c0

+ t− τ

)
, (1.8)

where H is the Heaviside function. The probe function v(2)
τ,θ(x, t) is an incom-

ing plane wavefront. Its equivalent, still denoted by v(2)
τ,θ , in the limited-view

setting satisfies the initial conditions

v
(2)
τ,θ(x, 0) = 0 and

∂v
(2)
τ,θ

∂t
(x, 0) = δ

(
x · θ
c0

− τ

)
, (1.9)

together with the boundary condition v(2)
τ,θ = 0 on ∂Ω \ Γ × (0, T ).

Note that if T ≥ diam(Ω)
c0

in the full-view setting, our test functions v(1)
τ,θ ,

v
(2)
τ,θ and wτ,y vanish at t = T . In the limited-view case, under the geometric

controllability conditions [5] on Γ and T , existence of the test function v is
guaranteed.

In both the full- and the limited-view cases, we get∫ T

0

∫
∂Ω or Γ

∂p

∂ν
(x, t)v(2)

τ,θ(x, t)dσ(x)dt = R[p0](θ, τ), (1.10)

where R[f ] is the (line) Radon transform of f . Applying a classical filtered
back-projection algorithm to the data (1.10), one can reconstruct p0(x).



1 Photoacoustic Imaging for Attenuating Acoustic Media 17

To illustrate the need of this approach, we present in Figure 1.9 the recon-
struction results from data with homogeneous Dirchlet boundary conditions.
We compare the reconstruction using the inverse spherical Radon transform
with the duality approach presented above. It appears that not taking bound-
ary conditions into account leads to important errors in the reconstruction.

Fig. 1.9. Reconstruction in the case of homogeneous Dirichlet boundary conditions.
Left: initial condition p0; Center: reconstruction using spherical Radon transform;
Right: reconstruction using probe functions algorithm.

We then tested this approach on the Shepp-Logan phantom, using the
family of probe functions v(2)

τ,θ . Reconstructions are given in Figure 1.10. We
notice numerical noise due to the use of discontinuous (Heaviside) test func-
tions against discrete measurements.

The numerical tests were conducted using Matlab. Three different forward
solvers have been used for the wave equation:

• a FDTD solver, with Newmark scheme for time differentiation;
• a space-Fourier solver, with Crank-Nicholson finite difference scheme in

time;
• a space-(P1) FEM-time finite difference solver.

Measurements were supposed to be obtained on equi-distributed captors on
a circle or a square. The use of integral transforms (line or spherical Radon
transform) avoids inverse crime since such transforms are computed on a dif-
ferent class of parameters (center and radius for spherical Radon transforms,
direction and shift for line Radon transform). Indeed, their numerical inver-
sions (achieved using formula (1.3) or the iradon function of Matlab) are not
computed on the same grid as the one for the forward solvers.
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Fig. 1.10. Numerical inversion in the case of homogeneous Dirichlet boundary
conditions. Here, N = 256, NR = 200 and Nθ = 200. Top left: p0; Top right: p(y, t)
with (y, t) ∈ ∂Ω × (0, 3); Bottom left: R[p0]; Bottom right: reconstruction using
probe functions algorithm.

1.3.3 Compensation of the effect of acoustic attenuation

Our aim in this section is to compensate the effect of acoustic attenuation.
Let pa(x, t) be the solution of the wave equation in a dissipative medium:

1
c20

∂2pa

∂t2
(x, t)−∆pa(x, t)− L(t) ∗ pa(x, t) =

1
c20
δ′t=0p0(x) in Ω × R,

(1.11)
with the Dirichlet (resp. the Neumann) imposed boundary conditions:

pa(x, t) = 0
(

resp.
∂pa

∂ν
(x, t) = 0

)
on ∂Ω × R, (1.12)
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where L is defined by (1.6).

We want to recover p0(x) from boundary measurements of
∂pa

∂ν
(x, t) (resp.

pa(x, t)). Again, we assume that a is small.
Taking the Fourier transform of (1.11) yields

(∆+K2(ω))p̂a(x, ω) =
iω√
2πc20

p0(x) in Ω,

p̂a(x, ω) = 0
(

resp.
∂p̂a

∂ν
(x, ω) = 0

)
on ∂Ω,

(1.13)

where p̂a denotes the Fourier transform of pa.

1.3.4 Case of a spherical wave as a probe function

By multiplying (1.13) by the Fourier transform, ŵ0,y(x, ω), of wτ=0,y given by
(1.6), we arrive at, for any τ ,

i√
2π

∫
Ω

p0(x)(
∫

R
ωeiωτ ŵ0,y(x,K(ω)) dω) dx =

∫
R
eiωτ

∫
∂Ω

∂p̂a

∂ν
(x, ω)ŵ0,y(x,K(ω)) dω,

(1.14)
for the Dirichlet problem and

i√
2π

∫
Ω

p0(x)(
∫

R
ωeiωτ ŵ0,y(x,K(ω)) dω) dx = −

∫
R
eiωτ

∫
∂Ω

p̂a(x, ω)
∂ŵ0,y

∂ν
(x,K(ω)) dω,

(1.15)
for the Neumann problem.

Next we compute
∫

R ωe
iωτ ŵ0,y(x,K(ω)) dω for the thermo-viscous model.

Recall that in this case,

K(ω) ≈ ω

c0
+
iaω2

2
.

We have∫
R
ωeiωτ ŵ0,y(x,K(ω)) dω ≈ 1

4π|x− y|

∫
R
ωeiω(τ− |x−y|

c0
)e−aω2 |x−y|

c0 dω, (1.16)

and again, the stationary phase theorem can then be applied to approximate
the inversion procedure for p0(x).

Note that if we use the Fourier transform v̂ of (1.5) or (1.8) as a test
function then we have to truncate the integral in (1.14) since v̂(x,K(ω)) is
exponentially growing in some regions of Ω.
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1.3.5 Case of a plane wave as a probe function

Let us first introduce the function K̃(ω) defined by K̃(ω) =
√
K(ω)2 and

consider a solution of the Helmholtz equation(
∆+ K̃2(ω)

)
v̂a(x, ω) = 0

of the form
v̂a(x, ω) = e−iω(x·θ−c0τ)g(ω), (1.17)

where g(ω) decays sufficiently fast.
Multiplying (1.13) by v̂a(x, ω), we obtain

i√
2π

∫
Ω

p0(x)
(∫

R
ωv̂a(x, ω)dω

)
dx =

∫
R

∫
∂Ω

∂p̂a

∂ν
(x, ω)v̂a(x, ω)dσ(x)dω.

(1.18)
Since K̃(ω) ' ω

c0
− iaω2

2 , then by taking in formula (1.17)

g(ω) = e−
1
2 ω2ac0T and g(ω) =

1
iω
e−

1
2 ω2ac0T ,

we can use the plane waves v̂(1)
a and v̂(2)

a given by

v̂(1)
a (x, ω) = e−iω(x·θ−c0τ)e−

1
2 ω2ac0(T+ x·θ

c0
−τ),

and
v̂(2)

a (x, ω) =
1
iω
e−iω(x·θ−c0τ)e−

1
2 ω2ac0(T+ x·θ

c0
−τ),

as approximate probe functions.
Take T sufficiently large such that

(
T + x·θ

c0
− τ
)

stays positive for all
x ∈ Ω. Thus,

v(1)
a (x, t) ' 1√

ac0

(
T + x·θ

c0
− τ
)e

−
(x · θ − c0τ + t)2

2ac0
(
T + x·θ

c0
− τ
)
,

and

v(2)
a (x, t) ' erf

(
x · θ − c0τ + t√
ac0

(
T + x·θ

c0
− τ

)).

Now using v(2)
a in formula (1.18) leads to the convolution of the Radon trans-

form of p0 with a quasi-Gaussian kernel. Indeed, the left hand-side of (1.18)
satisfies
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i√
2π

∫
Ω

p0(x)
(∫

R
ωv̂

(2)
a (x,w))dω

)
dx

'
∫

Ω

p0(x)
1√

ac0

(
T + x·θ

c0
− τ
)e

−
(x · θ − c0τ)

2

2ac0
(
T + x·θ

c0
− τ
)
dx

=
∫ smax

smin

R[p0](θ, s)
1√

ac0

(
T + s

c0
− τ
)e

−
(s− c0τ)

2

2ac0
(
T + s

c0
− τ
)
ds,

and the right hand-side is explicitly estimated by∫
R

∫
∂Ω

∂p̂a

∂ν
(x, ω)v̂(2)

a (x, ω)dσ(x)dω '
∫ T

0

∫
∂Ω

∂pa

∂ν
(x, t)erf

(
x · θ − c0τ + t√
ac0

(
T + x·θ

c0
− τ

))dσ(x)dt.

As previously, we can compensate the effect of attenuation using the stationary
phase theorem for the operator L̃,

L̃[φ](τ) =
∫ smax

smin

φ(s)
1√

ac0

(
T + s

c0
− τ
)e

−
(s− c0τ)

2

2ac0
(
T + s

c0
− τ
)
ds,

which reads

L̃[φ](τ) ' φ(c0τ) +
ac0T

2

(
φ′′(c0τ) +

2φ′(c0τ)
c0T

)
. (1.19)

See appendix A.3. More generally,

L̃[φ](τ) =
k∑

i=0

(c0a)i

2ii!
Di[φ] + o(ak), (1.20)

where the differential operators Di satisfy

Di[φ] = ((T +
s

c0
− τ)i[φ](s))(2i)

|s=c0τ
.

Define L̃−1
k as in (1.11). Using (1.20), we reconstructed the line Radon

transform of p0 correcting the effect of attenuation. We then applied a stan-
dard filtered back-projection algorithm to inverse the Radon transform. Re-
sults are given in Figure 1.11.
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Fig. 1.11. Compensation of acoustic attenuation with formula (1.19) in the case
of homogeneous Dirichlet boundary conditions. Here, N = 256, NR = 200 and
Nθ = 200. First line: a = 0.0005; Second line: a = 0.0025. Left: L̃−1

k with k = 0;
Center: L̃−1

k with k = 1; Right: L̃−1
k with k = 8.

1.4 Conclusion

In this chapter we have provided new approaches to correct the effect of
imposed boundary conditions as well as the effect of acoustic attenuation.

It would be very interesting to analytically investigate their robustness
with respect to measurement noise and medium noise. In this connection, we
refer to [4] for a coherent interferometric strategy for photo-acoustic imaging
in the presence of microscopic random fluctuations of the speed of sound.

Another important problem is to a priori estimate the attenuation coeffi-
cient a and the frequency power ζ.

Finally, it is worth emphasizing that it is the absorption coefficient, not
the absorbed energy, that is a fundamental physiological parameter. The ab-
sorbed energy density is in fact the product of the optical absorption coef-
ficient and the light fluence which depends on the distribution of scattering
and absorption within the domain, as well as the light sources. In [3], meth-
ods for reconstructing the normalized optical absorption coefficient of small
absorbers from the absorbed density are proposed. Multi-wavelength acoustic
measurements are combined with diffusing light measurements to separate the
product of absorption coefficient and optical fluence. In the case of extended
absorbers, multi-wavelength photo-acoustic imaging is also expected to lead
to a satisfactory solution [11].
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A Stationary phase theorem and proofs of (1.10) and
(1.19)

A.1 Stationary phase theorem

Theorem A.1 (Stationary Phase [18])Let K ⊂ [0,∞) be a compact set,
X an open neighborhood of K and k a positive integer. If ψ ∈ C2k

0 (K), f ∈
C3k+1(X) and Im(f) ≥ 0 in X, Im(f(t0)) = 0, f ′(t0) = 0, f ′′(t0) 6= 0, f ′ 6= 0
in K \ {t0} then for ε > 0∣∣∣∣∣∣
∫

K

ψ(t)eif(t)/εdt− eif(t0)/ε
(
ε−1f ′′(t0)/2πi

)−1/2∑
j<k

εjLj [ψ]

∣∣∣∣∣∣ ≤ Cεk
∑

α≤2k

sup |ψ(α)(x)|.

Here C is bounded when f stays in a bounded set in C3k+1(X) and |t −
t0|/|f ′(t)| has a uniform bound. With,

gt0(t) = f(t)− f(t0)−
1
2
f ′′(t0)(t− t0)2,

which vanishes up to third order at t0, and

Lj [ψ] =
∑

ν−µ=j

∑
2ν≥3µ

i−j 2−ν

ν!µ!
(−1)νf ′′(t0)−ν(gµ

t0ψ)(2ν)(t0).

We will use this theorem with k = 2. Note that L1 can be expressed as the
sum L1[ψ] = L

(1)
1 [ψ] + L

(2)
1 [ψ] + L

(3)
1 [ψ], where L(j)

1 is respectively associated
to the couple (νj , µj) = (1, 0), (2, 1), (3, 2) and is identified as
L

(1)
1 [ψ] = − 1

2if
′′(t0)−1ψ(2)(t0),

L
(2)
1 [ψ] = 1

222!if
′′(t0)−2(gt0ψ)(4)(t0) = 1

8if
′′(t0)−2

(
g
(4)
t0 (t0)ψ(t0) + 4g(3)

t0 (t0)ψ′(t0)
)
,

L
(3)
1 [ψ] = −1

232!3!if
′′(t0)−3(g2

t0ψ)(6)(t0) = −1
232!3!if

′′(t0)−3(g2
t0)

(6)(t0)ψ(t0).

A.2 Proof of approximation (1.10)

Let us now apply the stationary phase theorem to the operator L̃

L̃[φ] =
1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−

1
2

(s− t)2

c0at dt.

Note that the integral

J(s) =
∫ ∞

0

ψ(t)eif(t)/εdt,



24 H. Ammari et al.

with ψ(t) = φ(t)√
t
, ε = c0a, f(t) = i (t−s)2

2t , satisfies J(s) =
√
c0a2πL̃[φ]. The

phase f vanishes at t = s and satisfies

f ′(t) = i
1
2

(
1− s2

t2

)
, f ′′(t) = i

s2

t3
, f ′′(s) = i

1
s
.

The function gs(t) is given by

gs(t) = i
1
2

(t− s)2

t
− i

1
2

(t− s)2

s
= i

1
2

(s− t)3

ts
.

We can deduce that(gsψ)(4)(s) =
(
g
(4)
x0 (s)ψ(s) + 4g(3)

x0 (s)ψ′(s)
)

= i 12
(

24
s3ψ(s)− 24

s2ψ
′(s)
)
,

(g2
sψ)(6)(s) = (g2

x0
)(6)(s)ψ(s) = − 1

4
6!
s4ψ(s),

and then, with the same notation as in Theorem A.1,

L
(1)
1 [ψ] = −1

i

(
1
2
(f ′′(s))−1ψ′′(s)

)
=

1
2
s

(
φ√
s

)′′
=

1
2

(√
sφ′′(s)− φ′(s)√

s
+

3
4

φ

s3/2

)
,

L
(2)
1 [ψ] =

1
8i
f ′′(s)−2

(
g(4)

s (s)ψ(s) + 4g(3)
s (s)ψ′(s)

)
=

1
2

(
3
(
φ(s)√
s

)′
− 3

φ(s)
s3/2

)

=
1
2

(
3
φ′(s)√
s
− 9

2
φ(s)
s3/2

)
,

L
(3)
1 [ψ] =

−1
232!3!i

f ′′(s)−3(g2
s)(6)(s)ψ(s) =

1
2

(
15
4
φ(s)
s3/2

)
.

The operator L1 is given by

L1[ψ] = L
(1)
1 [ψ] + L

(2)
1 [ψ] + L

(3)
1 [ψ]

=
1
2

(√
sφ′′(s) + (3− 1)

φ′(s)√
s

+
(

3
4
− 9

2
+

15
4

)
φ(s)
s3/2

)
=

1
2
√
s

(sφ(s))′′ ,

and so,∣∣∣∣J(s)−
√

2πac0s
(
φ(s)√
s

+ a
1

2
√
s

(sφ(s))′′
)∣∣∣∣ ≤ Ca2

∑
α≤4

sup |φ(α)(x)|.

Finally, we arrive at∣∣∣∣ 1√
2π

∫ ∞

0

φ(t)
1√
ac0t

e−
(t−s)2

2ac0t dt−
(
φ(s) +

a

2
(sφ(s))′′

)∣∣∣∣ ≤ Ca3/2
∑
α≤4

sup |φ(α)(t)|.
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A.3 Proof of approximation (1.19)

Let us now apply the stationary phase theorem to the operator L defined by

L̃[φ](τ) =
1√
2π

∫ smax

smin

[
φ(s) (a (c0T + s− c0τ))

− 1
2 e

−
(s− c0τ)

2

2a (c0T + s− c0τ)
]
ds

=
1√
2π

∫ smax−c0τ

smin−c0τ

[
φ(t+ c0τ)

(
a
(
T̃ + t

))− 1
2
e

−
t2

2a
(
T̃ + t

) ]
dt,

where T̃ = c0T . Note that the integral

J(τ) =
∫ smax−c0τ

smin−c0τ

ψ(t)eif(t)/εdt,

with ψ(t) = φ(t+c0τ)√
T̃+t

, ε = a, f(s) = i t2

2(T̃+t) , satisfies J(τ) =
√
a2πL̃[φ].

The phase f vanishes at t = 0 and satisfies

f ′(t) = i
1
2
t(t+ 2T̃ )
(t+ T̃ )2

, f ′′(t) = i
T̃ 2

(t+ T̃ )3
, f ′′(0) = i

1
T̃
.

The function g0(t) is identified as

g0(t) = −i1
2

t3

T̃ (T̃ + t)
.

We have(g0ψ)(4)(0) =
(
g
(4)
0 (0)ψ(0) + 4g(3)

0 (0)ψ′(0)
)

= i 12

(
24
T̃ 3ψ(0)− 24

T̃ 2ψ
′(0)
)
,

(g2
0ψ)(6)(0) = (g2

0)(6)(0)ψ(0) = − 1
4

6!
T̃ 4ψ(0),

and

ψ(0) =
φ(c0τ)
T̃ 1/2

, ψ′(0) =
φ′(c0τ)
T̃ 1/2

−1
2
φ(c0τ)
T̃ 3/2

, ψ′′(0) =
φ′′(c0τ)
T̃ 1/2

−φ
′(c0τ)
T̃ 3/2

+
3
4
φ(c0τ)
T̃ 5/2

.

Therefore, again with the same notation as in Theorem A.1,

L
(1)
1 [ψ] = −1

i

(
1
2
(f ′′(0))−1ψ′′(0)

)
=

1
2

(√
T̃ φ′′(c0τ)−

φ′(c0τ)
T̃ 1/2

+
3
4
φ(c0τ)
T̃ 3/2

)
,

L
(2)
1 [ψ] =

1
8i
f ′′(0)−2

(
g
(4)
0 (0)ψ(0) + 4g(3)

0 (0)ψ′(0)
)

=
1
2

(
3ψ′(0)− 3

ψ(0)
T̃

)
=

1
2

(
3
φ′(c0τ)
T̃ 1/2

− 9
2
φ(c0τ)
T̃ 3/2

)
,

L
(3)
1 [ψ] = − 1

232!3!i
f ′′(0)−3(g2

0)(6)(0)ψ(0) =
1
2

(
15
4
φ(c0τ)
T̃ 3/2

)
,
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and L1 is given by

L1[ψ] = L
(1)
1 [ψ] + L

(2)
1 [ψ] + L

(3)
1 [ψ] =

1

2
√
T̃

(
T̃ φ′′(c0τ) + 2φ′(c0τ)

)
=

1

2
√
T̃

(
(s− c0τ + T̃ )φ(s)

)′′
bs=c0τ

,

which yields∣∣∣J(τ)−
√

2πa
(
φ(c0τ) + a/2 ((s− c0τ + c0T )φ(s))′′bs=c0τ

)∣∣∣ ≤ Ca2
∑
α≤4

sup |φ(α)(x)|.

Hence,∣∣∣∣L̃[φ]−
(
φ(c0τ) +

ac0T

2

(
φ′′(c0τ) +

2φ′(c0τ)
c0T

))∣∣∣∣ ≤ Ca3/2
∑
α≤4

sup |φ(α)(t)|.
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