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Abstract

The aim of this work is to present some numerical computations of solutions of the Steiner Prob-
lem, based on the recent phase field approximations proposed in [12] and analyzed in [5, 4]. Our
strategy consists in improving the regularity of the associated phase field solution by use of higher-
order derivatives in the Cahn-Hilliard functional as in [6]. We justify the convergence of this slightly
modified version of the functional, together with other technics that we employ to improve the nu-
merical experiments. In particular, we are able to consider a large number of points in dimension 2.
We finally present and justify an approximation method that is efficient in dimension 3, which is one
of the major novelties of the paper.
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1 Introduction

Consider a bounded and convex open set Ω ⊂ Rd. The Steiner problem consists in finding, for a given
collection of points a0, · · · , aN ∈ Ω, a compact connected set K ⊂ Ω containing all the ai’s and having
minimal length. In other words, it amounts to solving the minimization problem

min{H1(K);K ⊂ Ω, connected, and containing all points ai}, (1.1)

where H1(K) stands for the one-dimensional Hausdorff measure of K.
This very old problem, stated more than two centuries ago, is known as a (NP )-hard problem in

combinatorial theory (see e.g. [11]). Finding efficient algorithms to compute an approximate solution is
still an active research fieldin graph theory (see for instance [9] and references therein). We also refer to
[13] for the study in a general metric space setting.

In this paper, we consider the problem from a variational point of view, based on the phase field
approximation that has been recently introduced in [12] and analyzed in [5, 4] (see also [7, 8, 3] for
different approaches). The model which has been proved to work in dimension 2, consists in coupling a
Cahn-Hilliard type functional

Pε(u) =

ˆ
R2

ε|∇u|2 +
1

ε
V (u)dx

with a penalized term that forces the connectedness of the set K. Here, ε is a small parameter and V is
the single-well potential defined by V (s) = 1

4 (1− s)2. More precisely, the connectedness of K is enforced
by penalizing the quantity

N∑
i=1

D(u2; a0, ai), (1.2)

where for all nonnegative Borel measurable functions w : Ω→ [0,∞), the function D(w; a, b) denotes the
(generalized) geodesic distance between two points a, b ∈ Ω relatively to w:

D(w; a, b) := inf
Γ:a b

ˆ
Γ

w dH1 ∈ [0,+∞]. (1.3)

In this definition, the notation Γ : a  b means that Γ is a rectifiable curve in Ω connecting a and b.
Notice that D(w; a, b) makes sense for any w ∈ W 1,1(Ω) ∩ L∞(Ω) but one has to consider the precise
representative of the Sobolev function w ∈W 1,1(Ω) while computing the integral on curves. In this paper
we shall always tacitly work with the precise representative without specify it explicitly.
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Finally, the phase field approach in [12, 5, 4] relies on the minimization among u ∈ 1 +H1
0 (Ω) of the

following functional:

Fε(u) := Pε(u) +
1

λε

N∑
i=1

D(u2 + δε; a0, ai). (1.4)

It is proved in [5, Theorem 4.2] and [4, Theorem 1.2] that, in dimension 2, letting λε and δε go to zero
as ε goes to zero, one obtains the convergence of sublevel sets of minimizers to a solution of the Steiner
problem. Notice that the introduction of an additional parameter δε can be interpreted as an elliptic
regularization of the initial term (1.2). Intuitively, the penalizing term implies that

∑N
i=1 D(u2; a0, ai) = 0

at the limit ε → 0, which shows that the set K := {u = 0} must be path connected to all the points
ai. Moreover, the Cahn-Hilliard energy forces u to be equal to 1 in R2 \K, and its contribution gives an
approximation of H1(K).

In order to handle more general Steiner problems, it is possible to replace the penalized term (1.2) by

ˆ
Ω

D
(
u2 + δε; a0, x

)
dµ, (1.5)

where µ is a positive measure supported in Ω. In that case, the zero level set of a minimizer u of the
functional Pε(u) + 1

λε

´
Ω

D
(
u2; a0, x

)
dµ is an approximation of the compact connected set K containing

the support of µ, with minimal length, as studied in [13]. In this setting, the term (1.2) corresponds to
the choice

µ :=

N∑
i=1

δai , (1.6)

where δai stands for the Dirac mass at point ai. In this paper we assume that the measure µ is discrete,
and defined by (1.6); however, the same approach could also be used for a general measure by adding
weights, i.e. by considering an approximation of µ of the form

µ :=

N∑
i=1

βiδai . (1.7)

For simplicity we do not pursue this approach here but focus on measures of type (1.6), corresponding
to the original Steiner problem (1.1).

The aim of this paper is twofold: firstly, improve the numerical experiments by use of several regu-
larization effects in the functional, secondly, present and justify a method that works in dimension 3 as
well.

More precisely, we are interested in the derivation of an efficient numerical scheme to approximate
the minimization problem

min
u∈1+H1

0 (Ω)
Fε(u), (1.8)

where Fε is the functional defined in (1.4). A first idea should be to compute a time-discretization of the
L2-gradient flow of Fε(u), i.e,

ut = −∇Fε(u).

However, this strategy raises some difficulties in the computation of the gradient of the geodesic terms
with respect to u. Even if numerical methods have been developed to differentiate geodesics with respect
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to the metric (see for instance, [2]), in practice, these computations may exhibit some anisotropy issues,
or more generally, a dependence on the spatial discretization of the domain. Besides, the cost of the
numerical differentiation of the geodesic distance can become prohibitive if the number of Steiner points
N increases.

In order to avoid the differentiation of the geodesic distance D
(
w; a0, ai) with respect to the metric w,

we adopt the point of view developed in [4], that consists in dissociating the minimization problem (1.8)
by introducing an extra variable γ := (γi)1≤i≤N , where each γi is a Lipschitz curve joining the base point
a0 to the point ai in Ω. Following the notation in [4], we define for any pair of distinct points a, b ∈ Ω
the set

P(a, b) :=
{
γ ∈ Lip([0, 1]; Ω0) : γ(0) = a and γ(1) = b

}
,

and introduce the admissible set

P(a0, µ) :=
{
γ = (γi)

N
i=1 : γi ∈ P(a0, ai)

}
.

Let Eε(u,γ) be defined through

Eε(u,γ) := Pε(u) +
1

λε

N∑
i=1

ˆ
Γ(γi)

(δε + u2) dH1, (1.9)

where for each 1 ≤ i ≤ N , Γ(γi) is defined by Γ(γi) = γi([0, 1]). Using Definition (1.3), the value Fε(u)
can be obtained by the identity

Fε(u) = inf
γ∈P(a0,µ)

Eε(u,γ).

In this framework, the minimization problem (1.8) now takes the form

inf
{
Eε(u,γ), u ∈ 1 +H1

0 (Ω), γ ∈ P(a0, µ)
}
. (1.10)

This suggests to compute a minimizing sequence for Fε by considering the following L2-gradient flow
of Eε: {

ut = −∇uEε(u,γ)

γ = Argminγ{Eε(u,γ)}.

Then, an approximation (un,γn) of the flow (u,γ) at time t = nδt can be obtained by the following
time-decoupled scheme:

Step 1 – Computation of γn as
γn = Argminγ∈P(a0,µ)Eε(u

n,γ).

Step 2 – Computation of the function un+1 defined by un+1 = v(δt) where v is the solution to the following
PDE: {

vt = −∇uEε(v,γn)

v(., 0) = un(.)

One major advantage of this approach is that v can be computed without requiring the differentiation of
the geodesic distance with respect to the metric, which is known to be a very expensive procedure.

However, two major difficulties remain in the computation of step 2. The first one results from the lack
of regularity of the solution u, which is only C0,α for all α ∈ (0, 1). As a result, u is not smooth enough
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to be discretized in space with a sufficient precision, which globally reduces the rate of convergence of
the numerical scheme. The second difficulty concerns the geodesic term Rε, defined by

Rε(u) =

N∑
i=1

ˆ
Γ(γi)

(δε + u2) dH1. (1.11)

Indeed, its differential with respect to u is in general a measure, which raises some instability issues if
one uses a classical time discretization scheme for the computation of v.

In this paper, we explain how we can slightly modify the previous phase field model to improve the
regularity of the solution u, and to facilitate the derivation of a simple unconditionnally-stable scheme.

1.1 Modified phase field models

In order to enhance the regularity of the phase field function u, the idea consists in considering a higher-
order Edge penalization in the Cahn-Hilliard functional as in the recent work [6]. This amounts to using
a second-order Cahn-Hilliard type energy to approximate H1(K), of the form

P̃ε(u) =

ˆ
R2

ε3|∆u|2 +
1

ε
V (u)dx.

These higher order energies are convenient to regularize the profiles of the minimizers near the singular
sets, and therefore, to improve the precision of the spatial discretization and the performances of the
numerical methods.

Another remarkable property of the second-order approximations of the length is that they can be
used in dimension 3 as well. In that case, for instance, one can consider the modified energy

P̃ε(u) =

ˆ
R3

ε2|∆u|2 +
1

ε2
V (u)dx.

In this expression, the usual gradient term has been replaced by a Laplacian which, as opposed to the
gradient, is able to detect 1-dimensional objects in R3. In Section 2.2, we will give some evidence about
the Γ-convergence of this functional to the length, based on arguments that are rigorously justified in
dimension 2, and extended to dimension 3 provided that some reasonable estimate on the optimal radial
profile holds true (2.26).

About the second point, recall that the numerical computation of the solution v to the equation

vt = −∇uEε(v,γn) = 2ε∆v − 1

ε
V ′(v)− 2

λε

[
N∑
i=1

H1|Γ(γi)

]
v,

raises some numerical stability issues, due to the presence of singular measures H1|Γ(γi). A natural way of

regularizing these measures is to consider the convolution with a kernel ρεα of size εα, i.e. ρε = 1
ε2 ρ(·/ε).

This leads to the regularized geodesic term

R̃ε(u,γ) =
1

λε

ˆ
Ω

[
N∑
i=1

(ρεα ∗ H1|Γ(γi)
)

]
(δε + u2) dx.

In the rest of the paper, we will denote by ωε[γ] the function

ωε[γ] =

N∑
i=1

(ρεα ∗ H1|Γ(γi)). (1.12)
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As the minimizer uε of Eε(u,γ) is expected to take the form

uε(x) = q(dist(x,Γ(γ))/ε),

where q is a phase field profile (which is explicit and depends only on the single-well potential V ), we see
that α should satisfies α > 1 to reduce the effect of this regularization when ε → 0. A more thorough
discussion about this regularized term will be done in Section 2.4.

Moreover, in practice and in our numerical experiments, we can observe (see for instance figure 8)
that the width of the sublevel sets of u can vary along the support of γ. More precisely, the width of
these sets increases around points x ∈ γ that are crossed by multiple geodesics γi. This results from
the use of a penalization term ωε[γ], whose weight is not uniform along the support of γ. Even if this
issue may not be crucial for a small number of points ai (less than 10 for instance), it makes the method
inefficient for a large number of attachment points, since the geodesics may not be precisely detected by
the phase field u.

Hence, we propose to reduce these adverse effects by considering the weight

ωεmax[γ] = MaxNi=1

{
ρεα ∗ H1|Γ(γi)

}
,

and the associated geodesic term

R̃ε,max(u,γ) =
1

λε

ˆ
Ω

ωεmax[γ](δε + u2) dx.

1.2 Outline of this paper

Section 2 recalls some results from [5, 4] and gives mathematical justifications of the different modified
phase field models that we propose. This section is purely theoretical. The first result contains a full
Γ-convergence proof in dimension two (Proposition 2.4) inspired by the work in [6]. Its extension to
dimension three requires a rather technical study of the corresponding 1D-profile (or more precisely,
radial profile). The main result of this section is the existence of a radial profile for the 3D energy as
stated in Lemma 2.10. We then discuss the proof of Γ-convergence in dimension three, which relies on
certain estimates on the unknown radial profile, that are justified by some numerical evidence. In the last
Section 2.4, we compare the functional with its regularized version, that involves a convolution kernel in
the geodesic term.

Section 3 provides numerical experiments and compares the different approaches to approximate the
Steiner optimization problem. In particular, we present some 2D examples with a large number of points
(up to 100 points). We also show satisfactory experiments in 3D. To our best knowledge, it would be the
first time that the Steiner problem is solved in space dimension three, by use of a phase-field method.

1.3 Acknowledgements

We would like to express our gratitude to Vincent Millot for his precious comments and ideas, and many
fruitful discussions relative to this work. This work has been supported by the PGMO project COCA
from the Hadamard fundation.

2 Theoretical analysis of the various phase field models

In this section we justify our numerical method by recalling some convergence results from [4]. We then
discuss the incidence of small variants of the functional introduced in [4], that we used in practice. In
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particular, a full Γ-convergence result is proved for a second-order functional in dimension 2, and its
potential extension to dimension 3 is discussed.

2.1 Main results from [4]

In this section we collect some useful results contained in [4] concerning the minimization problem (1.8)
and its convergence as ε→ 0. We keep the same notation as in the introduction. We assume that Ω ⊂ R2

is convex and {ai}i=1,...,N ⊂ Ω are given points. We also, as before, denote by µ :=
∑N
i=1 δai .

Notice that in [4], precise estimates are given, with constants depending explicitely on parameters
ε, δε, λε. Since we are mainly concerned with the asymptotic behaviour of the minimizers when ε→ 0, we
will assume that all these parameters are small, i.e. ε, δε, λε << 1. As a consequence, some statements
will be simplified.

Minimization problem with prescribed curves

For a given set of curves γ ∈ P(a0, µ), we consider the functional Eε(·,γ) : H1(Ω)→ [0,+∞] already
defined in (1.9) by

Eε(u,γ) := ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

N∑
i=1

ˆ
Γ(γi)

(δε + u2) dH1, (2.1)

and we introduce the minimization problem

min
u∈1+H1

0 (Ω)
Eε(u,γ). (2.2)

It is proved in [4] that problem (2.2) has a unique solution, provided that γ satisfies a mild regularity
constraint, that can be expressed in terms of Ahlfors regularity. Let us recall that the Ahlfors constant
Al(K) of a closed set K ⊂ R2 is defined by

Al(K) := sup

{
H1(K ∩B(x, r))

r
: r > 0 , x ∈ K

}
.

For any Λ ≥ 2, we introduce the subset PΛ(a0, µ) of P(a0, µ) defined by

PΛ(a0, µ) :=
{
γ ∈ P(a0, µ) : Al

(
Γ(γi)

)
≤ Λ for each i

}
.

This definition is motivated by the fact that whenever γ ∈ PΛ(a0, µ), the bilinear form

(u, v) ∈ H1(Ω)×H1(Ω) 7→
N∑
i=1

ˆ
Γ(γi)

uv dH1 (2.3)

is continuous. It follows that Eε(u,γ) is finite for every u ∈ 1 + H1
0 (Ω). Besides, the mapping v ∈

H1(Ω) 7→ Eε(v,γ) is lower semi-continuous with respect to the weak H1(Ω) convergence, and by strict
convexity of this functional, there holds following result.

Theorem 2.1. ([4, Theorem 2.3 and Proposition 2.10]) Given γ ∈ PΛ(a0, µ), problem (2.2) admits a
unique solution uγ , which satisfies the Euler-Lagrange equation−ε

2∆uγ =
1

4
(1− uγ)− ε

λε
uγH1|Γ(γ) in H−1(Ω) ,

uγ = 1 on ∂Ω.

(2.4)
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Moreover, uγ ∈ C0,α(Ω) for every α ∈ (0, 1) with the estimate

‖uε‖C0,α ≤ Cα
1

εαδελε
. (2.5)

Thanks to the Hölder regularity of uγ , it is then easily possible to minimize Eε in the γ variable with
u fixed in C0,α, which justifies theorically the algorithm described in the introduction.

Existence and uniqueness of the minimizer for Fε

By the very definition of Fε, the functional Eε relates to Fε through the formula

Fε(u) = inf
γ∈P(a0,µ)

Eε(u,γ). (2.6)

Hence, the existence result for Fε follows from the existence of a minimizing pair (uε,γε) for Eε, that we
state as a preliminary result.

Theorem 2.2. [4, Theorem 2.12] The functional Eε admits at least one minimizing pair (uε,γε) in
(1 + H1

0 (Ω)) × P(a0, µ). In addition, for any such minimizer, γε belongs to PΛε(a0, µ), with Λε = 4/δε
and uε is the minimizer of problem (2.2) with γ = γε.

From Theorem 2.2 we can deduce the following.

Theorem 2.3. [4, Corollary 2.13] The functional Fε admits at least one minimizer uε in 1 + H1
0 (Ω) ∩

L∞(Ω). In addition, any such minimizer belongs to W 1,p(Ω) for every p <∞. In particular, uε ∈ C0,α(Ω)
for every α ∈ (0, 1) with the estimate

‖uε‖C0,α ≤ Cα
1

εαδελε
. (2.7)

Moreover, there exists γε ∈ P(a0, µ) such that (uε,γε) is a minimizing pair for Eε in (1 + H1
0 (Ω)) ×

P(a0, µ). In addition, γε belongs to PΛε(a0, µ), with Λε = 4/δε and uε is the minimizer of problem (2.2)
with γ = γε.

2.2 Analysis of the second-order functional in dimension 2

In this section we discuss the incidence of replacing ∇u by ∆u in the functional, which helps in getting
better numerical results by regularizing the profile of the phase field u in the transition region, near the
curves. To this aim, we look at the Γ-convergence of the higher order functional in dimension 2,

Gε(u) :=

ˆ
Ω

ε5−d|∆u|2 +
(1− u)2

εd−1
dx+

1

λε

ˆ
K

(u2 + δε)dH1,

that we used in our numerical experiments in dimension d = 2 and d = 3.
We first state a result in dimension 2, which provides the Γ-convergence in the simple case when K is

a segment. Our proof is strongly inspired by the Γ-convergence result in [6]. This is why we use in this
section the potential V (u) = (1− u)2 instead of V (u) = 1

4 (1− u)2 as it is done in the rest of the paper.

Proposition 2.4. (Γ-convergence for K fixed). Let d = 2 and K be a segment. We assume that
δε/λε → 0. Then, in the L1 topology, there holds

Γ− limGε =

{
2
√

2H1(K) if u = 1 a.e.
+∞ otherwise.
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Remark 2.5. From Proposition 2.4 it would be easy to conjecture that the same holds true for any 1-
rectifiable set K. Indeed, a simple variant of our argument would probably work for any polygonal line
K, and then passing from polygonal lines to any rectifiable set is a matter of technical details, that we
decided to avoid in this presentation.

Remark 2.6. We expect the same result to hold for d = 3, but the proof is more complicated, since it
involves sets of co-dimension 2 in R3. We will discuss this extension in the next Section 2.3.

As usual in Γ-convergence, we divide the proof in two parts, corresponding to the liming and limsup
inequalities. Before doing so, we analyse the optimal 1D-profiles.

2.2.1 One-dimensional optimal profile analysis

In this section we are interested in the 1D optimal profiles that will be used in the Γ-limsup inequality.
We first explain the heuristic before making precise computations. The idea is to analyse, in the case
where K is a line in R2, what would be a minimizer u of the form

u(x) = v (dist(x,K)) , (2.8)

where v : R→ R.
We assume for instance that K is the line Re1. We then notice that the function u of the form (2.8)

is constant in the e1 direction, and we are thus interested in the energy of the e⊥1 components. In R2, it
reduces to the simple 1D-energy

ˆ
R
ε3(v′′(r))2 +

1

ε
(1− v(r))2 dr +

1

εγ
(
v2(0) + δε

)
,

which motivates the definition of the following variational problem, after rescaling v(r) by v(εr):

m2D :=

 min
v
E2D :=

ˆ +∞

0

(
v′′(r))2 +

(
1− v(r)

)2
dr,

v ∈ H2
loc(0,+∞) , v(0) = 0 , v′(0) = 0 , lim

r→+∞
v(r) = 1

(2.9)

We added condition v′(0) = 0 because we have in mind an even profile on R. The above minimization
problem can be solved explicitly using the associated Euler equation, as in [6, (3.3)], and the solution is
given by

ϕ(r) = 1−
√

2e
− r√

2 sin

(
r√
2

+
π

4

)
.

By a computation we deduce that
m2D =

√
2, r ≥ 0.

2.2.2 Proof of Γ-liminf for d = 2.

To prove the Γ-liminf inequality, we first prove the following one-dimensional liminf inequality.

Lemma 2.7 (One-dimensional liminf inequality for the two-dimensional profile). Let T > 0 be fixed. Let
vε be any C1([−T, T ]) sequence such that vε → 1 in L1([−T, T ]), and vε(0)→ 0. Then

lim inf
ε

ˆ T

−T
ε3 (v′′ε )

2
+

1

ε
(1− vε)2 dt ≥ 2m2D. (2.10)
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Proof. This is essentially the core of the proof of the liminf in [6], but for the reader’s convenience we
rewrite some details in our particular context. We may assume that the above liminf is finite and that
vε is a sequence that realizes the liminf. Let ε0 be fixed. Then there exists a constant C > 0 such that

sup
0<ε<ε0

ˆ T

−T
(ε3 (v′′ε )

2
+

1

ε
(1− vε)2) dt ≤ C,

which implies that for any 0 < ε < ε0,

L1({t ∈ [−T, T ] s.t. (1− vε)2 >
√
ε}) ≤ 1√

ε

ˆ T

0

(1− vε)2dt ≤ C
√
ε.

We deduce that there exist two sequences s+
ε ∈ [0, T ] and s−ε ∈ [−T, 0] such that

lim
ε→1

vε(s
±
ε ) = 1.

Moreover, by Gagliardo-Nirenberg interpolation inequality (see for instance [6, Proposition 2.1]), there
exists c0 > 0 such that for any 0 < ε < ε0,

c0ε

ˆ T

−T
(v′ε)

2dt ≤ 1

ε

ˆ T

−T
(1− vε)2dt+ ε3

ˆ T

−T
(v′′ε )2dt. (2.11)

Combining the above estimate with Hölder inequality, we obtain the existence of a constant C > 0 such
that ˆ T

−T
ε|v′ε|dt ≤ C

√
ε ∀ε ∈ (0, ε0).

Hence, up to a subsequence, εv′ε converges to 0 a.e. in (−T, T ), and without loss of generality, we can
assume that

lim
ε→0

εv′ε(s
±
ε ) = 0.

Remember that we also have limε→0 vε(0) = 0. Let tε be a minimizer of vε on the interval [s−ε , s
+
ε ].

For ε small, we can assume s−ε < tε < s+
ε , and by minimality, there holds

lim
ε→0

vε(tε) = 0, and moreover v′ε(tε) = 0 for any ε.

To estimate by below the integral
´ T
−T (ε3 (v′′ε )

2
+ 1

ε (1 − vε)2) dt, we first consider the contribution
of interval [tε, T ]; the contribution of [−T, tε] will be treated similarly. Let us introduce the rescaled
function wε(z) := vε(εy + tε). Using the change of variable r = t−tε

ε , we get

ˆ T

tε

(ε3 (v′′ε )
2

+
1

ε
(1− vε)2) dt =

ˆ (T−tε)/ε

0

((w′′ε )
2

+ (1− wε)2) dr. (2.12)

Notice that the previous properties established for vε now read

lim
ε→+∞

wε(0) = 0, w′ε(0) = 0 for any ε, lim
ε→+∞

wε

(
s+
ε − tε
ε

)
= 1, lim

ε→+∞
w′ε

(
s+
ε − tε
ε

)
= 0. (2.13)
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In order to estimate the right-hand side in (2.12), we use the construction proposed in [6] of an admissible
test function w̃ε for the following minimisation problem:

min
{ ˆ +∞

0

((w′′(r))2 + (1− w(r))2) dr,

w ∈ H2
loc(0,+∞) , w(0) = vε(tε) , w

′(0) = 0 , lim
r→+∞

w(r) = 1
}
. (2.14)

This problem is a slight variant of the minimisation problem (2.9) defining m2D, and as stated in [6,
Remark 1], the corresponding minimum is given by

√
2 (vε(tε)− 1)2.

Using properties (2.13), it is possible to construct for any η > 0 a smooth function w̃ε defined on
(0,+∞), that coincides with wε on [0, (s+

ε − tε)/ε], is equal to 1 for r ≥ (s+
ε − tε)/ε+ 1, and such that

ˆ (s+ε −tε)/ε

0

((w′′ε )2 + (1− wε)2) dr ≥
ˆ +∞

0

((w̃′′ε )2 + (1− w̃ε)2) dr − η.

Let Pε be the unique polynomial of degree less or equal to 3 satisfying

Pε(0) = wε

(
s+
ε − tε
ε

)
, P ′ε(0) = w′ε

(
s+
ε − tε
ε

)
, Pε(1) = 1, P ′ε(1) = 0.

For r ≥ 0, we define w̃ε(r) by

w̃ε(r) =


wε(z) if 0 ≤ r ≤ s+ε −tε

ε ,

Pε

(
r − s+ε −tε

ε

)
if

s+ε −tε
ε ≤ r ≤ s+ε −tε

ε + 1,

1 if r ≥ s+ε −tε
ε + 1.

Using the change of variables z = r − s+ε −tε
ε in the interval [

s+ε −tε
ε ,

s+ε −tε
ε + 1], we obtain

ˆ +∞

0

((w̃′′ε )2 + (1− w̃ε)2) dr =

ˆ (s+ε −tε)/ε

0

((w′′ε )2 + (1− wε)2) dr +

ˆ 1

0

((P ′′ε )2 + (1− Pε)2) dz.

Computing the interpolation polynomial Pε explicitely, and using the two last limits in (2.13), one can
easily see that when ε goes to zero, Pε converges to 1 in C2([0, 1]). Since w̃ε is an admissible test function
for problem (2.14), for any η > 0, there holds for ε small enough

ˆ (s+ε −tε)/ε

0

((w′′ε )2 + (1− wε)2) dr ≥
ˆ +∞

0

((w̃′′ε )2 + (1− w̃ε)2) dr − η

≥
√

2 (vε(tε)− 1)2 − η.

Going back to relation (2.12), and applying a similar argument on interval [−T, tε], we obtain that

ˆ T

−T
(ε3 (v′′ε )

2
+

1

ε
(1− vε)2) dt ≥ 2

√
2 (vε(tε)− 1)2 − 2η.

Passing to the lim inf in ε and letting η go to zero yields the desired result.

Proposition 2.8 (Γ-liminf inequality, d = 2). Assume that d = 2, K ⊂ Ω is a segment. Then, for any
sequence ϕε converging to a function ϕ in L1(Ω), there holds

2
√

2H1(K) ≤ lim inf
ε→0

Gε(ϕε).
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Proof. We consider a sequence ϕε converging to a function ϕ in L1(Ω). Without loss of generality, we
can assume that K = [0, `] × {0} with ` := H1(K), and denote by T a positive number such that
inf{dist(x, ∂Ω) ; x ∈ K} ≥ T . We also assume that lim infε→0Gε(ϕε) < +∞, and even

sup
ε→0

Gε(ϕε) ≤ C < +∞.

But this implies ˆ
Ω

(1− ϕε)2 ≤ Cε,

and since Ω is bounded, ϕε → 1 in L1(Ω); hence ϕ = 1 a.e. in Ω. In the sequel we will still index by ε a
subsequence of ε. From the fact that ˆ

K

ϕ2
ε dH1 ≤ Cλε −→

ε→0
0,

we can extract a subsequence, not relabeled, such that ϕε → 0 H1-a.e. on K. On the other hand, by
Fatou lemma we get

lim inf
ε→0

Gε(ϕε) ≥ lim inf
ε→0

ˆ
Ω

ε3|∆ϕε|2 +
1

ε
(1− ϕε)2

≥
ˆ `

0

lim inf
ε→0

(ˆ T

−T
ε3
∣∣∂2
x2
ϕε
∣∣2 +

1

ε
(1− ϕε)2 dx2

)
dx1. (2.15)

As a result, we are reduced to check the following one-dimensional liminf inequality:

lim inf
ε→0

ˆ T

−T
(ε3 |v′′ε |

2
+

1

ε
(1− vε)2) dt ≥ 2m2D, (2.16)

for any sequence of functions vε : [−T, T ]→ R that satisfies vε → 1 in L1([−T, T ]), vε ∈ C1([−T, T ]) for
all ε (because H2(−T, T ) ⊂ C1([−T, T ])) and vε(0)→ 0.

The proof is then concluded by applying the 1D-case Lemma 2.7.

2.2.3 Proof of Γ-limsup for d = 2

We are now ready to conclude the demonstration of our Γ-convergence result by proving the limsup
inequality.

Proposition 2.9 (Γ-limsup inequality). Assume that d = 2, Ω ⊂ R2 is open and bounded, and K ⊂ Ω
is a segment. Assume also that δε/λε → 0. Then there exists a sequence ϕε ∈ H2(Ω) such that ϕε = 0
on K, ϕε → 1 on ∂Ω and

lim sup
ε

Gε(ϕε) ≤ 2
√

2H1(K).

Proof. We follow a standard construction in Allen-Cahn theory, defining ϕε by

ϕε(x) = v

(
dist(x,K)

ε

)
, x ∈ Ω,

where v is the solution of problem (2.9) that defines m2D. Notice that ϕε = 0 on K, thus

1

εγ

ˆ
K

(ϕ2
ε + δε)dH1 ≤ δε

λε
H1(K),
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which goes to zero since limε→0 δε/λε = 0.
Consequently, the most delicate part to handle in Gε is the volumic integral over Ω. By the formula

∆(v ◦ f) = (v′′ ◦ f)|∇f |2 + (v′ ◦ f)∆f,

we get the general identity

|∆ϕε|2 =

∣∣∣∣ 1

ε2
v′′
(dist(x,K)

ε

)
+

1

ε
v′
(dist(x,K)

ε

)
∆dist(x,K)

∣∣∣∣2 . (2.17)

We assume for simplicity that K = [0, `]× {0}. We divide Ω in two parts,

Ω1 := Ω ∩ {(x1, x2) : x1 ∈ [0, 1]},
Ω0 := Ω \ Ω1.

We compute the energy in Ω1 and Ω0 separately, starting with Ω1. We notice that in this region,
∆dist(x,K) = 0. Therefore, using (2.17), and denoting by T := diam(Ω), we obtain

ˆ
Ω1

(ε3|∆ϕε|2 +
(1− ϕε)2

ε
) dx ≤

ˆ `

0

ˆ T

−T

(
ε3|∆ϕε|2 +

(1− ϕε)2

ε

)
dx2 dx1

= 2

ˆ `

0

ˆ T

0

(
1

ε
(v′′(x2/ε))

2
+

(1− v
(
x2

ε

)
)2

ε

)
dx2 dx1

= 2`

ˆ T

0

(
1

ε

(
v′′
(x2

ε

))2

+
(1− v(x2/ε))

2

ε

)
dx2

= 2`

ˆ T/ε

0

((v′′ (t))
2

+ (1− v(t))2) dt

−→ε→0 2`m2D,

which proves that

lim sup
ε→0

ˆ
Ω1

ε3|∆ϕε|2 +
(1− ϕε)2

ε
dx ≤ 2`m2D.

Next, we analyse the energy in the remaining region Ω0. Again, we divide this region in two parts,

Ω−0 := {(x1, x2) ∈ Ω0, x1 < 0} ,
Ω+

0 := {(x1, x2) ∈ Ω0, x1 > `} .

We will show that the energy in both subregions goes to zero. For this purpose, it is enough to consider
the part Ω−0 ; the same argument will hold in Ω+

0 . In subdomain Ω−0 , let us compute the function
ϕε(x) = v(dist(x,K)/ε) in polar coordinates, i.e. with r = ‖x‖,

ϕε(x) = v(r/ε),

∆ϕε(x) =

(
∂2

∂r
+

1

r

∂

∂r

)(
v(r/ε)

)
=

1

ε2
v′′(r/ε) +

1

εr
v′(r/ε).
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Next, we estimate in polar coordinates, still denoting by T := diam(Ω),

ˆ
Ω−0

(ε3|∆ϕε|2 +
(1− ϕε)2

ε
) dx ≤

ˆ T

0

(ˆ 3π
2

π
2

(
ε3|∆ϕε|2 +

(1− ϕε)2

ε

)
rdθ

)
dr

= π

ˆ T

0

(
ε3

∣∣∣∣ 1

ε2
v′′(r/ε) +

1

εr
v′(r/ε)

∣∣∣∣2 +
(1− v(r/ε))2

ε

)
rdr

= πε

ˆ T/ε

0

(
z

∣∣∣∣v′′(t) +
1

t
v′(t)

∣∣∣∣2 + (1− v(t))2t

)
dt.

To analyse the limit in ε of the above upper bound, we recall the exact expression of v:

v(t) = 1−
√

2e
− t√

2 sin

(
t√
2

+
π

4

)
.

In particular,

(1− v(t))2t ≤ Cte−
√

2t.

Since the right-hand side of the previous inequality is in L1(0,+∞), this upper bound implies that

lim
ε→0

πε

ˆ T/ε

0

(1− v(t))2tdt = 0.

In a similar way, we can prove that the function t ∈ (0,+∞) 7→ t|v′′(t)|2 is integrable, so that

lim
ε→0

πε

ˆ T/ε

0

t(v′′(t))2dt = 0.

Finally,

v′(t) = e
− t√

2

(
sin

(
t√
2

+
π

4

)
− cos

(
t√
2

+
π

4

))
,

so that using the power series expansions of the functions sin and cos at point t = π/4, we obtain that
the mapping t 7→ 1

t v
′(t) admits a limit when t goes to 0. Besides, 1√

t
(v′(t))2 = O( 1

t2 ) as t→ +∞. This is

enough to conclude that

lim
ε→0

πε

ˆ T/ε

0

t

∣∣∣∣1t v′(t)
∣∣∣∣2 dt = 0.

Gathering the estimates in Ω1, Ω+
0 and Ω+

0 , we obtain the desired result:

lim sup
ε→0

ˆ
Ω

(ε3|∆ϕε|2 +
(1− ϕε)2

ε
) dx ≤ 2`m2D.

2.3 Analysis of the second-order functional in dimension 3

In this section, we discuss the extension of the previous result in dimension 3. To this aim, we address
the Γ-convergence of the second-order functional in dimension 3, which is now defined by

Gε(u) :=

ˆ
Ω

ε2|∆u|2 +
(1− u)2

ε2
dx+

1

λε

ˆ
K

(u2 + δε)dH1.

We are able to prove the Γ-convergence of this functional, under the hypothesis that the one-dimensional
optimal profile satisfies a certain estimate (see (2.26)), that will be discussed in Section 2.3.2.
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2.3.1 Existence of a one-dimensional optimal profile

Assume that K is a line in R3; for instance, K = Re1. Then, a function u of the form (2.8) is constant in
the e1 direction, and introducing the cylindrical coordinates (x1, r, θ) of a point x = (x1, x2, x3), defined
by (x2, x3) = (r cos θ, r sin θ), the function u satisfies u(x) = v(r). To compute the energy of such function
u in e⊥1 , we compute the Laplace operator in polar coordinates:

∆u(x) = v′′(r) +
1

r
v′(r).

Therefore, the energy in e⊥1 is

1

εγ
v2(0) + δε + 2π

ˆ +∞

0

[
ε2
(
v′′(r) +

1

r
v′(r)

)2
+

1

ε2
(1− v(r))2

]
r dr. (2.18)

This motivates the definition of the following variational problem:

m3D :=

 min
v
E3D :=

ˆ +∞

0

[(
v′′(r) +

1

r
v′(r)

)2
+
(
1− v(r)

)2]
r dr ,

v ∈ H2
loc((0,+∞)) , v(0) = 0 , v′(0) = 0 , lim

r→+∞
v(r) = 1.

(2.19)

The above problem m3D cannot be solved explicitely as easily as the corresponding two-dimensional
problem m2D. However, it is possible to prove the existence of a minimizer.

Lemma 2.10. There exists a unique solution v ∈ H2
loc(0,+∞) to problem (2.19). In particular, m3D is

finite and positive.

Proof. In order to simplify the expression of the energy, we first consider ψ := v − 1 and then use the
change of variable

r = et and w(t) := ψ(et).

We deduce that

ˆ +∞

0

[(
v′′(r) +

1

r
v′(r)

)2
+
(
v(r)− 1

)2]
r dr =

ˆ +∞

−∞

[(
ψ′′(et) + e−tψ′(et)

)2
+
(
ψ(et)

)2]
e2t dt

=

ˆ +∞

−∞

[
e−2tw′′(t)2 + e2tw(t)2

]
dt (2.20)

where we have used that

w′(t) = etϕ′(et) and w′′(t) = etϕ′(et) + e2tϕ′′(et).

Therefore, the minimization problem which defines m3D is equivalent to the following one

m3D :=

 min
w
Q(w) :=

ˆ
R

[
e−2tw′′(t)2 + e2tw(t)2

]
dt,

w ∈ H2
loc(R) , lim

t→−∞
w(t) = −1 , lim

t→−∞
e−tw′(t) = 0 , lim

t→+∞
w(t) = 0.

We first notice that the infimum is not −∞ because Q is nonnegative, and it is not +∞ because there
exist admissible w such that Q(w) < +∞ (for instance, any function w such that w(t) = −1 for t < 0,
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w(t) = 0 for t > 0 and w realises a smooth transition between −1 and 0 for t ∈ [0, 1]). Now let (wn)n∈N
be a minimizing sequence. We can assume that for any n ∈ N , wn is of class C2 on R and that there
exists a constant C > 0 such that Q(wn) < C for all n. This means in particular that, for all T > 0,

ˆ T

−T

[
e−2tw′′n(t)2 + e2twn(t)2

]
dt ≤ C (2.21)

therefore
‖wn‖L2(−T,T ) + ‖w′′n‖L2(−T,T ) ≤ C(T ),

for some constant C(T ) depending only on T . By Gagliardo-Nirenberg inequality, this implies that for
every T > 0, wn is bounded in H2(−T, T ). Furthermore, by the compact embedding of H2(−T, T )
into C1,α([−T, T ]) for α < 1/2, we can extract a (not relabeled) subsequence such that wn converges
strongly in C1,α([−T, T ]) to some function w. Replacing T by a sequence Tn → +∞ and then extracting
a diagonal subsequence, we can extract a further subsequence wn, which converges now strongly to w in
C1,α([−T, T ]) for all T > 0. We also know that w′′n converges weakly in L2(−T, T ), for all T , to some
limit ζ ∈ L2

loc(R). This limit is equal to w′′ in the sense of distributions, thus w ∈ H2
loc(R) and w′′n

converges weakly in L2(−T, T ) to w′′, for all T . Passing to the liminf in n for T fixed, we infer that

ˆ T

−T

[
e−2tw′′(t)2 + e2tw(t)2

]
dt ≤ lim inf

n→+∞

ˆ T

−T

[
e−2tw′′n(t)2 + e2twn(t)2

]
dt. (2.22)

But now, for all ε > 0 fixed, there exists N ∈ N such that Q(wn) ≤ inf Q+ ε for all n ≥ N . Passing
to the lim inf in n and using (2.22), we obtain

ˆ T

−T

[
e−2t

(
w′(t))2 + w(t)2e2t

]
dt ≤ lim inf

n→+∞
G(wn) ≤ inf Q+ ε.

Letting T → +∞ and ε→ 0, we conclude that Q(w) = inf Q.
To prove that w is a minimizer, it remains to check that w satisfies the conditions at ±∞. To treat

the condition at +∞, we go back to the function u, independent on x1 and satisfying u(x1, x2, x3) =
v(
√
x2

2 + x2
3). Using computations (2.20) and formula (2.18), we see that

2πQ(w) =

ˆ
R2

[
|∆u|2 + (1− u)2

]
dx2 dx3.

Noticing that ‖∆u‖L2(R2) = ‖D2u‖L2(R2) and applying Gagliardo-Nirenberg inequality to the function
1−u, we obtain that 1−u ∈ H2(R2). By Sobolev imbedding theorem, this implies that for all q ∈ (2,+∞),
1 − u ∈ W 1,q(R2)). Then, using the continuous imbedding of W 1,q(R2) in L∞(R2) and the density of
Cc(R2) in W 1,q(R2), we get

lim
R→+∞

‖1− u‖L∞(R2\BR(0)) = 0,

where BR(0) stands for the closed ball of center 0 and radius R in R2. Since u is radial, by definition of
w, this implies that limt→+∞ w(t) = 0.

To treat the conditions at −∞, we need to use the conditions satisfied by each function wn, and get
some uniform estimates ensuring the preservation of these conditions for the limit w. For that purpose,
we first notice that from condition limt→−∞ e−t wn(t), it is clear that

lim
t→−∞

w′n(t) = 0.
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Next, we use the bound

sup
n∈N

ˆ 0

−∞
e−2tw′′n(t)2dt ≤ C, (2.23)

from which we get, for all s < t ≤ 0

|w′n(t)− w′n(s)| =
∣∣∣ ˆ t

s

w′′n(τ)dτ
∣∣∣

≤
(ˆ t

s

e2τdτ

) 1
2
(ˆ t

s

e−2τw′′n(τ)2dτ

) 1
2

≤ Cet.

Passing to the limit in s→ −∞, we deduce that

|w′n(t)| ≤ Cet for all n and for all t ≤ 0. (2.24)

But this implies, using now that wn(t)→ −1 at −∞,

|wn(t) + 1| ≤ C
ˆ t

−∞
eτdτ ≤ Cet for all n and for all t ≤ 0.

Using the pointwise convergence of wn to w and of w′n to w′, we can pass to the limit in n in the above
inequalities, to obtain

|w′(t)| ≤ Cet for t ≤ 0 (2.25)

and

|w(t) + 1| ≤ C
ˆ t

−∞
eτdτ ≤ Cet for t ≤ 0,

which implies that limt→−∞ w(t) = −1, as desired.
Finally, let us check that limt→−∞ e−t w′(t) = 0. For that purpose, we first use (2.25) to deduce that

lim
t→−∞

w′(t) = 0.

Next, we use a similar argument as before, directly on w instead of wn, and write

|w′(t)− w′(s)| =
∣∣∣ˆ t

s

w′′(τ)dτ
∣∣∣

≤
(ˆ t

s

e2τdτ

) 1
2
(ˆ t

s

e−2τw′′(τ)2dτ

) 1
2

≤ C(t)et,

where

C(t) :=

(ˆ t

−∞
e−2τw′′(τ)2dτ

) 1
2

.

Letting s→ −∞ and then t→ −∞, we finally get limt→−∞ e−tw′(t) = 0.
Finally, the minimizer is unique because the functional Q is strongly convex in the w variable.
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2.3.2 Explicit optimal profile v and decreasing property

The expression of the optimal profile v defined as a minimizer of the energy

E3D =

ˆ +∞

0

r
[(
v′′(r) +

1

r
v′(r)

)2
+
(
1− v(r)

)2]
dr,

under the constraints v(0) = v′(0) = 0 and limr→+∞ v(r) = 1, can be derived explicitly. Indeed, the
associated Euler equation reads

r4v(4) + 2r3v(3) − r2v′′ + rv′ + r4v = r4,

whose solutions (see [1], page 379, equation 9.9.4) take the form

v(r) = 1 + c1ber(r) + c2bei(r) + c3ker(r) + c4kei(r).

Here, ber, bei, ker and kei are the Kelvin functions and the constants c1,c2,c3,c4 should be determined
to ensure the previous boundary conditions. More precisely, ber and bei are respectively the real and the
imaginary part of J(re

2iπ
4 ) where J is the zero order Bessel function of the first kind. Similarly, ker and

kei are the real and the imaginary parts of K(re
iπ
4 ), where K is the zero order modified Bessel function

of the second kind.
Finally, as the asymptotic expansion of kei around r = 0 is known to be of the form

kei(r) = −π
4

+
1

4
(1− γ + log(2)− log(r))r2 +O(r4),

where γ ' 0.577 is the Euler-Mascheroni constant, we deduce that the optimal profile v is given by

v(r) = 1 +
4

π
kei(r).

We can observe on the left picture of Figure 1 a comparison between the two optimal profiles obtained
in dimensions 2 and 3.

Moreover, recall that the asymptotic expansions of kei for large arguments satisfies (see 9.10.4, [1])

kei(r) = − π

2r
e
− r√

2 [f2(r) sin(β(r)) + g2(r) cos(β(r))] ,

where β(r) = r√
2

+ π
8 , and where{

f2(r) ' 1 +
∑
k≥1(−1)k cos(kπ/4)

k!(8r)k
Πk
`=1(2`− 1)2,

g2(r) '
∑
k≥1(−1)k sin(kπ/4)

k!(8r)k
Πk
`=1(2`− 1)2.

We can then deduce that kei has an exponential decay. More generally, using the recurrence relations
between the derivatives of the Kelvin functions (see 9.9.15, [1]), we can obtain similar asymptotic expan-
sions for kei′ and kei′′ and also deduce the exponential decay of the derivatives of kei, which is illustrated
on the right picture of figure 1. In particular, using all these arguments, we conjecture that the optimal
profile v satisfies ˆ +∞

0

r2

(∣∣∣∣v′′(r) +
2

r
v′(r)

∣∣∣∣2 + (1− v(r))2

)
dr < +∞. (2.26)
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Notice that estimate (2.26) is the analogue in dimension 3 of the previous bound

ˆ +∞

0

r

(∣∣∣∣v′′(r) +
2

r
v′(r)

∣∣∣∣2 + (1− v(r))2

)
dr < +∞

that was used in dimension 2 to eliminate the contribution of the energy at the “endpoints” of the segment
K in the limsup.
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Figure 1: Left : comparison of the two optimal profiles obtained in dimension 2 and 3. Right: the
function r 7→ e

r√
2 kei(r)

2.3.3 Discussion about the Γ-convergence in dimension 3

We expect that the methodology used in dimension 2 to prove the Γ-convergence can be extended in
dimension 3 to get a similar result. More precisely, we expect that

Γ− limGε =

{
2πm3DH1(K) if u = 1 a.e.,

+∞ otherwise,

where m3D is the constant defined in the minimizing problem (2.21) of the previous section. Indeed, the
liminf inequality should follow by adapting the same argument and has no further difficulty.

We can then derive a limsup inequality in a similar way as we did in 2D. Let us write the details. As
before we assume for simplicity that K = [0, `]× {0} and we divide Ω in two parts,

Ω1 := Ω ∩ {(x1, x2, x3) ∈ Ω : x1 ∈ [0, `]},
Ω0 := Ω \ Ω1.

We set T := diam(Ω) and compute the energy in Ω1 and Ω0 separately. We start with Ω1; in this region,
we use the cylindrical coordinates (x1, r, θ) and define ϕε(x1, x2, x3) = v(r/ε), where v is the minimizer
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of problem (2.21). Then,

ˆ
Ω1

(ε2|∆ϕε|2 +
(1− ϕε)2

ε2
) dx ≤

ˆ `

0

(ˆ T

0

ˆ 2π

0

(
ε2

∣∣∣∣ 1

ε2
v′′(r/ε) +

1

εr
v′(r/ε)

∣∣∣∣2 +
(1− v(r/ε)2

ε2

)
rdθdr

)
dx1

= 2π`

ˆ T

0

ε2

(∣∣∣∣ 1

ε2
v′′(r/ε) +

1

εr
v′(r/ε)

∣∣∣∣2 +
(1− v(r/ε)2

ε2

)
rdr

= 2π`

ˆ T/ε

0

(∣∣∣∣v′′ (z) +
1

z
v′(z)

∣∣∣∣2 + (1− v(z))2

)
zdz

−→ε→0 2π`m3D,

which proves

lim sup
ε→0

ˆ
Ω1

(ε3|∆ϕε|2 +
(1− ϕε)2

ε
) dx ≤ 2π`m3D.

It remains to analyze the energy in region Ω0, exactly as for the 2D case. Once again, we divide this
region in two parts:

Ω−0 := {(x1, x2, x3) ∈ Ω0, x1 < 0} ,
Ω+

0 := {(x1, x2, x3) ∈ Ω0, x1 > `} .

Let us show that the contributions of these subregions in the energy goes to zero as ε goes to zero. As
the arguments are similar for both subregions, let us consider only Ω−0 . In this domain, we compute the
function ϕε(x) = v(dist(x,K)/ε) in spherical coordinates, i.e. (r, θ, α) with r = ‖x‖. In these coordinates,
the Laplace operator can be written as

ϕε(x) = v(r/ε),

∆ϕε(x) =

(
∂2

∂r
+

2

r

∂

∂r

)(
v(r/ε)

)
=

1

ε2
v′′(r/ε) +

2

εr
v′(r/ε),

and the Jacobian determinant is r2| sin(α)|. Hence,

ˆ
Ω−0

(ε3|∆ϕε|2 +
(1− ϕε)2

ε
) dx ≤ π

ˆ T

0

ˆ π

0

(
ε3

∣∣∣∣ 1

ε2
v′′(r/ε) +

2

εr
v′(r/ε)

∣∣∣∣2 +
(1− v(r/ε))2

ε

)
r2| sin(α)|dαdr

≤ π2ε

ˆ T/ε

0

t2

(∣∣∣∣v′′(t) +
2

t
v′(t)

∣∣∣∣2 + (1− v(t))2

)
dt,

and we conclude that this upper bound goes to 0 as ε→ 0 thanks to (2.26). By the same computations,
the same result holds in Ω+

0 .
As a conclusion, summing up the contributions of Ω1 and Ω0, we have proved that

lim sup
ε→0

ˆ
Ω

(ε3|∆ϕε|2 +
(1− ϕε)2

ε
) dx ≤ 2π`m3D,

which finishes the proof of the limsup inequality in the 3D case.
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2.4 Analysis of the regularized geodesic term

In this section we analyze the impact of replacing the term
´

Γ
(u2 + δε)dH1 in the functional by the

following regularized one ˆ
Γ

(u2 + δε) d(H1 ∗ ρr),

which will be used in the numerical experiments. Here, ρr(x) = 1
rd
ρ(x/r) where ρ is a standard convolu-

tion kernel supported in the ball of radius one centered at the origin and d is the space dimension. Our
goal is to identify a dependence between r and ε so that the difference between the original functional
and the regularized one converges to zero as ε→ 0, in a certain sense.

2.4.1 Case of the first order functional in dimension 2

To simplify the analysis, we will only consider the case of two points a0, a1; the general case can be
handled following exactly the same idea. In this context we will denote by Eε the original energy

Eε(u,γ) := ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

ˆ
Γ(γ)

(δε + u2) dH1, (2.27)

and by Eε,r the regularized one

Eε,r(u,γ) := ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

ˆ
Γ(γ)

(δε + u2) d(H1 ∗ ρr). (2.28)

In this section, we assume that γ is fixed and Ahlfors-regular with constant Λε = 4/δε, as it is
the case for a minimizer (Theorem 2.2). Notice also that for a sequence (uε,γε) with bounded energy
Eε(uε,γε) ≤ C, the total length of Γ(γε) is bounded by

H1(Γ(γε)) ≤ C
λε
δε
.

To simplify the notation, we will write Eε(u) instead of Eε(u,γ) and Γ instead of Γ(γ). We want to
study the difference between a minimizer of Eε and a minimizer of Eε,r, in the u variable. More precisely,
our goal is to prove the following.

Proposition 2.11. Let Γ be the support of an Ahlfors-regular curve with constant 4/δε and length bounded
by H1(Γ) ≤ C λε

δε
. Then for any r > 0, the functional Eε,r admits a minimizer uε,r ∈ 1 +H1

0 (Ω), and

Eε(uε,r) ≤ minEε + C
rα

δ2
εε
α

for all α ∈ (0, 1) (with C depending on α). In particular, if rε → 0 in such a way that rε = o(εδ
2
α
ε ) , then

Eε(uε,rε)−minEε → 0.

Proof. Let us only give the ideas of the proof relying on the techniques deployed in [4], since the full
details would require a too long exposition. To prove the existence of a minimizer uε,r for Eε,r, one can
follow the argument already used in [4] for Eε, that we recall briefly. The first step is to prove that
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H1|Γ ∈ W−1,p(Ω) for all p ≥ 1; then, by use of elliptic estimates, one can deduce the existence of a
minimizer ūε ∈ 1 +H1

0 (Ω) for Eε, which also belongs to C0,α for all α ∈ (0, 1) with the estimate

‖uε‖C0,α ≤ Cα
1

λεδεεα
. (2.29)

We refer to [4, Proposition 2.10] for more details.
Now, concerning the modified functional Eε,r, we start by observing that for any p ≥ 1,

‖H1|Γ ∗ ρr‖W−1,p ≤ ‖H1|Γ‖W−1,p , ∀r > 0. (2.30)

Indeed, it is well known that for any ϕ ∈W 1,p
0 (Ω) and r > 0, there holds

‖ϕ ∗ ρr‖W 1,p ≤ ‖ϕ‖W 1,p ,

from which we deduce the estimate

|〈H1|Γ ∗ ρr, ϕ〉| = |〈H1|Γ, ϕ ∗ ρr〉| ≤ ‖H1|Γ‖W−1,p‖ϕ‖W 1,p . (2.31)

This proves (2.30) by duality.
A consequence of (2.30) is that, reproducing the proof of [4, Proposition 2.10] one can establish the

existence of a minimizer uε,r ∈ (1 +H1
0 (Ω)) ∩ L∞(Ω) satisfying the same estimate as uε, namely

‖uε,r‖C0,α ≤ Cα
1

λεδεεα
. (2.32)

On the other hand, for any v ∈ C0,α(R2) and x ∈ R2, there holds

|v ∗ ρr(x)− v(x)| ≤
ˆ
R2

|v(x− y)− v(x)|ρr(y)dy =

ˆ
Br(0)

|v(x− y)− v(x)|ρr(y)dy ≤ ‖v‖C0,αrα.

Therefore, for any v ∈ C0,α(R2),∣∣∣ˆ
Γ

v dH1 −
ˆ

Γ

v d(H1 ∗ ρr)
∣∣∣ ≤ ˆ

Γ

|v − v ∗ ρr|dH1 ≤ ‖v‖C0,αrαH1(Γ). (2.33)

Noticing that ‖u2
ε,r‖C0,α ≤ C‖uε,r‖C0,α , ‖u2

ε‖C0,α ≤ C‖uε‖C0,α , and applying the above estimate to u2
ε,r

and then to u2
ε, we obtain

Eε(uε,r) ≤ Eε,r(uε,r) +

ˆ
Γ

u2
ε,r dH1 −

ˆ
Γ

u2
ε,r d(H1 ∗ ρr)

≤ Eε,r(uε,r) + C‖uε,r‖C0,αrαH1(Γ) thanks to (2.33),

≤ Eε,r(uε) + C‖uε,r‖C0,αrαH1(Γ) because ūε,r is a minimizer,

≤ Eε(u) + C(‖uε,r‖C0,α + ‖uε‖C0,α)rαH1(Γ), by (2.33) again,

and this together with (2.29) and (2.32) concludes the proof of the proposition.
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2.4.2 Remark on the second order Cahn Hillard functional in dimension 2

In the context of the second order functional in dimension 2, the original energy Gε reads as

Gε(u,γ) := ε3

ˆ
Ω

|∆u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

ˆ
Γ(γ)

(δε + u2) dH1,

and its regularized versus Gε,r is given by

Gε,r(u,γ) := ε3

ˆ
Ω

|∆u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

ˆ
Γ(γ)

(δε + u2) d(H1 ∗ ρr).

Our interest of these 2 new models is to improve the regularity of its solution uε which are expected now
at least C1 (if γ is sufficiently smooth) and with a bound inequality of the form

‖uε‖C1 ≤ C

ε
.

In particular, this same reasoning as previously gives now an estimation of the form

Gε(uε,r) ≤ Gε(u) + C(‖uε,r‖C1 + ‖uε‖C1)r H1(Γ),

and conduces to
Gε(uε,r) ≤ minGε + C

r

ε
,

when H1(Γ(γε)) ≤ C, which is a reasonable assumption.

In particular, if rε → 0 in such a way that rε = o(ε), then

Gε(uε,rε)−minGε → 0.

3 Numerical experiments

The motivation of this section is to explain how to compute the solution of the PDE{
ut = −∇uEε(u,γ)

γ = Argminγ{Eε(u,γ)}.

where Eε(u,γ) is equal to

• Case 1 : Cahn-Hilliard of order 1 and classical smooth geodesic term

Eε(u,γ) = Pε(u) + R̃ε(u,γ),

• Case 2 : Cahn-Hilliard of order 2 and classical smooth geodesic term

Eε(u,γ) = P̃ε(u) + R̃ε(u,γ),

• Case 3 : Cahn-Hilliard of order 2 and concentrated smooth geodesic term

Eε(u,γ) = P̃ε(u) + R̃ε,max(u,γ).
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In each situation, we consider the solution at all time t ∈ [0, T ] in a computation bow Q with periodic
boundary conditions, associated with the initial condition u(x, 0) = 1. We now focus on the first cases
but the other one are very similar.

As explained previously, our numerical approach is based on a splitting method, which constructs the
approximative sequence (un,γn) of (u,γ) at time nδt recursively, as follows:

Step 1 : Computation of γn as
γn = min

γ∈P(a0,µ)
{Eε(un,γ)} .

Step 2 : Computation of function un+1 defined by un+1 = v(δt) where v is solution of the following PDE:{
vt = 2ε∆v − 1

2ε (v − 1)− 2
λε
ωε[γn]v

v(., 0) = un(.)

Recall that ωε[γn] is defined by (1.12).

3.1 Numerical scheme

In this section, we give more details on the computation of the geodesic γn and how to obtain an
approximation of un+1 = v(δt).

Computation of γn

Recall that, in cases 1 and 2, the geodesics γn = γni are defined by

γn = min
γ∈P(a0,µ)

{Eε(un,γ)} = min
γ∈P(a0,µ)

{
R̃ε(u

n,γ)
}
,

where

R̃ε(u,γ) =
1

λε

ˆ
Ω

[
N∑
i=1

(ρεα ∗ H1|Γ(γi))

]
(δε + u2) dx

=
1

λε

N∑
i=1

ˆ
Γ(γi)

(δε + u2) ∗ ρεα dH1.

It shows that we can compute the geodesics γni in two steps.
We first compute the weighted distance function x→ dx0,ω(x) corresponding to the distance function

from a point x0 to x, associated to the weight w = (δε + u2) ∗ ρεα . More precisely, this function can be
defined as a viscosity solution of the following nonlinear Eikonal equation

|∇dx0,ω(x)| = ω(x), in Ω, with dx0,ω(x0) = 0.

The approximation of dx0,ω is computed using a Fast Marching Method [14, 15, 2], which can be refor-
mulated as a Dijkstra’s algorithm. Notice that in practice, we use the Toolbox Fast Marching proposed
by G. Peyre in the Matlab environment, available at
http://www.mathworks.com/matlabcentral/fileexchange/.
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The second step consists in computing each geodesic γi : [0, 1]→ Ω satisfying γi(0) = x0, γi(1) = xi,
associated with the distance dx0,ω. This can be achieved using that the derivative of γi(s) is directed
by ∇dx0,ω(γi(s)) for all s ∈ [0, 1]. In practice, we use the Matlab function compute geodesic from Fast
Marching Toolbox to compute an approximation of each geodesic.

Remark 3.1. The minimization of the geodesic term R̃µε,max(u,γ) with respect to γ is not as simple as

the minimization of R̃µε (u,γ), since the optimal geodesics γi are now coupled. As a result, the optimal
geodesics for R̃µε,max appear very complicated to compute in practice. Hence, even if the solutions are not

optimal, we always update the geodesics by minimizing the uncoupled term R̃µε .

Computation of un+1

In order to get a high accuracy approximation in space, we use a semi-implicit Fourier-spectral method.
For instance, we can define the approximation of un+1 as follows :

un+1 − un

δt
= 2ε∆un+1 − 1

2ε
(un+1 − 1)− αun+1 −

(
2

λε
ωε[γn]− α

)
un,

where α can be viewed as a stabilization parameter for the scheme. Indeed, it is well known [10, 16]
that if the explicit part is the L2-gradient flow of a concave functional, then the global numerical scheme
appears to be stable without any condition on the time step δt. Here, stability is a stability in the sense
of the associated energy, which is nonincreasing during iterations. In our situation, the explicit term is
identified to

−
(

2

λε
ωε[γn]− α

)
un,

and can be viewed as the L2-gradient of

Jexplicit(u) =

ˆ
Ω

(
1

λε
ωε[γn]− α

2

)
u2dx,

which is clearly concave as soon as

α ≥ sup
x∈Ω

{
2

λε
ωε[γn]

}
.

Remark 3.2. Such parameter α exists because by regularization, ωε[γn] is a bounded function. This is
the main reason why we chose to regularize the geodesic terms.

Finally, the approximation un+1 satisfies

un+1 =

(
Id + δt

(
−2ε∆ +

1

2ε
+ α

))−1(
un + δt

(
1

2ε
−
(

2

λε
ωε[γn]− α

)
un
))

,

where the operator
(
Id + δt

(
−2ε∆ + 1

2ε + α
))−1

can be computed in Fourier space by using a multipli-
cation with the symbol σ defined by

σ(ξ) =
1

1 + δt
(
2ε(4π2|ξ|2) + 1

2ε + α
) .

Remark 3.3. Cases 2 and 3 using the Ambrosio-Torterelli approximation P̃ε(u) conduce to a similar
symbol σ̃ defined by

σ̃(ξ) =
1

1 + δt
(
2ε2p−1((4π2)|ξ|2)p + 1

2ε + α
) .
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Spatial discretization and Fourier space

We recall that the P Fourier approximation of a 2D function u in a box Q = [0, L1]× [0, L2] is given
by

uP (x) =

P/2∑
p1,p2=−P/2+1

cpe
2iπξp·x

where p = (p1, p2) and ξp = (p1/L1, p2/L2). Here cp represents the P 2 first discrete Fourier coefficients
of u. Moreover, the inverse discrete Fourier transform of cp leads to uPp = IFFT [cp] where uPp is the
value of u at the points xp = (p1h1, p2h2) and hj = Lj/P for j ∈ {1, 2}. Conversely, cp can be computed
by applying the discrete Fourier transform to uPp :

cp = FFT [uPp ].

For instance, the operator
(
Id + δt

(
−2ε∆ + 1

2ε + α
))−1

can be computed in Fourier space by using(
Id + δt

(
−2ε∆ +

1

2ε
+ α

))−1

uP (x) =

P∑
p1,p2=−P/2+1

cp

1 + δt
(
2ε4π2|ξp|2 + 1

2ε + α
)e2iπξp·x,

which can be done in practice by(
Id + δt

(
−2ε∆ +

1

2ε
+ α

))−1

uP (xp) = IFFT

[
FFT [uPp ]

1 + δt
(
2ε4π2|ξp|2 + 1

2ε + α
)] .

3.2 Geodesics and optimal profile

Fast marching method and computation of geodesics

In Figure 2, we give a first example of computation of a geodesic between two points x0 = [−0.7, 0.7]
and x1 = [0.7,−0.7], associated to the weight function w = ‖x‖2. We apply the algorithm in a box
Q = [−1, 1]2, with a discretization step h = 2/P for P = 210. We plot on the left picture the function w,
and on the right, the distance function dω,x0 and the computed geodesic γ1. As explained previously, we
can clearly observe that γ1 is orthogonal to the level sets of dω,x0

.

Optimal profile

We now consider the problem of computing the phase field function uεγ associated to a given geodesic

γ and defined as a minimizer of Eε(u,γ). We only consider here the case of one geodesic γ = γ1, which
restricts our analysis to the first and second cases. Moreover, the solution uεγ1 can be computed as the
stationary limit of the function v, defined as the solution of the PDE{

vt = 2ε∆v − 1
2ε (v − 1)− 2

λε
ωε[γn]v

v(., 0) = 1,

in the first case and of {
vt = −2ε3∆v2 − 1

2ε (v − 1)− 2
λε
ωε[γn]v

v(., 0) = 1,
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The weighted function w
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Figure 2: Numerical example of geodesic computation. Left: the weight function w = ‖x‖2 and the
endpoints x0 = [−0.7, 0.7] and x1 = [0.7,−0.7]. Right: the distance function dω,x0 computed using a fast
Marching algorithm, and the geodesic γ1 between x0 and x1.

in the second case.

In the first example, we consider ther case of dimension 1 with Q = [−1, 1], P = 210, λε = ε2 and
Γ[γ1] = {0}. We plot in Figure 3 the function uεγ obtained with the two models (in blue using ε∆ and in
red using ε3∆2) and for different values of ε (ε = 20/P , ε = 10/P and ε = 5/P ). A first remark is that
from a numerical point of view, the width of the diffuse interface depends linearly on ε. Moreover, the
models give similar profiles; the main difference is that the profile obtained in case 2 is more regular, but
its range is not contained in [0, 1]. We also present in Figure 4 some equivalent numerical experiments in
dimension 2, and the conclusions are very similar.
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Figure 3: Comparison of optimal profiles uε{0} in dimension 1, for different values of ε and using the two

different models. From left to right: ε = 20/P , ε = 10/P , ε = 5/P with P = 210.
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The function u with  P = 2^9, \epsilon = 2/N and using the operator \epsilon\3 \Delta^2
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, ε = 4/N and using the operator ε ∆
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Figure 4: Comparison of optimal profiles uε{γ1} in dimension 2, for different values of ε and using the two
different models. Left: the geodesic γ1; middle: uε{γ1} obtained with the first model; right: uε{γ1} obtained

with the second model. First and second line with respectively ε = 2/P and ε = 4/P , where P = 29.

3.3 First experiments and comparison of the two different Cahn-Hilliard
functionals

The first numerical experiments concern simple configurations of 3,4 and 5 points. The results are plotted
in Figure 5, 6 and 7. More precisely and in each case, we fix the set of parameters equal to P = 27,
ε = 6/P , δt = ε and λε = ε2 at the beginning of the simulation, and we compute the solution un until
convergence to a stationary solution uε. Then, we divide by 2 the value of ε and compute the new
stationary solution associated to this value. Notice that in Figures 5, 6 and 7, the first and the second
lines correspond respectively to the classical and to the second-order Edge-Penalization Cahn-Hilliard
functional. The first three pictures of each line represent the phase field function un during the iterations
associated to the first set of parameters. We also plot in the last picture the stationary solution associated
to the second value of ε.

We observe that in each configuration, we numerically find the solution of the original Steiner problem,
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which highlights the efficiency of the method. Moreover and as expected, the solution associated to the
operator −ε3∆2 is smoother than the one obtained with the classical Cahn-Hilliard functional. This
property should facilitate the discretization and it clearly accelerates the convergence of the method
to the stationary solution. For that reasons, we will only consider the second-order Edge-Penalization
Cahn-Hilliard functional P̃ε in the rest of the paper.

t = 0.000103, case=1, P = 128, ε = 0.046875
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Figure 5: Example with 3 points with the set of parameters P = 27, ε = 6/P , δt = ε and λε = ε2.
The first and second lines correspond respectively to the operators −ε∆ and −ε3∆2. From left to right:
the phase field function u at different times t during the iterations. For the last picture, we plot the
stationary solution obtained after dividing the ε parameter by 2.

3.4 Numerical comparison of the solution obtained with the geodesic terms
Rε and R̃ε,max

We recall that the geodesic terms Rε and R̃ε,max are respectively defined by

R̃ε(u,γ) =
1

λε

ˆ
Ω

ωε[γ](δε + u2) dx, with ωε[γ] =

N∑
i=1

(ρεα ∗ H1|Γ(γi)),

and by

R̃ε,max =
1

λε

ˆ
Ω

ωεmax[γ](δε + u2) dx, with ωεmax[γ] = MaxNi=1

{
ρεα ∗ H1|Γ(γi)

}
.

This section is motivated by the observation that the weight ωε[γ] at point x depends on the number of
geodesics that cross this point. Hence, this weight can be very sensitive to the number of endpoints ai,
which raises some numerical difficulties to fix the value of γε in practice. To reduce these drawbacks, we
propose to slightly modify this geodesic term, in such a way that the weight of the penalized term no
longer depends on the number of geodesics going through the points. To this aim, we replace the sum
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Figure 6: Example with 4 points with the set of parameters P = 27, ε = 6/P , δt = ε and λε = ε2. The
first and the second lines correspond respectively to the operators −ε∆ and −ε3∆2. Left to right: the
phase field function u at different times t during the iterations. In the last picture, we plot the stationary
solution obtained after dividing the ε parameter by 2.

of the contributions of all the geodesics, by the maximum contribution. This yields the definition of the
new weight ωεmax[γ] and the associated penalized term R̃ε,max.

In order to compare the two models, we present in Figures 8 and 9 the results obtained using the
penalized terms R̃ε and R̃ε,max, and the same configurations of point ai. In every simuation, we consider
the set of parameters P = 28, δt = ε and λε = ε2. At the beginning of the iterations, ε is fixed to 12/P
and the solution is computed until convergence to a stationary solution. Then, we divide ε by

√
2 and we

iterate the process until ε < 2/P . In both figures, the first and the second lines correspond respectively to
the model R̃µε and R̃µε,max, and each picture corresponds respectively to ε = 6

√
2/P , ε = 6/P , ε = 3

√
2/P ,

ε = 3/P and ε = (3/
√

2)/P . We can clearly observe that when R̃µε is used, the width of the diffuse
interface depends on the number of points xi, which is not the case with the new model R̃µε,max, that
provides much cleaner solutions and is able to capture the geodesics more accurately.

3.5 Numerical experiments with a large number of points

We now test our numerical method to approximate the solution of the Steiner problem with a large
number of points. In view of the numerical results presented in the previous paragraphs, we consider the
phase field model

Eε(u,γ) = P̃ε(u) + R̃ε,max(u,γ).

As previously, we compute the stationary solutions associated to different value of ε and the set of
parameters is fixed to P = 28, δt = ε and λε = ε2. We present two numerical experiments in Figure
10, with respectively 50 and 100 points randomly distributed in the computation box Q. We observe a
good behavior of the solution which becomes more precise as ε goes to 0. However, we can not guarantee
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Figure 7: Example with 4 points with the set of parameters P = 27, ε = 6/P , δt = ε and λε = ε2. The
first and the second line correspond respectively to the operator ε∆ and the operator −ε3∆2. Left to
right : The phase field function u at different time t along the iteration. For the last picture, we plot the
stationary solution after dividing the ε parameter by 2.

Figure 8: Numerical experiment with 16 points with the set of parameters P = 28, δt = ε and λε = ε2. The
first and second line correspond respectively to the geodesic term Rε, R̃ε,max. Left to right : stationary
solution uε obtained respectively with different value of ε: ε = 6

√
2/P , ε = 6/P , ε = 3

√
2/P and ε = 3/P .
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Figure 9: Numerical experiment with 24 points with the set of parameters P = 28, δt = ε, λε = ε2. The
left and the right picture correspond respectively to the stationary solution uε obtained with ε = 3/P
and using respectively the geodesic term Rε and R̃ε,max.

that the iterations converge to a global minimizer of the Steiner problem; in particular, we can observe
the presence of a cycle on the final solution obtained using 100 points, which means that this solution is
clearly not optimal.

3.6 Numerical experiments in dimension 3

We finally propose to test our numerical method in the 3-dimensional case. More precisely, we consider
the phase field energy

E
µ

ε (u,γ) = P̃ε(u) + R̃ε,max(u,γ).

where P̃ε now satisfies

P̃ε(u) =

ˆ
Q

ε2

2
(∆u)2 +

1

ε2
V (u) dx.

We plot in figure 11 the results of two first experiments that consider 3 and 10 points respectively. Each
red ball represents a point ai and the green surface corresponds to the level set (1 +min(u))/2 of u, de-
fined as the boundary of the set {x ∈ Q;u(x) ≤ (1 +min(u))/2}. The approximations of u are computed
with the following set of parameters: P = 27, δt = ε2 and λε = ε2. More precisely, we compute un until
we reach a stationary solution, and then divide ε by 2 and compute a new stationary solution.
Notice that the solution seems to converge to a global minimizer at least in the case of 3 points.

We conclude this section by a last example where the points ai are located on the corners of a cube.
This experiment is very sensitive since for reasons of symmetry, there exist many global minimizers, and
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Figure 10: Numerical experiments with a large number of points, with the set of parameters P = 28,
δt = ε and λε = ε2. The first and second lines correspond respectively to the case of 50 and 100 points
randomly distributed in the computation box Q. Left to right: stationary solution uε obtained with
different values of ε: ε = 6

√
2/P , ε = 6/P , ε = 3

√
2/P and ε = 3/P .

consequently, a lot of local minimizers as well. Using the following set of parameter P = 26, δt = ε2

and λε = ε2, we represent in figure 12 the evolution of u during the iterations and until convergence to
a stationary solution. The last picture concerns the stationary solution obtained with ε = 2.5/P . We
observe that the algorithm seems to converge to an approximation of a global minimizer, which highlights
the great potential of the method also in dimension 3.

33



Figure 11: Numerical experiments in 3D with the set of parameters P = 27, δt = ε2 and λε = ε2. The
first and second lines correspond respectively to the case of 3 and 10 points randomly distributed in
the computation box Q. From left to right: initial red points ai, stationary solution uε obtained with
ε = 8/P , ε = 4/P and with ε = 2/P .

Figure 12: Numerical experiments in 3D : the cube case with P = 26, δt = ε2 and λε = ε2 and ε = 5/P .
Each pictures corresponds to the solution along the iterations until to converge to a stationary solution.
The last picture picture corresponds to the stationary solution obtained with ε = 2.5/P .
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