Partiel 2 Analyse IV

Theresia Eisenkölbl

Date: 10 avril 2017 Durée: 60 minutes

Pas de documents autorisés. Pas de calculatrices autorisées. Justifier vos réponses.

Exercice 1 (6 points). a. Donner la définition de la convergence uniforme d'une série de fonctions. (1,5 pts)

- **b.** Donner l'énoncé du théorème du cours qui permet la dérivation terme par terme d'une série de fonctions.

 (1,5 pts)
- c. Donner la définition du rayon de convergence d'une série entière. (1,5 pts)
- d. Donner deux formules pour calculer le rayon de convergence d'une série entière. (1,5 pts)

Exercice 2 (6 points). Déterminer si les séries suivantes convergent normalement. Justifier vos réponses.

a.
$$\sum_{n=0}^{\infty} 2^{-n/x} \text{ sur }]0, \infty[.$$
 (1.5 pts)

b.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3} \operatorname{sur} \mathbb{R}. \tag{1.5 pts}$$

c.
$$\sum_{n=1}^{\infty} \frac{x^2}{n^3 + x^3}$$
 sur $[0, \infty[$. (1,5 pts)

d.
$$\sum_{n=1}^{\infty} \frac{x^2}{n^3 + x^3}$$
 sur $[0, 1]$. (1,5 pts)

Exercice 3 (4,5 points). Déterminer le rayon de convergence des séries suivantes. Justifier vos réponses.

a.
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} z^n$$
. (1,5 pts)

b.
$$\sum_{n=1}^{\infty} \frac{1}{n^n} z^n$$
. (1.5 pts)

c.
$$\sum_{n=0}^{\infty} z^{3n}$$
. (1,5 pts)

Exercice 4 (3,5 points). Montrer que la série $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n}$ définit une fonction continue sur \mathbb{R} . Justifier soigneusement votre réponse.