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Spatial Unfolding of Elementary Bifurcations
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We consider solutions of a partial differential equation which are homogeneous
in space and stationary or periodic in time. We study the stability with respect
to large wavelength perturbations and the weakly nonlinear behavior around
these solutions, especially when they are close to bifurcations for the ordinary
differential equation governing the homogeneous solutions of the PDE. We dis-
tinguish cases where a spatial parity symmetry holds. All bifurcations occurring
generically for two-dimensional ODES are treated. Our main result is that for
almost homoclinic periodic solutions instability is generic.

KEY WORDS: Spatially homogenous solution; codimension one bifurcations;
spatial unfolding; phase and period-doubling instabilities; parity symmetry;
amplitude equation.

1. INTRODUCTION

Codimension one bifurcations of simple solutions (fixed points and limit
cycles) of ordinary differential equation have been extensively studied, in
particular by the Russian school.(4) They are frequently observed in Physical,
Chemical and Biological systems. This is indeed one of the great merit of
the Poincare� qualitative theory(12) and the Andronov(1) subsequent work to
provide a language in order to describe the behavior of complex systems
when some external parameters are varied, particularly in situations where
the equations governing those systems are not exactly known (coarse
systems). In this paper we address the problem of the stability of simple
solutions of ODEs and the robustness of their bifurcations in the frame of
spatial unfoldings.

We consider PDEs of the form

�t u=F(u, �x) (1)
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i.e., invariant with respect to translations of time (autonomous) and space.
Here u is in Rd, d�1, and for simplicity the space variable x is one-dimen-
sional (x # R). Spatially homogeneous solutions of this PDE are solutions
of the equation

du
dt

=F(u, 0)= f (u) (2)

(we write f (u) for F(u, 0)), which is an autonomous ordinary differential
equation in dimension d.

Among the solutions of Eq. (2), of prime interest are those which
correspond to an asymptotic behavior, in particular attractive fixed points
and attractive periodic orbits. Consider a solution t [ uh(t) of Eq. (2)
which is an attractive (linearly stable) fixed point or periodic orbit. The
corresponding homogeneous solution for the PDE (1) is thus stable with
respect to homogeneous perturbations. We adress the question of the
behavior of inhomogeneous perturbations. A small inhomogeneous pertur-
bation u(x, t) of uh(t) obeys the equation

�tu=DF(uh(t), �x) u (3)

This equation being linear, it reduces in Fourier coordinates to

�t û(k)=DF(uh(t), ik) û(k) (4)

which is just an ordinary differential equation parametrized by k, with
constant (resp. periodic) coefficients if uh(t) is a stationary (resp. periodic)
solution.

Now the behavior of inhomogeneous perturbations of uh(t) is, without
further hypotheses, by far a too general problem. It is thus necessary to
specify, particularize this problem in order to be able to provide significative
results.

An interesting way to particularize the problem is to look at it close
to a bifurcation. Indeed, bifurcation theory tells us that this simplifies
greatly the problem, and at the same time preserves its generality: normal
forms or unfoldings of bifurcations are both ``particular'' and ``universal''
examples. Thus we will suppose that F, f, and uh depend on a parameter +,
and that a bifurcation occurs at +=0 for the solution uh of the differential
equation (2). We will suppose that + is close to 0, and we will moreover
restrict ourselves to large wavelength perturbations (we will suppose that
the wavenumber k is small). We call this approach spatial unfolding of
bifurcations.
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At the leading order in space derivatives, Eq. (4) reads

�t û(k)=(L(t)+ikC(t)&k2 D(t)+O( |k| 3)) û(k) (5)

where L(t), C(t), D(t) are d_d real matrices which are constant (resp. peri-
odic) in time if uh is a constant (resp. periodic) solution (remark that L(t)
is nothing else than Df (uh(t))). This differential equation depends on two
small parameters + and k, and we know that, when k=0, a bifurcation
occurs at +=0. The main question is: are the spatial effects destabilizing or
not? in other words, is the homogeneous bifurcation anticipated (for k{0,
before +=0) by another bifurcation due to the spatial effects?

It is often the case that the system described by the PDE (1) admits
an additional parity symmetry with respect to the space variable x. In this
case, there exists a linear involution I of Rd such that the equation is
invariant by the transformation (x, u) [ (&x, Iu).

We will say in the following that the problem considered here (the
local study around uh) is (x W &x)-invariant if the PDE admits a sym-
metry (x, u) [ (&x, Iu), and if moreover vector coordinates of uh(t) vanish
identically (i.e., Iuh=uh). If this is the case, the linear PDE (3) around uh

involves only derivatives of even order, and in Eq. (5), the ``convective''
matrix C(t) vanishes identically. We will distinguish along the paper
between cases where (x W &x)-invariance holds or not for our problem.

Fixed points are treated in Section 2, and periodic orbits in Section 3.
We have considered all codimension one bifurcations that occur generically
in dimension d�2 (when Eq. (2) admits no additional symmetry). These
are, for fixed points: saddle-node and Hopf bifurcations, and for periodic
orbits: Hopf, saddle-node of points, saddle-node of cycles, and homoclinic
bifurcations.

The main new result, which is stated and justified in Subsection 3.3,
concerns homoclinic bifurcations: in this case, spatial effects are always
destabilizing, in other words almost homoclinic periodic orbits are always
unstable with respect to inhomogeneous perturbations. This result was
conjectured in ref. 2 and announced in refs. 3 and 13 (but only in the
(x W &x)-invariant case).

All the other results are rather elementary and many of them are
classical. Besides, some of them may be surprising to the reader, for
instance the fact that, when the (x W &x)-invariance does not hold, fixed
points close to a Hopf bifurcation and periodic orbits close to a saddle-
node of cycles are always unstable with respect to inhomogeneous pertur-
bations. Nevertheless, we have found it interesting to present all these
results in a unified way. The paper thus takes, up to Subsection 3.2, the
form of a survey, followed by a more technical part in Subsection 3.3.
Paper ends up with a short conclusion.
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2. FIXED POINT

We suppose that uh is a fixed point for Eq. (2), which is linearly stable
for +<0, and for which a bifurcation occurs at +=0. Generically (if f has
no particular symmetry), this can happen in two ways: a saddle-node or a
Hopf bifurcation.

2.1. Saddle-Node Bifurcation

We place ourselves at the bifurcation, i.e., at +=0. We suppose that
uh=0 and 0 is an eigenvalue of multiplicity 1 of Df (0), all the other eigen-
values having strictly negative real parts. Up to a linear change of coor-
dinates, the matrix L=Df (0) reads

L=\0
0

0
L&+

where L& is a (d&1)_(d&1)-matrix with eigenvalues having strictly
negative real parts.

For k close to 0, the eigenvalues of the matrix M(k)=L+ikC&k2D
are close to those of the matrix L. Denote by *(k) the one which is close
to 0, and denote by =(k) the (unique) vector in the corresponding eigen-
direction having its first coordinate equal to 1. Write =(k)=(1, y(k)),
where y(k) is a (d&1)-vector, and write *(k)=k*1+k2*2+ } } } and y(k)
=ky1+k2y2+ } } } . Finally, denote by Ch the horizontal (d&1)-vector
(C1, 2 ,..., C1, d ), and denote by Cv the vertical vector (C2, 1 ,..., Cd, 1).

At order one in k, M(k) =(k)=*(k) =(k) gives

*1=iC1, 1 and L& y1+ikCv=0

and at order two in k, we have

*2=&D1, 1+iCh y1=&D1, 1+ChL&1
& Cv

(a) (x W &x)-invariant case. In this case C=0 and thus *1=0 and
*2=&D1, 1 . Thus, if D1, 1<0 (resp. >0), then the spatial effects destabilize
(resp. do not destabilize) the homogeneous solution uh ; thus for +<0 close
to 0, this solution is unstable (resp. stable) with respect to large wavelength
perturbations.

The amplitude equation describing the nonlinear development of the
instability reads

sT=+&s2+&sXX (6)
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Fig. 1. Growth rate versus wave number, for +<0 and D1, 1<0; left corresponds to case (a)
and right to case (b) (dotted lines are for terms of order higher than k2).

with u=uh+s(X, T ) ,0+ } } } where ,0 is the eigenvector of L corresponding
to the eigenvalue 1 and &=D1, 1 . For negative but small & the next order
term (sXXXX) can provide saturation if it comes with a negative coefficient.

For &<0, the spatially extended solution looses its stability before
the saddle-node bifurcation (Fig. 1 left). A wavelength is selected and a
spatial periodic pattern is expected to occur. It is the well known Turing
instability.(14)

(b) Non (x W &x)-invariant case. In this case, if D1, 1<ChL&1
& Cv

(resp. D1, 1>ChL&1
& Cv), then the spatial effects destabilize (resp. do not

destabilize) the homogeneous solution uh ; thus for +<0 close to 0, this solu-
tion is unstable (resp. stable) with respect to large wavelength perturbations.

This case is not very different from the (x � &x)-invariant case. The
instability will appear as sketched on Fig. 1 (right) and will give rise to a
wave propagating with the velocity C1, 1 . A balance between C and D may
give rise to an instability even if D is proportional to identity and positive.
This situation can occur for example in chemical reactions in the presence
of electric field.(9)

2.2. Hopf Bifurcation

Again, we place ourselves at the bifurcation, i.e., at +=0. We suppose
that uh=0 and that Df (0) has two purely imaginary eigenvalues \i|,
each of multiplicity one, all the other eigenvalues having strictly negative
real parts. Up to a linear change of coordinates, the matrix L=Df (0) reads

L=\\
0
|

&|
0 +

0

0

L&
+
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where L& is a (d&2)_(d&2)-matrix with eigenvalues having strictly
negative real parts. For k close to 0, the eigenvalues of L+ikC&k2 D are
close to those of L. Denote by *+(k) (resp. *&(k)) the one which is close
to i| (resp. &i|), and write *+(k)=i|+k*1, ++k2*2, ++ } } } and *&(k)
=&i|+k*1, &+k2*2, &+ } } } . Let

P=\\
1

&i
1
i+

0

0

IdRd&2+
and write L$=P&1LP, C$=P&1LP, D$=P&1DP. We have

L$=\\
i|
0

0
&i|+
0

0

L&
+

At order one in k, we have *1, +=iC$1, 1 and *1, &=iC$2, 2 . Write :=(C1, 1

+C2, 2)�2 and ;=(C2, 1&C1, 2)�2; then, C$1, 1=:+i; and C$2, 2=:&i;;
thus,

*1, +=i:&; and *1, &=i:+;

If C=0, then *1, +=*1, &=0 and, at order two in k, we have *2, +=&D$1, 1

and *2, &=&D$2, 2 . Write #=(D1, 1+D2, 2)�2 and $=(D2, 1&D1, 2)�2; then,

*2, +=&#&i$ and *2, &=&#+i$

(a) (x W &x)-invariant case. In this case C=0 and, according to
the expressions of *2, + and *2, & above, if D1, 1+D2, 2<0 (resp. >0), then
the spatial effects destabilize (resp. do not destabilize) the homogeneous
solution uh ; thus for +<0 close to 0, this solution is unstable (resp. stable)
with respect to large wavelength perturbations.

With &r=D1, 1+D2, 2 , the amplitude equation for this instability
reads:

�{A=+A&(1+i:i ) |A|2 A+(&r+i; i ) AXX+h.o.t (7)

with u=A(X, {) ei|t,|+c.c., where ,| is the eigenvector of L corresponding
to the eigenvalue i|.

In the case where &r is negative but small the instability arise as
sketched on Fig. 2 (left). Left and right traveling waves patterns are
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Fig. 2. Growth rate vs wave number for Hopf instability with a first order spatial derivative
term (Dotted line are for higher order terms). Figure on the left corresponds to case (a), when
D1, 1+D2, 2<0, and figure on the right corresponds to case (b), when C2, 1&C1, 2<0.

expected to occur.(6) Moreover in Eq. (7), higher order terms are necessary
for saturation of the instability. It includes terms AXXXX , |A| 4 A, |AX | 2 A,
all with complex coefficients.

(b) Non (x W &x)-invariant case. In this case, if C2, 1&C1, 2 is non
zero (which occurs generically), then we see that one of the quantities *1, +

and *1, & has a positive real part. Thus, spatial effects are always destabiliz-
ing, and, for +<0 close to 0, uh is always unstable with respect to large
wavelength perturbations.

The growth rate of the perturbation is shown on Fig. 2 (right) and a
wavenumber is selected. The amplitude equation writes:

�{A=+A+(c+i\) AX&(1+i:i ) |A| 2 A+(&r+i;) AXX+h.o.t. (8)

with u=A(X, {) ei|t,|+c.c., where ,| is the eigenvector of L corresponding
to the eigenvalue i|, and \=C2, 1&C1, 2 .

Once more, the instability of extended solutions will appear before the
homogeneous Hopf bifurcation, even for positive &r . In the case where &r

is negative but small, additional terms have to be included in the amplitude
equation. The symmetry between right and left traveling wave is lost, which
can lead to a new bifurcation, with one of those waves disappearing.

The stability of the limit cycle arising through Hopf bifurcation in the
(x W &x)-invariant case when &r is equal to 1 is given by the celebrated
Benjamin�Feir�Kuramoto(5, 10) criterion. We note that even in the non
(x W &x)-invariant case, the transformation of variable A=Bei(\�2) X leads
to the same criterion.
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3. PERIODIC ORBIT

3.1. Preliminaries

We now suppose that t [ uh(t) is a periodic solution of the homoge-
neous equation (2) (denote by T its period). Thus L(t), C(t), and D(t) are
now T-periodic d_d real matrices. During this paragraph 3.1, we forget
that uh depends on the parameter + and is close to a bifurcation, and we
recall basic computations that will be used later.

Denote by 8k(t) the flow of the differential equation (5) over one
period T. For k=0, 80(T ) is a first return (monodromy) map for the dif-
ferential equation (2) around uh( . ), thus one of its eigenvalue is always
equal to 1 (it corresponds to phase translation, in the direction of the flow).
We suppose that uh is linearly stable with respect to homogeneous pertur-
bations, i.e., that all the other eigenvalues of 80(T ) are strictly inside the
unit circle.

For k close to 0, the eigenvalues of 8k(T ) are close to those of 80(T ),
let us denote by *(k) the one which is close to 1. The stability with respect
to the wavenumber k depends on the position of |*(k)| with respect to 1.
Write

*(k)=1+k*1+k2*2+O( |k| 3)

The coefficient *2 is real, while *1 has a vanishing real part.

(a) (x W &x)-invariant case. In this case C( . )#0, *1 vanishes, and
the stability with respect to large wavelength perturbations is given by the

Fig. 3. Behavior of *(k) for |k| small.
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sign of *2 . If *2<0, then uh( . ) is phase stable, while it exhibits the well-
known phase Kuramoto instability(10) if *2>0.

(b) Non (x W &x)-invariant case. In this case C( . ) is not identi-
cally vanishing, thus *1 is generically nonvanishing and purely imaginary.
Write *1=i*� 1 . The stability with respect to small k now depends on both
coefficients *� 1 and *2 . More precisely, if &*2>*� 2

1 (resp. &*2<*� 2
1), then

uh( } ) is stable (resp. unstable) with respect to sufficiently small wavenum-
bers k.

Formal Computation of *1 and *2. For simplicity, we now
restrict ourselves to the case d=2, although the following computations of
*1 and *2 could be carried out in higher dimension.

Let e1(t)= f (uh(t)) and e2(t)=Rot?�2(e1(t)), t # R. This defines a local
frame (e1( } ), e2( } )) along the periodic solution uh( } ). Let us formulate the
differential equation (5) using coordinates in this local frame. It takes the
form

�t \x
y+=\\0

0
a
b++ik \c1

c3

c2

c4+&k2 \d1

d3

d2

d4++O( |k|3)+\x
y+ (9)

where a, b, cj , and dj are real and T-periodic. Write

Bt
s=e�t

s b(v) dv

The quantity BT
0 is equal to the second eigenvalue of 80(T ) (the first one

being equal to 1). By hypothesis (linear stability), it belongs to ]0; 1[.
For k close to 0, denote by =k the (unique) vector belonging to the

eigendirection of 8k(T ) corresponding to the eigenvalue *(k) and having
first coordinate equal to 1. Write =k=(1, yk). For k=0, we have y0=0.
For t # R, write =k(t)=8k(t) =k , write =k(t)=(xk(t), yk(t)), and write

xk(t)=1+kx1(t)+k2x2(t)+ } } } and yk(t)=ky1(t)+k2y2(t)+ } } }

The relation =k(T )=*(k) =k(0) yields

*1=x1(T ), y1(t)= y1(0), *2=x2(T ), and y2(T )= y2(0)+*1 y1(0)

and the differential equation (9) reads, at the first order in k,

dx1

dt
=ay1+ic1

dy1

dt
=by1+ic3
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and, at the second order in k,

dx2

dt
=ay2+i(c1x1+c2 y1)&d1

dy2

dt
=by2+i(c3x1+c4 y1)&d3

(a) (x W &x)-invariant case. In this case C( } )#0. Thus, x1#0,
y1#0, y2( } ) is the unique T-periodic, solution of the differential equation
(dY�dt)=bY&d3 , i.e., y2(t)=Bt

0 y2(0)&� t
0 Bt

s d3(s) ds, where y2(0)=
&(1&BT

0 )&1 �T
0 BT

s d3(s) ds, and we obtain

*1=0 and *2=|
T

0
(ay2&d1)(s) ds

(b) Non (x W &x)-invariant case. Here C( } )�0, y1( } ) is the
unique T-periodic solution of the differential equation (dY�dt)=bY+ic3 ,
x1(t)=� t

0 (ay1+ic1)(s) ds, y2( } ) is the unique solution of the differential
equation (dY�dt)=bY+i(c3x1+c4 y1)&d3 satisfying y2(T )= y2(0)+
*1 y1(0), and *1 and *2 read

*1=x1(T ), and *2=|
T

0
(ay2+i(c1x1+c2 y1)&d1)(s) ds

In both cases (a) and (b), we can explicitly write down expressions of *1

and *2 depending on a, b, cj , j=1 } } } 4, d1 and d3 .

3.2. Bifurcating Periodic Orbit

Now we suppose again that the periodic solution uh depends on the
parameter +�0, and that a bifurcation occurs at +=0 for this solution.
We know since Andronov that, in dimension d=2, bifurcations which
occur generically in one parameter families of periodic orbits are of the four
following types: Hopf, saddle-node of points, saddle-node of cycles, and
homoclinic. Another bifurcation of primary importance is the period-
doubling bifurcation. In this section, we consider the saddle-node of points,
saddle-node of cycles, and period-doubling bifurcations. Hopf bifurcation
was treated in paragraph 2.2, and the homoclinic bifurcation will be treated
in the next section. Dimension d is any.
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3.2.1. Saddle-Node of Points

In this case, at the bifurcation (+=0), a saddle point appears, we have
seen in Subsection 2.1 that spatial effects could destabilize or not this
saddle point. For +<0 close to 0, the periodic orbit uh( } ) spends almost all
its time close to this saddle point. Thus, spatial effects will have the same
kind of influence (destabilizing or not) on the periodic solution for +<0
close to 0 as on the saddle point for +=0. If, for +=0, they destabilize
(resp. do not destabilize) this saddle point, then, for +<0 close to 0, they
will similarly destabilize (resp. not destabilize) the periodic solution.

3.2.2. Saddle-Node of Cycles

We place ourselves at the bifurcation (+=0), thus we suppose that 1
is an eigenvalue of multiplicity 2 for the monodromy map 80(T ). Thus
BT

0 =1 and, writing 80(T )=( 1
0

:
1), we have, with the previous notations,

:=�T
0 Bs

0 a(s) ds.
For k close to 0, let *(k) denote one of the two eigenvalues of 8k(T ),

and let =k belong to the corresponding eigendirection and having first coor-
dinate equal to 1. Write *(k)=1+*1(k) and =k=(1, yk); thus *1(k) and yk

are small. Write =k(t)=8k(t) =k and =k(t)=(1+x1(t), y1(t)). We thus have

x1(T )=*1(k) and y1(T )= y1(0)+*1(k) y1(0)

On the other hand, we derive from (9) that

y1(T )= y1(0)+ik |
T

0
BT

s c3(s) ds+ } } }

This shows that | y1(0)|>>|k|, and thus that y1(t)=Bt
0 y1(0)+ } } } . Thus,

we get from (9) *1(k)=x1(T )= y1(0) :+ } } } , and finally

*1(k)2=ik: |
T

0
BT

s c3(s) ds+ } } } (10)

(a) (x W &x)-invariant case. In this case C#0 and a computation
similar to the previous one yields

*1(k)2=&k2:I+ } } } where I=|
T

0
BT

s d3(s) ds

Thus, if &:I>0, then the eigenvalues of 8k(T ) get away from 1 by real
values, and the spatial effects destabilize the solution uh (for +<0 close to 0,
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Fig. 4. Behavior of the two eigenvalues of 8k(T ) for |k| small, at a saddle-node of cycles.

this solution is unstable with respect to large wavelength perturbations),
see Fig. 4.

If &:I<0, then the eigenvalues of 8k(T ) get away from 1 by (at first
order) purely imaginary values; as 8k(T ) is real, they are complex con-
jugated, and their modulus is given by the determinant of 8k(T ), i.e., at
first order in k2 by exp(&k2 �T

0 tr D(s) ds). Thus, if �T
0 tr D(s) ds<0 (resp.

>0), then the spatial effects destabilize (resp. do not destabilize) the solu-
tion uh ; for +<0 close to 0, this solution is unstable (resp. stable) with
respect to large wavelength perturbations, see Fig. 4.

(b) Non (x W &x)-invariant case. In this case, expression (10)
shows that spatial effects (generically) always destabilize the solution uh

(for +<0 close to 0, this solution is always unstable with respect to large
wavelength perturbations), see Fig. 4.

3.2.3. Period-Doubling Bifurcation

Here the dimension d is of course higher than 2. At the bifurcation, the
monodromy map 80(T ) has two neutral eigenvalues, one equal to 1, and
the other one equal to &1. Thus 80(2T ) has a double eigenvalue which is
equal to 1, but there is no Jordan bloc corresponding to it. The two neutral
eigendirection are thus linearly decoupled(4) and the influence of spatial
coupling can be studied for each of it independently; the problem thus
reduces to the (general) case treated in Subsection 3.1.

3.3. Andronov Homoclinic Bifurcation

Now we suppose that the bifurcation occurring at +=0 is a
homoclinic bifurcation. We denote by u [ f0(u) the function u [ f (u)
when +=0. We place ourselves close to the bifurcation, i.e., we suppose
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Fig. 5. Homoclinic and quasi-homoclinic orbits.

that + is close to 0 but strictly negative; thus, f ( } ) is close to (but different
from) f0( } ).

We suppose that f0(0)=0= f (0), that Df0(0) reads ( b+
0

0
b&

), where
0<b+< &b& , and that the differential equation (du�dt)= f0(u) admits a
solution uh, 0( } ) homoclinic to the fixed point 0, and we suppose that the
trajectories of uh( } ) and uh, 0( } ) are close.

We are going to show that, for +<0 close enough to 0, the periodic
solution uh( } ) is (generically) always linearly unstable with respect to
inhomogeneous perturbations. In the (x W &x)-invariant case, this result
was conjectured in ref. 2 and announced in refs. 3 and 13. A complete mathe-
matical proof (in the (x W &x)-invariant case, but in any dimension d ) can
be found in ref. 13.

Consider the differential equation (9) (in the local frame along uh( } ))
where the origin of times is fixed on a section 7 transverse to some point
of the trajectory of uh, 0( } ) (see the figure). We can write down a similar dif-
ferential equation in the local frame of the homoclinic solution uh, 0( } ); let
us write it

�t \x
y+=\\0

0
a0

b0 ++ik \c1, 0

c3, 0

c2, 0

c4, 0+&k2 \d1, 0

d3, 0

d2, 0

d4, 0 ++\
x
y+

This differential equation is not periodic any more, its coefficients are limits
(on any bounded time interval) of the coefficients of (9) when + � 0. We
have b0(t) � b+&b& when t � +�, b0(t) � b&&b+ when t � &�, a0(t)
� 0 when t � \�, and each coefficient cj, 0(t) (resp. dj, 0(t)) admits limits
when t � +� and t � &�, say cj, 0, + and cj, 0, & (resp. dj, 0, + and dj, 0, &).
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Following Andronov's classical idea, we are going to decompose the
periodic solution uh( } ) into two parts, one close to and the other one far
from the fixed point 0. Let $ be a small positive parameter. Denote by T+

(resp. T&) the first positive time when uh( } ) enters (resp. escapes) the box
of size 2$ centered in 0. Denote by T0 the time between T+ and T& where
uh( } ) belongs to the diagonal x= y (see the figure). The quantities T&&T0

and T0&T+ are both large, but T&&T0 is larger than T0&T+ (more
precisely, the ratio T&T0 �(T0&T+) is close to ( |b& |�b+)>1).

For t # [T& ; T+], i.e., when uh(t) lies inside the small box, we have

\a(t)
b(t)+=Rot&2%(t) \ 0

b&&b+++ } } }

where %(t) is the angle (=1 , e1(t)) (here =1=(1, 0) and e1(t)= f (uh(t)) is the
speed vector), arid the remaining terms `` } } } '' are small if $ and + are close
to 0. The angle %(t) is close to &?�2 for t&T0<<0, close to 0 for t&T0>>0,
and jumps between these two values during a bounded time interval
around T0 . Thus the qualitative behaviors of a(t) and b(t) for t # [T+; T&]
are as follows (see Fig. 6): the coefficient b( } ) is close to b+&b& for
t&T0<<0, close to b&&b+ for t&T0>>0, and jumps between these two
values during a bounded time interval around T0 ; the coefficient a( } ) is
close to 0 except during this bounded time interval, where it takes finite
positive values between 0 and b+&b& .

Fig. 6. Behavior of a(t) and b(t) for t # [T+; T&].
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3.3.1. (x W &x)-invariant Case

(a) Phase stability. We are first going to estimate *2 . We know that
y2 is the unique T-periodic solution of the differential equation (dy�dt)=
by&d3 . Let us consider the limit when + � 0 of this equation, i.e.,

dy
dt

=b0 y&d3, 0

The asymptotic behavior of b0 and d3, 0 show that this equation admits a
unique solution y&( } ) (resp. y+( } )) which is bounded when t � &� (resp.
when t � +�). Generically, these two solutions are different and the sign
of y&( } )& y+( } ) is constant (remark that the only case where this
genericity result does not hold is when the matrix D(t) is proportional to
the identity: in this case the coefficient d3( } ) vanishes identically, and so do
y& , and y+ ; the periodic solution uh( } ) is then stable, because the coupling
has only a trivial stabilizing effect).

The sign of y&( } )& y+( } ) governs the nature of the instability.
Indeed, when t � +�, | y&( } )| � +� and has the sign of y&( } )& y+( } ).
The fact that T&&T0>T0&T+ shows that the behavior of y2( } ) is the
following: on [T&&T ; T+] (i.e., when uh is ``far'' from 0), it is very close
to y&( } ); on [T+ ; T0], | y2( } )| grows exponentially and y2 has the same
sign as y&& y+ ; | y2( } )| takes a maximal value around t=T0 , and
decreases exponentially afterwards. Thus. the main contribution in the
expression *2=�T

0 (ay2&d1)(s) ds is the integral of ay2 on a bounded inter-
val around t=T0 . As a>0 on this interval, we see that *2 is large and has
the sign of y&( } )& y+( } ).

The conclusion is that, if y&( } )& y+( } )>0, then the periodic solution
uh( } ) is phase unstable close to the homoclinic bifurcation.

(b) Period doubling instability. If y&( } )& y+( } )<0, then uh( } ) is
phase stable, i.e., stable with respect to values of k (very) close to 0. We are
going to see, however, that in this case another instability holds, with
respect to small but finite values of k.

Denote by 8R
k (resp. 8S

k) the flow of the differential equation (9)
between the times T&&T and T+ , i.e., outside of the small box of size 2$
(resp. between the times T+ and T& , i.e., inside the small box of size 2$).
The composition 8S

k b 8R
k represents the flow over one period.

Let us write 8R
0 =( 1

0
:
;). The flow 8R

k is a perturbation of 8R
0 which

remains non-singular when one approaches the homoclinic bifurcation; we
can thus write

8R
k =8R

0 +k2 \w
y

x
z++O(k2)
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Fig. 7. Behaviors of y0( } ), y+( } ), and y&( } ) on R.

Remark that the quantity y in this expression of 8R
k is the value at time T+

of the solution of the differential equation (dy�dt)=by&d3 , with initial
condition 0 at tune T&&T. If $ is sufficiently small, the behavior of this
solution is once again governed by the behavior of y&; it grows exponen-
tially, and has the sign of y&& y+ (thus negative in the case considered
here) when t approaches T+ . Thus, the value y at time T+ is negative and
arbitrarily large if $ is sufficiently small.

Let us write 8S
0 =( 1

0
'
`). If &+ is the distance between uh(T+) (at the

entrance of the small box) and the stable manifold of 0, and denoting
$&1 |+| by = and |b& |�b+ by #, we find that

'=#(1+O($)) =&1+O($) and `=#2(1+O($)) =#&1+O($)

The very singular form of 8S
0 deserves comments. Although this linear map

has distinct eigenvalues (namely 1 and '), it can hardly be put in a
diagonal form because its two eigenvectors are almost parallel. An
amplitude perturbations of the limit cycle when it enters the small box
transforms into a strong phase perturbation. There is thus a strong
coupling between amplitude and phase perturbations, and even if one of
the Floquet multipliers (`) tends to zero while the other remains finite, no
dimensional reduction is possible.
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The flow 8S
k is a perturbation of 8S

0 which becomes singular when one
approaches the homoclinic bifurcation; nevertheless, we have the following
estimate:

8S
k=qk(8S

0 +'k2O(1))

where qk==O(k2). Denote by Tk the trace of 8S
k b 8R

k . The previous expres-
sions of 8R

k and 8S
k show that

Tk=qk(T0+'k2( y+O(1)))

If y is sufficiently large (i.e., if $ is sufficiently small), and if 'k2 is large (i.e.,
if k2>>=), we see that the dominant term in this expression of Tk is the
term qk 'k2y; it is large and negative. As on the other hand the determinant
of 8S

k b 8R
k is small, we see finally that, when k2 is small but k2>>=, this

first return map has two real eigenvalues, one close to 0, and the other one
large negative. This proves the instability in this case.

3.3.2. Non (x W &x)-invariant Case

In this case, the same kind of computation as in the previous
paragraph (period doubling instability) can be achieved. It shows that,
generically, for |k| small but |k|>>=, the trace of the monodromy map
8S

k b 8R
k has a large modulus (and an argument close to \?�2), which

proves already the instability. Nevertheless, we want to be more precise
and show that the instability occurs for arbitrarily small values of k, i.e.,
that the phase instability criterion &*2<*� 2

1 holds.
Write y1=iy~ 1 and x1=ix~ 1 . Then y~ 1 is defined as the unique T-peri-

odic solution of the differential equation (dy�dt)=by+c3 . Consider the
corresponding limit differential equation:

dy
dt

=b0 y+c3, 0

Again, this differential equation admits a unique solution y&( } ) (resp.
y+( } )) which is bounded when t � &� (resp. when t � +�). Generically,
these two solutions are different, and the sign of y&( } )& y+( } ) is constant.

As in the previous paragraph, the behaviour of | y~ 1( } )| is the following:
it grows exponentially on [T+ ; T0], and decreases exponentially on
[T0 ; T&] (on these two intervals y~ 1( } ) has the sign of y&( } )& y+( } )). The
quantity | y~ 1(t)| thus takes a maximal value when t is around T0 . We
deduce from this the behavior of |x~ 1(t)|=|� t

0 (ay~ 1+c1)(s) ds|: it grows very
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Fig. 8. Behaviors of x~ 1(t) and y~ 1(t) for t # [0; T ].

fast when t belongs to a bounded interval around T0 , and varies much
slower outside of this interval. We have

dy2

dt
=by2&c3x~ 1&c4 y~ 1&d3

The constraint y2(T )= y2(0)&x~ 1(T ) y~ 1(0) yields

y2(0)(1&BT
0 )=&x~ 1(T ) y~ 1(0)&|

T

0
BT

s (&c3x~ 1&c4 y~ 1&d3)(s) ds

Now, according to the behaviors of b and a, we have, for $ sufficiently
small, on one hand

y~ 1(0)=(1&BT
0 )&1 |

T

0
BT

s c3(s) ds&|
T

T&

BT
s c3(s) ds

and on the other hand

|
T

0
BT

s (&c3x~ 1&c4 y~ 1&d3)(s) ds&x~ 1(T ) |
T

T&

BT
s c3(s) ds

Finally, we obtain | y2(0)|<<|x~ 1(T )|, which shows that maxt # [0; T ] | y2(t)|
<<x~ 1(T )2, and finally that

|*2 |<<*� 2
1

This proves the instability.
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3.3.3. Nonlinear Behavior

In summary, close to an Andronov bifurcation, a limit cycle is always
unstable with respect to spatially inhomogeneous perturbations. Depending
on the form of the coupling, this instability is either the phase instability or
a period doubling instability.

For the phase instability, amplitude equation with u(t, x)=uh(t&,) is
the well known Kuramoto�Sivashinsky equation:(10)

�{,=+,XX+:,2
X&,XXXX (11)

For the period doubling instability in the (x W &x)-invariant case, the
nonlinear amplitude equation with u(t, x)=uh(t&,)+Aeik0x`(t&,)+
c.c.+ } } } reads:

�{A=+A\: |A| 2 A+:,XXA+;,2
X+AXX (12)

�{,=$,XX+,2
X+' |A| 2 (13)

where `(t) is the Floquet eigenvector corresponding to the period doubling.
We show numerical computation of the following equations:

ut=v+#ux+uxx&;vxx (14)

vt=(+&u) v&u+u2+;uxx+vxx (15)

The homogeneous part of this equation admits a stable periodic solution
for 0<+<0.135 which disappears via an Andronov bifurcation.

Fig. 9. Numerical simulation of Eqs. (14) and (15).
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Results appear on Fig. 9 where abcissa is for the spatial coordinate and
ordinate is for time. The intensity of gray corresponds to the value of u.

1. For A the parameters are +=0.075, ;=1, #=0. For these values
of parameter the system exhibits a phase instability. There is no wave-
number selected.

2. For B the parameters are +=0.075, ;=&1, #=0. The system
exhibits this stable pattern after a bifurcation from the homogeneous state.
It clearly shows period doubling, and a wave length is selected.

3. For C the parameters are +=0.075, ;=&1, #=0.35. The case is
more involved and the limit cycle is unstable for small wavenumber (phase
instability) and is also unstable for a finite wavenumber with a negative
real part of the Floquet multiplier. On this diagram there are traces of
phase instability and of period doubling instability.

4. CONCLUSION

We have considered together a partial differential equation and the
ordinary differential equation governing the homogeneous solutions of this
PDE. We have studied the stability (with respect to large wavelength per-
turbations) and the nonlinear behavior around solutions of the PDE which
are homogeneous in space and stationary or periodic. in time, in particular
when these solutions were close to bifurcations for the homogeneous
problem. We call this approach spatial unfolding of bifurcations since we
considered only large wavelength (small wavenumber) perturbations. We
have considered all generic bifurcations in dimension up to 2, and we have
distinguished cases where the PDE admits or not an additional parity sym-
metry (x W &x) with respect to the space variable.

The main results are the following. First, a coupling involving only
first order derivatives may already (in all cases) yield an instability. Then,
a fixed point or a periodic orbit close to a Hopf bifurcation or a periodic
orbit close to a saddle-node of cycles are always (generically) unstable with
respect to inhomogeneous perturbations if the parity symmetry (x W &x)
is broken. Finally, almost homoclinic periodic orbits are always (generi-
cally) unstable with respect to inhomogeneous perturbations; more
precisely,

v if (x W &x)-invariance holds, there are two possibilities: either the
classical phase instability, or a period doubling instability at a finite (intrinsic)
wavenumber.

v if (x W &x)-invariance does not hold, instability is always a phase
instability.
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