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Abstract

We consider partial differential equations that can be viewed as spatial extensions of two-dimensional differential equa-
tions with respect to a coupling matrix. We provide analytical and geometrical criteria governing the stability of spatially
homogeneous stationary solutions and the phase stability of spatially homogeneous time periodic solutions. We distinguish
cases where the differential equation has a conservative or a dissipative behavior. The geometrical criteria roughly speaking
relate to the “sense of rotation” of, on one hand, the coupling matrix, and, on the other, the flow of the differential equation
around the spatially homogeneous solution. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many partial differential equations arising in mechanics, physics, chemistry, biology, etc. can be viewed as
spatially extended differential equatign®. can be written in the form

du= f(u)+C Au, (1)

where f(-) is a smooth vector field on an open seRSf, d > 1, C is acoupling mapi.e. a linear mapR? — R?
having no eigenvalue with strictly negative real part, &nd= (Aus, ..., Aug) means, on each coordinate, the
Laplace operator with respect to a space coordinat@rying in an open s&@ of R”, n > 1.

Thisis the case, forinstance, for (honlinear) heat equations Id), reaction—diffusion equation€ &diagonal),
wave equations

(c=(53)
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Schradinger equations

(Cz (—01 8))

real and complex Ginzburg—Landau equations, etc. (see [5] for more details).
The reason for the terminology “spatially extended differential equations” is that these equations can be viewed
as spatial extensions of the ordinary differential equation

d
o = . )

We would like to understand the relations between the dynamics of the differential equation (2), and that of its
spatial extension (1). We suppose that the conditions at the bound&yaoé of Neumann type or periodic, so
that, to any solutior — ug(¢) of (2) canonically corresponds the spatially homogeneous solutien ug(z),
io(t)(x) = uo(t), x € £2, for (1); this solutionizg(-) will be called thespatial extensiomf the solutionug(-). A
natural question concerns the relations between the stability properiigé p&ndiig(-).

Suppose thaty(-) is a stable or neutral fixed (resp. periodic) solution of (2); theh) is also fixed (resp. periodic),
but might be unstable. This instability is at the origin of many phenomena displaying “patterns” or “spatio-temporal
chaos” in nonlinear physics (see [2]). A first step towards a better understanding of such phenomena consists in
analyzing the occurrence of this instability. Linearizing (1) aroidpd) formally gives

oru = (D f(uo(?)) + CA)u, 3
which reduces in Fourier coordinates to
3ii(k) = (D f (uo()) — KIPC)i(k), (4)

which is a linear differential equation in dimensignwith constant (resp. periodic) coefficients. Writg(r) =
Df(uo(t)), and consider the differential equation

L _ w0, ©)
depending on the parametefwith corresponds te- |l§|2). The linear stability ofig for (3) reduces, at least formally,
to the linear stability of O for the differential equation (5), for anin the spectrum of the Laplace operator@n
Remark that the same reduction could have been done for any equation involving instead of the Laplace operator a
more general operator (any adjoint-operator acting on a Hilbert saddunctions over a metric space, vanishing
on constant functions, and whose spectrum is bounded from above, see [5]; for instance, a differential operator like
—Ziafi, a discrete Laplace operator on a lattice, etc.).

In the following, we will forget about the precise nature of this operator, and just consider the family of differential
equations (5), depending on the parameater

We will say that thespatial extension of the solutiony(-) with respect to the coupling map C is
o linearly stable(resp.unstablg with respect to\g (for someig €] — oo; 0]) if O is linearly stable (resp. unstable)

for the differential equation (5) with = Ao;
o linearly unstabléf it is linearly unstable (in the sense above) with respect to sbgng| — oco; 0].

If uo(-) is a stable or neutral fixed point, instability of a spatial extensiam6f is known asTuring instability
[7]; if ug(-) is linearly stable, this instability cannot occur with respect to values dbse to 0. If on the other
handug(-) is a stable or neutral periodic orbit, then it always has a Floquet multiplier which is equal to 1 (in the
direction of the flow). Thus, even small perturbations of the Floquet map can render this multiplier larger than 1,
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and instability of a spatial extension @f(-) might occur with respect to any value ohegative and close enough
to O; if this occurs, one speaks piiase instabilityf14,8].

We will thus say thathe spatial extension of a periodic orhig(-) with respect to the coupling map C is
e phase stabl¢resp.unstablg if it is stable (resp. unstable) with respect to ang] — ¢; O[ for somee > 0.

This paper is concerned with the stability of spatial extensions of fixed points, and the phase stability of spatial
extensions of periodic orbits, for fixed points and periodic orbit of differential equations in dimehsioh This
is the first dimension where these stability questions arise, and many examples of partial differential equations
correspond to this case (see the beginning of this section). But, above all, the dimension 2 will enable us to provide
geometrical answers to these stability questions.

Let us describe rapidly the contents of the paper. Section 2 is devoted to some preliminaries. The case of fixed
points is treated in Section 3; this case is very elementary, since it reduces to making the sum of two matrices. We
provide geometrical criteria of stability or instability (Corollaries 1-3), and give some examples.

The main part is Section 4, which is devoted to periodic orbitsd As2, these periodic orbits have two Floquet
multipliers, one of them (in the direction of the flow) being equal to 1. We distinguish two cases: the conservative case,
when the second multiplier is also equal to 1, and the dissipative case, whenitis strictly smaller than 1. An elementary
perturbation argument enables to provide, in both cases, a general criterion governing the phase stability of spatial
extensions of a periodic orbit (Corollaries 4 and 5). Next, we derive geometrical formulations of these criteria.
This works excellent in the conservative case (Proposition 3), and becomes slightly more painful in the dissipative
case (Proposition 4 and Corollary 6). The geometrical criteria roughly speaking relate to the “sense of rotation” of,
on one hand, the coupling map, and, on the other, the flow of the differential equation around the periodic orbit.
Several examples (nonlinear Schrédinger equation, sine-Gordon equation, complex Ginzburg—Landau equation)
are presented.

2. Preliminaries

Definitions. We will say that the coupling map (matrix) is

of type | or equivalentlypurely diffusiveif C is proportional to the identity;

of type I, or equivalenthydiffusive if the two eigenvalues of are distinct and real;

of type lll, or equivalentlypropagative if the two eigenvalues of are equal and’ is not diagonalizable;
of type IV, or equivalentlydispersiveif the two eigenvalues of are nonreal.

] -

[

I 111 v

Denote by Rot,» the rotation of center 0 and of angtg'2 in R2. We will say that a linear map : R? — R?is

e forward monotoniqresp.backward monotonjdf, for any u € R?, (Lu, Rot; 2 u) > 0 (resp.< 0) (whereg(., -)
denotes the usual scalar producR);

o strictly forward monotonigresp.strictly backward monoton)df it is forward monotonic (resp. backward mono-
tonic) and if moreover there are vectar$or which (Lu, Rot; o u) > 0 (resp.< 0);

e (strictly) monotonidf it is (strictly) forward monotonic or (strictly) backward monotonic.
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Remarks.

1. The map Qand equivalently-C, which will be considered lat¢is monotoniqresp. strictly monotonjaf and
only if C is of types I, llI, or I\(resp. of types Il or IY.

2. If C is of type I, then it commutes with any matrix, and we can see in(Idhat the coupling has only a
stabilizing influence. Thus, in this case, the spatial extensiag & always linearly stable with respect to any
A < 0. Therefore, in the following, we will sometimes exclude this particular.case

Notation. Let P be any 2x 2 real matrix.

Fory € R/2nZ, letuy denote the vectatosy, siny); if uy ¢ kerP, we will write ¢ p (1) for the number in
] — m; =] corresponding to the angle-uy, Puy).

3. Fixed points

Here we suppose that is a fixed point forf (-); then the matrixM (¢) defined above is independentfwe
denote it byM. We suppose that the fixed poimg is not linearly unstable (i.e has no eigenvalue of strictly
positive real part). Then, for anty < 0, the trace of + AC is negative, and thus the spatial extension®tvith
respect taC is linearly unstable with respect toif and only if M 4+ AC has a real and strictly positive eigenvalue.
The following lemma provides a geometric criterion for this to occur.

Lemma 1. The two following assertions are equivalent
1. There exista. < 0 such thatM + AC has a real and strictly positive eigenvalue
2. There existsy € R/2rZ such thatuy, ¢ kerM U kerC and such thatgy () — ¢—_c(Y)| > .

The proof is elementary:

Mu\w Uy
v
Q@ (v
-C u‘y
Uy AU
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Definition. We will say that the fixed poinig is (strictly) forward monotoniqresp.backward monotonjcif the
matrix M is (strictly) forward monotonic (resp. backward monotonic).

Corollary 1. If the fixed point«g and the matrix—C are both forward or backward monotonic, then the spatial
extension ofig with respect to C is not linearly unstable

The proof of this corollary is an immediate consequence of Lemma 1. In the conservative case, we derive a
generic instability result.

Corollary 2. If ug is strictly forward (resp. backwarflmonotonic and-C is strictly backward(resp. forward
monotonic, and if the eigenvalues of M and’ all have vanishing real parts, then the spatial extensiongoivith
respect to C is genericallfif M and —C are not proportiona) linearly unstable

Proof. AsC andM are nonvanishing, kef and kerM are at most one-dimensional. For afiye R/27Z such that
uy ¢ kerC UkerM, oy () ande_c () have opposite signs. Thus, there exists a unigii¢) ] — oo; O such
thatpu1c(¥) changes sign wheh = Ag(vy). Generically (more precisely, # and—C are not proportional),
we have inf,A0(y) < sup,Ao(¥); in this generic case, for arly €]inf y Ao(¥); sup, 2o(¥)[, the two eigenvalues
of M + AC are real and distinct, and, as the tracébf- AC vanishes, the result follows. |

The following corollary shows that, as soon@ss not of type |, the Turing instability may occur.

Corollary 3. If C is not proportional to the identity, then there exists a ma% whose two eigenvalues have
strictly negative real parts, such that there exists a< 0 for which M’ + AC has a real and strictly positive
eigenvalue

Proof. As C is not proportional to the identity, there exists & R? such thatCv is not proportional ta. Up to a
change of basis, we can suppose that (1,0) and thatp_c(0) > 0. Choose foM/’ the matrix

1 e
(—3/5 _2), e > 0.

This matrix has two complex conjugated eigenvalues of strictly negative real par,at@ converges towards
—m whene — 0. Thus, according to Lemma 1 dfis sufficiently small, M’ has the desired property. O

We illustrate the foregoing arguments using two examples.
Example 1(Nonlinear wave equations). The nonlinear wave equation

ug = g(u, u;) + Au

can be viewed as a spatial extension of the two-dimensional differential equation

3 (1) = (en) ©

with respect to the coupling matrix

(29
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If ug is a fixed point for (6), and ifig is not linearly unstable, then the spatial extensiom@fvith respect taC
is never linearly unstable. This is elementary to prove by computation, but it is also possible to give a geometrical
proof in the spirit of the foregoing discussion, as follows.

We have

0 1
=2 )
with ¢ < 0 andb < 0 and—C is backward monotonic. If moreové? + 4a < 0, thenug is also backward
monotonic (indeegy, (;r/2) > 0) and the result follows by Corollary 1. Without this last hypothesis, let us remark
(see illustration) that
o fory € [-n/2,0l, ou (V) + ¥ € [-7/2; /2] andy_c (¥) + ¥ = 7/2;
e fory €[0;/2],asa <0andb <0, oy (V) + ¢ € [7/2; w]andp_c(¥) + ¢ = /2.

A A
vl v
g oL ) " W(PMW ‘;
v’ ] v’
W’ L——
W) H
Y

Thus, we always haviey () — ¢—c(¥)| < 7, and, according to Lemma 1, the result follows.

Example 2(A nonlinear Schrédinger equation). Consider the celebrated cubic nonlinear Schrédinger equation
i +uxx+o(L— uPHu=0, ueC @)

in the focusinglc = —1) or defocusingo = +1) case. This equation can be viewed as a spatial extension of the
differential equation

up =ioc(L— uPu, ueC~R? (8)
with respect to the coupling matrix
0 -1
(2

The points on the circle of center 0 and of radius 1 are fixed for this differential equation anes i1 (resp.
o = +1), they are all strictly forward (resp. backward) monotonic; actually, the differential of the vector field at
any of these points is conjugated to the matrix

(20) (=(% o))
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On the other hand, the matrixC is strictly backward monotonic. Thus, according to Corollary 2, the spatial
extension of any of these fixed points is linearly unstable in the focusing case, and is not linearly unstable in the
defocusing case.

o=—1, focusing case o=+1, defocusing case

4. Periodic orbits
4.1. Preliminaries

Here we suppose thaip(-) is a periodic orbit forf(-); denote byT its (smallest) period. For € R, let
e1(t) = f(uo(r)), and letex(r) be any vector oR? linearly independent of1(r) and depending smoothly and
T-periodically onz (the simplest choice being () = Rot; 2 e1(r), where Rot > denotes the rotation of angle
/2).

Fort € R, let P(r) be the matrix whose columns are the respective coordinates of the vegtgrande,(z)
in the canonical basis d®2, let M (t) = —P(t)"X(dP/dr)(t) + P(1)"*M(t)P(¢), and letC(r) = P (1)~ 1CP().
Eq. (5) reads, in the moving frangey(-), e2(-)),

d A .
d—Lt’ = (M) + 1ED)u. 9)
Let us write

~ (0 a) Ao (et c2() . !
M(t)—<0 b(r))’ C(t)—(cg(t) 640)), Bx_expl b(7) dr.

Fori,t € R, let ¢, (¢) denote the (linear) flow of the differential equation (9) between the times G.anhide
two eigenvalues apo(T) are 1 (the neutral Floquet multiplier in the direction of the flow) aﬂgd(the transverse
Floguet multiplier).

We will suppose thaBOT < 1, i.e. that the periodic orbit is not linearly unstable, and we will study the linear
stability (i.e. the position of the eigenvalues)®f(T), for small negative., considering Eg. (9) as a perturbation
of the case. = 0. We will distinguish two cases: the dissipative case B@.< 1), and the conservative case (i.e.
Bl =1).
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4.2. Analytical criteria

Writing

[ x®
un = (W))’

the differential equation (9) reads

d
d—); = ay+ Acix + c2y), (10)
d
d—f — by + A(cax + cay). (11)

4.2.1. Dissipative case

SupposeBOT < 1. Then 1 is an isolated eigenvalue for the linear mgf¥"). Thus, for anyx sufficiently close
to 0, ¢, (T) admits a unique eigenvalue close to 1 (denote itty)), the other eigenvalue being cIoseBé. The
phase stability is therefore governed by the positiop @f) with respect to 1.

Let Y (-) be the uniqud -periodic solution of the differential equatiorydd: = bY + c3, i.e.

t T
Y(t) = ByYo +/ Blca(s)ds, teR, whereYp=(1— Bg)*lf BT c3(s) ds,
0 0
and let

T
I:/ (a(s)Y (s) + c1(s)) ds.
0

Proposition 1. The derivativedu /dx(0) exists and is equal t@.

Corollary4. If Z > 0 (respZ < 0),then the spatial extension®f(-) with respect to C is phase stalftesp. phase
unstablé.

Remarks.
1. It is actually possible to choose the vectets-) involved in the moving frame in such a way that the matrix
M (t) be constant with respect to t and equal to

0 0
0 logBf

(see[3]); in this situation, the expression Bfreduces tOfOTcl(s) ds.
2. Close to a supercritical Hopf bifurcation, this criterion reduces to the Benjamin—Feir critgeg[6]).

Using this criterion, one can provide an elementary rigorous justification of the Benjamin—Feir instability criterion
for a spatially extended Hopf bifurcation (see [6]).

Proof of Proposition 1. For X close to 0, the eigenspace@f(T') corresponding to the eigenvalpgi) is close to
the direction of the vectofd,0); thus, it contains a unique vecter(0) whose first coordinate is equal to 1.
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Write

1
a@®= (n(@)

forr € R, lete, (r) = ¢,.(¢) (€, (0)) and write

x (1)
&.() = .
s (n(r))
We haveu (1) — 1 wheni — 0, and, uniformly with respect tq x; (r) — 1 andy, () — 0 wheni — 0.
According to (11), we have

T
yi(T) = B y,(0) + 1 / Bl c3(s) ds + o(n),
0

and, asy, (T) = u(A)y, (0), this yieldsy; (0) — AYg = 0(X). Thus,y, (¢) — LY (¢) = o()), uniformly with respect
tor.
Therefore, according to (10),

X (T) —1— AT =o0(n).

As x, (T) = (1), this finishes the proof. O

Example. The complex Ginzburg—Landau equation
Ar=A—(A+ia)|APA+ A +iB)AA, AcC~R? (12)

can be viewed as a spatial extension of the differential equatiea A — (1+ia)| A|2A with respect to the coupling
matrix

-G 7)

This differential equation admits an attractive periodic solutigyir) = e i te With ep(-) = Ryj2e1(), the
matricesM (-) andC (-) are constant and read, respectively,

(o0 %) e (5 V)

Thus,Z = T (1+ «B) and the phase stability criteridh> 0 stated above reduces to the celebrated Benjamin—Feir
criterion

1+a8=>0

(nevertheless, in this case, this last criterion governs the linear stability of the spatial extension of the periodic orbit
Ao(+) with respect to any (not only small) value ofas an immediate calculus shows).

4.2.2. Conservative case

SupposeBOT = 1. Then the two eigenvalues@§(7T") are equal to 1. Fox close to 0, the two eigenvalues®f(T)
are thus close to 1, and can be real or complex conjugate. Denote thenpwy j = 1 or 2 (with, for instance, the
constraint that, if they are real, then (1) > u2(1), and if they are complex conjugate, thendm(i) > 0).
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Write

T T
J = / Bpa(s) ds, K= / BsTCg(S) ds
0 0

(remarkthatpo(T) = (é ‘Z))

Proposition 2. We have

(1 (0) — 1)?
A

More precisely

p1A) =1+ Vo IATKI+0(/IAD,  p2(k) =1— o/ RTK| + o(\/|A]),

whereo represents the sign af7K, i.e. /o is equal tol if AJK > 0, and to the complex numbegif A 7K < 0.

— JK wheni— 0, j =12

Corollary 5. If 7K < 0 (resp. if 7K > 0) then the spatial extension o§(-) with respect to C igresp. is nox
phase unstable

Indeed, when. < 0 and the eigenvalues ¢f (T') are complex conjugate, their modulus cannot be strictly greater
than 1, because the trace of the coupling mairis nonnegative.

Remark. It is actually possible to choose the vectegs-) involved in the moving frame in such a way that the
matrix M (t) be constant with respect to t and equal to

0 777
0 0
(se€]3]); in this situation, the expression &f reduces tofOTcg(s) ds.

Proof of Proposition 2. For 1 close to 0, the eigenspaces @A) of ¢, (T') corresponding to the (possibly identical)
eigenvalues:; (1), j = 1,2, are close to the direction of the vectdr0). Let¢; (0) be any eigenvector af; (T')
having a first coordinate equal to 1, and denoteddy) the corresponding eigenvalue®f(T).

Let us write, as in the dissipative case,

1
€.(0) = (yx(0)> ,
and, fort € R, €, (t) = ¢,.(t)(¢;,(0)) and
_{ xa(0)
@)= (m(r)) '

We have agaim (1) — 1 wheni — 0, and, uniformly with respect tq x;, (r) — 1 andy, () — 0 wheni — 0.
According to (11), we have

T
yi(T) — y»(0) = A/ BSTC3(S) ds +0o(A) = AK + o(A).
0
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Thus,(u(A) — 1)y, (0) = LK + o(1). Besidesu(A) — 1 = x,(T) — 1, and, according to (10),

T T
o(T)—-1= /O a(s)y,(s)ds + O(n) = )’A(O)/O a(s)Byds + O() = y (00T + O(V).
Thus,

(1) — D% = (u) — Dy(0)T +0(h) = ATK + 0(r),

which proves the first assertion of the proposition. The remaining assertions follow easily. O

4.3. Geometrical criteria

The geometrical criteria will involve the properties of forward or backward monotonicity for the periodic orbit
uo(-) (to be defined below). In order these formulations to make sense, we suppose from now on that the local frames
(e1(1), e2(1)) have the usual orientation (the same as the canonical baBi$)ofVe begin with the conservative
case, for which the geometrical criteria are the simplest and the most meaningful.

4.3.1. Conservative case

Definition. We will say that the periodic orbitg(-) is (strictly) forward monotonicresp.backward monotonjaf
the matrix ofgo(T) is itself (strictly) forward monotonic (resp. backward monotonic), or equivalently if the number
J = fOTBga(s) ds is (strictly) negative (resp. positive).

Remark. The sign of7, and consequently the monotonicity.ef-) are unchanged under conjugacy of the vector
field f(-) by an orientation-preserving diffeomorphismrR.

Proposition 3. If the periodic orbitug(-) and the matrix—C are both strictly forward or backward mono-
tonic, then the spatial extension @f(-) with respect to C is not phase unstalfnd is even phase stabletif
C > 0).

If on the other hand(-) is strictly forward(resp. backwarfimonotonic and-C is strictly backwardresp. for-
ward) monotonic, then the spatial extensiorngt-) with respect to C is phase unstable

Proof. If —C is strictly forward (resp. backward) monotonic, theyit) < 0 (resp.> 0) for anyr € R, and there
are values of for which the inequality is strict; thus, we hat&< 0 (resp.> 0), and the proposition follows from
Corollary 5. |

Example.

1. Let us consider again the cubic nonlinear Schrédinger equation (7). The matriis strictly backward
monotonic. The circles of center 0 and of radii in JQU]1; +oc[ are trajectories of periodic orbits for the
corresponding differential equation (8). df = —1 (resp.c = +1), all these periodic orbits are strictly
forward (resp. backward) monotonic (see the figure in Section 3); their spatial extensions with regpect to
are thus phase unstable in the focusing case, and not phase unstable in the defocusing case.

2. Consider the sine-Gordon equation

ug +Sinu = uxy, u € R/2nZ.
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This equation can be viewed as a spatial extension of the differential equation

a (1) =(on)

with respect to the coupling matrix

00
c-(29).
The matrix—C is strictly backward monotonic, and this differential equation admits periodic orbits parame-
terized by their energf €] — 1; 1[U]1; +oo[. The periodic orbits corresponding 1 €] — 1; 1] are strictly
forward monotonic, their spatial extensions with respedf tare thus phase unstable; the ones corresponding

to E €]1; +oo[ are strictly backward monotonic, their spatial extensions with respe€tdce thus not phase
unstable.

Remark. Inthe case of nonlinear wave equations viewed as spatial extensions of second-order systems, as for the
sine-Gordon equation above, the periodic orbits, if they exist, always have the converse orientation. This enables
to use a different terminology, presented below, to describe their monotonicity properties

Recall that an oscillator is called soffresp. hard if the frequency of the oscillations decreadgssp.
increase} with their amplitude. By analogy, we can say that a periodic orbit of a conservative second-order
system igqstrictly) soft (resp. hard if it is (strictly) forward (resp. backwarll monotonic in the sense defined
above

With this definition, if this periodic orbit is strictly softesp. hard, then its spatial extension is phase unstable
(resp. is not phase unstablé-or instance, in the exampl@) above, the periodic orbits whose energy belongs to
] —1; 1] (resp. to]1; +oc) are all strictly soft(resp. strictly harg.

4.3.2. Dissipative case

In the dissipative case, the geometrical criteria are less natural and slightly more involved. They relate on quanti-
tative estimates on the anglesc(-), go_ém(-), ande(t)(-). But these angles depend on the choice of the bases in
which the matrices are computed, in particular on the local framés), e2(-)). We thus fix this choice, imposing
for the remaining thatx(r) = Rot; 2 e1(1), t € R.

Let

b= U ecvv= U ¢.600:

VeR/2nZ,uy ¢kerC teR,upgkerC (¢)
Forr € R, if M(r) # 0, theng; . (¥) has alimitin f-; 7] wheny — 07 (resp. wheny — 07); let us denote
by ¢M(z)(0+) (resp.g;,,(07)) this limit (remark thallgoM(t)(0+) — %430 = x), and let
;0= U enp@). 2300 =[J 05,0
1eR, M (1)#0 1eR, M (1)#0

In the proposition below, hypotheses (1a) and (1b) are symmetrical, as are hypotheses (2a) and (2b).

Proposition 4. If one of the hypothesé€$a), (1b),and(3) below is satisfied, then the spatial extensionggf) with
respect to C is phase stable; if one of the hypothéaakand (2b) below is satisfied, then it is phase unstable
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-C 3(0

P

1. (a) The matrix—C is forward monotonic, and there exists¢gg €] — ;0] such that®_ C [¢o; 0] and
<15M(0+) Cleo; o + 7[. (b) The matrix—C is backward monotonic, and there existg@e [0; [ such that
®_c C[0; o] and@;(07) Clyo — 7 ¢ol.

2. (a) The matrix—C is forward monotonic, and there existspg €] — 7; O[ such thatd_ C] — 7; ¢o] and
®,,(0%) C [—m: 9o[Ulgo + 7 7]. (b) The matrix—C is backward monotonic, and there existg@c]0; 7|
such thatd_¢ C [¢o; 7[ and @, (07) C [—7; o — 7[U]go; 7].

3. The matrix—C is neither forward nor backward monotonic, but there exists &] — 7; O[ andg;, €]0; 7 [ such
that®_c¢ C [¢o; gl and @, (07) C [¢g; wo + 7] (or equivalently® - (07) C [¢g — 75 @o])).

Example. Consider again the Ginzburg—Landau equation (12). For the periodiciybit = e 1**¢ the matrices
M (t) andC(¢) are constant with respect tpand, respectively, equal to

0 2 1 -8
(0 %) o (5 V)
We thus have

&_c = {arctans}, @M(O+) = {arcco{—a)}, &@,,(07) = {arccol—a) — 7 }.
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We can thus translate the Benjamin—Feir criterioh &8 > 0 or < 0 in geometrical terms, and make the corre-
spondence with the various cases distinguished in Proposition 4. This gives

ifg<0 0<®,0")<d c+n casgla),

l1+08>0% { ifg>0 &_c—m<d;0)=<0, -caselb),

ifg<0 @ c+m<®,0")<n case2a),

1+ap <0< { if >0, —7<®,07)<®_c—m case2b).

Proof of Proposition 4. We exclude the case whe¢gis proportional to the identity, where the spatial extension
of ug(-) with respect toC is always phase stable. According to Corollary 47 it= fOT(a(s)Y(s) + c1(s)) ds is
strictly positive (resp. negative), then we have phase stability (resp. instability). Remark thdt) i#: 0, then
cotw_é(t)(O) = c1(t)/c3(t) and, ifb(¢r) # 0, then cotoM([)(0+) = cot<pM(t)(O‘) =a(t)/b(t).

Suppose that (1a) holds. Thes(-) < 0; moreover, a€’ is not proportional to the identity, we hayg < 0 and
there are values offor whichc3(¢) < 0. By definition ofY (+), this yieldsY (r) > 0, t € R. If P_¢a (0) is defined,
then it belongs togo; 0]. Thus, ifcz(¢) < 0, then COtp_é([)(O) = (c1(t)/c3(t)) < cotgg, and ifcz(r) = 0, then
c1(t) > 0. In both cases, we have(r) > c3(r) cotgg. On the other hand, 'ti)M(t)(Oﬂ is defined, then it belongs
to Jpo; wo + m[. Thus, ifb(t) < 0, then cotpmt)(oﬂ > coteg; if b(t) > 0, then cotoM(t)(Oﬂ < cotgpp; and if
b(t) = 0, thena(r) < 0. In particular, we always haver) < b(t) coteyp.

Now, asY (-) > 0, we deduce from these estimates that

T % T
7> / (coteo(b(s)Y (s)) + c1(s))ds = Cot(po/ E(s) ds + / (c1(s) — c3(s) cotep) ds.
0 0 0

As Y(T) = Y (0), the first term in the last expression vanishes, and we see that the second term is positive. Thus,
7 > 0 and we have phase stability.

If (1b) holds, the symmetric argument again shows that 0. Now, suppose that (2a) holds. We have again
c3() <0, 90 < 0,andY(-) > 0. If (p_é(t)(O) is defined, then it belongs to =; ¢o]. Thus, ifc3(t) < 0, then
COtgo_C(t)(O) = (c1(t)/c3(t)) > cotgg, and if c3(r) = 0, then necessarily;(r) = 0. In both cases, we have
c1(t) < c3(t) cotgp.

On the other hand, iﬁM(t)(0+) is defined, then it belongs to} m; po[U]go + 7; ]. Thus, if b(t) < O, then
cot<pM(t)(O+) < cotgo; if b(¢) > 0, then CO'pr(l)(0+) > COtgo; and ifb(¢) = 0, thena(¢) > 0. In particular, we
always have:(t) > b(t) coteg.

As Y (-) > 0, we deduce from these estimates that
T

T dY T
T < / (coteo(b(s)Y (s)) + c1(s))ds = Cotgz)o/ E(s) ds + / (c1(s) — c3(s) cotep) ds.
0 0 0

The first term in the last expression vanishes, and we see that the second term is negatie<Thasd we have
phase instability.

If (2b) holds, the symmetric argument again shows that 0. Finally, suppose that (3) holds. Necessarily, we
havey, — go < 7, and colpp < Ccotgy,.

If c3() < 0, thenw_é(t)(O) € [¢o; O] and thus coqo_ém(O) < cotgg, which yieldsci(t) > c3(t) cotpg >
c3(t) cotgy. If c3(r) < O, then (p_é(t)(O) €]0: ¢4l and thus coto_é(t)(O) > cotgy, which yieldsci(r) >
c3(t) cotyy > c3(1) cotgo. Finally, if c3(r) = 0, thenc1(r) > 0. In all cases, we have

c1(t) > max(ca(t) cotgo, c3(t) cotey)

and there are values ofor which this inequality is strict.
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On the other hand, i(f)M(t)(Oﬂ is defined, then it belongs t@{;: ¢o + 7]. Thus, if (a(t), b(¢)) # (0,0) then
b(t) < 0, and we have caip < cot<pM(l)(O+) < cotgy. We thus always have

b(t) cotgy < a(t) < b(t) cotep.

Now, the sign oft (-) may change on [0T']; nevertheless, let us suppose first that this sign is constant, for instance
Y () > 0. Then,

T T gy T
7> / (b(s)Y (s) cotgy + c1(s)) ds = Cot(pf)/ a(s) ds —i—f (c1(s) — c3(s) cotep) ds.
0 0 0

The first term vanishes, and the second term is strictly positive Zhu9.

If Y(-) < 0, the symmetric argument yields agdin- 0. Finally, if the sign ofY (-) changes, we can apply the
preceding estimates on each maximal interval where this sign remains constant, and once again We-obtain
This finishes the proof. O

Definition. We will say that the matrix-C is uniformly forward(resp.backward monotonidf there existe > 0
such that, for anyy € R/2nZ such thaity, ¢ kerC, o_c(y) < —e (resp.p_c(¥) > ¢).

We will say that the periodic orbitig(-) is uniformly forward (resp.backward monotonicif, for any
t €R, a(t) <0 (respa(t) > 0).

Remark. The interest of this last definition is limited, because it is not invariant under conjugacy of the vector field
£ () by a diffeomorphism dR?, nor under a change in the choice of the local fratag(-), e2(-)). Nevertheless,

it enables to derive the following corollary as an immediate consequence of Propgakifitais corollary can be
viewed as a weak form of Propositi@n

Corollary 6.

1. Suppose thaig(-) is uniformly forward(resp. backwarfimonotonic, and thatC is forward (resp. backwaryl
monotonic. If moreove®_¢ € [—7/2; 0] (resp @_¢ € [0; 7/2]), then the spatial extension at(-) with
respect to C is phase stable

2. Suppose thatg(-) is uniformly forward(resp. backwarimonotonic. Then there exists> 0 such that, if—C is
backward(resp. forward monotonic and moreoveb_. € [7/2 — ¢; [ (resp @_¢ €] — w; —7/2 + €], then
the spatial extension aiy(-) with respect to C is phase unstable

3. Suppose that-C is uniformly forward(resp. backwarfimonotonic. Then there exists> 0 such that, ifug(-) is
uniformly backwardresp. forward monotonic and moreoveer(O+) C [-7m; —e[Ulnr—¢; n] (resp.&,;,(07) C
[—7; —7 + e[U]e; 7)), then the spatial extension o§(-) with respect to C is phase unstable
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