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Abstract

We consider partial differential equations that can be viewed as spatial extensions of two-dimensional differential equa-
tions with respect to a coupling matrix. We provide analytical and geometrical criteria governing the stability of spatially
homogeneous stationary solutions and the phase stability of spatially homogeneous time periodic solutions. We distinguish
cases where the differential equation has a conservative or a dissipative behavior. The geometrical criteria roughly speaking
relate to the “sense of rotation” of, on one hand, the coupling matrix, and, on the other, the flow of the differential equation
around the spatially homogeneous solution. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many partial differential equations arising in mechanics, physics, chemistry, biology, etc. can be viewed as
spatially extended differential equations, i.e. can be written in the form

∂tu = f (u)+ C 1u, (1)

wheref (·) is a smooth vector field on an open set ofRd , d ≥ 1,C is acoupling map, i.e. a linear map:Rd → Rd

having no eigenvalue with strictly negative real part, and1u = (1u1, . . . , 1ud) means, on each coordinate, the
Laplace operator with respect to a space coordinatex varying in an open set� of Rn, n ≥ 1.

This is the case, for instance, for (nonlinear) heat equations(C = Id), reaction–diffusion equations (C=diagonal),
wave equations

(
C =

(
0 0
1 0

))
,
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Schrödinger equations
(
C =

(
0 0

−1 0

))
,

real and complex Ginzburg–Landau equations, etc. (see [5] for more details).
The reason for the terminology “spatially extended differential equations” is that these equations can be viewed

as spatial extensions of the ordinary differential equation

du

dt
= f (u). (2)

We would like to understand the relations between the dynamics of the differential equation (2), and that of its
spatial extension (1). We suppose that the conditions at the boundary ofΩ are of Neumann type or periodic, so
that, to any solutiont 7→ u0(t) of (2) canonically corresponds the spatially homogeneous solutiont 7→ ū0(t),
ū0(t)(x) ≡ u0(t), x ∈ Ω, for (1); this solutionū0(·) will be called thespatial extensionof the solutionu0(·). A
natural question concerns the relations between the stability properties ofu0(·) andū0(·).

Suppose thatu0(·) is a stable or neutral fixed (resp. periodic) solution of (2); thenū0(·) is also fixed (resp. periodic),
but might be unstable. This instability is at the origin of many phenomena displaying “patterns” or “spatio-temporal
chaos” in nonlinear physics (see [2]). A first step towards a better understanding of such phenomena consists in
analyzing the occurrence of this instability. Linearizing (1) aroundū0(·) formally gives

∂tu = (Df (u0(t))+ C1)u, (3)

which reduces in Fourier coordinates to

∂t û(Ek) = (Df (u0(t))− |Ek|2C)û(Ek), (4)

which is a linear differential equation in dimensiond with constant (resp. periodic) coefficients. WriteM(t) =
Df(u0(t)), and consider the differential equation

du

dt
= (M(t)+ λC)u, (5)

depending on the parameterλ (with corresponds to−|Ek|2). The linear stability of̄u0 for (3) reduces, at least formally,
to the linear stability of 0 for the differential equation (5), for anyλ in the spectrum of the Laplace operator onΩ.
Remark that the same reduction could have been done for any equation involving instead of the Laplace operator a
more general operator (any adjoint-operator acting on a Hilbert spaceH of functions over a metric space, vanishing
on constant functions, and whose spectrum is bounded from above, see [5]; for instance, a differential operator like
−∑

i∂
4
xi

, a discrete Laplace operator on a lattice, etc.).
In the following, we will forget about the precise nature of this operator, and just consider the family of differential

equations (5), depending on the parameterλ.
We will say that thespatial extension of the solutionu0(·) with respect to the coupling map C is

• linearly stable(resp.unstable) with respect toλ0 (for someλ0 ∈] − ∞; 0]) if 0 is linearly stable (resp. unstable)
for the differential equation (5) withλ = λ0;

• linearly unstableif it is linearly unstable (in the sense above) with respect to someλ0 ∈] − ∞; 0].
If u0(·) is a stable or neutral fixed point, instability of a spatial extension ofu0(·) is known asTuring instability

[7]; if u0(·) is linearly stable, this instability cannot occur with respect to values ofλ close to 0. If on the other
handu0(·) is a stable or neutral periodic orbit, then it always has a Floquet multiplier which is equal to 1 (in the
direction of the flow). Thus, even small perturbations of the Floquet map can render this multiplier larger than 1,
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and instability of a spatial extension ofu0(·) might occur with respect to any value ofλ negative and close enough
to 0; if this occurs, one speaks ofphase instability[1,4,8].

We will thus say thatthe spatial extension of a periodic orbitu0(·) with respect to the coupling map C is
• phase stable(resp.unstable) if it is stable (resp. unstable) with respect to anyλ ∈] − ε; 0[ for someε > 0.

This paper is concerned with the stability of spatial extensions of fixed points, and the phase stability of spatial
extensions of periodic orbits, for fixed points and periodic orbit of differential equations in dimensiond = 2. This
is the first dimension where these stability questions arise, and many examples of partial differential equations
correspond to this case (see the beginning of this section). But, above all, the dimension 2 will enable us to provide
geometrical answers to these stability questions.

Let us describe rapidly the contents of the paper. Section 2 is devoted to some preliminaries. The case of fixed
points is treated in Section 3; this case is very elementary, since it reduces to making the sum of two matrices. We
provide geometrical criteria of stability or instability (Corollaries 1–3), and give some examples.

The main part is Section 4, which is devoted to periodic orbits. Asd = 2, these periodic orbits have two Floquet
multipliers, one of them (in the direction of the flow) being equal to 1. We distinguish two cases: the conservative case,
when the second multiplier is also equal to 1, and the dissipative case, when it is strictly smaller than 1. An elementary
perturbation argument enables to provide, in both cases, a general criterion governing the phase stability of spatial
extensions of a periodic orbit (Corollaries 4 and 5). Next, we derive geometrical formulations of these criteria.
This works excellent in the conservative case (Proposition 3), and becomes slightly more painful in the dissipative
case (Proposition 4 and Corollary 6). The geometrical criteria roughly speaking relate to the “sense of rotation” of,
on one hand, the coupling map, and, on the other, the flow of the differential equation around the periodic orbit.
Several examples (nonlinear Schrödinger equation, sine-Gordon equation, complex Ginzburg–Landau equation)
are presented.

2. Preliminaries

Definitions. We will say that the coupling map (matrix)C is
• of type I, or equivalentlypurely diffusive, if C is proportional to the identity;
• of type II, or equivalentlydiffusive, if the two eigenvalues ofC are distinct and real;
• of type III, or equivalentlypropagative, if the two eigenvalues ofC are equal andC is not diagonalizable;
• of type IV, or equivalentlydispersive, if the two eigenvalues ofC are nonreal.

Denote by Rotπ/2 the rotation of center 0 and of angleπ/2 in R2. We will say that a linear mapL : R2 → R2 is
• forward monotonic(resp.backward monotonic) if, for any u ∈ R2, (Lu,Rotπ/2 u) ≥ 0 (resp.≤ 0) (where(·, ·)

denotes the usual scalar product ofR2);
• strictly forward monotonic(resp.strictly backward monotonic) if it is forward monotonic (resp. backward mono-

tonic) and if moreover there are vectorsu for which (Lu,Rotπ/2 u) > 0 (resp.< 0);
• (strictly) monotonicif it is (strictly) forward monotonic or (strictly) backward monotonic.
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Remarks.
1. The map C(and equivalently−C, which will be considered later) is monotonic(resp. strictly monotonic) if and

only if C is of types I, III, or IV(resp. of types III or IV).
2. If C is of type I, then it commutes with any matrix, and we can see in Eq. (5) that the coupling has only a

stabilizing influence. Thus, in this case, the spatial extension ofu0 is always linearly stable with respect to any
λ < 0. Therefore, in the following, we will sometimes exclude this particular case.

Notation. Let P be any 2× 2 real matrix.

Forψ ∈ R/2πZ, letuψ denote the vector(cosψ, sinψ); if uψ /∈ kerP , we will write ϕP (ψ) for the number in
] − π;π ] corresponding to the angle(−uψ,Puψ).

3. Fixed points

Here we suppose thatu0 is a fixed point forf (·); then the matrixM(t) defined above is independent oft , we
denote it byM. We suppose that the fixed pointu0 is not linearly unstable (i.e.M has no eigenvalue of strictly
positive real part). Then, for anyλ < 0, the trace ofM + λC is negative, and thus the spatial extension ofu0 with
respect toC is linearly unstable with respect toλ if and only ifM + λC has a real and strictly positive eigenvalue.
The following lemma provides a geometric criterion for this to occur.

Lemma 1. The two following assertions are equivalent:
1. There existsλ < 0 such thatM + λC has a real and strictly positive eigenvalue.
2. There existsψ ∈ R/2πZ such thatuψ /∈ kerM ∪ kerC and such that|ϕM(ψ)− ϕ−C(ψ)| > π .

The proof is elementary:



E. Risler / Physica D 146 (2000) 121–136 125

Definition. We will say that the fixed pointu0 is (strictly) forward monotonic(resp.backward monotonic) if the
matrixM is (strictly) forward monotonic (resp. backward monotonic).

Corollary 1. If the fixed pointu0 and the matrix−C are both forward or backward monotonic, then the spatial
extension ofu0 with respect to C is not linearly unstable.

The proof of this corollary is an immediate consequence of Lemma 1. In the conservative case, we derive a
generic instability result.

Corollary 2. If u0 is strictly forward (resp. backward) monotonic and−C is strictly backward(resp. forward)
monotonic, and if the eigenvalues of M and−C all have vanishing real parts, then the spatial extension ofu0 with
respect to C is generically(if M and−C are not proportional) linearly unstable.

Proof. AsC andM are nonvanishing, kerC and kerM are at most one-dimensional. For anyψ ∈ R/2πZ such that
uψ /∈ kerC ∪ kerM, ϕM(ψ) andϕ−C(ψ) have opposite signs. Thus, there exists a uniqueλ0(ψ) ∈] − ∞; 0[ such
thatϕM+λC(ψ) changes sign whenλ = λ0(ψ). Generically (more precisely, ifM and−C are not proportional),
we have infψλ0(ψ) < supψλ0(ψ); in this generic case, for anyλ ∈]inf ψλ0(ψ); supψλ0(ψ)[, the two eigenvalues
of M + λC are real and distinct, and, as the trace ofM + λC vanishes, the result follows. �

The following corollary shows that, as soon asC is not of type I, the Turing instability may occur.

Corollary 3. If C is not proportional to the identity, then there exists a matrixM ′ whose two eigenvalues have
strictly negative real parts, such that there exists aλ < 0 for whichM ′ + λC has a real and strictly positive
eigenvalue.

Proof. AsC is not proportional to the identity, there exists av ∈ R2 such thatCv is not proportional tov. Up to a
change of basis, we can suppose thatv = (1,0) and thatϕ−C(0) > 0. Choose forM ′ the matrix

(
1 ε

−3/ε −2

)
, ε > 0.

This matrix has two complex conjugated eigenvalues of strictly negative real part, andϕM ′(0) converges towards
−π whenε → 0. Thus, according to Lemma 1, ifε is sufficiently small,M ′ has the desired property. �

We illustrate the foregoing arguments using two examples.

Example 1(Nonlinear wave equations). The nonlinear wave equation

utt = g(u, ut )+1u

can be viewed as a spatial extension of the two-dimensional differential equation

d

dt

(
u

v

)
=

(
v

g(u, v)

)
(6)

with respect to the coupling matrix

C =
(

0 0
1 0

)
.
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If u0 is a fixed point for (6), and ifu0 is not linearly unstable, then the spatial extension ofu0 with respect toC
is never linearly unstable. This is elementary to prove by computation, but it is also possible to give a geometrical
proof in the spirit of the foregoing discussion, as follows.

We have

M =
(

0 1
a b

)

with a ≤ 0 andb ≤ 0 and−C is backward monotonic. If moreoverb2 + 4a ≤ 0, thenu0 is also backward
monotonic (indeedϕM(π/2) > 0) and the result follows by Corollary 1. Without this last hypothesis, let us remark
(see illustration) that
• for ψ ∈ [−π/2; 0], ϕM(ψ)+ ψ ∈ [−π/2;π/2] andϕ−C(ψ)+ ψ = π/2;
• for ψ ∈ [0;π/2], asa ≤ 0 andb ≤ 0, ϕM(ψ)+ ψ ∈ [π/2;π ] andϕ−C(ψ)+ ψ = π/2.

Thus, we always have|ϕM(ψ)− ϕ−C(ψ)| ≤ π , and, according to Lemma 1, the result follows.

Example 2(A nonlinear Schrödinger equation). Consider the celebrated cubic nonlinear Schrödinger equation

iut + uxx + σ(1 − |u|2)u = 0, u ∈ C (7)

in the focusing(σ = −1) or defocusing(σ = +1) case. This equation can be viewed as a spatial extension of the
differential equation

ut = iσ(1 − |u|2)u, u ∈ C ' R2 (8)

with respect to the coupling matrix

C =
(

0 −1
1 0

)
.

The points on the circle of center 0 and of radius 1 are fixed for this differential equation and, ifσ = −1 (resp.
σ = +1), they are all strictly forward (resp. backward) monotonic; actually, the differential of the vector field at
any of these points is conjugated to the matrix(

0 0
1 0

) (
resp.

(
0 0

−1 0

))
.
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On the other hand, the matrix−C is strictly backward monotonic. Thus, according to Corollary 2, the spatial
extension of any of these fixed points is linearly unstable in the focusing case, and is not linearly unstable in the
defocusing case.

4. Periodic orbits

4.1. Preliminaries

Here we suppose thatu0(·) is a periodic orbit forf (·); denote byT its (smallest) period. Fort ∈ R, let
e1(t) = f (u0(t)), and lete2(t) be any vector ofR2 linearly independent ofe1(t) and depending smoothly and
T -periodically ont (the simplest choice beinge2(t) = Rotπ/2 e1(t), where Rotπ/2 denotes the rotation of angle
π/2).

For t ∈ R, let P(t) be the matrix whose columns are the respective coordinates of the vectorse1(t) ande2(t)

in the canonical basis ofR2, let M̂(t) = −P(t)−1(dP/dt)(t) + P(t)−1M(t)P (t), and letĈ(t) = P(t)−1CP(t).
Eq. (5) reads, in the moving frame(e1(·), e2(·)),

du

dt
= (M̂(t)+ λĈ(t))u. (9)

Let us write

M̂(t) =
(

0 a(t)

0 b(t)

)
, Ĉ(t) =

(
c1(t) c2(t)

c3(t) c4(t)

)
, Bts = exp

∫ t

s

b(τ )dτ.

For λ, t ∈ R, let φλ(t) denote the (linear) flow of the differential equation (9) between the times 0 andt . The
two eigenvalues ofφ0(T ) are 1 (the neutral Floquet multiplier in the direction of the flow) andBT0 (the transverse
Floquet multiplier).

We will suppose thatBT0 ≤ 1, i.e. that the periodic orbit is not linearly unstable, and we will study the linear
stability (i.e. the position of the eigenvalues) ofφλ(T ), for small negativeλ, considering Eq. (9) as a perturbation
of the caseλ = 0. We will distinguish two cases: the dissipative case (i.e.BT0 < 1), and the conservative case (i.e.
BT0 = 1).
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4.2. Analytical criteria

Writing

u(t) =
(
x(t)

y(t)

)
,

the differential equation (9) reads

dx

dt
= ay+ λ(c1x + c2y), (10)

dy

dt
= by+ λ(c3x + c4y). (11)

4.2.1. Dissipative case
SupposeBT0 < 1. Then 1 is an isolated eigenvalue for the linear mapφ0(T ). Thus, for anyλ sufficiently close

to 0,φλ(T ) admits a unique eigenvalue close to 1 (denote it byµ(λ)), the other eigenvalue being close toBT0 . The
phase stability is therefore governed by the position ofµ(λ) with respect to 1.

Let Y (·) be the uniqueT -periodic solution of the differential equation dY/dt = bY+ c3, i.e.

Y (t) = Bt0Y0 +
∫ t

0
Btsc3(s)ds, t ∈ R, whereY0 = (1 − BT0 )

−1
∫ T

0
BTs c3(s)ds,

and let

I =
∫ T

0
(a(s)Y (s)+ c1(s))ds.

Proposition 1. The derivativedµ/dλ(0) exists and is equal toI.

Corollary 4. If I > 0 (resp.I < 0), then the spatial extension ofu0(·)with respect to C is phase stable(resp. phase
unstable).

Remarks.
1. It is actually possible to choose the vectorse2(·) involved in the moving frame in such a way that the matrix
M̂(t) be constant with respect to t and equal to

(
0 0
0 logBT0

)

(see[3]); in this situation, the expression ofI reduces to
∫ T

0 c1(s)ds.
2. Close to a supercritical Hopf bifurcation, this criterion reduces to the Benjamin–Feir criterion(see[6]).

Using this criterion, one can provide an elementary rigorous justification of the Benjamin–Feir instability criterion
for a spatially extended Hopf bifurcation (see [6]).

Proof of Proposition 1. Forλ close to 0, the eigenspace ofφλ(T ) corresponding to the eigenvalueµ(λ) is close to
the direction of the vector(1,0); thus, it contains a unique vectorελ(0) whose first coordinate is equal to 1.
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Write

ελ(0) =
(

1
yλ(0)

)

for t ∈ R, let ελ(t) = φλ(t)(ελ(0)) and write

ελ(t) =
(
xλ(t)

yλ(t)

)
.

We haveµ(λ) → 1 whenλ → 0, and, uniformly with respect tot, xλ(t) → 1 andyλ(t) → 0 whenλ → 0.
According to (11), we have

yλ(T ) = BT0 yλ(0)+ λ

∫ T

0
BTs c3(s)ds + o(λ),

and, asyλ(T ) = µ(λ)yλ(0), this yieldsyλ(0)− λY0 = o(λ). Thus,yλ(t)− λY (t) = o(λ), uniformly with respect
to t .

Therefore, according to (10),

xλ(T )− 1 − λI = o(λ).

As xλ(T ) = µ(λ), this finishes the proof. �

Example. The complex Ginzburg–Landau equation

At = A− (1 + iα)|A|2A+ (1 + iβ)1A, A ∈ C ' R2 (12)

can be viewed as a spatial extension of the differential equationAt = A−(1+ iα)|A|2Awith respect to the coupling
matrix

C =
(

1 −β
β 1

)
.

This differential equation admits an attractive periodic solutionA0(t) = e−iαt+ϕ . With e2(·) = Rπ/2 e1(·), the
matricesM̂(·) andĈ(·) are constant and read, respectively,

(
0 2α
0 −2

)
and

(
1 −β
β 1

)
.

Thus,I = T (1+ αβ) and the phase stability criterionI > 0 stated above reduces to the celebrated Benjamin–Feir
criterion

1 + αβ > 0

(nevertheless, in this case, this last criterion governs the linear stability of the spatial extension of the periodic orbit
A0(·) with respect to any (not only small) value ofλ, as an immediate calculus shows).

4.2.2. Conservative case
SupposeBT0 = 1. Then the two eigenvalues ofφ0(T ) are equal to 1. Forλ close to 0, the two eigenvalues ofφλ(T )

are thus close to 1, and can be real or complex conjugate. Denote them byµj (λ), j = 1 or 2 (with, for instance, the
constraint that, if they are real, thenµ1(λ) ≥ µ2(λ), and if they are complex conjugate, then Imµ1(λ) ≥ 0).
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Write

J =
∫ T

0
Bs0a(s)ds, K =

∫ T

0
BTs c3(s)ds

(
remark thatφ0(T ) =

(
1 J
0 1

))
.

Proposition 2. We have

(µj (λ)− 1)2

λ
→ JK when λ → 0, j = 1,2.

More precisely,

µ1(λ) = 1 + √
σ
√

|λJK| + o(
√

|λ|), µ2(λ) = 1 − √
σ
√

|λJK| + o(
√

|λ|),
whereσ represents the sign ofλJK, i.e.

√
σ is equal to1 if λJK ≥ 0, and to the complex numberi if λJK < 0.

Corollary 5. If JK < 0 (resp. ifJK > 0) then the spatial extension ofu0(·) with respect to C is(resp. is not)
phase unstable.

Indeed, whenλ < 0 and the eigenvalues ofφλ(T ) are complex conjugate, their modulus cannot be strictly greater
than 1, because the trace of the coupling matrixC is nonnegative.

Remark. It is actually possible to choose the vectorse2(·) involved in the moving frame in such a way that the
matrix M̂(t) be constant with respect to t and equal to

(
0 T −1J
0 0

)

(see[3]); in this situation, the expression ofK reduces to
∫ T

0 c3(s)ds.

Proof of Proposition 2. Forλ close to 0, the eigenspaces (inC2) of φλ(T ) corresponding to the (possibly identical)
eigenvaluesµj (λ), j = 1,2, are close to the direction of the vector(1,0). Let ελ(0) be any eigenvector ofφλ(T )
having a first coordinate equal to 1, and denote byµ(λ) the corresponding eigenvalue ofφλ(T ).

Let us write, as in the dissipative case,

ελ(0) =
(

1
yλ(0)

)
,

and, fort ∈ R, ελ(t) = φλ(t)(ελ(0)) and

ελ(t) =
(
xλ(t)

yλ(t)

)
.

We have againµ(λ) → 1 whenλ → 0, and, uniformly with respect tot, xλ(t) → 1 andyλ(t) → 0 whenλ → 0.
According to (11), we have

yλ(T )− yλ(0) = λ

∫ T

0
BTs c3(s)ds + o(λ) = λK + o(λ).
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Thus,(µ(λ)− 1)yλ(0) = λK + o(λ). Besides,µ(λ)− 1 = xλ(T )− 1, and, according to (10),

xλ(T )− 1 =
∫ T

0
a(s)yλ(s)ds +O(λ) = yλ(0)

∫ T

0
a(s)Bs0 ds +O(λ) = yλ(0)J +O(λ).

Thus,

(µ(λ)− 1)2 = (µ(λ)− 1)yλ(0)J + o(λ) = λJK + o(λ),

which proves the first assertion of the proposition. The remaining assertions follow easily. �

4.3. Geometrical criteria

The geometrical criteria will involve the properties of forward or backward monotonicity for the periodic orbit
u0(·) (to be defined below). In order these formulations to make sense, we suppose from now on that the local frames
(e1(t), e2(t)) have the usual orientation (the same as the canonical basis ofR2). We begin with the conservative
case, for which the geometrical criteria are the simplest and the most meaningful.

4.3.1. Conservative case

Definition. We will say that the periodic orbitu0(·) is (strictly) forward monotonic(resp.backward monotonic) if
the matrix ofφ0(T ) is itself (strictly) forward monotonic (resp. backward monotonic), or equivalently if the number
J = ∫ T

0 B
s
0a(s)ds is (strictly) negative (resp. positive).

Remark. The sign ofJ , and consequently the monotonicity ofu0(·) are unchanged under conjugacy of the vector
fieldf (·) by an orientation-preserving diffeomorphism ofR2.

Proposition 3. If the periodic orbitu0(·) and the matrix−C are both strictly forward or backward mono-
tonic, then the spatial extension ofu0(·) with respect to C is not phase unstable(and is even phase stable iftr
C > 0).

If on the other handu0(·) is strictly forward(resp. backward) monotonic and−C is strictly backward(resp. for-
ward) monotonic, then the spatial extension ofu0(·) with respect to C is phase unstable.

Proof. If −C is strictly forward (resp. backward) monotonic, thenc3(t) ≤ 0 (resp.≥ 0) for anyt ∈ R, and there
are values oft for which the inequality is strict; thus, we haveK < 0 (resp.> 0), and the proposition follows from
Corollary 5. �

Example.
1. Let us consider again the cubic nonlinear Schrödinger equation (7). The matrix−C is strictly backward

monotonic. The circles of center 0 and of radii in ]0; 1[∪]1; +∞[ are trajectories of periodic orbits for the
corresponding differential equation (8). Ifσ = −1 (resp.σ = +1), all these periodic orbits are strictly
forward (resp. backward) monotonic (see the figure in Section 3); their spatial extensions with respect toC

are thus phase unstable in the focusing case, and not phase unstable in the defocusing case.
2. Consider the sine-Gordon equation

utt + sinu = uxx, u ∈ R/2πZ.
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This equation can be viewed as a spatial extension of the differential equation

d

dt

(
u

v

)
=

(
v

− sinu

)

with respect to the coupling matrix

C =
(

0 0
1 0

)
.

The matrix−C is strictly backward monotonic, and this differential equation admits periodic orbits parame-
terized by their energyE ∈] − 1; 1[∪]1; +∞[. The periodic orbits corresponding toE ∈] − 1; 1[ are strictly
forward monotonic, their spatial extensions with respect toC are thus phase unstable; the ones corresponding
to E ∈]1; +∞[ are strictly backward monotonic, their spatial extensions with respect toC are thus not phase
unstable.

Remark. In the case of nonlinear wave equations viewed as spatial extensions of second-order systems, as for the
sine-Gordon equation above, the periodic orbits, if they exist, always have the converse orientation. This enables
to use a different terminology, presented below, to describe their monotonicity properties.

Recall that an oscillator is called soft(resp. hard) if the frequency of the oscillations decreases(resp.
increases) with their amplitude. By analogy, we can say that a periodic orbit of a conservative second-order
system is(strictly) soft (resp. hard) if it is (strictly) forward (resp. backward) monotonic in the sense defined
above.

With this definition, if this periodic orbit is strictly soft(resp. hard), then its spatial extension is phase unstable
(resp. is not phase unstable). For instance, in the example(2) above, the periodic orbits whose energy belongs to
] − 1; 1[ (resp. to]1; +∞[) are all strictly soft(resp. strictly hard).

4.3.2. Dissipative case
In the dissipative case, the geometrical criteria are less natural and slightly more involved. They relate on quanti-

tative estimates on the anglesϕ−C(·), ϕ−Ĉ(t)(·), andϕ
M̂(t)

(·). But these angles depend on the choice of the bases in
which the matrices are computed, in particular on the local frames(e1(·), e2(·)). We thus fix this choice, imposing
for the remaining thate2(t) = Rotπ/2 e1(t), t ∈ R.

Let

Φ−C =
⋃

ψ∈R/2πZ,uψ /∈kerC

ϕ−C(ψ) =
⋃

t∈R,u0/∈kerĈ(t)

ϕ−Ĉ(t)(0).

For t ∈ R, if M̂(t) 6= 0, thenϕ
M̂(t)

(ψ) has a limit in [−π;π ] whenψ → 0+ (resp. whenψ → 0−); let us denote
by ϕ

M̂(t)
(0+) (resp.ϕ

M̂(t)
(0−)) this limit (remark that|ϕ

M̂(t)
(0+)− ϕ

M̂(t)
(0−)| = π ), and let

Φ
M̂
(0+) =

⋃
t∈R,M̂(t) 6=0

ϕ
M̂(t)

(0+), Φ
M̂
(0−) =

⋃
t∈R,M̂(t) 6=0

ϕ
M̂(t)

(0−).

In the proposition below, hypotheses (1a) and (1b) are symmetrical, as are hypotheses (2a) and (2b).

Proposition 4. If one of the hypotheses(1a), (1b),and(3) below is satisfied, then the spatial extension ofu0(·)with
respect to C is phase stable; if one of the hypotheses(2a)and(2b)below is satisfied, then it is phase unstable.
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1. (a) The matrix−C is forward monotonic, and there exists aϕ0 ∈] − π; 0] such thatΦ−C ⊂ [ϕ0; 0] and
Φ
M̂
(0+) ⊂]ϕ0;ϕ0 + π [. (b) The matrix−C is backward monotonic, and there exists aϕ0 ∈ [0;π [ such that

Φ−C ⊂ [0;ϕ0] andΦ
M̂
(0−) ⊂]ϕ0 − π;ϕ0[.

2. (a)The matrix−C is forward monotonic, and there exists aϕ0 ∈] − π; 0[ such thatΦ−C ⊂] − π;ϕ0] and
Φ
M̂
(0+) ⊂ [−π;ϕ0[∪]ϕ0 + π;π ]. (b) The matrix−C is backward monotonic, and there exists aϕ0 ∈]0;π [

such thatΦ−C ⊂ [ϕ0;π [ andΦ
M̂
(0−) ⊂ [−π;ϕ0 − π [∪]ϕ0;π ].

3. The matrix−C is neither forward nor backward monotonic, but there exists aϕ0 ∈] −π; 0[ andϕ′
0 ∈]0;π [ such

thatΦ−C ⊂ [ϕ0;ϕ′
0] andΦ

M̂
(0+) ⊂ [ϕ′

0;ϕ0 + π ] (or equivalentlyΦ
M̂
(0−) ⊂ [ϕ′

0 − π;ϕ0])).

Example. Consider again the Ginzburg–Landau equation (12). For the periodic orbitA0(t) = e−iαt+ϕ , the matrices
M̂(t) andĈ(t) are constant with respect tot , and, respectively, equal to

(
0 2α
0 −2

)
and

(
1 −β
β 1

)
.

We thus have

Φ−C = { arctanβ}, Φ
M̂
(0+) = {arccot(−α)}, Φ

M̂
(0−) = {arccot(−α)− π}.
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We can thus translate the Benjamin–Feir criterion 1+ αβ > 0 or< 0 in geometrical terms, and make the corre-
spondence with the various cases distinguished in Proposition 4. This gives

1 + αβ > 0 ⇔
{

if β ≤ 0, 0 ≤ Φ
M̂
(0+) < Φ−C + π, case(1a),

if β ≥ 0, Φ−C − π < Φ
M̂
(0−) ≤ 0, case(1b),

1 + αβ < 0 ⇔
{

if β < 0, Φ−C + π < Φ
M̂
(0+) ≤ π, case(2a),

if β > 0, −π ≤ Φ
M̂
(0−) < Φ−C − π, case(2b).

Proof of Proposition 4. We exclude the case whereC is proportional to the identity, where the spatial extension
of u0(·) with respect toC is always phase stable. According to Corollary 4, ifI = ∫ T

0 (a(s)Y (s) + c1(s))ds is
strictly positive (resp. negative), then we have phase stability (resp. instability). Remark that, ifc3(t) 6= 0, then
cotϕ−Ĉ(t)(0) = c1(t)/c3(t) and, ifb(t) 6= 0, then cotϕ

M̂(t)
(0+) = cotϕ

M̂(t)
(0−) = a(t)/b(t).

Suppose that (1a) holds. Thenc3(·) ≤ 0; moreover, asC is not proportional to the identity, we haveϕ0 < 0 and
there are values oft for whichc3(t) < 0. By definition ofY (·), this yieldsY (t) > 0, t ∈ R. If ϕ−Ĉ(t)(0) is defined,
then it belongs to [ϕ0; 0]. Thus, ifc3(t) < 0, then cotϕ−Ĉ(t)(0) = (c1(t)/c3(t)) ≤ cotϕ0, and ifc3(t) = 0, then
c1(t) ≥ 0. In both cases, we havec1(t) ≥ c3(t) cotϕ0. On the other hand, ifϕ

M̂(t)
(0+) is defined, then it belongs

to ]ϕ0;ϕ0 + π [. Thus, ifb(t) < 0, then cotϕ
M̂(t)

(0+) > cotϕ0; if b(t) > 0, then cotϕ
M̂(t)

(0+) < cotϕ0; and if
b(t) = 0, thena(t) ≤ 0. In particular, we always havea(t) ≤ b(t) cotϕ0.

Now, asY (·) > 0, we deduce from these estimates that

I >

∫ T

0
(cotϕ0(b(s)Y (s))+ c1(s))ds = cotϕ0

∫ T

0

dY

ds
(s)ds +

∫ T

0
(c1(s)− c3(s) cotϕ0)ds.

As Y (T ) = Y (0), the first term in the last expression vanishes, and we see that the second term is positive. Thus,
I > 0 and we have phase stability.

If (1b) holds, the symmetric argument again shows thatI > 0. Now, suppose that (2a) holds. We have again
c3(·) ≤ 0, ϕ0 < 0, andY (·) > 0. If ϕ−Ĉ(t)(0) is defined, then it belongs to ]− π;ϕ0]. Thus, if c3(t) < 0, then
cotϕ−Ĉ(t)(0) = (c1(t)/c3(t)) ≥ cotϕ0, and if c3(t) = 0, then necessarilyc1(t) = 0. In both cases, we have
c1(t) ≤ c3(t) cotϕ0.

On the other hand, ifϕ
M̂(t)

(0+) is defined, then it belongs to ]− π;ϕ0[∪]ϕ0 + π;π ]. Thus, if b(t) < 0, then
cotϕ

M̂(t)
(0+) < cotϕ0; if b(t) > 0, then cotϕ

M̂(t)
(0+) > cotϕ0; and ifb(t) = 0, thena(t) ≥ 0. In particular, we

always havea(t) ≥ b(t) cotϕ0.
As Y (·) > 0, we deduce from these estimates that

I <

∫ T

0
(cotϕ0(b(s)Y (s))+ c1(s))ds = cotϕ0

∫ T

0

dY

ds
(s)ds +

∫ T

0
(c1(s)− c3(s) cotϕ0)ds.

The first term in the last expression vanishes, and we see that the second term is negative. ThusI < 0 and we have
phase instability.

If (2b) holds, the symmetric argument again shows thatI < 0. Finally, suppose that (3) holds. Necessarily, we
haveϕ′

0 − ϕ0 < π , and cotϕ0 < cotϕ′
0.

If c3(t) < 0, thenϕ−Ĉ(t)(0) ∈ [ϕ0; 0[ and thus cotϕ−Ĉ(t)(0) ≤ cotϕ0, which yieldsc1(t) ≥ c3(t) cotϕ0 >

c3(t) cotϕ′
0. If c3(t) < 0, thenϕ−Ĉ(t)(0) ∈]0;ϕ′

0] and thus cotϕ−Ĉ(t)(0) ≥ cotϕ′
0, which yieldsc1(t) ≥

c3(t) cotϕ′
0 > c3(t) cotϕ0. Finally, if c3(t) = 0, thenc1(t) ≥ 0. In all cases, we have

c1(t) ≥ max(c3(t) cotϕ0, c3(t) cotϕ′
0)

and there are values oft for which this inequality is strict.



E. Risler / Physica D 146 (2000) 121–136 135

On the other hand, ifϕ
M̂(t)

(0+) is defined, then it belongs to [ϕ′
0;ϕ0 + π ]. Thus, if (a(t), b(t)) 6= (0,0) then

b(t) < 0, and we have cotϕ0 ≤ cotϕ
M̂(t)

(0+) ≤ cotϕ′
0. We thus always have

b(t) cotϕ′
0 ≤ a(t) ≤ b(t) cotϕ0.

Now, the sign ofY (·)may change on [0; T ]; nevertheless, let us suppose first that this sign is constant, for instance
Y (·) ≥ 0. Then,

I ≥
∫ T

0
(b(s)Y (s) cotϕ′

0 + c1(s))ds = cotϕ′
0

∫ T

0

dY

ds
(s)ds +

∫ T

0
(c1(s)− c3(s) cotϕ′

0)ds.

The first term vanishes, and the second term is strictly positive, thusI > 0.
If Y (·) ≤ 0, the symmetric argument yields againI > 0. Finally, if the sign ofY (·) changes, we can apply the

preceding estimates on each maximal interval where this sign remains constant, and once again we obtainI > 0.
This finishes the proof. �

Definition. We will say that the matrix−C is uniformly forward(resp.backward) monotonicif there existsε > 0
such that, for anyψ ∈ R/2πZ such thatuψ /∈ kerC, ϕ−C(ψ) ≤ −ε (resp.ϕ−C(ψ) ≥ ε).

We will say that the periodic orbitu0(·) is uniformly forward (resp.backward) monotonic if, for any
t ∈ R, a(t) < 0 (resp.a(t) > 0).

Remark. The interest of this last definition is limited, because it is not invariant under conjugacy of the vector field
f (·) by a diffeomorphism ofR2, nor under a change in the choice of the local frame(e1(·), e2(·)). Nevertheless,
it enables to derive the following corollary as an immediate consequence of Proposition4. This corollary can be
viewed as a weak form of Proposition3.

Corollary 6.
1. Suppose thatu0(·) is uniformly forward(resp. backward) monotonic, and that−C is forward(resp. backward)

monotonic. If moreoverΦ−C ∈ [−π/2; 0] (resp. Φ−C ∈ [0;π/2]), then the spatial extension ofu0(·) with
respect to C is phase stable.

2. Suppose thatu0(·) is uniformly forward(resp. backward) monotonic. Then there existsε > 0 such that, if−C is
backward(resp. forward) monotonic and moreoverΦ−C ∈ [π/2 − ε;π [ (resp. Φ−C ∈] − π; −π/2 + ε], then
the spatial extension ofu0(·) with respect to C is phase unstable.

3. Suppose that−C is uniformly forward(resp. backward) monotonic. Then there existsε > 0 such that, ifu0(·) is
uniformly backward(resp. forward) monotonic and moreoverΦ

M̂
(0+) ⊂ [−π; −ε[∪]π−ε;π ] (resp.Φ

M̂
(0−) ⊂

[−π; −π + ε[∪]ε;π ]), then the spatial extension ofu0(·) with respect to C is phase unstable.
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