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Abstract: We consider spatially homogeneous time periodic solutions of general par-
tial differential equations. We prove that, when such a solution is close enough to a
homoclinic orbit or a homoclinic bifurcation for the differential equation governing the
spatially homogeneous solutions of the PDE, then it is generically unstable with respect
to large wavelength perturbations. Moreover, the instability is of one of the two follow-
ing types: either the well-known Kuramoto phase instability, corresponding to a Floquet
multiplier becoming larger than 1, or a fundamentally different kind of instability, oc-
curring with a period doubling at an intrinsic finite wavelength, and corresponding to a
Floquet multiplier becoming smaller than−1.

1. Introduction

We consider PDEs of the form

∂tu = F(u, ∂x), (1)

i.e. invariant with respect to translations of time (autonomous) and space. We suppose
thatu is inRd ,d ≥ 1, and that the space coordinatex belongs toRn,n ≥ 1, or to a domain
of Rn with boundary conditions of type Neumann or periodic. Spatially homogeneous
solutions of this PDE are solutions of the equation

du

dt
= F(u,0) = f (u) (2)

(we writef (u) for F(u,0)), which is an autonomous ordinary differential equation in
dimensiond.

Among the solutions of Eq. (2), of prime interest are those which correspond to an
asymptotic behavior, in particular attractive fixed points and attractive periodic orbits.
Consider such a solutiont �→ uh(t)of Eq. (2). The corresponding homogeneous solution
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for the PDE (1) is thus stable with respect to homogeneous perturbations. However, it
might be unstable with respect to inhomogeneous perturbations, this is at the origin of
many phenomena displaying “patterns” or “spatio-temporal chaos” in nonlinear Physics
([6]).

The question of the stability with respect to inhomogeneous perturbations turns out
to be, without further hypotheses, by far a too general problem. It is thus necessary to
specify, particularize this problem in order to be able to provide significant results. An
interesting way to do so is to look close to a bifurcation. Indeed, bifurcation theory tells
us that this greatly simplifies the problem, and at the same time preserves its general-
ity: normal forms of unfoldings of bifurcations are both “particular” and “universal”
examples.

Thus we will suppose that the solutiont �→ uh(t) is close to a bifurcation as a
solution of the differential Eq. (2). This is still not sufficient and we will moreover
restrict ourselves to large wavelength (small wavenumber) perturbations. In [5], this
approach, calledspatial unfolding of bifurcations, is developed systematically, and all
bifurcations occurring generically for fixed points and periodic orbits in dimension one
and two are treated (results of the present paper are quoted, but only rough ideas of the
proofs are given).

Here we will concentrate on almost homoclinic periodic orbits: we will suppose that
t �→ uh(t) is periodic and close to a homoclinic orbit or to a homoclinic bifurcation, i.e.
that it spends almost all its time close to a hyperbolic fixed point of Eq. (2). Moreover,
we will assume that space is isotropic, and that the solutiont �→ uh(t) itself does not
break space isotropy. The aim of this paper is to show that such solutions are generically
unstable with respect to inhomogeneous large wavelength perturbations.

A small inhomogeneous perturbationu(x, t) of uh(t) formally obeys at first order
the linear equation

∂tu = DF(uh(t), ∂x)u, (3)

which reduces in Fourier coordinates to

∂t û(k) = DF(uh(t), ik)û(k) (4)

which is just an ordinary differential equation parametrized byk. Because of the above
hypotheses on space isotropy, the preceding equation only depends on|k|2 and can be
rewritten

∂t û(k) =
(
Df (uh(t))+ C(uh(t),−|k|2)

)
û(k), (5)

whereC : Rd × R → L(Rd) satisfiesC(.,0) ≡ 0 (we denote byL(Rd) the space
of linear maps:Rd → Rd ). Thus we can write:C(u, λ) = λC(u, λ), where the map
C : Rd × R → L(Rd) is regular.

In the following, we will forget about the exact nature of the PDE (1), and just consider
the ordinary differential equation

du

dt
= (

Df (uh(t))+ λC(uh(t), λ)
)
u, (6)

depending on the parameterλ (which corresponds to−|k|2, thus which will be supposed
to be small negative).

For λ ≤ 0, denote by�λ the (linear) flow over one period ofuh of this differential
equation, and denote byρ(�λ) the spectral radius of�λ. We know that 1 is always an
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eigenvalue of�0 (the “neutral” Floquet multiplier in the direction of the flow). Thus,
even for values ofλ arbitrarily close to 0, the eigenvalue 1 of�0 may become larger
than 1. This is the well known Kuramoto phase instability ([4,9,11]).

We are going to show that, when the solutionuh passes close enough to a hyperbolic
fixed point, then this solution is generically unstable with respect to inhomogeneous large
wavelength perturbations, i.e. there are small negative values ofλ for whichρ(�λ) > 1.
Moreover, we shall see that the instability can be of two different types: either the
Kuramoto phase instability, or a “period-doubling” instability, corresponding to a real
eigenvalue of�λ becoming smaller than−1.

This result was conjectured on the basis of numerical observations by Médéric Ar-
gentina and Pierre Coullet ([1]), and their observations, conjectures, and questions were
the starting point of this work. The reader interested in these observations, in the physical
interpretations and implications of these results, and in the nonlinear development of
these instabilities is invited to consult the references [2] and [5]. Let us also mention that
this generic instability result extends to the case where space isotropy is broken ([5]).

1.1. Statement of the results. We give ourselves and fix aC1-vector fieldf0 : Rd → Rd ,
d ≥ 2, and we make the following hypotheses (see Fig. 1):

• f0(0) = 0 (0 denotes the origin(0, . . . ,0) of Rd );
• Df0(0) has a simple real eigenvalueb+ > 0; if d = 2, then the second eigenvalue

is not larger than−b+; if d ≥ 3, then the real part of any other eigenvalue is strictly
smaller than−b+;

• one of the following statements holds:
(a) the differential equationdu

dt
= f0(u) admits a solutiont �→ u0(t) which is

homoclinic to the fixed point 0 (i.e.u0(.) �≡ 0 andu0(t) → 0 whent →±∞);
(b) the differential equationdu

dt
= f0(u) admits two solutionst �→ u0(t) andt �→

ũ0(t) (with distinct trajectories) which are homoclinic to the fixed point 0.

Let us consider anyC1-vector fieldf1 : Rd → Rd , with the following properties:

• f1(.) is close tof0(.) in theC1-topology (this hypothesis will be formulated more
precisely below);

• the differential equationdu
dt

= f1(u) admits a periodic solutiont �→ u1(t) whose
trajectory is, in case (a), close to the trajectory ofu0(.), and, in case (b), close to the
union of the trajectories ofu0(.) andũ0(.) (again, this hypothesis will be formulated
more precisely below);

• if d = 2, then the periodic orbitu1(.) is not linearly unstable.

Here the hypothesis on the closeness of the trajectories holds in the sense of the Hausdorff
distance between two sets (recall that this distance can be defined the following way:
dist(A,B) = inf {δ > 0

∣∣ A ⊂ Neighbδ(B) andB ⊂ Neighbδ(A)}).
Remark. In the cased ≥ 3, these hypotheses (in particular the ones onDf0(0)) imply
that the periodic orbitu1(.) is linearly stable; the same is true in the cased = 2 if
the second eigenvalue ofDf0(0) is strictly smaller than−b+. On the other hand, the
hypotheses onDf0(0) are almost necessary if we wantu1(.) not to be linearly unstable.
Indeed, in the cased = 2, if the second eigenvalue ofDf0(0) was strictly larger than
−b+, then the hypotheses would imply thatu1(.) is linearly unstable; the same would
generically be true in the cased ≥ 3 if Df0(0) had an eigenvalue different fromb+ with
a real part strictly larger than−b+.
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Fig. 1.

Now let us define the coupling terms to be added to the two previous vectors fields.
We give ourselves and fix a C0-map C0 : Rd × R → L(Rd) and we consider any
C0-map C1 : Rd ×R → L(Rd) close to C0 in the C0-topology (this hypothesis will be
formulated more precisely below).

Denote by L+(Rd) the subset of L(Rd) consisting of linear maps having no eigen-
value with a strictly negative real part. We will suppose that the mapsC0 andC1 take their
values in L+(Rd). This hypothesis is natural, since, as λ ≤ 0, it excludes the existence
of instabilities uniquely due to the coupling. However, the results are to a large extent
independent of this hypothesis (which will be necessary only in dimension d = 2, and
mainly for the phase stability results in case 2 of Theorem 2 and case 2 of Theorem 3
below).

For λ ≤ 0, denote by �λ the (linear) flow over one period of u1 of the differential
equation

du

dt
= (

Df1(u1(t))+ λC1(u1(t), λ)
)
u, (7)

and denote by ρ(�λ) the spectral radius of �λ.
Let || . . . ||C1 denote a uniform C1-norm on C1(Rd ,Rd) and let || . . . ||C0 denote a

uniform C0-norm on C0(Rd × R,L(Rd)); let T0, T1, and, in case (b), T̃ 0 denote the
respective trajectories of u0(.), u1(.), and ũ0(.).

Our result is the following.

Theorem 1. Letf0(.) andC0(., .) be as above. Then, if a generic condition (which will be
detailed below) on f0(.) andC0(., .) is satisfied, there exists ε0 > 0 (small) such that, for
anyf1(.)andC1(., .)as above, if ||f1(.)−f0(.)||C1 ≤ ε0 and ||C1(., .)−C0(., .)||C0 ≤ ε0
and if, in case (a), dist(T0, T1) < ε0, and in case (b), dist(T0 ∪T̃ 0, T1) < ε0, one can
find λ < 0 (arbitrarily close to 0 if ε0 is small enough) such that ρ(�λ) > 1.

We are going to be more precise.
Let f0(.),C0(., .), f1(.), andC1(., .) be as above. Up to conjugating f1(.) by a (small)

translation of Rd , we will suppose that f1(0) = 0. Fix δ0 > 0 small, let B0 = {x ∈ Rd
∣∣
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||x|| ≤ δ0}, and let W s,loc
1 (0) denote the local stable manifold of 0 for f1(.), i.e. say the

set of points of B0 whose forward trajectory by f1(.) remains in B0.
According to the hypotheses (for ε0 sufficiently small), the set T1 ∩∂B0 contains, in

case (a), exactly two points, and, in case (b), exactly four points; in dimension d = 2,
this is due to an elementary plane topology argument, and in dimension d ≥ 3, this is
due to the hypotheses on Df0(0) (and related to the fact that u1(.) is linearly attractive).
In case (a) (resp. in case (b)), denote by ζ1 (resp. by ζ1 and ζ̃1) the point(s) of T1 ∩∂B0
as shown on Fig. 2.

T1

0

ζ1

W
s,loc
1 (0)

W
s,loc
1 (0)ζ1

T1

0

ζ̃1

case (a) case (b)

Fig. 2. Definition of ζ1 and ζ̃1

Let

µ = dist(ζ1,W
s,loc
1 (0)) and, in case (b), µ̃ = dist(ζ̃1,W

s,loc
1 (0))

(these quantities can be considered as bifurcation parameters: they measure the proximity
to the homoclinic orbit or to the homoclinic bifurcation).

In the following (Sect. 2), we will show how to associate to each triplet (f0, u0, C0)

as above an index σ(f0, u0, C0) in {−1, 0, 1}, which vanishes if, for each (t, λ), the
map C0(uh(t), λ) is positively proportional to IdRd , but which is generically different
from 0 for a general C0(., .), and whose sign governs the nature of the instability. With
this index, we can formulate the following more precise results (for sake of clarity, we
distinguish cases (a) and (b)).

Theorem 2. Let f0(.), u0(.), andC0 be as above, in case (a). Then, if σ(f0, u0, C0) �= 0,
there exists ε0 > 0 (small) such that, for any f1(.) as above, if ||f1(.)− f0(.)||C1 ≤ ε0,
dist(T0, T1) < ε0, and ||C1(.)− C0(.)||C0 ≤ ε0, then,

1. if σ(f0, u0, C0) = 1, then for any λ ∈] − ε0; 0[, �λ has an eigenvalue which is real
and strictly larger than 1 (phase instability);
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Fig. 3. Illustration of Theorem 2 (case (a))

2. if σ(f0, u0, C0) = −1, then there are constants K ′ > K > 0, depending only on
f0(.) and C0, such that, for any λ ∈]−Kµ; 0[, ρ(�λ) ≤ 1 (no phase instability), and
for any λ ∈] − ε0;−K ′µ[, �λ has an eigenvalue which is real and strictly smaller
than −1 (“period-doubling” instability).

Theorem 3. Let f0(.), u0(.), ũ0(.), and C0 be as above, in case (b). Then, if
σ(f0, u0, C0) �= 0 and σ(f0, ũ0, C0) �= 0, there exists ε0 > 0 (small) such that,
for any f1(.) as above, if ||f1(.)− f0(.)||C1 ≤ ε0, dist(T0 ∪T̃0, T1) < ε0, and ||C1(.)−
C0(.)||C0 ≤ ε0, then,

1. if σ(f0, u0, C0) = −1 and σ(f0, ũ0, C0) = −1, then for any λ ∈] − ε0; 0[, �λ

has an eigenvalue which is real and strictly larger than 1 (combination of two phase
instabilities);

2. if σ(f0, u0, C0) = +1 and σ(f0, ũ0, C0) = +1, then there are constants K ′ >
K > 0, depending only on f0(.) and C0, such that, for any λ ∈] −K min(µ, µ̃); 0[,
ρ(�λ) ≤ 1 (no phase instability), and for any λ ∈] − ε0;−K ′ max(µ, µ̃)[, �λ has
an eigenvalue which is real and strictly larger than 1 (combination of two “period-
doubling” instabilities);

3. if σ(f0, u0, C0) and σ(f0, ũ0, C0) have opposite signs, then there is a constant K ′′ >
0 such that, for any λ ∈] − ε0;−K ′′ max(µ, µ̃)[, �λ has an eigenvalue which is
real and strictly smaller than −1 (combination of a phase and a “period-doubling”
instability).

case (b), 1 case (b), 2 case (b), 3

λ λ λµ, µ̃ µ, µ̃ µ, µ̃

0 0 0stable

unstable “+1”

unstable “+1” unstable “−1”

Fig. 4. Illustration of Theorem 3 (case (b))
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In case 2 of this last result, the instability is of the same nature as the period-doubling
instability (it can be viewed as the composition of two period-doubling instabilities).
Case 3 is a bit more involved, but occurs less frequently than cases 1 and 2. For instance,
it never occurs when the two homoclinic orbits u0(.) and ũ0(.) are symmetric.

1.2. Examples. The hypotheses of Theorems 1, 2, and 3 cover essentially two kinds of
situations: homoclinic bifurcations of attractive periodic orbits in one-parameter families
of ordinary differential equations on one hand, and families of periodic orbits bounded
by homoclinic orbits in two-dimensional conservative ordinary differential equations on
the other hand (this second case corresponds to f1 = f0). Moreover, these hypotheses
take into account cases where, because of the presence of a symmetry or of a conserved
quantity, the limit of the periodic orbits consists of two (instead of one) homoclinic
orbits. We now give some examples (for other examples and references, see [2]).

1. Consider the following nonlinear wave equation:

utt + (ν + u)ut + u− u2 = #xu

parametrized by ν ∈ R. This is the equation governing a chain of coupled second order
oscillators in the potential V (u) = 1

2u
2 − 1

3u
3, submitted to the nonlinear damping

−(ν + u)ut . This equation can be rewritten(
u

v

)
t

=
(

v

−(ν + u)v − u+ u2

)
+

(
0 0
1 0

) (
#xu

#xv

)
,

and thus can be viewed as a spatial extension of the ordinary differential equation(
u

v

)
t

=
(

v

−(ν + u)v − u+ u2

)

with respect to the “coupling” matrix

(
0 0
1 0

)
(here the map C(. , .) is constant and equal

to this matrix).
This family of differential equations appears in the universal unfolding of the Bogd-

anov–Takens bifurcation ([7]). Its dynamics displays the following features. For ν > 0,
the fixed point (0, 0) is linearly stable. At ν = 0, it undergoes a supercritical Hopf
bifurcation and becomes unstable for ν < 0. The bifurcation gives rise to an attractive
periodic orbit around (0, 0) for ν < 0 close to 0. At a certain value ν = νc < 0 of
the parameter, this attractive periodic orbit disappears through homoclinic bifurcation
(see Fig. 5), the limiting orbit being homoclinic to the hyperbolic fixed point (1, 0). For
ν < νc, forward orbits generically go to infinity.

Theorem 1 claims that, for ν > νc, ν close to νc, the attractive periodic orbit is unsta-
ble with respect to inhomogeneous perturbations. More generally, a possible physical
interpretation of our results is the following: for a spatially extended dynamical system,
it is impossible to cross a potential barrier in a synchronous way.

According to Theorem 2, it is possible to predict the nature of the instability. We
use the definitions and notations of Subsect. 2.2. On one hand, the homoclinic orbit is
backward oriented, thus σor = −1. On the other hand, we can see from the expression
of C(., .) that c3,0(t) will be negative for all times, which shows that Y−(.) > 0, that
Y+(.) < 0, and thus that Y−(.) − Y+(.) > 0. Thus, σY = +1, and, according to
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Fig. 5. Phase portrait when ν = νc

Theorem 2, the instability is a phase instability (for more details on the links between
the expression of C(. , .) and the nature of the instability, see [10]).

2. Consider the following partial differential equation:

utt + V ′(u) = uxx,

where V (u) = − 1
2u

2 + 1
3u

3 + 1
4u

4. It represents a chain of coupled conservative
oscillators in the bistable potential V (.). It can be viewed as a spatial extension of an
ordinary differential equation with respect to the same coupling matrix as above. The
phase space of the differential equation is as follows. It is foliated by periodic orbits,
bounded by the fixed points and by two orbits homoclinic to (0, 0) and having an energy
1
2u

2
t +V (u) equal to 0. According to Theorem 1, any periodic orbit having an energy E

close enough to 0 is unstable with respect to inhomogeneous perturbations; moreover, it
is phase unstable (case 1 of Theorem 2) if E < 0, and not phase unstable (but “period-
doubling-like” unstable, case 2 of Theorem 3) if E > 0.

3. We end up our series of examples with the celebrated sine-Gordon equation

utt + sin u = uxx.

The phase space of the corresponding ordinary differential equation on (R/2πZ) × R
is foliated by periodic orbits, bounded by the fixed points and by two orbits homoclinic
to (π, 0) and having an energy 1

2u
2
t − cos u equal to 1. We can easily deal with the fact

that the phase space is 2π -periodic on the horizontal variable. According to Theorem 1,
any periodic orbit having an energy E close enough to 1 is unstable with respect to
inhomogeneous perturbations; moreover, it is phase unstable (case 1 of Theorem 3) if
E < 1, and period-doubling unstable (case 2 of Theorem 2) if E > 1.
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1.3. Sketch of the proof and organization of the paper. Let us describe rapidly how the
proof goes. To simplify, we suppose that we are in case (a) and that the dimension d

equals 2.
We shall take a small parameter δ > 0 and cut the trajectory of u1(.) into two

parts, as shown on the Fig 7. Consider the local frame (e1(t), e2(t)) = (f1(u1(t)),
Rot π

2
f1(u1(t))) along this trajectory. Denote by ψλ (resp. by φλ) the flow of the differ-

0 δ

-λ

e2

e1
δ

φλ

Fig. 7.
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ential Eq. (6), expressed in this local frame, along the part of the trajectory which lies
inside (resp. outside) the box of size δ around 0. The flow ψλ ◦ φλ is conjugated to �λ,
and we want to study its spectral radius.

The differential equation du
dt

= Df1(u1(t))u, expressed in the local frame, takes the

form du
dt

= M̂1(t)u, where the first column of M̂1(t) vanishes; this shows that ψ0 and

φ0 are of the form

(
1 ∗
0 ∗

)
. When the distances between f0 and f1 and between T0 and

T1 go to 0, the flow φ0 converges to a limit, while ψ0 becomes singular. Indeed, writing

ψ0 =
(

1 η

0 ζ

)
, we will see that η goes to +∞ (or to −∞ if the orbits have the converse

orientation) while ζ remains bounded (if b− = −b+) or goes to 0 (if b− < −b+). More
precisely, we will see that η is of the order of µ−1.

The flow φλ is a non-singular perturbation of φ0. Writing φλ = φ0 + λ

(
w x

y z

)
, we

can see that the trace of ψλ ◦ φλ reads

tr ψλ ◦ φλ = tr ψ0 ◦ φ0 + ληy + . . . .

We will show that, when δ is small, y is large and has a definite sign (actually, when
u1(.) is oriented as on the figure above, the index σ(f0, u0, C0) will be equal to ±1
according to this sign). Thus, we can already see on this expression of the trace what we
will actually prove: for |λη| ≥ 1 (which corresponds to |λ| being at least of the order
of µ), this trace is large and its sign is governed by the sign of y (i.e. by the sign of
σ(f0, u0, C0)). This already proves the instability.

For the case |λη| < 1, we will need slightly more precise estimates, either to prove
the phase instability (if y is positive) or to prove some stability (for |λη| small, if y is
negative). The proofs in dimension d = 2 and in dimension d ≥ 3 differ noticeably at
this point: in case d = 2, we will simply estimate the determinant of ψλ ◦ φλ, while
in case d ≥ 3, we will have to construct an invariant cone for this map (none of these
two strategies seems to be convenient for the other case: in dimension d ≥ 3, estimates
on the trace and the determinant are not sufficient to control the eigenvalues, while the
construction of an invariant cone seems to be delicate in dimension 2 in case b− = −b+).

The paper is organized as follows. Section 2 is devoted to some notations and to the
definition of the index σ(., ., .). This definition is very simple when d = 2, and slightly
more involved when d ≥ 3, thus we distinguish theses two cases (Sects. 2.2 and 2.3). The
proof of the results in case (a) is given in Sect. 3. After a preliminary setup (Sect. 3.1), we
again distinguish the cases d = 2 (Sect. 3.2) and d ≥ 3 (Sect. 3.3). Finally, we explain
in Sect. 4 how to adapt the previous arguments in order to prove the results in case (b).

Notations. For n ∈ N, we will denote by Bcan(Rn) the canonical basis of Rn and by
ε1, . . . , εn the vectors forming this canonical basis. We will denote by || . . . || the usual
euclidean norm on Rn, by Mn(R) the space of n× n real matrices, and by ||| . . . ||| the
usual norm on Mn(R).

2. Definition of the Index σ

2.1. Notations related to the local frames. Throughout the proofs, we will have to work
in local frames along the solutions u0(.) (or ũ0(.)) and u1(.). Here we introduce some
notations related to these local frames.
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For k ∈ {0, 1} and t ∈ R, write

Mk(t) = Dfk(uk(t))

and
e1,k(t) = fk(uk(t)).

In dimension d = 2, write
e2,k(t) = Rot π

2
e1,k(t).

In dimension d ≥ 3, the local frame is not canonical, but we will define vectors
e2,k(t), . . . , ed,k(t), C1 and periodic (of the same period as u1(.)) with respect to t ,
such that the family (e1,k(t), . . . , ed,k(t)) defines for each t a basis of Rd .

Then,

• let Pk(t) denote the matrix whose columns are the coordinates of e1,k(t) and e2,k(t),
• let M̂k(t) = −Pk(t)−1 dPk

dt
(t) + Pk(t)

−1Mk(t)Pk(t) and Ĉk(t, λ) = Pk(t)
−1

C(uk(t), λ)Pk(t).

The change of variables u = Pk(t)v transforms the differential equation

du

dt
= (Mk(t)+ λC(uk(t), λ))u (8)

into

dv

dt
= (M̂k(t)+ λĈk(t, λ))v. (9)

The definition of e1,k(t) ensures that the first column of M̂k(t) vanishes. Let us write

M̂k(t) =
(

0 ak(t)

0 bk(t)

)
and Ĉk(t, 0) =

(
c1,k(t) c2,k(t)

c3,k(t) c4,k(t)

)
,

where c1,k(t) is a number, ak(t) and c2,k(t) 1× (d−1)-matrices, c3,k(t) is a (d−1)×1-
matrix, and bk(t) and c4,k(t) are (d − 1)× (d − 1)-matrices.

2.2. Definition of σ in dimension two. We suppose that the dimension d equals 2, and
we give ourselves a vector field f0(.) and a map C0(., .) as in Subsect. 1.1.

Up to a linear change of coordinates preserving the orientation, we can suppose that
Eu(0) and Es(0) (the unstable and stable spaces of Df0(0)) are respectively equal to
R × {0} and {0} × R. We will say that u0(.) (or ũ0(.)) is forward oriented or backward
oriented according to the orientation of its trajectory in R2 (see Fig. 8). Remark that, in
case (b), u0(.) and ũ0(.) necessarily have the same orientation. We are going to define
the index σ(f0, u0, C0) (in case (b), σ(f0, ũ0, C0) would be defined similarly). Write

Df0(0) =
(
b+ 0
0 b−

)
. With the notations of the preceding paragraph, we have

b0(t) → b− − b+ < 0 when t →−∞ and b0(t) → b+ − b− > 0 when t →+∞
(10)
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“forward oriented” “backward oriented”

ũ0 u0

0 0

u0
ũ0

ũ0 u0

Fig. 8.

(see assertion (11) below). Thus, the differential equation

dY

dt
= b0(t)Y + c3,0(t), t ∈ R,

has a unique solution Y+(.) (resp. Y−(.)) which is bounded when t →+∞ (resp. when
t →−∞). The difference Y−(.)− Y+(.) is either identically 0, or does not vanish, and
in this case its sign is constant.

Let σor = +1 (resp. σor = −1) if u0(.) is forward (resp. backward) oriented. Let
σY = +1 (resp. σY = 0, σY = −1) if Y−(.) − Y+(.) > 0 (resp. Y−(.) − Y+(.) ≡ 0,
Y−(.)− Y+(.) < 0). Finally, let us define our index σ(f0, u0, C0) by

σ(f0, u0, C0) = −σorσY .

The condition Y−(.) − Y+(.) �= 0 is generic, except if the map C0(., .) is identically
proportional to the identity (in this case, we have c3,0(.) ≡ 0, and thus Y−(.) ≡ Y+(.) ≡
0), and the condition σ(f0, u0, C0) �= 0 is thus also generic.

If C0(., .) is constant and not proportional to the identity and if its two eigenvalues
are either complex conjugated or equal, then one can check that c3,0(.) �≡ 0 and that the
sign of c3,0(.) is constant, given by the “sense of rotation” of the flow t �→ exp(−tC0)

(for more precisions on these “monotonic” matrices, see [10]); in this case, Y−(.) has
the sign of c3,0(.), and Y+(.) has the opposite sign, and the condition Y−(.)−Y+(.) �= 0
(and σ(f0, u0, C0) �= 0) is thus always fulfilled. Moreover, in this last case, the sign
of σ(f0, u0, C0), and thus the nature of the instability, can be predicted geometrically,
from the orientation (forward or backward) of the homoclinic orbit and the “sense of
rotation” of C0 ([10]).

We finish with a rapid computation which will justify the limits (10), and which will
be used later. For k = 0 or 1, denote by θk(t) the angle between the vectors (1, 0) and

e1,k(t), and write Mk(t) =
(
M1,1 M1,2
M2,1 M2,2

)
.

Claim. We have (
ak(t)

bk(t)

)
= Rot−2θk(t)

(
M1,2 +M2,1
M2,2 −M1,1

)
. (11)
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Indeed, we have (forgetting the indices k and the dependence with respect to t),(
a

b

)
= M̂

(
0
1

)
= P−1

(
−dP

dt
+MP

) (
0
1

)
.

Besides,

P

(
0
1

)
= Rot π

2
e1 and thus

dP

dt

(
0
1

)
= Rot π

2
Me1.

Thus, (
a

b

)
= P−1[M,Rot π

2
]P

(
1
0

)
and we have

P−1[M,Rot π
2
]P = Rot−θ

(
M1,2 +M2,1 M2,2 −M1,1
M2,2 −M1,1 −M1,2 −M2,1

)
Rotθ

= Rot−2θ

(
M1,2 +M2,1 M2,2 −M1,1
M2,2 −M1,1 −M1,2 −M2,1

)
,

which proves the claim.

2.3. Definition of σ in dimension higher than two. We suppose that d ≥ 3, and we give
ourselves a vector field f0(.) and a map C0(., .) as in Subsect. 1.1.

We are going to define the index σ(f0, u0, C0) (in case (b), σ(f0, ũ0, C0) would be
defined similarly). Up to a linear change of coordinates, we can suppose that Eu(0) and
Es(0) (the unstable and stable spaces of Df0(0)) are respectively equal to Vect(ε1) and
{0} × Rd−1, and that the first coordinate of u0(t) is positive when t is large negative.

Write Df0(0) =
(
b+ 0
0 B−

)
, B− ∈ Md−1(R). We can suppose that B− is diagonal by

blocks, i.e. that it reads 

B1

B2
0

0
. . .

Bs


 ,

each block Bj corresponding to an eigenvalue bj . We can suppose that the non-real
eigenvalues of B− are bs′+1, . . . , bs , where 0 ≤ s′ ≤ s. For j ≥ s′ + 1, denote by
ρj (resp. by θj ) the real part (resp. the imaginary part) of bj . We can suppose that, for
j ≥ s′ + 1, Bj takes the form



(
ρj −θj
θj ρj

)
∗

. . .

0

(
ρj −θj
θj ρj

)


 .

For t ∈ R denote by Rt the linear map of Rd whose restriction to the characteristic
spaces corresponding to the eigenvalues b+ and bj , j ≤ s′, is the identity, and whose
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restriction to the characteristic space corresponding to any eigenvalue bj , j ≥ s′ + 1,
reads 


Rottθj 0

. . .

0 Rottθj


 where Rottθj =

(
cos tθj − sin tθj
sin tθj cos tθj

)
.

The change of variables v = R−t u transforms the differential equation du
dt

= f0(u) into
dv
dt

= g0(v, t), where

g0(v, t) = R−t f0(Rtv)+ dR−t
dt

Rtv.

WriteR = dR−t
dt

Rt ; this matrix does not depend on t and we haveDvg0(0, t) = Df0(0)+
R. Thus, Dvg0(0, t) does not depend on t , and we can see that its eigenvalues are real
(these eigenvalues are b+, b1, . . . , bs′ , ρs′+1, . . . , ρs).

Write v0(t) = R−t u0(t), t ∈ R. The following lemma is classical (see for instance
[3]), and we shall omit its proof.

Lemma 1. The quantity v0(t)||v0(t)|| has a limit when t → +∞, and this limit is an eigen-
vector of Dvg0(0, .).

Denote by w this eigenvector. It belongs to one of the characteristic spaces of Df0(0),
corresponding to an eigenvalue bj0 of Df0(0). We know that ρj0 < −b+.

Remark. Generically, we have ρj0 ≥ Re bj , 1 ≤ j ≤ s, but we shall not need this in the
following.

Denote by ε1, . . . , εd the canonical basis of Rd . Up to another change of coordinates,
we can suppose that w = ε2, and that, if bj0 is real, then Df0(0) reads

b+ 0 0
0 bj0 ∗
0 0 B̃−




with B̃− ∈ Md−2(R) (in this case, write E = Vect(ε2)), and, if bj0 is non-real, then
Df0(0) reads 


b+ 0 0

0

(
ρj0 −θj0

θj0 ρj0

)
∗

0 0 B̃−




with B̃− ∈ Md−3(R) (in this case, write E = Vect(ε2, ε3)).
We can now define the moving frame (e1,0(t) . . . , ed,0(t)), t ∈ R. Let e1,0(t) =

f0(u0(t)), t ∈ R. This vector e1,0(t) is almost parallel to ε1 when t is large negative, and
almost parallel to E when t is large positive. Denote by ;1 (resp. by ;E) the orthogonal
projection onto Vect(ε1) (resp. onto E) in Rd . There exists T > 0 (large) such that, for
t < −T , ;1(e1,0(t)) �= 0, and, for t > T , ;E(e1,0(t)) �= 0.

For t < −T , let ej,0(t) = ||e1,0(t)||εj , 2 ≤ j ≤ d.
For t > T , let e2,0(t) = ||e1,0(t)||ε1, and,

• if bj0 is real, then let ej,0(t) = ||e1,0(t)||εj , 3 ≤ j ≤ d;
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• if bj0 is non-real, then let ej,0(t) = ||e1,0(t)||εj , 4 ≤ j ≤ d, and let

e3,0(t) = ||e1,0(t)||
||;Ee1,0(t)||Rot− π

2
;Ee1,0(t)

(here Rot− π
2

denotes the rotation of angle −π
2 in the subspace E equipped with the

orientation of the basis (ε2, ε3)).

We can see that, for any t with |t | > T , the family (e1,0(t) . . . , ed,0(t)) defines a
basis of Rd ; it depends smoothly on t , it is almost orthogonal for large |t |, it satisfies
||ej,0(t)|| = ||e1,0(t)||, 2 ≤ j ≤ d, and it has the direct orientation. It is thus possible
to extend smoothly each map t �→ ej,0(t) to the whole real line, in such a way that, for
any t ∈ R, (e1,0(t), . . . , ed,0(t)) defines a (positively oriented) basis of Rd .

We use the notations of Subsect. 2.1. We have, when t →−∞, ||e1,0(t)||−1P0(t) →
IdRd , and, by calculus, P0(t)

−1 dP0
dt

(t) → b+ IdRd . Thus,

b0(t) → B− − b+ IdRd−1 when t →−∞. (12)

Suppose that bj0 is real. Then, when t → +∞, ||e1,0(t)||−1P0(t) →
(
ς 0
0 IdRd−2

)
,

where ς =
(

0 1
−1 0

)
, and, by calculus, P0(t)

−1 dP0
dt

(t) → bj0 IdRd . We thus have in this

case

b0(t) →
(
b+ − bj0 0

0 B̃− − bj0 IdRd−2

)
when t →+∞. (13)

Now suppose that bj0 is non-real. Then, when t → +∞, ||e1,0(t)||−1P0(t) is close to
be of the form 



0 1 0
∗ 0 ∗
∗ 0 ∗


 0

0 IdRd−3


 ,

and, by calculus,

P0(t)
−1 dP0

dt
(t) → ρj0 IdRd +





 0 0 −θj0

0 0 0
θj0 0 0


 0

0 0


 .

We thus have in this case

b0(t) →

b+ − ρj0 0 0

0 0 ∗
0 0 B̃− − ρj0 IdRd−3


 when t →+∞ (14)

(where the terms ∗ may depend on time).
Consider the differential equation

dY

dt
= b0(t)Y + c3,0(t), Y ∈ Rd−1, t ∈ R.
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According to (12), this equation has a unique solution t �→ Y−(t) which is bounded
when t → −∞. On the other hand, according to (13) and (14), this equation admits
a (unique) affine hyperplane of solutions Y (of dimension d − 2) such that, for any
Y (.) ∈ Y , the vector ebj0 t Y (t) is bounded when t → +∞. Let S denote the set of all
solutions of the preceding differential equation, and denote by S+ (resp. by S−) the set
of solutions Y (.) such that the first coordinate of the vector ebj0 t Y (t) goes to +∞ (resp.
to −∞) when t →+∞. We have

S \Y = S+ �S− .

Let us define our index σ(f0, u0, C0) by

σ(f0, u0, C0) = + 1 (resp. σ(f0, u0, C0) = 0, σ (f0, u0, C0) = −1)

if Y− ∈ S+ (resp. Y− ∈ Y, Y− ∈ S− ).

The condition Y− ∈ S+ �S− (and thus σ(f0, u0, C0) �= 0) is again generic, except if the
map C0(., .) is identically proportional to the identity (in this case, we have c3,0(.) ≡ 0,
and thus Y−(.) ≡ 0 and Y ≡ {0} × Rd−2).

3. Proof in Case (a)

3.1. Setup for the proof. We give ourselves and fix a vector field f0(.) and a mapC0(., .)

as in Subsect. 1.1, in case (a). We adopt the conventions (choice of a convenient basis)
and notations of Sect. 2 and we suppose that σ(f0, u0, C0) �= 0.

Let δ > 0 and ε0 > 0 be two constants to be chosen later. Throughout the proof, we
will often have to make the hypotheses that δ or ε0 are small. The hypotheses on δ will
always depend only on C0 and f0(.) (although this will not be stated explicitly), and the
ones on ε0 only on C0, f0(.), and δ. Thus the final convenient choices of δ and ε0 will
only depend on C0 and f0(.).

Consider any vector field f1(.) and any map C1(., .) with the same hypotheses as in
Theorems 1 and 2, in particular

||f1(.)− f0(.)||C1 < ε0, ||C1(.)− C0(.)||C0 < ε0, and dist(T0, T1) < ε0,

and let
ν = ||f1(.)− f0(.)||C1 .

Because of the continuous dependence of a local stable manifold on the vector field, we
have

µ → 0 when ε0 → 0

(recall, see Subsect. 1.1, that µ = dist(ζ1,W
s,loc
1 (0)).

Let >0 be a small hypersurface crossing transversally T0 at u0(0) (see Fig. 9). For ε0
sufficiently small, >0 ∩ T1 �= ∅, and, up to reparametrizing t �→ u1(t) we will suppose
that u1(0) ∈ >0. Let

> = {(x, y) ∣∣ x ∈ [−δ; δ] and y ∈ Rd−1, ||y|| = δ},
>′ = {(x, y) ∣∣ x = ±δ and y ∈ Rd−1, ||y|| ≤ δ}.
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δ

0 ξ ′0

ξ ′1
-λ

>′
δ

ξ0 ξ1 >

�λ

φ0,λ

>0

Fig. 9.

For δ and ε0 sufficiently small, the intersection T0 ∩> (resp. T0 ∩>′, T1 ∩>, T1 ∩>′)
contains exactly one point (same reason as in Subsect. 1.1); denote it by ξ0 (resp. ξ ′0, ξ1,
ξ ′1). Denote by T the period of u1(.), define t0, t ′0, t1, and t ′1 by:

u0(t0) = ξ0, u0(t
′
0) = ξ ′0, u1(t1) = ξ1, u1(t

′
1) = ξ ′1, t ′1 < 0 < t1 < t ′1 + T ,

and write t ′′1 = t ′1 + T .
Let

µ′ = dist(u1(t1),W
s,loc
1 (0)) and ε = µ′

δ

(W s,loc
1 (0) was defined in Subsect. 1.1, we suppose that δ < δ0).
We remark that µ, µ′, and ε are of the same order (they are equal up to multiplicative

constants depending on the choice of δ).
For λ ∈ R, denote by φλ (resp. ψλ) the flow of the differential Eq. (9) with k = 1,

between the times t = t ′1 and t = t1 (resp. between the times t = t1 and t = t ′′1 ) (in the
case d ≥ 3, the local frames will be defined in Subsect. 3.3). Denote by φ0,λ the flow of
the differential Eq. (9)) with k = 0, between the times t = t ′0 and t = t0.

Write

φ0 =
(

1 α

0 β

)
, ψ0 =

(
1 η

0 ζ

)
, and φ0,0 =

(
1 α0
0 β0

)
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(where α, η, and α0 are 1 × (d − 1)-matrices, and β, ζ , and β0 are (d − 1)× (d − 1)-
matrices) and write

φλ = φ0 + λ

(
wλ xλ
yλ zλ

)
and φ0,λ = φ0,0 + λ

(
w0,λ x0,λ
y0,λ z0,λ

)

(with similar conventions).
The quantities w0,λ, x0,λ, y0,λ, and z0,λ have limits w0,0, x0,0, y0,0, and z0,0 when

λ → 0; these limits can be obtained as values at time t0 of solutions of explicit differential
equations involving a0(.), b0(.), and cj,0(.), 1 ≤ j ≤ 4); the differential equation for
y0,0 reads

dy

dt
= b0(t)y + c3,0(t) (15)

(it is the differential equation used in paragraphs 2.2 and 2.3 for the definition of σY ).
According to classical results on continuous dependence with respect to parameters
for solutions of ordinary differential equations, the quantities wλ, xλ, yλ, and zλ are
arbitrarily close tow0,0, x0,0, y0,0, and z0,0 if |λ| and ε0 are sufficiently small (depending
on δ).

For the remainder of the proof, we impose λ ∈] − ε0; 0[; moreover, we will suppose
that ε0 is small enough (depending on δ) in order to have δ > ν, δ > |λ|, and δ > ε.
Thus, in all the following estimates, the terms of the order of O(ν), O(λ) or O(ε) will
be absorbed in the terms O(δ).

3.2. Estimates in dimension two.

Estimates on ψλ. Denote by -λ the flow of the differential equation (8) with k = 1
between the times t1 and t ′′1 . Write Q = P1(t1) and Q′ = P1(t

′′
1 ). We have

ψλ = Q′−1
-λQ.

A cone-invariance argument on the flow of (8) shows that -λ has two eigenvectors iλ
and jλ of the form

iλ =
(

1
O(δ)

)
and jλ =

(
O(δ)

1

)
(the terms O(ν) and O(λ) are absorbed in O(δ)). Denote by Rλ the matrix of M2(R)
whose columns are the coordinates of iλ and jλ (we haveRλ = IdR2 +O(δ)). The matrix
R−1
λ -λRλ is diagonal; denote it by Lλ and write

Lλ =
(
Aλ 0
0 aλ

)
.

Let us estimate ψ0. Write γ = |b−|
b+ ≥ 1. As ε = µ′/δ, we have

t ′′1 − t1 = 1

b+ +O(δ)
log ε−1

and thus
A0 = ε−1+O(δ) ! 1 and a0 = εγ+O(δ) " 1
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(these last estimates are not optimal but are sufficient for the moment; we will prove a
more precise estimate on A0 in the following).

We have u1(t1) =
(

O(δ2)+ µ′
σorδ

)
=

(
O(δ2)

σorδ

)
, and thus

Q = σorδ|b−|
((

0 1
−1 0

)
+O(δ)

)
.

We have u1(t
′′
1 ) =

(
δ

O(δ2)+ σorδε
γ+O(δ)

)
=

(
δ

O(δ2)

)
, thus Q′ = δb+(IdR2 +O(δ))

and

Q′−1 = 1

δb+
(IdR2 +O(δ)).

Finally, as

ψ0 = Q′−1
R0L0R

−1
0 Q, (16)

we get

ζ = detψ0 = γ 2(1 +O(δ))A0a0 = γ 2(1 +O(δ))εγ−1+O(δ) (17)

and, identifying in the expression (16) of ψ0, we find

η = σorγ (1 +O(δ))A0 = σorγ (1 +O(δ))ε−1+O(δ). (18)

Now we estimate ψλ. Write qλ = Aλ

A0
and dλ = A0

Aλ
aλ − a0; then we have

Lλ = qλ

(
A0 0
0 a0 + dλ

)
= qλ

(
L0 +

(
0 0
0 dλ

))
.

A cone-invariance argument shows that

Rλ = R0 +O(λ),

and we have
Aλ = A0e

(t ′′1−t1)O(λ) = A0ε
O(λ);

aλ = a0e
(t ′′1−t1)O(λ) = a0ε

O(λ);
thus qλ = εO(λ) and dλ = a0(εO(λ) − 1).

Now we have

ψλ = Q′−1
RλLλR

−1
λ Q

= qλ

(
(Id+O(λ))(Q′−1

R0)

(
L0 +

(
0 0
0 dλ

))
(R−1

0 Q)(Id+O(λ))

)

= qλ

(
(Id+O(λ))ψ0(Id+O(λ))+O(dλ)

) (19)

and we obtain
ψλ = qλ(ψ0 + S),
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where S = (Si,j )1≤i,j≤2 satisfies

Si,j = ηO(λ)+O(dλ) if (i, j) �= (2, 1);
S2,1 = (1 + ζ )O(λ)+ ηO(λ2)+O(dλ).

We remark that

dλ = a0(e
O(λ) log ε − 1) = εγ+O(δ)(log ε)O(λ)

which shows that

Si,j = ηO(λ) if (i, j) �= (2, 1) and S2,1 = (1 + ζ )O(λ)+ ηO(λ2). (20)

Estimates on the trace of ψλ ◦ φλ. Denote by Tλ the trace of ψλ ◦ φλ. We have

T0 = 1 + ζβ

and calculus yields

Tλ = qλ

(
T0 + λη(yλ + r(λ))

)
, (21)

where (forgetting the indices λ)

r(λ) = η−1(w+ ζz)+ (λη)−1
(
S1,1(1+λw)+S1,2λy+S2,1(α+λx)+S2,2(β+λz

)
.

Lemma 2. The quantity β0 is bounded by a constant which does not depend on δ.

Proof. We have

β0 = exp
∫ t0

t ′0
b0(s)ds.

Write u0(t) = (x0(t), y0(t)). We have log |y0(t)|−1 ∼ t |b−| when t → +∞ and
log |x0(t)|−1 ∼ |t |b+ when t →−∞. In particular, we have

t0 ∼ |b−|−1 log δ−1 and t ′0 ∼ −b−1+ log δ−1 when δ → 0.

As b0(t) → ±(b+ − b−) when t → ±∞, this shows that, if |b−| > b+, then β0 → 0
when δ → 0, and this proves the lemma in this case.

In the remaining case |b−| = b+, we have to be slightly more precise.When t →+∞,
we have x0(t) = O(y0(t)

2) and thus, according to claim (11), b0(t) = b− − b+ +
O(y0(t)). Similarly, when t →−∞, we have b0(t) = b+ − b− +O(x0(t)). Thus, β0 is
equal, up to a multiplicative constant independent of δ, to the quantity e(b+−b−)(t0−|t ′0|).

On the other hand, we have

dy0

dt
= b−y0 +O(y2

0 ) when t →+∞,

which shows that log |y0(t)|−1 − t |b−| is bounded when t → +∞. Similarly,
log |x0(t)|−1 − |t |b+ is bounded when t →−∞, which shows that t0 − |t ′0| is bounded
independently of δ, and the lemma follows. $�
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According to estimates (17) on ζ , (18) on η, (20) on Si,j , and to the lemma above,
r(λ) is bounded, for ε0 sufficiently small (depending on δ) by a constant which does not
depend on δ.

The quantity y0,0 is the value at time t0 of the solution of the differential Eq. (15),
namely

dY

dt
= b0(t)Y + c3,0(t)

with initial condition Y = 0 at time t = t ′0.
This differential equation is precisely the one governing the functionsY−(.) andY+(.)

of Subsect. 2.2. We know that σY = ±1, and, as b0(t) → b+ − b− when t →+∞, we
see that σY Y−(t) →+∞ when t →+∞. We thus have

σY y0,0 →+∞ when δ → 0.

Before we can conclude, we need a more precise estimate on η.

Lemma 3. We have
A0 = (1 +O(δ))ε−1.

Proof. We could use Hartman’s C1 linearization theorem ([8]) but we will give a more
elementary proof.

There is a smooth map g1, defined on a neighborhood of 0 in R2, with values in R2,
satisfying g1(0) = 0, and mapping W u,loc

1 (0) (resp. W s,loc
1 (0)) to the x-axis (resp. to the

y-axis). We have Dg1(0) = IdR2 +O(ν).
Denote by f̂1 the vector field obtained by conjugating f1 by g1 (i.e. f̂1(.) =

Dg1(g
−1
1 (.))f1(g

−1
1 (.))), denote by f̂1,1 the first component of f̂1, and let b+,1 =

b+ + O(ν) and b−,1 = b− + O(ν) denote the two eigenvalues of Df1(0). Then we
have

f̂1,1(x, y) = x
(
b+,1 +O(||(x, y)||)). (22)

Write û1(t) = g1(u1(t)), t ∈ R, and denote by x̂1(t) the first coordinate of û1(t). We
have

x̂1(t1) = µ′(1 +O(δ)), x̂1(t
′′
1 ) = δ(1 +O(δ)), (23)

and, according to (22),

dx̂1

dt
= x̂1(t)(b+,1 +O(||û1(t)||)), t ∈ [t1; t ′′1 ]. (24)

On the other hand, the dynamics close to 0 shows that

∫ t ′′1

t1

O(||û1(t)||)dt = O(δ). (25)

Thus, we deduce from (23) and (24) that

eb+,1(t
′′
1−t1) = (1 +O(δ))ε−1. (26)
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Denote by Â0 the largest eigenvalue of the flow of the differential equation

du

dt
= Df̂1(û1(t))u (27)

between the times t = t1 and t = t ′′1 , and denote by v the corresponding eigenvector
(with the normalization constraint that the first coordinate of v is equal to 1). We have
Â0 = (1 +O(δ))A0.

Let v(t) denote the solution of the differential equation (27) with initial condition
v at time t = t1. Write v(t) = (v1(t), v2(t)). Then v1(t

′′
1 ) = Â0. A cone-invariance

argument shows that, for any t ∈ [t1; t ′′1 ], we have v2(t)/v1(t) = O(δ). Thus, according
to (27), we have

dv1

dt
= v1(t)

(
b+,1)+O(||û1(t)||)

)
.

The lemma thus follows from (25) and (26). $�
According to this lemma and to estimate (18) on η, we have

η = σorγ (1 +O(δ))ε−1. (28)

End of the proof. To conclude, we will distinguish two cases.

(i) |λ| ≥ ε. In this case, write ε = s|λ|, 0 < s ≤ 1. We have 1 < T0 ≤ 2. Thus,
according to (28), the formula (21) for Tλ yields

Tλ = qλληyλ(1 + . . . ) = (−σY σor)γ s
−1+O(λ)|yλ|(1 + · · · ),

where the “ . . . ” denote terms which are arbitrarily small if δ is sufficiently small and ε0
is sufficiently small (depending on δ). Thus, for δ sufficiently small and ε0 sufficiently
small (depending on δ), the quantity (−σY σor)Tλ is arbitrarily large, in particular larger
than 2. On the other hand, we know, as the trace of C1(., .) is nonnegative (according
to the hypothesis that C1(., .) ∈ L+(Rd), see §1.1), that the determinant of ψλ ◦ φλ is
not larger than 1. Thus, (−σY σor)Tλ > 2 implies that ψλ ◦ φλ has an eigenvalue which
is real and strictly larger than one in modulus, its sign being the sign of −σY σor. This
proves the instability in case |λ| ≥ ε; in particular, this proves the instability in case 2
of Theorem 2 (i.e. when −σY σor = −1); indeed, as we already mentioned, the quantity
ε
µ

is bounded from above by a constant (which depends on the choice of δ) which is
convenient for the choice of the constant K ′ appearing in the theorem.

(ii) |λ| < ε. In this case, write |λ| = tε, 0 < t < 1. Write Tλ = T0 + tT ′
λ. According

to (28), we have
T ′

λ = (−σY σor)γ |yλ|(1 + . . . ).

In particular, T ′
λ is arbitrarily large, and has the sign of (−σY σor), if δ is sufficiently

small and ε0 is sufficiently small (depending on δ).
Denote by Dλ the determinant of ψλ ◦ φλ. We have

det ψλ = det Q′−1
(Aλaλ) det Q = εO(λ) det ψ0

and
det φλ = det φ0 +O(λ) = (1 +O(λ)) det φ0
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(be careful that in this last expression, the term O(λ) depends on δ !); thus

Dλ = εO(λ)(1 +O(λ))D0.

WriteDλ = D0+ tD′
λ. AsD0 ≤ 1, we see thatD′

λ is arbitrarily small if ε0 is sufficiently
small (depending on δ). Write #λ = T 2

λ − 4Dλ and #λ = #0 + t#′
λ. We have

#′
λ = 2T0T

′
λ + tT ′2

λ − 4D′
λ.

If #λ ≥ 0, denote by mλ the largest eigenvalue of ψλ ◦ φλ. We have m0 = 1 and

mλ = 1 + 1

2

(
tT ′

λ +
√
#0 + t#′

λ −
√
#0

)
.

Now we can conclude. We know that #0 ≥ 0. If −σorσY = 1, we see that #′
λ > 0 (thus

#λ > 0) and mλ > 1. This proves the instability result in case 1 of Theorem 2.
If on the other hand −σorσY = −1, then we see that, for t sufficiently small (de-

pending on δ), #′
λ < 0, and, if #λ ≥ 0, then the two eigenvalues of ψλ ◦ φλ are strictly

between 0 and 1. Finally, if #λ < 0, then we know that Dλ ≤ 1 (according to the
hypothesis that C1(., .) ∈ L+(Rd), the trace of C1(., .) is nonnegative) and the spectral
radius of ψλ ◦ φλ is thus not larger than 1. This proves the stability result in case 2
of Theorem 2 (the value of t “ sufficiently small” provides a convenient choice for the
constant K).

The proof in dimension 2 of Theorem 2 (and thus of Theorem 1 in case (a)) is now
complete. $�

3.3. Estimates in dimension higher than two. For t ∈ [t ′1; t1], let ej,1(t) = ej,0(t),
j = 2, . . . , d (the vectors ej,0(t) were defined in Subsect. 2.3). If ε0 is sufficiently
small, then, for any t ∈ [t ′1; t1], the family (e1,1(t), . . . , ed,1(t)) defines a basis of Rd .
This enables to define P1(t), M̂1(t), and Ĉ01(t, λ) for t ∈ [t ′1; t1] as in Subsect. 2.1. We
can thus define φ0,λ and φλ as in Subsect. 3.1. To define ψλ, we do not have to define
explicitly the local frame between t = t1 and t = t ′′1 ; indeed, ψλ actually depends only
on the local frame at t = t1 and t = t ′1. Write Q = P1(t1) and Q′ = P1(t

′
1), and denote

by -λ the flow of the differential Eq. (8)) between the times t1 and t ′′1 . We can define ψλ

by:

ψλ = Q′−1
-λQ.

Estimates on ψλ. We suppose, as in the case d = 2, that ε0 is sufficiently small (de-
pending on δ) to have δ > ν, δ > |λ|, and δ > ε, so that the terms O(µ), O(λ), and
O(ε) are absorbed by terms O(δ).

A cone-invariance argument shows that -λ has two invariant subspaces Iλ and Jλ,
with dim Iλ = 1 and dim Jλ = d − 1. The subspace Iλ (resp. Jλ) is almost parallel to ε1
(resp. to {0}×Rd−1). Denote by ;I (resp. by ;J ) the projector on Iλ along {0}×Rd−1

(resp. the projector on Jλ along Vect(ε1)), and write ε1,λ = ;Iε1 and εj,λ = ;Jεj ,
j = 2, . . . , d. These vectors define a basis of Rd , and we have

εj,λ = εj +O(δ), j = 1, . . . , d.
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Denote by Rλ the matrix of Md(R) whose columns are the coordinates of the vectors
εj,λ, j = 1, . . . , d, and write Lλ = R−1

λ -λRλ. The matrix Lλ reads(
Aλ 0
0 aλ

)

with aλ ∈ Md−1(R).
Let us estimate ψ0. Fix a real number b− < 0 satisfying maxj=1,...,s Re bj < b− <

−b+ and let γ = |b−|
b+ > 1. We have (as in the case d = 2)

t ′′1 − t1 = 1

b+ +O(δ)
log ε−1,

and thus
A0 = ε−1+O(δ) ! 1,

and, for δ sufficiently small (according to the margin between maxj=1,...,s Re bj and
b−),

|||a0||| < εγ " 1.

Write η = (η1, . . . , ηd−1). According to the estimates of Subsect. 2.3 on P0(t),
|t | > T , and computing ψ0 = Q′−1

R0L0R
−1
0 Q, we get

η1 = |bj0 |
b+

A0(1 +O(δ)) and ηj = A0 O(δ), j = 2, . . . , d − 1. (29)

Lemma 4. For δ sufficiently small and ε0 sufficiently small (depending on δ), we have

|||ζ ||| < εγ−1.

Proof. For t ∈ [t1; t ′′1 ], write u1(t) = (x1(t), y1(t)), x1(t) ∈ R, y1(t) ∈ Rd−1. We have

d

dt

(
x1
y1

)
=

((
b+ 0
0 B−

)
+O(δ)

) (
x1
y1

)

which shows that, for δ sufficiently small, there exists a unique time t ′′′1 ∈]t1; t ′′1 [ such
that x1(t

′′′
1 ) = ||y1(t

′′′
1 )||.

For t ∈ [t ′′′1 ; t ′′1 ], write e1,1(t) = f1(u1(t)) and ej,1(t) = εj , 2 ≤ j ≤ d. For δ
sufficiently small, these vectors define, for any t ∈ [t ′′′1 ; t ′′1 ], a basis of Rd . Let us define
the matrices P1(t) and M̂1(t) as in Subsect. 2.1.

LetQ′′ = P1(t
′′′
1 ), and let-(1) denote the flow of the differential Eq. (8)) between the

times t1 and t ′′′1 . Writeψ(1) = Q′′−1
-(1)Q and letψ(2) denote the flow of the differential

equation du
dt

= M̂1(t)u between the times t ′′′1 and t ′′1 . We have ψ0 = ψ(2) ◦ ψ(1) and we
can write

ψ(1) =
(

1 η(1)
0 ζ(1)

)
and ψ(2) =

(
1 η(2)
0 ζ(2)

)
,

where ζ(1) and ζ(2) belong to Md−1(R). Then we have

ζ = ζ(2) ◦ ζ(1).
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We have |||Q||| = O(δ) and |||Q′′−1||| = ||e1,1(t
′′′
1 )||−1 O(1). We have

t ′′′1 − t1 <
1

|b−| log
δ

||e1,1(t
′′′
1 )|| (30)

and we get

|||-(1)||| <
( δ

||e1,1(t
′′′
1 )||

) b+
|b−|

and thus |||ψ(1)||| <
( δ

||e1,1(t
′′′
1 )||

)1+ 1
γ

(the margin between maxj=1,...,s Re bj and b− enables to absorb the terms O(δ)).
On the other hand, we have

t ′′1 − t ′′′1 = 1

b+ +O(δ)
log

δ

||e1,1(t
′′′
1 )||

and the expression of M̂1(t) shows that

|||ζ(2)||| <
( δ

||e1,1(t
′′′
1 )||

)1+γ
.

Finally we get

|||ζ ||| <
( δ

||e1,1(t
′′′
1 )||

)γ− 1
γ
.

Besides, we have

t ′′′1 − t1 = 1

b+ +O(δ)
log

δ

||e1,1(t
′′′
1 )||

which yields, according to (30) (and absorbing the term O(δ) by the margin between
maxj=1,...,s Re bj and b−),

δ

||e1,1(t
′′′
1 )|| < ε

γ
1+γ ,

and the result follows. $�
Now we estimate ψλ. Write qλ = Aλ

A0
and dλ = A0

Aλ
aλ − a0. We have

Lλ = qλ

(
L0 +

(
0 0
0 dλ

))
.

A cone-invariance criterion shows that

Rλ = R0 +O(λ)

and we have
Aλ = A0ε

O(λ).

Moreover, comparing the differential equations the flows of which give rise to a0 and
aλ, we get, for ε0 sufficiently small, and using the margin between maxj=1,...,s Re bj
and b−,

|||aλ − a0||| < O(λ)εγ
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which yields
|||dλ||| < εγ (εO(λ) − 1).

Proceeding as in the case d = 2, we obtain

ψλ = qλ(ψ0 + S),

where, if (si,j )1≤i,j≤d are the coefficients of the matrix S, and writing S =
(
S1,1 S1,2
S2,1 S2,2

)
,

we have

si,j = η1 O(λ) if si,j does not belong to S2,1,

si,j = O(λ)+ η1 O(λ2) if si,j belongs to S2,1.
(31)

Looking for an unstable eigenvector forψλ◦φλ. The matrix q−1
λ ψλ◦φλ reads (forgetting

the indices λ)(
1 + λ(w + ηy)+ S1,1(1 + λw)+ λS1,2y α + ηβ + λ(x + ηz)+ S1,1(α + λx)+ S1,2(β + λz)

λζy + S2,1(1 + λw)+ λS2,2y ζβ + λζz+ S2,1(α + λx)+ S2,2(β + λz)

)
.

Let c be a large constant to be chosen later. We are looking for an unstable eigenvector
for ψλ ◦ φλ, in the cone C = {(x, y) ∈ R×Rd−1

∣∣ ||y|| < c|λ||x|}. Let ϕ be any vector
of Rd−1 satisfying ||ϕ|| = c, and write(

χ

ξ

)
= ψλ ◦ φλ

(
1
λϕ

)
.

The existence of an unstable eigenvector forψλ◦φλ will be proved if we get the following
estimates:

|λ|−1||ξ || < c|χ | and |χ | > 1.

Let us first estimate χ . Write y0,0 = (y0,0,1, . . . , y0,0,d−1), yλ = (yλ,1, . . . , yλ,d−1) and

χ = qλ
(
1 + λη1(yλ,1 + r(λ))

)
. (32)

We can write

r(λ) = η−1
1 (yλ,2 η2 + · · · + yλ,d−1 ηd−1)+ (λη1)

−1S1,1 + η−1
1 ηβϕ + . . . ,

where “ . . . ” denotes terms which are arbitrarily small if ε0 is sufficiently small (depend-
ing on δ and c). Let us consider the remaining terms.

According to (31), the term (λη1)
−1S1,1 is bounded (independently of δ and c), and,

according to (29) and to the following lemma, the term η−1
1 ηβϕ goes to 0 when δ → 0

and c is fixed.

Lemma 5. We have |||β0||| → 0 when δ → 0.

The proof of this lemma is actually simpler than that of Lemma 2 (since we have here
|b−| > b+) and we leave it to the reader.

The quantity y0,0 is the value at time t1 of the solution of the differential Eq. (15),
namely

dY

dt
= b0(t)Y + c3,0(t)
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with initial condition Y = 0 at time t = t ′1. Thus, we see from the definition of
σ(f0, u0, C0) that σ(f0, u0, C0)y0,0,1 → +∞ when δ → 0, and from this differen-
tial equation that the ratio y0,0,j /y0,0,1 goes to 0 when δ → 0.

Thus, for δ sufficiently small (depending on c) and for ε0 sufficiently small (depending
on δ), we have σ(f0, u0, C0)yλ,1 > 0 and

χ = qλ(1 + λη1yλ,1(1 + . . . )) (33)

where “ . . . ” is small.
In the following, σ(f0, u0, C0) will simply be denoted by σ . Let us consider ξ . We

have

λ−1q−1
λ ξ = λ−1S2,1(1 + λwλ)+ S2,2yλ +

(
S2,1(α + λxλ)+ S2,2(β + λzλ)

)
ϕ + . . . ,

where “ . . . ” denotes terms which are arbitrarily small if ε0 is sufficiently small (depend-
ing on δ and c). We thus have, according to (31),

|λ|−1q−1
λ ||ξ || = O(1)+ yλ,1η1 O(λ)+ cη1 O(λ). (34)

As in the case d = 2, we have the following more precise estimate on A0:

A0 = (1 +O(δ))ε−1

(the proof of this estimate is similar to that of Lemma 3). According to (29), this yields

η1 = |bj0 |
b+

(1 +O(δ))ε−1. (35)

To conclude, we have, as in the case d = 2, to distinguish two cases.
(i) |λ| ≥ ε. In this case, write ε = s|λ|, 0 < s ≤ 1. We deduce from (33) and (35) that

q−1
λ χ = −σ |bj0 |

b+
s−1|yλ,1|(1 + . . . ) (36)

and thus

χ = −σ |bj0 |
b+

s−1+O(λ)|yλ,1|(1 + . . . ), (37)

where the terms “ . . . ” are small.
Thus, if δ is sufficiently small and c is sufficiently large, we see from (34) and (36)

that |λ|−1||ξ || < c|χ |. This shows the existence of an eigendirection in the cone C for
ψλ ◦φλ, the corresponding eigenvalue being real. According to (37), the modulus of this
eigenvalue is strictly larger than 1, and its sign is the sign of yλ,1, i.e. the sign of −σ . In
particular, this proves the instability in case 2 of Theorem 2.
(ii) |λ| < ε. In this case, write |λ| = tε, 0 < t < 1. We see from the expression (32)
that

χ = 1 − tσ
|bj0 |
b+

|yλ,1|(1 + . . . ), (38)

where “ . . . ” are small, and from (34) that

|λ|−1||ξ || = O(1)+ t (yλ,1 O(1)+ cO(1)). (39)

Let us suppose that −σ = 1 (we are proving the instability in case 1 of Theorem 2).
Then, we see that χ > 1 and that, for δ sufficiently small and c sufficiently large,
|λ|−1||ξ || < c|χ |. This shows the existence of an eigendirection in the cone C for
ψλ ◦φλ, the corresponding eigenvalue being real and strictly larger than 1. This finishes
the proof of the instability results when d ≥ 3.
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A stability result. Here we suppose that −σ = 1 and that |λ| < ε, and we still write
|λ| = tε, 0 < t < 1. It remains to prove that, for t sufficiently small, the eigenvalues of
ψλ ◦ φλ are not larger than 1 in modulus.

We see from (38) and (39) that, for t sufficiently small (depending on δ) and c

sufficiently large, the cone C is still invariant by ψλ ◦ φλ. Thus, this linear map admits
two invariant subspaces E1 and E2, with Rd = E1 ⊕E2, dimE1 = 1, dimE2 = d − 1,
E1 ⊂ C, and E2 ⊂ Rd \ C. The eigenvalue corresponding to the eigenspace E1 is,
according to (38) (and for t sufficiently small) between 0 and 1.

Let v be any vector of E2. Write v =
(
λ−1x̂

ϕ̂

)
, x̂ ∈ R, ϕ̂ ∈ Rd−1, and suppose that

||ϕ̂|| = 1. Then, as v /∈ C, we have |x̂| ≤ c−1. Write(
χ̂

ξ̂

)
= ψλ ◦ φλ

(
λ−1x̂

ϕ̂

)
.

We have

ξ̂ =
(
ζyλ + λ−1S2,1(1 + λwλ)+ S2,2yλ

)
x̂ + (S2,2(β + λzλ))ϕ̂ + . . . ,

where “ . . . ” denotes terms which are arbitrarily small if ε0 is sufficiently small. We thus
have, for δ sufficiently small (depending on c),

||ξ̂ || ≤ (1 + tyλ,1)c
−1 O(1).

In particular, for t sufficiently small (depending on δ) and c sufficiently large, we have
||ξ̂ || < 1, which shows that all the eigenvalues of (ψλ ◦φλ)|E2 are strictly smaller than 1
in modulus. This proves the desired stability result, and finishes the proof of Theorems 1
and 2 in dimension d ≥ 3. $�
Remark. This method of construction of an invariant cone works all the same in dimen-
sion d = 2, providing that b− < −b+. Thus, under the hypotheses of Subsect. 3.2, if
b− < −b+, then we can say that the unstable eigendirection of ψλ ◦ φλ (which was
proved to exist via estimation of the trace and determinant) is actually close to the hori-
zontal direction (it belongs to a cone C = {(x, y) ∈ R2

∣∣ |y| < c|λ| |x|}, for c sufficiently
large).

4. Proof in Case (b)

4.1. Setup for the proof. We give ourselves and fix f0(.), C0(., .) as in Subsect. 1.1, in
case (b), and we suppose that σ(f0, u0, C0) �= 0 and σ(f0, ũ0, C0) �= 0.

We introduce δ, ε0, f1(.), C1(., .), and ν as in Subsect. 3.1 (see Fig. 10).

Up to a linear change of coordinates, we suppose that Df0(0) reads

(
b+ 0
0 B−

)
. Let

>0, the parametrization of u0(.),>, and>′ be as in Subsect. 3.1. For δ and ε0 sufficiently
small, the intersection T0 ∩> (resp. T0 ∩>′, T̃ 0∩>, T̃ 0∩>′) contains exactly one point;
denote it by ξ0 (resp. ξ ′0, ξ̃0, ξ̃ ′0); moreover, the intersection T1 ∩> (resp. T1 ∩>′) contains
exactly two points (see Subsect. 1.1); denote them by ξ1, ξ̃1 (resp. by ξ ′1, ξ̃ ′1), in such a
way that ξ1 ' ξ0, ξ ′1 ' ξ ′0, ξ̃1 ' ξ̃0, ξ̃ ′1 ' ξ̃ ′0.
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φ̃λ
φ̃0,λ

>

>′

>′

ξ̃0

-̃λ

ξ̃1

ξ̃ ′0 0 ξ̃ ′1

ξ̃ ′1
-λ

ξ0

ξ1 >

φ0,λ
φλ

Fig. 10.

Define t0, t ′0, t̃0, and t̃ ′0 by:

u0(t0) = ξ0, u0(t
′
0) = ξ ′0, ũ0(t̃0) = ξ̃0, and ũ0(t̃

′
0) = ξ̃ ′0.

Denote by T the period of u1(.), define t1, t ′1, t̃1, and t̃ ′1 by:

u1(t1) = ξ1, u1(t
′
1) = ξ ′1, ũ1(t̃1) = ξ̃1,

ũ1(t̃
′
1) = ξ̃ ′1, t ′1 < 0 < t1 < t̃ ′1 < t̃1 < t ′1 + T ,

and write t ′′1 = t ′1 + T . Define µ′, ε as in Subsect. 3.1, and define µ̃′, ε̃ similarly. Define
φλ and φ0,λ as in Subsect. 3.1, and define φ̃λ and φ̃0,λ similarly.

Let ψλ (resp. ψ̃λ) denote the flow of the differential Eq. (9) with k = 1, between the
times t = t1 and t = t̃ ′1 (resp. between the times t = t̃1 and t = t ′′1 ). We adopt the same
notations as in in Subsect. 3.1 for φλ, ψλ, φ0,λ, and similar notations (with a tilde) for
φ̃λ, ψ̃λ, φ̃0,λ.

The map ψ̃λ ◦ φ̃λ ◦ ψλ ◦ φλ is conjugated to �λ, and our aim is to study its spectral
radius.

4.2. Estimates in dimension two. Estimates on ψλ are the same as in Subsect. 3.2 (in
particular estimates (17) on ζ and (20) on Si,j ), and similar estimates hold for ψ̃λ.
Estimates on β0 and A0 are the same as in Subsect. 3.2 (Lemmas 2 and 3) and similar
estimates hold for β̃0 and Ã0. We deduce from the estimates on A0 and Ã0 that

η = −σorγ (1 +O(δ))ε−1 and η̃ = −σorγ (1 +O(δ))ε̃−1 (40)
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(these estimates are similar to estimate (28) of Subsect. 3.2 on η, except that σor is
replaced by −σor).

Denote by Tλ the trace of ψ̃λ ◦ φ̃λ ◦ ψλ ◦ φλ. We have

T0 = 1 + ζ̃ β̃ζβ.

According to the expression of ψλ ◦ φλ (see Subsect. 3.3) and to estimates on η, ζ , and
Si,j of Subsect. 3.2, we have

q−1
λ ψλ ◦ φλ =

(
1 + ληyλ(1 + . . . ) η(β + . . . )

λyλ
(
ζ(1 + . . . )+ ληO(1)

)+ λO(1) ζβ + ληO(1)

)
,

where the “O(1)” denote quantities which, for ε0 sufficiently small (depending on δ),
are bounded independently of δ, and the “ . . . ” denote quantities which are arbitrarily
small if δ is sufficiently small and ε0 is sufficiently small (depending on δ).

A similar expression holds for q̃−1
λ ψ̃λ ◦ φ̃λ. We thus have

(qλq̃λ)
−1Tλ = T0 + ληyλ(1 + . . . )+ λη̃ỹλ(1 + . . . )+ ληλη̃yλỹλ(1 + . . . )

+ η(β + . . . )λỹλζ̃ + η̃(β̃ + . . . )λyλζ + ληζ̃ β̃ O(1)+ λη̃ζβ O(1),

where the “ . . . ” denote quantities which are arbitrarily small if δ is sufficiently small
and ε0 is sufficiently small (depending on δ).

Lemma 6. We have
a0 = (1 +O(δ))εγ .

We omit the proof which is very similar to that of Lemma 3.
According to this lemma and to estimate (17) on ζ , we have

ζ = γ 2(1 +O(δ))εγ−1 = O(1).

As a consequence, in the above expression of (qλq̃λ)−1Tλ, the last two terms can be
removed. Now, we once again distinguish several cases.

(i) max(ε, ε̃) ≤ |λ|. In this case, write ε = s|λ|, 0 < s ≤ 1, and ε̃ = s̃|λ|, 0 < s̃ ≤ 1.
For δ sufficiently small, the dominant term in Tλ reads, according to (40),

(qλq̃λ)ληλη̃yλỹλ = γ 2(1 +O(δ))|λ|O(λ)s−1+O(λ)s̃−1+O(λ)yλỹλ.

If δ is small, this term is large, thus Tλ is large and has the sign of yλỹλ; this proves the
desired instability (in particular, this proves the instability in cases 2 and 3 of Theorem 3).

(ii) min(ε, ε̃) ≤ |λ| < max(ε, ε̃). This situation has to be considered only in case 1
of Theorem 3, called “case (b),1” , namely when σ(f0, u0, C0) = σ(f0, ũ0, C0) = −1.
In this case, σoryλ < 0 and σorỹλ < 0, and we can see that all the terms in the above
expression of (qλq̃λ)−1Tλ are positive.

Suppose for instance that ε ≤ |λ| < ε̃ and write ε = s|λ|, 0 < s ≤ 1, and ε̃ = s̃|λ|,
1 < s̃. Then the term ληyλ(1 + . . . ) is large, and, as the other terms are positive, we
find, according to (40),

Tλ ≥ q̃λ(qλληyλ)(1 + . . . ) = ε̃O(λ)
(
γ (1 +O(δ))|λ|O(λ)s−1+O(λ)|yλ|

)
(1 + . . . ).
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As |λ| < ε̃, we have ε̃O(λ) = ε̃O(ε̃) ' 1, thus Tλ is large positive, which proves the
desired instability.

(iii) |λ| < min(ε, ε̃). In this case, write |λ| = tε, 0 < t < 1, and |λ| = t̃ ε̃, 0 < t̃ < 1. It
remains to prove the instability in case 1 of Theorem 3 and the stability result in case 2
of Theorem 3. In these two cases, σ(f0, u0, C0) and σ(f0, ũ0, C0) have the same sign,
and, equivalently, for δ sufficiently small, yλ and ỹλ have the same sign.

Write Tλ = T0+ tT ′
λ+ t̃ T̃ ′

λ+ t t̃T ′′
λ. We have qλq̃λ = 1+ t O(ε) log ε+ t̃ O(ε̃) log ε̃,

and thus

T ′
λ = σorγ

(
yλ(1 + . . . )+ ζ̃ ỹλ(1 + . . . )

)
,

T̃ ′
λ = σorγ

(
ỹλ(1 + . . . )+ ζyλ(1 + . . . )

)
,

T ′′
λ = γ 2yλỹλ(1 + . . . ),

where the terms “ . . . ” are small. As yλ and ỹλ have the same sign, we see that T ′
λ, T̃ ′

λ,
and T ′′

λ are arbitrarily large in modulus if δ is sufficiently small.
Denote byDλ the determinant of ψ̃λ ◦ φ̃λ ◦ψλ ◦φλ, and writeDλ = D0+ tD′

λ+ t̃ D̃′
λ.

Proceeding as in Subsect. 3.2, we see that D′
λ and D̃′

λ are arbitrarily small if ε0 is
sufficiently small (depending on δ).

Write #λ = T 2
λ − 4Dλ, and, as in Subsect. 3.2, if #λ ≥ 0, let

mλ = 1 + 1

2

(
Tλ − T0 +

√
#λ −

√
#0

)
.

Let us conclude. If σoryλ > 0 and σorỹλ > 0, then we see that T ′
λ, T̃ ′

λ, and T ′′
λ are all

large positive, thus Tλ > T0 and #λ > #0 ≥ 0, and finally mλ > 1. This finishes the
proof of the instability result in case 1 of Theorem 3.

If on the other hand σoryλ < 0 and σorỹλ < 0, then we see that, for t and t̃ sufficiently
small (depending on δ), the term t t̃T ′′

λ is dominated by tT ′
λ + t̃ T̃ ′

λ, which is negative.
Thus we see Tλ < T0 and #λ < #0, and thus that, if #λ ≥ 0, then mλ < 1. This proves
the stability result in case 2 of Theorem 3.

The proof in dimension 2 of Theorem 3 (and thus of Theorem 1) is complete. $�

4.3. Estimates in dimension higher than two. Estimates on ψλ (in particular on ζ , si,j ,
A0) are the same as in Subsect. 3.3, and similar estimates hold for ψ̃λ. We deduce from
the estimates on A0 and Ã0 that

η1 = −|bj0 |
b+

(1 +O(δ))ε−1 and η̃1 = −|bj0 |
b+

(1 +O(δ))ε̃−1.

As in Subsect. 3.3, let C = {(x, y) ∈ R × Rd−1
∣∣ ||y|| < c|λ| |x|}, where c is a large

constant to be chosen. Let us denote σ(f0, u0, C0) by σ and σ(f0, ũ0, C0) by σ̃ . Then,
proceeding as in Subsect. 3.3, we obtain that, if c is sufficiently large, δ sufficiently small
(depending on c), and ε0 sufficiently small (depending on δ), in the three following cases:

(i) |λ| ≥ max(ε, ε̃),
(ii) |λ| < max(ε, ε̃) and σ = 1 and σ̃ = 1,
(iii) |λ| < τ min(ε, ε̃), where τ is a small constant (depending on δ), and σ = −1 and

σ̃ = −1,
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the cone C is invariant by ψλ ◦ φλ and by ψ̃λ ◦ φ̃λ. Thus, it is also invariant by the
composition ψ̃λ◦φ̃λ◦ψλ◦φλ, which shows the existence of an eigendirection in the cone
C for this map, the corresponding eigenvalue being real. Proceeding as in Subsect. 3.3,
we obtain that, in cases (i) and (ii) above, this eigenvalue is strictly larger than 1 in
modulus, and has the sign of σ σ̃ (this proves the instability results); in case (iii), if τ is
small enough, this eigenvalue belongs to ]0; 1[, and we can show as in Subsect. 3.3 that
the other eigenvalues are smaller than 1 in modulus (this proves the stability result).

This finishes the proof of Theorem 3. $�
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