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Abstract: We consider spatially homogeneous time periodic solutions of general par-
tial differential equations. We prove that, when such a solution is close enough to a
homaoclinic orbit or a homoclinic bifurcation for the differential equation governing the
spatially homogeneous solutions of the PDE, then it is generically unstable with respect
to large wavelength perturbations. Moreover, the instability is of one of the two follow-
ing types: either the well-known Kuramoto phase instability, corresponding to a Floquet
multiplier becoming larger than 1, or a fundamentally different kind of instability, oc-
curring with a period doubling at an intrinsic finite wavelength, and corresponding to a
Floguet multiplier becoming smaller thasil.

1. Introduction
We consider PDEs of the form
du = F(u, dy), 1)

i.e. invariant with respect to translations of time (autonomous) and space. We suppose
thatuisinR?,d > 1, and thatthe space coordinateelongs tdR”,n > 1, orto adomain

of R" with boundary conditions of type Neumann or periodic. Spatially homogeneous
solutions of this PDE are solutions of the equation

du
7 =Fu,0) = f(u) (2)
(we write f (u) for F(u, 0)), which is an autonomous ordinary differential equation in
dimensiond.

Among the solutions of Eq. (2), of prime interest are those which correspond to an
asymptotic behavior, in particular attractive fixed points and attractive periodic orbits.
Consider such a solution— uy,(t) of Eq. (2). The corresponding homogeneous solution
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for the PDE (1) is thus stable with respect to homogeneous perturbations. However, it
might be unstable with respect to inhomogeneous perturbations, this is at the origin of
many phenomena displaying “patterns” or “spatio-temporal chaos” in nonlinear Physics
([6]).

The question of the stability with respect to inhomogeneous perturbations turns out
to be, without further hypotheses, by far a too general problem. It is thus necessary to
specify, particularize this problem in order to be able to provide significant results. An
interesting way to do so is to look close to a bifurcation. Indeed, bifurcation theory tells
us that this greatly simplifies the problem, and at the same time preserves its general-
ity: normal forms of unfoldings of bifurcations are both “particular’” and “universal”
examples.

Thus we will suppose that the solutien— uj(¢) is close to a bifurcation as a
solution of the differential Eq. (2). This is still not sufficient and we will moreover
restrict ourselves to large wavelength (small wavenumber) perturbations. In [5], this
approach, calledpatial unfolding of bifurcations, is developed systematically, and all
bifurcations occurring generically for fixed points and periodic orbits in dimension one
and two are treated (results of the present paper are quoted, but only rough ideas of the
proofs are given).

Here we will concentrate on almost homoclinic periodic orbits: we will suppose that
t — uy(¢) is periodic and close to a homoclinic orbit or to a homoclinic bifurcation, i.e.
that it spends almost all its time close to a hyperbolic fixed point of Eq. (2). Moreover,
we will assume that space is isotropic, and that the solutien uy (¢) itself does not
break space isotropy. The aim of this paper is to show that such solutions are generically
unstable with respect to inhomogeneous large wavelength perturbations.

A small inhomogeneous perturbatiaiix, ¢) of u;(z) formally obeys at first order
the linear equation

du = DF (up(t), 3y )u, 3
which reduces in Fourier coordinates to
0rii(k) = DF (up(2), ik)ii(k) 4)

which is just an ordinary differential equation parametrized&bBecause of the above
hypotheses on space isotropy, the preceding equation only depeiid$ and can be
rewritten

di(k) = (Df () + Clun(t), —|k|?))i(k), (5)

where¢ : RY x R — £(RY) satisfiesc(.,0) = 0 (we denote byc(R?) the space
of linear mapsR? — R?). Thus we can writeg(u, 1) = AC(u, 1), where the map
C:R? x R — £(R%) isregular.

Inthe following, we will forget about the exact nature of the PDE (1), and just consider
the ordinary differential equation

du
= = (DF @n(®) +2Cn (), )u, (6)
depending on the parametefwhich corresponds te |k|2, thus which will be supposed
to be small negative).

For . < 0, denote byd, the (linear) flow over one period af, of this differential
equation, and denote (P, ) the spectral radius ab,. We know that 1 is always an
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eigenvalue ofdg (the “neutral” Floquet multiplier in the direction of the flow). Thus,
even for values ok arbitrarily close to 0, the eigenvalue 1 & may become larger
than 1. This is the well known Kuramoto phase instability ([4,9, 11]).

We are going to show that, when the solutipnpasses close enough to a hyperbolic
fixed point, then this solution is generically unstable with respectto inhomogeneous large
wavelength perturbations, i.e. there are small negative valuefofvhich p (®;) > 1.
Moreover, we shall see that the instability can be of two different types: either the
Kuramoto phase instability, or a “period-doubling” instability, corresponding to a real
eigenvalue ofd, becoming smaller than 1.

This result was conjectured on the basis of numerical observations by Médéric Ar-
gentina and Pierre Coullet ([1]), and their observations, conjectures, and questions were
the starting point of this work. The reader interested in these observations, in the physical
interpretations and implications of these results, and in the nonlinear development of
these instabilities is invited to consult the references [2] and [5]. Let us also mention that
this generic instability result extends to the case where space isotropy is broken ([5]).

1.1. Satement of theresults. We give ourselves and fix@!-vector fieldfo : R — R?,
d > 2, and we make the following hypotheses (see Fig. 1):

e fo(0) = 0 (0 denotes the origitD, . . ., 0) of RY);

e Djfo(0) has a simple real eigenvalde > O; if d = 2, then the second eigenvalue
is not larger than-b.; if d > 3, then the real part of any other eigenvalue is strictly
smaller than-b,;

o one of the following statements holds:

(a) the differential equatiorﬁjl—b; = fo(u) admits a solutionr — wug(¢) which is
homoclinic to the fixed point O (i.e.p(.) # 0 andug(t) — 0 whent — +00);

(b) the differential equatiorfjﬁ = fo(u) admits two solutions — ug(t) ands —
iio(t) (with distinct trajectories) which are homoclinic to the fixed point 0.

Let us consider ang1-vector field /1 : R? — R, with the following properties:

e f1()) is close tofo(.) in the C1-topology (this hypothesis will be formulated more
precisely below);

o the differential equatiorﬁfﬁ = f1(u) admits a periodic solution — u1(t) whose
trajectory is, in case (a), close to the trajectorygf.), and, in case (b), close to the
union of the trajectories afp(.) andiig(.) (again, this hypothesis will be formulated
more precisely below);

e if d = 2, then the periodic orbit;(.) is not linearly unstable.

Here the hypothesis on the closeness of the trajectories holds in the sense of the Hausdorff
distance between two sets (recall that this distance can be defined the following way:
dist(A, B) = inf{s > 0| A C Neighhy(B) andB C Neighhy(A)}).

Remark. In the casel > 3, these hypotheses (in particular the onegn(0)) imply
that the periodic orbitz1(.) is linearly stable; the same is true in the case= 2 if
the second eigenvalue @ify(0) is strictly smaller than-b... On the other hand, the
hypotheses o f(0) are almost necessary if we want(.) not to be linearly unstable.
Indeed, in the casé = 2, if the second eigenvalue @ifo(0) was strictly larger than
—b,, then the hypotheses would imply that(.) is linearly unstable; the same would
generically be true in the cage> 3 if Df(0) had an eigenvalue different frobn. with

a real part strictly larger thanb. .
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case (a)

E*(0)

Fig. 1.

Now let us define the coupling terms to be added to the two previous vectors fields.
We give ourselves and fix a C%-map Cp : R? x R — £(R?) and we consider any
C%map C1 : R x R — £(RY) closeto Cp in the C-topology (this hypothesis will be
formulated more precisely below).

Denote by £+ (R?) the subset of £(R?) consisting of linear maps having no eigen-
valuewithastrictly negativerea part. Wewill supposethat the maps Co and C; taketheir
valuesin £1(R?). This hypothesisis natural, since, as A < 0, it excludes the existence
of instabilities uniquely due to the coupling. However, the results are to a large extent
independent of this hypothesis (which will be necessary only in dimension d = 2, and
mainly for the phase stability resultsin case 2 of Theorem 2 and case 2 of Theorem 3
below).

For A < 0, denote by @, the (linear) flow over one period of u1 of the differentia
equation

du

i (Df1(ua(0)) + AC1(us(), ))u, (7)
and denote by p (®;,) the spectral radius of ©;.
Let||...||c1 denote auniform Ct-norm on C1(RY, RY) and let || ... ||co denote a

uniform C%-norm on CO(R? x R, £(R%)); let To, 71, and, in case (b), 7o denote the
respective trgjectories of ug(.), u1(.), and ig(.).
Our result isthe following.

Theorem 1. Let fo(.) and Co(., .) beasabove. Then, if ageneric condition (whichwill be
detailed below) on fp(.) and Co(., .) issatisfied, thereexistseg > 0 (small) suchthat, for
any f1(.) andC1(., .) asabove, if || f1(.)— fo()llc1 < eoand||C1(., )—Co(., Jllco < €0
and if, in case (a), dist(79, 71) < €0, and in case (b), dist(70 U7 o, 71) < €0, One can
find A < O (arbitrarily closeto 0 if £ is small enough) such that p(®,) > 1.

We are going to be more precise.
Let fo(.), Co(., .), f1(.),and C1(., .) beasabove. Upto conjugating f1(.) by a(small)
translation of RY, wewill supposethat f1(0) = 0. Fix 8o > Osmall, let Bo = {x € R |
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[lx]|| < 8o}, and let Wls"OC(O) denote the local stable manifold of O for f1(.), i.e. say the
set of points of Bg whose forward trajectory by f1(.) remainsin Bo.

According to the hypotheses (for g sufficiently small), the set 71 N9 B contains, in
case (a), exactly two points, and, in case (b), exactly four points; in dimension d = 2,
this is due to an elementary plane topology argument, and in dimension d > 3, thisis
due to the hypotheses on D fy(0) (and related to the fact that u1(.) islinearly attractive).
In case (a) (resp. in case (b)), denote by ¢1 (resp. by ¢1 and 1) the point(s) of 71 Nd By
asshown on Fig. 2.

wy'%0) ¢ ',l

case (a) case (b)
Fig. 2. Definition of ¢1 and 71

Let
= dist(cr, WH(0)) and,incase(b), j = dist(¢1, WE'%(0))

(thesequantitiescan be considered ashbifurcati on parameters: they measurethe proximity
to the homoclinic orbit or to the homoclinic bifurcation).

In the following (Sect. 2), we will show how to associate to each triplet ( fo, uo, Co)
as above an index o ( fo, ug, Co) in {—1, 0, 1}, which vanishes if, for each (¢, 1), the
map Co(uy (), A) is positively proportional to Idga, but which is generically different
from O for agenera Co(., .), and whose sign governs the nature of the instability. With
thisindex, we can formulate the following more precise results (for sake of clarity, we
distinguish cases (a) and (b)).

Theorem 2. Let f(.), uo(.), and Co beasabove, incase(a). Then, if o ( fo, o, Co) # 0,
there exists eg > 0 (small) such that, for any f1(.) asabove, if || f1(.) — fo()llc1 < €0,
dist(70, 7T1) < €0, and [|C1(.) — Co()|lco < &o, then,

1. if o (fo, uo, Co) = 1, thenfor any A €] — &g; O[, @, has an eigenvalue which isreal
and strictly larger than 1 (phase instability);
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Fig. 3. lllustration of Theorem 2 (case (a))
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2. if o(fo, ug, Co) = —1, then there are constants K’ > K > 0, depending only on
fo(.) and Cp, suchthat, for any A €] — K u; O[, p(®;) < 1(no phaseinstability), and
for any A €] — so; —K' [, ®; has an eigenvalue which is real and strictly smaller
than —1 (* period-doubling” instability).

Theorem 3. Let fo(.), uo(.), #o(.), and Co be as above, in case (b). Then, if
o (fo, uo, Co) # 0 and o (fo, io, Co) # O, there exists g0 > 0 (small) such that,
for any f1(.) asabove, if || f1(.) — fo()llc1 < eo, dist(7o0 UTo, T1) < €0, and [|C1(.) —
CO(‘)”CO =< €0, thmv

1. if o (fo, uo, Co) = —1 and o (fo, iig, Co) = —1, then for any A €] — gg; O[, ®;
has an eigenvalue which isreal and strictly larger than 1 (combination of two phase
instabilities);

. if o(fo, uo, Co) = +1 and o (fp, g, Co) = +1, then there are constants K’ >

K > 0, depending only on fo(.) and Co, such that, for any A €] — K min(u, 1); O[,
p(®;) < 1 (no phase instability), and for any A €] — go; — K’ max(u, iv)[, ®; has
an eigenvalue which isreal and strictly larger than 1 (combination of two “ period-
doubling” instabilities);

. if o (fo, uo, Co) and o (fo, i1g, Co) have opposite signs, then thereisa constant K >

0 such that, for any . €] — go; —K” max(u, i1)[, ®; has an eigenvalue which is
real and strictly smaller than —1 (combination of a phase and a “ period-doubling”

=

instability).
A B A W A i "
— = e >
0 ! Op.>~<_ swable oI :
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Fig. 4. lllustration of Theorem 3 (case (b))
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In case 2 of this last result, the instability is of the same nature as the period-doubling
instability (it can be viewed as the composition of two period-doubling instabilities).
Case 3isabit moreinvolved, but occurslessfrequently than cases 1 and 2. For instance,
it never occurs when the two homoclinic orbits ug(.) and iig(.) are symmetric.

1.2. Examples. The hypotheses of Theorems 1, 2, and 3 cover essentially two kinds of
situations: homoclinic bifurcations of attractive periodic orbitsin one-parameter families
of ordinary differential equations on one hand, and families of periodic orbits bounded
by homoclinic orbitsin two-dimensional conservative ordinary differential equationson
the other hand (this second case correspondsto f1 = fo). Moreover, these hypotheses
take into account cases where, because of the presence of asymmetry or of a conserved
quantity, the limit of the periodic orbits consists of two (instead of one) homoclinic
orbits. We now give some examples (for other examples and references, see[2]).

1. Consider the following nonlinear wave equation:
u,t+(u+u)uf+u—u2= Avu

parametrized by v € R. Thisis the equation governing a chain of coupled second order
oscillators in the potential V(u) = 3u? — 3u®, submitted to the nonlinear damping
—(v + u)u,. This equation can be rewritten

u\ _ v 0 O\ [Axu
v I_ —(v+u)v—u+u2 + 10/\Anv)

and thus can be viewed as a spatial extension of the ordinary differential equation

u\y v
v z_ —(W+u)v — u + u?

with respect to the " coupling” matrix (g g) (herethemap C(., .) isconstant and equal

to this matrix).

Thisfamily of differential equations appearsin the universal unfolding of the Bogd-
anov—Takens bifurcation ([7]). Its dynamics displays the following features. For v > 0,
the fixed point (0, 0) is linearly stable. At v = O, it undergoes a supercritical Hopf
bifurcation and becomes unstable for v < 0. The bifurcation gives rise to an attractive
periodic orbit around (0, 0) for v < 0 close to 0. At a certain value v = v, < 0 of
the parameter, this attractive periodic orbit disappears through homoclinic bifurcation
(seeFig. 5), the limiting orbit being homoclinic to the hyperbolic fixed point (1, 0). For
v < v, forward orbits generically go to infinity.

Theorem 1 claimsthat, for v > v, v closeto v, the attractive periodic orbit is unsta-
ble with respect to inhomogeneous perturbations. More generally, a possible physical
interpretation of our resultsisthe following: for a spatially extended dynamical system,
it isimpossible to cross a potential barrier in a synchronous way.

According to Theorem 2, it is possible to predict the nature of the instability. We
use the definitions and notations of Subsect. 2.2. On one hand, the homoclinic orbit is
backward oriented, thus oo = —1. On the other hand, we can see from the expression
of C(.,.) that c30(r) will be negative for al times, which shows that Y_(.) > O, that
Yi() < 0,and thus that Y_(.) — Y4 () > 0. Thus, oy = +1, and, according to
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Fig. 5. Phase portrait when v = v,

Theorem 2, the instability is a phase instability (for more details on the links between
the expression of C(., .) and the nature of the instability, see [10]).

2. Consider the following partial differential equation:
U + V/(M) = Uxx,

where V() = —3u? + $u® + u®. It represents a chain of coupled conservative
oscillators in the bistable potential V (.). It can be viewed as a spatial extension of an
ordinary differential equation with respect to the same coupling matrix as above. The
phase space of the differential equation is as follows. It is foliated by periodic orbits,
bounded by the fixed points and by two orbits homoclinic to (0, 0) and having an energy
%utz + V(u) equal to 0. According to Theorem 1, any periodic orbit having an energy E
close enough to 0 is unstable with respect to inhomogeneous perturbations; moreover, it
is phase unstable (case 1 of Theorem 2) if E < 0, and not phase unstable (but “ period-
doubling-like” unstable, case 2 of Theorem 3) if E > 0.

3. We end up our series of examples with the celebrated sine-Gordon equation
Uy +SINU = Uyy.

The phase space of the corresponding ordinary differential equation on (R/27Z) x R
isfoliated by periodic orbits, bounded by the fixed points and by two orbits homoclinic
to (s, 0) and having an energy %u,z — cosu equal to 1. We can easily deal with the fact
that the phase space is 27 -periodic on the horizontal variable. According to Theorem 1,
any periodic orbit having an energy E close enough to 1 is unstable with respect to
inhomogeneous perturbations, moreover, it is phase unstable (case 1 of Theorem 3) if
E < 1, and period-doubling unstable (case 2 of Theorem 2) if £ > 1.
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1.3. Sketch of the proof and organization of the paper. Let us describe rapidly how the
proof goes. To simplify, we suppose that we are in case (a) and that the dimension d
equals 2.

We shall take a small parameter § > 0 and cut the trajectory of u1(.) into two
parts, as shown on the Fig 7. Consider the local frame (e1(?), e2(r)) = (f1(u1(1)),
Rotz f1(u1(1))) aong thistrgectory. Denote by v, (resp. by ¢;) the flow of the differ-
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ential Eq. (6), expressed in thislocal frame, along the part of the trajectory which lies
inside (resp. outside) the box of size § around 0. The flow ¥, o ¢, isconjugated to @,
and we want to study its spectral radius.

The differential equation ‘;—‘; = Df1(u1(t))u, expressed in the local frame, takes the

form ‘é—’; = Ma(t)u, where the first column of M (¢) vanishes; this shows that o and

(1) : . When the distances between fy and f1 and between 75 and

71 go to 0, the flow ¢g convergesto alimit, while g becomes singular. Indeed, writing

¢o are of the form

Yo = (é Z) we will seethat  goesto +oo (or to —oo if the orbits have the converse

orientation) while ¢ remains bounded (if 5>~ = —b,) or goesto O (if b— < —b4). More

precisely, we will seethat 7 is of the order of ;1.

Theflow ¢, isanon-singular perturbation of ¢g. Writing ¢, = ¢o + A <1;) ;) we
can see that the trace of ¥, o ¢, reads

trynogy =tryoodo+Ainy+....

We will show that, when § is small, y is large and has a definite sign (actually, when
u1(.) is oriented as on the figure above, the index o (fo, uo, Co) will be equal to +1
according to thissign). Thus, we can already see on this expression of the trace what we
will actually prove: for |An| > 1 (which correspondsto |A| being at least of the order
of w), this trace is large and its sign is governed by the sign of y (i.e. by the sign of
o (fo. uo, Co)). This aready proves the instability.

For the case |An| < 1, we will need slightly more precise estimates, either to prove
the phase instability (if y is positive) or to prove some stability (for |An| small, if y is
negative). The proofsin dimension d = 2 and in dimension d > 3 differ noticeably at
this point: in case d = 2, we will simply estimate the determinant of ¥, o ¢;, while
in case d > 3, we will have to construct an invariant cone for this map (none of these
two strategies seems to be convenient for the other case: in dimensiond > 3, estimates
on the trace and the determinant are not sufficient to control the eigenvalues, while the
construction of an invariant cone seemstobedelicateindimension2incaseb_ = —b.).

The paper is organized as follows. Section 2 is devoted to some notations and to the
definition of theindex o (., ., .). Thisdefinition isvery simplewhen d = 2, and slightly
moreinvolvedwhend > 3, thuswedistinguish thesestwo cases(Sects. 2.2 and 2.3). The
proof of theresultsin case (a) isgivenin Sect. 3. After apreliminary setup (Sect. 3.1), we
again distinguish the cases d = 2 (Sect. 3.2) and d > 3 (Sect. 3.3). Findly, we explain
in Sect. 4 how to adapt the previous arguments in order to prove the resultsin case (b).

Notations. For n € N, we will denote by Bean(R") the canonical basis of R” and by
€1, ..., &, the vectors forming this canonical basis. We will denote by || ... || the usual
euclidean norm on R", by M, (R) the space of n x n real matrices, and by |||... ||| the
usual normon M, (R).

2. Définition of the Index o
2.1. Notationsrelated to thelocal frames. Throughout the proofs, we will have to work

in local frames aong the solutions ug(.) (or igp(.)) and u1(.). Here we introduce some
notations related to these local frames.
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Fork € {0,1} andr € R, write

My (1) = Dfi(uk(1))

and
e1k(t) = fr(up(r)).

Indimensiond = 2, write
e2k(t) = Rot%el,k(t).

In dimension d > 3, the loca frame is not canonical, but we will define vectors

e2k(t), ..., eqr(), ¢! and periodic (of the same period as u1(.)) with respect to z,
such that the family (e1£(¢), ..., eq 1 (1)) definesfor each r abasis of R,
Then,

o let Pi(¢) denote the matrix whose columns are the coordinates of eq x (¢) and ep i (1),
o let My(t) = —P(OY @) + P IM() Pe(t) and Cr(t.2) = Pr()™
Cur(t), A) P (2).

The change of variablesu = Py (t)v transforms the differential equation

du
=7 = (M) + 2C (uge (), M)u (8)
into
dv N A
i (M (t) + ACi (2, 1)v. 9)

The definition of e1 4 (¢) ensures that the first column of M, (t) vanishes. Let uswrite

N 0 ap(t) A c1k(t) c2k(t)
M) = (o bk(r)> ad G0 = <C3,k(t) C4,k(t)>’

wherec ¢ (r) isanumber, ax (¢) and c2 x () 1 x (d — 1)-matrices, c3 x (t) isa(d — 1) x 1-
matrix, and by (¢t) and c4 x (t) are (d — 1) x (d — 1)-matrices.

2.2. Definition of o in dimension two. We suppose that the dimension d equals 2, and
we give ourselves avector field fp(.) and amap Co(., .) asin Subsect. 1.1.

Upto alinear change of coordinates preserving the orientation, we can suppose that
EY(0) and ES(0) (the unstable and stable spaces of Dfy(0)) are respectively equal to
R x {0} and {0} x R. Wewill say that ug(.) (or iig(.)) isforward oriented or backward
oriented according to the orientation of itstrajectory in R? (see Fig. 8). Remark that, in
case (b), uo(.) and ip(.) necessarily have the same orientation. We are going to define
the index o ( fo, ug, Co) (in case (b), o (fo, itg, Co) would be defined similarly). Write

Dfo(0) = <bg b0> . With the notations of the preceding paragraph, we have

bo(t) > b—_ — by <Owhent - —oco and bo(t) > by —b_ > 0whent — 400
(10)
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(see assertion (11) below). Thus, the differential equation
dy
e bo(®)Y + c30(1), te€R,

has aunique solution Y, (.) (resp. Y_(.)) which is bounded whenr — +o0 (resp. when
t — —o0). Thedifference Y_(.) — Y, (.) iseither identically 0, or does not vanish, and
inthis caseits sign is constant.

Let oor = 41 (resp. oor = —1) if up(.) is forward (resp. backward) oriented. Let
oy = +1(resp.oy = 0,0y = =) if Y_()—Y4() > 0(resp. Y_(.) = Y+ () =0,
Y_() —Y:(.) < 0). Finally, let us define our index o ( fo, ug, Co) by

o (fo, uo, Co) = —0oroy.

The condition Y_(.) — Y+(.) # 0 is generic, except if the map Co(., .) isidentically
proportional to theidentity (in thiscase, wehavecz o(.) = 0, andthusY_(.) = Y4 () =
0), and the condition o ( fp, uo, Co) # 0 isthus also generic.

If Co(.,.) isconstant and not proportional to the identity and if its two eigenvalues
are either complex conjugated or equal, then one can check that c3 0(.) # 0 and that the
sign of ¢3,0(.) is constant, given by the “sense of rotation” of the flow ¢ — exp(—zCo)
(for more precisions on these “monotonic” matrices, see [10]); in this case, Y_(.) has
thesign of c30(.), and Y (.) hasthe opposite sign, and the condition Y_(.) — Y4 (.) # 0
(and o (fo, uo, Co) # 0) isthus always fulfilled. Moreover, in this last case, the sign
of o (fo, ug, Co), and thus the nature of the instahility, can be predicted geometrically,
from the orientation (forward or backward) of the homaclinic orbit and the “sense of
rotation” of Co ([10]).

We finish with arapid computation which will justify the limits (10), and which will
be used later. For k = 0 or 1, denote by 6, (z) the angle between the vectors (1, 0) and

e1 (1), and write My () = (%;1 %;;)

Claim. We have

ag()\ _ Mio2+ Mo,
(bk(t)> = R0t729k(f) <M2,2 _ Ml,l) . (11)
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Indeed, we have (forgetting the indices k and the dependence with respect to ¢),

()-+)- 5 w00

Besides,
0 dP (0
P (1) = Rotzey and thus n (1) = Rotz Me;.
Thus,
a\ -1 . 1
(b> = P7Y[M,Rotz]P (0)
and we have

PYM. Rot; 1P = Rot (Ml,z +Mz1 Moy — Mg ) Rot

Mo —M11 —Myo— Mz

— Rot_ Mio+Mzy Moy — M1
T\ Mz —M11 —Mio—Mo1)°

which proves the claim.

2.3. Definition of o in dimension higher than two. We supposethat d > 3, and we give
ourselves avector field fo(.) and amap Co(., .) asin Subsect. 1.1.

We are going to define the index o ( fo, uo, Co) (in case (b), o ( fo, g, Co) would be
defined similarly). Up to alinear change of coordinates, we can suppose that EY(0) and
ES(0) (the unstable and stable spaces of Dfo(0)) are respectively equal to Vect(e1) and
{0} x R?~1, and that the first coordinate of uq(r) is positive when ¢ is large negative.

Write Dfo(0) = b(;“ BO , B € My-1(R). We can suppose that B_ is diagonal by
blocks, i.e. that it reads
B
B> 0
o - |
B;

each block B; corresponding to an eigenvalue b;. We can suppose that the non-real
eigenvalues of B_ are byy1,...,bs, where 0 < s’ < s. For j > s’ + 1, denote by
pj (resp. by 6;) the real part (resp. the imaginary part) of ;. We can suppose that, for
j = s'+ 1, B takestheform

pj —b; N
(9/ Pj )
0 j Y
(9./ Pj )

For t € R denote by R; the linear map of RY whose restriction to the characteristic
spaces corresponding to the eigenvalues b4 and b;, j < s’, is the identity, and whose



338 E. Risler

restriction to the characteristic space corresponding to any eigenvalue b;, j > s’ + 1,

reads
ROtt,gj 0
cosrf; —sSinto;
g where Roty; = <sint6]]- costejj> :
0 ROttgj

The change of variablesv = R_,u transforms the differential equation ‘j,—f = fo(u) into
4 — go(v, 1), where
R_;

dt

go(v, 1) = R fo(Rv) + Rv.

WriteR = dﬁ;’ R;; thismatrix doesnot depend on ¢ andwehave D, go(0, 1) = Dfo(0)+
R. Thus, D,g0(0, t) does not depend on ¢, and we can see that its eigenvalues are rea
(theseeigenvaluesare by, b1, ..., by, Pg'i1, - - - » Ps)-

Write vo(t) = R_juo(t), t € R. Thefollowing lemmais classical (see for instance

[3]), and we shall omit its proof.

Lemma 1. The quantity 22 has a limit when ¢ — oo, and this limit is an eigen-
vector of D,go(0, .).

Denote by w this eigenvector. It belongs to one of the characteristic spaces of Dfo(0),
corresponding to an eigenvalue b j, of Dfp(0). We know that o, < —b4..

Remark. Generically, wehavep;, > Reb;, 1 < j < s, but we shall not need thisin the
following.

Denoteby e, .. ., €, thecanonical basisof RY. Up to another change of coordinates,
we can suppose that w = e, and that, if b, isreal, then D fo(0) reads

by 0 O
0 bj *
0 0 B_

with B_ € Mga—2(R) (in this case, write E = Vect(ep)), and, if b}, is non-real, then
Djfo(0) reads

by 0 0
0 <pjo _91'0) %
Ojo  Pjo B

0 0 B_

with B_ € Mq_3(R) (inthiscase, write E = Vect(ea, €3)).

We can now define the moving frame (e10(¢) ..., eq.0(?)), t € R. Let e10(r) =
Sfo(uo(1)),t € R. Thisvector e1 o(¢) isalmost parallel to €5 when ¢ islarge negative, and
almost parallel to E when ¢ islarge positive. Denote by I11 (resp. by I ) the orthogonal
projection onto Vect(e1) (resp. onto E) in RY. There exists T > 0 (large) such that, for
t < —=T,T1(e10@®)) #0,and, fort > T, Ig(e1,0(t)) # 0.

Fort < —T,letejo(r) = |lero()llej, 2 < j <d.

Fort > T,let ez o(t) = ||le1.0(t)||€1, and,

o ifbjisred, thenlete; o(t) = llero(®)ll€;, 3<j <d;
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o if bj, isnon-redl, thenlete; o(t) = |ler0(t)lle;, 4 < j < d,and let

llez,0(Dl
e30(t) = ————————Rot_xzI1ge10(?)
Mgesoll 2 "
(here Rot,% denotes the rotation of angle —7 in the subspace E' equipped with the
orientation of the basis (e2, €3)).

We can see that, for any ¢ with |¢| > T, the family (e10(t) ..., eq.0(¢)) defines a
basis of R?; it depends smoothly on 1, it is amost orthogonal for large |¢, it satisfies
llej. oIl = llero®)ll, 2 < j < d, and it has the direct orientation. It is thus possible
to extend smoothly each map ¢ — e; o(¢) to the whole real line, in such away that, for
anyr € R, (e10(t), ..., eq0(t)) defines a (positively oriented) basis of R4,

We use the notations of Subsect. 2.1. We have, whent — —oo, ||e1,o(t)||‘1Po(t) —
|dra, and, by calculus, Po(r) 4R (1) — b 1dga. Thus,

bo(t) > B_ — by ldge-1 whent — —oo. (12)

Suppose that b, is real. Then, when t — +oo, |le1,0(t)|| "1 Po(t) — <(§) |d0 )

Rd-2

where¢ = <_01 é),and, by calculus, Po(t)—ldﬁ(t) — bj, Idra. Wethus haveinthis

dt
case
by —bj, 0
bo(t) — ( 0 B by 1dma 2 whent — +o0. (13)

Now suppose that b, is non-real. Then, whent — +oo, ||e1,o(t)||_1Po(t) isclose to
be of theform

010
* 0 % 0
* 0 % ’
O Ide—B
and, by calculus,
0 0 -0
_1dPo 00 O 0
1 )
Po(l) 7(1‘)-),0/0|de+ Gjo 0 0
0 0
We thus have in this case
b+ — Pjo 0 0
bo(1) — 0 0 * whenr — +o0 (14)
0 0 B_ — pj,ldga-3

(where the terms x may depend on time).
Consider the differential equation

dy
—- =boY +e30(t), Ve RI7L reR.
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According to (12), this equation has a unique solution ¢ — Y_(¢) which is bounded
when t — —oo. On the other hand, according to (13) and (14), this equation admits
a (unique) affine hyperplane of solutions ) (of dimension d — 2) such that, for any
Y(.) € Y, the vector ¢’ Y (¢) is bounded when 1 — +o0. Let S denote the set of all
solutions of the preceding differential equation, and denote by S, (resp. by S-) the set
of solutions Y (.) such that the first coordinate of the vector ¢”io" Y (1) goesto +oco (resp.
to —oo) whent — +o0. We have

S\Y=8+US-.
Let us define our index o ( fo, ug, Co) by

o (fo, uo, Co) = + 1(resp. o (fo, uo, Co) =0, o(fo, uo, Co) = —1)
ifY_ eSSy (resp.Y_e€), Y_e S_).

TheconditionY_ € S; uS_ (andthuso (fo, 1o, Co) # 0) isagain generic, except if the
map Co(., .) isidentically proportional to theidentity (in this case, we have cz o(.) = 0,
andthusY_(.) = 0and Y = {0} x R?~2),

3. Proof in Case (a)

3.1. Setup for the proof. Wegiveourselvesand fix avector field fo(.) andamap Co(., .)
asin Subsect. 1.1, in case (). We adopt the conventions (choice of a convenient basis)
and notations of Sect. 2 and we suppose that o ( fo, ug, Co) # O.

Let 5 > 0and eg > 0 be two constants to be chosen later. Throughout the proof, we
will often have to make the hypothesesthat § or ¢p are small. The hypotheses on § will
always depend only on Co and fp(.) (although thiswill not be stated explicitly), and the
ones on gg only on Co, fo(.), and §. Thus the final convenient choices of § and gg will
only depend on Cg and fp(.).

Consider any vector field f1(.) and any map C1(., .) with the same hypotheses asin
Theorems 1 and 2, in particular

I1/10) = foOller < €0, 11C1() — Co()llco < €0, and dist(7o, T1) < ¢o,

and let

v =1lf10) = foOllc1.
Because of the continuous dependence of alocal stable manifold on the vector field, we
have

uw—>0 when g — 0

(recall, see Subsect. 1.1, that ;. = dist(¢1, W5'(0)).

Let X beasmall hypersurface crossing transversally 7g at ug(0) (seeFig. 9). For ¢g
sufficiently small, 3o N 71 # @, and, up to reparametrizing ¢ — u1(¢) we will suppose
that u1(0) € Xg. Let

¥ ={(x,y) |xe[-8:8ladyeR" [y =8},
Y ={(x,y) |x=28andy e RI"L ||y|| < 8}
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Fig. 9.

For § and g sufficiently small, the intersection 7o NZ (resp. 70N/, 71NX, 71 NY’)
contains exactly one point (same reason as in Subsect. 1.1); denoteit by £o (resp. &, &1,
£1). Denote by T the period of u1(.), definero, 7, t1, and 17 by:

uo(to) = &0, uolip) =&y, ur(t) =61, ui(t)) =&, 11 <0<nn<n+T,

andwriter] =1 + T.
Let

/
W = distwa(rn). W5'0) and 6=

(W2'°°(0) was defined in Subsect. 1.1, we suppose that § < o).

Weremark that ., 1/, and ¢ are of the same order (they are equal up to multiplicative
constants depending on the choice of §).

For & € R, denote by ¢, (resp. v,) the flow of the differential Eq. (9) with k = 1,
between thetimess = ¢ and r = 1, (resp. between thetimest = r; and r = #{) (inthe
cased > 3, thelocal frameswill be defined in Subsect. 3.3). Denote by ¢o . the flow of
the differential Eq. (9)) with k = O, between thetimest = ¢j and r = 1o.

Write
¢ = <é z> Yo = <é g) and ¢oo0 = ((1) %g)
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(wherea, n, and ag are 1 x (d — 1)-matrices, and 8, ¢, and o are (d — 1) x (d — 1)-
matrices) and write

¢ = o+ A (wA xk) and o, = ¢o0+ A <w°v* xo,*)

Yr 2 Yo,n 20,

(with similar conventions).

The quantities wo,x, x0,1, yo.x, and zox have limits wo,0, x0,0, yo,0, and zo,0 When
A — 0; theselimitscan beobtained asvaluesat timerg of solutionsof explicit differential
equations involving ao(.), bo(.), and ¢; o(.), 1 < j < 4); the differentia equation for
Y0,0 reads

d

% = bo(1)y + e30() (15)
(it is the differential equation used in paragraphs 2.2 and 2.3 for the definition of oy).
According to classical results on continuous dependence with respect to parameters
for solutions of ordinary differential equations, the quantities w;, x,, y, and z, are
arbitrarily closeto w0, x0,0, ¥0,0, @nd zg,o if |A| and gg are sufficiently small (depending
on §).

For the remainder of the proof, weimpose A €] — gg; O[; moreover, we will suppose
that &g is small enough (depending on §) in order to have§ > v, § > |A|,and § > &.
Thus, in all the following estimates, the terms of the order of O(v), O (1) or O(¢e) will
be absorbed in the terms O (3).

3.2. Estimates in dimension two.

Estimates on ;. Denote by W, the flow of the differential equation (8) withk = 1
between the times 71 and 7;'. Write Q = Pi(r1) and Q' = P1(t]). We have
v =0 W, 0.

A cone-invariance argument on the flow of (8) shows that W, has two eigenvectors i,

and j, of theform
(1 . {O®)
2= (o) = 5=(7)

(the terms O (v) and O (1) are absorbed in O(8)). Denote by R, the matrix of M2(R)
whose columnsarethe coordinatesof i) and j, (wehave R;, = ldgz + O(5)). Thematrix

R, MW, R; isdiagonal; denoteit by L; and write

(A, O
u=(4 2)
Let us estimate yo. Write y = 'Z—;‘ > 1. Ase = u’/8, we have

I ge !

=——o
by + O()

and thus
Ag = 871+O(8) >1 and ag= 8V+O(8) <1
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(these last estimates are not optimal but are sufficient for the moment; we will prove a
more precise estimate on Ag in the following).

Wehaveuy(y) = (O(SZ) + “/> = <0(82)>, and thus

oord oord

0 = auilv-I(( ° §) + 0®).

/ ) )
Wehaveu(t]) = (0(52) n oor83V+O(5)> = ((’)(82)> ,thus Q" = 8b. (Idgz2 + O(8))

and

-1 1
0 = o (Idgz + O(8)).
Finally, as
Yo = Q' "RoLoR;'0, (16)
we get
¢ = detyo = y2(1+ O(8)) Aoap = y2(1 + O(8))e? 1O 17

and, identifying in the expression (16) of o, wefind

N = ooy (L+ 0@)) Ao = oory (1 + O(8))e 0@, (18)
Now we estimate ;.. Write ¢;, = ﬁ—g and d;, = ﬁ—gak — ag; then we have

_ (A0 0 )\ _ 00
LA_‘”(O ao+dk>_q’\<L0+<0 d)\>>'

A cone-invariance argument shows that

R). = Ro+ O(),
and we have
A, = Aoe(ri’—rl) O0) = ApsOW,
a) = aoe(ti’—tl) O®) — 40eO®,
thus g, = O™ and dy, = ag(e®? — 1).
Now we have

V= Q' 'RiLiRQ
—a ((ld +00))(Q" Ro) (Lo + (8 . )) (R310)(1d+ 0(A))> (19)
= g((d+ 00NV +OR) + 0(d))

and we obtain
Yo =g (Yo + 9),
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where S = (S; j)1<;, j<2 satisfies
Si.j =n00) + 0y it G, j) # (2, D);
S21= 1+ OMW) +10R3) + Od).
We remark that
dy = ag(e®W1%9° — 1) = 7O (loge) O ()
which shows that

Sii=n0G) if G,j)#21 and S21=1+2)ON) +1002. (20

Estimates on the trace of v, o ¢,. Denote by T; the trace of ¥, o ¢,. We have
To=1+¢p

and calculusyields

T, = 4. (To+ AnGi + (1)), (21)

where (forgetting the indices 1)

r(Ad) = n_l(w +¢2)+ ()»7])_1<Sl,1(1+ Aw) 4+ S1.2Ay + S2.1(0 + Ax) 4+ S2.2(8 + )»Z).

Lemma 2. The quantity 8 is bounded by a constant which does not depend on §.

Proof. We have

o
Bo = exp/ bo(s)ds.
%

Write ug(r) = (xo(t), yo(r)). We have log|yo(r)|~t ~ t|b_| when t — +oo and
log |xo()| ™t ~ |t|b+ whent — —oo. In particular, we have

o~ b_|"tlogs™t and 1y~ —bitlogs™* when §— 0.
Asbo(t) - (b4 — b_) whent — +oo, thisshowsthat, if |b_| > b4, then 8o — 0
when § — 0, and this proves the lemmain this case.

Intheremainingcase|b_| = b, wehavetobesdlightly moreprecise. When: — o0,
we have xo(t) = O(yo(r)?) and thus, according to claim (11), bo(r) = b_ — by +
O(yo(t)). Similarly, whent — —oo, wehavebo(t) = by — b_ + O(xp(t)). Thus, o is
equal, up to a multiplicative constant independent of §, to the quantity e?+—-)(o=lD)

On the other hand, we have

dyo

Ve b_yo+ (’)(yg) when 1 — +oo0,

which shows that log|yo(r)|~* — 7|b_| is bounded when ¢ — +oc. Similarly,
log |xo(t)|~t — |¢]b, isbounded when r — —o0, which shows that 7o — |75] is bounded
independently of §, and the lemmafollows. O
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According to estimates (17) on ¢, (18) on », (20) on S;, ;, and to the lemma above,
r (1) isbounded, for g sufficiently small (depending on §) by a constant which does not
depend on é.

The quantity yo o is the value at time 7 of the solution of the differential Eq. (15),
namely

ay =bo(t)Y + (1)
i 0 €30

withinitial condition Y = O attimer = ¢,.

Thisdifferential equationisprecisely theonegoverningthefunctionsY_(.) and Y4 (.)
of Subsect. 2.2. We know that oy = +1, and, asbo(t) — b4+ — b_ whent — 400, we
seethat oy Y_(t) — +o0o whent — +o00. We thus have

oyyoo— +oo when §— 0.

Before we can conclude, we need a more precise estimate on 7.

Lemma 3. We have
Ao= 1+ 0©)e L

Proof. We could use Hartman’s C? linearization theorem ([8]) but we will give amore
elementary proof.
There is asmooth map g1, defined on aneighborhood of 0in R?, with valuesin R?,

satisfying g1(0) = 0, and mapping W;"'%°(0) (resp. W5'°(0)) to the x-axis (resp. to the

y-axis). We have Dg1(0) = ldgz + O(v).
Denote by f1 the vector field obtained by conjugating f1 by g1 (e fi() =

Dg1(g7 () f1(g7 1)), denote by f11 the first component of f1, and let by 1 =
by + O() and b_ 1 = b_ + O(v) denote the two eigenvalues of Df1(0). Then we
have

f11(x,y) = x (b1 + OIGx, MID). (22)

Write u1(¢t) = g1(u1(?)), t € R, and denote by x1(¢) the first coordinate of ii1(¢). We
have

X1(1) = W' (14 008), x1(1)) = 8L+ 0©)), (23)
and, according to (22),
dx1

o 2O+ 1+ 0lar®dID), 1€ ;1. (24)

On the other hand, the dynamics close to 0 shows that

t//
/ " ol nlDdr = 0). (25)
n

Thus, we deduce from (23) and (24) that

P11 = (14 O(8))e L. (26)
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Denote by Ag the largest eigenvalue of the flow of the differential equation

du ~A L

< = DAt (27)
t

between the timesr = 1, and r = ¢, and denote by v the corresponding eigenvector

(with the normalization constraint that the first coordinate of v is equal to 1). We have

Ao = (14 0())Ao.

Let v(z) denote the solution of the differential equation (27) with initial condition
vatimer = . Write v(t) = (v1(t), v2(2)). Then vi(z) = Ap. A cone-invariance
argument showsthat, for any r € [r1; 171, we have va (1) /v1(r) = O(8). Thus, according
to (27), we have

U1

d
= = 1@+ +olaID).

The lemmathus follows from (25) and (26). O

According to this lemmaand to estimate (18) on n, we have

n = ooy (d+ Q)™ (28)

End of the proof. To conclude, we will distinguish two cases.

(i) |1A] = e. Inthiscase writee = s|A|,0 < s < 1. Wehavel < Tp < 2. Thus,
according to (28), the formula (21) for 7;, yields

T. = ginyn(l+...) = (—oyoor)ys TFOP |y, |1+ -+ +),

wherethe” ... " denotetermswhich are arbitrarily small if § issufficiently small and g
is sufficiently small (depending on §). Thus, for § sufficiently small and ¢q sufficiently
small (depending on §), the quantity (—oyoor)T), isarbitrarily large, in particular larger
than 2. On the other hand, we know, as the trace of C1(., .) iS nonnegative (according
to the hypothesis that C1(.,.) € £1(R?), see §1.1), that the determinant of v/;, o ¢, is
not larger than 1. Thus, (—oyoor) Ty, > 2 impliesthat v, o ¢, has an eigenvalue which
isreal and strictly larger than one in modulus, its sign being the sign of —oyogr. This
proves the instability in case |A| > ¢; in particular, this proves the instability in case 2
of Theorem 2 (i.e. when —oyoor = —1); indeed, as we already mentioned, the quantity
5 is bounded from above by a constant (which depends on the choice of §) which is
convenient for the choice of the constant K’ appearing in the theorem.

(i) ] < e. Inthiscase write|A| =t,0 <t < L. Write T; = To + ¢T';.. According
to (28), we have
T'). = (—oyoo)ylyal(1+...).
In particular, T’;, is arbitrarily large, and has the sign of (—oyoqr), if 8 is sufficiently
small and g is sufficiently small (depending on §).
Denote by D, the determinant of v, o ¢,. We have

det ;= det Q' 1(A;a;) det O = 9P det o

and
det ¢, = detpo + O(A) = (14 O(1)) det ¢o
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(be careful that in this last expression, the term @ (1) dependson § !); thus
Dy =P+ O0)Do.

Write D;, = Do+1D}.As Do < 1, weseethat D] isarbitrarily small if &g issufficiently
small (depending on §). Write A, = T,\2 —4D; and Ay = Ag + 1A . We have

A) = 2ToT';, + T2 — 4D},

If A; > 0, denote by m; thelargest eigenvalue of v, o ¢;. We have mg = 1 and

1
m, =1+ E(zT’A + /Ao + 1A} —\/Ao>.

Now we can conclude. We know that Ag > 0. If —ogroy = 1, weseethat A} > 0 (thus
A, > 0) andm;, > 1. This provesthe instability result in case 1 of Theorem 2.

If on the other hand —ogroy = —1, then we see that, for ¢ sufficiently small (de-
pending on §), A} < 0, and, if A, > 0, then the two eigenvalues of ;. o ¢, arestrictly
between 0 and 1. Finally, if A, < 0, then we know that D, < 1 (according to the
hypothesisthat C1(., .) € £1(R?), thetrace of C1(., .) is nonnegative) and the spectral
radius of v, o ¢, isthus not larger than 1. This proves the stability result in case 2
of Theorem 2 (the value of ¢ “sufficiently small” provides a convenient choice for the
constant K).

The proof in dimension 2 of Theorem 2 (and thus of Theorem 1 in case (a)) is now
complete. O

3.3. Estimates in dimension higher than two. For r € [17; 1], let e 1(r) = e 0(1),
J = 2,...,d (the vectors ¢; o(r) were defined in Subsect. 2.3). If &g is sufficiently
small, then, for any ¢ € [11; r1], the family (e1,1(7), ..., eq,1(7)) defines a basis of R4,
This enables to define Py(1), M1(z), and Cos (7, 1) for ¢ € [1]; 1] asin Subsect. 2.1. We
can thus define ¢o ; and ¢; asin Subsect. 3.1. To define v;,, we do not have to define
explicitly the local frame betweenr = 1, and r = 1{’; indeed, ;. actually depends only
onthelocal frameatt = 1; and t = 1;. Write Q = P1(11) and Q" = P1(17), and denote
by W, theflow of the differential Eq. (8)) between thetimes; and r;. We can define v,
by:
v =01y 0.

Estimates on . We suppose, asin the case d = 2, that ¢g is sufficiently small (de-
pending on §) to have§ > v, § > |A|, and § > ¢, so that the terms O(u), O(1), and
O(¢e) are absorbed by terms O (3).

A cone-invariance argument shows that W, has two invariant subspaces I, and J;,,
withdim I, = 1anddim J, = d — 1. The subspace I, (resp. J,) isamost parallel to €1
(resp. to {0} x R?~1). Denote by I1; (resp. by 1) the projector on ;. along {0} x R?~1
(resp. the projector on J, aong Vect(e1)), and write €1, = Tljep and €, = Tlje;,
j =2, ...,d. These vectors define a basis of R?, and we have

€i.=€;+00©), j=1...,.d.
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Denote by R; the matrix of M4 (R) whose columns are the coordinates of the vectors
€ j=1....d andwrite L, = R, *W¥; R;. The matrix L; reads

A, O
0 a),
witha;, € Mg-1(R).

Let us estimate vq. Fix area number b_ < O satisfying max;—; . sReb; < b_ <
—byandlety = 'Z—;‘ > 1. Wehave (asinthecased = 2)

1
i —t1= ———loge 1,
by + O()

and thus
AO — €—1+O(8) >> 1’

and, for § sufficiently small (according to the margin between max;—; ., Reb; and
b_),
[llaolll < &¥ « 1.
Write n = (11, ..., na—1). According to the estimates of Subsect. 2.3 on Py(¢),
|t| > T, and computing Yo = Q' "RoLoRy:Q, we get

b.
+

Lemma 4. For § sufficiently small and ¢q sufficiently small (depending on §), we have

-1
el < e

Proof. Fort € [r; t]], writeus(t) = (x1(¢), y1(1)), x1(t) € R, y1(t) € R¥~1. We have

d X1\ _ b+ 0 X1
= (y1> = (< ] B_) +00)) <yl
which shows that, for § sufficiently small, there exists a unique time r;” €]ry; #;[ such
that x1(#7") = [|y1(t7)1l.
Fort e [t]"; 1], write e11(r) = f1(ui(r)) and e;1(r) = €;,2 < j < d.For$
sufficiently small, these vectors define, for any ¢ € [17"; #{'], abasis of R4. Let usdefine

the matrices P1(¢) and M1 (¢) asin Subsect. 2.1.
Let Q" = P1(11"), andlet W () denotetheflow of the differential Eq. (8)) between the

timesy and7y”. Write g 1) = 0" 1w 1,0 andlet 2 denotetheflow of thedifferential

equation ‘g’l—‘l‘ = M1 (t)u between the times 1" and t{. We have yo = ¥(2) o ¥(1) and we

can write
_ (1 7w _ (1 ne
Yy = <0 C(l)) and ) = (0 ‘@)’

where ¢(1) and ¢(2) belong to AM,—1(R). Then we have

¢ =<8 ow-
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We have [[| Q]I = ©() and [[Q" 7 I] = llev1({)II" O(2). We have
1 )
l‘w —t1 < —Ilog——— 30
L= B O el (%)
and we get
S ‘% S 142
v <|— and thus <|—
vl < () il < ()

(the margin between max;—_; ..,
On the other hand, we have

s Reb; and b_ enables to absorb the terms O (6)).

1 8
= IOQ "
by +00©)  llera(® NIl

n

1 —t]

and the expression of M () shows that

) 1+
Hmmu<0——7m)y.

||31,1(t1

Finally we get

1

r=y
e =< (o)

Besides, we have
1 5

loi
by +0®) P llera]
which yields, according to (30) (and absorbing the term (©(8) by the margin between

"

tl _tl=

1) i
—_— < 81+y7
[lea,1(t )

and theresult follows. O

Now we estimate /. Write g, = ﬁ—g and d;, = ﬁ—gak — ag. We have

00
Ly =qx <Lo+ (0 dx))'

A cone-invariance criterion shows that
R, = Ro+0O0)

and we have
A = AgePW.

Moreover, comparing the differentia equations the flows of which give rise to ag and
ay, we get, for g sufficiently small, and using the margin between max ;_;
and b_,

.....

[llax — aolll < O()e”
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which yields
dall] < &” (9™ —1).

Proceeding asin the case d = 2, we abtain

Y = qr(Yo + S),

where, if (s; )1, j<a arethecoefficientsof thematrix S, andwriting S = (Sl’l SM),

S21 822
we have

si; =n10O() ifs; ; doesnot belong to So,1,

20 (31)
sij = O} +n10R%) ifs; ;j belongsto S 1.

Looking for an unstable eigenvector for v, 0¢;.. Thematrix g, L, 0. reads (forgetting
theindices 1)

1+ A(w+ny) + 81,11+ Aw) +AS12y a+nB+A(x +nz2) + S1,1(a + Ax) + S12(8 + A2)
ALy 4+ S21(1+4 Aw) + 4822y B+ sz + S21(a + Ax) + 82 2(B + Az)

Let ¢ be alarge constant to be chosen later. We are looking for an unstabl e eigenvector
for ¥, o ¢, intheconeC = {(x, y) € R x R | ||y|| < c|Al|x|}. Let ¢ be any vector
of R~ satisfying ||¢|| = ¢, and write

(£)=veoen i)

Theexistence of an unstableeigenvector for v; o, will beprovedif weget thefollowing
estimates:
IAIYIEN < clxl and x| > L.

Let usfirst estimate x. Write yo.0 = (30.0,1, - - - » ¥0.0.d=1) Yo = (a1, - - - » Ya.d—1) and

x =@ (L4 rn1(y1+r0))). (32

We can write

r(d) =0 a2 n2+ -+ Yad—1na—1) + Gn) T S11+ 0y B + ...

where“. . ."” denotestermswhich arearbitrarily small if &g issufficiently small (depend-
ing on § and c¢). Let us consider the remaining terms.

According to (31), theterm (A1) 151 1 is bounded (independently of § and c), and,
according to (29) and to the following lemma, the term 3 Be goestoOwhens§ — O
and c isfixed.

Lemma5. We have ||| 8ol|] — Owhené — O.

The proof of thislemmais actually ssimpler than that of Lemma 2 (since we have here
|b—| > by) and we leave it to the reader.

The quantity yo o is the value at time 71 of the solution of the differential Eq. (15),
namely

ay =bo(t)Y + (1)
7o 0 €3,0



Spatial Unfoldings of Almost Homoclinic Periodic Orbits 351

with initial condition Y = O at time r = ;. Thus, we see from the definition of
o (fo, uo, Co) that o (fo, uo, Co)yo,0,1 — +oo when§ — 0, and from this differen-
tial equation that the ratio yo 0, j/y0,0,1 goesto O when § — 0.

Thus, for § sufficiently small (depending on¢) and for &g sufficiently small (depending
on §), we have o (fo, 1o, Co)yx,1 > Oand

X =@+ Ay al+...)) (33)

where” ... " issmall.
In the following, o (fo, 1o, Co) will simply be denoted by o. Let us consider &. We
have

A7 = ATISo 1 (14 Aws) + S220a + (S2.1(@ 4+ Axs) 4+ S2.2(8 + Az)) ..,

where”...” denotestermswhich are arbitrarily small if g issufficiently small (depend-
ing on § and ¢). We thus have, according to (31),
Mg HIEN = O) + y2.1m OO + en1 O (). (34)

Asinthecase d = 2, we have the following more precise estimate on Ag:

Ao=(1+0@®)et
(the proof of this estimate is similar to that of Lemma 3). According to (29), thisyields

b.
N = il b-’°' 1L+ 06t (35)
+

To conclude, we have, asin the case d = 2, to distinguish two cases.
(i) IA| = e. Inthiscase, writee = s|A|, 0 < s < 1. We deduce from (33) and (35) that

_ bjol
g 'x =0yl ) (36)
+

and thus
b .
x = —o 2l =100, @y, (37)
by
wheretheterms® ... ” aresmall.

Thus, if § is sufficiently small and ¢ is sufficiently large, we see from (34) and (36)
that || 71[|£]| < c|x|. This shows the existence of an eigendirection in the cone C for
¥, o ¢, the corresponding eigenval ue being real. According to (37), the modulus of this
eigenvalueisstrictly larger than 1, and itssign isthe sign of y; 1, i.e. thesignof —o. In
particular, this proves the instability in case 2 of Theorem 2.

(i) |A| < &. Inthiscase, write |A| = re, 0 < ¢t < 1. We see from the expression (32)
that

bA
X=l—tc7| jo||y;\,1|(l+...), (38)

by

where” ... " are small, and from (34) that
IATHIEN = 0) + t (3.1 OD) + ¢ OD). (39)

Let us suppose that —o = 1 (we are proving the instability in case 1 of Theorem 2).
Then, we see that x > 1 and that, for § sufficiently small and ¢ sufficiently large,
IM7L1€]] < clx]|. This shows the existence of an eigendirection in the cone ¢ for
¥, o ¢, the corresponding eigenvalue being real and strictly larger than 1. Thisfinishes
the proof of theinstability resultswhend > 3.
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A stability result. Here we suppose that —o = 1 and that |1| < &, and we still write
[A| =te,0 < ¢ < 1. It remainsto prove that, for ¢ sufficiently small, the eigenvalues of
Y, o ¢, arenot larger than 1 in modulus.

We see from (38) and (39) that, for ¢ sufficiently small (depending on §) and ¢
sufficiently large, the cone C is still invariant by ;. o ¢,. Thus, this linear map admits
two invariant subspaces E1 and Eo, WithRY = E1 @ E», dimE; = 1, dimEs =d — 1,
E1 C ¢, and E; ¢ R?\ ¢. The eigenvalue corresponding to the eigenspace E1 is,
according to (38) (and for ¢ sufficiently small) between 0 and 1.

-1
Let v be any vector of Ep. Write v = A ¢x>,£ € R, ¢ € R, and suppose that

[|¢l| = 1. Then, asv ¢ ¢, we have || < ¢~ 1. Write
X\ _ A1z
(- i)

E= (ny + 271511+ Awy) + Sz,zyx)f + (S22B+ 20 + ...,

We have

where“..."” denotestermswhich are arbitrarily small if eg is sufficiently small. We thus
have, for § sufficiently small (depending on c¢),

€I < X+ 1yt OQ).

In particular, for ¢ sufficiently small (depending on §) and ¢ sufficiently large, we have
[I€]] < 1, which showsthat all the eigenvalues of (), o ¢y) g, arestrictly smaller than 1
in modulus. This provesthe desired stability result, and finishesthe proof of Theorems 1
and 2indimensiond > 3. O

Remark. Thismethod of construction of an invariant coneworksall the samein dimen-
siond = 2, providing that »_ < —b.. Thus, under the hypotheses of Subsect. 3.2, if
b_ < —b, then we can say that the unstable eigendirection of v, o ¢, (which was
proved to exist viaestimation of the trace and determinant) is actually close to the hori-
zontal direction (it belongstoaconeC = {(x, y) € R2 | |yl < c|A| x|}, for ¢ sufficiently
large).

4. Proof in Case (b)

4.1. Setup for the proof. We give ourselves and fix fo(.), Co(., .) asin Subsect. 1.1, in
case (b), and we suppose that o ( fo, 1o, Co) % 0and o (fo, itg, Co) # 0.
We introduce é, go, f1(.), C1(.,.), and v asin Subsect. 3.1 (see Fig. 10).

by O
0+ g | Let
%0, theparametrization of ug(.), ¥, and X’ beasin Subsect. 3.1. For § and ¢ sufficiently
small, theintersection 7o NX (resp. 7o NX', ToNE, ToNX’) containsexactly one point;
denoteit by £o (resp. £}, £o, £,); moreover, theintersection 73 N (resp. 73 NE’) contains
exactly two points (see Subsect. 1.1); denote them by &1, & (resp. by &/, &), insuch a

way that &1 ~ &o, & ~ &}, £1 ~ &, &] ~ &,

Up to alinear change of coordinates, we suppose that D fp(0) reads (
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Define 1, 1, fo, and 1; by:

uo(ty) = &, iiolio) = &, and iio(7y) = &

uo(to) = &o,

Denote by 7' the period of u1(.), definery, #1, 71, and 7] by:

ur(n) = &1, wi(r) =&, @) =&,

i1(f) = &,

andwriter] =11+ T. Define 11/, e asin Subsect. 3.1, and define ', & similarly. Define
#;. and ¢ ;. asin Subsect. 3.1, and define ¢;, and ¢o 5, similarly.

Let v, (resp. ¥,) denote the flow of the differential Eq. (9) with k = 1, between the

timest = 11 and 7 = 7] (resp. between thetimes+ = 71 and 7 = ¢}’). We adopt the same

notations as in in Subsect. 3.1 for ¢, ¥, ¢o,,, and similar notations (with a tilde) for

n<O0<n<fh<th<ig+T,

o b0
Themap v, o ¢y o ¥, o ¢, isconjugated to @, , and our aim is to study its spectral
radius.

4.2. Estimates in dimension two. Estimates on v, are the same as in Subsect. 3.2 (in
particular estimates (17) on ¢ and (20) on S; ;), and similar estimates hold for ;.
Estimates on By and Ag are the same as in Subsect. 3.2 (Lemmas 2 and 3) and similar

estimates hold for By and Ag. We deduce from the estimates on Ag and Aq that
n=—0oy(L+0@)e " and §j=—ooy(l+0O@)E " (40)
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(these estimates are similar to estimate (28) of Subsect. 3.2 on 5, except that o iS
Denote by T;, the trace of ¥, o ¢, o ¥ o ¢;. We have

To =1+ BLp.

According to the expression of ;. o ¢, (see Subsect. 3.3) and to estimateson 7, ¢, and
S;,; of Subsect. 3.2, we have

_1¢ ody = 1+ anpyi(1+...) nB+...)
DoV = (@ + .. )+ OQ) +20Q) B+rn0D))°

where the “©(1)” denote quantities which, for g sufficiently small (depending on §),
are bounded independently of &, and the “...” denote quantities which are arbitrarily
small if § is sufficiently small and ¢g is sufficiently small (depending on §).

A similar expression holds for §; 1, o ¢;. We thus have

(@307 = To+ apya(X+ .. )+ A5 L+ .. + iy i (L +...)
0B+ .. AT F B 4. )AL + Al B OQ) + AficB O(L),

where the “...” denote quantities which are arbitrarily small if § is sufficiently small
and gq is sufficiently small (depending on §).

Lemma 6. We have
apo= 1+ O))e”.

We omit the proof which isvery similar to that of Lemma 3.
According to this lemmaand to estimate (17) on ¢, we have

=y + 06" =0Q).

As a consequence, in the above expression of (¢;§,) 175, the last two terms can be
removed. Now, we once again distinguish several cases.

(i) max(e, &) < |A]. Inthiscase, writee = s|A|,0 <s <1,andz =5|A[,0 <5 < L
For § sufficiently small, the dominant term in T, reads, according to (40),

(@) = Y2 (L + 08))|A|OW s~ HODF=14+0M) y, 5,

If § issmall, thisterm islarge, thus 7;, islarge and has the sign of y, ¥, ; this proves the
desiredinstability (in particular, thisprovestheinstability in cases2 and 3 of Theorem 3).

(if) min(e, &) < |A| < max(e, £). This situation has to be considered only in case 1
of Theorem 3, called “case (b),1”, namely when o (fo, ug, Co) = o (fo, tig, Co) = —1.
Inthis case, ooryy < 0and ooy, < 0, and we can see that al the terms in the above
expression of (¢,g,) 1T, are positive.

Suppose for instance that ¢ < |A| < € andwritee = s|A|,0 < s < 1,and £ = §|A|,
1 < 5. Thentheterm Any, (1 + ...) islarge, and, as the other terms are positive, we
find, according to (40),

T, 2 @iy L+ = 29 (y @+ 0GNIAOPs HOD )@+ ...
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As |A| < &, we have 80 = gOG) ~ 1 thus Tj is large positive, which proves the
desired instability.
(iii) L] < min(e, &). Inthiscase, write|A| =t¢,0 <t < 1l,and|A| =75,0 <7 < L It
remains to prove the instability in case 1 of Theorem 3 and the stability result in case 2
of Theorem 3. In these two cases, o (fo, ug, Co) and o (fo, ig, Co) have the same sign,
and, equivalently, for § sufficiently small, y, and 3, have the same sign.

Write T), = To—i—tT’)\—i—fYN")C+n‘~T’;.Weha\leqxc})\ =1+t 0(e)loge+7 O) loge,
and thus

T/ = ooy (n @+ ) +EHA+..)),
Tl = ao,y(yk(n...) —I—Cyk(l—l-...)),
T =y?mihd+...).

wheretheterms” ... " aresmall. As y; and j; havethe same sign, we seethat 7’;,, TA/
and T}, are arbitrarily large in modulusif § is sufficiently small.

Denoteby D; the determinant of 1, o ¢ o 5 oy, and write Dy, = Do+ D), +7Dj,.
Proceeding as in Subsect. 3.2, we see that D) and D are arbitrarily small if eg is
sufficiently small (depending on §).

Write A; = T2 — 4D, and, asin Subsect. 3.2, if A; > 0, let

1
my =1+ é(TA —To+ VAL —VAo).

Let us conclude. If ogry;, > 0and ooy > O, then we seethat 77, TA’, and T’; areall
large positive, thus ), > Tp and A, > Ag > 0, and finally m, > 1. Thisfinishesthe
proof of the instability result in case 1 of Theorem 3.

If ontheother hand o¢ry;, < Oand ogr ¥, < 0, thenwe seethat, for r and 7 sufficiently
small (depending on §), the term 77", is dominated by tT"; + T, which is negative.
Thuswesee T, < Tpand A, < Ag, andthusthat, if A, > 0, thenm; < 1. Thisproves
the stability result in case 2 of Theorem 3.

The proof in dimension 2 of Theorem 3 (and thus of Theorem 1) iscomplete. O

4.3. Estimatesin dimension higher than two. Estimates on v, (in particularon ¢, s; ;,
Ap) arethesameasin Supsect 3.3, and similar estimates hold for ;.. We deduce from
the estimates on Ag and Ag that

b, b,
=20l 14 oenet and = =20l 4 ogsyat
by by

Asin Subsect. 3.3, let ¢ = {(x,y) € R x R¥™1 | [|y|| < c|A| |x[}, where c isalarge
constant to be chosen. Let us denote o ( fo, 1o, Co) by o and o (fo, iig, Co) by 6. Then,
proceeding asin Subsect. 3.3, weobtainthat, if ¢ issufficiently large, § sufficiently small
(depending on ¢), and &g sufficiently small (depending on §), inthethreefollowing cases:

(i) Al = max(e, &),

(i) |A] <max(e,&)ando =1lands =1,

(iii) |A] < T min(e, &), where T isasmall constant (depending on §), and 0 = —1 and
o =-1,
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the cone ¢ is invariant by v, o ¢, and by ;. o ¢,. Thus, it is also invariant by the
composition v, o;. o ;. oy, which showsthe existence of an eigendirection inthe cone
¢ for this map, the corresponding eigenvalue being real. Proceeding as in Subsect. 3.3,
we obtain that, in cases (i) and (ii) above, this eigenvalue is strictly larger than 1 in
modulus, and has the sign of o& (this proves the instability results); in case (iii), if 7 is
small enough, this eigenvalue belongsto ]0; 1[, and we can show asin Subsect. 3.3 that
the other eigenvalues are smaller than 1 in modulus (this proves the stability result).
Thisfinishesthe proof of Theorem3. O
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