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We provide an elementary direct computation of the classical criterion governing the (linear)
phase stability under inhomogeneous perturbations of a spatially homogeneous periodic orbit
close to a spatially homogeneous supercritical Hopf bifurcation.

1. Introduction

We consider PDEs of the form

∂tu = Fµ(u, ∂x) , (1)

i.e. invariant with respect to translations of time
(autonomous) and space, and depending on a real
parameter µ. We suppose that u is in Rd, d ≥ 1,
and that the space coordinate x belongs to Rn,
n ≥ 1, or to a domain of Rn with boundary condi-
tions of type Neumann or periodic. Spatially homo-
geneous solutions of this PDE are solutions of the
equation

du

dt
= Fµ(u, 0) = fµ(u) (2)

(we write fµ(u) for Fµ(u, 0)), which is an au-
tonomous ordinary differential equation in dimen-
sion d.

Among the solutions of Eq. (2), of prime in-
terest are those which correspond to an asymptotic
behavior, in particular attractive fixed points and
attractive periodic orbits. The corresponding ho-
mogeneous solutions for the PDE (1) are thus sta-
ble with respect to homogeneous perturbations but
might be unstable with respect to inhomogeneous
perturbations; this is at the origin of many phe-
nomena displaying “patterns” or “spatiotemporal

chaos” in nonlinear physics [Cross & Hohenberg,
1993].

In particular, an attractive periodic orbit might
present the well-known Kuramoto phase instabil-
ity [Benjamin & Feir, 1967; Newell, 1974; Yamada
& Kuramoto, 1976]. Moreover, if this periodic or-
bit is born through a supercritical Hopf bifurcation,
then, close to the threshold, the occurrence of the
phase instability is governed by a criterion which
can be explicitly computed, and which is currently
known as the “Benjamin–Feir” criterion. Classi-
cally [Benjamin & Feir, 1967; Newell, 1974; Yamada
& Kuramoto, 1976], this criterion is derived through
an amplitude equation and expressed in terms of the
coefficients of this equation.

Usually, such amplitude equations are de-
rived using scaling and averaging arguments, but
their rigorous justification is not a easy task (see
[Collet, 1998] and references therein). In this pa-
per, we show how to recover this criterion directly
from the starting partial differential equation, by a
perturbative computation of the critical Floquet ex-
ponent. Although elementary and to some extent
classical, this computation is not easy to find out
in the literature, buried in papers which are techni-
cally difficult and devoted to specific problems, of-
ten issued from hydrodynamics [Stuart & Di Prima,
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2098 E. Risler

1978; Bridges & Mielke, 1995]. We hope to pro-
vide here an easy access to a simple and rigorous
justification of this celebrated criterion.

Notations: For n ∈ N∗, we denote by Mn(R) the
space of n× n-real matrices and by IdRn the iden-
tity map of Rn. For α in R or in R/2πZ, we denote
by Rotα the rotation of angle α in R2.

2. Setup and Statement of the Result

2.1. Hopf bifurcation

We keep the previous notations. We suppose that
the map: R×Rd → Rd, (µ, u) 7→ fµ(u) is smooth,
and we denote by 0 the origin (0, . . . , 0) of Rd. We
suppose that d ≥ 2, that f0(0) = 0, and that Df0(0)
has two simple eigenvalues ±iω, ω > 0, all its other
eigenvalues having strictly negative real part. Up
to a linear change of variables, we can suppose that
the matrix of Df0(0) reads

(
0 −ω
ω 0

)
0

0 L


where L ∈ Md−2(R) and its spectrum lies in the
open left half-plane.

According to center manifold and normal form
arguments (see e.g. [Iooss & Adelmeyer, 1992]),
there exists a neighborhood I of 0 in R, a neighbor-
hood U of 0 in Rd, and a smooth map I×U → Rd,
(µ, u) 7→ h(µ, u) = hµ(u), with the following prop-
erties (see Fig. 1):

1. h0(0) = 0 and Dh0(0) = IdRd ;
2. for µ ∈ I, the local diffeomorphism hµ maps

a center manifold of fµ to the subspace R2 ×
{(0, . . . , 0)}. More precisely, for v ∈ hµ(U),

let f̃µ(v) = Dhµ(h
−1
µ (v))fµ(h

−1
µ (.)); then, for

any v ∈ hµ(U) ∩ (R2 × {(0, . . . , 0)}), f̃µ(v) ∈
R2 × {(0, . . . , 0)};

3. denote by g̃µ(.) the smooth map defined on a
neighborhood of 0 in R2, with values in R2, as
the restriction of f̃µ(.) to R2×{(0, . . . , 0)}; then,
in complex coordinates Z = x + iy of R2 ' C,
g̃µ reads:

g̃µ(Z) = iωZ+Q(|Z|2, µ)Z+R(Z, Z, µ) , (3)

whereQ(|Z|2, µ) is a complex degree one polyno-
mial in |Z|2, depending smoothly on µ, R(., ., .)
is a smooth function, and R(Z, Z, µ) = O(|Z|5).

µh

τ

g  

u      ,
µ

~
fµ

~

~

µf   ,µ

Tµh,µ

Fig. 1. Central manifold reduction.

As Q(0, 0) = 0, we can write: Q(|Z|2, µ) =
γ(µ)µ+δ(µ)|Z|2. Let us write γ(µ) = γr(µ)+iγi(µ)
(real and imaginary parts of γ(µ)) and δ(µ) =
δr(µ)+ iδi(µ). In polar coordinates (r, θ), Z = reiθ,
the differential equation dZ/dt = g̃µ(Z) reads

dr

dt
= µrγr(µ) + r3δr(µ) +O(r5) (4)

dθ

dt
= ω + µγi(µ) + r2δi(µ) +O(r4) . (5)

Generically, γr(0) 6= 0 and δr(0) 6= 0; in this case,
when the parameter µ is small and has the sign of
−δr(0)/γr(0), this differential equation admits in a
small uniform neighborhood of 0 in R2 a unique pe-
riodic orbit close to the circle of center 0 and radius√
−µ[γr(0)/δr(0)] (see [Iooss & Adelmeyer, 1992]).

These periodic orbits are attractive if µγr(0) > 0,
and repulsive otherwise. We suppose that they are
attractive (the Hopf bifurcation is called supercrit-
ical in this case) and that they arise for µ > 0. Fi-
nally, the hypotheses are: γr(0) > 0 and δr(0) < 0.

For small µ > 0, denote by τ̃µ the trajec-
tory (in R2) of the above mentioned periodic or-
bit, and let Tµ ⊂ Rd denote the trajectory of
the corresponding periodic orbit for fµ (i.e. Tµ =
h−1
µ (τ̃µ × {(0, . . . , 0)})). Let t 7→ uh,µ(t) denote a

solution of the differential equation (2) having the
trajectory Tµ (see Fig. 1).

2.2. Reduction of the linear stability
problem

A small inhomogeneous perturbation u(x, t) of
uh,µ(t) formally obeys at first order the linear
equation

∂tu = DFµ(uh,µ(t), ∂x)u ,

which reduces in Fourier coordinates to

∂tû(k) = DFµ(uh,µ(t), ik)û(k)
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A Direct Computation of the Phase Stability Criterion 2099

which is just an ordinary differential equation
parametrized by k. We make the supplementary
hypothesis of space isotropy. The preceding equa-
tion thus only depends on |k|2, and can be rewritten

∂tû(k) = (Dfµ(uh,µ(t)) + C(uh,µ(t), −|k|2))û(k) ,

where C : Rd×R→ L(Rd) satisfies C(., 0) ≡ 0 (we
denote by L(Rd) the space of linear maps: Rd →
Rd). Thus we can write: C(u, λ) = λC(u, λ), where
the map C : Rd ×R→ L(Rd) is regular.

In the following, we will forget about the ex-
act nature of the PDE (1), and just consider the
ordinary differential equation

du

dt
= (Dfµ(uh,µ(t)) + λC(uh,µ(t), λ))u , (6)

depending on the parameter λ (which corresponds
to −|k|2, and should therefore be thought of as
negative).

For λ ∈ R, denote by Fµ,λ the (linear) flow
over one period of uh,µ of this differential equation,
and denote by ρ(Fµ,λ) the spectral radius of Fµ,λ.
We know that 1 is always an eigenvalue of Fµ,0 (the
“neutral” Floquet multiplier in the direction of the
flow). Thus, even for values of λ arbitrarily close
to 0, the eigenvalue 1 of Fµ,0 may become larger
than 1, which yields the phase instability.

2.3. Statement of the result

Write α = −2γr(0)[δi(0)/δr(0)] and β = −2γr(0)
(remark that β < 0).

Denote by (Ci,j)1≤i,j≤d the coefficients of the
matrix C(0, 0) (where the first 0 denotes the ori-
gin in Rd), and write D = (C1,1 + C2,2)/2, P =
(C2,1 − C1,2)/2, and

B = −αP − βD .

To avoid complications, we make the hypothesis
that D 6= 0.

The sign of B governs the occurrence of the
phase instability:

Theorem 1. If B > 0 (resp. B < 0), then, for
µ > 0 sufficiently small and λ < 0 sufficiently
small (depending on µ), we have ρ(Fµ,λ) < 1 (resp.
ρ(Fµ,λ) > 1).

More precisely:

Theorem 2. There exists (see Fig. 2):

0

λ

µ 0

λ

µ 0

λ

µ 0

λ

µ

ψ

ϕ

ϕ

ψ
D>0 D<0B>0B<0

U1

U1

2U

2U

Fig. 2. Illustration of Theorem 2; areas in gray correspond
to parameters for which instability occurs.

• ε > 0 (write I =]− ε; ε[ and J =]0; ε[);
• a smooth function ϕ : I → R satisfying: ϕ(ν) =

(B /(D2 + P 2))ν2 +O(ν3);
• a smooth function ψ : I → R satisfying: ψ(ν) =

(−β/2D)ν2 +O(ν3);

such that, with the following notations:

• U1 = {(µ, λ) ∈ J × I s.t. min(ϕ(
√
µ), 0) < λ <

max(ϕ(
√
µ), 0)};

• if D > 0, U2 = {(µ, λ) ∈ J × I s.t. λ > ψ(
√
µ)}

(in this case we have ψ(
√
µ) > 0); if D < 0,

U2 = {(µ, λ) ∈ J × I s.t. λ < ψ(
√
µ)} (in this

case we have ψ(
√
µ) < 0);

• U = U1 ∪U2, S = (J × I)\U , and N = (J ×
I)\(S ∪U),

for (µ, λ) ∈ S (resp. N , U), we have ρ(Fµ,λ) < 1
(resp. ρ(Fµ,λ) = 1, ρ(Fµ,λ) > 1).

3. Proofs

In what follows, we denote by K an interval ]−ε; ε[,
where ε > 0 is as small as necessary. Let τ̃0 =
{(0, 0)} and T0 = {(0, . . . , 0)} (in Rd).

First we have to reparametrize by±√µ to elim-
inate the singularity at µ = 0. It is known by
an implicit function argument (see e.g. [Iooss &
Adelmeyer, 1992]) that there exists a smooth func-
tion m : K → R, m(ρ) = −(δr(0)/γr(0))ρ

2 +

O(ρ3) ≥ 0, such that, for any ρ ∈ K, the point
(ρ, 0) belongs to τ̃m(ρ) (see Fig. 3).

m(ρ)

ρ

m(ρ)

ρ

ν

ζ(ν)

V

τ∼m(ρ)

Fig. 3. Hopf bifurcation and reparametrization by ν instead
of µ.
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2100 E. Risler

Write m(ρ) = −(δr(0)/γr(0))ρ
2(1 + ∆m(ρ)),

and denote by
√
m the map ρ 7→√

−(δr(0)/γr(0))ρ
√

1 + ∆m(ρ); this map is invert-
ible in a neighborhood of 0; denote by ζ its in-
verse (thus we have m(ρ) = (ζ−1(ρ))2). Then, for
any ν ∈ K, the point (ζ(ν), 0) (which depends
smoothly on ν) belongs to τ̃ν2 ; in the following,
the bifurcation parameter µ will correspond to ν2.
For µ > 0 small, denote by T (µ) the period of the
periodic orbit of trajectory τ̃µ (or Tµ), and write:
T (0) = 2π/ω. According to the differential equa-
tion (5), the map ν 7→ T (ν2) is smooth on K.

For ν ∈ K, write z(ν) = h−1
ν2 (ζ(ν), 0, . . . , 0);

this point belongs to Tν2 . Let t 7→ vh,ν(t) denote the
solution of the differential equation du/dt = fν2(u)
with initial condition z(ν) at t = 0; this solution is
periodic (or fixed if ν = 0), its trajectory is Tν2 and
its period is T (ν2) (if ν 6= 0), and vh,ν(t) depends
smoothly on ν and t. Denote by Φν,λ the flow of
the differential equation

du

dt
= (Dfν2(vh,ν(t)) + λC(vh,ν(t), λ))u

between t = 0 and t = T (ν2) (up to a linear conju-
gacy, Φν,λ equals Fν2,λ). According to the previous
smoothness assertions, Φν,λ depends smoothly on
(ν, λ) on K ×R.

Write M0 = Df0(0). We have

Φ0,0 = exp

(
2π

ω
M0

)
=

(
IdR2 0

0 e
2π
ω
L

)
.

Thus, for (ν, λ) ' (0, 0), Φν,λ has exactly two eigen-
values (counted with multiplicity) close to 1; let
Eν,λ denote the two-dimensional subspace of Rd,
invariant by Φν,λ, corresponding to these two eigen-
values, and Pν,λ denote the projector on Eν,λ along

{(0, 0)} × Rd−2. We have: P0,0 =
(

IdR2 0
0 0

)
and

Pν,λ =
(

IdR2 0
∗ 0

)
, and we know (see [Kato, 1980])

that Pν,λ depends smoothly on (ν, λ). Write

P0,0Φν,λPν,λ =

(
φν,λ 0
0 0

)
.

The matrix φν,λ ∈ M2(R) defined this way is con-
jugated to the restriction of Φν,λ to Eν,λ. The sta-
bility of Φν,λ thus reduces, for (ν, λ) close to (0, 0),
to the stability of φν,λ.

We have φ0,0 = IdR2. Write φν,λ = IdR2 +(
a b

c d

)
(a, b, c and d are smooth functions of (ν, λ))

and write
(
a b

c d

)
= (2π/ω)

(
ã b̃

c̃ d̃

)
. We now have to

estimate these functions.

Lemma 1. We have

ã = βν2 +Dλ+ · · · b̃ = −Pλ+ · · ·
c̃ = αν2 + Pλ+ · · · d̃ = Dλ+ · · ·

where the “· · ·” mean higher order terms, i.e.

O(ν3) +O(νλ) +O(λ2).

Proof. Let us first estimate ã, b̃, c̃ and d̃ when ν = 0
and λ 6= 0. Denote by Ψ0,λ(t) the flow between the
times 0 and t of the differential equation

du

dt
= (M0 + λC(0, λ))u .

We have Ψ0,λ(T (0)) = Φ0,λ. Write Ψ0,λ(t) =
etM0(IdRd +λψλ(t)); then we have ψλ(0) = 0 and

dψλ
dt

= e−tM0C(0, λ)etM0(IdRd +λψλ(t)) ,

which shows that

Φ0,λ = Φ0,0

(
IdRd +λ

∫ T (0)

0
e−tM0C(0, 0)etM0dt

+ O(λ2)

)
.

Moreover, as etM0 =
(

Rotωt 0
0 etL

)
, we have

∫ T (0)

0
e−tM0C(0, 0)etM0dt =


(
D −P
P D

)
∗

∗ ∗

 .

Thus,

P0,0Φ0,λP0,λ = P0,0Φ0,0P0,λ

+λP0,0Φ0,0


(
D −P
P D

)
∗

∗ ∗

P0,λ

+ O(λ2) ,

and finally, according to the expressions of P0,0 and
P0,λ,

φ0,λ = IdR2 +λ

(
D −P
P D

)
+O(λ2) . (7)

We now have to estimate the functions ã, b̃, c̃,
d̃ when λ = 0 and ν 6= 0. For ν ∈ K and
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A Direct Computation of the Phase Stability Criterion 2101

θ (t)ν�

h   (v    (t))ν h,ν2

Fig. 4. Definition of the angle θν(t).

t ∈ R, let M̃ν(t) = Df̃ν2(hν2(vh,ν(t))) and let
Hν(t) = Dhν2(vh,ν(t)). Under the change of vari-
ables v = Hν(t)u, the differential equation du/dt =
Dfν2(vh,ν(t))u becomes

dv

dt
= M̃ν(t)v . (8)

Let Φ̃ν denote the flow between t = 0 and t = T (ν2)
of (8).

For t ∈ R and ν 6= 0, denote by θν(t) the polar
angle defined by the point hν2(vh,ν(t)) (see Fig. 4),
and write θ0(t) = ωt. Write

Pν(t) =

(
Rotθν(t) 0

0 IdRd−2

)
.

Under the change of variables v = Pν(t)w, the dif-
ferential equation (8) becomes

dw

dt
= M̂ν(t)w

(this defines M̂ν(t)). As θν(0) = 0 or π, the flow
of this differential equation between t = 0 and
t = T (ν2) is equal to Φ̃ν .

Differentiating Eqs. (4) and (5) at a point of τ̃ν
yields (writing r = r0 + r′ and θ = θ0 + θ′)

dr′

dt
= (−2γr(0)µ +O(µ2))r′ +O(µ2)θ′

dθ′

dt
=

√
µ
γr(0)

−δr(0)
(2δi(0) +O(µ))r′ +O(µ2)θ′ .

This shows that

M̂ν(t)=


 −2γr(0)ν

2+O(ν4) O(ν3)

−2γr(0)
δi(0)

δr(0)
ν2+O(ν4) O(ν4)

 ∗

0 ∗


and thus that

Φ̃ν =

 IdR2 +
2π

ω

(
βν2 +O(ν4) O(ν3)

αν2 +O(ν4) O(ν4)

)
∗

0 ∗

 .

We have Φν,0 = Hν(0)
−1Φ̃νHν(0) and we see that

Eν,0 = Hν(0)
−1(R2 × {(0, . . . , 0)}). As Hν(0) =

IdRd +O(ν), this shows that the restriction of Φν,0

to Eν,0 is conjugated to a matrix of the form:

IdR2 +(2π/ω)
(
βν2+O(ν4) O(ν3)
αν2+O(ν4) O(ν4)

)
by a conjugacy of

the form: IdR2 +O(ν). Thus, the same is true for
φν,0 and we obtain

φν,0 = IdR2 +
2π

ω

(
βν2 +O(ν3) O(ν3)

αν2 +O(ν3) O(ν3)

)
. (9)

The lemma follows from (7) and (9). �

We continue the proof of Theorems 1 and 2.
Let ρ(φν,λ) denote the spectral radius of φν,λ.

Claim. For (ν, λ) sufficiently close to (0, 0), we
have

• ρ(φν,λ) > 1⇔ ad− bc < 0 or ad− bc > −(a+ d);
• ρ(φν,λ) < 1⇔ 0 < ad− bc < −(a+ d);
• ρ(φν,λ) = 1 ⇔ 0 = ad − bc ≤ −(a + d) or

0 ≤ ad− bc = −(a+ d).

Indeed, the characteristic polynomial of φν,λ reads

χ(x) = x2− (2+ a+ d)x+(1+ (a+ d)+ (ad− bc)) ,

and its discriminant reads ∆ = (a + d)2 −
4(ad− bc).

• if ad− bc > −(a+ d), then detφν,λ > 1 and thus
ρ(φν,λ) > 1;
• if ad − bc < 0, then ∆ > 0 and the eigenvalues

of φν,λ are real and equal to 1 + ((a + d)/2) ±
(
√

∆/2); in particular, ρ(φν,λ) ≥ 1+((a+d)/2)+

(
√

∆/2) > 1;
• if 0 ≤ ad − bc ≤ −(a + d), then we see that in

both cases ∆ ≥ 0 and ∆ < 0, we have ρ(φν,λ) ≤ 1
(for (ν, λ) sufficiently close to (0, 0)).
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2102 E. Risler

This proves the first assertion of the claim, and the
other ones follow by similar arguments.

We know that φν,0 always has an eigenvalue
which is equal to 1 (it is the neutral Floquet mul-
tiplier in the direction of the flow), the second one
being smaller than 1 (strictly smaller if ν 6= 0);
thus, we always have det φν,0 < 1 and ρ(φν,0) = 1,
which yields ad − bc = 0. We can thus write
ad− bc = λF (ν, λ), where F depends smoothly on
ν and λ; according to Lemma 1, we have(

ω

2π

)2

F (ν, λ) = (αP + βD)ν2 + (D2 + P 2)λ

+ O(ν3) +O(ν2λ) +O(λ2)

As D2 + P 2 > 0, the equation F (ν, λ) = 0 defines
a smooth implicit function ϕ : K → R, ν 7→ ϕ(ν),
satisfying: ϕ(ν) = [(−αP − βD)/(D2 + P 2)]ν2 +

O(ν3). For any (ν, λ) ∈ K ×K, we have:

• if λ < min(0, ϕ(ν)) or λ > max(0, ϕ(ν)), then
ad− bc > 0;
• if min(0, ϕ(ν)) < λ < max(0, ϕ(ν)), then ad −
bc < 0;
• if λ = 0 or λ = ϕ(ν), then ad− bc = 0.

According to Lemma 1, we have

ω

2π
(a+ d+ ad− bc) = βν2 + 2Dλ+O(ν3)

+ O(νλ) +O(λ2) .

As D 6= 0, the equation a+ d+ ad− bc = 0 defines
a smooth implicit function ψ : K → R, ν 7→ ψ(ν),
satisfying: ψ(ν) = (−β/2D)ν2 + O(ν3). Remark
that, for ν 6= 0 sufficiently small, ψ(ν) has the sign
of D. For any (ν, λ) ∈ K ×K, we have

• if λ < ψ(ν) and D > 0, or if λ > ψ(ν) and D < 0,
then a+ d+ ad− bc < 0;
• if λ > ψ(ν) and D > 0, or if λ < ψ(ν) and D < 0,

then a+ d+ ad− bc > 0;
• if λ = ψ(ν), then a+ d+ ad− bc = 0.

The proof of Theorems 1 and 2 is complete.

Remark. For ν 6= 0 small, and for λ very small, the
smallness of λ depending on ν, we have (with the
notations of the preceding proof), ∆ > 0 and

ρ(φν,λ) = 1 +
a+ d

2
+

√
∆

2

and
ω

2π
(a+ d) = βν2 +O(λ) + · · · < 0 .

Thus,

ρ(φν,λ) = 1 +
a+ d

2

(
1−

√
1− 4

ad− bc
(a+ d)2

)
.

As λ = 0 forces ad− bc = 0, this yields

∂

∂λ
(ρ(φν,λ))(ν, 0) =

(
1

a+ d

∂

∂λ
(ad− bc)

)
(ν, 0)

and, according to the above estimates on ad− bc,

∂

∂λ
(ρ(φν,λ))(ν, 0) =

2π

ω

αP + βD

β
+O(ν)

= − 2π

ωβ
B+O(ν) .

4. Approach via an Amplitude
Equation

Here we briefly recall the classical approach via an
amplitude equation, which enables to recover the
same criterion involving the quantity B. The rigor-
ous justification of the derivation of the amplitude
equation is a difficult problem (see [Collet, 1998]
and references therein), which will not be consid-
ered here. We will simply invoke the usual (and
nonrigorous) scaling and averaging arguments.

For simplification, we just consider the spatially
extended differential equation

∂tu = fµ(u) + C∆u ,

where ∆ is the Laplace operator, the dimension d
of the variable u equals 2, C is a constant 2×2 ma-
trix, and the vector field fµ is already in the normal
form (3). Using complex coordinates Z = x + iy,
the equation becomes

∂tZ = iωZ + (µγ(µ) + δ(µ)|Z|2)Z
+R(Z, Z, µ) + C∆Z .

Write Z0(t) =
√
µ(γr(0)/− δr(0))ei(ω+µγi(0))t and

Z(t) = Z0(t)A(t) (here A(.) is a function de-
pending on the space variable, and represents the
“amplitude”). Then, neglecting higher order terms,
the previous equation becomes

∂tA = µγr(0)

(
A−

(
1 + i

δi(0)

δr(0)

)
|A|2A

)
+(Z−1

0 CZ0)∆A
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(multiplication by Z0(t) commutes with ∆, but not
necessarily with C). Writing τ = µγr(0)t, this gives

∂τA = A−
(

1 + i
δi(0)

δr(0)

)
|A|2A

+
1

µγr(0)
(Z−1

0 CZ0)∆A .

As Z−1
0 CZ0 oscillates at a frequency ω/2πµγr(0)

large with respect to the time scale of the variable
τ , it is legitimate to replace it by its mean over one
period, i.e. in complex notations by the complex
number D + iP . Finally, if we suppose D > 0, we
obtain

∂τA = A− (1 + iα0)|A|2A+ (1 + iβ0)

(
D

µγr(0)
∆

)
A

where α0 = δi(0)/δr(0) and β0 = P/D.
This last equation is nothing else than the clas-

sical complex Ginzburg–Landau equation. This
equation admits a spatially homogeneous periodic
solution A0(t) = e−iα0t, whose stability is gov-
erned, as an easy calculus shows, by the celebrated
Benjamin–Feir criterion, i.e. by the sign of the num-
ber B0 = 1 + α0β0 (it is stable if this number is
positive, unstable if it is negative). We can see that

B = 2γr(0)D B0 ,

and thus the stability criterion B0 > 0 is, as ex-
pected, equivalent to the phase stability criterion

B > 0 established before.

5. Conclusion

By an elementary perturbation calculus, we have
provided a rigorous justification of the criterion
(often called “Benjamin–Feir criterion”) governing

the phase stability of spatially homogeneous oscilla-
tions close to a Hopf bifurcation; moreover we have
determined precisely the values of the bifucation pa-
rameter and of the wavenumber where stability and
instability occur.
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